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Abstrat

When trying to solve elliptial problems suh as the Poisson problem on ompliated

domains, one proedure is to split the domain into a union of simpler subdomains.

When solving these problems iteratively, it beomes important to be able to preon-

dition the oupling between the subdomains. Using the Poisson problem as a test

ase, this thesis explores one idea for preonditioning this oupling, an idea based on

interpolative deomposition and random matries. We �nd that this proedure does

reate an e�ient preonditioner to get at the oupling between subdomains.
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Chapter 1

Introdution

1.1 Objetive

When trying to solve elliptial problems suh as the Poisson problem on ompliated

domains, one proedure is to split the domain into a union of simpler subdomains.

These subdomains may overlap or share ommon boundaries. We shall be looking

at the non-overlapping ase. When solving these problems iteratively, it beomes

important to be able to preondition the oupling between the subdomains. Using

the Poisson problem as a test ase, this thesis explores one idea for preonditioning

this oupling, an idea based on interpolative deomposition and random matries.

1.2 Preliminaries

1.2.1 Linear systems

Finding solutions to nonsingular linear systems of the form

(1.1) Ax = b,

where A is a large m×m matrix and b is a size m vetor, is an ongoing issue today in

many real world problems. There are basially two methods to solving these systems,
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a diret method or an iterative method.

In exat arithmeti, diret methods reover the exat solution x = A−1b in a

�nite number of operations. For very large matries however, they tend to run into

problems with time as well as storage. Gaussian Elimination is an example of the

diret method.

Iterative methods reate a sequene of improving approximations to the solu-

tion until this solution meets a satisfatory tolerane. Examples of iterative methods

inlude Jaobi's Method, Gauss-Seidel, and Suessive Over-Relaxation method. An-

other popular method, appliable to the ase where A is symmetri positive de�nite,

is the Conjugate Gradient Method whih is diret in priniple. For a size N system,

it is diret in exat arithmeti if N iterations are done, however in appliation it is

desirable to perform far fewer iterations. One reason these iterative methods have

gained suh popularity lately is that in some problems, the number of unknowns are

a million or more, making diret methods unusable. In our study, we will use itera-

tive methods ombined with preonditioning to solve the variable oe�ient Poisson

problem.

1.2.2 Preonditioning

The use of preonditioning is an important ongoing area of study in today's teh-

nology �elds. Given a linear system like (1.1), sometimes it is better to hange the

struture of the system by introduing a preonditioner in order to solve it more

e�iently. Preonditioning is a way for improving the ondition number of a matrix,

whih renders an assoiated linear system more amendable to solution by iterative

methods.

We an solve (1.1) indiretly by solving

(1.2) M−1Ax =M−1b.

M is hosen suh that k(M−1A) ≪ k(A), where k is the ondition number. Therefore,

with M hosen appropriately, (1.2) an be solved faster than the original problem.
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Ideally, a good hoie forM would be something lose to A, yet also easy to onstrut,

invert, and apply. Also, this preonditioned system (1.2) is not atually formed in

pratie, rather it has the ability (in ode) to apply A and apply M−1
.

1.3 Outline

The outline for this thesis is as follows. In our �rst main hapter, we will go into detail

about various fatorization tehniques, e.g., the singular value deomposition and

pivoted-QR fatorization. We will disuss di�erent approximations whih stem from

these fatorizations. We are interested in these approximations beause they will

redue the omputational ost involved in eventually �nding satisfatory solutions

to our problem. We will then show a tehnique inorporating random matries as

well as �nding the interpolative deomposition of matries. These onepts will be

used in later hapters to test ertain proposed methods for preonditioning using the

Poisson problem. We will also look at a spei� algorithm reated by G. W. Stewart

for �nding the pivoted-QR fatorization in a reative way. This algorithm will be

used beause of it is unique properties.

Chapter 3 will involve solving the variable oe�ient Poisson problem using the

�nite element method. We will go into detail of what the �nite element method is

and how it is derived. We will desribe the proedure for reating a mesh grid to

use as our domain. We will reate a [0, 1] × [0, 1] grid of randomly hosen interior

points to use as our domain, but also try a [0, 1] × [0, 1] domain with uniformly

spaed points for omparison as well. We will state our problem's details and de�ne

the solution as well so that we an test the error estimates in the end. We will also

desribe the set up for implementing the proedure for repeatable tests. To make

sure our algorithm is set up orretly and onverges orretly, we will reate an FEM

onvergene test plot, whih will also be used in omparison of di�erent values of the

variable oe�ient.

The �nal hapter will entail putting onepts from the previous hapters to work
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for our ultimate goal of onstruting and testing our preonditioners. First, we will

split our previous domain up into two subdomains. They will share a boundary side

whih often times is not easy to aount for. We will desribe a way to aount for

this onforming piee using tehniques from the earlier hapters. Then, using it along

with the two subdomain piees together, should work as a good preonditioner to

solve the Poisson problem we wish to solve. To test the validity of our preonditioner,

we will solve the problem using other preonditioners too, and we will show the

results in a table. We an then ompare and ontrast the e�ienies of the di�erent

methods. We will also disuss the ost of onstruting our preonditioner and �nally,

possibilities for appliations in the future.
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Chapter 2

Low-rank approximation of matries

In this hapter we desribe di�erent proedures for �nding low-rank approximations

of matries.

2.1 Singular value deomposition

The singular value deomposition, or SVD, is a matrix fatorization whih has great

value in linear algebra problems. From [6℄, given A ∈ R
m×n

where m ≥ n and A has

full olumn rank n, the redued SVD of A is the fatorization

(2.1) A = Û Σ̂V T ,

where

Û ∈ R
m×n

has orthonormal olumns,

Σ̂ ∈ R
n×n

is diagonal,

V ∈ R
n×n

is orthogonal.

The full or "thik" SVD A = UΣV T
features a square m × m orthogonal matrix

U = [Û , Ũ ], with Σ =
[

Σ̂
0

]

∈ R
m×n

padded with zeros. The diagonal entries σj of Σ̂

are non-negative and in non-inreasing order; σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The SVD is

one of the most reliable fatorizations, but unfortunately it is also one of the most
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expensive. Aording to [7℄, the ost of omputing the SVD ould be as muh as

∼ 4m2n + 22n3
.

The SVD also allows for low-rank approximations of a matrix. One way to do

this is to get rid of "small" singular values. We hoose a k < n that we think (or

hope) might give good results. Again, A's singular values are σi where i = 1, ..., n.

Now we set σk+1:n to zero "by hand". This de�nes a matrix

(2.2) Σ̂(k) =



























σ1
.

.

.

σk

0
.

.

.

0



























with whih we de�ne

(2.3) A
(k)
SVD

= Û Σ̂(k)V T = Û



























σ1
.

.

.

σk

0
.

.

.

0



























V T .

A
(k)
SVD

learly has rank-k, sine from (2.3) only k olumns of Û partiipate in the

multipliation. In fat, A
(k)
SVD

is the optimal rank-k approximation to A in the 2-norm

(and also the Frobenius norm) [6℄. That is

(2.4) ‖A− A
(k)
SVD

‖2 = min{‖A−B‖2 : B is rank k}.

While A
(k)
SVD

is in this sense the optimal approximation of A, due to the high ost of

the SVD, it is often prohibitively expensive to ompute.
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2.2 Pivoted-QR fatorization

The QR-fatorization an be omputed in various ways. We have used an algorithm

due to Stewart [4℄, desribed later in Setion 2.2.4. For now we present the struture

of the fatorization, and show how it may be used to onstrut a low-rank approx-

imation of a matrix A. From this point forward, we will be dealing with the ase

where A is a square matrix.

2.2.1 Basi struture

A "thin", or redued, pivoted QR-fatorization of a rank p matrix A is

(2.5) Am×m · Pm×m = Qm×p · Rp×m.

P is a permutation matrix, Q is a matrix with orthonormal olumns, and R is an

upper triangular matrix. With some manipulation,

(2.6) AP = QR = Q [R11, R1,p+1] = QR11

[

I, R−1
11 R1,p+1

]

,

R11 is p × p and R1,p+1 is p × m − p. For better visualization, we use northwest

indexing at times, for example with R11, in whih eah blok arries the indies of

the element in the northwest orner. By assumption, (i) AP 's �rst p olumns are

linearly independent, (ii) the olumns of Q are orthonormal, and (iii) R11 is upper

triangular with no zeros on the diagonal. From the last equation,

(2.7) (AP )(:, 1 : p) = QR11.

Due to ondition (iii), R11 has linearly independent olumns and is therefore in-

vertible and therefore equation (2.6) makes sense. The ost of omputing the QR

fatorization using Householder triangularization is ∼ 4
3
m3

. [6℄

2.2.2 Rank-k approximation

The pivoted-QR algorithm also de�nes a low-rank approximation to a matrix A.

Although p is the rank of A, we would like to approximate A by a lower rank, say k.
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One again, we start with a thin pivoted QR-fatorization of a rank p matrix A,

(2.8) Am×m · Pm×m = Qm×p · Rp×m.

P is a permutation matrix, Q is a matrix with orthonormal olumns, and R is an

upper triangular matrix. We partition the equation AP = Qm×p · Rp×m as

(2.9) A = [Qm×k, Qm×(p−k)] ·





R11 R1,k+1

0 Rk+1,k+1



 · P T
m×m.

If A were exatly rank-k then Rk+1,k+1 = 0, so to get a low-rank approximation to

A, we drop Rk+1,k+1 and write

(2.10) A
(k)
QR

= Qm×k · [R11, R1,k+1] · P
T
m×m

as a rank-k approximation to A.

2.2.3 Errors

Now we shall alulate the error ‖A− A
(k)
QR

‖2. We �nd

A−A
(k)
QR

=
[

[Qm×k, Qm×(p−k)] ·





R11 R1,k+1

0 Rk+1,k+1



 · P T

− [Qm×k, Qm×(p−k)] ·





R11 R1,k+1

0 0



 · P T
]

= [Qm×k, Qm×(p−k)] ·





0 0

0 Rk+1,k+1



 · P T .

(2.11)

Realizing that [Qm×k, Qm×(p−k)] and P T
both have orthonormal olumns and that

‖ · ‖2 is invariant under orthogonal transformations [6℄, taking the 2-norm of both

sides of the equation gives us

‖A−A
(k)
QR

‖2 =

∥

∥

∥

∥

∥

∥

[Qm×k, Qm×(p−k)] ·





0 0

0 Rk+1,k+1



 · P T

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥





0 0

0 Rk+1,k+1





∥

∥

∥

∥

∥

∥

2

= ‖Rk+1,k+1‖2

(2.12)
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Assuming we have hosen an appropriate k, ‖Rk+1,k+1‖2 will be small enough and

A
(k)
QR

will be a good approximation to A (assuming that a good approximation is even

possible; it depends solely on the A as well as the k).

2.2.4 Stewart's algorithm

In the previous setions, we have desribed how a low-rank approximation omes

from a fatorization. In Setion 2.1 we began with an SVD fatorization, and then

we threw out singular values to get our approximation. In Setion 2.2.2 we started

with a QR fatorization, then we partitioned it to get rid of unwanted terms to get

our approximation.

In this setion we desribe an algorithm by Stewart [4℄ to approximate a matrix

A by a rank-k matrix A(k)
. This algorithm is based on a pivoted QR fatorization,

but it is halted at an appropriate time during the fatorization. Unlike the previous

approximations, one advantage this algorithm gives us is, that it allows us to reate

the approximation without atually doing the full fatorization �rst.

Table 2.1: Trunated pivoted QR fatorization algorithm from Stewart [4℄

Given an m × n (m ≥ n) matrix A this algorithm returns a trunated

pivoted QR deomposition of A. Initially, the matries Q and R are void.

1. νj = ‖A[:, j]‖2, j = 1, . . . , n
2. Determine an index n1 suh that νn1 is maximal

3. For q = 1 to n
4. A[:, q] ↔ A[:, nq]
5. R[1 : q − 1, q] ↔ R[1 : k − 1, nq]
6. Q[:, q] = A[:, q]−Q[:, 1 : q − 1] ∗R[1 : q − 1, q]
7. R[q, q] = ‖Q[:, q]‖
8. Q[:, q] = Q[:, q]/R[q, q]
9. If neessary reorthogonalize Q[:, q] and adjust R[1 : q − 1, q]
10. R[q, q + 1 : n] = Q[:, q]T ∗ A[:, q + 1 : n]
11. νj = νj − R[q, j]2, j = q + 1, . . . , m
12. Determine an index nq+1 ≥ q + 1 suh that νnq+1 is maximal

13. If (νnq+1 is su�iently small) leave q �
14. end for q.
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Table 2.1 shows the steps in Stewart's algorithm. To �nd the omplexity of the

algorithm, we must examine eah line thoroughly. The ost of line 6 is ∼ mn2−4mn.

Line 7 alulates a matrix norm whih osts ∼ 2mn − n. Line 8 osts ∼ mn. The

ost of line 10 is ∼ mn2 −mn − n2/2 + n/2. And line 11 is ∼ 2mn − n2 + n. The

overall ost for this proedure when not halted is roughly ∼ 2mn2
. If we replae line

3 with "q = 1 to k" and remove line 13, then it beomes a rank k approximation.

This would drop the ost down to ∼ 2mk2 whih ould be quite signi�ant (as stated

previously, the ost of omputing the QR fatorization for a square matrix using

Householder triangularization is ∼ 4
3
m3

).

This algorithm is also partiularly useful for sparse matries beause it has the

extra bene�t of not destroying the sparsity of A, if present. The prie paid here is

that it relies on lassial Gram-Shmidt whih is known to be numerially unstable.

Although one would think to use modi�ed Gram-Shmidt to help with stability, this

would be unwise. Modi�ed Gram-Shmidt does projetions onto all of the olumns

as it goes along, yet in this algorithm most likely, we will end up not even using

many of those olumns in the end. So, not only would this be doing unneessary

work, it would also destroy the sparsity of a sparse matrix. To ombat this stability

problem, we use the algorithm with reorthogonalization (see line 9).

2.3 Randomized algorithm for the interpolative de-

omposition

2.3.1 Interpolative deomposition

The interpolative deomposition of a matrix A involves hoosing spei� olumns of

the matrix and reating a "olumn skeleton" matrix B of the original matrix. Let

matrix A be size m×m and have rank p. The deomposition is

(2.13) Am×m = Bm×p · Cp×m.
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Matrix B's olumns onsist of a subset of the olumns of matrix A. Matrix C has

the form where some subset of its olumns are the anonial basis vetors ej where

j = 1, ..., p.

A hosen k < p, where the (k+1)st singular value of A is su�iently small, from

[3℄ it turns out, will give us a good approximation,

(2.14) Bm×k · Ck×m ≈ Am×m.

We now use results from Setion 2.2 to �nd the B and C we need. Using equation

(2.10), we have A
(k)
QR

= QR11 · [I, R
−1
11 R1,k+1] · P

T
. The QR11 is the matrix B we are

striving for, while

[

I R−1
11 R1,k+1

]

P T
is our C. The algorithm from Table 2.1 will

be used to ollet all these important piees and have ready at hand for use in the

upoming setion.

2.3.2 The randomized algorithm

We will now be desribing a tehnique using random matries to onstrut an inter-

polative deomposition using a hosen rank as in Setion 2.2.2 together with onepts

from previous setions. This follows losely from [3℄. As stated previously, the Stew-

art algorithm is espeially good for sparse matries and for retaining the matrix's

sparsity. This algorithm will be used, although here the issue of sparsity plays no

role.

First we form a new ℓ × m matrix Y by multiplying our original matrix A by

a randomly generated ℓ × m matrix N . Here ℓ is our guess for k, perhaps a little

larger, p > ℓ & k. The matrix N 's entries are eah distributed as a Gaussian random

variable of zero mean and unit variane.

(2.15) Yℓ×m = Nℓ×m · Am×m.

From general matrix multipliation, Y 's rows are linear ombinations of matrix A's

rows. The oe�ients in these linear expansions are random variables, and we there-

fore assume that suh a reombination of the rows leaves the linear dependenies of
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the olumn spae intat. We an then apply the algorithm in Table 2.1 to this new

Y to �nd its interpolative deomposition.

Muh like (2.6) in Setion 2.2, we now seek a fatorization

(2.16) Yℓ×m · Pm×m = Q̃ℓ×k · Rk×m.

The R we get here should be the same one as the one in (2.6) in theory but in

pratie, it may be a little o� due to round-o� error. The algorithm will identify the

important k hosen olumns of Y . We then use those k hosen olumns but instead

of Y , we hoose them from our original matrix A. This beomes our olumn skeleton

matrix B that we were striving for. The algorithm also returns for us its R11, R1,k+1,

and P whih we will need to reate the matrix

(2.17) C =
[

I R−1
11 R1,k+1

]

P T .

We now have the piees to make A,

(2.18) Bm×k · Ck×m ≈ Am×m.

Use of random matries allows us to ompute the relevant fatorization on a smaller

problem. The randomized algorithm used here is displayed in Appendix B. This

method has a high probability of approximating the matrix A within reason, while

taking less operations in doing so.

2.3.3 Testing the algorithm

In order to know if the algorithm in Table 2.1 is indeed in working order, we must test

it out to see if the results are reasonable. We will repeat an experiment demonstrated

in [3℄.

We apply the algorithm to matries A given by the formula

(2.19) A =
∆100

||∆100||2
+

1

ν2
c · cT ,

where c is the ν2×1 olumn vetor whose entries are all ones, and ∆ is the standard

�ve-point disretization of the Laplaian on a ν× ν uniform grid (all of the diagonal
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entries of ∆ are equal to −4, ∆p,q = 1 if the grid points p and q are neighbors, and

all other entries of ∆ are zeros.) A is an m×m matrix, and m = ν2. The Laplaian

to suh a high order features high-order derivatives and therefore ∆100
has a very

large null spae.

The results of the set of tests are shown in Table 2.2. Table 2.2 's olumns are:

• m is the dimensionality of the m×m matrix A.

• k is the rank of the matrix approximating A.

• ℓ is the �rst dimension of the ℓ×m matrix N .

• σk+1 is the (k + 1)st greatest singular value of A, that is, the spetral norm of

the di�erene between A and the optimal rank-k approximation to A.

• δ is the spetral norm of the di�erene between the original matrix A and

its approximation obtained via the algorithm of appendix A. We denote the

spetral (ℓ2 - operator) norm of A by ‖A‖2. ‖A‖2 is the greatest singular value

of A.

The singular values σi measure the errors in the 2-norm. Again, σk+1 gives

the optimal rank-k approximation in the 2-norm, although omputing this requires

omputing the SVD of the matrix whih sales like O(m3) for an m×m matrix. The

omputed δ's ome at a ost of O(ℓ ·m2) and yet are aeptably lose to the optimal

σk+1 values.

The δ's from Table 2.2 were hosen as a representative of many; trial runs, ran

with di�erent random matrix Ns per trial. The results in Table 2.2 are onsistent

with those obtained in [3℄.
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Table 2.2: Interpolative Deomposition of the m×m matrix A.

m k ℓ σk+1 δ
400 48 56 .277E-08 .361E-07

1600 192 200 .449E-08 .234E-06

3600 432 440 .457E-08 .610E-06

6400 768 776 .553E-08 .218E-05

10000 1200 1208 .590E-08 .367E-05
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Chapter 3

Finite element method - 2D Poisson

problem

The �nite element method (FEM) is a numerial method used in omputational anal-

ysis, mehanial and strutural engineering problems, as well as problems involving

liquid �ow and heat loss. As this presentation follows [2℄ losely, our fous is on using

the FEM to solve partial di�erential equations (PDE).

3.1 Variable oe�ient Poisson problem

Let u and f be funtions of x and y. The standard two-dimensional Dirihlet-Poisson

problem is

(3.1) −∆u = f on Ω, where ∆u =
∂2u

∂x2
+
∂2u

∂y2
and u = 0 on ∂Ω.

Here, ∆ is the Laplae operator. Written another way,

(3.2) ∆u = ∇ · ∇u,

where ∇u is the gradient of u, i.e. ∇u =
(

∂u
∂x
, ∂u
∂y

)

.

We will work with a variable oe�ient version of (3.1). Generalizing (3.2) we
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onsider

(3.3) −∇ · ρ∇u = f in Ω, u = 0 on ∂Ω,

where our domain Ω is the [0, 1]×[0, 1] square in R
2
with boundary ∂Ω. The funtions

f and ρ are given, and ρ is smooth and stritly positive on Ω.

We seek a weak formulation of (3.3). This weak formulation will then be dis-

retized in a �nite dimensional spae, whih will result in a linear problem whose

solution approximately solves the original problem.

We now multiply (3.3) by a test funtion φ and integrate over Ω, thereby �nding

−

∫

Ω

φ∇ · ρ∇u dA =

∫

Ω

φf dA, where φ ∈ V.

The spae V is de�ned as follows:

V =
{

φ : φ is ontinuous on Ω, ∂φ/∂x and ∂φ/∂y are pieewise ontinuous on Ω,

and φ = 0 on ∂Ω
}

.

Integration by parts shows that

−

∫

Ω

φ∇ · ρ∇u dA = −

∫

Ω

(

∇ ·
(

φρ∇u
)

− ρ∇φ · ∇u

)

dA

= −

∫

∂Ω

φρ n̂ · ∇u ds+

∫

Ω

ρ∇φ · ∇u dA.

Sine φ ∈ V , we know φ
∣

∣

∂Ω
= 0, and so

−

∫

∂Ω

n̂ · φρ∇u ds = 0.

Therefore, for any suh test funtion

−

∫

Ω

φ∇ · ρ∇u dA = −

∫

Ω

ρ
(

∇φ · ∇u
)

dA.

The weak formulation of (3.3) is

(3.4)

∫

Ω

φf dA = −

∫

Ω

ρ
(

∇φ · ∇u
)

dA ∀ φ ∈ V.

We now have a weak formulation of (3.3). We shall now disretize (3.4) using the

Finite Element Method.
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3.2 Triangularization of geometry and FEM approx-

imation

In this setion, we reate a triangularization and a disretization in a �nite dimen-

sional spae; as desribed in [2℄. We must now onstrut a �nite dimensional subspae

Vh of V . For simpliity we shall assume Ω is a polygonal domain. Now, we reate a

triangulation of Ω by subdividing it into a set T = {T1, ..., Tm} of non-overlapping

triangles Ti,

Ω = T1 ∪ T2 ∪ ... ∪ Tm.

We de�ne Vh as follows:

Vh =
{

φ : φ is ontinuous on Ω, φ
∣

∣

T
is linear for T ∈ T ,

and φ = 0 on ∂Ω
}

.

This de�nition ensures that Vh ⊂ V . The spae Vh onsists of all the ontinuous

funtions that are linear on eah triangle T and vanish on ∂Ω.

We now must hoose a basis orresponding to the triangularization for the set of

test funtions. We hoose values φ(ni) at the nodes ni, i = 1, ...,M of T but exlude

the nodes on the boundary sine φ = 0 on ∂Ω. The orresponding pieewise linear

basis funtions φj are de�ned by,

φj(ni) = δij =







1 if i = j

0 if i 6= j
where i, j = 1, ...,M.

We shall replae φ with φk for any k, and replae u(x) with

uh(x) =

M
∑

j=1

ujφj(x), for x ∈ Ω, where uj = uh(xj).

We now enfore (3.4) for all φ ∈ Vh, rather than φ ∈ V . Sine (3.4) is linear in φ,
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this restrition is equivalent to

∫

Ω

φkf dA = −

∫

Ω

ρ
(

∇φk · ∇uh
)

dA ∀ k

= −

∫

Ω

ρ
(

∇φk · ∇
(

M
∑

j=1

ujφj

))

dA

= −

M
∑

j=1

[
∫

Ω

ρ∇φk · ∇φj dA

]

uj.

Introdue the matrix S with elements

(3.5) Skj =

∫

ρ∇φk · ∇φjdA,

whih obeys

∫

Ω

ρ
(

∇φk · ∇uh
)

dA =

M
∑

j=1

Skjuj

and the right hand side of our linear system is

(3.6) bk =

∫

Ω

φkf dA.

Clearly, sine the dot produt is symmetri, this matrix S is symmetri. Also, we

have

〈v, Sv〉 = vTSv

=

M
∑

i,j=1

visijvj

=

M
∑

i,j=1

vi

(
∫

ρ∇φi · ∇φjdA

)

vj

=

∫

ρ (∇vh · ∇vh) dA where vh =
M
∑

i=1

viφi

〈v, Sv〉 =

∫

ρ ‖∇vh‖
2 dA > 0 for v 6= ~0.

Sine ρ > 0, we see that S is positive de�nite. S is also a sparse matrix sine most

of its entries are zero (Skj = 0 when nj , nk are not on the same triangle T ).

Our problem is now disretized in a �nite dimensional spae whih will allow us

to proeed in �nding an approximate solution.
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3.3 Numerial implementation for Ω = [0, 1]× [0, 1]

To implement our algorithm, we must �rst input ertain parameters. The number of

edge points per side, nedge, around our square mesh must be hosen and will ditate

how many internal nodes, nint, there will be; nint = (nedge − 1)2. Also, we all the

total number of boundary points nbnd = 4× nedge.
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Figure 3.1: Triangle mesh on [0, 1] × [0, 1] grid. nedge = 20 and nint = 361.

The internal nodes plaement is hosen at random whih in turn reates random

sized triangles. Matlab's built in funtion delaunay is used to reate these triangles

and the output is written in the form G(k, α) where k is the number of triangles

and α = 1, 2, 3. One the grid is in plae, the triangles are formed and the spei�

nodes from eah triangle are reorded. Figure 3.1 shows this triangularization on the

[0, 1]× [0, 1] grid for nint = 361.

At times, we will also onsider using a uniform grid. The uniform grid is omprised

basially of right-angle isoseles triangles, rather than equilateral triangles. As in the

random ase, the triangularizations onsidered are easily generated with Matlab's
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delaunay funtion. Figure 3.2 shows an example of a uniform mesh, where the

internal nodes are not hosen at random. We are onsidering both types of meshes

to study the di�erent e�ets of eah. The randomized mesh is onsidered bad, while

the uniform one is onsidered good.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3.2: Triangle mesh on a uniform [0, 1]×[0, 1] grid. nedge = 20 and nint = 361.

As demonstrated in setion 1.8 of [2℄, we will now build the triangularization

linear system using pieewise linear �nite elements. This is done by omputing the

loal matrix elements of the system, Skj, given by (3.5) along with the right hand

side elements, bk, given by (3.6). We know that Skj 6= 0 only if nk and nj are of the

same triangle T (k) ∈ G. Then G(α, β), α = 1, 2, 3, are the numbers of the verties

of T (k)
, and the x, y oordinates for these verties are given. Knowing the verties

of T (k)
we an now ompute the loal matrix elements S(k) = s

(k)
αγ , α, β = 1, 2, 3 for

element T (k)

s
(k)
αβ =

∫

T (k)

ρ∇ψα∇ψβ dA,

where ψα is the linear funtion on T (k)
that takes the following values:

ψ(k)
α = φj

∣

∣

T (k),



Chapter 3. Finite element method - 2D Poisson problem 21

ψ(k)
α (nG(k,β)) = δαβ =







1 if α = β

0 if α 6= β
where α, β = 1, 2, 3.

Now we reate a matrix M that maps the triangles to a referene triangle Tref ,

M (k) =





x(G(k, 2))− x(G(k, 1)) x(G(k, 3))− x(G(k, 1))

y(G(k, 2))− y(G(k, 1)) y(G(k, 3))− y(G(k, 1))





and

Tref = {(s, t) : 0 ≤ s ≤ 1 , 0 ≤ t ≤ 1− s} ,

where

F (k) : Tref −→ T (k),




s

t



 7−→





x

y



 =M (k)





s

t



+





x1

y1



 .

The referene triangle basis funtions beome

θα(s, t) = ψα

(

F (k)(s, t)
)

= ψα

(

F
(k)
1 (s, t) , F

(k)
2 (s, t)

)

.

We use the transformation,

s
(k)
αβ =

∣

∣detM
∣

∣

∫

Tref

ρ∇θα · ∇θβ ds dt

to better ompute these integrals, whih are omputed using 3-point Gaussian quadra-

ture. Our algorithm loops over all the elements T (k)
and suessively adds the on-

tributions from eah together to get the global matrix S.

S (G(k, α), G(k, β)) = S (G(k, α), G(k, β)) + s
(k)
αβ .

We an also ompute

b(k)α =

∫

T (k)

fψα ds, α = 1, 2, 3

and similarly,

b (G(k, α))) = b (G(k, α))) + b(k)α .
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3.4 Numerial tests

3.4.1 Solver

For our testing purposes, we shall be using the method of manufatured solutions.

We hoose the exat solution as

(3.7) u(x, y) = sinh
(

Nx(1 − x)
)

sin
(

Mπy
)

,

whih determines the right hand side to be

f (x, y) = ρ(x, y)
{

2ν
(

x− 1/2
)(

1− 2x
)

cosh
[

Nx(1 − x)
]

sin(Mπy)

+ 2Mπν
(

y − 1/2
)

sinh
[

Nx(1 − x)
]

cos(Mπy)

−
[

M2π2 −N2(1− 2x)2
]

sinh
(

Nx(1 − x)
)

sin(Mπy)

+ 2N cosh
(

Nx(1 − x)
)

sin(Mπy)
}

.

and

(3.8) ρ(x, y) = e−ν
[

(x−1/2)2+(y−1/2)2
]

.

We use onstants, M = 1, N = 0.5, and ν = {0.01, 0.001, 0.0001, 0.00001, 0}. Using

smaller and smaller ν, our problem beomes nearly the ordinary Poisson problem.

We shall test our grid with an inreasing amount of points: 802, 902, 1002, ... As

the number of points inreases, the auray should also inrease. The �nite element

method with hat funtions is seond order aurate.

To visualize the errors we are getting, we shall plot the error estimates for nedge =

80. Figure 3.3 shows the point-wise error estimates for nedge = 80 points on the

random grid, and Figure 3.4 shows the point-wise error estimates for nedge = 80

points on the uniform grid. Notie how muh smoother the plot of the error estimates

using the uniform grid is ompared to results from the random grid.
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Figure 3.3: FEM Point-wise error estimates. Graph of the point-wise error estimate

for nedge = 80 points.

3.4.2 Finite element onvergene

The Finite Element Method quanti�es the auray and reliability of a numerial

solution by error estimates on the FEM error vs. the mesh spaing of the FEM mesh.

We refer the reader to [5℄ for a more detailed desription. These error estimates are

(3.9) ‖u(·, ·)− uh(·, ·)‖L2(Ω) =

(
∫∫

∣

∣

∣
u(x, y)− uh(x, y)

∣

∣

∣

2

dxdy

)1/2

≤ Ch2,

as h → 0. Here, u(x, y) denotes the PDE solution of the problem and uh(x, y) the

FEM solution. The mesh size is denoted by h = 1/nedge and C is a onstant.

We would like to set up an easily repeated uniform mesh re�nement to test our

algorithm for orret onvergene. One good test for reliability of a FEM solution

is to re�ne the FEM mesh, ompute the solution again on the re�ned mesh, and

qualitatively ompare the solutions on the di�erent meshes. In solving the system,

we use the onjugate gradient method preonditioned with the inomplete Cholesky
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Figure 3.4: FEM Point-wise error estimates on a uniform grid. Graph of the

point-wise error estimate for nedge = 80 points.

fatorization. For the onjugate gradient method we use a tolerane of 10−10
, and

for the inomplete Cholesky fatorization we use a drop tolerane of 10−7
.

Figure 3.5 shows a log-log plot of the error on the left hand side of (3.9) vs. the

reiproal of the mesh spaing, 1/h. In this form, the estimate (3.9) plots as a line

with its slope being equal to the negative of the onvergene order 2. The predited

slope of −2 is shown as a dashed line in the �gure.

We also perform the onvergene test from the results gotten when using the

uniform meshes. These are shown in Figure 3.6. These results follow the predited

slope of−2 even more preisely than the non-uniform ases whih should be expeted,

and the errors themselves are onsiderably lower then the non-uniform ases. The

errors are basially an order of magnitude smaller when using the uniform grid.
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Figure 3.5: FEM Convergene test. log(error-norm) vs. log(1/h).
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Figure 3.6: FEM Convergene test using a uniform grid. log(error-norm) vs.

log(1/h).
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Chapter 4

Solving the Poisson problem using

preonditioning

In this hapter we will solve the variable oe�ient Poisson problem on a [0, 1]× [0, 1]

grid using �nite element disretization. In order to examine the preonditioning of

onforming subdomains through the tehniques introdued in previous hapters, we

here (somewhat arti�ially) split our retangular domain into two subdomains.

4.1 Problem set up

We will be solving the variable-oe�ient Poisson problem

−∇ · ρ∇u = f in Ω, u = 0 on ∂Ω,

where Ω = [0, 1]× [0, 1] .

We refer the reader to Setion 3.4, as we hoose the same ρ(x, y), u(x, y), and

f(x, y). We pik our onstants to be M = 1, N = 0.5, and ν = 10−3
. Now we move

on to the details and implementation of our proedure.
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4.2 Obtaining a preonditioner

Often the Poisson or a similar ellipti problem needs to be solved on a geometrially

ompliated domain Ω. One numerial approah towards solving suh a problem

splits Ω into a union of simpler subdomains whih over all of Ω. These onstituent

subdomains may overlap or share ommon boundaries. In any ase, the presene

of multiple subdomains often slows down the onvergene of iterative solvers of the

disretized equations (whih enfore both the bulk PDE and the oupling between

the subdomains). The pratial use of multiple subdomains therefore often requires

extra preonditioning, beyond any preonditioning of the bulk equations.

Often the need for multiple subdomains arises when the basi domainΩ is geomet-

rially ompliated. Here we onsider the simplest possible deomposed geometry: a

retangle split into two subretangles.

(4.1) Ω = Ω1 ∪ Ω2 where Ω1 = [0, 0.5]× [0, 1], Ω2 = [0.5, 1]× [0, 1]

Figure 4.1 shows this triangularization on the [0, 1] × [0, 1] grid. Notie the evenly

spaed line of points in the enter whih beome a boundary side for eah subdomain.

nint represents all of the interior points of the main domain (inluding those points

on the enter line) and nedge is the number of points per edge on the boundary.

Introdue nc as the number of uniformly spaed interior points that run along the

vertial enter line of the domain; nc = nedge − 1. The total number of boundary

points around the domain is nbnd = 4× nedge.

Due to the formation of the subdomains, our nint here di�ers slightly from the

nint of Setion 3.3. Here, nint 6= (nedge − 1)2, rather nint = nint1 + nint2 + nc where

nint1 = nint2 = (nedge − 1)(nedge/2 − 1) is the number of interior points in eah

subdomain (and therefore, we must always hoose nedge even).

Based on the setup presented earlier, the matrix L represents the linear system

for the interior nodes of the domain. As shown in Setion 3.2, the matrix L is also

symmetri positive de�nite. Splitting the domain into the two subdomains, we see
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Figure 4.1: Triangle mesh on [0, 1] × [0, 1] grid. nbnd = 80 and nint = 380. In

splitting the domain up into 2 subdomains, the enter line of points beomes a boundary

for eah subdomain.

that the matrix L takes the form

(4.2) L =











L11 L1J

LJ1 LJJ LJ2

L2J L22











where the inner Lαβ are blok matries, α, β = 1, 2, J . To represent a "joining" of

the two subdomains, the variable J is used here. L11 and L22 ontain the interior

points of eah subdomain; and thus, L11, L22 ∈ R
nint1×nint1

. The other blok matries

L1J , LJ1, L2J , LJ2, and LJJ are part of the oupling between the two subdomains.

LJJ ∈ R
nc×nc

, L1J , L2J ∈ R
nint1×nc

, LJ2, LJ1 ∈ R
nc×nint1

(and sine L is symmetri,

L1J = LT
J1 and L2J = LT

J2).

For a oe�ient matrix L with the struture above, a standard hoie of preon-

ditioner is the blok-Jaobi preonditioner. When solving on eah subdomain, we

assume Dirihlet boundary onditions and ignore the oupling between the subdo-
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mains. We set L1J , LJ1, L2J , LJ2 all to zero and let LJJ beome the nc × nc identity

matrix. Call G, the approximate inverse of L, the blok-Jaobi preonditioner

(4.3) G =











L−1
11

I

L−1
22











.

We are given G, or rather it is easily onstruted, and our goal is to improve upon

it by inorporating information about the mathing of the two subdomains.

For L−1
being the exat inverse of L and G our approximate inverse, the di�erene

is the matrix A.

(4.4) A = L−1 −G

Beause the inverse of a symmetri matrix is also symmetri, L−1
, G, and onse-

quently A are eah symmetri. We propose to approximate the orretion A using

tehniques from hapter 2, and then adding it on to G for an even more apable

preonditioner G′
.

4.3 Corretion of the "rough preonditioner" G

4.3.1 Matlab ode: PerformSolve

The main matlab ode we use is displayed in Appendix B. This program de�nes the

funtions and sets the parameters we deide on. It then de�nes the exat solution,

u(x, y), whih will be needed in the end to ompare the auray. Two sets of

random points plus hand seleted uniformly spaed nc points on the enter line are

then formed, assuming a uniform grid along the boundary, with eah edge divided

into 1/nedge equally spaed subintervals. Again, using the setup from Setion 3.3, the

matlab funtion delaunay is used to reate the triangles. The result is a [0, 1]× [0, 1]

grid of random triangles.
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One the triangles are known, along with the positions of their verties, the

linear system an be built. The funtion GetLinearSystem loops over all the triangles

to produe the sparse matrix, L, and the right hand side vetor, b, whih de�ne the

linear system Lu = b. This is also done for the subdomains, produing L11, L22 and

b1, b2 respetfully, as in Setion 4.2.

The matries L11 and L22 are important for the onstrution of the blok-Jaobi

preonditioner, G. This matrix G is de�ned by the ation of L−1
11 and L−1

22 , whih we

an implement by solving L11z1 = b1 and L22z2 = b2 for z1 and z2 given the soures

b1 and b2. These solves are performed using the onjugate gradient method, in whih

they are themselves preonditioned with the inomplete Cholesky fatorization.

4.3.2 Building the orretion of the "rough preonditioner"

G

To produe the orretion we are looking for, we must go through several steps. L

is size nint × nint. First, we introdue the random 4nc × nint matrix K whose entries

are eah distributed as a Gaussian random variable of zero mean and unit variane.

Next, de�ne

(4.5) NT = LKT

Here we are using N as if it is the original random matrix, but it atually omes

from applying L to the random matrix KT
. We seek a smaller, approximate version
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A ≡ L−1 −G, and ompute the following.

A = L−1 −G

ANT = L−1NT −GNT

ANT = L−1(LKT )−GNT

ANT = KT −GNT

(

ANT
)T

=
(

KT −GNT
)T

NA = K −
(

GNT
)T

Y = K −
(

GNT
)T

(4.6)

By onstrution, the rows of Y ≡ NA are linear ombinations of the rows of A,

and importantly, Y is smaller than A. Therefore performing a matrix deomposition

(here pivoted-QR) on Y will be heaper than on A.

We know K by onstrution, but we need GNT
. Using the funtion ApplyBlok-

JaobiPCiterative in Appendix D, we apply G to eah of the olumns of NT
. With

these piees, we an then form the matrix Y .

Now we use Stewart's algorithm from Appendix A on the matrix Y . Using

Stewart's pivoted-QR algorithm allows for an early exit one a desired tolerane is

met but this feature is not exploited here. Here, it runs to the end, yet it ould

possibly be faster if it were to exit earlier (the use of Stewart's algorithm allows for

exploration of this possibility later). The algorithm is needed to �nd the positions

of the olumns we want to use in reating the desired interpolative deomposition:

(4.7)

[

Q(Y ), R(Y ), R
(Y )
11 , R

(Y )
12 , k

(Y ), pivots(Y ), P (Y )
]

= PivotedQR

(

Y, tol
)

Similar to Setion 2.3.1, the outputs determine the equation

(4.8) Y = Q(Y )R
(Y )
11 ·

[

Ik(Y )
×k(Y ), R

(Y )
11 \R

(Y )
12

]

·
(

P (Y )
)T

The output pivots(Y )
is a vetor whih desribes the reordering of matrix Y 's olumns.

We will use the vetor pivots(Y )
to reorder the olumns of the matrix A in an impliit

manner.
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De�ne a mapping

(4.9) Π : {1, 2, ..., k} −→ {1, 2, ..., k}

(4.10) j → Π(j)

(4.11) pivots(Y ) =
[

Π(1),Π(2), ...,Π(k)
]

Now we have eΠ(j) where ej is the j
th
anonial basis vetor.

We an now apply G to eΠ(j), one again using ApplyBlokJaobiPCiterative. Also,

using L, eΠ(j) and the preonditioned onjugate gradient funtion pg, we an now

onstrut L−1eΠ(j). From these formulations, we an now form B̃,

(4.12) B̃(:, j) = Q(A)R
(Y )
11 (:, j) = L−1eΠ(j) −GeΠ(j)

Also, from equation (4.8), we an also form C̃,

(4.13) C̃ =
[

Ik(Y )
×k(Y ), R

(Y )
11 \R

(Y )
12

]

·
(

P (Y )
)T
.

Now we have the piees to formulate our orretion

(4.14) Ã = B̃ · C̃.

Addition of this orretion Ã to our approximate inverse G gives us our preon-

ditioner G′
,

(4.15) G′ = G+ Ã.

Using this �nal preonditioner G′
involves �rst applying G and then applying Ã,

y = Gz(4.16)

y = y + Ãz(4.17)

The funtion pg is now used to solve this new preonditioned system.
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This proedure may be used as an alternate way of dealing with non-overlapping

onforming subdomains when the purpose is for reating a preonditioner. Again,

using multiple subdomains in this fashion is espeially helpful when dealing with

ompliated geometries.

An added bene�t of using multiple subdomains is that they have good paralleliz-

ing qualities. So, as long as the subdomains are of similar sizes, the blok-Jaobi

preonditioner should parallelize e�etively. Also, one it is onstruted, the appli-

ation of the orretion is also very parallelizable (for instane, using parallel-matrix

multipliation).

4.4 Results

For omparison, we will solve the variable oe�ient Poisson problem a variety of

di�erent ways. The �rst two ways we solve the system, there will be no dividing up

of our domain. The subsript noPC is used when solving the system without using a

preonditioner. We also solve the system with the inomplete Cholesky fatorization

as a preonditioner and represent this with the subsript PC(InC). We found that a

drop tolerane of 5× 10−3
for the inomplete Cholesky was satisfatory in weighing

the ost vs. the better approximation of the matrix.

The following fatorizations will involve the use of domain deomposition. The

subsript PC(DD-Inv) will be used for solving the system using domain deomposition

along with diretly applying the atual inverses of L1 and L2, PC(DD-CG) will be the

subsripts for solving the system using domain deomposition along with the blok-

Jaobi preonditioner found by performing the onjugate gradient method on L1 and

L2 omputed via LU-fatorization. The last subsript used, PCA(DD-CG), is similar

to the above subsript, but it also inludes applying our onstruted orretion Ã.

We ran our algorithm many times, and the results in Table 4.1 are representative.

Table 4.1's rows are as follows:
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• nedge is the number of edge points per side.

• t
noPC

, t
PC(InC)

, t
PC(DD-Inv)

, t
PC(DD-CG)

and t
PCA(DD-CG)

are the omputational times in

seonds taken to solve the system.

• i
noPC

, i
PC(InC)

, i
PC(DD-Inv)

, i
PC(DD-CG)

and i
PCA(DD-CG)

are the number of iterations

required when solving the system.

• res
noPC

, res
PC(InC)

, res
PC(DD-Inv)

, res
PC(DD-CG)

and res
PCA(DD-CG)

are the relative

residuals when solving the system, res = ‖b−Ax‖/‖b‖.

Table 4.1: Comparisons of the Poisson problem negleting the osts of the onstrution

of the preonditioners.

nedge 10 20 30 40 50

t
noPC

0.0282 0.0525 0.0947 0.1554 0.2376

t
PC(InC)

0.0251 0.0278 0.0325 0.0362 0.0451

t
PC(DD-Inv)

0.0196 0.0930 0.1873 0.6993 1.3806

t
PC(DD-CG)

0.1767 1.2746 1.2170 3.0615 3.8832

t
PCA(DD-CG)

0.0140 0.0269 0.0435 0.0558 0.0760

i
noPC

67 189 340 468 624

i
PC(InC)

7 13 17 21 26

i
PC(DD-Inv)

36 80 120 230 221

i
PC(DD-CG)

40 107 141 284 272

i
PCA(DD-CG)

2 3 4 4 4

res
noPC

5.5574E-11 9.9022E-11 8.0423E-11 9.5044E-11 8.5179E-11

res
PC(InC)

3.2793E-11 8.4074E-12 2.2930E-11 7.6781E-11 4.5419E-11

res
PC(DD-Inv)

7.0380E-11 1.5619E-11 9.8126E-11 8.0093E-11 8.3283E-11

res
PC(DD-CG)

6.8307E-11 7.9035E-11 6.6010E-11 9.8751E-11 7.9270E-11

res
PCA(DD-CG)

1.5702E-11 2.0771E-12 5.2776E-13 4.2361E-14 1.5003E-13

The omputational times when using the blok-Jaobi preonditioners without the

orretion Ã, t
PC(DD-Inv)

and t
PC(DD-CG)

, appear quite slow ompared to the others. A

main reason for this is that the ost of applying these blok-Jaobi preonditioners is

inluded in the omputational times sine eah of the loal solves for these are nested

within eah iteration. This is also true for t
PCA(DD-CG)

, but with so fewer iterations, is

not as apparent.

Solving the system with the inomplete Cholesky fatorization as a preondi-

tioner, PC(InC), is a very e�ient way to solve the system. Yet the results of
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t
PCA(DD-CG)

are omparable, and in some ases show improvement in the omputa-

tional time over the inomplete Cholesky (along with the other methods). Also,

the relative residual for the PCA(DD-CG) method is almost always smaller than the

other methods whih indiates that its assoiated preonditioned linear system has

better onditioning. However, the time in onstruting this preonditioner for the

PCA(DD-CG) is also something that should be onsidered. We return to this issue

below.

Table 4.2: Comparisons of the Poisson problem on a uniform grid negleting the osts of

the onstrution of the preonditioners.

nedge 10 20 30 40 50

t
noPC

0.0224 0.0288 0.0371 0.0495 0.0706

t
PC(InC)

0.0246 0.0256 0.0288 0.0328 0.0446

t
PC(DD-Inv)

0.0120 0.0231 0.0556 0.1368 0.3390

t
PC(DD-CG)

0.0846 0.1742 0.2676 0.4183 0.6283

t
PCA(DD-CG)

0.0128 0.0228 0.0380 0.0494 0.0656

i
noPC

32 64 94 121 146

i
PC(InC)

6 10 14 17 21

i
PC(DD-Inv)

18 29 37 43 49

i
PC(DD-CG)

20 31 37 44 49

i
PCA(DD-CG)

2 3 4 4 4

res
noPC

8.5341E-11 5.1537E-11 7.1472E-11 9.1416E-11 9.372E-11

res
PC(InC)

5.5046E-11 4.3825E-11 8.1638E-12 7.4034E-11 4.9169E-11

res
PC(DD-Inv)

1.0477E-11 3.0291E-11 6.3688E-11 9.6758E-11 6.5653E-11

res
PC(DD-CG)

1.1874E-11 1.8829E-11 7.0006E-11 6.8281E-11 6.6870E-11

res
PCA(DD-CG)

1.1139E-12 4.8106E-11 2.3436E-13 3.5745E-14 2.4468E-13

Table 4.2 shows results gotten by solving the problem just like before exept

this time using a uniform grid. With a uniform mesh, all the performanes are

slightly better. Solving with no preonditioner (noPC) shows substantial improve-

ment using the uniform grid over the random grid. As before with the random grid,

solving the system with the inomplete Cholesky fatorization as a preonditioner,

PC(InC), is very e�ient. And like before, the results of t
PCA(DD-CG)

are omparable

here, and sometimes show improvement in the omputational time over the inom-

plete Cholesky (along with the other methods). Here, the relative residual for the

PCA(DD-CG) method is very good again, as it was when using the non-uniform mesh.
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4.4.1 Vertially skewed domain

As an experiment, we hanged up our simple [0, 1]× [0, 1] grid. We deided to move

the whole enter portion vertially up to add aute orners to the grid and see if the

results would hange (see Figure 4.2). But, the results we got here were onsistent

with the results we got with the [0, 1]× [0, 1] grid.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x

y

nedge = 10

Figure 4.2: Triangle mesh performed on a vertially skewed grid. nbnd =
40 and nint = 90. This domain is split along the vertial enter line resulting in two

subdomains, similar as before.

4.5 Cost of onstruting Ã

Although this preonditioner does indeed help with solving the system faster, we

should also onsider the ost of onstruting the orretion Ã. Again t
PC(DD-CG)

de-

notes the time taken to solve the two-domain problem using the blok-Jaobi preon-

ditioner without the orretion Ã, and t
PCA(DD-CG)

is the time taken to solve it with the

orretion Ã. We will all T the time taken to onstrut Ã. Now t
PCA(DD-CG)

< t
PC(DD-CG)



Chapter 4. Solving the Poisson problem using preonditioning 38

and presumably t
PC(DD-CG)

< T + t
PCA(DD-CG)

. There exists a break even point k
LS

, LS

represents linear solves, where approximately

(4.18) k
LS

· t
PC(DD-CG)

≃ T + k
LS

· t
PCA(DD-CG)

or

(4.19) k
LS

≃ T/(t
PC(DD-CG)

− t
PCA(DD-CG)

).

Clearly it is advantageous if one ould onstrut Ã, and then use it multiple

times in the same problem. In these ases, it would be ost e�etive if Ã is used

more than k
LS

times. An example might be a problem involving a time-stepping

method, like say the bakward Euler method. Solving the heat equation using the

bakward Euler method onsists of doing a number of these solves over and over

again for many di�erent right hand sides. In the future we hope to explore the use

of our preonditioning methods in this ontext.

We ran our algorithm multiple times with di�erent amounts of points and Table

4.3 shows the averaged results.

Table 4.3: Break even point k
LS

, with the size of the system, nint.

nedge nint k
LS

10 109 10.7

20 419 24.7

30 929 31.2

40 1639 38.4

50 2549 46.2

As an example, we ran the algorithm for nedge = 20. We got bak t
PC(DD-CG)

= .868,

t
PCA(DD-CG)

= .0342, and T = 20.614. So,

(4.20) k
LS

≃
T

t
PC(DD-CG)

− t
PCA(DD-CG)

≃
20.614

.868− .0342
≃ 24.7
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4.6 The Shur omplement method

Another approah for using non-overlapping domain deomposition worth mention-

ing is the Shur omplement method. As desribed in [8℄, this method involves

breaking down our matrix L into the blok LDU deomposition (for LDU ; L repre-

sents a lower triangular matrix with ones along its diagonal, D represents a diagonal

matrix, and U represents an upper triangular matrix with ones along its diagonal).

Again, we have our symmetri positive de�nite matrix

L =











L11 L1J 0

LJ1 LJJ LJ2

0 L2J L22











The blok LDU deomposition beomes

(4.21) L =











I 0 0

LJ1L
−1
11 I 0

0 LJ2L
−1
22 I





















I 0 0

0 S 0

0 0 I





















L11 L1J 0

0 I LJ2

0 0 L22











Where

(4.22) S = LJJ − LJ1L
−1
11 L1J − LJ2L

−1
22 L2J

is alled the Shur omplement of the leading prinipal submatrix ontaining L11

and L22. Calulating L
−1
, we get

(4.23)

L−1 =











L−1
11 −L−1

11 L1J 0

0 I −L−1
22 L2J

0 0 L−1
22





















I 0 0

0 S−1 0

0 0 I





















I 0 0

−LJ1L
−1
11 I 0

0 −LJ2L
−1
22 I











Here, multiplying a vetor by L−1
entails multiplying by the bloks in the entries

of this fatored form of L−1
; this inludes L1J and L2J (and their transposes LJ1 =

LT
1J and LJ2 = LT

2J), L
−1
11 and L−1

22 , and S
−1
. Multiplying by L1J and L2J is heap

beause they are very sparse. Multiplying by L−1
11 and L−1

22 should not be expensive if

we hoose a suitable fast method (i.e. fast Fourier transform, multigrid method,...).
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We now explain multiplying by S−1
; as indiated by [8℄. Beause there are muh

fewer grid points on the boundary than in the subdomains, LJJ and S have a muh

smaller dimension than L11 and L22 (this situation grows for �ner grid spaings). S is

symmetri positive de�nite and dense. To get S−1
expliitly, one would need to solve

with eah subdomain one per boundary grid point (from the L−1
11 L1J and L−1

22 L2J

terms in equation (4.22)). This ould be done, then afterward fator S using dense

Cholesky and then ontinue to solve the system. But this would be expensive, muh

more so than just multiplying a vetor by S. A better way would be by using the

onjugate gradient method, whih requires only multiplying a vetor by S (requiring

only one solve per subdomain using equation (4.22)).

With the onjugate gradient method, the number of matrix-vetor multiplia-

tions depends on the ondition number of S. The key to this method is that S is

muh better onditioned than the original matrix L. Therefore, using the onjugate

gradient method would be ideal here and would result in fast onvergene involving

less iterations.

It should also be noted that a ommon preonditioner for use when two sub-

domains are involved with an overlap of their boundaries is the additive Shwartz

preonditioner. For this proedure, you would solve on one side, then use the solution

to set the boundary onditions for the other side iterating bak and forth. Further

researh omparing and ontrasting the di�erent overlapping and non-overlapping

methods may be worth while in the future.
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Chapter 5

Conlusion

The Poisson equation is instrumental in a variety of di�erent �elds suh as eletro-

statis, eletromagnetis, aoustis, mehanial engineering, and theoretial physis.

Any progress in better solving this important problem should only bene�t the future

of these �elds among others.

This study was set out to explore a di�erent proedure for reating an e�e-

tive preonditioner to help solve the variable oe�ient Poisson problem using the

�nite element method. Tehniques were implored using random matries while on-

struting the interpolative deomposition of matries as well as the use of domain

deomposition to establish this preonditioner. We looked losely at two questions

regarding the Poisson problem:

• Can sampling a matrix with the interpolative deomposition (i.e., piking the

most important olumns of a matrix and having them represent the entire ma-

trix) and also ombining the use of random matries, be an e�etive tehnique

for reating a preonditioner?

• For a non-overlapping domain deomposition preonditioner method, an we

�nd a good way to aount for the onforming boundary area?

Using this interpolative deomposition to reate the preonditioner with the or-
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retion does indeed redue the number of iterations involved. It does also speed up

the time involved. But it may be possible to �gure out a way to apply it faster for

even less time taken. This would of ourse be bene�ial espeially sine the reation

of the preonditioner takes a good amount of time by itself.

This preonditioner may also be bene�ial for problems involving time-stepping,

e.g., the heat equation. When solving problems of this sort, expliit methods en-

ounter a stability limit, so impliit methods are favored. Although these methods

take larger steps in their proess, they must solve an equation at eah step. This

ould be ideal for this kind of preonditioner sine one it's reated, it an be used

over and over again, making up for the ost of its reation. One other possible ap-

pliation ould be for ases involving more ompliated geometrial domains. This

proedure may be e�etive when others are not. Again, these onepts should be

explored more in the future.

Interpolative deomposition using statistial sampling on a matrix seems to be

a worthy endeavor. As far as building a preonditioner, employing this method an

be useful, but to what extent though is the question. Going through all the trouble

of it seems to be worth it in this situation and as stated, one may �nd more usable

appliations in the future.
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Appendix A

Stewart's Pivoted-QR Algorithm

% Computes pivoted QR-deomposition A*P = Q*R of an m-by-n matrix

% via method desribed in G. W. Stewart, "Two Algorithms for the

% Effiient Computation of Trunated Pivoted QR Approximations to

% a Sparse Matrix." Well suited for low-rank approximation of a

% sparse matrix A. Inputs are A (possibly sparse), and desired

% tolerane tol for the approximation. Outputs are as follows.

% Matries Q [m-by-k℄, R11 [k-by-k℄, R12 [k-by-(n-k)℄, P [n-by-n℄

% suh that A*P \simeq Q*[R11 R12℄. P is a permutation matrix, Q

% is an orthonormal matrix, and R = [R11 R12℄ is upper triangular.

% nol is the (numerial) rank of matrix/approximation.

% funtion [Q, R11, R12, nol, pivots, P℄ = PivotedQR(A,tol,nol)

funtion [Q, R, R11, R12, nol, pivots, P℄ = PivotedQR(A,tol,nol)

[m, n℄ = size(A);

pivots = 1:n;

%nol = min([m, n℄);

for j=1:n

nu(j) = norm(A(:,j))^2; % nu for squared 2-norms as in Stewart.

end

R = zeros(nol,n);

for k=1:nol % Loop over olumns of A.

%------------------------------------------------

% Determine the pivot olumn and swap it with

% olumn k. Sine max taken over length-(n-k+1)

% vetor, readjust index relative to length n.

%------------------------------------------------

[maxnorm, jmax℄ = max(nu(k:n));

jmax = jmax + (k-1);
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%------------------------------------------------

% Perform pivot.

%------------------------------------------------

pivots([k jmax℄) = pivots([jmax k℄);

nu([k jmax℄) = nu([jmax k℄);

if k > 1;

R(1:k-1,jmax) = R(1:k-1,k);

end

% Gram-Shmidt step with reorthogonalization.

a = A(:,pivots(k));

if k == 1

R(1,1) = norm(a);

q = a/R(1,1);

Q = q;

else

%------------------------------------------------

% With A_k-1 = A(:,pivots(1:k-1)) = Q_k-1 R_k-1,

% Q_k-1 = A_k-1 inv(R_k-1) is an o.n. basis for

% these olumns of A_k-1. With a = A(:,pivots(k))

% we have r_kj = a'*Q_k-1(:,j) as a row vetor

% r_k = [r_k1 r_k2 ... r_k,k-1℄. Transpose it.

%------------------------------------------------

r = a'*A(:,pivots(1:k-1))/R(1:k-1,1:k-1); r = r';

%------------------------------------------------

% Subtrat out proj. onto olumn spae of Q_k-1.

% A_k-1 (R_k-1\r) = A_k-1 inv(R_k-1) r = Q_k-1 r.

%------------------------------------------------

q = a - A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\r);

%------------------------------------------------

% Reorthogonalization for good measure

%------------------------------------------------

Dr = q'*A(:,pivots(1:k-1))/R(1:k-1,1:k-1); Dr = Dr';

q = q - A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\Dr);

%------------------------------------------------

% Update R.

%------------------------------------------------

r = r + Dr; R(1:k-1,k) = r; R(k,k) = norm(q);

%------------------------------------------------

% Compute the kth olumn of Q.

%------------------------------------------------

q = (a-A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\r))/R(k,k);

Q = [Q q℄;
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end

if k+1<=n

% Compute the k-th row of R, Eq.(4) from Stewart.

R(k,k+1:n) = q'*A(:,pivots(k+1:n));

% Update nu.

nu(k+1:n) = max([nu(k+1:n) - R(k,k+1:n).^2; zeros(1,n-k)℄);

nu(k) = sum(nu(k+1:n));

if (sqrt(nu(k)) < tol) break; end

else

nu(k) = 0;

end

end % End loop over olumns of A.

% Finish up.

nol = k;

R = R(1:nol,:);

R11 = R(:,1:k);

R12 = R(:,k+1:n);

if (nargout == 7)

P = zeros(n,n);

for i = 1:n

for j = 1:n

if pivots(i)==j

P(j,i) = 1;

end

end

end

end
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Perform Solve Algorithm

%-------------------------------------------------------

% Solution and ompatible soure for -div(psi grad u)=f.

% funtion PerformSolveDivGrad2_Alternate(nedge)

funtion PerformSolveDivGrad2_Alternate(nedge)

SubPCparams;

%-------------------------------------------------------

N = 1.6; M = 2;

u =�(x,y)sinh(N*x*(1-x))*sin(M*pi*y);

%

ux =�(x,y)N*(1-2*x)*osh(N*x*(1-x))*sin(M*pi*y);

uxx =�(x,y)(-2*N*osh(N*x*(1-x)) ...

+N*N*(1-2*x)^2*sinh(N*x*(1-x)))*sin(M*pi*y);

%

uy =�(x,y)M*pi*sinh(N*x*(1-x))*os(M*pi*y);

uyy =�(x,y)( ...

-M*M*pi*pi*sinh(N*x*(1-x))*sin(M*pi*y));

%

uxxPLUSuyy=�(x,y)(uxx(x,y)+uyy(x,y));

nu = 1e-8;

psi =�(x,y)exp(-nu*((x-0.5)^2+(y-0.5)^2));

psix =�(x,y)(-2*nu*(x-0.5)*psi(x,y));

psiy =�(x,y)(-2*nu*(y-0.5)*psi(x,y));

%

f =�(x,y)(-psix(x,y)*ux(x,y) ...

-psiy(x,y)*uy(x,y) ...

-psi(x,y)*uxxPLUSuyy(x,y));

f_Lap =�(x,y)(-uxxPLUSuyy(x,y));

%-------------------------------------------------------
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% Build triangularization for eah blok and then put together.

%

a = 0; b = 0.5;  = 0.0; d=1.0;

%[TRI1,x1,y1,nbdry℄ = BuildSquareGrid(nedge,a,b,,d,'R');

[TRI1,x1,y1,nbdry℄ = BuildRomGrid(nedge,a,b,,d,'R');

%

a = 0.5; b = 1.0;  = 0.0; d=1.0;

%[TRI2,x2,y2,nbdry℄ = BuildSquareGrid(nedge,a,b,,d,'L');

[TRI2,x2,y2,nbdry℄ = BuildRomGrid(nedge,a,b,,d,'L');

%

x = [x1;x2℄; y = [y1;y2℄; TRI = [TRI1; TRI2 + length(x1)℄;

%-------------------------------------------------------------------

%-------------------------------------------------------------------

extrimesh(TRI,x,y)

xlabel('x'); ylabel('y'); title('nedge = 20')

saveas(gf,'grid30.pdf','pdf')

saveas(gf,'grid30.eps','eps')

% Fill up exat solution vetor. Does not inlude boundary points.

npts = length(x1); nint = 2*npts-2*nbdry+2*(nedge-1); z = zeros(nint,1);

for k = 1:nint

if k+nbdry-(nedge-1) <= npts

kint = k + nbdry-(nedge-1);

else

kint = k + 2*nbdry-2*(nedge-1);

end

z(k) = u(x(kint),y(kint));

end

% Get the sparse matrix and righthand side whih define linear system.

[L1, b1℄ = GetLinearSystemDivGrad(f,psi,TRI1,x1,y1,nbdry); W1=holin(L1,5e-3);

[L2, b2℄ = GetLinearSystemDivGrad(f,psi,TRI2,x2,y2,nbdry); W2=holin(L2,5e-3);

[L, b℄ = GetLinearSystemDivGrad2(f,psi,TRI,x,y,nbdry,nedge); W=holin(L,5e-3);

%%%%%% Commented out various full matrix operations used for testing.

%%%%%%

invL1 = inv(full(L1)); invL2 = inv(full(L2));

%%%%%% [L_L, L_U℄ = GE(L);

%%%%%%

%%%%%% Eye = eye(nedge-1);

%%%%%% G = blkdiag(Eye,invL1,Eye,invL2);

%%%%%% invL = inv(L);

%%%%%% A = invL-G;

%%%%%% N = randn(76,enn);

%

%



Appendix B. Perform Solve Algorithm 49

%

[enn, emm℄ = size(L);

ell = nedge*4 - 4;

%

% Prealloation of memory.

%

Bapprox = zeros(enn,ell); Papprox = zeros(ell,enn);

GNt = zeros(enn,ell); Ge = zeros(enn,1);

e = zeros(enn,1);

invLe = zeros(enn,1);

%

%

%

ti

R = randn(ell,enn); Rt = transpose(R); Nt = L*Rt;

for j = 1:ell

GNt(:,j) = ApplyBlokJaobiPC_iterative(Nt(:,j),L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint);

end

Y = R - transpose(GNt);

tol = 1e-10;

[QY, R, R11Y, R12Y, kY, pivotsY, PY℄ = PivotedQR(Y,tol);

%Y_ = QY*R11Y;

ISY = [eye(kY) R11Y\R12Y℄;

%

%

%

pgTOL=1e-10; maxiter = 2000;

subTOL=1e-6; subITER = 2000;

orret='n';

for q = 1:kY

e = zeros(enn,1);

e(pivotsY(q)) = 1;

Ge = ApplyBlokJaobiPC_iterative(e,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint);

[invLe,flag,relres,niter,resve℄=pg(L,e,pgTOL,maxiter,�(w)ApplyBlokJaobiPC_iterative

(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

Bapprox(:,q) = invLe - Ge;

end

Papprox = ISY*transpose(PY);

Aapprox = Bapprox*Papprox;

Tonstrut = to;

%

%-------------------------------------------------------------------

%

% No Preonditioner used

ti

[znum3,flag,relres,niter℄=pg(L,b,pgTOL,maxiter,[℄,[℄,[℄);
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time = to;

% Inomplete LU fatorization (Cholesky) on entire "L"

ti

[znumL,flag,relresL,niterL,resve℄=pg(L,b,pgTOL,maxiter,W',W,[℄);

toL = to;

% Using Domain Deomposition along with the diret inverse of "L1" and diret inverse of h"L2"

ti

orret='n';

[znum2b,flag,relres0b,niter0b,resve℄=pg(L,b,pgTOL,maxiter,�(w)ApplyBlokJaobiPC_diret

(w,invL1,invL2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

t0b = to;

% Using Domain Deomposition and Conjugate Gradient on "L1","L2"

ti

orret='n';

[znum2,flag,relres0,niter0,resve℄=pg(L,b,pgTOL,maxiter,�(w)ApplyBlokJaobiPC_iterative

(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

t0 = to;

% Using Domain Deomposition and Conjugate Gradient on "L1","L2" plus the Corretion "A"

ti

orret='y';

[znum1,flag,relres1,niter1,resve℄=pg(L,b,pgTOL,maxiter,�(w)ApplyBlokJaobiPC_iterative

(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

t1 = to;

%--------------------------------------------------------------------

k = Tonstrut/(t0 - t1);

q = npts-nbdry+(nedge-1);

zgraph = [

zeros(nbdry-(nedge-1),1);

znum1(1:q)-z(1:q);

zeros(nbdry-(nedge-1),1);

znum1(q+1:nint)-z(q+1:nint)℄;

%extrimesh(TRI,x,y,abs(zgraph))

%xlabel('x'); ylabel('y'); title('Pointwise error')

disp(['no PC omputation time: ',num2str(time)℄)

disp(['PC(InC) omputation time: ',num2str(toL)℄)

disp(['PC(DD-Inv) omputation time: ',num2str(t0b)℄)

disp(['PC(DD-CG) omputation time: ',num2str(t0)℄)

disp(['PCA(DD-CG) omputation time: ',num2str(t1)℄)

disp(['------------------------------------'℄)

disp(['no PC iteration number: ',num2str(niter)℄)
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disp(['PC(InC) iteration number: ',num2str(niterL)℄)

disp(['PC(DD-Inv) iteration number: ',num2str(niter0b)℄)

disp(['PC(DD-CG) iteration number: ',num2str(niter0)℄)

disp(['PCA(DD-CG) iteration number: ',num2str(niter1)℄)

disp(['------------------------------------'℄)

disp(['no PC relative residual: ',num2str(relres)℄)

disp(['PC(InC) relative residual: ',num2str(relresL)℄)

disp(['PC(DD-Inv) relative residual: ',num2str(relres0b)℄)

disp(['PC(DD-CG) relative residual: ',num2str(relres0)℄)

disp(['PCA(DD-CG) relative residual: ',num2str(relres1)℄)

lear all
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Get Linear System

% Computes approximation Az = b of the Dirihlet problem

%

% -Lap(u)=f , (x,y) in (0,1)X(0,1), u=0 on boundary

%

% using pieewise linear finite elements on the triangulation

% desribe by (T,x,y). nbdry is the number of boundary nodes.

% They are assumed to ome first.

% funtion [A, b℄=GetLinearSystemDivGrad2(f,psi,T,x,y,nbdry,nedge)

funtion [A, b℄=GetLinearSystemDivGrad2(f,psi,T,x,y,nbdry,nedge)

npts = length(x)/2;

nint = 2*npts-2*nbdry+2*(nedge-1);

intRange=[nbdry-(nedge-1)+1,npts,npts+nbdry-(nedge-1)+1,2*npts℄;

[ntri d℄=size(T);

A=spallo(nint,nint,7*nint); % Guessing on average < 7 nonzeros per row

b=zeros(nint,1);

% Now loop over the triangles and build the linear system

for k=1:ntri

j1=T(k,1); j2=T(k,2); j3=T(k,3);

[A_lo b_lo℄=GetLinearSystemDivGrad_lo(x(j1),y(j1),x(j2),y(j2),x(j3),y(j3),f,psi);

[j1test j1ref℄ = TestInRange(j1,intRange,nbdry,nedge);

if (j1test == 1)

k1=j1-j1ref;

A(k1,k1)=A(k1,k1)+A_lo(1);

b(k1)=b(k1)+b_lo(1);

[j2test j2ref℄ = TestInRange(j2,intRange,nbdry,nedge);
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if (j2test == 1)

k2=j2-j2ref;

A(k1,k2)=A(k1,k2)+A_lo(2);

A(k2,k1)=A(k1,k2);

end

[j3test j3ref℄ = TestInRange(j3,intRange,nbdry,nedge);

if (j3test == 1)

k3=j3-j3ref;

A(k1,k3)=A(k1,k3)+A_lo(3);

A(k3,k1)=A(k1,k3);

end

end

[j2test j2ref℄ = TestInRange(j2,intRange,nbdry,nedge);

if (j2test == 1)

k2=j2-j2ref;

A(k2,k2)=A(k2,k2)+A_lo(4);

b(k2)=b(k2)+b_lo(2);

[j3test j3ref℄ = TestInRange(j3,intRange,nbdry,nedge);

if (j3test == 1)

k3=j3-j3ref;

A(k2,k3)=A(k2,k3)+A_lo(5);

A(k3,k2)=A(k2,k3);

end

end

[j3test j3ref℄ = TestInRange(j3,intRange,nbdry,nedge);

if (j3test == 1)

k3=j3-j3ref;

A(k3,k3)=A(k3,k3)+A_lo(6);

b(k3)=b(k3)+b_lo(3);

end

end
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Appendix D

Apply Blok Jaobi Preonditioner

funtion z = ApplyBlokJaobiPC_iterative(x,L1,W1,L2,W2,B,P,nbdry,nedge,nint)

SubPCparams;

nint1 = nint/2;

z = x;

z(1:nedge-1) = x(1:nedge-1);

%

%

%

[z(nedge:nint1),flag,relres,niter℄=pg(L1,x(nedge:nint1),subTOL,subITER,W1',W1,[℄);

%

%

%

z(nint1+1:nint1+nedge-1) = x(nint1+1:nint1+nedge-1);

%

%

%

[z(nint1+nedge:2*nint1),flag,relres,niter℄=pg(L2,x(nint1+nedge:2*nint1),subTOL,...

subITER,W2',W2,[℄);

%

%

%

if orret == 'y'

qqq = P*x;

z = z + B*qqq;

end
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