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Abstract

We study a class of problems known as pursuit-evasion problems (PE). These prob-

lems can be understood as special cases of optimal control problems. After describing

the two main principles to study optimal control problems, namely Pontryagin’s ma-

ximum principle and Bellman’s method of dynamic programming, this thesis focuses

on specific examples of PE problems within the classes of pursuit problems, evasion

problems, and pursuit-evasion problems.
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t = 2/3, 4/3, 2, 8/3 for the same initial values x(0) and ẋ(0). The
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Chapter 1

Introduction

1.1 Overview

A pursuit-evasion (PE) problem refers to a family of mathematical problems in which

one group (Pursuers) attempts to track down members of another group (Evaders)

in an environment. There are different formulations of these problems and each

formulation uses some specific features of the pursuit-evasion situation. Our objective

in this thesis is to study a variety of problems that encompass the main pursuit-

evasion problems from the point of view of the motion and strategy of the pursuer

(Chapter 3), the evader (Chapter 4), and both (Chapter 5).

Pursuit-evasion (PE) problems can be approached stochastically or deterministi-

cally. With the stochastic approach (for a broader discussion see [22], [24], [25], [16]

and [22]), it is more realistic to assume knowledge of the probability characteristics of

target detection, whereas the deterministic approach has to contend with trajectories

and control parameters that give the opportunity to find the minimum or maximum

values. In this thesis we restrict the discussion to the deterministic approach, and

state PE problems as optimal control problems, where we speak about optimality in

1



Chapter 1. Introduction

the sense of rapidity of action, i.e., about achieving the target in the shortest time

(Chapter 3), or avoiding the chaser as long as possible (Chapter 4), or both (Chapter

5).

Because the pursuit-evasion (PE) problem can be understood as a special case

of the more general class of problems known as optimal control processes, we devote

Chapter 2 to the formulation of the general optimal control problem and a discussion

of the two main approaches to solve this problem, namely Pontryagin’s maximum

principle (Theorems 2.2.1, 2.2.2) and Bellman’s equation (2.29). Pontryagin’s maxi-

mum principle was discovered in the late 1950s ([24]) by the Russian mathematician

Lev Semenovich Pontryagin.1 The maximum principle is an effective tool in sol-

ving a broad range of control problems, we state it for the important time-optimal

case (see sections 2.1, 2.2). Shortly before the appearance of Pontryagin’s maximum

principle in the late 1950s ([2], [3], [9], [16]), the American mathematician Richard

Bellman published his Dynamic Programming [2], [3], [15], [16]. He constructed a

partial differential equation for the functional that gives us the minimum time when

we transfer the controlled object from the initial state to some other given point (see

equation (2.6). This equation of Bellman’s gives rise to another approach to the solu-

tion of optimal control problems (see section 2.3). It must be noted though that the

assumption on the continuous differentiability of the functional (2.6) does not hold

in the simplest cases. Thus, Bellman’s consideration yields a good heuristic method,

rather than a mathematical solution of the problem. The maximum principle, in

1Pontryagin’s maximum principle gave birth to optimal control theory, which at present
is a vital area in applied mathematics. Pontryagin was led to the formulation of the
general time-optimal control problem by an attempt to solve a concrete fifth-order system of
ordinary differential equations with three control parameters related to optimal maneuvers
of an aircraft, which was proposed to him by the Russian Air Force in the early spring
of 1955 [10]. Right after the formulation of the time-optimal control problem, during
three days, or better to say, during three sleepless nights (Pontryagin suffered from severe
insomnia and very often used to do math in bed all night long), the first and the most
important step toward the final solution (the Pontryagin’s maximum principle) was made
by Pontryagin [10]. He derived the first version of the necessary conditions.

2



Chapter 1. Introduction

addition to its complete mathematical validity, also has the advantage that it results

in a system of ordinary differential equations, whereas Bellman’s approach requires

the solution of a partial differential equation. Both approaches will be discussed and

compared in Chapter 2.

Even though we are not going to literally apply Pontryagin’s or Bellman’s general

approach to the specific examples discussed in this thesis, we introduce them because

they provide the appropriate framework in the formulation of the pursuit-evasion

problem.

We start Chapter 2 by discussing optimal control processes. A process is called

controlled if it can be described by a vector differential equation with a control

parameter and a phase point. The problem then is to choose such a control, as

a function of time, so that the corresponding trajectory of the given differential

equation is shifted from a given initial point to some other given point in minimum

time. In this case the control and its corresponding trajectory are called optimal.

The other important class of problems is a time-optimal control problem, which is

defined in the same Chapter 2. In section 2.2 (Chapter 2) we introduce a hamiltonian

function in order to state Pontryagin’s maximum principle (Theorems 2.2.1, 2.2.2),

which includes an important Pontryagin’s maximum condition.

The rest of this thesis is organized as follows: in Chapter 3 we present a definition

of the pursuit problem, and provide examples of the pursuit problem (Bouguer’s prob-

lem (section 3.2), the plain and the wind problem (section 3.3), the tractrix (section

3.4), and Apollonius pursuit (section 3.5)). In Chapter 4 we state a definition of the

evasion problem, and give examples of the evasion problem (Isaacs’s problem (sec-

tion 4.2), and the lady in the lake problem (section 4.3)). In Chapter 5 we present a

definition of the pursuit-evasion problem, and examples of these problems (pursuit in

the plane (section 5.2), one-dimensional rocket chase (section 5.2), and Kelly’s game

(section 5.4)). Moreover, we state the possible method of solving pursuit-evasion

3



Chapter 1. Introduction

problems while using Pontryagin’s maximum principle. Although this theorem gives

the necessary conditions for optimality of pursuit-evasion problems (and it can be

generalized to multiple pursuers and multiple evaders, as in [7]), the fact is that

the PE problems studied in the current thesis can be analyzed directly by more

elementary methods. Finally, in Chapter 6 we summarize the results of the thesis.

4



Chapter 2

Optimal Control Processes

Since the pursuit evasion (PE) problem can be understood as a special case of the

more general class of problems known as optimal control processes, we are going to

devote this chapter to the formulation of the general optimal control problem and

a discussion of the two main approaches to solve this problem, namely Pontryagin’s

maximum principle (Theorems 2.2.1, 2.2.2) and Bellman’s equation (2.29).

2.1 Formulation of the Optimal Control Problem

A desirable property of most technological processes is controllability, which roughly

speaking means that a particular process can be realized by a proper adjustment of

certain control parameters. Mostly important is the search, among all the control-

lable processes, of the control that optimizes a related function of this process. This

problem is known as the optimal control problem. For example, one can speak about

optimality in the way of spending the least possible time or using the minimum energy

in order to reach the target. These problems can be formulated mathematically, and

their solution is given by a general method known as Pontryagin’s maximum principle

5



Chapter 2. Optimal Control Processes

(Theorems 2.2.1, 2.2.2) ([10], [21], [22], [23]).

To start, we consider control processes which can be described by a system of

ordinary differential equations

dxi

dt
= f i(x1, ..., xn, u1, ..., ur) = f i(xk, uj), i, k = 1, ..., n, j = 1, ..., r, (2.1)

or in vector form,

dx

dt
= f(x, u). (2.2)

The variables x1, ..., xn characterize the process, and they are known as the phase

coordinates of the controlled object which define its state at each instant of time t.

Giving a point u = (u1, ..., ur) ∈ U ⊂ Rr is equivalent to giving a numerical system of

parameters u1, ..., ur, and they are known as the control parameters which determine

the course of the process. The functions f i are defined for x ∈ X ⊂ Rn and u ∈
U ⊂ Rr. They are assumed to be continuous in the variables x1, ..., xn, u1, ..., ur, and

continuously differentiable with respect to x1, ..., xn. In other words, the functions

f i(x1, ..., xn, u) and
∂f i(x1, ..., xn, u)

∂xj
, i, j = 1, ..., n,

are defined and continuous everywhere on the direct product X × U .

In order to find a solution of equation (2.1) and determine the course of the

control process (2.1) in a certain time interval t0 ≤ t ≤ t1, it is sufficient for the

control parameters u1, ..., ur to be the functions of time on this time interval:

uj = uj(t), j = 1, ..., r. (2.3)

Then, for the given initial values

xi(t0) = xi
0, i = 1, ..., n, (2.4)

the solution is uniquely determined, at least locally in time. Hence, we say that a

control

U = (uj(t), t0, t1, x
i
0), j = 1, ..., r, i = 1, ..., n (2.5)

6



Chapter 2. Optimal Control Processes

of equation (2.1) is given, if a function uj(t), its range of definition t0 ≤ t ≤ t1, and

the initial value (2.4) of the solution xi(t) are given. Therefore, we only deal with

piecewise continuous control functions uj(t) which admit discontinuities of the first

kind, and continuous solutions of equation (2.2).

The control problem to be solved, which is related to the control process (2.1),

consists of the following. We consider the integral function

L(U) =

t1∫

t0

f 0
(
x1, ..., xn, u1, ..., ur

)
dt, (2.6)

where f 0(x1, ..., xn, u1, ..., ur) is a given function, continuous, together with its partial

derivatives

∂f 0

∂xj
, j = 1, ..., n,

everywhere on the space X × U . For each control (2.5), given on a certain interval

t0 ≤ t ≤ t1, the course of the control processes is uniquely determined, at least locally

in time, and the integral (2.6) takes on a definite value. Let us assume that there

exists a control (2.5) which transfers the controlled object from a given initial phase

state xi
0 (2.4) to a prescribed terminal phase state

xi(t1) = xi
1, i = 1, ..., n. (2.7)

It is required to find a control u(t) which transfers the controlled object from state

xi
0 to state xi

1 in such a way that the functional L(U) has a minimum value. Thus,

L is a function of the control U .

Let us summarize the above discussion and state the definition of the optimal

control problem (equations (2.2), (2.4), (2.5), (2.6), (2.7)).

7



Chapter 2. Optimal Control Processes

Definition (Optimal Control Problem) An optimal control problem is a problem

given by the equations
dx

dt
= f(x, u),

x(t0) = x0,

x(t1) = x1,

U = (u(t), t0, t1, x0),

L(U) =

t1∫

t0

f 0 (x, u) dt,

where x = (x1, ..., xn) ∈ X ⊂ Rn, u = (u1, ..., ur) ∈ U ⊂ Rr is some piecewise contin-

uous function, f = (f 1, ..., fn) are continuous, together with its partial derivatives

everywhere on the space X × U , and f 0(x, u) is a given function (also continuous,

together with its partial derivatives, everywhere on the space X × U).

Definition A control U = (u(t), t0, t1, x
i
0) is called optimal, if, for any control

U∗ = (u∗(t), t0, t1, xi
0)

which transfers the point xi
0 to the point xi

1, the inequality

L(U) ≤ L(U∗)

is valid. The corresponding trajectory x(t) is called an optimal trajectory.

Thus, an optimal control problem consists of finding the optimal controls and the

corresponding optimal trajectories.

Remark 1. The times t0 and t1 are not fixed, we only require that the object should

be in state (2.4) at the initial time, and in state (2.7) at the final time, and that the

functional (2.6) should achieve a minimum. (The discussion of the case where the

times t0 and t1 are fixed can be found in [24], §8 .)

8



Chapter 2. Optimal Control Processes

Remark 2. If (2.5) is an optimal control of equation (2.2) corresponding to this

control, and t2, t3 (t2 < t3) are two points in the interval t0 ≤ t ≤ t1, then

U ′ = (u(t), t2, t3, x
i(t2))

is also an optimal control.

Remark 3. If (2.5) is an optimal control of equation (2.2) that transfers the point

xi
0 to the point xi

1, and τ is an arbitrary number, then

U ′′ = (u(t− τ), t0 + τ, t1 + τ, xi
0)

is also an optimal control which transfers the point xi
0 to xi

1.

Definition (Time-Optimal Control Problem) When the function f 0(xi, uj) is defined

by equation

f 0(x, u) ≡ 1, (2.8)

the function of the control (2.5) in this case is

L(U) = t1 − t0,

and the optimality of the control u(t) signifies minimality of the transition time from

x0 to x1. The problem of finding optimal controls (and trajectories) in this case is

called the time optimal control problem.

We should point out that up to know we have spoken about an optimal control

which brought the object to a given point. However, the optimal control problem

may consist of “optimality getting to” a moving point in phase space. Let us assume

that there exists a moving point

xi = θi(t), i = 1, ..., n, (2.9)

9



Chapter 2. Optimal Control Processes

in phase space. Then, there arises the problem of optimality bringing the object in

coincidence with a moving point. This problem is easily reduced to the one considered

above. It is sufficient to introduce new variables by setting

yi = xi − θi(t), i = 1, ..., n.

As a result of this transformation, the control system

dxi

dt
= f i(xi, uj), i = 1, ..., n, j = 1, ..., r,

becomes a new system. The goal of the control process becomes that of bringing the

new object (y1, ..., yn) to the stationary point (0, ..., 0) in phase space.

Of great importance is the case where U ⊂ Rn is a compact domain. This is

clearly the case in most practical applications, where the control parameters can

only take values with predetermined upper and lower bounds. For example, U may

be a cube defined by the inequalities

|uj| ≤ 1, j = 1, ..., r.

In many instances it turns out that the optimal control (2.5) is realized by a piecewise

constant control (u1(t), ..., ur(t)) with values switching between various vertices of U .

It follows that the class of admissible controls (2.5) must include piecewise con-

tinuous functions. For the same reason, the phase coordinates x1, ..., xn are assumed

to be continuous and piecewise differentiable functions of time. Under these as-

sumptions the necessary conditions for optimality are formulated in the form of

Pontryagin’s maximum principle (Theorems 2.2.1, 2.2.2) ([22], [23], [24]), which we

will present in the next section.

10



Chapter 2. Optimal Control Processes

2.2 Necessary Conditions for Optimality

Pontryagin’s Maximum Principle

In order to formulate the necessary optimality condition it will be convenient to

reformulate our optimal control problem (for a broader discussion see [24]). Namely,

let us adjoin a new coordinate x0 to the phase coordinates x1, ..., xn, which vary

according to (2.1). Let x0 vary according to the law

dx0

dt
= f 0(x1, ..., xn, u1, ..., ur),

where f 0 is the function which appears in the definition of the functional L(U) (see

(2.6)). In other words, we shall consider the system of differential equations

dxi

dt
= f i(x1, ..., xn, u1, ..., ur) = f i(x, u), i = 0, 1, ..., n, (2.10)

whose right-hand sides do not depend on x0. Introducing the vector

x = (x0, x1, ..., xn) = (x0, x)

in the (n + 1)-dimensional vector space X = R×X ⊆ Rn+1, we may rewrite system

(2.10) in vector form

dx

dt
= f(x, u), (2.11)

where f(x, u) is the vector in X with coordinates f 0(x, u), ..., fn(x, u). Note, that

f(x, u) does not depend on the coordinate x0 of the vector x, that is ~f(x, u), not

~f(~x, u).

Now let u(t) be an admissible control (2.5) (i.e., piecewise continuous) transferring

x0 to x1, and let x = x(t) be the corresponding solution of equation (2.2) with initial

condition x(t0) = x0. Let us denote the point (0, x0) by x0, i.e., x0 is the point of

X whose coordinates are 0, x1
0, ..., x

n
0 , where x1

0, ..., x
n
0 are the coordinates of x0 in X .

11
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Figure 2.1: Reformulation of the problem given by equation (2.1), where line l is
passing through the point (0, x1) and is parallel to the x0 axis, i.e., this line is made
up of all the points (ξ, x1) where the number ξ is arbitrary

Then, it is clear that the solution of equation (2.11) with initial condition x(t0) = x0,

corresponding to the control u(t), is defined on the entire interval t0 ≤ t ≤ t1, and

has the form

x0 =

t∫

t0

f 0 (x(t′), u(t′))dt′, x = x(t).

In particular, when t = t1

x0 =

t1∫

t0

f 0 (x(t), u(t))dt = L(U), x = x1,

i.e., the solution x(t) of equation (2.11) with initial condition x(t0) = x0 passes

through the point x = (L(U), x1) at t = t1. In other words, if we let l be the line

in X passing through the point x = (0, x1) and parallel to the x0 axis (this line is

made up of all the points (ξ, x1) where the number ξ is arbitrary, see Figure 2.1), we

can say that x(t) passes through a point on line l, with coordinate x0 = L(U), at

the time t = t1. Conversely, suppose that u(t) is an admissible control (i.e., at least

12
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piecewise continuous) such that the corresponding solution x(t) of equation (2.11)

with initial condition x(t0) = x0 = (0, x0), at some time t1 passes through a point

x1 ∈ l, with coordinate x0 = L(U). Then, the control u(t) transfers (in X ) the phase

point from x0 to x1, and the functional (2.6) takes on the value L(U).

Thus, we may formulate the above optimal problem (from 2.1) in the following

equivalent form.

In the (n + 1)-dimensional phase space X the point x0 = (0, x0) and the line l

are given. The line l is assumed to be parallel to the x0 axis, and to pass through the

point (0, x1). Among all the admissible controls u = u(t), having the property that

the corresponding solution x(t) of (2.11) with initial condition x(t0) = x0 intersects

l, find one whose point of intersection with l has the smallest coordinate x0 (see [24]).

Let us now proceed to the formulation of the theorem which yields the necessary

conditions of the problem. (The proof of this theorem can be found in [24], Chapter

II.) To formulate the theorem, we shall consider, in addition to the fundamental sys-

tem of equations (2.10) another system of equations in the auxiliary (supplementary)

variables ψ0, ψ1, ..., ψn:

dψi

dt
= −

n∑
α=0

∂fα(x, u)

∂xi
ψα, i = 0, 1, ..., n. (2.12)

If we choose an admissible control u(t), t0 ≤ t ≤ t1, and have the corresponding

phase trajectory x(t) of system (2.10) with initial condition x(t0) = x0, system (2.12)

takes the form

dψi

dt
= −

n∑
α=0

∂fα(x(t), u(t))

∂xi
ψα, i = 0, 1, ..., n. (2.13)

This system is linear and homogeneous. Therefore, for any initial condition, it admits

the unique solution

ψ = (ψ0, ψ1, ..., ψn)

13
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for the ψi (which is defined on the entire interval t0 ≤ t ≤ t1 on which u(t) and x(t)

are defined). Similarly to the solution x(t) of system (2.11), the solution of system

(2.13) consists of continuous functions ψi(t) which have everywhere, except at a

finite number of points (namely, at the points of discontinuity of u(t)), continuous

derivatives with respect to t. Each solution of system (2.13) for any initial conditions

will be called the solution of system (2.12) corresponding to the chosen control u(t)

and phase trajectory x(t).

Now we will combine systems (2.10) and (2.12) into one entry. We consider the

following function H of the variables x0, x1, ..., xn, ψ0, ψ1, ..., ψn, u1, ..., ur:

H(ψ, x, u) = (ψ, f(x, u)) =
n∑

α=0

ψαfα(x, u).

The above systems (2.10) and (2.12) can be rewritten with the aid of the function

H in the form of the following Hamiltonian system:

dxi

dt
=

∂H
∂ψi

, i = 0, ..., n, (2.14)

dψi

dt
= −∂H

∂xi
, i = 0, ..., n. (2.15)

For fixed (constant) values of ψ and x, the function H becomes a function of the

parameter u ∈ U . Let us now denote the least upper bound of the values of this

function by M(ψ, x):

M(ψ, x) = sup
u∈U

H(ψ, x, u).

If the continuous function H achieves its upper bound on U , then M(ψ, x) is the

maximum of the values of H, for fixed ψ and x. Therefore, Theorem 2.2.1 below

(a necessary condition for optimality) will be called the maximum principle (the

principal content of the principle is in equation (2.16)) [10], [24].

14
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Theorem 2.2.1 (Pontryagin’s Maximum Principle) Let u(t), t0 ≤ t ≤ t1, be

an admissible control such that the corresponding trajectory x(t) [see (2.14)] which

begins at the point x0 at the time t0 passes, at some time t1, through a point on

the line l. In order that u(t) and x(t) be optimal it is necessary that there exists a

nonzero continuous vector function ψ(t) = (ψ0(t), ψ1(t), ..., ψn(t)) corresponding to

u(t) and x(t) [see (2.15)], such that:

(a) for every t, t0 ≤ t ≤ t1, the function H(ψ(t), x(t), u) of the variable u ∈ U
attains its maximum at the point u = u(t):

H(ψ(t), x(t), u(t)) = M(ψ(t), x(t)), (2.16)

(b) at the terminal time t1 the relations

ψ0(t1) ≤ 0, M(ψ(t1), x(t1)) = 0 (2.17)

are satisfied. Furthermore, it turns out that if ψ(t), x(t), and u(t) satisfy system

(2.14), (2.15), and condition (a), the time functions ψ0(t) and M(ψ(t), x(t)) are

constant. Thus, (2.17) may be verified at any time t, t0 ≤ t ≤ t1, and not just at t1.

The proof of the Theorem 2.2.1 can be found in [24], Chapter II.

To formulate the necessary condition for the time-optimal problem (equation

(2.8)), where

f 0(x, u) ≡ 1,

let us form the Hamiltonian function

H = ψ0 +
n∑

ν=1

ψνf
ν(x, u).

Introducing the n-dimensional vector ψ = (ψ1, ..., ψn) and the function

H(ψ, x, u) =
n∑

ν=1

ψνf
ν(x, u),
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we can rewrite equations (2.1) and (2.12) (with the exception for equation (2.12) for

i = 0, which is now superfluous) in the form of the Hamiltonian system

dxi

dt
=

∂H

∂ψi

, i = 1, ..., n, (2.18)

dψi

dt
= −∂H

∂xi
, i = 1, ..., n. (2.19)

For fixed values of ψ and x, H is a function of u. We denote the upper bound of

the values of this function by M(ψ, x):

M(ψ, x) = sup
u∈U

H(ψ, x, u).

Since

H(ψ, x, u) = H(ψ, x, u)− ψ0,

we get

M(ψ, x) = M(ψ, x)− ψ0,

and therefore (2.16) and (2.17) become

H(ψ(t), x(t), u(t)) = M(ψ(t), x(t)) = −ψ0 ≥ 0.

Hence, we obtain the following theorem.

Theorem 2.2.2 (Pontryagin’s Maximum Principle for the time-optimal

control problem (2.8)) Let u(t), t0 ≤ t ≤ t1 be an admissible control which

transfers the phase point from x0 to x1, and let x(t) be the corresponding trajec-

tory (see (2.18)), so that x(t0) = x0, x(t1) = x1. In order that u(t) and x(t) be

time-optimal it is necessary that there exist a nonzero, continuous vector function

ψ(t) = (ψ1(t), ..., ψn(t)) corresponding to u(t) and x(t) (see (2.19)) such that:

(a) for all t, t0 ≤ t ≤ t1, the function H(ψ(t), x(t), u) of the variable u ∈ U
attains its maximum at the point u = u(t):

H(ψ(t), x(t), u(t)) = M(ψ(t), x(t)), (2.20)
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(b) at the terminal time t1 the relation

M(ψ(t1), x(t1)) ≥ 0 (2.21)

is satisfied. Furthermore, it turns out that if ψ(t), x(t), and u(t) satisfy system

(2.18), (2.19), and condition (a), the time function M(ψ(t), x(t)) is constant. Thus,

(2.21) may be verified at any time t, t0 ≤ t ≤ t1, and not just at t1.

17
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Figure 2.2: The route of the ship sailing from a to e

2.3 Bellman’s Method of Dynamic Programming

Shortly before the appearance of Pontryagin’s maximum principle in the late 1950s,

R. Bellman published his Dynamic Programming [2], [3], [15], [16], which presents

a related but different approach to the optimum design of control systems which is

more efficient in some situations. The following simple example will illustrate some

of the main ideas behind this dynamic programming approach.

Example Suppose a ship sailing from a and ending at e calls at three ports (at

either of the two b’s, at one of the three c’s, and at one of the two d’s) along the

way (as shown in Figure 2.2) and picks up and delivers the amounts of cargo (in

hundreds of tons). The objective is to deliver as much cargo as possible on the entire

trip. Since there are only 12 different routes, it is a simple matter to list them all

and choose the route that yields the maximum tonnage. However, we shall solve

the problem differently and use the following reasoning. Suppose that, somehow we

were to know the maximum tonnage values of the two shorter problems, one from b1
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to e and the other from b2 to e, then it would be very easy to decide on the entire

route. There are only two possible decisions left to be made at a: go to b1 or go

to b2. To reach such a decision, simply add 4 to that maximum tonnage from b1

to e that we somehow learned, add 2 to that maximum tonnage from b2 to e, and

choose the route that gives the larger value. In other words, we will have solved the

original four-stage problem by first solving two three-stage problems. Similarly, each

of these two three-stage problems (from b1 to e or from b2 to e) would be relatively

easy to solve if we were to first solve three two-stage problems, namely, find the value

given by the maximum tonnage path from each ci, i = 1, 2, 3, to e. We continue this

reasoning and reduce the process to two one-stage problems, from d1 to e or from d2

to e, at which stage the answer is obvious - go from d1, because 7 is larger than 4.

Let us do the problem formally. We will break it into several n - stage problems,

n = 1, 2, 3, 4. Notice that there are four stages: from a to b, b to c, c to d, and d

to e. There are two possible terminal ports, or states as we will call them, namely

b1 and b2 in stage one, three states c1, c2, and c3 in stage two, two states d1 and

d2 in stage three, and one state e in the last stage. Each of these states may also

be thought of as the initial state for the following stages. For instance, b1 may be

considered the initial state of a three-stage problem, c1 the initial state of a two-stage

problem, etc. Let the variable x stand for the initial state for any n-stage problem,

n = 1, 2, 3, 4. For instance, for a two-stage problem, x may be either c1, or c2, or c3.

Associated with each problem is also a decision or control variable un, n = 1, 2, 3,

4, which chooses the immediate destination when there are n stages left to go. Thus,

u4 chooses b1 or b2, u3 chooses c1 or c2 or c3, u2 chooses d1 or d2, and u1 = e. Let

fn(x, un) be the total number of tons delivered during the last n stages, given that

the boat is in state x and the decision is un. If ūn is the decision which maximizes

fn(x, un) for fixed n and x, let f̄n(x) be that maximum value of fn. Since f̄n is the

maximum value with respect to the decision variable un, it is now a function of the

initial state variable x alone, hence, the notation f̄n(x).
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Figure 2.3: Two one-stage problems in the first subproblem

Figure 2.4: Three two-stage problems

In the first subproblem, there is only one stage left to go, and ū1 = u1 = e. The

initial states are d1 and d2, as shown in Figure 2.3.

We move now to the three subproblems in each of which there are two stages to

go, but we utilize the knowledge gained from the one-stage problem. If the boat is

at c1 (x = c1), it can proceed to either d1 (u2 = d1) or d2 (u2 = d2). If u2 = d1,

f2(c1, d1) = 7 + 7 = 14. If u2 = d2, f2(c1, d2) = 3 + 4 = 7. Since 14 > 7, ū2 should be

ū2 = d1. Similarly, if the boat is at c2 (x = c2) and u2 = d1, f2(c2, d1) = 8 + 7 = 15,

while f2(c2, d2) = 4 + 4 = 8 if u2 = d2. Let sun be the number of tons of cargo

delivered as a result of decision un. Then f2(x, u2) = su2 + f̄1(u). Figure 2.4 shows

the values for the different states and decisions.

Next, we move to the two subproblems in each of which there are three stages to

go, and again we utilize the knowledge gained from the previous two-stage problems.

If the boat is at b1 (x = b1) and it is decided to go to c1 (u3 = c1), the total

number of tons delivered would be 1, that between b1 and c1, plus 14, the maximum
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Figure 2.5: Two three-stage problems

Figure 2.6: Four-stage problem

number of tons to be delivered between c1 and e. That is, f3(b1, c1) = sc1 + f̄2(b1),

or f3(x, u3) = su3 + f̄2(x). See Figure 2.5.

The final, or four-stage problem should now be clear. So what is the optimal

policy for the overall problem? Retrace the steps backwards starting with Figure

2.6. Starting at a, the optimal decision ū4 is to go to b2. At b2, ū3 tells us to go to

c2. At c2, ū2 tells us to go to d1. At d1, ū1 says to go to e. Thus, the optimal route

is a → b2 → c2 → d1 → e, with a maximum tonnage of 25.

There are only four stages in this example, and each stage has very few states, so

that the computational advantages of the dynamic programming approach over the

direct, brute approach of listing all twelve possible routes may not be apparent. If a

problem has many stages with many states, thus involving many decision processes,

direct enumeration may require a phenomenal amount of work, and the computa-

tional savings of the dynamic programming approach are considerable. It has been
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shown that for a 20-stage problem with only 2 states in each stage, direct enumera-

tion generates more than 1,000,000 additions, while dynamic programming requires

only 220 additions.

The above example is a discrete multistage decision process problem, in which one

chooses a decision from a finite set of decisions at each of a finite number of stages or

times. Initially, the problem consisted of n stages, but we reduced it to a sequence of

n single stage decision processes, for each of which there is an optimal policy. These

problems are joined together by a functional equation. For this particular example,

the functional is

fn(x, un) = sun + f̄n−1(un), (2.22)

where

f̄n(x) = max
un

fn(x, un), u = 1, 2, 3, 4.

Hence, we use two basic ideas, Bellman’s principle of optimality and the principle of

imbedding [16].

Summarizing the method discussed in this example yields Bellman’s Princi-

ple of optimality) ([16]) : in control systems with a multistage decision process,

given any current state, the remaining sequence of decisions forms an optimal policy

with this given state regarded as the initial state. Thus, whatever the first state and

decision that led to this current state, all future decisions are optimal.

In our example, if we found ourselves at, say, state c1 (regardless of what decision

led us there), the policy c1 → d1 → e is optimal with c1 considered as the initial

state. Similarly, if we found ourselves at, say, state b1, the policy b1 → c2 → d1 → e

would be optimal with b1 considered as the initial state. By applying this principle

of optimality backwards step by step repeatedly, we obtain a policy which is optimal

for the overall problem. In our example, in the one-stage problems, either decision
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d1 → e or d2 → e is optimal (actually, the only possible decision), depending on

whether d1 or d2 is the initial state. For the two-stage problems, if c1 is the initial

state, the decision ū2 : c1 → d1 is optimal, and the pair ū2, ū1 : c1 → d1 → e

constitutes an optimal policy with c1 as the initial state. If c2 is the initial state,

the pair of decisions ū2, ū1 : c2 → d1 → e is optimal. Similarly, for the three stage

problems, if b1 is the initial state, the optimal decision ū3 : b1 → c2, coupled with the

optimal strategy from the two-stage problem ū2, ū1 : c2 → d1 → e, form the optimal

strategy ū3, ū2, ū1 : b1 → c2 → d1 → e, etc.

The other principle we used in the above example is the principle of imbedding

([16]) . The principle is working in the way that, instead of attempting to solve a

difficult problem directly, one imbeds the problem in a family of simpler, easier to

solve problems and obtains the solution to the original difficult problem as a result

of the solutions to the problems in the family. By repeated use of the principle of

optimality, each n-stage problem with n > 1 is converted into a one-stage problem

with its own initial state and optimal policy. This is done through the use of some

functional equation such as the relation given by (2.22), which, for each problem in

the family with its initial state, assigns an optimum value to that problem and links

that value with all immediately preceding states.

These two basic ideas - imbedding and principle of optimality - are also to be

found in the dynamic programming approach to continuous cases.

Next, let us write Bellman’s equation for a continuous time variable.

Proposition 2.3.1 Suppose we have a time-optimal control problem (2.8). Let us

fix some point x1 of the space X , and let u(t), t0 ≤ t ≤ t1, be an optimal control which

transfers (through the law of motion xi(t) = xi, i = 1, ..., n) the phase point from

some position x0 ∈ X to the position x1, and let x(t) be the corresponding optimal

trajectory. The optimal transition time from the point x0 to the point x1, t1 − t0,
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will be denoted by T (x0). (The point x1 does not enter into the notation for the

transition time, since it does not vary). Thus, the function T (x0) is defined on the

open set Ω of all points of X from which an optimal transition to x1 is possible. We

set T (x) = −ω(x), where T (x) has continuous partial derivatives with respect to the

coordinates of the point x, and derive that the function ω(x) satisfies the following

nonclassical partial differential equation (which we shall call Bellman’s equation)

in the region Ω:

sup
u∈U

n∑
α=1

∂ω(x)

∂xα
fα(x, u) = 1. (2.23)

Furthermore, the upper bound is attained at some point u ∈ U (namely, at the value

of the optimal control at the time of departure from the point x), and the function

ω(x) is nonpositive and vanishes only at the point x1.

Proof It is given, that

ω(x) = −T (x). (2.24)

Since x(t), t0 ≤ t ≤ t1, is an optimal trajectory, and since each portion of an optimal

trajectory is also an optimal trajectory,

ω(x(t)) = −T (x0) + t− t0 (2.25)

for every t, t0 ≤ t ≤ t1. Consequently,

n∑
α=1

∂ω(x(t))

∂xα
fα(x(t), u(t)) =

n∑
α=1

∂ω(x(t))

∂xα

dxα

dt
=

dω(x(t))

dt
=

dt

dt
= 1. (2.26)

Now let v be an arbitrary point of the control region U . We shall consider the motion

of the phase point from the position x(t) under the influence of a constant control

which is equal to v. Here the problem can be imbedded into the family of problems,

following the principle of imbedding discussed before. Mainly, we divide the whole

process into two control processes. Thus, after an infinitesimal time interval dt > 0,
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the phase point will be in the position x(t)+dx, where the vector dx = (dx1, ..., dxn)

is defined by

dxi = f i(x(t), v)dt, i = 1, ..., n. (2.27)

If we now move in an optimal manner from the point x(t) + dx to the point x1,

the time spent in so doing will equal T (x(t) + dx). Hence, the total time spent in a

movement of this kind, while transferring from x(t) to x1, is equal to T (x(t)+dx)+dt.

This time cannot be shorter than the optimal transition time T (x(t)), i.e.,

T (x(t) + dx) + dt ≥ T (x(t)),

or equivalently,

ω(x(t) + dx)− ω(x(t)) ≤ dt.

Multiply and divide the left side by dxα, and since we know that

n∑
α=1

w (x(t) + dx)− w (x(t))

dxα
=

n∑
α=1

∂w (x(t))

∂xα
,

then because of (2.27), the last inequality may be rewritten in the form

n∑
α=1

∂ω(x(t))

∂xα
fα(x(t), v)dt ≤ dt,

or

n∑
α=1

∂ω(x(t))

∂xα
fα(x(t), v) ≤ 1, v ∈ U . (2.28)

Relations (2.26) and (2.27) show that

sup
v∈U

n∑
α=1

∂ω(x(t))

∂xα
fα(x(t), v) = 1,

and the upper bound is achieved at v = u(t).
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Since an optimal trajectory leading to x1 passes through each point x of Ω, we

arrive at the conclusion that the function ω(x) satisfies the following nonclassical

partial differential equation (Bellman’s equation) in the region Ω:

sup
u∈U

n∑
α=1

∂ω(x)

∂xα
fα(x, u) = 1. (2.29)

Furthermore, the upper bound is attained at some point u ∈ U (namely, at the value

of the optimal control at the time of departure from the point x), and the function

ω(x) is nonpositive and vanishes only at the point x1.

This is the principle of dynamic programming as applied to the optimal control

problem (for simplicity we considered the time-optimal control problem (2.8)).

26



Chapter 2. Optimal Control Processes

2.4 The relation between Pontryagin’s Maximum

Principle and Bellman’s Method of Dynamic

Programming

The main difference between the calculus of variations methods and dynamic pro-

gramming lies in emphasis (see [2], [3], [9], [13], [16], [17], [24], [28]). The former

considers variations of the candidate extremizing curve, whereas in dynamic pro-

gramming the candidate curve varies over a small initial interval and the remainder

of the curve is supposed to be optimal for the other part of the problem. In other

words, the concept of variation is to be found in both approaches. Which of the two

techniques is more desirable depends entirely on the needs and point of view of the

user. The calculus of variations yields results whose analytical forms are useful to

theorists, and its main appeal perhaps lies in solving deterministic control problems

with time treated as continuous, although there are attempts to discretize time [30].

On the other hand, others claim that dynamic programming is the more promising

and powerful tool with wider applications in a variety of subjects [2]. It is certainly

much more efficient than the calculus of variations in dealing with stochastic control

problems involving multistage decision processes [9], [17].

In what follows we shall consider the relation existing between the maximum

principle and R.Bellman’s method of dynamic programming (see in 2.3 the derivation

of the Bellman’s equation from Pontryagin’s maximum principle for the time-optimal

control problem (2.8)). For a fuller discussion, see Dreyfus [9].

The method of dynamic programming was developed for the needs of optimal

control processes which are of a much more general character than those which are

describable by systems of differential equations. Therefore, the method of dynamic

programming carries a more universal character than the maximum principle ([3],
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[24]). However, in contrast to the latter, this method does not have the rigorous

logical basis in all those cases where it may be successfully made use of as a valuable

heuristic tool.

The basis of the method of dynamic programming given by Bellman rests on the

assumption that to the natural conditions of the problem (see our Theorems 2.2.1

and 2.2.2) another essential requirement has been added - the requirement that the

function w(x) defined in Proposition 2.3.1 be differentiable (for a broader discussion

see [24]). This assumption does not follow from the statement of the problem, and

is a restriction which, as we shall see below, is not satisfied even in the simplest

examples.

However, after this assumption has been made, the method of dynamic program-

ming leads to a certain partial differential equation, which we call Bellman’s equation.

This equation (under certain additional conditions) is equivalent to the Hamiltonian

system (2.14), (2.15), and to the maximum condition (2.16), (2.17).

In section 2.3 we showed the relation of Bellman’s method of dynamic program-

ming to Pontryagin’s maximum principle (for a broader discussion see [16], [24]). For

the sake of simplicity we only considered the time-optimal problem (2.8).

Proposition 2.4.1 Let us assume that the function ω(x) is twice continuously dif-

ferentiable. Then Pontryagin’s maximum principle can be derived from Bellman’s

principle of dynamic programming.

Proof Since ω(x) is twice continuously differentiable, the function

g(x, u) =
n∑

α=1

∂ω(x)

∂xα
fα(x, u), (2.30)

which stands under the supremum in (2.29), has continuous first derivatives with

respect to x1, ..., xn. It follows from Bellman’s principle of dynamic programming
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(see (2.26) and (2.29)) that if u(t) is an optimal control which transfers the phase

point from the position x0 to the position x1, and x(t) is the corresponding optimal

trajectory, then for a fixed t, t0 ≤ t ≤ t1, the function g(x, u(t)) of the variable x ∈ X
attains its maximum value (unity) at the point x = x(t). From this it follows that

∂g(x(t), u(t))

∂xi
= 0, i = 1, ..., n, t0 ≤ t ≤ t1. (2.31)

Taking the form of the function g(x, u) (see (2.30)) into account, we obtain the

relations

n∑
α=1

∂2ω(x(t))

∂xα∂xi
fα(x(t), u(t))

+
n∑

α=1

∂ω(x(t))

∂xα
· ∂fα(x(t), u(t))

∂xi
= 0, i = 1, ..., n,

(2.32)

which are satisfied along the optimal trajectory. Furthermore, we have

n∑
α=1

∂2ω(x(t))

∂xα∂xi
fα(x(t), u(t)) =

n∑
α=1

∂

∂xα

(
∂ω(x(t))

∂xi

)
dxα(t)

dt
=

d

dt

(
∂ω(x(t))

∂xi

)
,

so that relations (2.32) may be rewritten in the form

d

dt

(
∂ω(x(t))

∂xi

)
= −

n∑
α=1

∂fα(x(t), u(t))

∂xi
· ∂ω(x(t))

∂xα
, i = 1, ..., n.

Thus, along each optimal trajectory, the variables

ψi(t) =
∂ω(x(t))

∂xi
, i = 1, ..., n, (2.33)

satisfy the linear system of differential equations

dψi(t)

dt
= −

n∑
α=1

∂fα(x(t), u(t))

∂xi
ψα(t), i = 1, ..., n. (2.34)

In addition, because of relation (2.26), Bellman’s equation (2.29) can be written in

the form

n∑
α=1

ψα(t)fα(x(t), u(t)) = sup
u∈U

n∑
α=1

ψα(t)fα(x(t), u) = 1. (2.35)
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Relations (2.34) and (2.35) coincide with Pontryagin’s maximum principle, and

relation (2.33) points out the relation between ψi(t) and the function ω(x) in an

explicit form. We also note, as follows from (2.35), that the optimal motions can

always be realized in such a way that

H(ψ(t), x(t), u(t)) ≡ 1 (2.36)

along optimal trajectories. We remind that all of these results can be obtained

provided that the function ω(x) is twice differentiable. Without this additional

assumption the proof of relation (2.36) loses its validity.

Let us give a simple example (see more examples in [16], [19], [24]) that shows

that the function ω(x) does not have the first derivatives at the points which lie on

the switching curves (this may be ascertained by direct calculations). Since every

optimal trajectory passes along the switching curve during some time interval in

this example, the assumption on the differentiability of ω(x) holds on none of the

trajectories. Thus, even in the simplest examples, the assumptions which must be

made in order to derive Bellman’s equation do not hold.

Example where Pontryagin’s principle applies, but Bellman’s fails because the cont-

rol is discontinuous (Bang-Bang Problem)

Consider the equation
d2x

dt2
= u,

where u is a real control parameter constrained by the condition |u| ≤ 1. The given

equation can be rewritten using the phase coordinates x1 = x and x2 = dx/dt.

Hence, we get the following system:

dx1

dt
= x2,

dx2

dt
= u. (2.37)

Let us consider (for a phase point moving in accordance with (2.37)) the problem of

getting to the origin (0, 0) from a given initial state x0 in the shortest time. In other
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words, we shall consider the time-optimal problem for the case where the origin (0, 0)

is the terminal position x1.

The Hamiltonian function H(ψ, x, u) =
n∑

ν=1

ψνf
ν(x, u) in this case has the form

H = ψ1x
2 + ψ2u. (2.38)

Thus, since we know that

dψi

dt
= −∂H

∂xi
, i = 1, ..., n,

(see equation (2.19)) we obtain the system of equations

dψ1

dt
= −∂H

∂x1
= 0,

dψ2

dt
= −∂H

∂x2
= −ψ1,

for the auxiliary variables ψ1 and ψ2. Hence, ψ1 = c1 and ψ2 = c2 − c1t (c1 and

c2 are arbitrary constants). Relation (2.20) yields (taking (2.38) and the condition

−1 ≤ u ≤ 1 into account)

u(t) = signψ2(t) = sign(c2 − c1t). (2.39)

It follows from (2.39) that every optimal control u(t), t0 ≤ t ≤ t1, is a piecewise

constant function which takes on the values ±1, and has at most two intervals on

which it is constant (since the linear function c2 − c1t changes sign at most once on

the interval t0 ≤ t ≤ t1). Also, any such function u(t) can be obtained from relation

(2.39) for some values of c1 and c2.

From the system (2.37)

dx1

dt
= x2,

dx2

dt
= u

for the time interval on which u ≡ 1 we have

x2 = t + s2, x1 =
t2

2
+ s2t + s1 =

1

2

(
t + s2

)2
+

(
s1 − (s2)

2

2

)

31



Chapter 2. Optimal Control Processes

Figure 2.7: Bang-bang time-optimal control: trajectories for u = 1 of parabolas given
by equation (2.40)

(s1 and s2 are constants of integration), from which we obtain

x1 =
1

2

(
x2

)2
+ s, (2.40)

where s = s1 − 1
2
(s2)

2
is a constant. Thus, the portion of the phase trajectory for

which u ≡ 1 is an arc of the parabola (2.40). The family of parabolas (2.40) is shown

in Figure 2.7.

Analogously, for the time interval on which u ≡ −1, we have

x2 = −t + s′2,

x1 = −t2

2
+ s′2t + s′1 = −1

2

(−t + s′2
)2

+

(
s′2 +

1

2

(
s′2

)2
)

,
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Figure 2.8: Bang-bang time-optimal control: trajectories for u = −1 of parabolas
given by equation (2.41)

from which we obtain

x1 = −1

2

(
x2

)2
+ s′. (2.41)

The family of parabolas (2.41) is shown in Figure 2.8. The phase points move

upwards along the parabolas (2.40) (since dx2/dt = u = +1), and downwards along

the parabolas (2.41) (dx2/dt = u = −1).

As we said before, every optimal control u(t) is a piecewise constant function,

taking on the values ±1, and having at most two intervals on which it is constant.

If u(t) is initially equal to +1, and then to −1, the phase trajectory consists of two

adjoining parabolic segments (Figure 2.9). The second of these segments lies on

that parabola defined by (2.41) which passes through the origin (since the desired

trajectory must lead to the origin). On the other hand, if u = −1 first and u = +1
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Figure 2.9: Bang-bang time-optimal control: u(t) is initially equal to +1, and then
to −1, the phase trajectory consists of two adjoining parabolic segments given by
equations (2.40) and (2.41), respectively

afterwards, the phase curve is replaced by one which is symmetric with respect to

the origin (Figure 2.10). In Figures 2.9, 2.10 the corresponding values of the control

parameter u are written next to the parabolic arcs. Figure 2.11 shows the entire

family of phase trajectories we obtained (AO is the arc of the parabola x1 = 1
2
(x2)

2

in the lower half-plane, BO is the arc of the parabola x1 = −1
2
(x2)

2
in the upper

half-plane). The phase point moves along an arc of the parabola (2.41) which passes

through the initial points x0, if x0 is above the curve AOB; and along an arc of a

parabola (2.40) if x0 is below this curve. In other words, if the initial position x0 is

above the curve AOB, the phase point must move under the influence of the control

34



Chapter 2. Optimal Control Processes

Figure 2.10: Bang-bang time-optimal control: u(t) is initially equal to −1, and then
to +1, the phase trajectory consists of two adjoining parabolic segments given by
equations (2.41) and (2.40), respectively

u = −1 until it reaches the arc AO. At the instant it arrives, the value of u switches

to +1 and remains at this value until the phase point reaches the origin. However, if

the initial position x0 is below AOB, u must equal +1 until the time it reaches the

arc BO, and at that time the value of u changes to −1.

Definition A piecewise constant optimal control u(t) that takes only two values on

the boundary of the control space U is called a bang-bang control [19].

According to Theorem 2.2.2, only the above described trajectories can be optimal.

Furthermore, it can be seen from the above investigation that from each point in
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Figure 2.11: Bang-bang time-optimal control: the switching curve and the family of
phase trajectories we obtained (AO is the arc of the parabola x1 = 1

2
(x2)

2
in the lower

half-plane, BO is the arc of the parabola x1 = −1
2
(x2)

2
in the upper half-plane)

the phase plane there is only one trajectory leading to the origin which can be

optimal (i.e, once the initial point x0 is given, the corresponding trajectory is uniquely

determined). If we could be sure that the optimal trajectory always (i.e, for any initial

point x0) exists, we could confidently say that all the trajectories we have found are

optimal (see [24], Chapter III for the formulation of the existence theorem for linear

time-optimal systems). In particular, it follows from this theorem that in the present

example there exists an optimal trajectory (see page 127 in [24]) for each initial point

x0. Thus, the trajectories we have found (Figure 2.11) are optimal, and there are no

other optimal trajectories which lead to the origin.

36



Chapter 2. Optimal Control Processes

Therefore, the solution of the optimal problem obtained in the above example

can be interpreted as follows. Let v(x1, x2) = v(x) be the function given in the x1x2

plane as follows:

v(x) =





+ 1 below the curve AOB, and on the arc AO,

- 1 above the curve AOB, and on the arc BO.

Also, on each optimal trajectory the value u(t) of the control parameter (at an

arbitrary time t) is equal to v(x(t)), meaning that it equals the value of the function

v at the point at which the phase point, moving along the optimal trajectory

u(t) = v(x(t)),

is located at the time t. This means that if we replace the variable u by the function

v(x) in the original system (2.37), we obtain the system





dx1/dt = x2,

dx2/dt = v (x1, x2) .
(2.42)

We can find the optimal phase trajectory which leads to the origin from the solution

of this system (2.42) (for an arbitrary initial state x0). Therefore, we system (2.42)

is the system of differential equations (with discontinuous right-hand side) for the

determination of the optimal trajectories which lead to the origin.
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The Pursuit Problem

3.1 Statement of the Problem

Let us assume that two points, one of which we shall call “pursuing” (P) and the

other “evading” (E), are moving in X ⊂ Rn:

x′ = f(x, u, t), y′ = g(y, t), (3.1)

where u, U , and x (t) are the control parameter, the control region, and the trajectory

of the motion of the pursuing point P, respectively, and y(t) is the trajectory of the

motion of the evading point E.

Let u(t) be a certain admissible control (i.e., piecewise continuous), and let x (t)

and y(t) be the corresponding trajectories with initial conditions

x(0) = x0, y(0) = y0. (3.2)

If x (t1) = y(t1) for some t1 > 0, we shall call t1 an encounter time, and the very

occurrence that x (t1) = y(t1) will be referred to as an encounter. If the control u(t)

is chosen arbitrarily, an encounter may not occur for any t > 0. If an encounter
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does occur, we shall call the control (which is an admissible control) u(t) a pursuing

control. Even then, for the given x0, y0, and the chosen control u(t), more than one

encounter may take place. We shall call the smallest positive number t1, which is an

encounter time, the pursuit time corresponding to the control u(t). We shall denote

the pursuit time by

T = min
u∈U

Tu. (3.3)

In what follows, the initial conditions (3.2) will be assumed to be fixed (in this

connection, x0 and y0 do not enter into the notation for the pursuit time). Therefore,

we get a statement of the pursuit problem .

Definition The problem is called a pursuit problem if it is defined by equations

(3.1) - (3.3)

x′ = f(x, u, t), y′ = g(y, t),

x(0) = x0, y(0) = y0,

T = min
u∈U

Tu,

where x and y belong to X ⊂ Rn, u ∈ U ⊂ Rr and is admissible (piecewise conti-

nuous).
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Figure 3.1: The geometry of Bouguer’s pursuit problem about a pirate ship moving
directly toward the merchant vessel at constant speed Vp along a curved path and
pursuing a merchant vessel travelling at constant speed Vm along the vertical line
x = x0

3.2 Pierre Bouguer’s Pursuit Problem

Modern mathematical pursuit analysis is generally assumed to begin with a problem

posed and solved by the French mathematician and hydrographer Pierre Bouguer

(1698-1758) in 1732 (see [5]). This general assumption is not quite correct, but

Bouguer’s problem is today nevertheless taken as the starting point of pursuit ana-

lysis in all modern textbooks. In his paper, Bouguer treated the case of pirate ship

pursuing a fleeing merchant vessel, as illustrated in Figure 3.1. The pirate ship and

the merchant vessel are taken to be at (0, 0) and (x0, 0) at time t = 0, respectively,
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the instant the pursuit begins, with the merchant vessel travelling at constant speed

Vm along the vertical line x = x0. The pirate ship travels at constant speed Vp along

a curved path such that it is always moving directly toward the merchant, that is,

the velocity vector of the pirate ship points directly at the merchant vessel at every

instant of time. Bouguer’s problem was to determine the equation y = y(x) of the

curved path which he called the line of pursuit. The pursuit curve has its association

with the path taken by a dog in following its master, and the falcon flying in its

attack directly at the instantaneous location of its prey. This is the definition of

what is now called pure pursuit.

To find the curve of pursuit for Bouguer’s problem, start by calling the location

of the pirate ship, at arbitrary time t ≥ 0, the point (x, y). At time t the merchant

vessel has sailed to the point (x0, Vmt) and so, as shown in Figure 3.1, the slope of

the tangent line to the pursuit curve (the value of dy/dx at (x, y)) is given by

dy

dx
=

Vmt− y

x0 − x
=

y − Vmt

x− x0

. (3.4)

We also know that, whatever the shape of the pursuit curve, the pirate ship has sailed

along it at time t by a distance of Vpt. From calculus we know that this arc-length

is also given by the expression on the right below, and so

Vpt =

x∫

0

√
1 +

(
dy

dz

)2

dz, (3.5)

where z is simply a dummy variable of integration. Solving (3.4) and (3.5) each for

t, we can write

1

Vp

x∫

0

√
1 +

(
dy

dz

)2

dz =
y

Vm

− x− x0

Vm

· dy

dx
,

which, if we let dy/dx = p(x), becomes

1

Vp

x∫

0

√
1 + p2(z)dz =

y

Vm

− x− x0

Vm

· p(x). (3.6)

41



Chapter 3. The Pursuit Problem

Differentiating (3.6) with respect to x (using Leibniz’s formula to differentiate an

integral), we arrive at

1

Vp

√
1 + p2(x) =

1

Vm

· dy

dx
− x− x0

Vm

· dp

dx
− 1

Vm

p(x)

or, simplifying,

(x− x0)
dp

dx
= −Vm

Vp

√
1 + p2(x) = −n

√
1 + p2(x), (3.7)

where n = Vm/Vp. (Ordinarily we’ll have n < 1, the pirate ship sailing faster than

the merchant. For n > 1 the problem is without interest as then the pirate ship is

slower than the merchant and the concept of “pursuit” is meaningless. The n = 1

case, however, does offer us a curious mathematical problem with special interest

that we’ll go into later.) Separating variables,

dp√
1 + p2

= − ndx

x− x0

=
ndx

x0 − x
(3.8)

and, integrating (3.8) indefinitely, we have (with C as the constant of indefinite

integration)

ln
(
p +

√
1 + p2

)
+ C = −n ln (x0 − x) . (3.9)

From Figure 3.1 we see at t = 0 that p = dy/dx = 0 when x = 0, because at

that instant both ships are on the x-axis (the fact that dy/dx|t=0 = 0 also follows

mathematically from (3.4) since y(t = 0) = 0). Inserting these initial conditions into

equation (3.9), it follows that C = −nln(x0) and so (3.9) becomes

ln
(
p +

√
1 + p2

)
− n ln(x0) = −n ln (x0 − x) ,

which, after a few steps of algebra, reduces to

ln

[(
p +

√
1 + p2

) (
1− x

x0

)n]
= 0,

which tells us that

(
p +

√
1 + p2

) (
1− x

x0

)n

= 1. (3.10)
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Thus,

p +
√

1 + p2 =
1(

1− x
x0

)n = q, (3.11)

where q has been introduced to keep the next few algebraic steps easy to follow.

Solving (3.11) for p, we have √
1 + p2 = q − p,

1 + p2 = (q − p)2 = q2 − 2qp + p2,

p =
q2 − 1

2q
=

1

2

[
q − 1

q

]
.

Thus, replacing q with its equivalent (from (3.11)) gives

p(x) =
dy

dx
=

1

2

[(
1− x

x0

)−n

−
(

1− x

x0

)n
]

, n =
Vm

Vp

. (3.12)

We can solve (3.12) for y(x) by simple integration, writing C once more as the

constant of integration,

y(x) + C =
1

2

∫
dx(

1− x
x0

)n −
1

2

∫ (
1− x

x0

)n

dx.

In both integrals change variable to u = 1− x/x0 (so dx = −x0du) to get

y(x) + C =
1

2

∫ −x0du

un
− 1

2

∫
−x0u

ndu, (3.13)

which immediately integrates to

y(x) + C = −1

2
x0

u−n+1

−n + 1
+

1

2
x0

un+1

n + 1

=
1

2
x0

[
u · un

1 + n
− u · u−n

1− n

]
=

1

2
x0u

[
un

1 + n
− u−n

1− n

]
.

That is,

y(x) + C =
1

2
x0

(
1− x

x0

)



(
1− x

x0

)n

1 + n
−

(
1− x

x0

)−n

1− n


 ,
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or

y(x) + C =
1

2
(x0 − x)




(
1− x

x0

)n

1 + n
−

(
1− x

x0

)−n

1− n


 . (3.14)

Since y(x = 0), then

C =
1

2
x0

[
1

1 + n
− 1

1− n

]
= − n

1− n2
x0

and so inserting this result into (3.14) gives us our answer, the pursuit curve

equation y = y(x) :

y(x) =
n

1− n2
x0 +

1

2
(x0 − x)

×




(
1− x

x0

)n

1 + n
−

(
1− x

x0

)−n

1− n


 , n =

Vm

Vp

.

(3.15)

“Capture” occurs when x = x0 (the pirate ship pursuit curve intersects the mer-

chant’s course), which says capture occurs at the point (x0, n/(1 − n2)x0). (This

makes physical sense only if n < 1, of course, the case of the pirate ship being

faster than the merchant.) For example, if the pirate ship sails twice as fast as the

merchant, then n = 1
2

and capture occurs at the point (x0,
2
3
x0), while if the pirate

ship sails only one-third faster than the merchant (i.e., Vp = 4
3
Vm), then n = 3

4
and

capture occurs at the point (x0,
12
7
x0). As n approaches one, that is, as the sailing

speeds of the pirate ship and the merchant vessel become equal, it is clear that the

capture point moves ever father up the x = x0 line and, in the limit n = 1, the

capture point is at infinity (which is the physically obvious statement that capture

does not occur). Figure 3.2 shows the pursuit curve up to the capture point for the

case of x0 = 1 and n = 3
4
. The analytical expression of (3.15) fails to make sense

for the case of n = 1 (Vm = Vp), of course, because then we have a division by zero

problem. To see what the correct analytical form of the pursuit curve is for n = 1,
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Figure 3.2: The path of the pirate ship as given by equation (3.15) for n = 3/4

return to (3.12), to just before we integrated dy/dx. Then

dy

dx
=

1

2

[(
1− x

x0

)−1

−
(

1− x

x0

)]
=

1

2


 1(

1− x
x0

) −
(

1− x

x0

)
 (3.16)

and so

y(x) + C =
1

2

[∫
dx

1− x
x0

−
∫ (

1− x

x0

)
dx

]
.

As before, change variables in both integrals to u = 1 − x/x0 (and so dx = −x0du)
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to get

y(x) + C =
1

2

∫ −x0

u
du− 1

2

∫
u(−x0)du

= −1

2
x0 ln u +

1

2
x0 · 1

2
u2

=
1

2
x0

[
1

2

(
1− x

x0

)2

− ln

(
1− x

x0

)]
.

Since y(x = 0) = 0, then C = 1
4
x0, and so for n = 1 (Vp = Vm) the equation of the

pursuit curve is

y(x) =
1

2
x0

[
1

2

(
1− x

x0

)2

− ln

(
1− x

x0

)]
− 1

4
x0. (3.17)

When Bouguer’s problem was included in the 1859 book Treatise on Differential

Equations [4] by the famous British mathematician George Boole (1815 - 1864), the

pursuit curve for n = 1 (pursuer and evader moving with equal speeds) case was

declared to be a parabola, which is clearly wrong - as observed in Burton and Eliezer

[1], whatever the pursuit curve is (for any value of n) it certainly must be asymptotic

to the line x = x0.

Now, for the n < 1 case let us calculate the total distance travelled by the pirate

ship until its capture of the merchant vessel. As we discussed earlier, capture does

not occur in the n = 1 case, and after a “long” time, the pirate ship will have sailed

into a position directly behind the merchant and will simply chase, endlessly, after

the merchant while remaining a constant distance behind it. It is an interesting

mathematical problem to calculate the value of this so-called tail chase lag distance.

To calculate the distance sailed by the pirate ship until it captures the merchant

vessel (n < 1), recall from (3.15) that capture occurs at (x0, n/(1 − n2)x0), i.e., the

merchant vessel has travelled a distance of n/(1−n2)x0. Since the pirate ship travels
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Figure 3.3: The geometry of the tail chase as given by equation (3.17)

1/n times faster than does the merchant, the pirate travels 1/n times as far, that is,

the pirate ship travels a total distance of 1/(1− n2)x0.

To answer the second question, i.e., to determine the distance the pirate ship

lags behind the merchant vessel after a long time has passed (for n = 1), refer to

Figure 3.3. There we see the pirate ship at point (x, y), while the merchant vessel is

at (x0, yn). Note, that this is for any arbitrary time t. The distance separating the

pirate ship and the merchant vessel is D, where

D2 = (ym − y)2 + (x0 − x)2 = (x0 − x)2

[
1 +

(
ym − y

x0 − x

)2
]

.

Now, here is an important fact: the line joining (x, y) to (x0, ym) is the tangent to
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the pirate’s pursuit curve, because the chase is a pure pursuit, meaning that the

pirate ship is moving directly at the instantaneous location of the merchant vessel

(according to the statement of the problem), i.e., the velocity vector of the pirate

ship points directly at the merchant vessel at every instant of time. Thus,

dy

dx
=

ym − y

x0 − x

and so

D2 = (x0 − x)2

[
1 +

(
dy

dx

)2
]

.

Substituting (3.12) for dy/dx for the n = 1 case, that is, writing

dy

dx
=

1

2


 1(

1− x
x0

) −
(

1− x

x0

)
 ,

we have

D2 = (x0 − x)2


1 +

1

4





1(
1− x

x0

) −
(

1− x

x0

)



2


= x2
0

(
1− x

x0

)2


1 +

1

4





1(
1− x

x0

)2 − 2 +

(
1− x

x0

)2








= x2
0

[(
1− x

x0

)2

+
1

4
− 1

2

(
1− x

x0

)2

+
1

4

(
1− x

x0

)4
]

.

As t →∞ we physically see the pirate ship pull into behind the merchant vessel and

the pursuit becomes a vertically upward tail chase; thus, x → x0, and so

lim
t→∞

D2 = lim
x→x0

D2 =
1

4
x2

0

or, at last,

lim
t→∞

D =
1

2
x0.
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Application of Bouguer’s Pursuit Problem:

A merchant vessel, moving horizontal in a straight line, is b feet directly below

one pirate ship “Black Pearl” and d feet directly above another pirate ship “Dead

Men”. Both pirate ships move directly toward the merchant vessel, reaching it simul-

taneously. We know that “Black Pearl” is slower than “Dead Men”, and that “Dead

Men” moves twice as fast as the merchant vessel. At what rate does the “Black Pearl”

move?

We can see right away that the statements that “Black Pearl” is above the mer-

chant vessel, and that “Dead Mean” is below, have nothing to do with the mathema-

tics of the problem. Then, with no loss in the spirit of the problem, we can take the

initial location of the “Black Pearl” as (0, b) and of the “Dead Mean” as (0, d). In our

solution to Bouguer’s problem, the initial separation between pursuer and pursued

was x0, and so b and d each play the role of x0. We know from our earlier analysis

that capture will occur after the evader has travelled distance of n/(1−n2)x0, where

n equals the speed of the evader over the speed of the pursuer. For “Dead Men” we

have n = 1/2, and for “Black Pearl” let’s say it moves k times as fast as the merchant

vessel (and so n = 1/k for “Black Pearl”). Now, since both pursuers “capture” the

vessel at the same instant (the same point) we have

1/2

1− (1/2)2
d =

1/k

1− (1/k)2
b.

Hence,
1/2

3/4
d =

k

k2 − 1
b,

or
2

3
d =

k

k2 − 1
b,

where d, b, and k are some constants. Simplifying, we get

2

3
dk2 − bk − 2

3
d = 0,
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k =
b±

√
b2 + 16

9
d2

4
3
d

.

We realize that since “Black Pearl” starts closer to the vessel than does “Dead Men”,

k must be between one and two (the pirate ship “Black Pearl” must move faster than

the merchant vessel to capture it, but slower than “Dead Men”, according to the given

condition). Hence, k > 0, and we use the plus sign. Therefore, “Black Pearl” moves
b+
√

b2+16/9d2

4/3d
times as fast as the merchant vessel. Now, if we let, for example, b = 50

and d = 100, then we can find that “Black Pearl” moves 1.443 times as fast as the

vessel.

Remark A different generalized form of Bouguer’s problem was solved in Colman

[8], in which the merchant vessel’s straight sailing path is inclined from the vertical

by angle α, i.e., the line x = x0 is replaced by the straight line y = (x − x0) · cot α

for −π
2
≤ α ≤ π

2
. Colman [8] does not give an explicit formula-equation for the

flight path of the pursuer, but finds coordinates for the point of capture in the case

when the ratio of pursuer’s and evader’s speeds is n < 1. The solution presented

in this section is for α = 0, while α = π/2 radians would represent the merchant

sailing directly away from the pirate ship (and α = −π/2 radians would represent

the merchant sailing directly toward the pirate ship). In both of these extreme cases

the pursuit curve is, by inspection, simply x = 0 (the x-axis), but for α 6= ±π/2 or 0

the pursuit curve is pretty complicated, and its derivation is an exercise in nontrivial

manipulation.
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Figure 3.4: The geometry of the wind-blown plane problem, where the plane’s nose
is always pointed toward a city C, the plane’s speed is v mi/h, and a wind is blowing
from the south at the rate of w mi/h

3.3 Wind-Blown Plane Problem

Let us now present another important example (following [20]), where we use the

analysis of the Bouguer’s pursuit problem. It is similar to the problem solved in 1931

by E. Zermelo (see [31]).

A pilot always keeps the nose of his plane pointed toward a city C due west of

his starting point at (a, 0). Find equation of the plane’s path if the plane’s speed is v

mi/h, and a wind is blowing from the south at the rate of w mi/h.
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The pilot isn’t really pursuing anything, of course, unless we consider this problem

of “pursuit (with wind interference) of a stationary target”, but the spirit of this

problem is pure Bouguer.

In the notation of Figure 3.4, at an arbitrary time t ≥ 0, the plane’s location is

the point (x(t), y(t)). Writing ux and uy as the unit vectors in the x and y directions

(which are not functions of time), respectively, then we can write the position vector

of the plane as

p(t) = x(t)ux + y(t)uy,

and so the plane’s velocity vector is

d

dt
p(t) =

dx

dt
ux +

dy

dt
uy.

Also, the plane’s body axis (nose-to-tail) is always along the direction of p(t), at

angle θ, toward C, where

tan(θ) =
y

x
.

The wind, blowing only along the y-axis, contributes nothing to the ux component

of the plane’s velocity vector, that is, dx/dt is due only to the x-component of v.

dx

dt
= −v cos(θ) = − vx√

x2 + y2
, (3.18)

where the minus sign is explicitly included, since as the plane flies toward C the value

of x decreases with increasing t. The uy component of the plane’s velocity vector, on

the other hand, is influenced by the wind, of course, as well as by the y-component

of v,

dy

dt
= w − v sin(θ) = w − vy√

x2 + y2
=

w
√

x2 + y2 − vy√
x2 + y2

. (3.19)

Dividing (3.19) by (3.18), we eliminate explicit time and arrive at

dy

dx
=

vy − w
√

x2 + y2

vx
. (3.20)
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Let us introduce a new variable z such that y = zx. Then (3.20) becomes

dy

dx
= z + x

dz

dx
=

vzx− w
√

x2 + z2x2

vx
= z − w

v

√
1 + z2

or, defining the constant n = w/v,

x
dz

dx
= −n

√
1 + z2, (3.21)

from where we get

dz√
1 + z2

= −n
dx

x
. (3.22)

(Notice the similarity of (3.22) and (3.8).) Integrating indefinitely, with C as the

constant of integration,

ln[(z +
√

1 + z2)] + C = −n ln(x).

Since y = 0 when x = a, which means z = y/x = 0 when x = a, then we have

C = −n ln(a), and so

ln[(z +
√

1 + z2)] = n ln(a)− n ln(x) = n ln
(a

x

)
= ln

(a

x

)n

,

or,

z +
√

1 + z2 =
(a

x

)n

. (3.23)

Defining q = (a/x)n, (3.23) becomes (similar to how we went from (3.11) to (3.12))

√
1 + z2 = q − z,

1 + z2 = q2 − 2qz + z2,

z =
q2 − 1

2q
=

1

2

[
q − 1

q

]
.

Thus, replacing q with its definition,

z =
1

2

[(a

x

)n

−
(a

x

)−n
]

=
1

2

[(x

a

)−n

−
(x

a

)n
]

. (3.24)
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Figure 3.5: Plots of the wind-blown plane’s paths given by equations (3.25) for several
values of n < 1 (n = 0.1, 0.2, 0.4, 0.8, 0.95, 0.99, 0.999)

Since y = zx, then

y =
1

2

[
x−n+1

a−n
− xn+1

an

]
=

1

2

[
x−n+1

a−n+1

a

− xn+1

an+1

a

]

or, at last, we have the equation of the wind-blown plane’s path :

y(x) =
a

2

[(x

a

)−n+1

−
(x

a

)n+1
]

, n =
w

v
. (3.25)

When n = 0 - that is, when there is no wind - (3.25) collapses to the physically

obvious y(x) = 0, which simply says that the plane moves directly to city C while

always remaining on the x-axis. And when n = 1 (when the wind speed equals the

plane’s speed in still air), the plane’s path is the parabola

y(x) =
a

2

[
1−

(x

a

)2
]

.

In this case when x = 0 we see that y(0) = a/2, that is, the plane does not reach

city C. This probably makes intuitive sense, too, but it is interesting to see that the

miss distance is so large. What happens, physically, in the n = 1 case, is that the

plane arrives at the y-axis with a zero velocity component in the x-direction (notice

that the plane’s body axis has rotated through an angle of θ = 90◦, and then recall
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(3.18)), and so there the plane remains, motionless at the point (0, a/2), as it flies

directly into the wind with the two equal magnitude but oppositely directed velocity

vectors precisely cancelling each other. Figure 3.5 shows the plane’s path for a = 1

for several different values of n, and it is clear that for n < 1 (≥ 1) the plane reaches

(does not reach) city C.

Now, let us calculate the total flight time of the wind-blown plane for n < 1, and

the total distance flown for the case of n “just less” than one.

For the total flight time T of the wind-blown plane, recall (3.18) and (3.25), where

we showed that

dx

dt
= − vx√

x2 + y2

and

y =
a

2

[(x

a

)−n+1

−
(x

a

)n+1
]

, n =
w

v
.

So,
T∫

0

dt = −
0∫

a

√
x2 + y2

vx
dx,

or

T =
1

v

0∫

a

√
1 +

y2

x2
dx.

Also,

y2 =
a2

4

[(x

a

)−2n+2

− 2
(x

a

)2

+
(x

a

)2n+2
]

=
a2

4

[(x

a

)−2n x2

a2
− 2

x

a2

2

+
(x

a

)2n x2

a2

]
.

Thus,

y2

x2
=

1

4

[(x

a

)−2n

− 2 +
(x

a

)2n
]

,
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and so

1 +
y2

x2
= 1 +

1

4

[(x

a

)−2n

− 2 +
(x

a

)2n
]

=
(x/a)−2n − 2 + (x/a)2n + 4

4

=
(x/a)−2n + 2 + (x/a)2n

4
=

{
(x/a)n + (x/a)−n

2

}2

.

We can then write T as

T =
1

2v

a∫

0

[(x

a

)n

+
(x

a

)−n
]
dx

=
1

2v




a∫

0

(x

a

)n

dx +

a∫

0

(x

a

)−n

dx


 .

Letting u = x/a (dx = adu), we then have

T =
1

2v




1∫

0

unadu +

1∫

0

u−nadu


 =

a

2v

[
un+1

n + 1
+

u−n+1

−n + 1

]∣∣∣∣
1

0

=
a

2v

(
1

1 + n
+

1

1− n

)
=

a/v

1− n2
, n =

w

v
.

This makes sense for 0 ≤ n < 1. Notice that if n = 0 (no wind) then T = a/v, which

is simply the time the plane requires to fly straight along the x-axis from (a, 0) to

(0, 0) at a speed v. As n approaches one from below, of course, we see T → ∞ as

expected.

For the total distance flown by the plane when n is “just less” than one, that is,

for the case where the plain “just managers” to reach city C, recall that at n = 1

the plane’s path is the parabola

y =
a

2

[
1−

(x

a

)2
]

.
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As n approaches one, then, the upward curved part of the flight path of the plane

approaches this parabola, as illustrated in Figure 3.5. Let us look at the three plots

which are for n = 0.98, n = 0.99, and n = 0.999, all for a = 1. From these curves it

should be clear that the length of the longest flight path that just manages to reach

city C is bounded from above by

a

2
+

a∫

0

√
1 +

(
dy

dx

)2

dx,

where the second term is the length of the parabolic arc. The first term, of course, is

the length of the final leg of the journey back down along (almost along) the vertical

axis to city C at the origin. On the parabolic arc we have

dy

dx
= −a

2
2
(x

a

) 1

a
= −x

a
,

and so our answer is

a

2
+

a∫

0

√
1 +

(x

a

)2

dx.

If we change variables to u = x/a (dx = adu), our answer becomes

a

2
+

a∫

0

√
1 + (u)2adu = a


1

2
+

1∫

0

√
1 + u2du




or,

a

[
1

2
+

{
u
√

u2 + 1

2
+

1

2
ln

(
u +

√
u2 + 1

)}]∣∣∣∣∣

1

0

= a

[
1 +

√
2 + ln(1 +

√
2)

2

]
= 1.6478a.

This is the total distance flown by the plane when n = 1 − ε, where ε > 0, but is

arbitrary small.
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Figure 3.6: The geometry of the tractrix problem, where a watch-on-a-chain with the
chain of length a is initially on the y-axis, the end of the chain is pulled along the
x-axis from the initial position on the origin

3.4 The Tractrix

In the late seventeenth century there was also a different pursuit curve (as you will

see, it is better to call this curve the following curve or the tailing curve) [20]. An

example of such a problem (with the tailing curve) is illustrated in Figure 3.6, where

a watch-on-a-chain has been laid out on a table-top with the chain (of length a)

pulled out. In our thesis we follow the statement given in [20]. The watch is initially

on the y-axis, and the other end of the chain is on the origin. If the end on the

origin is then pulled along the x-axis, the watch will obviously be dragged along. We
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are interested in the equation of the watch’s path, known as the tractrix. It was first

introduced by Claude Perrault in 1670, and later studied by Sir Isaac Newton (1676)

and Christian Huygens (1692) [18].

If (x, y) is the location of the watch at some arbitrary time t ≥ 0, then it is clear

that the taut chain is tangent to the tractrix at (x, y). This crucial observation allows

us to calculate where the pulling end of the taut chain is (always on the x-axis), as

follows. The slope of the tangent line is dy/dx and so, from analytic geometry, we

have the equation of the tangent line as

y = x
dy

dx
+ b, (3.26)

where b is some constant. Let xi be the value of x where the pulling end of the chain

is located, by definition y = 0 there. So,

b = −xi
dy

dx
,

and therefore, the equation of the tangent line that intersects the x-axis at x = xi is

y = x
dy

dx
− xi

dy

dx
= (x− xi)

dy

dx
. (3.27)

From the Pythagorean theorem we then have

(x− xi)
2 + y2 = a2,

or, using (3.27) to solve for (x− xi), we have

y2

(dy/dx)2 + y2 = a2,

or
[

y

dy/dx

]2

= a2 − y2. (3.28)

Taking the positive square root of both sides of (3.28), and noting that dy/dx is

negative (look at Figure 3.6 again), we arrive at

− y

dy/dx
=

√
a2 − y2, (3.29)
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Figure 3.7: A depiction of the tractrix given by equation (3.31) for a = 1

a differential equation in which we can separate the variables. That is,

dx +

√
a2 − y2

y
dy = 0. (3.30)

Integrating indefinitely (with C as the arbitrary constant), we have

x +
√

a2 − y2 − a ln

(
a +

√
a2 − y2

y

)
= C.

Since y(x = 0) = a, we have C = 0 and so the equation of the watch’s path as it is

being dragged is

x = a ln

(
a +

√
a2 − y2

y

)
−

√
a2 − y2. (3.31)

Figure 3.7 shows the tractrix of (3.31) for the case of a = 1.

Finally, it is interesting to contrast the tractrix with Bouguer’s pure pursuit curve

for the special case of equal speeds for the pirate ship and the merchant vessel. The

two curves seemingly have a common property, as the dragged watch is a constant

distance from the pulled end of the chain, and the pirate ship ends up a constant

distance behind the fleeing merchant vessel. The expression of (3.17) and (3.31) are
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quite different. The reason is that for the tractrix the constant lag of the watch is

always the case, while the constant lag of the pirate ship is an asymptotic property

that develops with the passage of time.
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Figure 3.8: Schematic of the pursuit by interception problem with pursuer T (Tor-
pedo) and evader E (Enemy ship) moving with constant speeds VT and VE, respec-
tively

3.5 Apollonius Pursuit Problem

In this section we talk about a question that you may have already thought about -

since the merchant vessel being pursued by Bouguer’s pirate ship always sails along

a straight line, why does the pirate use pure pursuit (meaning that the pirate ship

is moving directly at the instantaneous location of the merchant vessel) to run down

his victim? Why doesn’t the pirate ship simply sail along the straight line path that

will intercept the merchant? Bouguer himself was not oblivious to that possibility.

As Puckette [26] puts it, “[Bouguer] makes it quite clear that the pursuing ship could
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catch its quarry much more quickly by ‘heading it off’ than by merely following it

(assuming the line of flight remains a straight line)”.

There are at least two answers to that question (for a broader discussion see [20]).

First, of course, the pure pursuit problem is simply interesting from a mathematical

point of view. And second, if the merchant vessel deviates from its straight path

and starts executing an active evasion plan, then the pirate ship is going to have to

recalculate its intercept course continually anyway. A pure pursuit strategy is just

one way to specify how to do repetitive new course calculations. And, in any case,

even for the merchant vessel sticking to a straight line escape path, determining

the intercept course for the pirate ship is a nontrivial calculation. In the days of

submarine warfare in World War II [20], for example, this was a most practical

problem - submarines fired their torpedoes on intercept courses at unsuspecting,

that is, nonmaneuvering, enemy surface ships. Today, it isn’t such an important

problem because, unlike the torpedoes from yesteryear, modern torpedoes use what

is called “active tracking”, that is, they have onboard sensors and computers that

continually locate the target no matter how that target moves. Still, the mathematics

of interception remains elegant.

Let us suppose that the torpedo T is to intercept an enemy surface ship E (as

shown in Figure 3.8), with E moving on a straight path and T moving on a straight

path to intercept E at point I. If we assume that E and T move with constant speeds

VE and VT, respectively, then at the intercept point I the ratio of the two distances

travelled from the instant of the torpedo firing must equal the ratio of the two speeds,

IT

IE
=

VT

VE

= k, (3.32)

where k is a constant (k > 1 is the usual case, but the k < 1 case will be of interest

to us, too, before we are done).

Equation (3.32) is the mathematical statement of the physically obvious fact
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Figure 3.9: The Apollonius circle centered on (2/3, 0) with radius 2/3, given by
equation (3.34) for m = 1, p = 2, and k = 2, so that the torpedo is located at T(2, 0)
and the enemy ship is at E(1, 0)

that, for an interception to occur, the torpedo and the ship must reach point I

simultaneously. It is not enough for E and T to pass thorough I individually - they

must be at I at the same time. To find where I is, given the locations of E and

T at time t = 0, the two speeds VE and VT, and the direction of E’s motion (the

“heading” of E), what we must do first is find the set S of all the points in the plane

such that (3.32) is satisfied. The point I can be any one of the points (there can be

more than one) in S that also lie on the path of E.

Now we need to identify, what is S. With no loss in generality we can draw a

rectangular coordinate system such that E and T are both, at t = 0, on the positive

horizontal axis with T to the right of E (see Figure 3.9). If we denote the coordinates

of E and T by (m, 0) and (p, 0), respectively, with p > m (we use m and p to retain
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a link with our original discussion of Bouguer’s merchant vessel and pirate ship) and

if (x, y) is any point in S, then (3.32) becomes

√
(x− p)2 + y2

√
(x−m)2 + y2

= k. (3.33)

If you now go through a few algebraic manipulations, then you should be able to

confirm that (3.33) can be written as

[
x− k2m− p

k2 − 1

]2

+ y2 =

[
k(p−m)

1− k2

]2

. (3.34)

But this is the equation of a circle, with it center on the horizontal axis at ((k2m−
p)/(k2 − 1), 0) and a radius of k(p − m)/|1 − k2|. The set S is a circle, called

the Apollonius circle of the two points E and T (in their t = 0 locations on the

horizontal axis), which is named after the third-century B.C. Greek mathematician

Apollonius of Perga [20]. Apollonius realized (in his lost work Plane Loci) that (3.32)

is a way to define a circle in a manner different from the usual Euclidean geometry

definition (the path traced by a moving point that remains a fixed distance from a

given point). The definition in (3.32) predates Apollonius, however, being known a

century earlier to Aristotle. If m = 1, p = 2, and k = 2, for example, the Apollonius

circle is centered on (2
3
, 0) with a radius of 2

3
; see Figure 3.9, where the center of

the Apollonius circle is marked with an X and labeled small circles indicate the

initial locations of the torpedo and the enemy ship. For the submarine to determine

where to aim its torpedo (that is, to locate the point I), all that remains to do is to

see where E’s path intersects the Apollonius circle. The intersection point is I. For

example, you can see from Figure 3.9 that I is, approximately, at (1, 0.58) if E has

a heading angle of 90◦.

Now, what if k < 1, meaning, what if the torpedo is slower than the surface ship?

To be specific, let us now take k = 1/2, which reduces (3.34) (with m = 1 and p = 2)
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Figure 3.10: The Apollonius circle centered on (7/3, 0) with radius 2/3, given by
equation (3.34) for m = 1, p = 2, and k = 1/2, so that the torpedo is located at
T(2, 0) and the enemy ship is at E(1, 0)

to (
x− 7

3

)2

+ y2 =

(
2

3

)2

.

That is, the Apollonius circle is still of radius 2/3, but now is centered on (7/3, 0),

which means the center of the Apollonius circle is now to the right of the initial

location of T, as shown in Figure 3.10. You can see that now the torpedo may or

may not be able to intercept the enemy ship - it is all a function of the heading angle

of the ship. If the heading angle is sufficiently small that the ship’s path crosses

the Apollonius circle, then an interception by a slow torpedo of a fast enemy ship

is possible (in fact, there will generally be two possible interception points), a result

that often surprises.

Instead of considering specific values of k, m, and p, it is not at all difficult to
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Figure 3.11: The general geometry for a slow torpedo (T) interception of a fast enemy
surface ship (E) (heading with an angle θ), where the Apollonius circle for the points
(m, 0) and (p, 0), p > m, is given by equation (3.34) for k < 1

be much more general and to derive an astonishingly simple condition that will tell

us, for any k < 1, if a slow torpedo interception is, first, even possible and, if it is,

where on the Apollonius circle the submarine should aim its slow torpedo. Equation

(3.34) tells us that, for k < 1, the Apollonius circle for the points (m, 0) and (p, 0),

p > m, is centered on the point C at ((p − k2m)/(1 − k2), 0) and has a radius

of k(p − m)/(1 − k2), as illustrated in Figure 3.11. Now, imagine that the enemy

ship’s heading angle is θ, so that the ship just touches the Apollonius circle at A.

If the absolute value of the heading angle is greater than θ then no interception is

possible, and if the absolute value of the heading angle is less than θ then the enemy

ship’s path will cross the Apollonius circle twice and so there will be two possible

interception points I. We can find a formula for θ, as follows.

The line AC, a radius of the Apollonius circle, is perpendicular to the tangent

line EA, and so the triangle ECA is a right triangle. Thus,

sin θ =
AC

EC
. (3.35)
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The radius of the circle, as started before, is

AC =
k(p−m)

1− k2
,

while

EC = ET + TC = (p−m) +

(
p− k2m

1− k2
− p

)
=

(p−m)

1− k2
.

Inserting these expressions for AC and EC into (3.35) we arrive at

sin θ = k =
VT

VE

,

that is,

θ = sin−1

(
VT

VE

)
. (3.36)

If α is the heading angle of the enemy surface ship, then an interception using a slow

torpedo is possible if −θ ≤ α ≤ θ, and impossible otherwise.

Therefore, we can conclude that Apollonius circles can be used in the PE problems

to analyze how to find a better strategy to escape or prolong the capture time

whenever a successful escape is not possible.
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The Evasion Problem

4.1 Statement of the Problem

In this chapter we present PE problems with the emphasis on evasion. Let us assume

that two points, one of which we shall call “pursuing” (P) and the other “evading”

(E), are moving in X ⊂ Rn:

x′ = f(x, t), y′ = g(y, v, t), (4.1)

where v, V , and y(t) are the control parameter, the control region, and the trajectory

of the motion of the evading point E, respectively, and x (t) is the trajectory of the

motion of the pursuing point P.

Let v(t) be a certain admissible control (i.e., piecewise continuous), and let x (t)

and y(t) be the corresponding trajectories with initial conditions

x(0) = x0, y(0) = y0. (4.2)

If x (t1) = y(t1) for some t1 > 0, we shall call t1 an encounter time, and the very

occurrence that x (t1) = y(t1) will be referred to as an encounter. If the control v(t)
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is chosen arbitrarily, an encounter may not occur for any t > 0. If an encounter

does occur, we shall call the control (which is an admissible control) v(t) an evading

control. Even then, for the given x0, y0, and the chosen control v(t), more than one

encounter may take place. We shall call the largest positive number t1, which is an

encounter time, the evading time corresponding to the control v(t). We shall denote

the evading time by

T = max
v∈V

Tv. (4.3)

In what follows, the initial conditions (4.2) will be assumed to be fixed (in this

connection, x0 and y0 do not enter into the notation for the evading time). Therefore,

we get a statement of the evasion problem .

Definition The problem is called an evasion problem if it is defined by equations

(4.1) - (4.3)

x′ = f(x, t), y′ = g(y, v, t),

x(0) = x0, y(0) = y0,

T = max
v∈V

Tv,

where x and y belong to X ⊂ Rn, v ∈ V ⊂ Rr and is admissible (piecewise conti-

nuous).
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Figure 4.1: P and E defending and attacking, respectively, the target area C

4.2 Isaacs’s Problem

One of the classic general evasion problems is Isaacs’s guarding the target problem

by the American mathematician Rufus Isaacs (1914 - 1981) [6], [14],[20], [27]. Isaacs

states his problem, along with giving its general solution, as follows.

“Both P and E (pursuer and evader) travel with the same speed. The motive of

P is to guard a target C, which we take as an area in the plane, from attack by E.

The optimal strategies for both P and E are: draw the perpendicular bisector of PE

(where P and E denote starting positions). Any point in the half-plane above this

line can be reached by E prior to P , and this property fails in the lower half-plane.
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Figure 4.2: The geometry of Isaacs’s problem for P defending a point target C, and E
attacking same target; l1 is the perpendicular bisector of PE, l2 is the perpendicular
line segment from C to l1

Clearly, E should head for the best of his accessible points. Let D be the point of the

bisector nearest C. The optimal strategies for both P and E decree that they travel

toward D. When does the capture occur?”

The military conception of this problem by Isaacs is, E must reach at least the

boundary of C to be successful in his attack. It may seem easy for E to reach

an interior point of C (and thus, hit C), but it is not necessarily true. Here P is

successful in defeating E if the capture point D (see Figure 4.1) is anywhere outside

C. However, we need to know some additional information about the shape and

dimensions of C to say more about the strategies of P and E, and the solution of
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the given problem.

Let us assume that C is, for example, the location of a specific enemy commander,

or an enemy radio transmitter. Let us also consider that E is carrying an explosive

device, which, when detonated, has a circular radius of destruction R > 0. For P let

us say that it can stop E only by direct impact, i.e., P must intercept E. Therefore,

for E to be successful, it must come within a distance less than or equal to R before

P reaches E. Now the problem can be formulated in the following manner: “we

have a crude model for an attacking missile versus a missile defense system that is

supposed to protect an area, for example, a city, against a ballistic missile attack”

[20].

Without any loss of generality we can place P at time t = 0 at the origin of an

x-y coordinate system, and the point target C on the x-axis at x = xc > 0. That is,

the target is to the right of P . The case where the target is initially to the left of P

is a mirror-image of our assumed case.

Let E be at (x0, y0) at time t = 0. We need to remark that we consider the case

where C is not one of the E’s accessible points, i.e., assume that y0 is sufficiently

large. If C is one of E’s accessible points, E can destroy C by actually reaching C

before P can reach E.

We can easily find the equation of the bisector line l1

y = −x0

y0

x +
x2

0 + y2
0

2y0

, (4.4)

which has the required slope and pass through the point midway between P and E

at time t = 0, i.e., the point (x0/2, y0/2). Then, l2 is the perpendicular line segment

from the point target C to l1, and the length of l2 is the closest approach distance

of E to C. The slope of l2 is y0/x0 and, since it passes through the point (xc, 0), we

get the equation of l2:

y =
y0

x0

x− y0

x0

xc. (4.5)
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Thus, the point of closest approach of E to C is the intersection of l1 and l2, which

is the point (X, Y ). Hence, we can find the values of X and Y from the equations

(4.4) and (4.5):
y0

x0

X − y0

x0

xc = −x0

y0

X +
x2

0 + y2
0

2y0

,

which gives us

X =
y2

0

x2
0 + y2

0

xc +
x0

2
, (4.6)

and from any of the two equations we had above (4.4), (4.5) we get

Y =
y0

x0

(
y2

0

x2
0 + y2

0

xc +
x0

2

)
− y0

x0

xc. (4.7)

Now we can find the length (squared) of l2, and it is (X − xc)
2 + Y 2, or

[
y2

0

x2
0 + y2

0

xc +
x0

2
− xc

]2

+

[
y0

x0

(
y2

0

x2
0 + y2

0

xc +
x0

2

)
− y0

x0

xc

]2

,

which after simplifying will be equal to

[x0 (x2
0 + y2

0)− 2xcx
2
0]

2

4x2
0 (x2

0 + y2
0)

.

Then, for E to achieve its mission goal of destroying C, the circular radius of de-

struction R (squared) of E’s weapon must exceed the length (squared) of l2, i.e.,

R2 >
[x0 (x2

0 + y2
0)− 2xcx

2
0]

2

4x2
0 (x2

0 + y2
0)

,

or

R >
x0 (x2

0 + y2
0)− 2xcx

2
0

2x0

√
x2

0 + y2
0

.

Therefore, we get

R

xc

>
(x0/xc)

2 + (y0/xc)
2 − 2 (x0/xc)

2
√

(x0/xc)
2 + (y0/xc)

2
= F

(
x0

xc

,
y0

xc

)
. (4.8)

Figure 4.3 shows several of the curves that represent the right-hand side of (4.8).

Each curve gives the minimum value of R/xc, as a function of x0/xc, for a given
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Figure 4.3: Plot of F (x0/xc, y0/xc) given in equation (4.8) as a function of x0/xc

for a given fixed value of y0/xc (y0/xc = 1.1, 2, 3, 4, 5, 6, 7). Each curve gives the
minimum value of R/xc

fixed value of y0/xc (the label-value next to each curve). From these curves E can

determine the minimum value of R (the amount of explosive) required for success in

destroying C as a function of both E’s starting point and the location of the target.
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4.3 Lady in the Lake Problem

The lady in the lake problem became famous decades ago, when it appeared in

Martin Gardner’s “Mathematical Games” column in Scientific American [11] in 1975.

Gardner presented the problem as follows:

A young lady was vacationing on Circle Lake, a large artificial body of water

named for its precisely circular shape. To escape from a man who was pursuing her,

she got into a rowboat and rowed to the center of the lake, where a raft was anchored.

The man decided to wait it out on shore. He knew she would have to come ashore

eventually. Since he could run four times faster than she could row, he assumed

that it would be a simple matter to catch her as soon as her boat touched the lake’s

edge. But the girl - a mathematics major at Radcliffe - gave some thought to her

predicament. She knew that on foot she could outrun the man (which does raise the

question of why such a smart lady got herself into this situation in the first place by

rowing out into a lake!). It was only necessary to devise a rowing strategy that would

get her to a point on shore before he could get there. She soon hit on a simple plan,

and her applied mathematics applied successfully. What was the girl’s strategy?

The lady’s escape strategy consists of two stages. She first hops into her boat

and rows away from the raft in such a way that she, the raft, and the man are always

collinear. This first part of the lady’s rowing path will clearly have to change direction

constantly to continually maintain collinearity because the man will instantly begin

running around the lake’s edge in his attempt to intercept her at the shore. This

is illustrated in Figure 4.4, where we assumed that the man runs counterclockwise

around the lake. We will show later that the lady can maintain collinearity at least

for a while. Let us assume that the man runs at speed v and that the lady rows with

speed αv. Thus, in the original statement of the problem α = 0.25. We see from

Figure 4.4 that the man opens up the angle θ at the rate of dθ/dt = v/R, where θ is
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Figure 4.4: The first stage of the lady’s escape

measured with respect to the line initially joining the man and the lady on the raft.

Without any loss of generality we can assume that this initial line is the vertical axis

of our coordinate system, as shown in Figure 4.4. Since the lady’s angular speed

component must be

vθ = r
dθ

dt

for her to maintain the raft between herself and the man, we can write her angular

speed as

vθ = v
r

R
. (4.9)

The farther she gets from the raft, then, (4.9) tell us, the greater must be her angular

speed if she is to maintain collinearity.

Next, since the lady’s total speed through the water is αv, her radial speed
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component (vr) must be such that

v2
r + v2

θ = (αv)2,

because her total speed is geometrically represented by the hypotenuse of a right

triangle, with perpendicular sides vr and vθ. Thus,

vr =
√

α2v2 − v2
θ =

√
α2v2 − v2

r2

R2
,

or

vr =
dr

dt
= v

√
α2 − r2

R2
. (4.10)

The lady has a positive vr (that is, she moves ever closer to shore, all the while

keeping half the lake between herself and the man) as long as α2 − r2/R2 > 0, that

is, until r = αR. At the instant her vr drops to zero she switches to the second stage

of her escape strategy, which we will describe below.

First, let us calculate, how long it takes her to arrive at the condition vr = 0.

Since dt = dr/vr, then if we call t = T the time at which vr = 0, we have

T∫

0

dt = T =

αR∫

0

dr

vr

=

αR∫

0

dr

v
√

α2 − r2/R2
=

R

v

αR∫

0

dr√
(αR)2 − r2

=
R

v

(
sin−1

( r

αR

))∣∣∣
αR

0
=

R

v
sin−1(1),

or

T =
πR

2v
. (4.11)

When the lady arrives at the circle with radius αR centered on the raft, at time

t = T , she has arrived at what we call the “go-for-broke” circle, because now that

she is no longer moving ever closer to shore with the first part of her escape strategy,

she forgets about maintaining collinearity and simply rows straight for shore at her
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full water speed of αv. She has distance R− αR to row (at speed αv) and the man

has distance πR (half the circumference of the lake) to run at speed v. She gets to

shore before he gets to her if

R− αR

αv
<

πR

v
,

or

R(1− α) < παR,

or

1− α < πα,

or

1 < α(1 + π),

or, at last, if

α > 1/(1 + π) = 0.241453. (4.12)

Since α = 0.25 in the Scientific American version of the problem, we see that this

two-stage escape strategy works and that the lady’s virtue is preserved.

Of course, if α is sufficiently large there is no need for a two-stage escape strategy.

It is easy to see that if α is “big enough” then all the lady needs to do is immediately

row directly to shore, to the point directly opposite the man’s location. She gets to

shore before he gets to her if

R

αv
<

πR

v
,

that is, if α > 1/π = 0.3183099.... Still, while not essential for her, the two-stage

strategy will give the lady a little extra head start on the man, and it is interesting

to calculate how much this head starts is for α = 1/π. As before, in the two-stage

strategy the man, the raft, and the lady remain collinear until the lady reaches the

go-for-broke circle, with radius αR = R/π. Then she rows straight for shore, now
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distance R − R/π = R(1 − 1/π) away. Since her rowing speed is αv = v/π, this

requires a time (during her second stage) of

R(1− 1/π)

v/π
=

R

v
(π − 1).

The man reaches her landing point on the shore after running halfway around the

lake, which requires a time (starting at the instant the lady “goes for broke”) of

πR

v
=

R

v
π.

So, she arrives at her landing point on the shore before he does by a time interval of

R

v
π − R

π
(π − 1) =

R

v
.

To put this head start (in time) in perspective, it is the time it takes the man to run

distance R, the radius of the lake.

Let us suppose now that the lady does not have a big α. Suppose, in fact, that

it is smaller than (1 + π)−1. Is it then impossible for her to escape from the man?

Actually, if we make a plausible assumption about the man’s reasoning (meaning, he

is rational), then it is still possible for a slow-rowing lady to escape. Since the lady

is a Radcliffe math major, and the man surely knows some math, too, therefore, let

us assume that, as soon as the lady leaves the raft and begins to execute the first

stage of her escape strategy, the man deduces what she is up to. That is, he observes

that as he moves, she moves to keep the raft between him and her even as she moves

ever closer to the shore. He then further deduces that as soon as she reaches her

go-for-broke circle she will head straight for the shore. So, here is our assumption

- as soon as he sees her go to the second stage of her escape strategy, that is, at

the instant she makes straight for shore, he stops watching her carefully and simply

runs around the lake to the point on the shore where he now knows she is heading.

The only thing that will cause him to reevaluate matters is if the lady stops her

go-for-broke rowing and, for whatever reason, begins to move back toward the raft.
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Figure 4.5: The instant when the lady reaches her go-for-broke circle

However, being a clever math major, and knowing her α is less than (1 + π)−1,

she has one last trick up her sleeve. She will, indeed, row a straight-line path to

shore as soon as she reaches her go-for-broke circle, but it will not be the shortest

distance straight-line path that the man thinks she will row. To see what she has in

mind instead, look at Figure 4.5, where, with no loss in generality, we put the lady’s

position at the instant she reaches her go-for-broke circle at (αR, 0). The man’s

position at that instant is (−R, 0). In the notation of the Figure 4.5, φ is the angle

the straight line joining the raft to the lady’s landing point on the shore (S) makes

with the horizontal axis. The man is assuming that φ = 0, but he is wrong, as you

will see soon.

Let us talk about the lady’s new escape strategy. First, we will simplify our

calculations by noticing that the ratio of the radius of the go-for-broke circle to the

radius of the lake is αR/R = α. If we next denote the radius of the go-for-broke
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circle as our unit distance, then αR = 1, and so

α = 1/R. (4.13)

What this means is that if we wish to find the smallest value for α for which the lady

can still escape, then an equivalent problem is that of finding the largest R for which

the lady can still escape. And finally, since the lady rows at speed αv, we can write

her rowing speed as (1/R)v = v/R. We can now set the problem up mathematically

as follows. When the lady reaches her go-for-broke circle (point L in the figure), she

is distance αR = 1 from the raft, and the law of cosines tells us that the distance

LS she has left to row to the shore to reach point S is

LS =
√

1 + R2 − 2R cos φ.

This takes her a time interval of

LS

v/R
=

√
1 + R2 − 2R cos φ

v/R
=

R

v

√
1 + R2 − 2R cos φ (4.14)

to row.

The man is running clockwise around the lake to S (see Figure 4.5). We will

quote Schuurman and Lodder [29] about what both the lady and the man conclude

once she reaches her go-for-broke circle: “... she performs an infinitesimal radial

feint (toward the shore that leads the man to start running clockwise). From the

moment on, (the man’s) best policy is to continue running clockwise if (the lady)

goes to shore along a straight line not crossing the (go-for-broke) circle. If (the man)

would return, a new diametrical mutual position, advantageous to (the lady) would

be established.” This last sentence is important to understand. It points out that

the man should at any time reverse his running direction around the lake, then the

lady could, at the least, start rowing directly away from him at the instant of his

reversal and head straight for shore. That would have her starting the second stage

of her original escape strategy from a point beyond the go-for-broke circle, and yet
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still leave the man with half the lake’s circumference to travel. Even better (from

the lady’s point of view), would be for her to simply flip the sign of φ, and then

the situation is just as it was before he switched. So, once the man has committed

to a running direction, we see that he gains nothing by reversing his decision - he

therefore will run through the angle π +φ to reach S. The time required for the man

to run distance (π + φ)R around the lake to S is

R

v
(π + φ). (4.15)

Thus, the lady will just escape the man if the two times given by (4.14) and (4.15)

are equal, that is, if

π + φ =
√

1 + R2 − 2R cos φ.

Squaring both sides and solving for R gives

R = cosφ±
√

cos2 φ + (π + φ)2 − 1,

and since R > 0 we must use the plus sign,

R = cosφ +
√

cos2 φ + (π + φ)2 − 1. (4.16)

Figure 4.6 shows the behavior of R(φ), and it is obviously a nondecreasing function

of φ. To find the smallest α for which the lady escapes we must use the largest

possible value for R (see equation (4.13)). That is, we want to find the value of φ

that maximizes R(φ). Now, even though R continually gets bigger with increasing

φ, there is a limit on how big φ can be. If φ exceeds the value it has such that the

line LS (in Figure 4.5) is tangent to the go-for-broke circle, then the lady’s rowing

path will take her back inside the go-for-broke circle, that is, she will have a radial

speed component pointing back toward the raft (which is not a feature we expect

in an escape strategy). That is, the lady should pick φ such that the line LS is

perpendicular to the x - axis. From Figure 4.5 we see that this value of φ (= φt)

satisfies the condition

cos(φt) = αR/R = 1/R.
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Figure 4.6: The radius of the lake R(φ) (in radians) given by equation (4.12)

If we substitute this condition in (4.16) we get

1

cos(φt)
= cos(φt) +

√
cos2 φt + (π + φt)2 − 1,

which reduces to the equation

tan(φt) = π + φt. (4.17)

It is clear, simply by sketching the curves for each side of (4.17), that there is a solu-

tion to (4.17) somewhere in the interval (0, π/2). In [20] it was found (by numerical

means) with the result φt = 1.3518168... radians, that

cos(φt) = 1/Rmax = αmin = 0.2172336....

Alternatively, the lady can escape even if the man runs 1/αmin = 4.6033388... times

as fast as she can row, which is significantly greater than the factor of four given in

the Scientific American version of the problem.
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Chapter 5

Pursuit-Evasion Problem as an

Optimal Control Problem

5.1 Basic Concepts

Let us assume that two points, one of which we shall call “pursuing” and the other

“pursued” or “evading”, are moving in X ⊂ Rn. The motion of each of these points is

subject to its own particular system of differential equations with its own particular

control parameter. We shall denote the control parameter, the control region, and the

trajectory of the motion of the pursuing point by u, U ⊂ Rr, and x (t), respectively.

We shall denote these quantities for the pursued point by the symbols v, V ⊂ Rr,

and y(t).

Let u(t) and v(t) be certain admissible controls (i.e., piecewise continuous), and

let x (t) and y(t) be the corresponding trajectories with initial conditions

x(0) = x0, y(0) = y0. (5.1)

If x (t1) = y(t1) for some t1 > 0, we shall call t1 an encounter time, and the very
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occurrence that x (t1) = y(t1) will be referred to as an encounter. Generally speaking,

if u(t) and v(t) are chosen arbitrarily, an encounter may not occur for any t > 0.

If an encounter does occur, we shall say that u(t) is a pursuing control (for a given

control v(t), and for given initial conditions x0 and y0). Even then, for the given x0,

y0, v(t), and the chosen control u(t), more than one encounter may take place. We

shall call the smallest positive number t1, which is an encounter time, the pursuit

time corresponding to the controls u(t) and v(t). We shall denote the pursuit time

by Tu,v. In what follows, the initial conditions (5.1) will be assumed to be fixed (in

this connection, x0 and y0 do not enter into the notation for the pursuit time).

Henceforth, we shall assume that the pursuing point has the following property:

for every given control v(t) there exists (for given initial conditions (5.1)) a pursuing

control u(t).

If the control v(t) of the evading point has been chosen, we can pose the problem

of finding a pursuing control u(t) such that the corresponding pursuit time Tu,v takes

on a minimal value. We shall assume that there exists, for every admissible control

v(t), an admissible control u(t) which brings about the minimum of the pursuit

times. We shall denote the minimum by Tv:

Tv = min
u

Tu,v.

Furthermore, we shall assume that there exists an admissible control v(t) which

brings about the maximum of the values of Tv. We shall denote this maximum by

T :

T = max
v

Tv = max
v

(min
u

Tu,v). (5.2)

Similarly,

T = min
u

Tu = min
u

(max
v

Tv,u).

Moreover,

min
u

(max
v

Tv,u) = max
v

(min
u

Tu,v).
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The problem consists of finding a pair of admissible controls u(t) and v(t) such

that Tu,v = Tv,u = T . Such a pair u(t) and v(t) will be called an optimal pair

of controls ; the corresponding pair of trajectories x (t) and y(t) (with initial values

(5.1)) will be called an optimal pair of trajectories. Thus, the control u (for a given

control v(t)) is to be chosen in such a way that the encounter of the pursuing and

pursued points will take place as soon as possible. The choice of the control v, on

the other hand, is aimed at putting off the encounter as long as possible.

Remark Let us consider the case explained by equation (5.2). Note, that in choosing

the control u(t) (which defines the motion of the pursuing point), we shall always

assume that the control v(t) for the evading point is known beforehand.

In accordance with this fact, in order to determine T , first the minimum with respect

to all possible controls u(t) is taken for a certain fixed control v(t), then the maximum

with respect to all possible controls v(t) is taken.

To solve the given problem, we shall assume that the motion of the pursuing

point in X is described by the linear equation (in vector form)

dx

dt
= f(x, u) ≡ Ax + Bu + c, (5.3)

for which the corresponding control region U is a closed, convex, bounded polyhedron

in Rr, of the variable u = (u1, ..., ur). Let the motion of the evading point be described

by the equation (in vector form)

dy

dt
= g(y, v, t) (5.4)

and let the corresponding control region V be a set in the s-dimensional space Rs of

the variable v = (v1, ..., vs). We shall assume that the set of all piecewise continuous

controls is the class of admissible controls (both for u and for v). We shall impose

the usual conditions (continuity in y, v, and t, and continuous differentiability with
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respect to the coordinates y1, ..., yn of y) on the coordinates of the vector function

g(y, v, t).

To solve the given problem we can use Pontryagin’s maximum principle. We shall

introduce two auxiliary vectors

ψ = (ψ1, ..., ψn), χ = (χ1, ..., χn),

and two Hamiltonian functions

H1(ψ, x, u) =
n∑

α=1

ψαfα(x, u) = (ψ, f(x, u)),

H2(χ, y, v) =
n∑

α=1

χαgα(y, v, t) = (χ, g(y, v, t)),

corresponding to the pursuing and pursued objects. We can write the following two

systems of equations for the auxiliary unknowns ψi and χi with the aid of H1 and

H2:

dψi

dt
= −∂H1

∂xi
, i = 1, 2, ..., n, (5.5)

dχi

dt
= −∂H2

∂yi
, i = 1, 2, ..., n, (5.6)

Suppose that u(t), x(t), v(t) and y(t) are given. Then, if we substitute these

functions in the right-hand sides of systems (5.5) and (5.6), we obtain linear systems

in the unknowns ψi and χi. Every solution ψ(t), χ(t) of these systems will be said to

correspond to the chosen functions u(t), x(t), v(t), and y(t). The following theorem

gives a necessary condition for optimality in the problem under consideration.

Theorem 5.1.1 Let u(t) and v(t) be an optimal pair of controls, let x(t) and y(t) be

the corresponding optimal pair of trajectories, and let T be the pursuit time. Then,
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there exist nontrivial solutions ψ(t) and χ(t) of systems (5.5) and (5.6) which cor-

respond to u(t), x(t), v(t), and y(t) such that:

1. the Maximum conditions

max
u∈U

H1(ψ(t), x(t), u) = H1(ψ(t), x(t), u(t)), (5.7)

max
v∈V

H2(χ(t), y(t), v) = H2(χ(t), y(t), v(t)) (5.8)

hold for all t, 0 ≤ t ≤ T;

2. At the time t = T, the conditions

H1(ψ(T ), x(T ), u(T )) ≥ H2(χ(T ), y(T ), v(T )), (5.9)

ψ(T ) = χ(T ) (5.10)

hold.

The details of the proof of theorem 5.1.1 are long and involved, the reader can

find them in [24]. Although this theorem gives the necessary conditions of optimality

for PE problems (and it can be generalized to multiple pursuers and multiple evaders

as in [7]), the fact is that the PE problems studied below can be analyzed directly

by more elementary methods.
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5.2 Simple Pursuit in the Plane

In the simple pursuit problem (we follow the representation given in [12]) two players

move in the Euclidean plane R2 with simple motion: each has a bound on his speed,

but there are no further restrictions (e.g., abrupt directional changes are allowed).

One player, the pursuer, wishes to capture the other, the evader, that is, attain

perfect coincidence of their terminal positions. Here if α > β holds, for the pursuer’s

speed bound α and the evader’s β, then termination is assured in finite time, whatever

the initial positions and action of evader. On the other hand, in the case α ≤ β the

evader can avoid capture forever from any positions not in contact initially.

First, let us discuss briefly some aspects of simple motion for a single player. If

the player’s position at time t ∈ R1 is denoted by x(t) ∈ R1, then the velocity vector

is ẋ(t), and the speed |ẋ(t)|. Thus the dynamical constraint is |ẋ | ≤ α, and the

following holds for the control u:

ẋ = u; u : R1 → R1, |u(t)| ≤ α. (5.11)

Hence,

x(t) = x(0) +

t∫

0

u(s)ds

for some function u(·) as given above. For simplicity let us place the origin at x(0),

so that x(0) = 0.

We want to know, where can the player get to at time t. The constraint on u(·)
yields

|x(t)| ≤
t∫

0

|u(s)| ds ≤ αt.

Any point y with |y| ≤ αt can be “attained” by control u:

u(s) =





α y
|y| , for 0 ≤ s ≤ |y|;

0, for |y| < s ≤ t.
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Figure 5.1: Simple motion in the plane. Point x moves anywhere within Ax(3) at
time t = 3; if its position y at t = 1 or z at t = 2 is known, the possibilities are:
reduce to Ay(2) or Az(1).

Thus, the attainability set (“reachable set”) can be defined by A0 = {y : |y| ≤ αt}.
Figure 5.1 shows the simple motion in the plane, according to the defined attainability

set rule.

Let us return to the game, in the case α > β. If the pursuer’s motion is x:

R1 → R1 and the evader’s y : R1 → R1, the equations of motion are

ẋ = u, ẏ = v (5.12)

for suitable controls u, v : R1 → R2 with all values |u(t)| ≤ α, |v(t)| ≤ β. At any

time denote the player’s distance by r = |x− y|. Then

rṙ =
d

dt
· 1

2
|x− y|2 = (x− y)′ · (ẋ− ẏ) = (x− y)′u− (x− y)′v. (5.13)
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The natural strategy for the pursuer is to take

u = ẋ = α
y − x

|y − x| =
α

r
(y − x).

Then, in (5.13),

rṙ = −α
r2

r
− (x− y)′v ≤ −αr + rβ = −(α− β)r

by Cauchy’s inequality on the last term. Therefore, as long as r > 0, we have

ṙ ≤ −(α− β),

r(t) ≤ r(0)− (α− β)t = |x0 − y0| − (α− β)t.

This shows that capture (r = 0) for the case α > β must occur at some time T with

T ≤ |x0 − y0|
α− β

. (5.14)
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5.3 One-dimensional Rocket Chase

Next, we consider a general problem of the rocket chase and we base the discussion

on [12].

Two players move on a straight line, the pursuer having a bound on his accele-

ration, the evader a bound on his speed. The game ends when the pursuer attains a

previously given distance from the evader.

There is an obvious solution: the pursuer uses all his capabilities to move toward

the evader, who is then captured within a bound time interval. (The precise time

bound will depend on the parameters of the game, and on the initial positions.)

If x : R1 → R1 describes the pursuer’s motion, and y : R1 → R1 describes the

evader’s motion, then the equations of motion are

ẍ = u, ẏ = v

for admissible u, v : R1 → [−1, 1]. Consider 1 as a bound for both controls, and ε

as the evader’s distance, 0 ≤ ε < +∞. Thus, the evader moves on R1 with simple

motion, in the sense of what is given in the previous example. The pursuer’s motion

is described by

x(t) = x(0) + ẋ(0)t +

t∫

0

s∫

0

u(r)drds = x(0) + ẋ(0)t +

t∫

0

(t− s)u(s)ds (5.15)

and suggested by the attainability sets in Figure 5.2, where

x0 + ẋ0t− t2

2
≤ x(t) ≤ x0 + ẋ0t +

t2

2
,

y0 − t ≤ y(t) ≤ y0 + t,

since u = v = 1.
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Figure 5.2: Phase portrait of motion in ẍ = u in the x-y plane, where x(t) is given
by equation (5.15) for x(0) = 0, ẋ(0) = 2; attainability sets at t = 2/3, 4/3, 2, 8/3
for the same initial values x(0) and ẋ(0). The vertex loci are parabolas ẋ = y =
±

√
2(x + 2)

The first-order version of the motion equation is the dynamical equation for the

two-player system:

ẋ1 = x2, ẋ2 = u, ẋ3 = v.

Subsequently the matrix form of this will be treated,




ẋ1

ẋ2

ẋ3


 =




0 1 0

0 0 0

0 0 0







x1

x2

x3


 +




0

u

0


 +




0

0

v
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Figure 5.3: Trajectories of ẋ = y−v, ẏ = u in the x-y plane with u = v = ±1 outside
target |x| ≤ ε

the termination condition |x− y| ≤ ε translating to

(1, 0,−1)




x1

x2

x3


 ∈ [−ε, ε].

Thus, the natural phase space is R3. This can be reduced to R2 by introducing

new variables x = x1−x3, y = x2. The resulting equations and termination condition
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Figure 5.4: Trajectories of ẋ = y − v, ẏ = u in the x-y plane. From point a evader
mistakenly chooses v = −1, but reverses his choice at b; capture occurs at c (later
than it would have occurred at d)

are

ẋ = y − v, ẏ = u; |x| ≤ ε. (5.16)

Let us assume (for a preliminary orientation), that both players’ controls are

constant on some time interval. The differential equation for the trajectories, with

dy

dx
=

ẏ

ẋ
,
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is

(y − v)
dy

dx
= u, (y − v)2 = 2ux + const. (5.17)

The point then moves along the parabola, upward for u > 0 and downward for u < 0,

(see Figure 5.3 with u = v = 1 in the left half plane, and u = v = −1 in the right).

Now let us suppose that, at some point to the left of the target, the evader chooses

a control other than v = 1, and pursuer sticks with u = 1. The motion then proceeds

along another parabola (with axis y = v, see Figure 5.4 for v = −1). Therefore,

capture, even with ε = 0, can be ensured from all initial positions, for example, by

taking u = 1 quite indifferent to evader’s action.
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5.4 Pursuit on a Sphere (Kelley’s game)

Another example is given by pursuit on a sphere, originally formulated by Kelly. We

follow the presentation of [12].

Two players move on the two-sphere S2 in R3, each with a fixed bound on his

speed. The game ends at the coincidence of positions.

Here the idea is that “in a dogfight, the planes tend to move in a circular fashion”.

The simplification does away with one significant aspect of actual combat: that the

roles of the pursuer and the evader are not fixed, but may well switch back and forth.

The outcome is similar to the simple motion problem (section 5.2). Let us denote

the pursuer’s speed bound by α, the evader’s by β. If α > β, the pursuer can force

termination from any initial position, within a bounded time interval. In the case

α < β the evader can avoid capture at all times t > 0 (and the stand - off situation

α = β is rather too sensitive to details in the specification of the players’ strategies).

Let us talk about these different games. In the case α > β, first assume that the

players are not at diametrically opposite points initially. Then there is the unique

shortest arc γ of a great circle joining their positions. By a parallel shift along γ,

move a neighborhood of the evader’s position to the pursuer’s (this “action at a

distance” serves to identify the control of the evader). The pursuer then uses the

control u = v + w, where the first component neutralizes the evader’s action, the

second, w with magnitude |w| = α − β in the direction of γ, serves to decrease the

player’s distance (at a rate α−β, see section 5.3) until capture occurs. If their initial

positions are opposite, then any constant control u with |u| = α > β, applied over a

short interval, will achieve non-opposing positions. By a like reasoning, in the case

α < β the evader can maintain forever an initial distance from the pursuer.

The idea is probably clear enough, and will apply equally well to simple pursuit on

98



Chapter 5. Pursuit-Evasion Problem as an Optimal Control Problem

an n - dimensional Riemannian manifold (thus, the “diametrically opposite points”

would be replaced by conjugate points). Consider the motion of a single player over

the unit sphere Sn−1 of Rn. If its motion is described by x : R1 → Rn, x(0) ∈ Sn−1,

then x(t) will remain on Sn−1 iff |x(t)|2 is constant, i.e., x is perpendicular to ẋ = dx
dt

.

Further, the motion will be “simple” if the only further dynamical restriction is a

magnitude bound on ẋ. We wish to express this as a relation between ẋ and suitable

arbitrary controls u.

Lemma 5.4.1 (for a broader discussion see [12]) For any points a 6= b on Sn−1 there

is a mapping x, y 7→ E(x, y), defined for x, y near a, b and with (n, n − 1) matrices

as values, analytic in the coordinates of x, y and such that

x′E(x, y) = 0, E ′(x, y)E(x, y) = In−1, (5.18)

y′E(x, y) = | sin ϕ|(1, 0, ..., 0), (5.19)

where ϕ is the angle between x and y.

Proof By assumption, the vectors a, b are independent, so that there is a basis for

Rn of the form a, b, c3, ..., cn. Then

x, y, c3, ..., cn (5.20)

remain independent if x, y are close enough to a, b. Apply the Gram-Schmidt orthogo-

nalization process to the sequence (5.20), obtaining orthonormal vectors e1, e2, ..., en.

Since |x| = 1, we have e1 = x, and, in the second step,

e2 =
y − (x′y)x

|sin ϕ| , (5.21)

since

|y − (x′y)x|2 = 1− (x′y)2 = 1− cos2 ϕ.
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Collect the column vectors e2, ..., en into the (n, n - 1) matrix E(x, y). Equation

(5.18) holds since (x,E(x, y)) is orthonormal. The first coordinate of y′E(x, y) is

y′e2 = | sin ϕ| from (5.21). The remaining coordinates are 0, since ek is perpendicular

to both e1 = x and e2, and hence to y also. This completes the proof.

Corollary 5.4.2 On the neighborhood of any point on Sn−1 there is an analytic

mapping x 7→ E(x), whose values are (n, n− 1) matrices, and

x′E(x) = 0, E ′(x)E(x) = In−1, E(tx) = E(x) for t > 0. (5.22)

Proof The corollary will follow on taking y = b 6= ±a, and defining E(x) = E(x, b).

Positive homogeneity is ensured by extending E(·) in the obvious manner, namely

E(tx) = E(x) for t > 0.

Returning to Kelly’s game (actually, for dimension’s n ≥ 2), we may choose the

state space description

ẋ = E(x, y)u, ẏ = E(y, x)v.

The control values in Rn−1 are constrained by |u(t)| ≤ α, |v(t)| ≤ β. The initial

positions are on the unit sphere. If ϕ is the angle between x, y, and r = | sin ϕ|, then

rṙ =
1

2

d

dt
sin2 ϕ =

1

2

d

dt
(1− (x′y)2)

= −(x′ẏ + y′ẋ) = −x′E(x, y)v − y′E(x, y)u.
(5.23)

Write u = −v +w with w ∈ Rn−1 to be chosen subsequently, subject to |w| ≤ α−β.

Then, using (5.19),

rṙ = (−x′E(y, x) + y′E(x, y))v − y′E(x, y)w

= 0− | sin ϕ|(1, 0, ..., 0)w ≤ −r(α− β)
(5.24)

on taking w′ = (α − β)(1, 0, ..., 0). Thus, ṙ ≤ −(α − β) < 0, and sin ϕ = 0 can be

attained in finite time, i.e., the capture is in finite time.
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Conclusions

In this thesis we studied a family of mathematical problems known as pursuit-evasion

problems (PE). We presented PE problems within the classes of pursuit problems,

evasion problems, and pursuit-evasion problems. We restricted the discussion to the

deterministic approach of PE problems, and stated PE problems as optimal cont-

rol problems. Because of that, we formulated the general optimal control problem,

and discussed the two main approaches to solve this problem, namely, Pontryagin’s

maximum principle (Theorems 2.2.1, 2.2.2) (where we introduce a hamiltonian func-

tion) and Bellman’s method of dynamic programming (equation (2.29)) (where we

gave a simple example from dynamic programming to explain the main ideas of the

method). To compare the two solutions we provided an example, where Pontrya-

gin’s principle applied, but Bellman’s failed because the control was discontinuous

(Bang-Bang Problem) . Thus, we proved that the assumption on the continuous

differentiability of the functional (2.6), minimizing the transition time from the ini-

tial point to some other given terminal point, did not hold in the simplest cases.

Therefore, we showed that in general Bellman’s consideration yields a good heuristic

method, rather than a mathematical solution of the problem.
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Since there are different formulations of PE problems, we stated the definition of

the PE problem from the point of view of the pursuer, the evader, and both. For the

pursuit problems, we presented some main examples, namely, the Pierre Bouguer’s

pursuit problem, the wind-blown plane problem, the tractrix, and the Apollonius

pursuit problem. In the Pierre Bouguer’s pursuit problem, which we explained as a

pure pursuit problem, we treated the case of a pirate ship pursuing a merchant vessel,

and determine the equation of the the trajectory of the pirate ship (the pursuer),

called the line of pursuit. We identified when did the capture occur, and talked about

the cases where the pirate ship was slower than the merchant vessel (no capture),

and where the pirate ship was faster than the vessel (there was a capture, and we

calculated the total distance travelled by the pirate ship until its capture of the

merchant vessel for that case). It was also interesting for us to find out that in the

case where the pirate ship and the merchant vessel had equal speeds, the pursuit

became a vertically upward tail chase, since the pirate ship pulled into behind of the

merchant vessel.

In the other important example of the pursuit problem, we talked about the

pursuit of a stationary target, namely, the problem where the plane went to the city

C due west of his starting point, and the wind blew from the south. Here we identified

that for the no wind case (when the ration of the wind’s speed and the plane’s speed

is zero) the plane moved directly to the city C while always remaining on the x-

axis. For the case where the wind and the plane had equal speeds we presented

the plane’s path and showed the different situation that happened according to the

initial position of the plane. Also, when the ratio of the speeds was less that one,

the plane did reach the city, and we calculate the time of the trip.

The other pursuit curve we talked about was the tractrix, which we showed got

its name because of its path looking as the following curve, or the tailing curve. We

compared the tractrix with Bouguer’s pure pursuit curve for the special case of equal
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speeds for the pirate ship and the merchant vessel. Thus, we realized that the results

were quite different, since for the tractrix the constant lag was always the case, while

the constant lag of the pirate ship was an asymptotic property that developed with

the passage of time.

Then, we presented Apollonius pursuit problem, where we discussed a method of

interception, which is of great interest for the PE problems. We provided an example

of a torpedo (T) trying to pursuer an enemy ship (E). Here we identified the three

main cases of the location of T and E. We defined the set S of all the points in the

plane so that the interception can be obtained. This set S is known as the Apollonius

circle, and it is broadly used in the PE problems for analyzing how to find a better

strategy to escape or prolong the capture time whenever a successful escape is not

possible. Again, we talked about the cases of the speed differences, namely, for the

fast torpedo we determined that the interception would occur, for the slow torpedo

the interception might or might not occur.

Next, we defined the evasion problem and provided one of the general examples

of those problems, called the Isaac’s guarding the target problem, where we had P

guarding the target area C from attack by E. We formulated the military conception

of this problem, and identified the equation that gave us the evasion curves. More-

over, we showed how to determine the minimum value of the amount of explosive

(that E carries) required for success in destroying the target area C, as a function of

both E’s starting point and the location of the target.

After that we provided a problem about the lady in the lake and the man who

was trying to track her down. We talked about the strategies the lady had to have

in order to escape the man, and explained each of the possible cases. Here we

defined another interesting definition, known as a go-for-broke circle which we got

by formulating the lady’s strategies.
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Finally, we formulated the PE problem, where there were both objects of the

PE game, the pursuer P and the evader E. We stated the necessary conditions of

optimality for those PE problems, which were similar to Pontryagin’s maximum

principle presented before. We provided examples of a simple pursuit in the plane,

that we used as an example of the simple motion of P and E in the plane. We

explained, what did we mean by the reachable set for this case, and compared the

dynamical constraints of both P and E. In the one-dimensional rocket chase problem

we presented the solution that could be used in other PE problems as an example

of the problem, where the game ended when the pursuer attained a previously given

distance from the evader. Here we discussed the different strategies the two objects

had to pursuer there goal. Kelly’s game is an example of a pursuit on a sphere, where

the idea is that in a dogfight, the planes tend to move in a circular fashion. We

expressed the relation between the objects’ speeds and there controls. The outcome

was important, and could be used as a simple motion of the PE problem on a sphere.
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