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Abstract

Statistical flowgraphs model multistate semi-Markov processes and provide a way to

perform inference for these processes. This methodology provides powerful results

that significantly impact the study of multistate semi-Markov processes. This dis-

sertation extends previous work in several ways. First, by demonstrating how any

“smooth” transition distribution can be incorporated into a statistical flowgraph

model (SFGM), we provide a method to use popular distributions, such as the log-

normal, that have not been used in the past. Next, we propose an alternate way to

consider Bayesian SFGMs by showing how computation can be accomplished when

the traditional methods of SFGMs fail to be computationally feasible. We demon-

strate this method with a Bayesian non-parametric example. We extend flowgraph

models to handle time-varying covariates using an accelerated failure time model.
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We also show how SFGMs can be used to make inference in multistate semi-Markov

models to calculate exact likelihood functions when faced with incomplete data. Fi-

nally, we develop a goodness-of-fit criterion that is applicable to any continuous

model and can be applied to SFGMs. This goodness-of-fit test criterion is general

enough to be useful when dealing with censored and incomplete multistate data.
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Chapter 1

Introduction

This dissertation focuses on some important problems in the area of statistical flow-

graph models (SFGMs). Flowgraph models are a framework that can be used to

develop multistate models. They have been used to compute the distribution of wait-

ing times in complex stochastic networks with feedback loops. SFGMs have been

used in both Bayesian and frequentist frameworks. The final result of a Bayesian

SFGM is a posterior predictive density (PPD) of the first passage time from one state

to another, and similarly for frequentist SFGMs the result is a probability density

function (PDF).

SFGMs connect a vast number of areas that are of interest in statistics, mathe-

matics, computer science, and engineering. Some application areas include survival

analysis and disease progression in medical studies, reliability engineering, and queu-

ing theory; all of these involve stochastic processes. The applications we tend to focus

on in this thesis are in the areas of survival analysis and reliability; namely in the

prediction of time until a specific event occurs. In survival analysis this is often some

significant event such as death, or in reliability, the time until some type of failure

occurs.
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Chapter 1. Introduction

Statistical flowgraph models provide a way to do prediction and inference in

multistate models. Multistate models often represent longitudinal data consisting of

states and waiting times until events occur. Figure 1.1 gives an example of a SFGM.

The diagram represents a patient’s transition through a notional disease process for a

recurrent illness. State 0 represents “good health”. In state 1 a patient is “diseased”

or ill. The patient is allowed to recover from the disease with a transition from state

1 to state 0. Eventually the patient dies from the disease and makes a transition to

state 2, “death”.

Figure 1.1: A diagram of a recurring illness process.

Our interest may be in the time until death, given the patient is in state 0, or

state 1. SFGMs can answer such questions as: What is the mean predicted time until

death occurs, given the patient is in good health, or given the patient is ill? How likely

is it that an individual recovers from this illness? What is the predicted probability

of survival beyond a certain time? Or in a reliability context, how long do we expect

this engine to run without any downtime? How do these answers change when we

have additional information in the form of patient covariates, or manufacturing and

usage information about the engine? Although these scenarios fall under the general

realm of stochastic processes, traditional methods from stochastic processes do not

provide general solutions. SFGMs (using the semi-Markov assumption) provide a

method to estimate and predict first passage times from one state to another.

2



Chapter 1. Introduction

Statistical flowgraphs have their limitations. Flowgraphs require that transitions

be conditionally independent; this may be a reasonable assumption in some situa-

tions, but it is often violated. For example, in a medical study, if a patient is resistant

to a treatment the first time, there may be some correlation if the patient is treated

a second time. Another limitation is that SFGMs are restricted to distributions that

have moment generating functions, which limits their modeling capabilities. Also,

flowgraphs only model processes with a finite state space, so if the process has an

infinite number of possible states, the state space must be redefined to be finite.

Another shortcoming is that when a SFGM is developed there is no quantitative way

to assess how well it models the process. In this dissertation we address some of

these limitations to make SFGMs more attractive as a modeling tool. We demon-

strate the techniques and methods with real and simulated data examples. We carry

a simulated data example across chapters to provide continuity in illustration and

discussion.

In this dissertation we propose generalizations and extensions of SFGMs. The

first area we address is generalizing the distributions that can be used in SFGMs. We

develop the methodology to incorporate any “smooth” distribution in a SFGM. We

use the word smooth to denote a continuous and differentiable probability density

function. We also introduce a Bayesian technique to the flowgraph framework that

allows faster estimation of the posterior predictive distribution. In the Bayesian

framework this technique also allows any distribution to be used in SFGMs whether

smooth or otherwise. Using this technique we also introduce Bayesian non-parametric

methods to SFGMs. In addition, with this added flexibility of modeling with any

distribution, we introduce a method to handle time-varying covariates in SFGMs,

an important problem in survival analysis. Next, we discuss how these advances

affect the way incomplete data are handled in a semi-Markov model and propose a

more general method of modeling incomplete data using SFGMs. We also propose a

goodness-of-fit criterion that can be applied to complex models such as flowgraphs.

3



Chapter 1. Introduction

These are the primary contributions of this dissertation to the SFGM framework.

We give a summary of the chapters to follow. Chapter 2 provides a brief intro-

duction into stochastic processes and how they relate to SFGMs. Chapter 2 defines a

SFGM as a stochastic process and discusses its implementation. This is an important

section that should be read if not familiar with the statistical flowgraph methodology.

In Chapter 3 we introduce how any smooth time-to-event distribution can be

used in SFGMs. This allows any distributions that do not have moment generating

functions (MGFs), such as the lognormal or certain parameterizations of the Weibull,

to be used in flowgraphs. Incorporating these distributions into SFGMs is an impor-

tant step for modeling in survival analysis and reliability. Examples demonstrating

these techniques are provided.

Chapter 4 discusses Bayesian SFGMs and demonstrates how to efficiently predict

in complex SFGMs. We specifically address an alternative way to estimate the pos-

terior predictive distribution in especially complicated Bayesian SFGMs. Advanced

Bayesian SFGM examples are provided. One illustrates a non-parametric flowgraph

and another focuses on the important problem of time-dependant covariates in an

accelerated failure time model.

Chapter 5 shows how SFGMs can be used to calculate the likelihood function of

a semi-Markov model when incomplete data are present. Using the methods from

Chapter 3, we show how SFGMs can calculate an exact likelihood function, whereas

the previous literature addressing incomplete data only developed approximations

for it. This provides better inference based on fewer assumptions.

In Chapter 6 we introduce a goodness-of-fit method that can be applied to any

continuous model, but are specifically adapted to SFGMs. This is an important area

that has not been addressed in SFGMs. The suggested method enables models to

be appropriately appraised before implementation. This methodology also enhances

4



Chapter 1. Introduction

building models, by helping to determine the most appropriate distributions for a

particular transition of a flowgraph.

In the final chapter we review the contributions of this paper to SGFMs and their

impact. We also list some of the open problems and additional areas for promising

research in SFGMs.

We include a simulated example at the end of each major chapter. The code

is contained in the appendix, so that the reader can apply the techniques without

undue investment in time. The computation was conducted using R, which is a free

software environment for statistical computing and graphics; it runs on UNIX/Linux,

Windows, and Mac operating systems (see Hornik (2009) or R Development Core

Team (2009) for details). For all the distributions used in this dissertation, the

parameterizations are the same as defined in R or the R code.

5



Chapter 2

Stochastic processes and statistical

flowgraph models

A stochastic process is a random process which may change in state over time.

Statistical flowgraphs are a type of stochastic process, where the state of a flowgraph

varies over time. We review some definitions and areas of stochastic processes that

are applicable to SFGMs. For a detailed introduction to stochastic processes see

Taylor and Karlin (1998) or Ross (1996). We present only the material necessary to

understand statistical flowgraph models.

2.1 Stochastic processes

Definition A stochastic process is a collection of random variables, X(t), indexed

by a parameter, t, regarded as time (see Billingsley (1995)).

In most instances this index parameter belongs to a set T , typically T = {0, 1, 2, 3, . . .}
or T = [0,∞). In our context for survival analysis and reliability we will use the

6



Chapter 2. Stochastic processes and statistical flowgraph models

index set T = [0,∞) exclusively, where T represents time. The random variable

X(t) corresponds to the state of the process at time t. The state space is the set of

all possible values that X(t) can assume.

Recall the SFGM in Figure 1.1. Let X(t) denote the process for a particular

patient at time t. If X(t) = 0 then the patient would be in “good health”. Likewise

if X(t) = 1 or X(t) = 2 we could make a statement about the health of the patient.

The state space can be a finite set such as {alive, dead} in survival analysis or

{fully-operational, degraded, failed} in reliability. The state space can also be infinite,

either countable or uncountable (see Rudin (1976)). An example with an infinite

uncountable state space is an environmental model where X(t) ∈ [−273.15,∞), and

X(t) represents the temperature in degrees Celsius at time t. This same example

could also be interpreted as an infinite countable state space if we are only able to

measure the temperature to the nearest tenth of a degree.

SFGMs have been developed for applications that have a finite state space rep-

resenting potential outcomes, and we confine our discussions to these. Stochastic

processes have been used to successfully model numerous phenomena. Familiar ex-

amples are stock market prices, audio signals, medical data such as blood pressure,

and random movements similar to Brownian motion (Taylor and Karlin (1998)). In-

ference and prediction in stochastic processes can be very difficult unless simplifying

assumptions are made.

2.1.1 Markov processes

AMarkov process is an example of a stochastic process with simplifying assumptions.

The Markov property was introduced by A. A. Markov (1856-1922) while trying to

model Brownian motion. The Markov property is essentially one of conditional

independence; given the state of a process at a particular time, the future of the

7
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process is independent of the past. For example: if the weather were a stochastic

process that possessed the Markov property, then the weather yesterday would not

help predict the weather tomorrow, if we know the weather today. The weather today

would determine the probabilities of possible types of weather tomorrow. Clearly this

property is quite restrictive and is often not completely accurate, nevertheless, it can

be very useful in stochastic modeling.

The definition of a Markov process is simply a stochastic process that possesses

the Markov property. More formally, if X(t) is a stochastic process in state j, and i

is any possible adjacent state, then

P (X(t+ ε) = i|X(t), X(s)) = P (X(t+ ε) = i|X(t)),

for all ε > 0 and all s such that 0 ≤ s < t, then we say X(t) is a Markov process.

State i is considered adjacent to state j if and only if the process can proceed di-

rectly from state i to state j without transitioning through any other intermediate

state. Assuming a process has the Markov property greatly simplifies calculations

and allows difficult problems to be solved more easily.

Markov processes have been used in a variety of applications. They have been

used to model generic disease progression in Fix and Neyman (1951), and for progres-

sion of specific diseases such as cancer (Lagakos (1976)), kidney disease (Gross et al.

(1971)), and HIV (Longini et al. (1989)). A complete literature review on Markov

processes is too vast to include here, but Stroock (2005) and Grimmett and Stirzaker

(2001) provide an introduction to the development of Markov process theory and its

applications.

The exponential distribution has the memoryless property, which makes it the

natural distribution to model Markov processes. The exponential distribution is

the only continuous distribution with this memoryless property (the geometric is the

only discrete distribution). Therefore if a finite state continuous time process is truly

8



Chapter 2. Stochastic processes and statistical flowgraph models

Markovian, then the exponential distribution will perfectly model its transitions.

Although Markov models have been successful in modeling many processes, some

processes are not appropriately modeled within this framework.

2.1.2 Semi-Markov processes

A semi-Markov process is a stochastic process that has fewer restrictions than a

Markov process. The semi-Markov property relaxes the Markov property by allow-

ing the probability of a future state to depend not only on the last observation, but

also on the amount of time the process has been in the current state. This general-

ization greatly increases the model’s flexibility, by allowing the duration of time in

a particular state to “affect” the transition time. Therefore any distribution with

positive support could be used to model the transitions of a semi-Markov process, in

contrast to the Markov model where the exponential distribution is the only allow-

able transition distribution. A semi-Markov process has also been called a duration

dependent Markov process.

We define a semi-Markov process to be a stochastic process that possesses the

semi-Markov property. A processX(t) in state j, is a semi-Markov process if and only

if, for any possible adjacent state i, P (X(t + ε) = i|X(t), X(s), tj) = P (X(t + ε) =

i|X(t), tj), for every ε > 0, and all s such that 0 ≤ s < t, and tj represents the time

X(t) has been in state j.

The concept of semi-Markov processes is generally agreed to have been simulta-

neously introduced by Lévy (1954), Takacs (1954), and Smith (1955). The theory

was formalized soon after in Pyke (1961a) and Pyke (1961b). Further developments

came from Takacs (1959), Pyke and Schaufele (1964), Pyke and Schaufele (1966),

and C� inlar (1969).

9



Chapter 2. Stochastic processes and statistical flowgraph models

Barbu and Liminios (2008) mention that semi-Markov processes are applied in

queuing theory, reliability, survival analysis, performance evaluation, biology, DNA

analysis, risk processes, insurance and finance, earthquake modeling, and more. For a

formal introduction to semi-Markov processes in reliability see Limnios and Opri�san

(2001).

We have introduced the concept of a semi-Markov process in the notation of

stochastic processes. When dealing with SFGMs we do not usually use this notation.

SFGMs were created to perform data analysis for semi-Markov processes without

getting bogged down in the mathematics required for semi-Markov processes. We

introduced semi-Markov processes to help the reader understand both the powerful

modeling capabilities of statistical flowgraphs, but also their limitations given the

semi-Markov assumption. Next, we define a SFGM and more convenient notation

for dealing with SFGMs.

2.2 Statistical flowgraph models

Flowgraph models are robust enough to model any finite state semi-Markov process.

This section introduces the basic concepts regarding SFGMs. For a comprehensive

treatment see Huzurbazar (2005c).

We now formally define a SFGM. A statistical flowgraph model is a directed

graphical depiction of a finite state stochastic process that is assumed to have the

semi-Markov property. In this graph the nodes represent the states of the process.

The time until a transition of the process occurs is characterized by one or more

directed branches. Each branch has an associated waiting time distribution which

represents the random time it takes for the transition to occur. If there are two or

more paths leaving a node then we also include a probability of passage for each

path.

10
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Flowgraph models were first used in engineering and appeared in the literature

of electrical engineering as “signal flow graphs” (Mason (1953)). Mason (1953) was

primarily concerned with solving systems of linear equations. Signal flowgraphs are

concerned with “transmitting” current with respect to inductance and capacitance.

In reality, the branches of such a flowgraph can be labeled with anything. SFGMs

began by labeling the branches with moment generating functions (MGFs) of waiting

time distributions. This was convenient for flowgraph algebra to solve the system

of linear equations. Using MGFs on the branches of a flowgraph makes SFGMs

more accessible, but limits what distributions can be used. It is equally valid, and

sometimes more appropriate, to label the branches with other functions that may

represent the same distribution. For a branch connecting state i to state j, we use

Mij(s) to represent the MGF, Lij(z) as the Laplace transform (LT), and Fij(t) as

the cumulative distribution function (CDF); these functions are the various ways we

represent the random waiting time the process resides in state i before a transition

to state j. For a random variable Tij, we say the MGF does not exist if ∀ ε >

0,Mij(ε) = ∞. Using Fij(t) on the branches is more general, since the CDF always

exists.

Butler and Huzurbazar (1997) adapted flowgraph models for use in Bayesian

stochastic models. Since then, the use and theory of statistical flowgraph models

has continued to expand. Huzurbazar (1999a) used SFGMs to generalize phase-type

distributions. Huzurbazar (2000) demonstrated a Bayesian application of SFGMs on

a complex cellular telephone network. Butler and Huzurbazar (2000) improved on

some of the techniques used in flowgraph modeling and demonstrated their use in

Bayesian prediction of waiting times in queuing theory. Yau and Huzurbazar (2002)

show how SFGMs can be used to model incomplete data in multistate systems. The

theory linking semi-Markov processes with multistate models using SFGMs was ex-

plained in Huzurbazar (2004b). Huzurbazar (2005b) provides an excellent example

of how Bayesian SFGMs can be applied in various fields, using an example in con-

11
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struction project management. Huzurbazar (2005c) is a full length text devoted to

SFGMs and its applications. Other applications of SFGMs can be found in Huzur-

bazar (2002), Huzurbazar and Williams (2005), and Huzurbazar (2004a). Williams

and Huzurbazar (2006) provides a Bayesian approach on how to construct a likeli-

hood function when faced with incomplete data. Collins (2009) formally introduces

non-parametric methods to SFGMs and Collins and Huzurbazar (2008) use a sim-

ple non-parametric flowgraph to model cumulative earthquake damage to buildings.

Huzurbazar and Williams (2010) is a significant publication, which provides the

methodology to incorporate covariates into a Bayesian SFGM. However, they do not

consider time-varying covariates. To date, these are the main developments of flow-

graph models in statistics. There are still many open research problems in SFGM

theory.

There is a systematic way to implement statistical flowgraphs. The first step is to

propose the system diagram or graphical model. Often graphical models in statistics

literature refer to models with the random variable modeled as the node in the graph

(see Edwards (2000)); however, this is not the case in SFGMs. We design our graph

by identifying the states the process can assume. These states are represented by

the nodes of the graph. Next, we identify the possible transitions between states,

which are the directed branches (or edges) of the graph. Hougaard (1999) provides

an excellent introduction on developing multistate models. Once the graphical model

is in place, we examine the data to suggest appropriate distributions for the branch

transition times. This is usually accomplished by comparing a histogram of the

data with several families of parametric distributions. Huzurbazar (2005a) suggests

a method to construct a histogram for situations with censored data. The selected

distributions model the time it takes to transition from one state to another. Next, we

find the MGFs or LTs of the distributions assigned to the branches of the flowgraph.

Definition A first passage distribution from state i to state j is the distribution of

12
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the random time it takes a process to transition from state i to state j, regardless of

the path the process takes.

Mason’s rule, described in Mason (1953), is a way to find the first passage MGF

in a flowgraph. The general form of Mason’s rule (as found in Huzurbazar (2005c,

pp. 36)) provides the overall MGF from input to output as

M(s) =

∑

i Pi(s)[1 +
∑

j(−1)jLi
j(s)]

1 +
∑

j(−1)jLj(s)
, (2.1)

where:

• Pi(s) is the transmittance for the ith path.

• Lj(s) in the denominator is the sum of the transmittances over the jth-order

loops.

• Li
j(s) is the sum of the transmittances over the jth-order loops sharing no

common nodes with the ith path (i.e., loops not touching that path).

We apply Mason’s rule to the flowgraph to find the MGF of the first passage from

state i to state j. However, this first passage MGF is not of much practical use,

until we transform it into a probability density function (PDF). Using the PDF of

the overall flowgraph we can then proceed with inference and prediction.

Figure 2.1: A SFGM for a simple series system.

Consider the simple SFGM in Figure 2.1 with states 0, 1, and 2 representing the

states of a system. T01 represents the random waiting time to transition to state

13
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1 starting in state 0. T12 represents the random waiting time to transition from

state 1 to state 2. In SFGMs the random variables T01 and T12 are conditionally

independent given the process transitioned to state 1. Now define T02∗ = T01 + T12,

which represents the total waiting time starting in state 0 to reach state 2. We

use the “*” as the notation to denote first passage distributions. Now consider

the modified SFGM in Figure 2.2. We have a branch connecting state 0 to state

2 directly; this “*” notation distinguishes the first passage distribution, T02∗, from

the direct transition from state 0 to state 2, T02. So in Figures 2.1 and 2.2, T02∗

represents the random waiting time to get from state 0 to state 2. In Figure 2.1 T02∗

is the convolution of the PDFs of T01 and T12. We can obtain the distribution of

T02∗ via its MGF,M02∗(s) =M01(s)M12(s), which can be transformed into a density.

For example, if we model T01 with a gamma(a1, b) and T12 with a gamma(a2, b),

then T02∗ ∼ gamma(a1 + a2, b). However, convenient models that convolve to closed

form solutions are often overly simplistic and not justified by the data or a priori

information of the true transition behavior. Now consider a less convenient model

where T01 ∼ Weibull(a1, b1) and T12 ∼ Weibull(a2, b2). In this case we must now

rely on a numerical solution to transform M02∗(s) into a PDF, provided M02∗(s)

even exists. For the Weibull distribution M02∗(s) will not exist if a1 < 1 or a2 < 1;

however, in this case we would need to change the parameterization of our model,

or use a transform that exists for all distributions. We introduce the latter option of

complex LTs in the next chapter.

There are three main characteristics or features in a SFGM. The first is a series

structure shown in Figure 2.1. This is solved by finding the convolution of the

random variables in the series. The second feature of a SFGM is a parallel structure,

an example of this is shown in Figure 2.2. A parallel structure exists in a graphical

model if there are two different paths from state i to state j. The first passage

distribution in a parallel structure is the mixture distribution of the paths. For

example in Figure 2.2 the MGF of T02∗ is pM01(s)M12(s)+ (1− p)M02(s). The third
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Figure 2.2: An example SFGM.

feature of a SFGM is the loop. If there is a possibility that once in state i the process

can return to state i at a later time, then the SFGM has a loop. The SFGM in

Figure 2.3 is a fairly simple graph that includes all three features.

Figure 2.3: A SFGM that includes a series, parallel path, and a loop.

Without loss of generality, we restrict our consideration to SFGMs that have the

following regularity properties:

1. There can be only be one directed branch from node i to node j (this does not
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exclude a directed branch from node j to node i).

2. There are no isolated states (state i is isolated if P (X(t) = i) = 0 for all t > 0).

3. There are no states that have instantaneous transition(s) of probability 1.

4. There are no irrelevant states (if considering the first passage time from state

i to state j, state k is irrelevant if P (X(t) = j|X(t − s) = k) = 0 for all

0 < s < t).

5. The process is stationary (i.e., the transition distributions (and their weighting

probabilities) do not change over time).

6. There must be more than one state.

When formality requires, we will refer to SFGMs that satisfy the above conditions

as regular SFGMs.

2.2.1 “Solving” statistical flowgraphs

The term “solving” a flowgraph refers to finding the MGF of the overall waiting time

distribution from a beginning node to an ending node. This requires using flowgraph

algebra or Mason’s rule. Consider the semi-Markov process in Figure 2.4. It has

three states, where state 2 is absorbing. We model each branch of the graph with a

distribution fij(t) and corresponding MGF, Mij(s). Applying Mason’s rule we find

that the MGF of the first passage from state 0 to state 2 is

M02∗(s) =
(1− p)M01(s)M12(s)

1− pM01(s)M10(s)
, (2.2)

where p is the probability that the process will proceed to state 0 before state 2,

given the process is in state 1. We could replace Figure 2.4 with an equivalent model

found in Figure 2.5. This equivalent model has only two states 0 and 2, with one
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connecting branch. The MGF assigned to the branch is M02∗(s) as defined in (2.2).

This flowgraph is referred to as the solved or reduced flowgraph.

Figure 2.4: The recurring illness process.

Figure 2.5: The “solved” flowgraph of Figure 2.4.

The following steps are a simple way to use Mason’s rule and find the MGF of a

first passage distribution. To find the first passage MGF from state i to state j, do

the following:

1. Remove any branches in the SFGM departing from state j

2. Remove any node k (and its incoming and departing branches) if it is irrelevant

to the first passage from state i to state j

3. Renormalize the branch probabilities so that the probabilities on the departing

branches of each node sum to one

4. Renumber the remaining nodes so state i is 1 and state j is m
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5. Create an m x m matrix T such that the entry in the qth row and rth column

of T is comprised of the branch MGF that directly connects state q with state

r, this is multiplied by the corresponding probability p.

6. Then M1m∗(s) = (1, 0, . . . , 0)(I − T )−1(1, 0, . . . , 0)′

When creating the matrix T if there is no direct connection between state q and

state r, the entry on the qth row and rth column of T is 0. It is important to note

that the branches are directed, so state q may be connected to state r but the reverse

is not necessarily true. (I − T )−1 exists if certain conditions are imposed on T , see

Collins (2009).

If we follow these steps to find the MGF of the first passage from state 0 to state

2 for the semi-Markov process in Figure 2.4 we find that

T =











0 M01(s) 0

pM10(s) 0 (1− p)M12(s)

0 0 0











.

Therefore,

M02∗(s) =
(1− p)M01(s)M12(s)

1− pM01(s)M10(s)
.

There are times when the graphical model of a flowgraph must be redefined to obtain

the first passage MGFs. An example of this is finding the first passage MGF from

state 0 to state 0. To do this we must divide state 0 into two states, 0a and 0b. We

begin in state 0a, which retains the departing branches, and find the first passage

MGF to state 0b, which keeps the incoming branches. We can also creatively find

second passage MGFs and other items of interest in a similar manner.
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2.2.2 Inversion via saddlepoint method

Once we obtain an MGF of the first passage, we use an inversion technique to

convert the MGF into a density. There are several methods to accomplish this.

The most frequently used in SFGM literature is the saddlepoint method. Although

we mostly use this method for comparison of other proposed methods, we provide a

short introduction.

The saddlepoint method was introduced into statistics by Daniels (1954). Its

primary use is not for MGF inversion, but has been used for this purpose in SFGMs.

Reid (1988) and Huzurbazar (1999b) provide introductory discussions on saddlepoint

methods in statistics. Huzurbazar (2005c, chap. 3) gives an excellent introduction

of saddlepoint methods for SFGMs.

The saddlepoint method uses a function of the MGF called the cumulant gener-

ating function, which is defined as K(s) = log[M(s)], where M(s) is the MGF. The

saddlepoint density approximation for a single random variable (n=1) is

f̂(t) ∝ 1
p

2�K ′′(ŝ)
exp{K(ŝ)− ŝt}, (2.3)

where K ′′(s) = d2K(s)=ds2 and K ′(ŝ) = t. This approximation is only valid if the

MGF exists.

This approximation can be fast and accurate, but in some cases it can be very

imprecise. We give an example of two cases.

Consider the convolution of two gamma distributions. Let T1 ∼ gamma(�1, �),

T2 ∼ gamma(�2, �), and �3 = �1 + �2. We know the MGF of T3 = T1 + T2 is

M(s) = (1− s=�))−�3 , then K(s) = −(�3) log(1− s=�),

K ′(s) =
�3

� − s
and K ′′(s) =

�3

�(� − s)2
.
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Solving K ′(ŝ) = t gives that ŝ = � − �=t. Putting these into Equation 2.3 we find

f̂(t) ∝ t�3−1 exp{−�t}.

This is just a gamma(�3, �), which is what we expect to get from the convolution

T3 = T1 + T2. So in this case, if f̂(t) is properly normalized, the saddlepoint method

is exact. This illustrates one of the drawbacks of the saddlepoint approximation: we

must compute it at many points on the support of t to get an accurate normalizing

constant.

For the second example consider the mixture of two gamma distributions. Let

X ∼ gamma(5, 5), Y ∼ gamma(50, 10), and define the PDF of Z to be f(z) =

f(x)=2+ f(y)=2. We can obtain a closed form MGF for Z, however the calculations

to find f̂(z) must be done numerically. In Figure 2.6 we show both the exact mixture

and the saddlepoint approximation. Clearly the saddlepoint method smoothes out

the density we are trying to approximate. In fact, Collins (2009) proves that the error

of the saddlepoint method can be arbitrarily large. In both examples the saddlepoint

method performs well in the tails of the distribution, but there is no guarantee how

it will perform in the center of the distribution. We see later that there are other

methods that do better than the saddlepoint; however, there may be instances when

the saddlepoint method is preferable. In several instances we find that the theory

of SFGMs has been limited by using the saddlepoint method to invert MGFs. In

later chapters we show how some aspects of SFGMs are improved by using alternate

inversion methods.

2.2.3 Markov SFGMs

There has been confusion in the past if a particular SFGM is a Markov process.

Intuitively, for a SFGM to be Markovian, all waiting times must be exponentially

distributed. Having exponential distributions in a Markov SFGM is a necessary
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Figure 2.6: The saddlepoint approximation of a mixture of gammas.

but not a sufficient condition. Therefore, if a process has exponential waiting time

distributions it may or may not be a Markov process. This begs the question, what

does a branch on a SFGM really represent? Previously, we stated that it represents

the random waiting time until a transition occurs. This is true, but when there are

two or more branches leaving a node then how do these two branches interact or

compete with each other? If there are two or more paths leaving a node in a SFGM,

then each branch represents the random waiting time before a transition occurs

given that this transition occurs before any others. Therefore, it is a conditional

distribution that this transition occurs first. This makes sense from a practical point

of view, since these conditional distributions are the ones we can actually observe.

Consider Figure 2.2; let the 0 → 1 transition, T01 ∼ Exp(�) and the 0 → 2 transition,

T02 ∼ Exp(�), with p = �=(�+�) (Exp(�) denotes the exponential distribution with

rate parameter �). Then the expected time until departure from state 0 is not

1=(� + �) as in a competing risks model. In this SFGM, the expected time until

departure from state 0 is pE[T01]+ (1− p)E[T02] = 2=(�+ �). Therefore, a necessary
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condition for a SFGM to be Markov is that the transitions are all exponential, unlike

in a true competing risks model where it is a necessary and sufficient condition.

Lemma 2.2.1 A regular SFGM must have all exponentially distributed waiting times

to be a Markov process.

Proof: Consider the SFGM (in stochastic process notation) X(t). Assume the

waiting time from state i to state j is not exponentially distributed. Then P (X(t+

ε) = j|X(t) = i, X(s) = i) 6= P (X(t + ε) = j|X(t) = i) for all 0 < s < t and

ε > 0 (since the exponential distribution is the only continuous distribution with the

memoryless property). Therefore this SFGM, X(t), is not Markovian.

The fact is, many SFGMs with all exponentially distributed transitions are not

Markov. If we again look at the last example the only possible way for this to be a

Markov process is if � = �. Then the expected time until departure is pE[T01]+ (1−
p)E[T02] = 2=(�+ �) = 1=�. This leads us to our next lemma.

Lemma 2.2.2 A regular SFGM is a Markov process if and only if the random time

to depart any node (with an exit branch) has a unique exponential distribution.

Proof: (Sufficiency) If the random time to depart from any node i has the ex-

ponential distribution, then P (X(t + ε) = j|X(t) = i, X(s) = i) = P (X(t + ε) =

j|X(t) = i) for all 0 < s < t, ε > 0, and any adjacent state j, therefore X(t) is a

Markov process.

(Necessity) If an SFGM is Markov then P (X(t + ε) = j|X(t) = i, X(s) = i) =

P (X(t + ε) = j|X(t) = i) for all 0 < s < t and ε > 0 and all branches have

exponential distributions. If all nodes have less than two exit branches then we are

done. For any node j with k exit branches (where k ≥ 2), the probability of departing
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to an adjacent state i during the interval (s, t] is

pi

R t

s

∑k
l=1 pl�l exp{−�lx} dx

R∞

s

∑k
l=1 pl�l exp{−�lx} dx

.

In general, this probability of departure changes as s varies. This violates the Markov

property unless �1 = �2 = . . . = �k. Therefore we must have �1 = �2 = . . . = �k,

which implies
∑k

l=1 pl�l exp{−�lt} = �1 exp{−�1t}, and we have a unique exponential

distribution for the random departure time for each node with an exit branch.

This lemma forces Markov SFGMs that have two or more branches leaving one

node to have the same exponential distribution. Therefore we can easily construct

Markov SFGMs by choosing the parameterization to meet these requirements.

2.2.4 Bayesian statistical flowgraph models

Bayesian SFGMs use the same principles as frequentist SFGMs. The primary dif-

ference is that the Bayesian framework provides a posterior predictive distribution

(PPD) as the final result. This is very useful since prediction is the primary focus of

SFGMs. As with any Bayesian parametric model, we begin by assigning parametric

distributions to the transitions, then incorporating any a priori information into the

prior distributions of the parameters. Once the model is parameterized with appro-

priate prior distributions, the posterior distribution is defined using Bayes’ Theorem,

�(�|x) ∝ f(x|�)�(�). (2.4)

Letting ~x be a future observation, such that ~x|� ⊥⊥ x|�, then the PPD f(~x|x) is

f(~x|x) =
Z

f(~x|�)�(�|x) d� ∝
Z

f(~x|�)f(x|�)�(�) d�. (2.5)

Except in simple situations, this integral is usually computed via Monte Carlo

integration. Often in a Bayesian analysis we do not have a closed analytic form for
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the posterior distribution. However, we can obtain samples from the posterior using

Markov chain Monte Carlo (MCMC) techniques (see Marin and Robert (2007) or

Givens and Hoeting (2005) for an introduction). With a sufficiently large sample

from the posterior we can use it to approximate the PPD. Since ~x|� ⊥⊥ x|�, the PPD
can be written as

f(~x|x) =

Z

f(~x, �|x) d�

=

Z

f(~x|�, x)�(�|x) d�

=

Z

f(~x|�)�(�|x) d�

= E�|x [f(~x|�)] . (2.6)

This characterization of the PPD gives us an approximate of the PPD using the

n posterior samples (denoted as �i). The approximation is

f(~x|x) ≈ 1

n

n
X

i=1

f(~x|�i). (2.7)

Unfortunately, with this approximation we must find each f(~x|�i) by inverting an

MGF. If our posterior sample is too large, the computations become overwhelming.

We address this further in Chapter 4.

This is a basic introduction of how to use the Bayesian methodology in SFGMs.

We expand upon this introduction with additional examples in the following chapters.

2.3 Recurring illness process example

Recall the flowgraph of the recurring illness process in Figure 2.4. Assume we are

researching a chronic illness which can be fatal. Once the illness is contracted it can

go into remission, where an individual is considered healthy, but the symptoms will
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eventually recur. We are interested in modeling the time until death of an individual

who has contracted this disease. If the patient is ill, the time until remission or death

is relatively short, however, the time until recurrence is usually much longer. Our

simulated data consists of 20 patients.

In this chapter we conduct an initial analysis of the simulated data contained in

Table 2.1. We do not include observations 1, 14, and 15 until we discuss incomplete

data in Chapter 5.

Table 2.1: Simulated data from the process in Figure 2.4

Obs 0 → 1 1 → 0 0 → 1 1 → 0 0 → 1 1 → 2 Total
1 0.53 3.04 3.58
2 1.20 0.02 0.14 3.16 4.52
3 0.43 2.59 3.03
4 4.93 0.01 1.05 0.04 0.90 2.24 9.16
5 1.39 1.80 3.19
6 0.44 0.03 0.65 3.78 4.90
7 1.63 4.61 6.23
8 2.09 2.52 4.61
9 1.78 2.12 3.90
10 0.74 0.01 0.49 3.85 5.09
11 4.53 2.63 7.16
12 1.48 2.94 4.42
13 0.54 0.01 1.41 0.02 1.28 2.43 5.69
14 0.11 0.01 0.28 5.59 5.99
15 3.08 0.01 0.89 0.01

1.21 0.02 1.28 0.05
1.61 0.01 0.89 1.87 10.94

16 0.96 2.84 3.79
17 0.98 0.02 1.08 0.01 3.50 3.87 9.47
18 2.57 0.01 0.66 3.74 6.98
19 2.27 0.03 1.91 2.31 6.53
20 1.81 2.73 4.54

Suppose we want to predict the time it takes an individual, who has contracted

this disease, to transition from state 0 (good health) to state 2 (dead) (beginning at

t = 0). It may be that the individual contracts the disease then goes into remission
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any number of times before death, as suggested by Figure 2.4.

After obtaining the data we must find appropriate parametric distributions for

each of the three transitions, along with the probability of recovering from the dis-

ease. To find a good parametric fit, we plot a histogram of the data with some

distributions at their maximum likelihood estimates (MLEs). We consider an expo-

nential, gamma, inverse Gaussian, and the Weibull. The Weibull distribution only

has an MGF if the shape parameter is greater than or equal to 1. In Figure 2.7

we have plotted the candidate distributions at their MLEs with a histogram of the

transition data. The 0 → 1 transition can be seen in Figure 2.7(a). It appears that

the gamma(�̂01, �̂01) distribution provides the best fit. For the 1 → 0 transition

we choose the inverse Gaussian(�̂10, �̂10) as seen in Figure 2.7(b), and for the final

transition, 1 → 2 we choose the gamma(�̂12, �̂12) as seen in Figure 2.7(c). Therefore

our model parameterization is

T01 ∼ gamma(�̂01, �̂01),

T10 ∼ inverse Gaussian(�̂10, �̂10), and (2.8)

T12 ∼ gamma(�̂12, �̂12).
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(a)

(b)

(c)

Figure 2.7: Histograms of data from Table 2.1 with possible parameterizations, (a)
shows the data and some possible fitted distributions for the 0 → 1 transition, (b) is
the same, but using the data from the 1 → 0 transition, and (c) also shows the data
and some possible fitted distributions, but for the 1 → 2 transition.
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Figure 2.8: The saddlepoint approximation of the first passage distribution from
state 0 to state 2 for the simulated recurring illness process.

To find the MGF of the first passage from state 0 to state 2, denoted M02∗(s), we

create the transition matrix T and find (I−T )−1. The entry in the first row and last

column of (I−T )−1 contains this MGF, which we have previously found in Equation

2.2. The MGFs for the inverse Gaussian and gamma are in closed form, so we can

find a closed form expression for M02∗(s). After substituting our MLE estimates we

get

M02∗(s) =
(1− p̂)

�

1− s

�̂12

�−�̂12

�

1− s

�̂01

��̂01

− p̂ exp

{

�̂10

�̂10
−
r

�̂2
10

�̂2
10
− 2s�̂10

}
.

FromM02∗(s) we find the cumulant generating function, K02∗(s), and its first and

second derivatives. Once we find ŝ for each desired time point t, we have everything

we need to invert M02∗(s) to f02∗(t) using the saddlepoint method. Figure 2.8 shows

the approximated density overlaid on a histogram of the data. We can see that this
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Chapter 2. Stochastic processes and statistical flowgraph models

model appears to be reasonable given the data. In the following chapters we continue

this example and show how we can improve this model with our new techniques.

Now that we have provided background on the statistical flowgraph methodology,

we introduce novel material and demonstrate why it is useful.
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Chapter 3

Extending SFGMs to use any

smooth time-to-event branch

distributions

Parametric SFGMs have used the moment generating function (MGF) to represent

the probability of transition between states. This has greatly limited the number of

distributions available for SFGMs, since not all distributions have MGFs. Popular

distributions such as the lognormal or certain Weibulls do not have MGFs and have

not been used in SFGMs. By using complex Laplace transforms (LTs) in lieu of MGFs

we can use all continuous and differentiable parametric distributions in SFGMs.

Complex LTs are a generalization of MGFs and characteristic functions and exist

for all lifetime distributions. In mathematics, the term “Laplace transform” includes

both real and complex variables; however, this is usually not the case in statistics

literature. Therefore, we use the term complex LT to avoid ambiguity. This chapter

is organized as follows: First, we introduce complex LTs and an efficient method to

invert (or transform) these into probability density functions (PDFs). Then we show

how this inversion technique is implemented in some illustrative examples and a real
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data example with interval-censoring. Finally, we return to the simulated recurring

illness process example.

Figure 3.1 represents a SFGM for a portion of a construction engineering ap-

plication discussed in Huzurbazar (2005b). The states 0, 1, 2, and 3 are outcomes

that represent stages of a construction engineering project for a given month. The

branches are labeled with transition probabilities and complex LTs of waiting time

distributions. The original analysis of these data in Huzurbazar (2005b) was con-

strained to the use of distributions with MGFs. We will return to this example to

demonstrate the extension of SFGMs with any smooth distribution.

Figure 3.1: A SFGM for construction engineering data.

3.1 Transforming complex LTs to PDFs

As mentioned in the previous chapter, the most common method for transforming the

overall MGF of the SFGM into a PDF is the saddlepoint method. The saddlepoint

method transforms the MGF to an approximate density. This method is cumbersome

when solving complicated flowgraphs and requires the use of a symbolic algebra

software package. It cannot handle distributions that do not have MGFs and also
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fails in multimodal situations, as seen in Figure 2.6. Another possible method of

inversion is the EULER method, developed by Abate and Whitt (1992). This method

has been used in past SFGM literature but only with MGFs that have a closed

analytic form. It is fast and accurate, but similar to the saddlepoint method, it does

not have a means of bounding the error of the approximation. However, if used for

smooth PDFs the EULER method provides an approximate error bound that can

be controlled and reduced if necessary. In this chapter, we implement an additional

capability of the EULER method to transform complex LTs to PDFs. Complex LTs

exist for all lifetime distributions and can be used in the EULER method even if they

do not exist in a closed analytic form. This greatly extends the parametric flexibility

of SFGMs.

The Laplace transform, as defined in statistics, is a simplification of the LT as

defined in mathematics. In mathematics, the Laplace transform, L(z), is defined for

all real and complex z, while in statistics it is usually only defined for real z. A

complex LT for a positive random variable T , defined on [0,∞) with z = x+ iy and

x ≥ 0, is

LT (z) =

Z ∞

0

e−ztfT (t)dt. (3.1)

The complex LT is a generalization of the characteristic function. If we transform

the variable z to let x = 0 and u = −y then LT (u) is the characteristic function for

the random variable T . The complex LT is E[exp{−x − iy}], whereas the MGF is

E[exp{x}] and the characteristic function is E[exp{iy}].

If the MGF has a closed analytic form, then so does the complex LT, and finding

the complex LT for a random variable is a transformation similar to finding the

MGF. However, for distributions that do not have closed form MGFs, such as some

of the Weibull family, we must find the complex LT or MGF by numerical integration.

Once we have all the complex LTs for the SFGM, we can use it to obtain the complex

LT for the overall SFGM. For example in Figure 2.1, if we use complex LTs in lieu
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of MGFs, we would have L02∗(z) = L01(z)L12(z). Using the complex LT does not

change any theory we introduced in Chapter 2. Mason’s rule still applies, all we do

is replace the MGFs with their associated complex LTs.

Given that we have a first passage complex LT, Lij∗(z), for a SGFM, we can use

the EULER method to obtain fij∗(t).

3.1.1 Overview of the EULER method

The EULER method uses the Bromwich integral and Euler summation (and hence

its name). For an applied introduction to this method that includes code for the

algorithm, refer to Abate andWhitt (1995). The Bromwich contour inversion integral

is

f(t) =
1

2�i

Z a+i∞

a−i∞

eztL(z) dz,

where i =
√
−1, L(z) is the complex LT, and the contour is any vertical line z = a

such that L(a) has no singularities on or to the right of it. With a change of variable

and some manipulation, f(t) can be rewritten as

f(t) =
2eat

�

Z ∞

0

Re [L(a+ iu)] cos(ut) du,

where Re[z] is the real part of a complex number. Using the trapezoidal rule with

step size �=(2t) and letting a = A=(2t) gives the approximation

f(t) ≈ eA=2

2t
Re

�

L

�

A

2t

��

+
eA=2

t

∞
X

k=1

(−1)kRe

�

L

�

A+ 2k�i

2t

��

.

This is a nearly alternating series so Abate and Whitt (1992) use Euler summation

as an acceleration method. Combining these, we have our approximation

f(t) ≈
m
X

j=0

 

eA=2

t

2−mm!

j!(m− j)!

 

Re
�

L
�

A
2t

��

2
+

n+j
X

k=1

(−1)kRe

�

L

�

A+ 2k�i

2t

��

!!

,
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or,

f(t) ≈ eA=2

t

m+n
X

k=0

(−1)kwkRe

�

L

�

A+ 2k�i

2t

��

, (3.2)

where w0 = 1=2, wk = 1 for k = 1 . . . n, and

wk = wk−1 −
2−mm!

(k − n− 1)!(m+ n+ 1− k)!
for k = n+ 1 . . . n+m.

Abate and Whitt (1995) recommend setting m = 11, n = 15, and increasing n if

better accuracy is required. This approximation contains two different errors. First

is the error introduced by the trapezoidal approximation, and the second by the

truncated sum and Euler acceleration. Abate and Whitt (1995) show how to bound

the first type of error by choosing A (often they choose A = 18.4). However, the

error introduced by the truncated sum and Euler acceleration cannot be bounded,

only estimated.

3.1.2 Using the EULER method

For L(z), the EULER method restricts z = x + iy to have non-negative real part

(i.e., Re(z) = x ≥ 0). The transformation formula of complex LTs depends only on

the real portion of L(z), which we denote as Re[L(z)]. For example, in the flowgraph

of Figure 2.1, we can find the real portion of L02∗(z) by substituting z = x + iy in
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(3.1) and obtain Re[L02∗(z)] as follows:

Re [L02∗(z)] = Re [L02∗(x, y)] = Re [L01(x, y)L12(x, y)]

= Re

�Z ∞

0

e−(x+iy)ufT01(u) du

Z ∞

0

e−(x+iy)vfT12(v) dv

�

= Re

�Z ∞

0

e−xue−iyufT01(u) du

Z ∞

0

e−xve−iyvfT12(v) dv

�

(3.3)

=

�Z ∞

0

e−xu cos(yu)fT01(u) du

��Z ∞

0

e−xv cos(yv)fT12(v) dv

�

+

�Z ∞

0

e−xu sin(yu)fT01(u) du

��Z ∞

0

e−xv sin(yv)fT12(v) dv

�

.

We can apply the EULER method to transform Re[L02∗(z)], in (3.3), to an approxi-

mate fT02∗(t). In practice, it is usually easier to compute each complex LT, include

it in the first passage complex LT formula, after which we find the real part, and

then transform it into a density using the EULER algorithm. In this way, we do

not need to concern ourselves with the many cross-products of the imaginary parts

which become real.

We have mentioned that the complex LT exists for all distributions with support

[0,∞). The following argument demonstrates this.

Proposition 2.1 L(z) is finite for any density fT (t) such that 0 ≤ t <∞, z = x+iy

and x ≥ 0.

Proof:

L(z) =

Z ∞

0

e−(x+iy)tfT (t) dt =

Z ∞

0

e−xt cos(yt)fT (t) dt− i
Z ∞

0

e−xt sin(yt)fT (t) dt

However, |e−xt cos(yt)| ≤ 1 and |e−xt sin(yt)| ≤ 1 therefore |L(z)| ≤ 2.

By Proposition 2.1, any random variable with a density defined on [0,∞) has

a complex LT. We have also shown that the complex LT is a generalization of the

characteristic function. Since a characteristic function uniquely identifies a density,
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this guarantees the same for complex LTs. The EULER method requires that the

densities involved be continuous and differentiable. Thus by using complex LTs in

the place of MGFs on the branches of a SFGM, we can use any relatively smooth

lifetime distribution in statistical flowgraph modeling. This is a big step forward

for SFGMs. A drawback of the EULER method is that it cannot guarantee error

bounds. In addition, it is only defined for random variables with support [0,∞).

However, this is not problematic when modeling semi-Markov processes that begin

at time t = 0.

Since the EULER transformation method cannot quantify the error bound, we

must ensure that we are getting the right answer. One rudimentary check for rea-

sonable results is to compare it with a histogram of a Monte Carlo sample from the

model. If our approximation closely matches this histogram, we can be confident that

the amount of error in the transformation is acceptable. Brute force Monte Carlo

simulation of a network can be performed when information on network transitions

and waiting times are completely known, but if this is not the case, Monte Carlo

simulation may not be possible. In the next sections, we validate our calculations

with Monte Carlo simulations.

3.2 Illustrative examples

We demonstrate how the EULER method can be applied to a variety of SFGMs using

two examples. The first is a series system with two non-identical Weibull waiting

times; this is basically the convolution of two Weibull random variables. The other

example is also a series system but with three waiting time distributions that do not

have MGFs.
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3.2.1 A series system with two Weibull waiting times

We continue with our simple flowgraph model example from Figure 2.1. Let T01 ∼
Weibull(0.5, 1) and T12 ∼ Weibull(1.9, 2.2). We know thatM01(s) = ∞ when s > 0,

therefore the MGF does not exist and we are unable to use the saddlepoint method.

However, the EULER method is well suited for this situation. We can calculate

L02∗(s) with numerical integration and then invert it to a PDF. Figure 3.2 shows the

approximate density using the EULER method along with a histogram of a sample

of 1,000,000 points from f02∗(t). This figure indicates that the EULER method per-

forms well in approximating the PDF f02∗(t).

Figure 3.2: The line represents the approximate convolution of a Weibull(0.5,1) and
Weibull(1.9,2.2) and the histogram is a Monte Carlo estimate of 1,000,000 samples
of the same distribution.
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3.2.2 Production repair model

This example illustrates the implementation of the EULER method in a flowgraph

specifically choosing a few distributions that do not have MGFs.

Figure 3.3: The SFGM of a machine with four states.

Consider a machine at a manufacturing plant. The machine is set into production

at time t = 0 and functions until an unusually large part is introduced, which causes

failure. The machine must be repaired and calibrated before it can be put back into

production. Figure 3.3 represents the possible states of the machine where state 0 is

“production” (the machine is working), state 1 is “under repair”, state 2 is “under

calibration”, and state 3 is “resumed production”. We are interested in finding the

distribution of the time it takes to start at state 0, proceed through states 1 and 2,

and arrive at state 3. We assume that the time-to-failure of the machine should be

modeled as an extreme value type distribution, specifically the Fréchet. The PDF of

a Fréchet distribution is

f(t|ξ, σ) = ξt−(ξ+1)

σ
exp

{

− 1

σ
t−ξ

}

.

Additionally, repair times are commonly modeled by the lognormal distribution, so

we will model the machine repair time as such. Finally, we model the calibration

time with a Weibull distribution, which is a common distribution used in reliability.

Let Tij be the random variable that represents the transition density from state

i to state j. Assume that T01 ∼ Fréchet(0.1, 3.5), T12 ∼ lognormal(0, 1), and

T23 ∼ Weibull(0.9, 1.5). None of these particular distributions have MGFs because
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M01(s) = ∞, M12(s) = ∞, and M23(s) = ∞ if s > 0. However, the EULER method

can find an approximation for f03∗(t). Letting z = x+ iy, we obtain

Lij(z) = E[e−(x+iy)Tij ] =

Z ∞

0

e−xt cos(yt)fTij
(t) dt−i

Z ∞

0

e−xt sin(yt)fTij
(t) dt. (3.4)

We find the three complex LTs numerically, because they have no simple closed-

form expression. We then take the real part of L03∗(z) = L01(z)L12(z)L23(z) and use

the EULER method to transform it into a PDF.

Figure 3.4 shows the EULER approximated PDF f03∗(t) along with a histogram

of a sample of 1,000,000 points from f03∗(t). From the plot we can see that the

approximation is very good.

Figure 3.4: Comparison of the EULER approximated convolution of a Fréchet, log-
normal, and Weibull distribution over the histogram of a Monte Carlo sample of the
same distribution.
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Table 3.1: Construction engineering transition times (in days)

0→1 4.5 4.0 3.5 3.5 4.0 4.5 4.0 4.0 3.5 4.0 4.5 4.5 4.0 4.0
4.0 3.5 4.0 4.5 4.0 4.0

1→2 2 5 5 5 3 3 15 5 6 20 34 28 5 5
1→3 5 40 15 5 25 20
2→3 21 18 18 18 20 20 18 17 18 18

3.3 Construction engineering application

3.3.1 Non-censored data

We demonstrate the EULERmethod using data from construction engineering projects

considered in Huzurbazar (2005b). We focus on the monthly planning phase of this

process, as shown in the flowgraph of Figure 3.1. State 0 represents “Monthly Plan-

ning”, and state 1 is the “Start” of the project. From state 1 we transition to state

2 if there are “Delays”, and go to state 3 when the project is “Complete”. The data

are reproduced in Table 3.1 from Huzurbazar (2005c, pp. 184).

Let Y1 be the waiting time from state 0 to state 1, Y2 be the waiting time from

state 1 to state 2, Y3 be the waiting time from state 1 to state 3, Y4 be the waiting

time from state 2 to state 3, and X the random variable where X = 1 if the process

goes from state 1 directly to state 3, X = 0 otherwise. Let Yi ∼ Weibull(�i, !i)

for i = 1 . . . 4 and X ∼ Bernoulli(p) and ni be the number of iid observations we

have for each Yi. The analysis of these data in Huzurbazar (2005b) parameterized

the SFGM differently, with a point mass at 4 for the state 0 to state 1 transition,

a gamma for the state 1 to state 2 transition, a point mass at 18 for the state 2 to

state 3 transition, and an inverse gamma for the state 1 to state 3 transition. We use

the current parameterization to demonstrate the powerful capability of the EULER

method.
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Table 3.2: MLEs of the construction engineering data

�̂1 !̂1 �̂2 !̂2 �̂3 !̂3 �̂4 !̂4 p̂
13.438 4.179 1.142 10.638 1.538 20.416 15.003 19.196 0.300

The maximum likelihood estimates (MLEs) of the data are given in Table 3.2.

The likelihood function for this SFGM is

L(�|x, yi) = p6(1− p)14
4
Y

i=1

"

ni
Y

j=1

�i
!�i
i

y�i−1
ij exp

{

−
�

yij
!i

��i}
#

, (3.5)

where � is the generic vector representing the parameters in the model.

For comparison, we calculate the PDF using the saddlepoint approximation and

then the EULER method. We use a Bayesian approach using flat priors and find the

posterior predictive density (PPD) for the first passage time from state 0 to state 3.

Even though the SFGM for this example is fairly straightforward, the saddlepoint

approximation is complicated to program. We must adapt the formulas to keep the

numerical calculations within R’s capacity. The default integration routine in R is not

able to handle many of the integrals, therefore we use an LAPACK routine DGAUS8

(see Anderson et al. (1999)) and transform the integrals to be on the support (0, 1] as

opposed to [0,∞). This method provides a solution, but Figure 3.5 suggests that the

saddlepoint approximation does not perform well in this situation. The saddlepoint

approximation tends to smooth out the multimodality of the density and truncates

the right tail.

For comparison, we use the EULER method on the same data with the MLEs.

The R code for the EULER method is only slightly more complicated from the il-

lustrative example. In fact, the computations and formulas are still straightforward.

We find Re(L03∗(z)) = Re [pL01(z)L13(z) + (1− p)L01(z)L12(z)L23(z)] using numer-

ical integration and the EULER algorithm to transform Re(L03∗(z)) into a PDF.

Referring again to Figure 3.5, we can see how the approximation of the two meth-
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ods differ. The Monte Carlo simulation indicates the EULER method is much more

accurate than the saddlepoint method.

Figure 3.5: A comparison of the EULER approximation, saddlepoint approximation,
and a Monte Carlo sample of the first passage distribution from state 0 to state 3
for the construction engineering example.

It is more computationally intensive to perform a Bayesian analysis on these

data. For convenience only, we use flat priors to make our results fairly comparable

to the frequentist approach. A benefit of the Bayesian method is that it provides

a predictive density. With flat priors, we expect similar results to those from the

EULER method, but with larger variance, since we will be obtaining a predictive

density. Prediction is an important goal in complex systems such as these stochastic

networks. In reality, all the parameters we consider are nuisance parameters. What

we really want to know is, given another engineering project, what is the probability

it will be finished within a certain amount of time. This information is readily

available from the PPD and all our predictive inference can be based on it.

We use Gibbs sampling for p and include a Metropolis (random-walk) step for
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the parameters �1, !1, �2, !2, �3, !3, �4, and !4. A convenient place to initialize the

Markov chain Monte Carlo (MCMC) is at the MLEs.

To find the PPD, we run the Gibbs sampler and save the posterior samples. We

take each sample from the posterior, use them in the first passage complex LT, and

transform it using the EULER method to get a density. Then the PPD is the aver-

age of all the densities we obtained from our posterior samples (Huzurbazar (2005c,

pp. 90)). This is very time consuming if the posterior sample is even moderately

sized. An additional complexity of the Bayesian approach is that we must ensure our

Markov chains have converged and that they have explored the posterior space ade-

quately. In-depth details of MCMC techniques can be found in Robert and Casella

(2004).

After running our MCMC on these data, the convergence diagnostics are accept-

able. We have suitable mixing, with Metropolis acceptance rates around 40% and

proper decay in the autocorrelation of the Markov chains. For a more formal check we

use the Heidelberger-Welch diagnostic included in the boa package for R (see Smith

(2005) for more information). This diagnostic recommends discarding the first 1,100

samples for burn-in. After removing the first 1,100 samples, we have 9,900 samples

from which we obtain the PPD. The PPD is shown in Figure 3.6. As expected,

the EULER method and Bayesian results are quite similar with the Bayesian having

slightly higher variance, due to the fact that it is a predictive density.

3.3.2 Interval-censored data

A powerful result is that this method can handle interval-censored data. In survival

analysis and reliability many data sets are censored, so for any technique to be

generally effective it must be able to cope with censored data. Time-to-event censored

data can be defined as introducing uncertainty regarding when the event of interest
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Figure 3.6: A comparison of the EULER estimated density and the posterior pre-
dictive density with flat priors of the first passage distribution from state 0 to state
3 for the construction engineering example.

occurred. Therefore, interval-censoring can be defined as only knowing the event

occurred in some known interval [t0, t1), right-censoring is knowing the event did

not occur before some known time t, and left-censoring is knowing that the event

occurred before some known time t. Clearly, right- or left-censoring is a special case

of interval-censoring when t1 = ∞ or t0 = 0 respectively.

Wolstenholme (1999, pp. 39) argues that all time-to-event measurement data is

interval-censored due to the rounding accuracy of nearly all measurements. Since

our data, in this example, are all whole or half integers, we know the data up to the

nearest 1=2 or 1=4 day. If we have a transition that took 12 days, we know the true

transition time is in [11.5, 12.5) or if it is 4.5 days then our known time can be found

in [4.25, 4.75). Now define c1 = 0.25 and ci = 0.5 for i = 2, 3, 4, which are half the

width of our censoring intervals.
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Given the assumption of interval-censored data, the likelihood function is now

L(�|x, yi) = p6(1−p)14
4
Y

i=1

"

ni
Y

j=1

�

exp

{

−
�

yij − ci
!i

��i}

− exp

{

−
�

yij + ci
!i

��i}�
#

.

(3.6)

Observing the likelihood in (3.6), it is fairly intuitive for the special case of right-

censoring, the last term in the product is 0, or if left-censored the first term in the

product is 1. Clearly, if we can handle interval-censoring, right- or left-censoring uses

the exact same machinery.

Figure 3.7: A comparison of the two Bayesian posterior predictive densities of the
first passage time from state 0 to state 3 for the construction engineering example.
One PPD is found assuming interval-censored data, the other assumes transition
times are completely known.

Again, our MCMC mixing is acceptable with Metropolis acceptance rates at

approximately 40%, and the autocorrelations of the chains decay quickly. The
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Heidelberger-Welch diagnostic recommends not discarding any samples for burn-in.

However, we discard the first 1,000 because we were tuning the MCMC during those

iterations. So we are left with 10,000 samples from the posterior to obtain the PPD.

With the small amount of censoring we introduced, we would not expect to see a

large change in the PPD. Figure 3.7 confirms this, and we see our results are barely

distinguishable from the Bayesian results without censoring.

3.4 Simulated recurring illness process example

(continued)

In this chapter we have extended SFGMs to allow the use of any smooth distribution

for branch modeling. We have done this by using the complex LT and the EULER

method for its transformation into a PDF. This allows much richer modeling possi-

bilities in SFGMs. Recall the recurring illness process example from Chapter 2. We

were constrained to use parametric distributions that had MGFs; we are no longer

under that limitation. The only limitation we now have is to use distributions that

are continuous and differentiable, which is a very large class of distributions.

We return again to our simulated example in Chapter 2. Now that we have a

larger selection of distributions to choose from, we reconsider finding a suitable fit for

each transition distribution. The selected distributions were gammas for the 0 → 1

and 1 → 2 transitions and an inverse Gaussian for the 1 → 0 transition. We compare

these with a few other common lifetime distributions, the lognormal, Fréchet, and the

Birnbaum-Saunders (see Birnbaum and Saunders (1969)). The Birnbaum-Saunders

distribution is an adaption of Miner’s rule (Miner (1945)), to model fatigue cracking.

The PDF of a Birnbaum-Saunders distribution is

f(t|�, �) =
√
�t+ 1=

√
�t√

2�2�t
exp

{

− 1

2�2

�√
�t− 1=

√
�t
�2
}

.
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Previously, we could not use the lognormal or the Fréchet because neither of these

have a MGF that exists, however, the Birnbaum-Saunders distribution does have an

MGF.

We again find the MLEs of these distributions and compare these with a his-

togram of the data. Figure 3.8 shows each transition. Deciding which would be most

appropriate is subjective and each of these distributions have theoretical properties

that might make them more appealing even if the data do not support them quite

as much as another. For now, we will put these issues aside and look strictly at the

data. For the 0 → 1 transition in Figure 3.8(a) the Birnbaum-Saunders seems to fit

a little better than the gamma. The 1 → 0 transition in Figure 3.8(b) is a challenge,

but the Fréchet captures the mode well, and is adequate in the tails. Three of the

four distributions in the 1 → 2 transition in Figure 3.8(c) look reasonable, the best

being the Birnbaum-Saunders and the lognormal distributions. Both these distribu-

tions look almost identical, so we choose the lognormal for some variety. Now our

model parameterization is

T01 ∼ Birnbaum-Saunders(�̂01, �̂01),

T10 ∼ Fréchet(ξ̂10, σ̂10), and (3.7)

T12 ∼ lognormal(�̂12, σ̂12).
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(a)

(b)

(c)

Figure 3.8: Histograms of data from Table 2.1 with possible parameterizations, (a)
shows the data and some possible fitted distributions for the 0 → 1 transition, (b) is
the same, but using the data from the 1 → 0 transition, and (c) also shows the data
and some possible fitted distributions, but for the 1 → 2 transition.
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Figure 3.9: A histogram of the first passage data from state 0 to state 2 for the sim-
ulated recurring illness process, along with plots of the models from (2.8), estimated
with the saddlepoint approximation, and (3.7), estimated with the EULER method.

We again use Mason’s rule to find the first passage complex LT which is

L02∗(z) =
(1− p)L01(z)L12(z)

1− pL01(z)L10(z)
. (3.8)

Since we have selected the distributions for each transition, we must find their com-

plex LTs by numerical integration and then use the EULER method to invert L02∗(z)

to f02∗(t). Figure 3.9 shows a histogram of the data with the two models found in

(2.8) and (3.7). Even though for each transition it had appeared we have improved

our fit, the fit for first passage time appears to have become worse. This leads us

to question, if we find the optimal models for each transition will the combination

of these provide the optimal model for the first passage in a SFGM? How should we

determine which one of these models is better, and is the one we select satisfactory?

It is difficult to determine these questions just by looking at a histogram of the data

and a plot of the modeled transition. In Chapter 6 we introduce a quantitative mea-

sure to assist in choosing appropriate transition distributions and assessing if our
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model is an adequate representation of the data.
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Chapter 4

New methods and models in

Bayesian SFGMs

SFGMs can be used in either a Bayesian or frequentist framework, and in a para-

metric or non-parametric setting. Up to this point we have only briefly discussed

Bayesian SFGMs. The Bayesian methodology naturally lends itself to prediction;

using predictive distributions are very convenient. In this chapter we describe some

advances in SFGMs using the Bayesian framework. First, we demonstrate a few

ways to calculate the posterior predictive density of a first passage time. Then, we

use one method in a Bayesian non-parametric model and use it again by introducing

time-varying covariates in an flowgraph of an accelerated failure time model.

Techniques to handle Bayesian SFGMs are computationally intensive. SFGM

literature suggests a way to calculate the posterior predictive density (PPD), but it

is quite time consuming. The current state-of-the-art method to find the PPD uses

the posterior sample. Then, for each of these fixed sample values, finds a density

using flowgraph algebra and numerical inversion. The PPD is the average of all

these densities we have calculated over the posterior sample. If the posterior sample
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is large, this requires an inordinate amount of computation. We present a more

efficient way to estimate the first passage PPD in a SFGM. This method makes

Bayesian SFGMs faster computationally and allows for additional flexibility in our

modeling choices.

4.1 Improved methodology for calculating the pos-

terior predictive density

This chapter radically alters the way we think about the Bayesian SFGM frame-

work by suggesting an alternative method for computing the PPD. Our approach to

Bayesian SFGMs reduces the amount of computation required, and makes Bayesian

SFGMs an attractive modeling choice.

We review three common methods to estimate the PPD in a Bayesian analysis,

identify their strengths and weaknesses, and recommend one that works best with

SFGMs. The first way to obtain a PPD is to calculate it exactly with an analytic

solution. Obviously if this was always possible it would be the preferred method. In

some simple parameterizations we can analytically find the PPDs of each transition,

and then use Mason’s rule and numerical methods to obtain the PPD for a first

passage time. In this case, our computation time would be equivalent to what we

would expect from a frequentist analysis of a SFGM. However, the Bayesian analysis

has a major advantage over the frequentist method because we have a predictive

distribution for the same amount of computation. The primary drawback of this

method for finding the PPD is that it is applicable only in a very limited number of

situations.

The next method also provides a way to estimate the PPD. This method is what

has been used in SFGMs up to this point and is explained in Huzurbazar (2005c).
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Given a sampling distribution f(x|�), the prior p(�), and the data, the density of a

predicted future observation ~X is

f(~x|x) =
Z

f(~x, �|x) d�, (4.1)

if ~x|� ⊥⊥ x|�, and after some algebra we find that

f(~x|x) = E�|x[f(~x|�)]. (4.2)

In words, this means that the PPD is the average of f(~x|�) over the posterior den-

sity of �. This method to find the PPD is straightforward, and as in the exact

computation method we end up with a functional estimate of the PPD, f(~x|x), at
the desired points on the support. The primary drawback to this method is that it

is very computationally intensive. For even moderately sized posterior samples all

of these inversions could take days. Like the exact method, this method requires a

“smooth” parameterization of the SFGM.

The last method we discuss finds an estimate of the PPD by obtaining a Monte

Carlo sample from it. The fact is, for a Bayesian analysis, all we need is the likelihood

function, a loss function, and the priors to make inference. For prediction we only

need the likelihood function and the prior distribution of the parameters. In most

cases, we have all these components “independent” of the SFGM framework. To find

an estimate of the PPD, for each given sample �i from our posterior we also sample

from f(~x|�) (see Albert (2007)). This provides us with a Monte Carlo sample from

the PPD. Instead of having an estimated PPD, we have a sample from the PPD.

Even though we do not have a numeric estimate of f(~x|x), having a sample from

the PPD is very convenient, since it readily provides us with prediction intervals

and point estimates. Sampling from the PPD is not as accurate when calculating

tail probabilities. If we are interested in means, medians or 100%(1− �) prediction

intervals (where � is not too near 0) this method is fast and accurate. But, if we

wanted to find the threshold c where P (T < c) = 0.000001, this method may not be

as accurate as the others, unless a very large number of samples are obtained.
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We compare the outcomes of the three methods with an introductory example.

Consider the SFGM of the recurring illness process in Figure 1.1. We choose to

model the transition from state 0 to state 1 with an Exp(�1), the transition from

state 1 to state 0 with an Exp(�2), and the transition from state 1 to state 2 with

an Exp(�3). We use Jeffrey’s priors, p(�i) ∝ 1=�2i and p ∼ beta(1=2, 1=2).

Figure 4.1: Approximations of the first passage posterior predictive density from
state 0 to state 2 for the SFGM in Figure 1.1.

As you can see from Figure 4.1, in this example all three methods appear to be

estimating the same thing. The time to compute the first is about 60 seconds, which

is the numerical calculations for the combination of the three PPDs. (We are using a

laptop with average computational power. We give the computational time not as a

benchmark, but to make relative comparisons between the different methods.) The

second method, which averages f(x|�i) for each sweep i of the MCMC, took about

3 hours to invert the 100,000 posterior samples. The third method only took about

15 seconds to obtain 100,000 samples from the PPD. Clearly this third method is

computationally the quickest and very easy to implement in conjunction with an
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MCMC method. This is a very simple example, and for more complex models the

time to obtain an estimate of the PPD can take much longer.

By using this third method of sampling from the PPD, with SFGMs we obtain

several benefits. Obviously, it dramatically reduces the computational time. In

addition, we do not need to incorporate an inversion routine to find the PPD. This

reduces the complexity of finding a solution and enables us to use any distribution

in our SFGM, whether “smooth” or not. Basically, it allows us to model with any

distribution that we can effectively sample from. Some may argue that this is a

“brute force simulation” approach; this may be true, but most complex Bayesian

models apply the exact same principles and it is just another avenue of accurately

predicting the same things.

If we choose not to work with MGFs, we can slightly modify the graphical rep-

resentation of SFGMs. Since we no longer need to represent the edges of the graph

with an MGF we can use cumulative distribution functions (CDFs) or PDFs. Theo-

retically, we could model SFGMs using any distribution with non-negative support,

if we can find a likelihood function for it. The primary practical limitation is that

we need to be able to sample from the distribution. Figure 4.2 is a SFGM of the

recurring illness process, but with the branches relabeled with CDFs in lieu of MGFs,

and again for nodes with two or more exit paths we include an associated probability

of taking that path. These probabilities can be interpreted as the parameters of a

binomial or multinomial trial.

For the SFGM in Figure 4.2 after a sweep of our MCMC we have a sample from

the posterior. With this posterior sample we can get a sample from the PPD. The

following pseudo-code can be used to get a draw from the PPD of the SFGM in

Figure 4.2.

1. Set T ime = 0
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Figure 4.2: A flowgraph of the recurring illness process where the branches are labeled
with CDFs.

2. Sample T01 and set T ime = T ime+ T01

3. Sample X ∼ Bern(p)

4. If X = 0 sample T12 and set T ime = T ime+ T12 goto END

5. Draw T10 and set T ime = T ime+ T10

6. Goto step 2

7. END

Once we have completed our MCMC, checked for convergence and discarded our

burn-in samples, we also can get samples from the PPD, as illustrated above. If the

distributions we have parameterized our SFGM with are easy to sample from, it will

be relatively easy to get a sample from the PPD. Now we demonstrate an example of

the flexibility we can employ by estimating the PPD in this more efficient manner.
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4.2 A Bayesian non-parametric model

We demonstrate our suggested method with data from 131 patients that received a

bone marrow transplant. These data are found in Klein and Moeschberger (2003) (for

simplicity we propose a slightly different model and ignore six observations from the

analysis in Klein and Moeschberger (2003)). There are several states that describe the

stages a patient may follow after a transplant. The patient begins in the transplant

state (state 0), where the time-in-state is the amount of time since the transplant.

From there, the patient will either proceed to state 1, which is platelet recovery, or

to state 3 which is relapse or death. From state 1, the individual goes to state 2,

which is chronic graft versus host disease (CGVHD), or to state 3. From state 2, the

patient will eventually have a relapse or die. Figure 4.3 is a graphical representation

of the SFGM.

Figure 4.3: SFGM for bone marrow transplant patients.

Our goal is to predict the time to relapse or death for a new bone marrow trans-

plant patient. There are six sets of data, one for each transition, plus a set of censored

observations in state 1 that may or may not have transited through state 2 before

reaching state 3. Three of the transitions, 1 → 2, 1 → 3 and 2 → 3, contain right-
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censored data. To find an adequate parameterization of the model we consider the

lognormal, gamma, Weibull, and exponential distributions and compare these with

a histogram of the data. From these, we choose the distribution that seems to fit

the data best. For the censored data sets we use the censored data histogram as

described in Huzurbazar (2005a).

Trying to find a good parameterization for this data is challenging. The transi-

tion from state 0 → 3 does not fit any of the usual lifetime distributions well, as seen

in Figure 4.4. The lognormal looks the best, but does not perform well when fitting

the complete model. Therefore we consider a mixture of finite Polya trees (MPTs) to

“parameterize” this transition distribution. For the other transitions the lognormal

also seems to fit the histograms best, but once implemented this parameterization

fails to adequately capture key features of the the data, such as the median. There-

fore, we also use MPTs for the other transitions. Christensen et al. (2008) provides

an excellent introduction to MPTs, and for convenience we use the same notation and

methodology to construct the finite Polya trees. MPTs are a fairly common Bayesian

method that can be considered semi-parametric or non-parametric depending how

they are applied.

To understand MPTs, we must first define finite Polya Trees (FPTs). An informal

way to look at FPTs is first to consider any distribution with continuous support, F .

The support of F , which we call 
, is divided into n partitions, such that ∪n
i=1Ai = 
,

and for all i 6= j, Ai∩Aj = ∅. These partitions naturally have an assigned probability,

which is defined by the measure F assigns to Ai. FPTs generalize distributions by

assigning a new (possibly random) probability to these partitions. We show an

example of a FPT, where F is an exponential distribution with four partitions in

Figure 4.5. The more partitions defined in a FPT the more flexible they become.

Most likely, FPTs are not “smooth” at a finite number of points even when the

underlying distribution is. Therefore, we cannot use the standard methods to invert
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Figure 4.4: Parametric lifetime distributions fitted to the direct 0 → 3 transition
data.

an MGF or complex LT, so we use our suggested method to obtain an estimate of

the PPD by sampling from it.

A mixture of finite Polya trees is a generalization of a FPT. If we allow the

underlying distribution of a FPT to have a parameter, such that the parameter

itself a random variable, then for every possible parameter value we have a FPT. If

we multiply the underlying distribution with the distribution of the parameter and

integrate out the parameter, we are left with an MPT distribution.

For our finite Polya trees we will use the Exp(�) as the underlying parametric

distribution. The support of the distribution is then divided into q partitions. For

our application we choose q = 8, where each partition has probability 1=8. Next, a

new probability is assigned to each partition using a rule that depends on the data.

One realization of a finite Polya tree with an underlying distribution of an Exp(1) is

given in Figure 4.5. We use the notation PTk(Exp(�)) to denote the finite Polya tree
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that has an Exp(�) underlying distribution, with 2k equal partitions of the support.

If for PTk(Exp(�)) we set a prior on �, multiply it by the PDF of PTk(Exp(�)) and

then integrate � out, we have a mixture of finite Polya trees. MPTs are very flexible

and can range from very parametric to non-parametric.

Figure 4.5: An example finite Polya tree PT2(Exp(1)) overlaid on an Exp(1) distri-
bution.

Figure 4.6 shows the PPD of the MPT distribution of the direct 0 → 3 transition,

along with a histogram of the data. Comparing this with Figure 4.4, we see that this

looks to be more appropriate than any of our parametric options considered earlier.

The parameterization of our SFGM is as follows. Let

Gij ∼
Z

PT3(Exp(�ij))p(�ij) d�ij.

Then

Tij1, . . . , Tijkij

�

�

�
Gij

iid∼ Gij and Gij

�

�

�
�ij ∼ PT3(Exp(�ij)).
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Figure 4.6: An MPT fit of the direct 0 → 3 transition with a histogram of the data.

Tij is the random waiting time to proceed from state i to state j, and �ij is the

rate parameter of an exponential distribution. The PDF of a PT3(Exp(�ij)) is

fij(t|�ij,θij) = �ij exp{−�ijt}23∗
�

�ij11�ij21�ij31I(0;r1](t) + �ij11�ij21�ij32I(r1;r2](t)+

�ij11�ij22�ij33I(r2;r3](t) + �ij11�ij22�ij34I(r3;r4](t) + (4.3)

�ij12�ij23�ij35I(r4;r5](t) + �ij12�ij23�ij36I(r5;r6](t) +

�ij12�ij24�ij37I(r6;r7](t) + �ij12�ij24�ij38I(r7;∞](t)
�

,

where the �ijkl’s are the parameters that control the probabilities of the finite Polya

trees and the rk’s represent the kth octile of the underlying Exp(�ij) distribution.

Clearly, for this to be a valid PDF �ij12 = 1− �ij11, �ij22 = 1− �ij21, �ij24 = 1− �ij23,

and so on, we use this extra variable for notational convenience. We also define

(X13|p13) ∼ Bernoulli(p13), where X13 = 1 if the 0 → 1 transition is realized,

otherwise we observe a 0 → 3 transition. Similarly, (X23|p23) ∼ Bernoulli(p23).
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For each of the transitions we have the following prior information: we expect

the mean of Tij to be in the interval (aij, bij) with roughly 98% certainty. We will

want our prior distribution for �ij to have 98% of its “mass” to be in the interval

(1=bij, 1=aij). If we use the gamma conjugate prior, it notably influences the posterior

distribution towards the mode of the prior distribution. This poses a problem because

we do not necessarily favor any value in this interval over another. We therefore opt

to use a prior for the mean that is flat over (aij, bij) and tapers in the tails. We must

transform this prior to work with our parameterization of the gamma. The prior

distribution of � is

p(�|a, b, �) ∝
�

I[a;b](�) + I(0;a)(�) exp

{

2(1− �)

�(b− a)
(�− a)

}

+

I(b;∞)(�) exp

{

2(1− �)

�(b− a)
(b− �)

}�

. (4.4)

The hyper-parameters (a, b) define the interval we believe contains 1=�, and � con-

trols the amount of area in the tampered tails. The shape of this prior and the

transformed prior can be seen in Figure 4.7, where a = 1, b = 2, and � = 0.05.

We choose beta(1, 1) priors for pij. The priors for �ijkl (the finite Polya tree

probabilities) are beta(c�(k), c�(k)) reference priors, where c is a positive constant

that controls how non-parametric we want our model. If c is small then the model acts

more non-parametric and the reverse is true for large values of c. Also, �(k) = 1, 4,

or 9 for k = 1, 2, or 3 respectively; this weights the importance of the data at each k

level, where data at level k = 1 has the most influence. We assume all �ij, �ijkl, and

pij are mutually independent (except where �ijkl = 1− �ijk(l−1)).

There are 22 observations that are censored in state 1 so we do not know if they

would eventually proceed to state 3 directly, or through state 2; we designate these
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Figure 4.7: An example prior for � and 1=�.

as t1(23)k for k = 1 . . . 22. The likelihood function for fixed �ij’s is:

L(θ,p|tij,λ) =
14
Y

k=1

[f03(t03k|�03,θ03)]
117
Y

k=1

[f01(t01k|�01,θ01)] ∗

39
Y

k=1

[f13(t13k|�13,θ13)]
56
Y

k=1

[f12(t12k|�12,θ12)] ∗ (4.5)

22
Y

k=1

�

(1− p23F12(t1(23)k|�12,θ12)− (1− p23)F13(t1(23)k|�13,θ13)
�

∗

25
Y

k=1

[f23(t12k|�23,θ23)]
31
Y

k=1

[1− F23(t23k|�23,θ23)] ∗

(p13)
117 (1− p13)

14 (p23)
56 (1− p23)

39 .

We use Gibbs sampling as our MCMC method. We can easily sample from

the full conditionals of the θ and p variables. We use random walk Metropolis
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steps for the λ variables, and the Heidelberger-Welch method for our convergence

diagnostic included in the boa package for R (see Smith (2005) for more information).

The calculation of the 30,000 posterior samples took slightly less than an hour and

we discarded 6,000 samples for burn-in. This time includes generating the 24,000

samples from the PPD of the first passage time from state 0 to state 3. This is a vast

improvement in speed over previous Bayesian SFGM methods; if it were possible, it

would have taken about 46 hours to invert the 24,000 posterior samples to obtain

an estimate of the PPD. A kernel smoothed density function of the PPD sample is

overlaid on a censored data histogram of the data in Figure 4.8. This PPD is the

predicted amount of time a new bone marrow transplant patient has before a relapse

or death. This sample from the PPD readily provides predictive intervals. A 95%

prediction interval of time from transplant to relapse or death is [17, 4605] days, with

the median at 513 days.

Figure 4.8: The MPT fit of the first passage PPD from transplant until time of death
or recurrence. The MPT fit is overlaid on a censored data histogram.

The model we developed for this data provides a much better fit than a parametric
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SFGM and is computationally much faster than traditional Bayesian SFGMmethods.

This example demonstrates the computational advantage of sampling from the PPD

rather than finding a functional form for it. We implemented a Bayesian semi-

parametric SFGM with relatively fast computational speed. This and other methods

that do not use smooth PDFs would not be possible without utilizing the method

of sampling from the PPD. This example demonstrates how to increase speed and

flexibility in Bayesian SFGMs.

4.3 Accelerated failure time models with time-

dependent covariates

Only recently have covariates been introduced into SFGMs. Huzurbazar andWilliams

(2010) show how covariates are included in a SFGM using the generalized linear

model framework. We use a different approach by using accelerated failure time

models. For an introduction to covariates and linear model theory see Christensen

(2002).

Accelerated failure time (AFT) models are an alternative to the popular propor-

tional hazards model. When we have fixed covariates (with respect to time) the PH

model assumes

h(t|z) = g(z)h0(t), (4.6)

where h is the hazard function, and g(z) usually depends on x′�. In this context we

let x be a vector of predictor variables and � are the coefficients of x. This assumption

is not always met, therefore another alternative which is easier to interpret can be

used. The AFT model assumes

h(t|z) = g(z)h0(g(z)t). (4.7)
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In an AFT model a parametric distribution must be assumed. Christensen et al.

(2010) expresses the AFT model in a less general but more usable form. For event

times T1, . . . , Tn the model is

log(Ti) = x′i� + σei, (4.8)

where x′i is a vector of predictor variables, � the vector of coefficients for xi, ei is

the random error with a fixed distribution, and σ is a parameter that controls the

variance of the error term. Usually the error terms are assumed to be iid and have

a mean or median of 0. An alternative way to write this model is

log(Ti) = �0 + �1xi;1 + . . .+ �(p−1)xi;(p−1) + σei, (4.9)

where we have p− 1 predictor variables.

In an AFT model there are numerous possible distributions for e, but some pop-

ular choices are the normal, Gumbel, and the logistic. Other options include the

gamma, inverse Gaussian, and the generalized Pareto. These last distributions are

not as popular due to the fact that they are more difficult to handle analytically.

This framework for AFT models must be generalized if the predictor variables xi;j

are allowed to vary with time. In survival analysis time-varying covariates are usually

some type of measurements that are repeatedly taken on a patient over time. Classic

examples would be weight and blood pressure; at each visit it is common practice

to have these measurements recorded. Therefore, a patient’s risk of some illness or

disease may increase or decrease depending on one or more of these time-varying

covariates.

In most situations time-varying covariates are measured at certain points over

time, but there is no information about the covariate values between these time

points. For example, with a patient’s weight it would be safe to assume it is contin-

ually varying over time, but we only observe it when a patient is actually weighed.
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Therefore we do not know what it was in between the measurements. Collett (2003)

offers some ways to deal with this uncertainty. We adopt the practice of holding

the covariate fixed until the next measurement. If the patient was weighed at 165

lbs., we use that as the value of the covariate until we obtain another measurement.

In many situations this makes computation easier than other methods of handling

time-varying covariates.

The most difficult part of modeling time-varying covariates is obtaining a likeli-

hood function. Petersen (1986) provides a straightforward way to obtain the likeli-

hood for this type of model. He argues that

S(t|X(t0), X(t1), . . . , X(tn), �) = exp

(

−
n

X

i=1

Z ti

ti−1

h(s|X(ti−1), �) ds

)

, (4.10)

where t0 = 0, S is the survivor function, h is the hazard function, � is a generic

vector of parameters, and X(ti) is the time-varying covariate at an observed time.

We can use this formula as the contribution to the likelihood for a right-censored

observation. If we have a complete observation we use

f(t|X(t0), X(t1), . . . , X(tn), �) = h(t|X(tn), �)S(t|X(t0), X(t1), . . . , X(tn), �) (4.11)

as the contribution to the likelihood function. Similarly, we could also find the

contribution of left or interval-censored data.

Therefore, if we let xi be the constant vector of predictor variables during the time

interval [ti, ti+1) and the model error term, e, have the standard logistic distribution,

then the hazard given xi is

h(t|x′i�, σ) =
exp

n

log(t)−x′

i�

�

o

σt
�

1 + exp
n

log(t)−x′

i�

�

o� , (4.12)

and the integral of this hazard over the time interval [t1, t2) is

Z t2

t1

h(s|x′1�, σ) ds = − log





1 + exp
n

log(t1)−x′

1�

�

o

1 + exp
n

log(t2)−x′

1�

�

o



 . (4.13)
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Using (4.13) and evaluating (4.10) gives us the contribution for the likelihood of

right-censored observations. This in turn gives us everything that we need to evaluate

(4.11) for a complete observation.

Using this AFT model with the standard logistic distribution as the error, we

consider the diabetic retinopathy data discussed in Marshall and Jones (1995). Ev-

ery patient has two or more observations over time, and each observation has several

covariates. Using the results from Marshall et al. (1995), which suggests that gly-

cohemoglobin (HbA1) is one of the most important factors related to changes in

retinopathy. The glycohemoglobin level is found from a blood test that measures

the amount of sugar bound to hemoglobin, the value of HbA1 is reported in per-

centages. We use this predictor as the time-varying covariate in the model. For

simplicity HbA1 is the only covariate we include.

Figure 4.9: Flowgraph model for the diabetic retinopathy data.

Figure 4.9 is the multistate Markov model for this data suggested by Marshall

and Jones (1995). We also use this as a SFGM of the data. Yau and Huzurbazar

(2002) and Huzurbazar (2005c) have also analyzed this data using SFGMs but not

with covariates. We continue the assumption made in earlier analyses; we treat the

transition times as known. In Chapter 5 we relax this assumption and treat the

transition times as unknown. Individuals with severe diabetes eventually develop

retinopathy which leads to blindness. In state 1 no retinopathy has developed. In
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Table 4.1: A few observations of the diabetic retinopathy data.

Subject State Time in study (months) HbA1

1 2 0 10.2
1 2 12
2 1 0 7.9
2 1 15 9.6
2 1 27 7.9
2 1 39 7.2
2 1 51
3 1 0 8.6
3 1 17 12.5
3 1 30 8.9
3 1 40

state 2 there is some damage to the retina which is categorized as an intermediate

stage of retinopathy, but is reversible. State 3 indicates that prolonged high sugar

levels have damaged the retina; this stage is also recoverable. State 4 indicates

blindness due to diabetic retinopathy. In this study there were a total of 277 patients.

Table 4.1 displays the first few observations. The final observation for each patient

does not include covariate information. Therefore, we use the covariate information

at a specific visit as the constant value of the covariate until the time of the next

visit.

We have five transitions for this model, each with three parameters, and param-

eterized as follows:

log(ti;1) = �0;1 + �1;1X(ti;1) + σ1ei;1 for the 1 → 2 transition,

log(ti;2) = �0;2 + �1;2X(ti;2) + σ2ei;2 for the 2 → 1 transition,

log(ti;3) = �0;3 + �1;3X(ti;3) + σ3ei;3 for the 2 → 3 transition, (4.14)

log(ti;4) = �0;4 + �1;4X(ti;4) + σ4ei;4 for the 3 → 2 transition, and

log(ti;5) = �0;5 + �1;5X(ti;5) + σ5ei;5 for the 3 → 4 transition.

As seen in Figure 4.9 we define p1 as the probability that an individual in state 1
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proceeds to state 0 before state 2. Similarly we define p2 as the probability that an

individual in state 2 proceeds to state 1 before state 3. Because p1 and p2 also depend

on HbA1, we use logistic regression (see Kutner et al. (2005) or Wasserman (2004))

to determine their values for a given HbA1 level. Therefore logit(p1) = 
01+
11X(t)

and logit(p2) = 
02 + 
12X(t), where logit(p) = log(p=(1− p)).

With this information we now express the log likelihood function:

l(�, σ, p|t, x) =
5
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2
X

i=1

Ni
X

j=1

(Ci log [1 + exp(−x′i
i)] + (Ni − Ci) log [1 + exp(x′i
i)]) .

The first line of the log likelihood function is the log of all the survivor functions

where ni is number of patients that have an observation for the ith transition, andmij

is the number of HbA1 measurements taken on the jth patient for the ith transition.

The second line is the log of all the hazards for the complete observations where qi is

the number of patients with a complete observation for the ith transition, and rij is

the number of complete observations the jth patient had for the ith transition. The

last line is the log of the logistic regression contributions, where Ni is the number of

observed transitions from state i + 1, and Ci is the number of observed transitions

from state i+ 1 to state i. In the log likelihood function we denote the appropriate

predictors and coefficients as x′�i or x
′
i.

We set diffuse priors on the regression coefficients, so p(�ij) ∼ N(0, 100) and

p(
ij) ∼ N(0, 100). We also use vague priors for σi, where p(σi) ∼ Exp(1=100).

We use Gibbs sampling with random walk Metropolis steps for each parameter.
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The MCMC mixing looks good except for the final transition (state 3 to state 4),

because there are few complete observations. To “remedy” this we use an informative

prior, p(σ5) ∼ gamma(2, 1). We now have 50,000 sample from the posterior after

accounting for burn-in.

Once we have a posterior sample, we can begin to predict. However, since there

are covariates, we need values for HbA1 to be able to predict. If the value of

glycohemoglobin is fixed (with respect to time) then it is straightforward to find a

PPD for that fixed value. We proceed as in the previous sections; for each sample

from the posterior we simulate an observation. For each transition we sample from a

logistic random variable, multiply it by σi, add x
′�i and exponentiate it. This gives

the time for one transition; we also need to simulate Bernoulli(p1) or Bernoulli(p2)

random variables for each visit to state 2 or 3 respectively. Once we have simulated

observations starting in state 1 and reaching state 4 for each of the 50,000 posterior

samples we have a sample from the PPD of the first passage time from contraction

of diabetes to blindness. We find a PPD for the mean value of all glycohemoglobin

measurements in the study, which is approximately 11.26. A histogram of this PPD

is found in Figure 4.10.

For other fixed values of HbA1 we calculate PPDs. In Table 4.2 we compare

the predicted probability of blindness due to diabetic retinopathy for fixed values of

HbA1. Clearly, the model distinguishes between given levels of HbA1. The higher

the level of HbA1 the higher the risk of blindness due to diabetic retinopathy.

However, prediction when HbA1 levels are time-dependent is more difficult. Sup-

pose we have two individuals, one begins with a high level of HbA1 which decreases

over a 20 year period. The other individual begins with a low HbA1 level, which

increases over time. How do we get the PPD for these individuals?

Assume we can break the 20 year period into disjoint but adjacent time intervals,
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Figure 4.10: A histogram of the PPD of the first passage from contraction of diabetes
(state 1) to blindness (state 4), using the mean level of HbA1.

where the HbA1 level for each individual is constant in each interval. Using Equa-

tion 4.10 we can find the survivor function. Since we have survivor function, S, we

Table 4.2: Predicted probabilities of blindness due to diabetic retinopathy before
various times.

HbA1 level
Years 8 11 14 17 Individual 1 Individual 2
5 0.002 0.003 0.005 0.013 0.002 0.014
10 0.014 0.019 0.030 0.049 0.020 0.054
15 0.025 0.034 0.053 0.074 0.062 0.097
20 0.031 0.045 0.069 0.093 0.102 0.146
25 0.036 0.053 0.083 0.107 0.131 0.184
30 0.039 0.058 0.093 0.119 0.151 0.212
35 0.041 0.064 0.103 0.129 0.167 0.235
40 0.043 0.068 0.111 0.138 0.180 0.253
50 0.047 0.076 0.125 0.154 0.201 0.280
75 0.055 0.093 0.153 0.183 0.235 0.319
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Table 4.3: Glycohemoglobin levels for two hypothetical individuals

time in years
0 2 4 6 8 10 12 14 16 18 20

Individual HbA1 levels
1 8 9 10 11 12 13 14 15 16 17 18
2 18 17 16 15 14 13 12 11 10 9 8

can sample directly from each transition distribution using the probability integral

transform. For given values of the parameters, �i, from the posterior, we draw a

U(0, 1) random variable, and then find S−1(U |�). S−1(U |�) must be found numeri-

cally, i.e. we find the value 0 < t < ∞ such that S(t|�) − U = 0. If we simulate an

observation using these techniques for each sample from the posterior distribution,

we obtain a sample from the predicted distribution of the time until blindness for

these given glycohemoglobin levels.

For the two individuals introduced above, we assume their HbA1 levels are the

same as given in Table 4.3. Finding the PPDs for each of these hypothetical individ-

uals is time consuming and takes as long as finding the posterior samples. We show

histograms of the samples from each of these PPDs in Figure 4.11. The predicted

time until blindness for these two individuals is in Table 4.2. Clearly, individual 1

has higher levels of HbA1 after 12 years than individual 2; but after 75 years the

probability that individual 1 goes blind is still much less than individual 2. This

seems to indicate that the initial levels of glycohemoglobin are the most influential

in predicting the probability of blindness due to diabetic retinopathy. Using glyco-

hemoglobin as a covariate enhances the analysis of this data and in the predictive

risk of blindness due to diabetic retinopathy.
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Figure 4.11: The PPDs of time from diagnosis until blindness for the two individuals
with HbA1 levels given in Table 4.3.

4.4 Simulated recurring illness process example

(continued)

We have demonstrated that the PPD of the first passage time from one state to

another can be estimated quickly by simulating from the SFGM for each sample

from the posterior. We demonstrate this in our recurring illness process example.

We return again to the recurring illness process in Figures 2.4 and 4.2. In the

past finding the PPD of even a simple Bayesian SFGM such as in Figure 4.2 has

been time consuming to compute. Suppose we choose to model the branches with

members from the exponential family with conjugate priors. With only a small

amount of computational time we can obtain a substantial sample from the PPD of

the first passage from state 0 to state 2.

We model the 0 → 1 transition with a lognormal(�1, σ
2
1), the 1 → 0 transition
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Table 4.4: Predictive quantiles from the recurring illness process

Time in years
0.5% 1% 2.5% 5% 50% 95% 97.5% 99% 99.5%
1.64 1.82 2.14 2.46 5.74 18.73 22.93 29.02 34.41

with a lognormal(�2, σ
2
2) and the 1 → 2 transition with a lognormal(�3, σ

2
3). The

conjugate priors we choose are p(�i) ∼ N(0, 100), p(σ2
i ) ∼ inverse gamma(1=20, 1),

and p ∼ beta(1, 1). Using the Gibbs sampler on a PC laptop we find a sample of

100,000 from the posterior in 22 seconds and 100,000 samples from the PPD in 8

seconds. This is extremely fast, compared with the methods introduced in Chapter 3

that allows us to use the lognormal distribution in a SFGM. Figure 4.12 is a histogram

of the 100,000 samples from the PPD, and Table 4.4 shows the quantiles from the

posterior predictive distribution that can be used to find predictive intervals.

Figure 4.12: A histogram of the estimated first passage PPD from state 0 to state 2
for the recurring illness process.

In this chapter we have demonstrated that efficient Bayesian computation can
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be extremely beneficial when working with SFGMs. This becomes invaluable when

working with complicated SFGMs. Models with non-smooth distributions or difficult

models with time-varying covariates are not easily handled using traditional Bayesian

SFGM methods. This technique of sampling from the PPD also allows for fast

Bayesian computation in some situations.
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Chapter 5

General definition of incomplete

data and model extensions

One advantage of SFGMs over other models for survival data is the ability to handle

incomplete data. Incomplete data are distinct from censored data in that: “Incom-

plete data consists of data that have complete information on observed waiting times

but incomplete information on the associated transitions” Huzurbazar (2005c). In-

complete data for SFGMs are considered by both Yau and Huzurbazar (2002) and

Williams and Huzurbazar (2006). Their approach involves construction of the like-

lihood for missing transitions. Likelihood construction is computationally intensive

even for simple flowgraphs. In addition, these previous approaches do not consider

covariates. We propose an alternative method of likelihood construction which also

allows for the inclusion of covariates.

The term “incomplete data” has often been mistaken for censored data. To avoid

further confusion, we provide a general definition of incomplete data.

Definition Incomplete data are observations such that there is positive probability

that one or more transition times are not completely known.
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Note that this is more general than the definition of incomplete data given in

Huzurbazar (2005c). The expanded generality of this new definition allows for tran-

sition times to be unknown. In other words, incomplete data can be and usually are

censored. This also suggests that any type of censored data should be included in the

broader definition of incomplete data. An example can help illustrate this definition.

Consider a stochastic process X(t) displayed in Figure 5.1. We know at time

t = 0 the process is in state i (i.e., X(0) = i), and that the process must transition

through state j before reaching state k. We find that the process remains in state

i until time t = 10. However, we do not receive any other information about the

observation until t = 30 where we see that X(30) = k. Therefore, the observation is

incomplete because we do not know when the transition from state i to state j and

the transition from state j to state k occurred. The observation is also censored, by

the fact we do not know how long the observation remained in state i until the first

transition occurred and how long it had been in state k before t = 30.

Figure 5.1: An example stochastic process.

In essence, incomplete data occurs when we “lose communication” with X(t)

for an interval of time. If this loss of communication introduces any uncertainty

regarding the state of the process, then we say the observation is incomplete. The

uncertainty is introduced if there is positive probability that a transition may have

occurred, but we do not know either if or when one or more transitions actually

took place. Imagine if we lose communication with a process, if we never again

regain communication then we have the common case of right-censored data. If we
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regain communication, the process may have transited between none or many states

(depending on how the process is defined). The problem is we do not know how long

it was before the process transitioned to the next state (if it did at all). If we regain

communication with the process, unless we do at the instant it transitions, we do not

know how long it has been in the current state. These are just some of the situations

that we encounter with incomplete data.

It is helpful to consider some examples of what is and is not incomplete data

when dealing with SFGMs. Consider the SFGM from Chapter 4 which we repeat in

Figure 5.2. Suppose we know X(0) = 0 and X(5) = 0. If we lose communication

with the process at time t = 5 and then regain communication at time t = 10 and

see that X(10) = 0, then we would not have an incomplete observation, because we

are certain that the process cannot return state 0 therefore it never left. Conversely,

if we use this same scenario on our familiar example in Figure 5.3, then we would

have an incomplete observation because the process could have left state 0 and then

returned during the time we were not observing it. It is common practice to ignore

this as incomplete if we are quite certain that the process did not transition out of

state 0 (i.e., the probability that it transitioned and then returned to state 0 is small).

Still, there are more blatantly incomplete observations that cannot be ignored. For

example, we know the process in Figure 5.3 starts with X(0) = 0. If we observe the

process again at time t = 150 where X(150) = 2 we do not know when the process

transitioned through state 1 and how many times this may have occurred.

Yau and Huzurbazar (2002) and Williams and Huzurbazar (2006) construct an

approximate likelihood where the contribution of this observation to the likelihood

function would be the first passage distribution f02∗(150). Using this as an approxi-

mate likelihood contribution assumes that the actual transition to state 2 occurred

shortly before t = 150, otherwise this is a poor approximation. With the advances

we have introduced we can provide an extension and treat this as a left-censored
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Figure 5.2: SFGM for bone marrow transplant patients.

Figure 5.3: A flowgraph of the recurring illness process.

observation from the same distribution. The contribution to the likelihood function

should be F02∗(150), this is the exact contribution to the likelihood and is actually

as easy to compute as f02∗(150). We develop these ideas further in the next section.

Now that we have introduced a more general definition of incomplete data we

need to show how SFGMs can help. Our aim is to introduce a method to handle and

compute the exact likelihood in multistate models, given that we have incomplete

data.
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5.1 Constructing an exact likelihood for incom-

plete data

When using approximate likelihood functions with incomplete data, we must assume

that the observed time is near to the actual transition time. In our last example

when we only knew X(0) = 0 and X(150) = 2 for the SFGM in Figure 5.3, using

f02∗(150) as a contribution to the likelihood, it is only reasonable to use this value

if we can assume that the actual transition to state 2 occurred shortly before or at

time t = 150.

Often this assumption used to build an approximate likelihood function is not

met. The likelihood construction approach of Yau and Huzurbazar (2002) and

Williams and Huzurbazar (2006) cannot handle this case. We introduce a method

that can incorporate information for almost any type of incomplete data. The key

to modeling incomplete data is incorporating it into the likelihood function. Once

we have done that, our analysis can proceed in the usual manner whether it be

frequentist or Bayesian.

Suppose we have a process as described in Figure 5.3. We saw a patient that

we knew was in state 0 at time t = 0 and then was later discovered at time t1

to be in state 2 but with no other information; it would be unreasonable to make

additional assumptions. In this scenario, we have some definite information that

would be beneficial to include in the model. Using SFGMs, this subject gives us a

left-censored observation from the distribution of the first passage from state 0 to

state 2 or f02∗(t). Therefore this observation’s contribution to the likelihood would

be F02∗(t1). Generally, the value F02∗(t1) is not trivial to find, but using flowgraphs

it is not too difficult.

If we have an incomplete observation that we can glean some information from, we

81



Chapter 5. General definition of incomplete data and model extensions

can incorporate it into the likelihood. In our previous example, the contribution to

the likelihood was F02∗(t1). This seems simple enough, but as seen in the introduction

to SFGMs finding F02∗(t1) involves some numerical calculations. In some situations

the numerical calculations are fast and in some situations it may be slower. It

primarily depends on the complex LTs of our parameterization. If the complex LTs

of the distributions we have chosen are in closed form, then the calculations are fast;

if the complex LTs must be found numerically, then this dramatically slows down

the calculations. Examples of distributions that have closed form complex LTs are

the gamma and inverse Gaussian distributions, and examples that do not are the

lognormal and Weibull distributions. In the next section we demonstrate how to

compute F02∗(t1).

In the last example we were able to use all of the information the data contained

in the likelihood, but we are not always able to to so. Consider the two state recurrent

process in Figure 5.4. If we observe a subject at time t in state 1 and then observe

the same subject again in state 1 at time t+ ε we know nothing about the process.

The reason for this is the process may have transitioned many times or not at all

in the time interval [t, t + ε). One might argue that this observation contains no

information, and therefore it does not contribute to the likelihood. In either case we

have no way to use this information (or lack there of).

Figure 5.4: A two state recurrent process.

Even in simple situations, knowing what information is available in an incomplete

observation can be challenging. We use the SFGM in Figure 5.3 to illustrate how we

could use fragments of information in several scenarios. In each case we determine
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that the incomplete information is just some sort of censored observation which could

be from a first passage distribution.

Table 5.1: Examples of incomplete data in Figure 5.3.

Case Observation A possible likelihood contribution
1 X(t) = 2 F02∗(t)
2 X(t) = 1 1− F02∗(t) or F01(t)
3 X(t) = 0 1− F02∗(t)
4 X(t) = 1 and X(t+ ε) = 1 1− F02∗(t+ ε) or F01(t)
5 X(t) = 0 and X(t+ ε) = 0 1− F02∗(t+ ε)
6 X(t) = 1 and X(t+ ε) = 0 F10(t+ ε)
7 X(t) = 0 and X(t+ ε) = 1 F01(t+ ε)
8 X(t) = 0 and X(t+ ε) = 2 F12∗(ε) or F02∗(t+ ε)
9 X(t) = 1 and X(t+ ε) = 2 F01(t)

Consider the following incomplete data in Table 5.1 (where we assume X(0) = 0

for all cases). These scenarios show that if we know a subject was definitely in one

or more states for a positive interval of time, we can use at least a piece of that

information in the likelihood. We can even use very sparse information, such as in

case 1, because the SGFM has an absorbing state. However, if the process described

in Figure 5.3 had no absorbing state, we could not have obtained any information in

some of these cases.

In Table 5.1 it is clear the same pieces of information can be interpreted differently,

such as in case 8. We could use F12∗(ε) or F02∗(t+ε) in the likelihood, but we cannot

use both. It may be tempting to glean more information out of an observation than

is possible. At first glance we might try to use both F12∗(ε) and F02∗(t + ε) as

contributions to the likelihood. However, we cannot use both pieces of information,

because they are not independent; they are very dependent. We recommend caution

when determining which pieces of information to include in the likelihood. This

raises the question, if we have two or more pieces of dependent information from

an incomplete observation, which one should we include in the likelihood? This

question varies from sample to sample, but we recommend weighing which piece of
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information provides the most information against the computation time it would

take to use the information in the likelihood function.

To find the contribution to the likelihood of an incomplete data observation, we

treat the observation as if it were one or more censored observations but possibly

from a first passage distribution. For example, Figure 5.3 is a multistate semi-Markov

model. We knowX(0) = 0 and the process remains in state 0 until time t = 10. From

then until t = 30, we do not receive any other information about the observation.

We find that X(30) = 1, where X(t) remains until at t = 35 it transitions from

1 → 2. The actual path of X(t) may have been 0 → 1 → 2, 0 → 1 → 0 → 1 → 2, or

0 → 1 → 0 → 1 → 0 → 1 → 2 et cetera.

To use this information we break this up into what we do know about the ob-

servation; it then becomes a straightforward problem. We know that the transition

0 → 1 occurred after t = 10. Using the censored contribution of this information

we could use 1 − F01(10) in the likelihood. The next piece of information is that

the transition from 1 → 2 occurred in under 25 time units. So either F12(25) or

F12∗(25) would be valid contributions to the likelihood. Another option would be

to use f02∗(35). We reiterate the point that without the context of the situation, it

is difficult to determine which bits of information would be most beneficial in the

likelihood. Regardless of which one is chosen it will be beneficial to use as much of

the information in the data as possible.

From the above examples we showed that there is often information to be gained

by using incomplete information without as many assumptions. Now we suggest

some techniques for computing the likelihood function of a SFGM with incomplete

data.
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5.2 Computation

Now that we know what to include in the likelihood function, we need to be able to

calculate the actual quantities. We have already mentioned how to calculate fij∗(t)

in Chapter 3. This can be done for Fij∗(t) (the left-censored case), which is very

similar to finding fij∗(t). First, we find the complex LT of fij∗(t) using Mason’s rule,

which we denote as Lij∗(z). Then, using the properties of LTs for positive random

variables defined on [0,∞) we find that the complex LT of Fij∗(t) is Lij∗(z)=z. From

this formula we see that the time to compute fij∗(t) or Fij∗(t) is essentially the same.

Once we have Lij∗(z)=z we feed the real portion of this into the EULER algorithm

to calculate the value of Fij∗(t), again the details of the inversion can be found in

Abate and Whitt (1995).

Until now, we have only considered the left-censored case. This easily extends to

both the right- and interval-censored cases. For the right-censored we have 1−Fij∗(t)

as the contribution to the likelihood and Fij∗(t2)−Fij∗(t1) as the contribution in the

interval-censored case. These quantities can be approximated in the same fashion

as shown above. Now that we have introduced how to handle incomplete data, we

apply these techniques in an example.

5.3 Incomplete data application to diabetic retinopa-

thy

We again consider the diabetic retinopathy data from Chapter 4. This is a longitu-

dinal study of 277 diabetic patients. At each visit we have the following information:

the time since diagnosis of diabetes, the time since the last visit, the glycohemoglobin

percentage (HbA1), and the current state (as defined in Figure 4.9). We again in-
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clude HbA1 as a covariate, but use the first measurement as a fixed value until we

observe a change in state where HbA1 can then assume a new value. This is not

as rigorous as using time-varying covariates but we still allow the value of HbA1

to vary when the patient changes states. This restriction to use the first observed

measurement of HbA1 in the state is not unreasonable from what we observed in the

PPDs of the two hypothetical individuals in the last chapter. The analysis indicated

the first values had the strongest effect on the predictive probabilities of time until

blindness.

Applying the techniques in this chapter we can make fewer assumptions about

these data and still predict. We no longer assume that we know anything about the

transition times, except the following: each patient began in state 1 at their time of

diagnosis to diabetes. Next, if for two consecutive visits the patient was in the same

state we assume no transitions were made during the time between appointments.

The last assumption is that we observed the shortest transition path, so if we observe

a patient in state 1 and then state 2 we assume that only the 1 → 2 transition took

place, not 1 → 2 → 1 → 2 or other possibilities. The only information we really

have in this study is the state of the patient at each visit. With this information

we no longer have any complete information. Therefore we have right-, left-, and

interval-censored observations for several possible transitions.

It is sensible to assume as little as possible about the transition times. One

criticism of the earlier analyses of this data is that all of them assumed the transitions

occurred at the time of the visit. For visits close in time this may be reasonable,

but if the visits are spaced far apart this assumption breaks down. When dealing

with decisions of human health it is good practice to make as few assumptions as

possible, to give a more conservative analysis, and ensure the decisions are based on

sound analysis of the data.

To parameterize our model we now look at a few different factors. In the previ-
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ous chapters we were fairly unconcerned which distributions had closed form complex

LTs; we simply selected the one that seemed to fit best. We must be cautious in

choosing distributions with no closed form complex LT, since the likelihood function

requires significant computation for incomplete data situations. If the data clearly

indicate a distribution with no closed form complex LT is superior to other alterna-

tives we can use it, but with a significant computational penalty. Thus if there are

other reasonable alternatives with closed form complex LTs we should use them to

save computation time.

For a model that incorporates incomplete data, if we allow the error term in

(4.8) to have the Gumbel, normal or logistic distributions, then none of these models

will have closed a form complex LT. This is a computational problem; since we

have incomplete data we need to compute and invert complex LTs to calculate the

likelihood. If the likelihood function takes too long to compute, our analysis will

be overly difficult. So for the sake of illustration we conveniently choose a different

parameterization of an accelerated failure time model. For each transition i, let

Ti = exp {x′�i + ei} , (5.1)

where ei ∼ gamma(�i, g(�i)). We choose the function g(�i) such that the median of

ei is 1. This forces log(Ti) to have a median of x′�. With this parameterization we

know T ∼ gamma(�, g(�) exp(−x′�)). This model is equivalent to an AFT, since

we control the median through x′� and our variance though � (instead of σ). We

also have a closed form complex LT for Ti which is necessary to compute this model

in a reasonable amount time. The priors we choose are p(�i) ∼ gamma(2, 1=2) and

p(�ij) ∼ normal(0, 16) for i = 1, . . . , 5 and j = 0, 1.

Of the 277 patients we have 41 unique sequences of transitions. For example, 17

patients were observed in state 2 on their first visit and in state 2 on their second,

and state 3 at the final appointment, after which we have no additional information.

Under our assumptions, the first observation tells us the 1 → 2 transition took less
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than the time from diagnosis to the first study visit. We know that the observation

stayed in state 2 at least as long as the time between the first and second visits. We

also know that we transitioned to state 3 before the time of the third visit. One

of the strongest ways we could apply this information is to use it as a left-censored

observation of the first passage from state 1 to state 3. However, to save computation

time, we use this information as an interval-censored observation from the direct

transition from state 2 to state 3. One must weigh the computational burden versus

the information the observation provides when choosing how to incorporate each

observation into the likelihood function.
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Table 5.2: Incorporation of the diabetic retinopathy data for the model in (5.1).
RXY , represents a right-censored observation from state X to Y , “*” indicates a
first passage distribution, L or IC a left- or interval-censored observation respectively.

State sequence Number of observations Likelihood contributions
11 51 R12

12, 23 21, 6 L12
21 5 L21
22 75 L12 R23
24 1 L12 L34

32, 33 2, 7 L12 R34
34 1 IC14*
112 11 IC12

121, 122 4, 16 L12 R23
133 1 L23 R34
211 7 L21 R12
212 7 L21 L21
213 3 L12 L23
221 2 IC21
223 17 IC23
224 1 L12 R23 L34
232 1 L12 L32
233 2 L12 R34
322 2 L32 R23
334 1 IC34

1121, 1122 1, 5 IC12 R23
1123 1 R12 L23
1133 2 IC12 R34
2122 1 L21 R23
2212 2 L12 R23 L12
2213 2 IC21 L23

2232, 12232 1, 1 L12 R23 L32
2233 7 IC23 R34
2234 1 L12 R23 L34
3233 1 L23 L23 R34
12123 1 L12 L12 R23
21221 1 L21 IC21
21321 1 L21 L23 L21
22323 1 L12 R23 L32 R23
22332 1 L12 R23 IC32
223233 2 IC23 L23 RC34
233233 1 L12 IC32 R23 R34
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In Table 5.2 we show what information we use for each patient. We must deter-

mine which transition(s) each of the 41 distinct sequences contributes to. It would

not take the reader long to discover that we did not treat all the information in the

most optimal way but also took computation time into consideration. We took spe-

cial care not to use any of the information twice; however, we used the fact that we

are modeling a semi-Markov process so sojourn times are independent. In our anal-

ysis we tend to err on the side of quick computation and sacrifice some information.

However, if a practitioner needs all the data that is possible, where computation time

is not a problem, this could be modified to keep as much of the data as possible.

For the MCMC we again use Gibbs sampling with random walk Metropolis steps.

Tuning the Metropolis step is time consuming because the likelihood is slow to com-

pute. The mixing is improved by subtracting the mean value of HbA1 from the

respective covariate for each observation. We have suitable mixing and obtain 10,000

posterior samples after burn-in.

For this model, prediction is again clear-cut for fixed values of HbA1. We calcu-

late four PPDs at set levels of HbA1; we choose values of 8, 11, 14, and 17. We can

use the quantiles from these PPDs to compare with our previous analysis with time-

varying covariates. We would expect the PPDs in the current analysis to have larger

variances because we are making fewer assumptions and therefore get less informa-

tion from the data. Table 5.3 displays the PPD quantiles which can be compared to

Table 4.2. The comparison between the two tables gives us some interesting infor-

mation. We see that the predicted probability of blindness for low levels of HbA1 is

much smaller in this analysis than the first. The opposite is true but only slightly

greater for high levels of glycohemoglobin. This makes sense since in the first analy-

sis we were assuming an individual had just transitioned into their current state at

the beginning of the study. In the second analysis we only assumed everyone started

in state 1 at the time of diagnosis of diabetes. This analysis indicates that HbA1
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Table 5.3: Predicted probabilities of blindness due to diabetic retinopathy before
various points in time (years).

HbA1 level
Years 8 11 14 17
5 0.0000 0.0004 0.0066 0.0312
10 0.0004 0.0036 0.0415 0.1029
15 0.0010 0.0083 0.0727 0.1408
20 0.0014 0.0121 0.0997 0.1596
25 0.0020 0.0165 0.1151 0.1677
30 0.0024 0.0195 0.1273 0.1734
35 0.0029 0.0242 0.1351 0.1761
40 0.0037 0.0278 0.1423 0.1773
50 0.0043 0.0340 0.1499 0.1810
75 0.0064 0.0479 0.1575 0.1828

levels have a stronger connection to diabetic retinopathy than the first analysis. We

can also see from the comparison of the two analyses at the 75 year mark that the

predicted probabilities of blindness closely agree for higher levels of HbA1.

In this analysis we have demonstrated that we can successfully make fewer as-

sumptions about the transition times and still get meaningful predictive information.

This method of using SFGMs to find the contributions of incomplete data for the

likelihood function can be used in semi-Markov models. We again resume the discus-

sion of the simulated recurring illness process example, but now including incomplete

data.

5.4 Simulated recurring illness process example

(continued)

We demonstrate the techniques for handling incomplete data with our simulated

example. Refer again to the semi-Markov process in Figure 5.3. We use the model
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as found in Equation 2.8, with a gamma as the distribution for the 0 → 1 transition,

the inverse Gaussian for the 1 → 0 transition and another gamma for the 1 → 2

transition. We use a vague prior, Exp(1=20), for all parameters, except for p (the

probability of transitioning to state 0 given the process is in state 1) for which we

use a flat prior.

We use the data included in Table 2.1, but now we include the three observations

that have been left out of the previous analyses and treat them as incomplete data.

The three randomly selected observations to be incomplete are observation 1, 14,

and 15. We assume observation 1 reached state 2 before time t = 5 so the likelihood

contribution is F02∗(5). We saw observation 14 in state 1 at time t = 4, and have

no other information, so the likelihood contribution is (1− F02∗(4)). Observation 15

was in state 0 at time t = 3 and then in state 2 at time t = 14, so the likelihood

contribution is (F02∗(14)− F02∗(3)).

We use Gibbs sampling with random-walk Metropolis steps as our MCMCmethod.

To improve the MCMC mixing we reparameterize both gamma distributions to pa-

rameters that reflect the mean and variance (we keep the same vague priors for these

new parameters). This reduces the correlation between the two parameters. We

obtain 20,000 samples from which we use to get a PPD. In Figure 5.5 we can see a

histogram of the data, the estimated PPD, and the true distribution that the data

were generated from. It appears the PPD is performing well. We were able to in-

corporate three incomplete observations and complete the MCMC in about an hour.

These techniques seem quite effective in this example.

5.5 Summary

We have demonstrated that SFGMs provide a excellent tool in incorporating incom-

plete data into multistate semi-Markov models. Although this increases the model

92



Chapter 5. General definition of incomplete data and model extensions

Figure 5.5: A histogram of the first passage from state 0 to state 2 (or total) data
from Table 2.1 with a plot of the true distribution, and the estimated PPD.

computation time, it removes some restrictive assumptions. Because the cost of ob-

taining observations usually is much greater than computation time, the trade-off is

justified to more fully use all the data collected. In our examples we demonstrated

the basics of how to use SFGMs to incorporate incomplete data into the likelihood

function, but there are situations in which most if not all of the data are incomplete.

Most medical studies have some type of incomplete data. For example, when a pa-

tient sees a medical practitioner about a condition, the practitioner usually does not

continuously observe the patient and only gets to see the patient at several snap-

shots in time. The transition times from one state to another are often treated as

known on the date/time they were documented although this is not the case. This

treats the inherently incomplete data as complete. Because of the sparseness of op-

tions to model incomplete data, most often incomplete data are ignored or handled

with unrealistic assumptions. We provide a method to incorporate incomplete data

into a model with fewer assumptions. This is a major step in modeling medical and
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reliability data.
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Chapter 6

Assessing model goodness-of-fit

In complicated statistical models it is often difficult to assess the model assumptions.

Numerous methods attempt to solve the problem of variable selection, but these do

not address the equally important issue of model adequacy. Naturally, with only

one model we should determine if the model is adequate. Similarly, if we have

10 competing models, and use some rule to determine which is best, we should still

determine if this “best” model is an adequate representation of the process of interest.

The most popular variable selection methods such as Akaike information criterion

(AIC) (see Akaike (1974)), deviance information criterion (DIC) (see Spiegelhalter

et al. (2002)), and other similar criteria help determine a “best” model relative to

other models, but none of them indicate if the model is reasonable with respect to

the data. In this chapter we derive some goodness-of-fit results that can be applied

to many statistical models, not just SFGMs.

Checking model adequacy is a difficult task. A variety of methods are available

but none of them are completely satisfactory. The Pearson’s chi-square statistic is a

very popular method, however, this method is only valid if there is a sufficient amount

of data. Using it with too small a sample produces inaccurate results. Lehmann
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and Romano (2005) states that using the chi-square statistic on continuous data

is hampered by the loss of information by grouping the data. Others such as the

Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D), or Cramér-von Mises (C-vM)

tests are versatile, but difficult to use in complex models. In this chapter we suggest

an A-D type criterion which is easier to interpret for a variety of models. Our

primary goal is to develop a model selection and validation criterion that can be

used for SFGMs.

This chapter introduces a method that helps determine if our model adequately

represents the data. As with any stochastic model we know with almost certainty

that the data were not generated by our model. We are trying to evaluate if our

model is reasonable or useful, even though we know it is wrong (see Box and Draper

(1987, pp. 424)). The proposed model assessment criterion is valid for small or

large samples but is limited to continuous-time models. This is not a problem for

SFGMs since they are continuous time models. This criterion is also applicable in

both Bayesian and frequentist frameworks.

We start by developing the rationale for our proposed fit criterion. Then we

expand it to handle more complex situations. Throughout each section we give

examples of how the method can be applied.

6.1 Derivation of a new goodness-of-fit criterion

We propose a statistic that can be used as a fit criterion, but could also be adapted

as a statistical test. We use the word criterion versus test to emphasize that the

primary method we are advocating is not a formal statistical test, but a rule of

thumb which allows us to gauge if the proposed model is reasonable. An obvious

goal is to make model assessment as simple as possible. This is difficult because of

complications in the data such as missing information and multiple states. We admit
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that some models will be difficult to assess regardless of the goodness-of-fit method

that is used.

The method we advocate is not a statistical test. Our focus is on model adequacy.

We know we will not propose the correct model, but can we determine if a model is

good enough to use for making predictions? A statistical test gives us a p-value, but

it does not really tell us if our model is reasonable; it only tells us if we have enough

evidence to reject our proposed model. If we do not have enough evidence to reject

our model is it reasonable? Statistical testing does not answer this question.

As with many tests our criterion measures the distance between the observed

data and the expected value of that observation given the model. A convenient way

to put all models in the same framework is by transforming our data to U(0, 1)

random variables through the probability integral transform. As mentioned before,

any proposed model is almost certainly wrong, so if F is the proposed model, we

know F (Xi) will not truly be a U(0, 1) random variable. But, if we determine that

F (Xi) is approximately U(0, 1) we may be able to say our model is reasonable. We

use similar concepts from the A-D and C-vM tests. First we apply the probability

integral transform and then order the transformed sample. Assuming our model

is correct then F (Xi) ∼ U(0, 1) and the distribution of the ith order statistic of a

U(0, 1) is F (X(i)) ∼ beta(i, n− i+ 1) (see Casella and Berger (2002, pp. 230)).

With this information we can assess the distance of the data, F (X(i)), from its

expected value, i=(n+1). A simple way of doing this for a sample of size n is to use

the squared distance, where

Q∗ =
1

n

n
X

i=1

�

F (X(i))− i=(n+ 1)
�2
.

One problem is the distribution of Q∗ is difficult to find exactly. However, when

using the squared distance we find that the expectation of
�

F (X(i))− i=(n+ 1)
�2

is

just the variance of F (X(i)), when Xi ∼ F .
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Therefore if we redefine our statistic to be

Q∗ =
1

n

n
X

i=1

�

F (X(i))− i=(n+ 1)
�2

V ar
�

F (X(i))
� ,

then E[Q∗] = 1. This is convenient because if we get a value of Q∗ that is less

than one, then we can say the distance between our proposed model and the data is

smaller than the average distance between the true model and a sample from it (as

measured by Q∗).

This Q∗ seems reasonable, but compared with a form of the A-D statistic it

actually performs quite poorly with regard to “statistical power”. We are abusing

terminology here, because we are not performing a statistical test. However, we use

the term “statistical power” loosely as a description of how often the statistic can

detect a false model. The A-D statistic performs better because it is actually using

the data more than once. It uses the fact that if F (Xi) ∼ U(0, 1) then 1− F (Xi) ∼
U(0, 1). We use this property to get a modified statistic Q∗∗,

Q∗∗ =
1

2n

n
X

i=1

�

F (X(i))− i=(n+ 1)
�2

+
�

1− F (X(n−i+1))− i=(n+ 1)
�2

V ar
�

F (X(i))
� .

However, we find that Q∗∗ = Q∗ for any sample. Therefore this reflection principle

does not add any information because F (Xi) and 1−F (Xi) have a correlation of −1.

For the reflection principle to help, we must transform the two samples. To improve

our statistic we do the same as the A-D test, by using the negative logarithm trans-

formation on F (X(i)) and 1 − F (X(i)). Once again we need to find the expectation

and variance of the transformed random variable − log(F (X(i)). Let X ∼ beta(�, �)

and Y = − log(X), therefore

fY (y) =
�(� + �)

�(�)�(�)

�

e−y
�� �

1− e−y
��−1

.

From here we can find the MGFMY (s), take the first derivative with respect to s, and

evaluate this at s = 0. This provides E[Y ] =  0(�+ �)− 0(�) =  0(n+1)− 0(i),
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where

 i(x) =
di+1

dxi+1
[log(�(x))] .

Similarly, we find V ar[Y ] =  1(�)−  1(� + �) =  1(i)−  1(n+ 1).

The mean and variance formulas may seem a little complicated, but another way

to look at them is through the recurrence relation of the gamma function. We know

��(�) = �(� + 1). Applying the logarithm to both sides and differentiating gives

the recurrence relation,  0(�) + 1=� =  0(�+ 1), and differentiating one more time

produces another recurrence relation,  1(�)−1=�2 =  1(�+1). Therefore the mean

of − log(F (X(i)) is just
∑n

j=i 1=j and similarly the variance is
∑n

j=i 1=j
2. These

mean and variance formulas are very easy to calculate and are more intuitive then

the  i(x) function. Therefore, we call our statistic Q, and write it in its final form

Q =
n

X

i=1







h

log
�

F (X(i))
�

+
∑n

j=i
1
j

i2

+
h

log
�

1− F (X(n−i+1))
�

+
∑n

j=i
1
j

i2

2n
∑n

j=i
1
j2






. (6.1)

For the remainder of the paper we will refer to this statistic we have developed as Q.

Now we have a statistic that can distinguish a “false” model with similar sta-

tistical power as the A-D test, but has the property E[Q] = 1, regardless of the

complexity of the model. We compare the A-D, C-vM, and the Q statistics in a few

situations. All three statistics are expecting data from a U(0, 1) distribution since

we are assuming F is the true model. We sample from a U(0, 1) 100,000 times to

get an approximate 95% critical value. Then, we sample from three different beta

distributions and see how often each of these statistics can detect the false models.

We selected the beta distributions so that one has too heavy of tails, another has tails

that are too light, and the final one has a heavy left tail with the right tail too light.

The values of these simulations are given in Table 6.1. This verifies that in these

generic situations the Q statistic competes favorably with some of the established

goodness-of-fit statistics. From this table we can see that the C-vM test aggressively
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Table 6.1: Simulated rejection percentages for 3 samples sizes and 3 different distri-
butions for the Anderson-Darling, Q, and Cramér-von Mises Statistics.

Distribution A-D Q C-vM
n = 10

beta(0.8, 0.8) 9.6% 10.4% 14.1%
beta(2, 2) 1.2% 1.5% 0.0%

beta(0.9, 1.1) 8.6% 8.5% 5.0%
n = 30

beta(0.8, 0.8) 11.6% 11.9% 24.6%
beta(2, 2) 11.4% 15.4% 0.0%

beta(0.9, 1.1) 15.6% 15.5% 5.2%
n = 100

beta(0.8, 0.8) 19.5% 19.4% 51.7%
beta(2, 2) 91.1% 93.8% 0.0%

beta(0.9, 1.1) 40.4% 40.2% 5.2%

identifies false models that do not adequately account for heavy tail behavior in the

data. However, this test neglects to identify false models that suggest too heavy of

tails that are not justified by the data. The A-D test and the Q statistic perform

similarly.

So not only does Q have good statistical power but it is easy to interpret. An

intuitive way to interpret Q is, if Q < 1, we can be fairly satisfied that we are

modeling the process adequately. If Q ≥ 1, we may want to consider an alternative

model. This is simple and informal, but effective. Therefore, if Q < 1, then our

proposed model has a smaller value of Q than the average value of Q for the true

model.

If one chooses to use Q as a Fisherian test, then Table 6.2 provides estimated

values to do so. Under the null hypothesis we assume our proposed model F is the

true model. Therefore, F (Xi) ∼ U(0, 1) and we simulate n, U(0, 1) random variables

and calculate Q. We do this 1,000,000 times to get samples from Q which gives the

approximated quantiles in Table 6.2. We emphasize that these values are only valid
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Table 6.2: Approximated values of the statistic Q given the model (no estimation)

n Mode Mean Median 75% 90% 95% 99%
5 0.32 1.00 0.63 1.21 2.19 3.06 5.54
7 0.35 1.00 0.67 1.24 2.14 2.92 5.18
10 0.39 1.00 0.69 1.24 2.08 2.81 4.81
13 0.41 0.99 0.71 1.24 2.04 2.72 4.61
16 0.43 1.00 0.73 1.24 2.03 2.71 4.49
20 0.44 1.00 0.73 1.25 2.02 2.66 4.37
25 0.45 1.00 0.74 1.25 2.00 2.64 4.32
30 0.46 1.00 0.75 1.25 1.99 2.61 4.21
40 0.46 1.00 0.75 1.24 1.97 2.57 4.10
55 0.47 1.00 0.76 1.25 1.96 2.55 4.06
75 0.48 1.00 0.76 1.25 1.96 2.55 4.04
100 0.49 1.00 0.76 1.24 1.95 2.52 3.99
150 0.49 1.00 0.77 1.25 1.95 2.52 3.98
200 0.49 1.00 0.77 1.25 1.94 2.53 3.95
1000 0.50 1.00 0.77 1.25 1.93 2.50 3.88

if the null hypothesis does not test if the data are from a parametric distribution

with unknown parameters. Next, we generalize Q to apply in situations that are

more complex.

6.2 Finding Q with censored data

Frequently, observational data have missing information. Often this comes in the

form of censored data. For this model fit criterion to be useful in practice it must

incorporate censored data.

In Chapter 3 we briefly introduced censored data. Throughout this dissertation,

“censoring” refers to random censoring. As long as the censoring can be assumed

to be random, we can use the techniques discussed in this section. Since right- and

left-censoring are special cases of interval-censored data with out loss of generality,
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we demonstrate the following methods on interval-censored data.

Let D represent the data when no censoring is present and let D∗ be the data

when censoring is present. We know that Q|D is a fixed constant, but when censoring

occurs, Q|D∗ is not a fixed constant but still random. Even though Q|D∗ is random,

we can use information about its expected value. We generalize the fitness criterion

and use the expected value of Q as the statistic. Let Q̂ = E[Q|Data], whether the
data are censored or not. If there is no censoring in the data Q̂ = E[Q|D] = Q. It is

very difficult to calculate Q̂, so we need to find a way to estimate it. If F is the true

model then the random part of the ith censored observation is uniformly distributed

on the interval (F (ai), F (bi)), where this observation is censored on the interval

(ai, bi). This makes sampling from Q|D∗ very easy. So if we simulate m samples

from Q|D∗ we can estimate Q̂ using the mean of these samples. This estimate can

be made as accurate as desired by increasing the sample size m. To approximate

the accuracy of our estimated value of Q̂, if m is sufficiently large, we can apply the

central limit theorem (CLT) and obtain a 100(1 − �)% CI. Calculating a CI for Q̂

takes only a few seconds on a desktop PC if m = 10, 000.

By assuming F is the true model, we can use the same rule of thumb for Q̂ as

we did for Q. Clearly, by the rule of iterated expectations E[Q̂] = E[E[Q|D∗]] =

E[Q] = 1. If Q̂ < 1, we should be satisfied our model is fairly reasonable.

Recall the construction engineering example from Chapter 3. There were 20

observations, however four companies were not measured on the 2 → 3 transition.

These four observations are considered to be right-censored, if we are considering

the model for the first passage time from state 0 → 3. The parameterization in

this example was very arbitrary. We chose to model each transition with a Weibull

distribution to demonstrate additional capabilities, but not necessarily to build a

good model. How do we determine if the fitted model was adequate? Analyzing the

frequentist model (with the MLEs) we simulate 1,000 samples from Q|D∗. A 99%
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Table 6.3: Values of Q̂ for the construction engineering example

Distribution 0 → 1 1 → 2 1 → 3 2 → 3
gamma 1.847 1.297 0.285 1.223

Birnbaum-Saunders 1.856 1.074 0.362 1.212
lognormal 1.856 0.986 0.364 1.214
Weibull 1.955 1.152 0.261 1.156

inverse Gaussian 1.856 0.931 0.406 1.214
Fréchet 2.106 0.700 0.445 1.066

exponential 17.501 1.005 0.228 6.814

confidence interval for Q̂ is (1.530, 1.588). If this were a fixed model and we were

conducting a statistical test Table 6.2 suggests we would not reject this at the 90%

confidence level. However, using Q̂ as a rule of thumb indicates we could probably

find a better model for this process.

Can we find a better model using some of the popular lifetime distributions? We

try using the Weibull, lognormal, gamma, inverse Gaussian, exponential, Fréchet,

and the Birnbaum-Saunders distributions. From these seven candidate distributions

(each evaluated at the MLEs), we choose the one that has the smallest value of Q̂.

The values of Q̂ can be found in Table 6.3. For the 0 → 1 transition the gamma seems

to be the best fit. The Fréchet fits the 1 → 2 transition the best. The exponential

models the 1 → 3 transition well, and we pick the Fréchet for the 2 → 3 transition.

With this new parameterization, a 99% confidence interval for Q̂ is (1.089, 1.129).

This is an improvement, but a more sophisticated method is needed for a more

appropriate fit of this data, especially for the 0 → 1 transition.

This example shows how to find an estimate of Q̂ when random censoring is

present in the data. By finding the mean of the samples of Q we get an accurate

estimate of Q̂. We believe similar techniques can be applied to Q when other types

of missing data are present.
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6.3 Finding Q in multistate aggregated data mod-

els

Some models do not work in the format we have developed thus far. An example is

in reliability theory. Consider a system that has several components. Data might be

available for a number of individual component tests, but there may not be many

full system tests. Even though each component has plenty of data, we do not have a

way to assess the fit for this full system model. So we would like to determine how

well our overall system handles the data while using all of the component data. We

label this type of data as aggregated data.

Definition An aggregated data model is a multistate model with data for many

subjects observed on single transitions, which do not have corresponding data for

other transitions.

Attempting to find Q for each component and then using these to develop an

overall Q for the full system is problematic. Suppose we have a system with two

components each with a value of Q; this information tells us little about the value

Q for the overall system model. For example, if the true unconditional failure-time

distribution of the two components is Exp(�1) and Exp(�2) respectively. We know

the system fails if either component fails, which implies the true overall model for

time to failure is an Exp(�1 + �2), the minimum of an Exp(�1) and Exp(�2). We

set �1 = 3 and �2 = 1 and use maximum likelihood estimation. Let Qi be the value

of Q for each component and Qo be the Q for the overall system. In one simulation

we have Q1 = 0.49, Q2 = 0.14 and Qo = 0.57 and in the next we get Q1 = 0.81,

Q2 = 0.52 and Qo = 0.44. This simple situation demonstrates that the value of Qo

can fluctuate dramatically given the individual Qis.
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The solution we propose is similar to dealing with censored data. Again, using

the fact that E[Q̂] = 1, we can randomly match component data together to have

pseudo full system tests and then calculate Q̂. This is essentially bootstrapping (see

Efron and Tibshirani (1993)) full system tests from the population of component

tests. If we do this many times and average our values of Q̂ we can again expect to

have E[Q̂] = 1, if our model is correct.

Referring again to the same two component system from above, assume we have

n1 samples from component 1 and n2 from component 2, with n1 < n2. Now take

all the samples from component 1 and pair them randomly (with replacement) with

observations from component 2. This gives us n1 pseudo full system observations, and

the remaining n2 − n1 observations from component 2 are treated as left-censored

observations. With these observations Q̂ can be calculated. If this is done many

times, the average of all the sampled Q̂’s is an estimate of Q̂ and using the CLT we

can again get a 100%(1− �) CI.

This method can present a significant increase in computation, especially if the

CDF, F , for a given data value is difficult to calculate, then it will be hard to

implement the method given above. However, for a fixed model we can calculate F

at many values on the support and then interpolate needed values of F very quickly.

If there are censored data in an aggregated data model this becomes a little more

complicated. Consider the case where (a1, b1) is an interval-censored observation from

component 1 and is matched with another interval-censored observation (a2, b2) from

component 2. If these intervals are not disjoint what value should we use for the

pseudo full system test? Let F1 be the distribution assigned as the failure time

for component 1, and similarly F2 for component 2. We then sample from the two

intervals (F1(a1), F1(b1)) and (F2(a2), F2(b2)) and use the minimum value evaluated

under F as an observation used to calculate Q̂. Using this method allows us to find

a CI for Q̂ even when we have a situation with aggregated and censored data.

105



Chapter 6. Assessing model goodness-of-fit

SFGMs lend themselves naturally to aggregated data models. It is very important

that Q̂ be able to assess models with aggregated data.

6.4 Bayesian models

Since many flowgraphs are developed in a Bayesian setting we must consider Q̂ for

Bayesian models. The Q developed earlier hinges on the fact that the parameters are

fixed for a given model. In Bayesian parametric models the parameters are random.

To handle Bayesian models we take an approach suggested in Box (1980). Con-

sider a Bayesian model where f(x|�) is the sampling distribution, p(�) is the prior

distribution, x is a single observation and � is a vector of the parameters. Then we

have

m(x) =

Z

f(x|�)p(�) d�,

which is a fixed model with no parameter estimation (if there are no random hyper-

parameters in the prior).

We use m(x) as our proposed distribution with a given sample of size n. We find

F (xi) =

Z xi

−∞

m(t) dt, (6.2)

and use Q in the same manner as in the frequentist framework. However, in most

cases we do not have an analytic solution for F (xi). If we obtain a large sample from

the prior distribution of size np, we get the estimate,

m(x) ≈ 1

np

np
X

i=1

f(x|�i)p(�i).

With an approximate m(x), we can replace the integral in (6.2) with a summation

to find an approximate F (xi). We partition the support of f(x|�) sufficiently such
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that each observation xi is a right endpoint of a partition. The number of partitions

less that xi is ni where the width of each partition is wj. Our approximation is

F (xi) ≈
ni
X

j=1

wj
1

np

np
X

k=1

f(xj|�k)p(�k). (6.3)

Box’s method has drawn some skepticism from the Bayesian community because

it is dependent on the prior distribution. It is true thatm(x) is very dependent on the

prior; in fact, for diffuse priors the suggested fit is usually very poor. However, the

mathematics clearly indicates that m(x) is exactly the distribution one is assuming

under the model. We show how influential a prior can be on m(x) in an example to

follow.

An algorithm to estimate Q̂ in a Bayesian model is:

1. Define f(x|�) and p(�)

2. Obtain a sample from the prior distribution, p(�)

3. Determine the points xi, on the support of x, for sufficient resolution and

accuracy

4. Calculate m(xi) and F (xi) for each xi

5. Calculate Q̂ using the frequentist methods

Consider a simple example where f(x|�) has an Exp(�) distribution with a con-

jugate prior p(�) ∼ gamma(a, b). Then

m(x) =

Z ∞

0

(� exp {−�x})
�

ba

�(a)
�a−1 exp {−b�}

�

d� =
aba

(b+ x)a+1
,

and

F (x) =

Z x

0

m(t) dt = 1−
�

b

b+ x

�a

.
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Using this F (x) we can find an estimate of our statistic Q̂.

We use this example to demonstrate how our prior influences m(x). Consider

trying to model the lifetime of an electronic component and it appears the only

information we have about the component is our test data. We choose to use a

diffuse prior, p(�) ∼ gamma(1, 1=50). This prior on � implies we basically have no

idea about the value of the mean time to failure (MTTF). Let the true component

failure time distribution be a Weibull(0.9, 15) with a mean of about 15.78 years.

Therefore with this vague prior, m(x) looks very flat, almost identical to the prior.

Choosing this vague prior means we are deliberately choosing a very poor distribution

to model the data. In fact this prior is saying that we are 98% certain that the

MTTF is less than one year! We should be able to use some information about other

electronic components similar to this new one that we are testing. We know that the

old component which was used for the same purpose had a MTTF of 12 years. We

believe the new component should have a higher MTTF because the manufacturing

process has improved. Using this information we develop a more informative prior

for � and say we are quite certain the MTTF is between 10 and 25 years. We can

choose a = 35 and b = 513 to roughly satisfy these conditions. In Figure 6.1 we see

that m(x) with informative prior information is more appealing. Often it is difficult

to get informative prior distributions in complicated models. Bedrick et al. (1996)

provides a systematic way to obtain prior distributions for regression parameters,

similar ideas can be applied to other situations.

If one insists on using vague priors, Q̂ will not be of much use. Although we

do not explore them, there are other alternatives to find F (Xi) in Bayesian models.

Other ideas about goodness-of-fit testing in Bayesian reliability models can be found

in Hamada et al. (2008).

One item worth noting in a Bayesian setting is that in some cases modelers may

want to relax the rule of thumb that Q̂ < 1. The primary reason for this is if the prior
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Figure 6.1: An example of a sampling distribution with an informative prior and a
vague prior.

information is somewhat contrary to the data, the modeler may be satisfied even if

the model does not fit the data extremely well, because the prior has influenced the

model away from the data. This could be the case with strong prior information and

where only a small sample is available. However, frequentists should not interpret

Q̂ as leniently because the data is the only information they are willing to formally

take into account.

6.5 Penalizing Q for estimated parameters

If we have more than one proposed model we also need to adjust Q̂ for the number

of parameters that are being estimated. If we use many parameters, in theory we

could force our model to have an arbitrarily small value of Q̂. Obviously, if we did

this we would be over-fitting the data. To ensure we do not favor over-fitted models

we penalize Q̂ for models that estimate parameters. Assume we have p parameters

in our proposed model, then we adjust Q̂ by adding the term p=(p+ 1). We use the
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notation

Q̂p = Q̂+
p

p+ 1

to indicate that we have adjusted for the estimation of parameters. Then we use this

particular penalization term to prevent blatant over-fitting of the data.

Now that we have penalized this criterion we can use Q̂p simultaneously for both

model selection and model adequacy. If Q̂p < 1 we assume the model is reasonable

and proceed with prediction. If more than one model has a value of Q̂p < 1 we select

the model with the smallest Q̂p value.

So how does the criterion Q̂p < 1 perform? If we assume a true model, simulate

a sample from it, and use Q̂p to select a model, how good will our predictions be? In

practice we have data from a true model and we propose a false model. If this false

model is close enough to the ECDF we declare that it is adequate and use this false

model for prediction. We give a simulated example to demonstrate the benefits of

using Q̂p.

Consider the process with distribution Weibull(2, 2). If we obtain a sample of

size n = 10, fit a model, determine if the model is adequate with Q̂p, and if it

is, predict one observation from this fitted model. In this situation how good will

our prediction be? Table 6.5 shows how this procedure performs in 50,000 trials

and Figure 6.2 shows a histogram of the predictions of the two models compared

to the true model. Clearly the gamma parameterization appears to be better than

the lognormal, but for both if we use Q̂p, we do better than if we use no model

validation criterion. Using Q̂p and the lognormal distribution we only accept 23.3%

of the models whereas using the gamma we accept 30.4%. We also compare these

parameterizations using Q̂p with a crude non-parametric method of sampling from

the ECDF (with an exponential tail). Even though we propose incorrect models (the

gamma and lognormal) we are able increase our prediction accuracy.
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Table 6.4: A simulation study using Q̂p as a model validation tool.

Median Mean Variance Percent
Weibull(2,2) 1.665 1.772 0.858 {

Gamma with Q̂p 1.612 1.773 0.967 30.4

Gamma w/o Q̂p 1.611 1.774 0.988 {

Lognormal with Q̂p 1.551 1.781 1.132 23.3

Lognormal w/o Q̂p 1.541 1.822 1.782 {
ECDF 1.653 1.841 1.470 {

6.6 Simulated recurring illness process example

(continued)

We return to the recurring illness process of Figure 2.4. In the Chapter 3 we tried a

few additional parameterizations, which looked appropriate on the individual tran-

sitions but did not look as good for the overall model of the first passage from state

0 to state 2. These assessments were very subjective which involved just comparing

the candidate distributions with a histogram of the data.

So now we would like to see if the criterion we have developed can assist in this

example. We can start by looking at the two proposed models in (2.8) and (3.7).

Both have similar parameterizations so it is useful to see how the model in (2.8)

compares with the model in (3.7). The model in (2.8) has Q̂p = 0.868, and the

model in (2.8) has Q̂p = 0.933. This confirms our conjecture in Chapter 3 that the

model in (2.8) seemed more appropriate.

Can we improve our model by using Q̂p to find the “best” distribution for each

branch? Looking at each branch we find the lowest Q̂p for each transition. We chose

the gamma, Fréchet, and inverse Gaussian distributions for the 0 → 1, 1 → 0, and

0 → 2 transitions respectively. However, this new model does not get a lower overall

value of Q̂p, with Q̂p = 0.870. We compare the three proposed models in Figure 6.3.
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Figure 6.2: Histograms of two predictive models when Q̂p is used, compared with
the true model.

So what do we gain by using this fitness criterion Q̂p? If we look at the plot

and determine which is better, does Q̂p help? We argue that it does, by providing

a measure of fitness, which confirms what we see and may reveal information we do

not see in a plot.

6.7 Summary

In this chapter we have introduced a general model fitness criterion that can be ap-

plied to a variety of models, including SFGMs. Model assessment is a critical aspect

of any model. Using this criterion helps ensure that the model assumptions of a
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Figure 6.3: A histogram of the simulated recurring illness process data with plots of
the models from chapters 2, 3 and 6.

SFGM are reasonable before implementation. We have proposed assessing goodness-

of-fit using a criterion versus a statistical test. We do this with the justification that

we know our proposed model is wrong, but want to know if it is adequate with the in-

formation we have. The criterion Q̂p gives us some measure of model goodness-of-fit.

We generalized the criterion for censored data and models with aggregate data.

The development of this criterion is still in its infancy. Other modifications

and simulations must be run before we could clearly determine if this philosophy is

reasonable and if this particular goodness-of-fit criterion is of practical use.
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Conclusions

In this dissertation we discussed several research topics involving SFGMs. This

chapter summarizes the accomplishments of this work, then presents avenues for

future research. We have

• Enabled SFGMs to be parameterized using any smooth distribution

• Provided a more general way to handle incomplete data in SFGMs

• Improved computation time in Bayesian SFGMs

• Demonstrated a Bayesian non-parametric method (MPTs) in SFGMs

• Incorporated covariates into the flowgraph framework using accelerated failure

time models

• Presented the methodology to include time-varying covariates in semi-Markov

models

• Suggested how to assess model goodness-of-fit using the Q̂p criterion
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7.1 Summary of results and contributions

In Chapter 3 we introduced the techniques to model any smooth distribution in

SFGMs. This is a fundamental achievement that opens many additional modeling

possibilities in SFGMs. Two primary distributions that had not been used in SFGMs

were the lognormal and the Weibull. Now they can be fully incorporated in a SFGM,

this will encourage the use of SFGMs in areas where these distributions are popular.

With these techniques we can also find the CDF of a first passage time, which is

critical for timely computation needed in chapters 6 and 5.

In Chapter 4 we looked at estimating the Bayesian posterior predictive density

for flowgraphs in a new way. This provides a faster way to compute SFGMs in the

Bayesian framework and increases the modeling flexibility. With this method we can

use any time-to-event distribution without smoothness constraints. We demonstrate

this capability in a Bayesian non-parametric model. This is the first application of

Bayesian non-parametrics in SFGMs. Using this method of sampling from the PPD

we also introduce a medical example with a time-varying covariate. This is a fairly

complex model that may not be able to be implemented in the traditional Bayesian

SFGM paradigm. This is a significant accomplishment as a general way to include

time-varying covariates in semi-Markov models. Using this method to find the PPD

enables significant new applications in Bayesian SFGMs. In most cases this method

also bypasses the requirement to use MGFs or complex LTs in SFGMs. However,

for the cases with incomplete data, we use the SFGM framework to produce the

likelihood function. To date, SFGMs have dealt exclusively with continuous time

processes because of the smoothness constraint. When inversion of MGFs is not

required we have a way to deal with discrete time SFGMs. Removing the need for

working in the MGF domain greatly expands the applications where SFGMs can be

applied. We also demonstrate how covariates can be incorporated into SFGMs using

the AFT model framework.

115



Chapter 7. Conclusions

Chapter 5 extended previous work to model incomplete data. We provided a

more general definition of incomplete data. We developed new techniques to model

the diabetic retinopathy data from Chapter 4. This is an important contribution

for medical and other types of research. Often a patient or system is only observed

at a few discrete times. In the past several assumptions were necessary to model

this type of data. Using the techniques from this chapter we can drop some of these

assumptions and improve our inference and prediction from the data.

In Chapter 6 we proposed a new goodness-of fit criterion. This fit criterion is

general enough to be applied to most univariate continuous models. The straight-

forward interpretation of the proposed fit criterion statistic Q̂p lends itself to assess

the fit of complicated multistate models such as SFGMs. This criterion can be ap-

plied in many situations and is simple when the CDF of the proposed model can be

found at the data points. Q̂p is applicable regardless of the sample size, because no

asymptotic assumptions are made. This is a new and intuitive way to look at model

goodness-of-fit. With this research we can now assess models and determine if the

proposed model is reasonable. This addresses one of the most fundamental problems

in statistics and is crucial in applied statistical models such as flowgraphs. There

is a possibility that this statistic could be adapted to the multivariate case. The

direct probability integral transform methods are not able to handle multivariate

data, because it is not generally true that the distribution function F(X,Y) is not

U(0, 1), even when F is continuous, see Genest and Rivest (2001). However, it may

be possible to conduct a multivariate version of this fit criterion using the Rosenblatt

transformation, proposed in Rosenblatt (1952).

This work has made significant contributions to state-of-the-art methods in sta-

tistical flowgraph models. Flowgraphs are inherently computational. As advances

in processor speed and efficiency of algorithms advance these will naturally enhance

the computational methods of SFGMs. Next, we discuss some open problems that
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are of interest.

7.2 Future work

Statistical flowgraphs were introduced in literature about fifteen years ago. Many

areas in flowgraphs are still not explored. This section focuses on open application

areas and research problems in SFGMs. We briefly list several problems and explain

why they are important.

One of the most critical theoretical areas is showing that SFGMs are a counting

process. Of one the reasons for the success of survival models was the work of Aalen

(1975) and Aalen (1978). Aalen showed that survival models are counting processes,

thus providing the mathematical and stochastic foundation for survival models. If

this could be done for SFGMs, the framework would receive wider acceptance and use

in the academic community. Even though the flowgraph framework is essentially an

applied method, providing the theoretical background is essential. This is a primary

research area for SFGMs that would have many benefits once accomplished.

In Chapter 3 we showed how any smooth distribution with positive support can

be used in a SFGM. To accomplish this we used the EULER method to invert the

first passage complex LT to a density. This method is effective, but can be improved.

Abate and Whitt (1995) recommends that when inverting the complex LT at many

points, to use the fast Fourier transform (FFT) instead of the EULER method. This

is exactly what we are doing when we use the EULER method. We discretize the

support and invert the complex LT at each discretized point. Using the FFT instead

of the EULER method would be computationally advantageous. Not only can the

FFT be used for inversion, but it can also be used to find the complex LT. This

would eliminate the need for numerical integration to compute the complex LT in

cases such as the lognormal and the Weibull. From initial attempts of using the FFT
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it appears that a standard FFT implementation many not work with SFGMs that

contain loops and parallel paths. It may be possible to use the FFT for any smooth

SFGM if the FFT was implemented with this in mind.

Now that covariates have been incorporated into SFGMs in Huzurbazar and

Williams (2010), it is natural to extend these ideas. This could be done by in-

cluding random effects into SFGMs. When there is a factor with many levels, such

as, at what hospital an individual was treated, it is often difficult to incorporate and

estimate too many of these coefficients into the model. One way to include this effect

in the model is by treating it as a random effect that has a probability distribution.

If we do this the only additional parameters that need to be estimated for that level

are the parameters for the probability distribution we assigned to the random effect.

Survival models such as this have been termed frailty models. Using this concept in

SFGMs could enhance their modeling capabilities for survival times and in reliability.

One of the main assumptions in SFGM is the semi-Markov property. This is very

restrictive in some situations. It may not be realistic to model two events a person

has as being independent. If we do not have independence then the current SFGM

framework is unable to properly model that process. Huzurbazar andWilliams (2010)

suggests a technique to model some dependencies between neighboring transitions.

Computationally this may be implemented in simple situations but would be difficult

if the correlation structure of the data was not trivial. A large area of work must be

done in modeling covariance structures in multistate time-to-event data. Assuming

a covariance structure of a multistate process would open up SFGMs to many more

application areas where the semi-Markov property is not valid.

The techniques used in SFGMs can be used in other areas. The work done in

Chapter 4 allows the use of any distribution, whether smooth or not, in Bayesian

SFGMs. This could applied in areas such as dynamic linear models (DLMs), see

West and Harrison (1997). DLMs usually assume normal error terms, which allows
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for easy analytic and computational calculations, however it is possible to use other

error terms. The SFGM methodology provides a way to compute the convolution of

these random variables.

Once a SFGM is applied and prediction is made, is it possible to use one more

observation obtained after the fact, without redoing the complete analysis? This

may be possible using the Bayesian framework and sequential Monte Carlo (SMC)

techniques (see Cappé et al. (2005)). This would also provide the methodology to im-

plement on-line (real-time) SFGMs. These could be used in many applications such

as real-time system monitoring in reliability, financial models, and environmental

models.

Another area that could be explored is finding the extreme values of a flowgraph.

One that may be of particular interest is what is the distribution of the shortest

time to an event for an given number trials? This could be of some interest when

attempting to model extreme failure events such as worst case scenarios in reliability

and epidemiology. Other extreme events, such as in hydrology and climate, could be

modeled with SFGMs if an extreme first passage distribution could be found.

Statistical flowgraphs are a natural fit for generalizing the project evaluation and

review technique (PERT), see Whitehouse (1973). PERT is used primarily in project

management to determine the time required to complete a project. It uses generalized

beta distributions that are specified using prior information about each task. This

information is combined to identify the mean time until completion. SFGMs can

add a whole new level of flexibility to the PERT by using other distributions and

providing probability intervals as opposed to just point estimates. PERT identifies

the critical path that is the shortest time path in the graph, this would also be of

interest if SFGMs were used to generalize PERT.

Flowgraph methodology could also be applied in Hidden Markov models (HMMs),
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see Zucchini and MacDonald (2009) for an assessable introduction. HMMs are flex-

ible models that enable us to model things we cannot observe using related events

that we can observe. However, the Markov property can be restrictive so SFGMs

could naturally extend this assumption in the field of hidden semi-Markov models

(HSMMs). HSMMs were introduced by Ferguson (1980), are even more general than

HMMs but more difficult to compute. SFGM may provide a way to compute HSMMs

in an easier fashion, which could be an interesting research opportunity.

Another area of significant interest is identifying the model uncertainty of SFGMs.

Currently, SFGMs do not have a way to identify the uncertainty of the proposed

model. It would be beneficial to apply a method to determine some confidence

bounds on the estimated CDF or survival curve of a SFGM. Having this confidence

band on the survival function could tell the researcher how much credence we could

place on our selected model.

There are a multitude of opportunities for exciting applications and research in

SFGMs. As SFGM literature grows, application areas will also increase. The SFGM

theory developed thus far elegantly provides a way to model a finite state problem

where the semi-Markov assumption is reasonable.
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R code for recurring illness process

The R code provided in this appendix is intended to be used as a reference guide for

others wanting to implement SFGMs. The code is fairly rough and compact with

limited comments. We attempt to annotate the input and output of each function

or module but do not comment line by line. We make no assertions that the code

is optimized, in fact the primary focus was on ease of programming and not speed.

We also warn that there may be errors that are unknown to the author.

A.1 Selected code from Chapter 2

###########################################################

###Generating the data

set.seed(1)

#parameters for the 3 lognormal transitions and the probability p

#1 is for the 0-1, 2 is for the 1-0, and 3 is for the 1-2 transition

mu1 = 0; sg1 = 1

mu2 = -4; sg2 = 0.5

mu3 = 1; sg3 = 0.3

p = 0.4
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obs = as.list(rlnorm(20,mu1,sg1))

for (i in 1:20) {

x = rbinom(1,1,p)

while(x==0){

obs[[i]] = c(obs[[i]],rlnorm(1,mu2,sg2),rlnorm(1,mu1,sg1))

x = rbinom(1,1,p)

}

obs[[i]] = c(obs[[i]],rlnorm(1,mu3,sg3))

}

#determining which observations to use as incomplete data

incomp <- sample(1:20, 3)

samps <- 1:20

#putting the transition data into vectors transXX

trans01 <- NULL; trans10 <- NULL; trans12 <- NULL

for (i in samps[-incomp]) {

for (j in 1:(length(obs[[i]])-1)) {

if ( (j %% 2) == 1 ) {trans01=c(trans01,obs[[i]][j])

} else {trans10=c(trans10,obs[[i]][j])}

}

trans12 <- c(trans12,obs[[i]][length(obs[[i]])])

}

###########################################################

###Defining the functions to find the MLEs, PDFs and CDFs

library(statmod)

#Inverse Gaussian Distribution MLEs

IGmle <- function(x) {

n <- length(x)

m <- mean(x)

lam <- n*m^2/sum((x-m)^2/x)

return(c(m,lam))

}

#function to find the PDF of the Inverse Gaussian Distribution

dinvgauss <- function(x,mu,la) {

n <- length(x)

out <- rep(NA,n)
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for (i in 1:n) {

out[i] <- sqrt(la/(2*pi*x[i]^3))*exp(-1/2*la*(x[i]-mu)^2/(mu^2*x[i]))

}

return(out)

}

#function to find the CDF of the Inverse Gaussian Distribution

pinvgauss <- function(x,mu,la) {

pnorm(sqrt(la/x)*(x/mu-1))+exp(2*la/mu)*pnorm(-sqrt(la/x)*(x/mu+1))

}

#Weibull Distribution MLEs

weimle <- function(x) {

n <- length(x)

g <- function(v) {1/v+sum(log(x))/n-sum(x^v*log(x))/sum(x^v)}

v <- uniroot(g,c(0.01,20))$root

w <- (n/sum(x^v))^(1/v)

return(c(v,1/w))

}

#Lognormal Distribution MLEs

lnormle <- function(x) {

n <- length(x)

mu <- mean(log(x))

sg <- sqrt(sum((log(x)-mu)^2)/n)

return(c(mu,sg))

}

#Gamma Distribution MLEs

gammamle <- function(x) {

n <- length(x)

da <- function(a) { -n*digamma(a)+n*log(a/mean(x))+sum(log(x)) }

ahat <- uniroot(da,c(0.00001,10000))$root

bhat <- ahat/mean(x)

return(c(ahat,bhat))

}

#Exponential Distribution MLEs

expmle <- function(x) { 1/mean(x) }
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#function to find the PDF of the Frechet distribution

dfrechet <- function(x,sg,xi){ n<-length(x); output<-rep(NA,n)

for (i in 1:n) { if (x[i] < 0) output[i] <- 0

else output[i] <- xi/sg*x[i]^(-xi-1)*exp(-x[i]^(-xi)/sg) }

return(output)

}

#function to find the CDF of the Frechet distribution

pfrechet <- function(x,sg,xi){

n <- length(x); output <- rep(NA,n)

for (i in 1:n) { if (x[i] < 0) output[i] <- 0

else output[i] <- exp(-x[i]^(-xi)/sg) }

return(output)

}

#Frechet Distribution MLEs

frechmle <- function(x) {

n <- length(x)

dz <- function(z) { n/z-sum(log(x))+n*sum(x^(-z)*log(x))/sum(x^(-z))}

zhat <- uniroot(dz,c(0.2,20))$root

sighat <- mean(x^(-zhat))

return(c(sighat,zhat))

}

#function to find the PDF of the Birnbaum-Saunders distribution

dbs <- function(x,alf,lam){ n<-length(x); output<-rep(NA,n)

for (i in 1:n) { if (x[i] < 0) output[i] <- 0

else output[i] <- (sqrt(lam*x[i])+1/sqrt(lam*x[i]))/

(2*alf*x[i]*sqrt(2*pi))*

exp(-1/(2*alf^2)*((sqrt(lam*x[i])-

1/sqrt(lam*x[i])))^2) }

return(output)

}

#function to find the CDF of the Frechet distribution

pbs <- function(x,alf,lam){ pnorm((sqrt(lam*x)-1/sqrt(lam*x))/alf) }

#BirnbaumSaunders Distribution MLEs

BSmle <- function(x) {

n <- length(x)

dl <- function(l) { 1/n*sum(x/(l*x+1))-
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(l*sum(x)-n)/(l^2*sum(x)-2*n*l+sum(1/x)) }

lhat <- uniroot(dl,c(0.01,200))$root

ahat <- sqrt(lhat*mean(x)-2+sum(1/x)/(n*lhat))

return(c(ahat,lhat))

}

###########################################################

###finding the MLEs for each transition and parameterization

w01 <- weimle(trans01)

w10 <- weimle(trans10)

w12 <- weimle(trans12)

i01 <- IGmle(trans01)

i10 <- IGmle(trans10)

i12 <- IGmle(trans12)

g01 <- gammamle(trans01)

g10 <- gammamle(trans10)

g12 <- gammamle(trans12)

e01 <- expmle(trans01)

e10 <- expmle(trans10)

e12 <- expmle(trans12)

l01 <- lnormle(trans01)

l10 <- lnormle(trans10)

l12 <- lnormle(trans12)

b01 <- BSmle(trans01)

b10 <- BSmle(trans10)

b12 <- BSmle(trans12)

f01 <- frechmle(trans01)

f10 <- frechmle(trans10)

f12 <- frechmle(trans12)

#MLE for p

phat <- length(trans10)/(length(trans10)+length(trans12))

###########################################################

###Plotting a histogram with the some of the MLE fits for the

# 0-1 transition

# Similar plots can be found using similar code

# to write the plot to a .png file, uncomment

# the next and last line of the paragraph

#png(filename="figure1-6.png",width=3600,height=2100,res=300)

par(oma=c(0,0,0,0),mar=c(4.2,0,0,0)) #c(bottom, left, top, right)
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hist(trans01,br=20,xlim=c(0,5),ylim=c(0,6),main="",

xlab="Time in years",ylab="",axes=F)

par(oma=c(0,0,0,0),mar=c(4.2,0,0,0),new=T)

curve(dinvgauss(x,i01[1],i01[2]),xlim=c(0,5),ylim=c(0,0.85),

lty=1,axes=F,lwd=3,xlab="",ylab="")

par(oma=c(0,0,0,0),mar=c(4.2,0,0,0),new=T)

curve(dweibull(x,w01[1],w01[2]),xlim=c(0,5),ylim=c(0,0.85),

lty=4,axes=F,lwd=3,xlab="",ylab="")

par(oma=c(0,0,0,0),mar=c(4.2,0,0,0),new=T)

curve(dgamma(x,g01[1],g01[2]),xlim=c(0,5),ylim=c(0,0.85),

lty=2,axes=F,lwd=3,xlab="",ylab="")

par(oma=c(0,0,0,0),mar=c(4.2,0,0,0),new=T)

curve(dexp(x,e01[1]),xlim=c(0,5),ylim=c(0,0.85),lty=3,axes=F,

lwd=3,xlab="",ylab="")

axis(1, 0:5)

legend("topright", c("inverse Gaussian", "Weibull",

"gamma","exponential"),

lty = c(1,4,2,3), pch = c(-1,-1,-1,-1), bg = ’gray97’,

lwd=c(3,3,3,3))

abline(h=0,lwd=2); box()

#dev.off()

###########################################################

We omit the code to find first passage distribution using the saddlepoint method.

The details for this can be found in Huzurbazar (2005c). The next section shows

how to find the first passage using the EULER method. We also omit most of the

code to plot the results, which can be accomplished without too much trouble.

A.2 Selected code from Chapter 3

The euler function is an implementation of the EULER algorithm from Abate and

Whitt (1995) (adapted for R). The euler function requires two inputs, the first is

another function fnRf that returns the real portion of the complex LT, L(z), you are

trying to invert (i.e. fnRf(X, Y ) = Re[L(z)], where X = Re(z) and Y = Im(z)).
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The second input is the value t, the time point at which the PDF of the complex

LT, f(t), is evaluated. The output is the value of f(t). It is worth noting that this

algorithm cannot be evaluated at f(0).

euler <- function(fnRf,T,A = 18.4,Ntr = 15,num=11) {

w = c(1/2,rep(1,Ntr-1),

rev(cumsum(choose((num),0:(num))))/(2^(num)))

SU <- rep(NA,Ntr+num+1);

for (i in 0:(Ntr+num)) { SU[i+1] <- fnRf(A/(2*T), i*pi/T)}

return(exp(A/2)/T*sum(w*(-1)^(0:(Ntr+num))*SU ))

}

###########################################################

###Functions needed for numerical intergration

reLT <- function(t,v,w,x,y,pdf) {pdf(t,v,w)*exp(-x*t)*cos(y*t)}

imLT <- function(t,v,w,x,y,pdf) {pdf(t,v,w)*exp(-x*t)*sin(y*t)}

int <- function(funct,v,w,x,y,pdf) {

integrate(funct,0,Inf,v=v,w=w,x=x,y=y,pdf=pdf,

subdivisions=10000,rel.tol=1e-10,stop.on.error=FALSE)$value

}

###########################################################

###The matrix and vector defining the flowgraph parameterization

param_input <- matrix(c(b01, f10, l12), byrow=T,ncol=2)

pdf_input <- c(dbs,dfrechet,dlnorm)

###########################################################

###The function to find the real portion of the complex LT

fnRf <- function(X,Y) {

val <- rep(NA,3)

for (i in 1:length(pdf_input)) {

val[i] <- int(reLT,param_input[i,1],param_input[i,2],

X,Y,pdf_input[[i]])-

1i*int(imLT,param_input[i,1],param_input[i,2],X,Y,pdf_input[[i]])

}

return(Re((1-phat)*val[1]*val[3]/(1-phat*val[1]*val[2])))

}

###########################################################

###Vectors defining the support and values of the first passage PDF
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supp1 <- (10:130)/10; out1 <- rep(NA,121)

###########################################################

###Code to call the euler function and invert the complex LT to a PDF

for (i in 1:121) { out1[i] <- euler(fnRf,supp1[i])[1] }

A.3 Selected code from Chapter 4

###########################################################

###Defining the matrix for the posterior samples

n <- 100000

post <- matrix(NA,nrow=n,ncol=7)

###########################################################

###Function to simulate from an inverse gamma distribution

rinvgamma <- function(n,a,b) {1/rgamma(n,a,rate=b)}

###########################################################

###Definition of the hyperparamters

# n is for normal a is mean b is variance

# ig is for inverse gamma a and b are the parameters

# b is for beta

an01 <- 0

bn01 <- 100

aig01 <- 1/20

big01 <- 1

an10 <- 0

bn10 <- 100

aig10 <- 1/20

big10 <- 1

an12 <- 0

bn12 <- 100

aig12 <- 1/20

big12 <- 1

ab <- 1

bb <- 1

###########################################################
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###Definition of the values needed in the conditionals

n01 <- length(trans01)

x01 <- sum(log(trans01))

x012 <- sum((log(trans01))^2)

n10 <- length(trans10)

x10 <- sum(log(trans10))

x102 <- sum((log(trans10))^2)

n12 <- length(trans12)

x12 <- sum(log(trans12))

x122 <- sum((log(trans12))^2)

###########################################################

###Starting values for the MCMC

post[1,] <- c(0,1,0,1,0,1,1/2)

set.seed(22)

###########################################################

###Conducting the Gibbs sampler

for (i in 2:n) {

post[i,1] <- rnorm(1,(x01/post[i-1,2])/(n01/post[i-1,2]+1/bn01),

1/(n01/post[i-1,2]+1/bn01))

post[i,2] <- rinvgamma(1,n01/2+aig01,(x012-2*post[i,1]*x01+n01*

(post[i,1])^2)/2+big01)

post[i,3] <- rnorm(1,(x10/post[i-1,4])/(n10/post[i-1,4]+1/bn10),

1/(n10/post[i-1,4]+1/bn10))

post[i,4] <- rinvgamma(1,n10/2+aig10,(x102-2*post[i,3]*x10+n10*

(post[i,3])^2)/2+big10)

post[i,5] <- rnorm(1,(x12/post[i-1,6])/(n12/post[i-1,6]+1/bn12),

1/(n12/post[i-1,6]+1/bn12))

post[i,6] <- rinvgamma(1,n12/2+aig12,(x122-2*post[i,5]*x12+n12*

(post[i,5])^2)/2+big12)

}

post[,7] <- rbeta(n,length(trans10)+1,length(trans12)+1)

###########################################################

###Sampling from the PPD

ppd <- rep(0,n)

for (i in 1:n) {

cycs <- rnbinom(1,1,1-post[i,7])

ppd[i] <- sum(c(rlnorm(cycs+1,post[i,1],sqrt(post[i,2])),

rlnorm(cycs,post[i,3],sqrt(post[i,4])),
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rlnorm(cycs+1,post[i,5],sqrt(post[i,6])) ))

}

A.4 Selected code from Chapter 5

###########################################################

###The matrix and vector defining the flowgraph parameterization

param_input <- matrix(c(g01,i10,g12), byrow=T,ncol=2)

pdf_input <- c(dgamma,dinvgauss,dgamma)

###########################################################

###This function returns the real value of the first passage CDF

FnRf <- function(X,Y) {

val1 <- (1+(X+Y*1i)/param_input[1,2])^(-param_input[1,1])

val2 <- exp(param_input[2,2]/param_input[2,1])*

(1-sqrt(1+2*param_input[2,1]^2*(X+Y*1i)/param_input[2,2]))

val3 <- (1+(X+Y*1i)/param_input[3,2])^(-param_input[3,1])

output <- ((1-p1)*val1*val3)/(1-p1*val1*val2)

return(Re(output/(X+1i*Y)))

}

###########################################################

###This function finds the CDF of an incomplete observation

cdfob <- function(p,m1,s1,m2,s2,m3,s3,t) {

param_input <<- matrix(c(m1,s1,m2,s2,m3,s3), byrow=T,ncol=2)

p1 <<- p

return(euler(FnRf,t)[1])

}

###########################################################

###The incomplete observations are 1,14,15

# let’s say for obs1 we know it occured before time T=5

# (left censored) -- F_{02*}(5)

# let’s say for obs14 we saw it in state 1 at time T=4

# (right censored) -- (1-F_{02*}(4))

# let’s say for obs15 we saw it in state 0 at time T=3

# and at state 2 at time T=14 (interval censored) --

# (F_{02*}(14)-F_{02*}(3))
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###########################################################

###The loglikelihood function

loglike <- function(p,m1,s1,m2,s2,m3,s3) {

sum(dgamma(trans01,m1^2/s1,m1/s1,log=T)) +

sum(log(dinvgauss(trans10,m2,s2))) +

sum(dgamma(trans12,m3^2/s3,m3/s3,log=T)) +

log(max(cdfob(p,m1^2/s1,m1/s1,m2,s2,m3^2/s3,m3/s3,5),0)) +

log(max(1-cdfob(p,m1^2/s1,m1/s1,m2,s2,m3^2/s3,m3/s3,4),0)) +

log(max(cdfob(p,m1^2/s1,m1/s1,m2,s2,m3^2/s3,m3/s3,14) -

cdfob(p,m1^2/s1,m1/s1,m2,s2,m3^2/s3,m3/s3,3),0)) +

9*log(p) + 17*log(1-p)

}

A.5 Selected code from Chapter 6

The function calcQ takes the sample F (xi) and returns the value of Q. The function

censcalcQ expects the input to be a matrix with each row the values F (ai), F (bi),

where the interval-censored observation Xi ∈ (ai, bi). This function returns a con-

fidence interval for Q. The CI can be shrunk by increasing the size of m and the

confidence level can be altered using alpha.

###########################################################

###Function to calculate Q

calcQ <- function(x) {

n <- length(x); x <- sort(x)

samp1 <- -log(x); samp2 <- -log(1-x[n:1])

mean1 <- rev(cumsum(1/(n:1))); var1 <- rev(cumsum(1/(n:1)^2))

return(1/(2*n)*sum(((samp1-mean1)^2+(samp2-mean1)^2)/var1))

}

###########################################################

###Function to calculate Q hat

censcalcQ <- function(dat,m=1000,alpha=0.01) {

# dat is a nx2 matrix with the left and right endpoints

# of the censored data (in the interval [0,1])
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# m is the number of samples taken to estimate the mean of Q

# alpha provides input for the (1-alpha)*100\% CI for the mean of Q

n <- length(dat[,1])

out <- rep(NA,m)

for (i in 1:m) {

samp <- runif(n,dat[,1],dat[,2])

out[i] <- calcQ(samp)

}

s1 <- qnorm(1-alpha)*sd(out)/sqrt(m)

m1 <- mean(out)

return(c(m1-s1,m1+s1))

}

###########################################################

###Function to calculate the CDF

FnRf <- function(X,Y) {

val <- rep(NA,3)

for (i in 1:length(pdf_input)) {

val[i] <- int(reLT,param_input[i,1],param_input[i,2],X,Y,

pdf_input[[i]])-

1i*int(imLT,param_input[i,1],param_input[i,2],X,Y,pdf_input[[i]])

}

return(Re((1-phat)*val[1]*val[3]/((1-phat*val[1]*val[2])*(X+1i*Y))))

}

###########################################################

###Putting the overall data into a vector

new1 <- lapply(obs,sum)[-incomp]

out <- rep(NA, 17); for (i in 1:17) {out[i] <- new1[[i]]}

###########################################################

###Value of F(X) for model in Chapter 3

param_input <- matrix(c(b01, f10, l12), byrow=T,ncol=2)

pdf_input <- c(dbs,dfrechet,dlnorm)

Fchap3 <- rep(NA,17)

for (i in 1:17) {Fchap3[i] <- euler(FnRf,out[i])[1] }

###########################################################

###Value of Q for model in Chapter 3

calcQ(Fchap3)
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Acronyms

A-D Anderson-Darling goodness-of-fit statistic

AIC Akaike information criterion

C-vM Cramér-von Mises goodness-of-fit statistic

CDF Cumulative distribution function

CDH Censored data histogram

CF Characteristic function

CI Confidence interval

CLT Central Limit Theorem

DIC Deviance information criterion

ECDF Empirical cumulative distribution function

FPT Finite Polya tree

K-S Kolmogorov-Smirnov goodness-of-fit statistic

LT Laplace transform
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Glossary

MCMC Markov chain Monte Carlo

MGF Moment generating function

MLE Maximum likelihood estimator

MOM Method of moments

MPT Mixture of finite Polya trees

SFGM Statistical flowgraph model

PDF Probability density function

PPD Posterior predictive distribution

Notation

fij(t) The PDF of the direct passage from state i to state j

fij∗(t) The PDF of the first passage from state i to state j

Fij(t) The CDF of the direct passage from state i to state j

Fij∗(t) The CDF of the first passage from state i to state j

I The identity matrix (assuming the appropriate dimension)

Q The goodness-of-fit criterion developed in chapter 6

Q̂ An estimate of the goodness-of-fit criterion developed in chapter 6

Q̂p A penalized estimate of the goodness-of-fit criterion developed in

chapter 6

X(t) The state of a stochastic process at time t
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