University of New Mexico

UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

9-3-2013

Preconditioners constructed from the interpolative
decomposition for the variable coethcient Poisson

problem

Ambrose Quintana

Follow this and additional works at: https://digitalrepositoryunm.edu/math_etds

Recommended Citation

Quintana, Ambrose. "Preconditioners constructed from the interpolative decomposition for the variable coefficient Poisson problem."
(2013). https://digitalrepositoryunm.edu/math_etds/43

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for
inclusion in Mathematics & Statistics ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact

disc@unm.edu.


https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/43?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Ambrose Quintana

Candidate

Mathematics and Statistics

Department

This thesis is approved, and it is acceptable in quality and form for publication:

Approved by the Thesis Committee:

Stephen LaU , Chairperson

Daniel Appelo

Evangelos Coutsias




Preconditioners Constructed from the
Interpolative Decomposition for the

Variable Coefficient Poisson Problem

by

Ambrose David Quintana

B.S., Mathematics, University of New Mexico, 2004

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mathematics

The University of New Mexico

Albuquerque, New Mexico

July, 2013



(©2013, Ambrose David Quintana

il



v

Dedication

To my Dad. He was a great father and the best friend a guy could ever ask for.. He

always encouraged and pushed me to reach my goals. May he rest in peace..

“Can do!” — Felix Quintana



Acknowledgments

I would like to thank my advisor, Professor Stephen Lau, for his support and guid-
ance. Thanks to my committee members as well. Some of this work was supported
by NSF grant No. PHY 0855678. I would also like to thank my Uncle John for
believing in me and helping me when I needed it most. Thank you Monica, for
hanging in there with me through trying times. Thank you Mom, for the guidance
and encouragement as well.



Preconditioners Constructed from the

Interpolative Decomposition for the
Variable Coefficient Poisson Problem

by

Ambrose David Quintana

B.S., Mathematics, University of New Mexico, 2004

M.S., Mathematics, University of New Mexico, 2013

Abstract

When trying to solve elliptical problems such as the Poisson problem on complicated
domains, one procedure is to split the domain into a union of simpler subdomains.
When solving these problems iteratively, it becomes important to be able to precon-
dition the coupling between the subdomains. Using the Poisson problem as a test
case, this thesis explores one idea for preconditioning this coupling, an idea based on
interpolative decomposition and random matrices. We find that this procedure does

create an efficient preconditioner to get at the coupling between subdomains.
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Chapter 1

Introduction

1.1 Objective

When trying to solve elliptical problems such as the Poisson problem on complicated
domains, one procedure is to split the domain into a union of simpler subdomains.
These subdomains may overlap or share common boundaries. We shall be looking
at the non-overlapping case. When solving these problems iteratively, it becomes
important to be able to precondition the coupling between the subdomains. Using
the Poisson problem as a test case, this thesis explores one idea for preconditioning

this coupling, an idea based on interpolative decomposition and random matrices.

1.2 Preliminaries

1.2.1 Linear systems

Finding solutions to nonsingular linear systems of the form
(1.1) Az = b,

where A is a large m X m matrix and b is a size m vector, is an ongoing issue today in

many real world problems. There are basically two methods to solving these systems,
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a direct method or an iterative method.

In exact arithmetic, direct methods recover the exact solution x = A~'b in a
finite number of operations. For very large matrices however, they tend to run into
problems with time as well as storage. Gaussian Elimination is an example of the

direct method.

[terative methods create a sequence of improving approximations to the solu-
tion until this solution meets a satisfactory tolerance. Examples of iterative methods
include Jacobi’s Method, Gauss-Seidel, and Successive Over-Relaxation method. An-
other popular method, applicable to the case where A is symmetric positive definite,
is the Conjugate Gradient Method which is direct in principle. For a size N system,
it is direct in exact arithmetic if N iterations are done, however in application it is
desirable to perform far fewer iterations. One reason these iterative methods have
gained such popularity lately is that in some problems, the number of unknowns are
a million or more, making direct methods unusable. In our study, we will use itera-
tive methods combined with preconditioning to solve the variable coefficient Poisson

problem.

1.2.2 Preconditioning

The use of preconditioning is an important ongoing area of study in today’s tech-
nology fields. Given a linear system like (1.1), sometimes it is better to change the
structure of the system by introducing a preconditioner in order to solve it more
efficiently. Preconditioning is a way for improving the condition number of a matrix,
which renders an associated linear system more amendable to solution by iterative

methods.
We can solve (1.1) indirectly by solving
(1.2) M Az = M~ 'b.

M is chosen such that k(M1 A) < k(A), where k is the condition number. Therefore,
with M chosen appropriately, (1.2) can be solved faster than the original problem.
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Ideally, a good choice for M would be something close to A, yet also easy to construct,
invert, and apply. Also, this preconditioned system (1.2) is not actually formed in

practice, rather it has the ability (in code) to apply A and apply M.

1.3 Outline

The outline for this thesis is as follows. In our first main chapter, we will go into detail
about various factorization techniques, e.g., the singular value decomposition and
pivoted-QR factorization. We will discuss different approximations which stem from
these factorizations. We are interested in these approximations because they will
reduce the computational cost involved in eventually finding satisfactory solutions
to our problem. We will then show a technique incorporating random matrices as
well as finding the interpolative decomposition of matrices. These concepts will be
used in later chapters to test certain proposed methods for preconditioning using the
Poisson problem. We will also look at a specific algorithm created by G. W. Stewart
for finding the pivoted-QR factorization in a creative way. This algorithm will be

used because of it is unique properties.

Chapter 3 will involve solving the variable coefficient Poisson problem using the
finite element method. We will go into detail of what the finite element method is
and how it is derived. We will describe the procedure for creating a mesh grid to
use as our domain. We will create a [0,1] x [0, 1] grid of randomly chosen interior
points to use as our domain, but also try a [0,1] x [0,1] domain with uniformly
spaced points for comparison as well. We will state our problem’s details and define
the solution as well so that we can test the error estimates in the end. We will also
describe the set up for implementing the procedure for repeatable tests. To make
sure our algorithm is set up correctly and converges correctly, we will create an FEM
convergence test plot, which will also be used in comparison of different values of the

variable coefficient.

The final chapter will entail putting concepts from the previous chapters to work
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for our ultimate goal of constructing and testing our preconditioners. First, we will
split our previous domain up into two subdomains. They will share a boundary side
which often times is not easy to account for. We will describe a way to account for
this conforming piece using techniques from the earlier chapters. Then, using it along
with the two subdomain pieces together, should work as a good preconditioner to
solve the Poisson problem we wish to solve. To test the validity of our preconditioner,
we will solve the problem using other preconditioners too, and we will show the
results in a table. We can then compare and contrast the efficiencies of the different
methods. We will also discuss the cost of constructing our preconditioner and finally,

possibilities for applications in the future.



Chapter 2

Low-rank approximation of matrices

In this chapter we describe different procedures for finding low-rank approximations

of matrices.

2.1 Singular value decomposition

The singular value decomposition, or SVD, is a matrix factorization which has great
value in linear algebra problems. From [6], given A € R™*" where m > n and A has

full column rank n, the reduced SVD of A is the factorization
(2.1) A=UxvT,
where

U € R™" has orthonormal columns,

5 e R™™ is diagonal,

V e R™"™ is orthogonal.

The full or "thick" SVD A = UXV7T features a square m X m orthogonal matrix
U= [U, U], with X = [%} € R™*" padded with zeros. The diagonal entries o; of )y
are non-negative and in non-increasing order; o; > g9 > --- > 0, > 0. The SVD is

one of the most reliable factorizations, but unfortunately it is also one of the most
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expensive. According to [7], the cost of computing the SVD could be as much as

~ dm2n + 22n3.

The SVD also allows for low-rank approximations of a matrix. One way to do
this is to get rid of "small" singular values. We choose a k& < n that we think (or
hope) might give good results. Again, A’s singular values are o; where i = 1,...,n.

Now we set 0j1., to zero "by hand". This defines a matrix

01
(2.2) Sk — ok
0
0
with which we define
01
R . o
(2.3) A e®yT — : VT,

Aé’f,% clearly has rank-k, since from (2.3) only % columns of U participate in the
multiplication. In fact, Ag\% is the optimal rank-k approximation to A in the 2-norm

(and also the Frobenius norm) [6]. That is
(2.4) 14— AX) |, = min{||A — B||» : B is rank k}.

While Aé]f,% is in this sense the optimal approximation of A, due to the high cost of
the SVD, it is often prohibitively expensive to compute.
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2.2 Pivoted-QR factorization

The QR-factorization can be computed in various ways. We have used an algorithm
due to Stewart |4], described later in Section 2.2.4. For now we present the structure
of the factorization, and show how it may be used to construct a low-rank approx-
imation of a matrix A. From this point forward, we will be dealing with the case

where A is a square matrix.

2.2.1 Basic structure

A "thin", or reduced, pivoted QR-factorization of a rank p matrix A is

(25) Ame “Prxm = mep : Rpxm~

P is a permutation matrix, () is a matrix with orthonormal columns, and R is an

upper triangular matrix. With some manipulation,
(2.6) AP = QR = Q[Ry1, Rip1] = QR [I, Ry Ripia],

Ry is p x p and Ry p4q is p X m — p. For better visualization, we use northwest
indexing at times, for example with R;;, in which each block carries the indices of
the element in the northwest corner. By assumption, (i) AP’s first p columns are
linearly independent, (i7) the columns of @) are orthonormal, and (éiz) Ry; is upper

triangular with no zeros on the diagonal. From the last equation,

(2.7) (AP)(:,1: p) = QRu1.

Due to condition (7i7), Ry; has linearly independent columns and is therefore in-
vertible and therefore equation (2.6) makes sense. The cost of computing the QR

factorization using Householder triangularization is ~ gm?. [6]

2.2.2 Rank-k approximation

The pivoted-QR algorithm also defines a low-rank approximation to a matrix A.

Although p is the rank of A, we would like to approximate A by a lower rank, say k.
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Once again, we start with a thin pivoted QR-factorization of a rank p matrix A,

(2.8) Amxm “Prxm = mep : Rpxm-
P is a permutation matrix, () is a matrix with orthonormal columns, and R is an
upper triangular matrix. We partition the equation AP = Qxp - Rpxm as

Ri1 Rigqa

(2'9) A= [meka me(p—k)] : : Pn:,;><m'
0 Rpyienr

If A were exactly rank-k then Rjyq 11 = 0, so to get a low-rank approximation to

A, we drop Rjy1+1 and write
(2.10) AR = Quxt + [Riy, Ruga] - P
as a rank-k approximation to A.

2.2.3 Errors

Now we shall calculate the error ||A — A[(Jl;) 2. We find

Ry Rig
A-— A[(JI;) = [[mekv me(p—k)] ’ " . PT
0 Rptipn
Ry Rign
(2.11) Qs Qi) ) pr
0 0
0 0
= [meka me(p—k)] : . PT.
0 Ritiks1

Realizing that [Qmxk, Qmx(p—k] and PT both have orthonormal columns and that
|| - ||2 is invariant under orthogonal transformations [6], taking the 2-norm of both

sides of the equation gives us

0 0
14— AZ 1o = |[[Quucs Qo] - T

Rit1 k1 ,

0 Riyik41

(2.12) 0 0
2

= ||Rk+l,k+1||2
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Assuming we have chosen an appropriate k, ||Rit+1+1|l2 will be small enough and
Aé’;) will be a good approximation to A (assuming that a good approximation is even

possible; it depends solely on the A as well as the k).

2.2.4 Stewart’s algorithm

In the previous sections, we have described how a low-rank approximation comes
from a factorization. In Section 2.1 we began with an SVD factorization, and then
we threw out singular values to get our approximation. In Section 2.2.2 we started
with a QR factorization, then we partitioned it to get rid of unwanted terms to get

our approximation.

In this section we describe an algorithm by Stewart [4] to approximate a matrix
A by a rank-k matrix A®. This algorithm is based on a pivoted QR factorization,
but it is halted at an appropriate time during the factorization. Unlike the previous
approximations, one advantage this algorithm gives us is, that it allows us to create

the approximation without actually doing the full factorization first.

Table 2.1: Truncated pivoted QR factorization algorithm from Stewart [4]

Given an m X n (m > n) matrix A this algorithm returns a truncated
pivoted QR decomposition of A. Initially, the matrices () and R are void.
Loy =ALJI% 7=1,....n
2. Determine an index n; such that v,, is maximal
3. Forg=1ton
4. Al q] < Al ng
5. R[l:q—1,q/ <> R[1:k—1,n,
6. Qg =Alqg -Q1:g—1]*R[1:9—1,¢]
7. Rlg,q = Q[ 4l
8. Qg =@q[,d/Rlg,q
9. If necessary reorthogonalize Q[:, ¢] and adjust R[1: ¢ — 1,¢]
10.  Rlg,q+1:n]=Q[,q" *A[;,q+1:n]
1. vij=v;—Rlg,j]*, j=q+1,....m
12. Determine an index ngy1 > g + 1 such that v, , is maximal
13.  If (vy,,, is sufficiently small) leave ¢ fi
14. end for gq.
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Table 2.1 shows the steps in Stewart’s algorithm. To find the complexity of the
algorithm, we must examine each line thoroughly. The cost of line 6 is ~ mn? —4mn.
Line 7 calculates a matrix norm which costs ~ 2mn — n. Line 8 costs ~ mn. The
cost of line 10 is ~ mn? — mn —n?/2 +n/2. And line 11 is ~ 2mn — n? + n. The
overall cost for this procedure when not halted is roughly ~ 2mn?. If we replace line
3 with "¢ = 1 to k" and remove line 13, then it becomes a rank k approximation.
This would drop the cost down to ~ 2mk? which could be quite significant (as stated
previously, the cost of computing the QR factorization for a square matrix using
im3).

Householder triangularization is ~ zm

This algorithm is also particularly useful for sparse matrices because it has the
extra benefit of not destroying the sparsity of A, if present. The price paid here is
that it relies on classical Gram-Schmidt which is known to be numerically unstable.
Although one would think to use modified Gram-Schmidt to help with stability, this
would be unwise. Modified Gram-Schmidt does projections onto all of the columns
as it goes along, yet in this algorithm most likely, we will end up not even using
many of those columns in the end. So, not only would this be doing unnecessary
work, it would also destroy the sparsity of a sparse matrix. To combat this stability

problem, we use the algorithm with reorthogonalization (see line 9).

2.3 Randomized algorithm for the interpolative de-

composition

2.3.1 Interpolative decomposition

The interpolative decomposition of a matrix A involves choosing specific columns of
the matrix and creating a "column skeleton" matrix B of the original matrix. Let

matrix A be size m x m and have rank p. The decomposition is

(213) Amxm = Bmxp : Cpxm-
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Matrix B’s columns consist of a subset of the columns of matrix A. Matrix C has

the form where some subset of its columns are the canonical basis vectors e; where

=1 ..p.

A chosen k < p, where the (k + 1) singular value of A is sufficiently small, from

[3] it turns out, will give us a good approximation,

(214) Bmxk : Ckxm ~ Amxm-

We now use results from Section 2.2 to find the B and C' we need. Using equation
(2.10), we have A[(Jl;) = QR - [I,R;'Ri 1] - PT. The QRy; is the matrix B we are
striving for, while [I Rl_llRLkH} PT is our C. The algorithm from Table 2.1 will
be used to collect all these important pieces and have ready at hand for use in the

upcoming section.

2.3.2 The randomized algorithm

We will now be describing a technique using random matrices to construct an inter-
polative decomposition using a chosen rank as in Section 2.2.2 together with concepts
from previous sections. This follows closely from [3|. As stated previously, the Stew-
art algorithm is especially good for sparse matrices and for retaining the matrix’s
sparsity. This algorithm will be used, although here the issue of sparsity plays no

role.

First we form a new ¢ x m matrix Y by multiplying our original matrix A by
a randomly generated ¢ x m matrix N. Here ¢ is our guess for k, perhaps a little
larger, p > ¢ 2 k. The matrix N’s entries are each distributed as a Gaussian random

variable of zero mean and unit variance.
(215) }/me = NZXm . Ame-

From general matrix multiplication, Y’s rows are linear combinations of matrix A’s
rows. The coefficients in these linear expansions are random variables, and we there-

fore assume that such a recombination of the rows leaves the linear dependencies of
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the column space intact. We can then apply the algorithm in Table 2.1 to this new

Y to find its interpolative decomposition.

Much like (2.6) in Section 2.2, we now seek a factorization

(216) YVZXm : mem = Qka . kam'

The R we get here should be the same one as the one in (2.6) in theory but in
practice, it may be a little off due to round-off error. The algorithm will identify the
important k£ chosen columns of Y. We then use those k chosen columns but instead
of Y, we choose them from our original matrix A. This becomes our column skeleton
matrix B that we were striving for. The algorithm also returns for us its Ry1, Ry g+1,

and P which we will need to create the matrix
(2.17) C = [I Ry Ry 1] P
We now have the pieces to make A,

(2.18) Bk - Chxm = Apxm.

Use of random matrices allows us to compute the relevant factorization on a smaller
problem. The randomized algorithm used here is displayed in Appendix B. This
method has a high probability of approximating the matrix A within reason, while

taking less operations in doing so.

2.3.3 Testing the algorithm

In order to know if the algorithm in Table 2.1 is indeed in working order, we must test
it out to see if the results are reasonable. We will repeat an experiment demonstrated

in [3].

We apply the algorithm to matrices A given by the formula

AlOO 1 T

2.19 A= —-—+—=cC-
(2.19) ||A100||2+,/2C ¢

where c is the 2 x 1 column vector whose entries are all ones, and A is the standard

five-point discretization of the Laplacian on a v x v uniform grid (all of the diagonal



Chapter 2. Low-rank approximation of matrices 13
entries of A are equal to —4, A, , = 1 if the grid points p and ¢ are neighbors, and
all other entries of A are zeros.) A is an m x m matrix, and m = v?. The Laplacian
to such a high order features high-order derivatives and therefore A% has a very

large null space.

The results of the set of tests are shown in Table 2.2. Table 2.2 ’s columns are:

e m is the dimensionality of the m x m matrix A.

e L is the rank of the matrix approximating A.

e / is the first dimension of the £ x m matrix N.

e 0441 is the (k + 1)st greatest singular value of A, that is, the spectral norm of
the difference between A and the optimal rank-%k approximation to A.

e ) is the spectral norm of the difference between the original matrix A and

its approximation obtained via the algorithm of appendix A. We denote the
spectral (¢? - operator) norm of A by [|Allo. ||A||2 is the greatest singular value

of A.

The singular values o; measure the errors in the 2-norm. Again, oy, gives
the optimal rank-k approximation in the 2-norm, although computing this requires
computing the SVD of the matrix which scales like O(m?) for an m x m matrix. The
computed §’s come at a cost of O(£-m?) and yet are acceptably close to the optimal

Ory1 values.

The ¢’s from Table 2.2 were chosen as a representative of many; trial runs, ran
with different random matrix Ns per trial. The results in Table 2.2 are consistent

with those obtained in [3].
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Table 2.2: Interpolative Decomposition of the m x m matrix A.

m k 14 Okt1 )
400 48 56  .277E-08 .361E-07
1600 192 200 .449E-08 .234E-06
3600 432 440 457E-08 .610E-06
6400 768 776 .553E-08 .218E-05
10000 1200 1208 .590E-08 .367E-05

14
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Chapter 3

Finite element method - 2D Poisson

problem

The finite element method (FEM) is a numerical method used in computational anal-
ysis, mechanical and structural engineering problems, as well as problems involving
liquid flow and heat loss. As this presentation follows |2] closely, our focus is on using

the FEM to solve partial differential equations (PDE).

3.1 Variable coefficient Poisson problem

Let u and f be functions of z and y. The standard two-dimensional Dirichlet-Poisson

problem is

2 2
(3.1) —Au= fon (), where Au= % + g—yz and u = 0 on 0.

Here, A is the Laplace operator. Written another way,

(3.2) Au =V -Vu,
where Vu is the gradient of u, i.e. Vu = (%, ‘3—2).

We will work with a variable coefficient version of (3.1). Generalizing (3.2) we
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consider
(3.3) —V-pVu=f inQ, u=0 on 0,

where our domain Q is the [0, 1] x [0, 1] square in R? with boundary 9. The functions

f and p are given, and p is smooth and strictly positive on €.

We seek a weak formulation of (3.3). This weak formulation will then be dis-
cretized in a finite dimensional space, which will result in a linear problem whose

solution approximately solves the original problem.

We now multiply (3.3) by a test function ¢ and integrate over €, thereby finding

—/¢V~qudA:/¢fdA, where ¢ € V.
Q Q
The space V' is defined as follows:

V= {gb . ¢ is continuous on €2, d¢/0zr and J¢/dy are piecewise continuous on €2,
and ¢ =0 on 8Q}.

Integration by parts shows that

—/Q¢V~qudA:—/Q<V~(¢qu)—pV¢~Vu) dA

= — ¢pﬁ~Vuds+/pV¢~VudA.
) Q

Since ¢ € V| we know qﬁ}m =0, and so
—/ n - opVu ds = 0.
o9

Therefore, for any such test function

—/¢V-qu dAz—/p(V(b-Vu) dA.

Q Q

The weak formulation of (3.3) is
(3.4) /qudA:—/p(ng-Vu)dA V ¢cV.

Q Q

We now have a weak formulation of (3.3). We shall now discretize (3.4) using the

Finite Element Method.
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3.2 Triangularization of geometry and FEM approx-

imation

In this section, we create a triangularization and a discretization in a finite dimen-
sional space; as described in [2|. We must now construct a finite dimensional subspace
Vi, of V. For simplicity we shall assume €2 is a polygonal domain. Now, we create a
triangulation of ) by subdividing it into a set 7 = {11, ...,T,} of non-overlapping
triangles T,

We define V}, as follows:

Vi, = {gf) . ¢ is continuous on 2, qb‘T is linear for T € T,

and ¢ =0 on 89}.

This definition ensures that V;, C V. The space V}, consists of all the continuous

functions that are linear on each triangle 7" and vanish on 0f).

We now must choose a basis corresponding to the triangularization for the set of
test functions. We choose values ¢(n;) at the nodes n;,7 =1, ..., M of T but exclude
the nodes on the boundary since ¢ = 0 on 0€2. The corresponding piecewise linear

basis functions ¢, are defined by,

Lif i = j -
(b](m) = (5@' = where 1,] = 1,...,M.
0ifi#j

We shall replace ¢ with ¢, for any k, and replace u(x) with

M
up(x) = Zuj¢j(x), for z € Q, where u; = uy(z;).
j=1

We now enforce (3.4) for all ¢ € V}, rather than ¢ € V. Since (3.4) is linear in ¢,
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this restriction is equivalent to

/medAz—

p(Vor, - Vuy) dA YV k

||
:o\:o\

M
1Y V¢k Zu]¢]
7j=1

M
——Zu}pwk-v%m]u

=1

<.

Introduce the matrix S with elements

(3.5) Skj = /Pv¢k - Vo,dA,
which obeys

M
/ p(Vér Vuy) dA=>" Su;
Q =1

and the right hand side of our linear system is

(3.6) b = /Q ouf dA.

Clearly, since the dot product is symmetric, this matrix S is symmetric. Also, we

have

(v, Sv) = vTSv

M

Z V;iSijVj

N

> ( / pwiwjdA) v

M
/p (Vo - Vo,)dA - where vy, = Zw@
i=1

(v, Sv) = /p |Vou|*dA >0 for v # 0.

Since p > 0, we see that S is positive definite. S is also a sparse matrix since most

of its entries are zero (Sk; = 0 when n;, ny are not on the same triangle 7°).

Our problem is now discretized in a finite dimensional space which will allow us

to proceed in finding an approximate solution.
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3.3 Numerical implementation for 2 = [0, 1] x [0, 1]

To implement our algorithm, we must first input certain parameters. The number of
edge points per side, ncqge, around our square mesh must be chosen and will dictate
how many internal nodes, niy, there will be; Ny, = (Nedge — 1)2. Also, we call the

total number of boundary points npng = 4 X Nedge-

0.9
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- / \ / N\ N

= /
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0.1

/
/

Figure 3.1: TRIANGLE MESH ON [0,1] X [0, 1] GRID. nedge = 20 and njy;, = 361.

The internal nodes placement is chosen at random which in turn creates random
sized triangles. Matlab’s built in function delaunay is used to create these triangles
and the output is written in the form G(k,«) where k is the number of triangles
and a = 1,2,3. Once the grid is in place, the triangles are formed and the specific
nodes from each triangle are recorded. Figure 3.1 shows this triangularization on the

[0,1] x [0, 1] grid for ni,, = 361.

At times, we will also consider using a uniform grid. The uniform grid is comprised
basically of right-angle isosceles triangles, rather than equilateral triangles. As in the

random case, the triangularizations considered are easily generated with Matlab’s
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delaunay function. Figure 3.2 shows an example of a uniform mesh, where the
internal nodes are not chosen at random. We are considering both types of meshes
to study the different effects of each. The randomized mesh is considered bad, while

the uniform one is considered good.

1
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0.4
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0.1

Figure 3.2: TRIANGLE MESH ON A UNIFORM [0, 1]X [0, 1] GRID. neqge = 20 and nin; = 361,

As demonstrated in section 1.8 of [2|, we will now build the triangularization
linear system using piecewise linear finite elements. This is done by computing the
local matrix elements of the system, Sy;, given by (3.5) along with the right hand
side elements, by, given by (3.6). We know that Sy; # 0 only if nj, and n; are of the
same triangle 7®) € G. Then G(a,8), a = 1,2,3, are the numbers of the vertices
of T®) and the x,y coordinates for these vertices are given. Knowing the vertices
of T™®) we can now compute the local matrix elements S*) = sgf,), a, b =1,2,3 for

element 7%

s = [ VeV, da,
T(F)

where 1), is the linear function on 7'®) that takes the following values:

@Z’&k) = ¢j ‘T(k)’
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lifa=
1/1&'“)(71@(&5)) = 0aB = 6 where Oé,ﬁ = 1, 2, 3.

Oifa#

Now we create a matrix M that maps the triangles to a reference triangle 7.,

2(G(k,2)) — 2(G(k, 1)) 2(G(k,3)) — 2(G(k, 1))
y(G(k,2)) —y(G(k,1)) y(G(k,3)) —y(G(k,1))

and

Trep ={(s,t):0<s<1,0<t<1-5},

where

The reference triangle basis functions become

Ou(5,1) = Vo (F®)(s,2)) = %( (5,1) | F“(s,t)).

We use the transformation,
s\ = |detM| /T pV0, - Vo ds dt

to better compute these integrals, which are computed using 3-point Gaussian quadra-Jj
ture. Our algorithm loops over all the elements 7'®) and successively adds the con-

tributions from each together to get the global matrix S.

S (G(k,a),G(k,B)) = S (G(k,a),G(k, B)) + sU).

We can also compute

k) = fiba ds, a=1,2,3
T (k)

and similarly,

b(G(k,)) =b(G(k,a))) + bk
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3.4 Numerical tests

3.4.1 Solver

For our testing purposes, we shall be using the method of manufactured solutions.

We choose the exact solution as
(3.7) u(z,y) = sinh (Nz(1 — z)) sin (Mny),
which determines the right hand side to be

f(z,y) = plz, y){?y(at — 1/2) (1 — 22) cosh [Nz (1 — z)] sin(My)
+ 2Mnv(y —1/2) sinh [Nz(1 — z)] cos(Mmy)
— [M?7* = N*(1 — 22)*] sinh (Nz(1 — z)) sin(M7y)
+ 2N cosh (Nz(1 — z)) Sin(Mﬂ'y)}.

and
(38) ,O(ZE, y) — eV [(m—1/2)2+(y_1/2)2] ‘

We use constants, M =1, N = 0.5, and v = {0.01,0.001, 0.0001, 0.00001,0}. Using

smaller and smaller v, our problem becomes nearly the ordinary Poisson problem.

We shall test our grid with an increasing amount of points: 80%, 902, 1002, ... As
the number of points increases, the accuracy should also increase. The finite element

method with hat functions is second order accurate.

To visualize the errors we are getting, we shall plot the error estimates for neqze =
80. Figure 3.3 shows the point-wise error estimates for n.qy. = 80 points on the
random grid, and Figure 3.4 shows the point-wise error estimates for neqe = 80
points on the uniform grid. Notice how much smoother the plot of the error estimates

using the uniform grid is compared to results from the random grid.
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FEM Point-wise error estimates for nu = 0.001
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Figure 3.3: FEM POINT-WISE ERROR ESTIMATES. Graph of the point-wise error estimate
for neqge = 80 points.

3.4.2 Finite element convergence

The Finite Element Method quantifies the accuracy and reliability of a numerical
solution by error estimates on the FEM error vs. the mesh spacing of the FEM mesh.

We refer the reader to [5] for a more detailed description. These error estimates are

(3.9) Ju(s ) = un( My (//’ u(x,y) — up(x y)’ dxdy) - < Ch?,

as h — 0. Here, u(z,y) denotes the PDE solution of the problem and wuy(z,y) the
FEM solution. The mesh size is denoted by h = 1/n.q4 and C' is a constant.

We would like to set up an easily repeated uniform mesh refinement to test our
algorithm for correct convergence. One good test for reliability of a FEM solution
is to refine the FEM mesh, compute the solution again on the refined mesh, and
qualitatively compare the solutions on the different meshes. In solving the system,

we use the conjugate gradient method preconditioned with the incomplete Cholesky
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FEM Point-wise error estimates for nu = 0.001
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Figure 3.4: FEM POINT-WISE ERROR ESTIMATES ON A UNIFORM GRID. Graph of the
point-wise error estimate for n.q4. = 80 points.

factorization. For the conjugate gradient method we use a tolerance of 1071°, and

for the incomplete Cholesky factorization we use a drop tolerance of 1077.

Figure 3.5 shows a log-log plot of the error on the left hand side of (3.9) vs. the
reciprocal of the mesh spacing, 1/h. In this form, the estimate (3.9) plots as a line
with its slope being equal to the negative of the convergence order 2. The predicted

slope of —2 is shown as a dashed line in the figure.

We also perform the convergence test from the results gotten when using the
uniform meshes. These are shown in Figure 3.6. These results follow the predicted
slope of —2 even more precisely than the non-uniform cases which should be expected,
and the errors themselves are considerably lower then the non-uniform cases. The

errors are basically an order of magnitude smaller when using the uniform grid.
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FEM Test for Convergence
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Figure 3.5: FEM CONVERGENCE TEST. log(error-norm) vs. log(1/h).
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B FEM Test for Convergence from Uniform Grid
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Figure 3.6: FEM CONVERGENCE TEST USING A UNIFORM GRID. log(error-norm) vs.
log(1/h).
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Chapter 4

Solving the Poisson problem using

preconditioning

In this chapter we will solve the variable coefficient Poisson problem on a [0, 1] x [0, 1]
grid using finite element discretization. In order to examine the preconditioning of
conforming subdomains through the techniques introduced in previous chapters, we

here (somewhat artificially) split our rectangular domain into two subdomains.

4.1 Problem set up

We will be solving the variable-coefficient Poisson problem
—V-pVu=f inQ, uw=0 on 0,

where Q = [0,1] x [0, 1] .

We refer the reader to Section 3.4, as we choose the same p(z,y), u(z,y), and
f(z,y). We pick our constants to be M =1, N = 0.5, and v = 1073, Now we move

on to the details and implementation of our procedure.
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4.2 Obtaining a preconditioner

Often the Poisson or a similar elliptic problem needs to be solved on a geometrically
complicated domain 2. One numerical approach towards solving such a problem
splits 2 into a union of simpler subdomains which cover all of €). These constituent
subdomains may overlap or share common boundaries. In any case, the presence
of multiple subdomains often slows down the convergence of iterative solvers of the
discretized equations (which enforce both the bulk PDE and the coupling between
the subdomains). The practical use of multiple subdomains therefore often requires

extra preconditioning, beyond any preconditioning of the bulk equations.

Often the need for multiple subdomains arises when the basic domain 2 is geomet-
rically complicated. Here we consider the simplest possible decomposed geometry: a

rectangle split into two subrectangles.
(41) 0= Ql U Qg where Ql = [0,05] X [0, 1], Qg = [05, 1] X [O, 1]

Figure 4.1 shows this triangularization on the [0, 1] x [0, 1] grid. Notice the evenly

spaced line of points in the center which become a boundary side for each subdomain.

Nine Tepresents all of the interior points of the main domain (including those points
on the center line) and neqge is the number of points per edge on the boundary.
Introduce n. as the number of uniformly spaced interior points that run along the
vertical center line of the domain; n, = neqge — 1. The total number of boundary

points around the domain is npng = 4 X Neqge-

Due to the formation of the subdomains, our n;, here differs slightly from the
Nine Of Section 3.3. Here, niy; # (Neage — 1)?, rather niyy = Ning + Ninga + 1 where
Nint1 = Nint2 = (Nedge — 1)(Nedge/2 — 1) is the number of interior points in each

subdomain (and therefore, we must always choose neqge €ven).

Based on the setup presented earlier, the matrix L represents the linear system
for the interior nodes of the domain. As shown in Section 3.2, the matrix L is also

symmetric positive definite. Splitting the domain into the two subdomains, we see
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Figure 4.1: TRIANGLE MESH ON [0,1] X [0,1] GRID. npnq = 80 and niy, = 380. In
splitting the domain up into 2 subdomains, the center line of points becomes a boundary
for each subdomain.

that the matrix L takes the form

Ly Ly
(4.2) L=1Ln Lj; Ly
L2J L22

where the inner L,s are block matrices, o, 8 = 1,2,J. To represent a "joining" of
the two subdomains, the variable .J is used here. L;; and Lsy contain the interior
points of each subdomain; and thus, Ly, Loy € R™nt1*mnt1 - The other block matrices
Lyy, Ly, Loy, Ljs, and Lj; are part of the coupling between the two subdomains.
Ljyy € R [y Loy € RtinmrXne [0 [y € R "t (and since L is symmetric,

LlJ = L?l and LQJ = L?Q)

For a coefficient matrix L with the structure above, a standard choice of precon-
ditioner is the block-Jacobi preconditioner. When solving on each subdomain, we

assume Dirichlet boundary conditions and ignore the coupling between the subdo-
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mains. We set Ly, Ly, Loy, Lo all to zero and let L;; become the n. X n. identity

matrix. Call G, the approximate inverse of L, the block-Jacobi preconditioner

(4.3) G= I

-1
L22

We are given G, or rather it is easily constructed, and our goal is to improve upon

it by incorporating information about the matching of the two subdomains.

For L' being the exact inverse of L and G our approximate inverse, the difference

is the matrix A.
(4.4) A=L"1-G

Because the inverse of a symmetric matrix is also symmetric, L=, G, and conse-
quently A are each symmetric. We propose to approximate the correction A using
techniques from chapter 2, and then adding it on to G for an even more capable

preconditioner G'.

4.3 Correction of the "rough preconditioner" G

4.3.1 Matlab code: PerformSolve

The main matlab code we use is displayed in Appendix B. This program defines the
functions and sets the parameters we decide on. It then defines the exact solution,
u(x,y), which will be needed in the end to compare the accuracy. Two sets of
random points plus hand selected uniformly spaced n. points on the center line are
then formed, assuming a uniform grid along the boundary, with each edge divided
into 1/neqqe equally spaced subintervals. Again, using the setup from Section 3.3, the
matlab function delaunay is used to create the triangles. The result is a [0, 1] x [0, 1]

grid of random triangles.
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Once the triangles are known, along with the positions of their vertices, the
linear system can be built. The function GetLinearSystem loops over all the triangles
to produce the sparse matrix, L, and the right hand side vector, b, which define the
linear system Lu = b. This is also done for the subdomains, producing Li;, Loy and

b1, by respectfully, as in Section 4.2.

The matrices Li; and Loy are important for the construction of the block-Jacobi
preconditioner, G. This matrix G is defined by the action of Lj; and L', which we
can implement by solving L1z, = by and Losze = by for z; and zy given the sources
by and by. These solves are performed using the conjugate gradient method, in which

they are themselves preconditioned with the incomplete Cholesky factorization.

4.3.2 Building the correction of the "rough preconditioner"

G

To produce the correction we are looking for, we must go through several steps. L
is size Nniy X Niyg. First, we introduce the random 4n. X n;,, matrix K whose entries
are each distributed as a Gaussian random variable of zero mean and unit variance.

Next, define

(4.5) NT = LK"

Here we are using N as if it is the original random matrix, but it actually comes

from applying L to the random matrix K7. We seek a smaller, approximate version
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A= L1 —@G, and compute the following.

A=L"-G
ANT = L7INT - GNT
ANT = L"HLK") — GN™
(4.6) ANT = KT — GNT
(ANT)" = (KT — GNT)"
NA=K — (GNT)"
Y =K - (GNT)"
By construction, the rows of Y = NA are linear combinations of the rows of A,

and importantly, Y is smaller than A. Therefore performing a matrix decomposition

(here pivoted-QR) on Y will be cheaper than on A.

We know K by construction, but we need GNT. Using the function ApplyBlock-
JacobiPCiterative in Appendix D, we apply G to each of the columns of N7. With

these pieces, we can then form the matrix Y.

Now we use Stewart’s algorithm from Appendix A on the matrix Y. Using
Stewart’s pivoted-QR algorithm allows for an early exit once a desired tolerance is
met but this feature is not exploited here. Here, it runs to the end, yet it could
possibly be faster if it were to exit earlier (the use of Stewart’s algorithm allows for
exploration of this possibility later). The algorithm is needed to find the positions

of the columns we want to use in creating the desired interpolative decomposition:
47)  [QY),RY R R Y pivots™), PY] = PivotedQR (Y, tol)

Similar to Section 2.3.1, the outputs determine the equation

(4.8) Y =QMRY [0k Rﬁ/)\Rg)} (P (Y))T

The output pivotsY) is a vector which describes the reordering of matrix Y’s columns.
We will use the vector pivots) to reorder the columns of the matrix A4 in an implicit

manner.
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Define a mapping

(4.9) m:{1,2,...,k} — {1,2, ... k}
(4.10) j — 11(j)
(4.11) pivots™) = [11(1),11(2), ..., TI(k)]

Now we have er(;) where e; is the 4" canonical basis vector.

We can now apply G' to er;), once again using ApplyBlockJacobiPCiterative. Also,
using L, er(;) and the preconditioned conjugate gradient function pcg, we can now

construct L‘len(j). From these formulations, we can now form B,
(4.12) B(:,j) = QYR (:.)) = L eng) — Gengy)
Also, from equation (4.8), we can also form C,

(4.13) C= [Ik(y)xk(y)vR?lf)\Rg/)} ' (P(Y))T‘
Now we have the pieces to formulate our correction

(4.14) A=B.C.

Addition of this correction A to our approximate inverse G gives us our precon-

ditioner G’,

(4.15) G'=G+A

Using this final preconditioner G’ involves first applying G and then applying A,

(4.16) y =Gz
(4.17) y=y+ Az

The function pcg is now used to solve this new preconditioned system.
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This procedure may be used as an alternate way of dealing with non-overlapping
conforming subdomains when the purpose is for creating a preconditioner. Again,
using multiple subdomains in this fashion is especially helpful when dealing with

complicated geometries.

An added benefit of using multiple subdomains is that they have good paralleliz-
ing qualities. So, as long as the subdomains are of similar sizes, the block-Jacobi
preconditioner should parallelize effectively. Also, once it is constructed, the appli-
cation of the correction is also very parallelizable (for instance, using parallel-matrix

multiplication).

4.4 Results

For comparison, we will solve the variable coefficient Poisson problem a variety of
different ways. The first two ways we solve the system, there will be no dividing up
of our domain. The subscript noPC is used when solving the system without using a
preconditioner. We also solve the system with the incomplete Cholesky factorization
as a preconditioner and represent this with the subscript PC(InC). We found that a
drop tolerance of 5 x 1072 for the incomplete Cholesky was satisfactory in weighing

the cost vs. the better approximation of the matrix.

The following factorizations will involve the use of domain decomposition. The
subscript PC(DD-Inv) will be used for solving the system using domain decomposition
along with directly applying the actual inverses of L; and Lo, PC(DD-CG) will be the
subscripts for solving the system using domain decomposition along with the block-
Jacobi preconditioner found by performing the conjugate gradient method on L; and
Ly computed via LU-factorization. The last subscript used, PCA(DD-CG), is similar

to the above subscript, but it also includes applying our constructed correction A.

We ran our algorithm many times, and the results in Table 4.1 are representative.

Table 4.1’s rows are as follows:
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® Ngge 1S the number of edge points per side.

® Tnopc, Tpc(inc) s tec(op-1nv) s trc(op-ce) and tpca(op-ce) are the computational times in

seconds taken to solve the system.

® Unopc, UPC(InC)s YPC(DD-Inv), ‘pc(op-ce) @Nd ipcacpp-cgy are the number of iterations

required when solving the system.

® 7€Snopc; T'ESPC(InC), TE€SPC(OD-Inv), TESpc(op-ce) and respcap-coy are the relative

residuals when solving the system, res = ||b — Az||/||b]|.

Table 4.1: Comparisons of the Poisson problem neglecting the costs of the construction
of the preconditioners.

Nedge 10 20 30 40 50
tnopC 0.0282 0.0525 0.0947 0.1554 0.2376
tpc(Inc) 0.0251 0.0278 0.0325 0.0362 0.0451
tpc(DD-Tnv) 0.0196 0.0930 0.1873 0.6993 1.3806
tpc(pD-CG) 0.1767 1.2746 1.2170 3.0615 3.8832
tpca(DD-CQ) 0.0140 0.0269 0.0435 0.0558 0.0760
nopC 67 189 340 468 624
ipe(nc) 7 13 17 21 26
ipC(DD-Tnv) 36 80 120 230 221
ipc(dD-CE) 40 107 141 284 272
iPCA(DD-CG) 2 3 4 4 4
T€Snopc 5.5574E-11 | 9.9022E-11 | 8.0423E-11 | 9.5044E-11 | 8.5179E-11
T'€Spc(InC) 3.2793E-11 | 8.4074E-12 | 2.2930E-11 | 7.6781E-11 | 4.5419E-11
reSpeop-1av) | 1-0380E-11 | 1.5619E-11 | 9.8126E-11 | 8.0093E-11 | 8.3283E-11
respcp-cgy | 6.8307E-11 | 7.9035E-11 | 6.6010E-11 | 9.8751E-11 | 7.9270E-11
respeamp-cey | 1.0702E-11 | 2.0771E-12 | 5.2776E-13 | 4.2361E-14 | 1.5003E-13

The computational times when using the block-Jacobi preconditioners without the
correction fl, tpcop-1avy and fpceop-ce), appear quite slow compared to the others. A
main reason for this is that the cost of applying these block-Jacobi preconditioners is
included in the computational times since each of the local solves for these are nested
within each iteration. This is also true for tpcy(pp-cey, but with so fewer iterations, is

not as apparent.

Solving the system with the incomplete Cholesky factorization as a precondi-

tioner, PC(InC), is a very efficient way to solve the system. Yet the results of
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tpcaop-cg) are comparable, and in some cases show improvement in the computa-
tional time over the incomplete Cholesky (along with the other methods). Also,
the relative residual for the PCA(DD-CG) method is almost always smaller than the
other methods which indicates that its associated preconditioned linear system has
better conditioning. However, the time in constructing this preconditioner for the
PCA(DD-CG) is also something that should be considered. We return to this issue

below.

Table 4.2: Comparisons of the Poisson problem on a uniform grid neglecting the costs of
the construction of the preconditioners.

Nedge 10 20 30 40 50
tnopC 0.0224 0.0288 0.0371 0.0495 0.0706
tpc(Inc) 0.0246 0.0256 0.0288 0.0328 0.0446
pc(DD-Tnv) 0.0120 0.0231 0.0556 0.1368 0.3390
pc(op-co) 0.0846 0.1742 0.2676 0.4183 0.6283
tpca(Dp-Ca) 0.0128 0.0228 0.0380 0.0494 0.0656
TnoPC 32 64 94 121 146
ipe(1ac) 6 10 14 17 21
ipe (0. Tar) 18 29 37 43 49
5 oD-Ca) 20 31 37 44 49
1pCA(DD-CG) 2 3 4 4 4
T'€SnopC 8.5341E-11 | 5.1537E-11 | 7.1472E-11 | 9.1416E-11 | 9.372E-11
T€Spc(Inc) 5.5046E-11 | 4.3825E-11 | 8.1638E-12 | 7.4034E-11 | 4.9169E-11
respep-tay) | 1.0477E-11 | 3.0291E-11 | 6.3688E-11 | 9.6758E-11 | 6.5653E-11
respcp-cey | 1.1874E-11 | 1.8829E-11 | 7.0006E-11 | 6.8281E-11 | 6.6870E-11
respeacop-cgy | 1.1139E-12 | 4.8106E-11 | 2.3436E-13 | 3.5745E-14 | 2.4468E-13

Table 4.2 shows results gotten by solving the problem just like before except
this time using a uniform grid. With a uniform mesh, all the performances are
slightly better. Solving with no preconditioner (noPC) shows substantial improve-
ment using the uniform grid over the random grid. As before with the random grid,
solving the system with the incomplete Cholesky factorization as a preconditioner,
PC(InC), is very efficient. And like before, the results of tpcamp-cey are comparable
here, and sometimes show improvement in the computational time over the incom-

plete Cholesky (along with the other methods). Here, the relative residual for the

PCA(DD-CG) method is very good again, as it was when using the non-uniform mesh.
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4.4.1 Vertically skewed domain

As an experiment, we changed up our simple [0, 1] x [0, 1] grid. We decided to move
the whole center portion vertically up to add acute corners to the grid and see if the
results would change (see Figure 4.2). But, the results we got here were consistent

with the results we got with the [0, 1] x [0, 1] grid.

nedge = 10

0.5

Figure 4.2: TRIANGLE MESH PERFORMED ON A VERTICALLY SKEWED GRID. Npyq =
40 and niy = 90. This domain is split along the vertical center line resulting in two
subdomains, similar as before.

~

4.5 Cost of constructing A

Although this preconditioner does indeed help with solving the system faster, we
should also consider the cost of constructing the correction A. Again tpeop.cey de-
notes the time taken to solve the two-domain problem using the block-Jacobi precon-
ditioner without the correction fl, and pcypp-cgy 1 the time taken to solve it with the

correction A. We will call T the time taken to construct A. Now tecaop-ce) < tpc(pp-ca)
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and presumably tpcp-cey < 1"+ tpcacop-ce)- There exists a break even point kpg, LS

represents linear solves, where approximately

(4.18) krs - tecon-cey = 1"+ krs - tecacon-co)
or
(4.19) krs =~ T'/(tec(op-ce) — tpcacop-ce) )-

Clearly it is advantageous if one could construct A, and then use it multiple
times in the same problem. In these cases, it would be cost effective if A is used
more than krg times. An example might be a problem involving a time-stepping
method, like say the backward Euler method. Solving the heat equation using the
backward Euler method consists of doing a number of these solves over and over
again for many different right hand sides. In the future we hope to explore the use

of our preconditioning methods in this context.

We ran our algorithm multiple times with different amounts of points and Table

4.3 shows the averaged results.

Table 4.3: Break even point krg, with the size of the system, njy.

Nedge Nint kLS
10 109 | 10.7
20 419 | 24.7
30 929 | 31.2
40 | 1639 | 38.4
50 | 2549 | 46.2

As an example, we ran the algorithm for neqee = 20. We got back tpc(pp-cgy = -868,

tPCA(DD—CG) = 0342, and T = 20.614. SO,

T 20.614

~ ~ 24.7
tpcop-ce) — tpca(op-ca) .868 — .0342

(4.20) fopg ~
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4.6 The Schur complement method

Another approach for using non-overlapping domain decomposition worth mention-
ing is the Schur complement method. As described in [8], this method involves
breaking down our matrix L into the block LDU decomposition (for LDU; L repre-
sents a lower triangular matrix with ones along its diagonal, D represents a diagonal

matrix, and U represents an upper triangular matrix with ones along its diagonal).

Again, we have our symmetric positive definite matrix

Liw Ly O
L=1L;y Lj; Lp
0 Loy Lo

The block LDU decomposition becomes

I 0 0\ (I 00\ [Lu Ly O
(4.21) L=|LnLy I 0]]0 S0 0 I Lp
0  LpLy IJ\0 0 I 0 0 L

Where
(4.22) S= Ly —LnLy Ly — LysLy Loy

is called the Schur complement of the leading principal submatrix containing L

and Lyy. Calculating L™, we get

(4.23)
Lyt —Li'Lyy 0 I 0 0 I 0 0
L7=1 0 I —LiiLyy | |0 St o | —LaLy! I 0
0 0 Ly 0 0 I 0 —LypLyy T

Here, multiplying a vector by L™! entails multiplying by the blocks in the entries
of this factored form of L~'; this includes L;; and Loy (and their transposes L, =
LT, and Ly, = LY,), L] and L3}, and S~*. Multiplying by L;; and Loy is cheap
because they are very sparse. Multiplying by Li;" and Ly, should not be expensive if

we choose a suitable fast method (i.e. fast Fourier transform, multigrid method,...).
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We now explain multiplying by S™'; as indicated by [8]. Because there are much
fewer grid points on the boundary than in the subdomains, L;; and S have a much
smaller dimension than L;; and Loy (this situation grows for finer grid spacings). S is
symmetric positive definite and dense. To get S~! explicitly, one would need to solve
with each subdomain once per boundary grid point (from the L;}'Li; and Ly, Loy
terms in equation (4.22)). This could be done, then afterward factor S using dense
Cholesky and then continue to solve the system. But this would be expensive, much
more so than just multiplying a vector by S. A better way would be by using the
conjugate gradient method, which requires only multiplying a vector by S (requiring

only one solve per subdomain using equation (4.22)).

With the conjugate gradient method, the number of matrix-vector multiplica-
tions depends on the condition number of S. The key to this method is that S is
much better conditioned than the original matrix L. Therefore, using the conjugate
gradient method would be ideal here and would result in fast convergence involving

less iterations.

It should also be noted that a common preconditioner for use when two sub-
domains are involved with an overlap of their boundaries is the additive Schwartz
preconditioner. For this procedure, you would solve on one side, then use the solution
to set the boundary conditions for the other side iterating back and forth. Further
research comparing and contrasting the different overlapping and non-overlapping

methods may be worth while in the future.
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Chapter 5

Conclusion

The Poisson equation is instrumental in a variety of different fields such as electro-
statics, electromagnetics, acoustics, mechanical engineering, and theoretical physics.
Any progress in better solving this important problem should only benefit the future

of these fields among others.

This study was set out to explore a different procedure for creating an effec-
tive preconditioner to help solve the variable coefficient Poisson problem using the
finite element method. Techniques were implored using random matrices while con-
structing the interpolative decomposition of matrices as well as the use of domain
decomposition to establish this preconditioner. We looked closely at two questions

regarding the Poisson problem:

e Can sampling a matrix with the interpolative decomposition (i.e., picking the
most important columns of a matrix and having them represent the entire ma-
trix) and also combining the use of random matrices, be an effective technique

for creating a preconditioner?

e For a non-overlapping domain decomposition preconditioner method, can we

find a good way to account for the conforming boundary area?

Using this interpolative decomposition to create the preconditioner with the cor-
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rection does indeed reduce the number of iterations involved. It does also speed up
the time involved. But it may be possible to figure out a way to apply it faster for
even less time taken. This would of course be beneficial especially since the creation

of the preconditioner takes a good amount of time by itself.

This preconditioner may also be beneficial for problems involving time-stepping,
e.g., the heat equation. When solving problems of this sort, explicit methods en-
counter a stability limit, so implicit methods are favored. Although these methods
take larger steps in their process, they must solve an equation at each step. This
could be ideal for this kind of preconditioner since once it’s created, it can be used
over and over again, making up for the cost of its creation. One other possible ap-
plication could be for cases involving more complicated geometrical domains. This
procedure may be effective when others are not. Again, these concepts should be

explored more in the future.

Interpolative decomposition using statistical sampling on a matrix seems to be
a worthy endeavor. As far as building a preconditioner, employing this method can
be useful, but to what extent though is the question. Going through all the trouble
of it seems to be worth it in this situation and as stated, one may find more usable

applications in the future.
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% Computes pivoted QR-decomposition A*P = Q*R of an m-by-n matrix
% via method described in G. W. Stewart, "Two Algorithms for the
% Efficient Computation of Truncated Pivoted QR Approximations to
% a Sparse Matrix." Well suited for low-rank approximation of a
% sparse matrix A. Inputs are A (possibly sparse), and desired
% tolerance tol for the approximation. Outputs are as follows.
% Matrices Q [m-by-k], R11l [k-by-k], R12 [k-by-(n-k)], P [n-by-n]
% such that A*P \simeq Q*[R11 R12]. P is a permutation matrix, Q
% 1is an orthonormal matrix, and R = [R11 R12] is upper triangular.
% mncol is the (numerical) rank of matrix/approximation.
% function [Q, R11, R12, ncol, pivots, P] = PivotedQR(A,tol,ncol)
function [Q, R, R11, R12, ncol, pivots, P] = PivotedQR(A,tol,ncol)
[m, n] = size(A);
pivots = 1l:n;
%ncol = min([m, nl);
for j=1:n
nu(j) = norm(A(:,j))~2; % nu for squared 2-norms as in Stewart.
end

R = zeros(ncol,n);

for k=1:ncol % Loop over columns of A.
% Determine the pivot column and swap it with
% column k. Since max taken over length-(n-k+1)

% vector, readjust index relative to length n.

[maxnorm, jmax] = max(nu(k:n));

jmax = jmax + (k-1);
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pivots([k jmax]) = pivots([jmax k]);
nu([k jmax]) = nu([jmax k1);
if k > 1;

R(1:k-1,jmax) = R(1:k-1,k);

end

% Gram-Schmidt step with reorthogonalization.
a = A(:,pivots(k));
if k ==
R(1,1) = norm(a);
a/R(1,1);

e
1

% With A_k-1 = A(:,pivots(1:k-1)) = Q_k-1 R_k-1,
% Q_k-1 = A_k-1 inv(R_k-1) is an o.n. basis for
% these columns of A_k-1. With a = A(:,pivots(k))
% we have r_kj = a’*Q_k-1(:,j) as a row vector

% r_k = [r_ki r k2 ... r_k,k-1]. Transpose it.

% Subtract out proj. onto column space of Q_k-1.
% A_k-1 (R_k-1\r) = A_k-1 inv(R_k-1) r = Q_k-1 r.
Y= m m e
q =a - A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\r);

Dr = q’*A(:,pivots(1:k-1))/R(1:k-1,1:k-1); Dr = Dr’;
q =q - A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\Dr);

q = (a-A(:,pivots(l:k-1))*(R(1:k-1,1:k-1)\r))/R(k,k);
Q al;

E=]
]
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end

if k+1<=n
% Compute the k-th row of R, Eq.(4) from Stewart.
R(k,k+1:n) = q’*A(:,pivots(k+1l:n));
% Update nu.
nu(k+1l:n) = max([nu(k+1:n) - R(k,k+1:n)."2; zeros(l,n-k)]);
nu(k) = sum(nu(k+i:n));
if (sqrt(nu(k)) < tol) break; end

else

nu(k) = 0;
end

end % End loop over columns of A.

% Finish up.

ncol = k;

R = R(l:ncol,:);
R11 = R(:,1:k);
R12 = R(:,k+l:n);

if (nargout == T7)
P = zeros(n,n);
for i = 1:n
for j = 1:n
if pivots(i)==j
P(j,i) = 1;
end
end
end

end
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% Solution and compatible source for -div(psi grad u)=f.
% function PerformSolveDivGrad2_Alternate(nedge)

function PerformSolveDivGrad2_Alternate(nedge)

SubPCparams ;

u =Q(x,y)sinh (N*x*(1-x))*sin(M*pix*y);

A

ux =0(x,y) N*(1-2%x)*cosh(N*x*(1-x) ) *sin(M+pixy);
uxx =0(x,y) (-2*%N*cosh(N*x*(1-x))

+N*N* (1-2%x) ~2*sinh (Nkx* (1-x)) ) *sin(M*pixy);
uy =Q(x,y)M*pi*sinh (N*x*(1-x))*cos (M*pixy);
uyy =0(x,y)( ...

-M*M*pi*pik*sinh (N*x*(1-x))*sin(M*pi*y));

uxxPLUSuyy=0(x,y) (uxx(x,y)+tuyy(x,y));

nu = le-8;

psi =0(x,y)exp(-nux((x-0.5)~2+(y-0.5)"2));
psix =0(x,y) (-2%nux(x-0.5)*psi(x,y));

psiy =0(x,y) (-2*nu*(y-0.5)*psi(x,y));

A

f =0(x,y) (-psix(x,y)*ux(x,y)

-psiy (x,y)*uy(x,y)
-psi(x,y)*uxxPLUSuyy(x,y));
f_Lap =e(x,y) (-uxxPLUSuyy (x,y));
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% Build triangularization for each block and then put together.
A

a=0; b=0.5; ¢ =0.0; d=1.0;

%[TRI1,x1,yl,nbdry] = BuildSquareGrid(nedge,a,b,c,d,’R’);
[TRI1,x1,yl,nbdry] = BuildRomGrid(nedge,a,b,c,d,’R’);

A

a=20.5; b=1.0; ¢ =0.0; d=1.0;

%[TRI2,x2,y2,nbdry] = BuildSquareGrid(nedge,a,b,c,d,’L’);
[TRI2,x2,y2,nbdry] = BuildRomGrid(nedge,a,b,c,d,’L’);

A

x = [x1;x2]; y = [yl;y2]; TRI = [TRI1; TRI2 + length(x1)];

extrimesh(TRI,x,y)

xlabel(’x’); ylabel(’y’); title(’nedge = 20’)

saveas(gcf, ’grid30.pdf’, *pdf’)

saveas(gcf, ’grid30.eps’, ’epsc?’)

% Fill up exact solution vector. Does not include boundary points.

npts = length(x1); nint = 2xnpts-2*nbdry+2*(nedge-1); z = zeros(nint,1);

for k = 1:nint
if k+nbdry-(nedge-1) <= npts
kint = k + nbdry-(nedge-1);
else
kint = k + 2*nbdry-2*(nedge-1);
end
z(k) = u(x(kint),y(kint));

end

% Get the sparse matrix and righthand side which define linear system.
[L1, bl] = GetLinearSystemDivGrad(f,psi,TRI1,x1,yl,nbdry); Wi=cholinc(L1,5e-3);
[L2, b2] = GetLinearSystemDivGrad(f,psi,TRI2,x2,y2,nbdry); W2=cholinc(L2,5e-3);
[L, b] = GetLinearSystemDivGrad2(f,psi,TRI,x,y,nbdry,nedge); W=cholinc(L,5e-3);
hhhhhl Commented out various full matrix operations used for testing.
Dol tototots
invLl = inv(full(L1)); invL2 = inv(full(L2));
%hhAhh% [L_L, L_U] = GE(L);
Dokttt
hhhbhhh Eye = eye(nedge-1);
%h%%h%% G = blkdiag(Eye,invLl,Eye,invL2);
%h%h%% invL = inv(L);
bttty A = invL-G;
%hhthhte N = randn(76,enn);
A
A
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%
[enn, emm] = size(L);

ell = nedgex4 - 4;
% Preallocation of memory.

Bapprox = zeros(enn,ell); Papprox = zeros(ell,enn);
GNt = zeros(enn,ell); Ge = zeros(enn,l1);
e = zeros(enn,1);

invLe = zeros(enn,1);

R = randn(ell,enn); Rt = transpose(R); Nt = Lx*Rt;
for j = 1:ell
GNt(:,j) = ApplyBlockJacobiPC_iterative(Nt(:,j),L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint);
end
Y = R - transpose(GNt);
tol = 1e-10;
[QY, R, R11Y, R12Y, kY, pivotsY, PY] = PivotedQR(Y,tol);
%Y_ = QY*R11Y;
ISY = [eye(kY) R11Y\R12Y];

pcgTOL=1e-10; maxiter = 2000;
subTOL=1e-6; subITER = 2000;
correct=’n’;
for q = 1:kY
e = zeros(enn,1);
e(pivotsY(q)) = 1;
Ge = ApplyBlockJacobiPC_iterative(e,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint);
[invLe,flag,relres,niter,resvec]=pcg(L,e,pcgTOL,maxiter,@(w)ApplyBlockJacobiPC_iterative
(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint), [1,[1);
Bapprox(:,q) = invLe - Ge;
end
Papprox = ISYxtranspose(PY);
Aapprox = Bapprox*Papprox;

Tconstruct = toc;

% No Preconditioner used
tic

[znum3,flag,relres,niter]=pcg(L,b,pcgTOL,maxiter,[1,[1,[1);
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time = toc;

% Incomplete LU factorization (Cholesky) on entire "L"
tic
[znumL,flag,relresL,niterL,resvec]=pcg(L,b,pcgTOL,maxiter,W’,W,[1);

tocL = toc;

% Using Domain Decomposition along with the direct inverse of "L1" and direct inverse of h"L2"
tic
correct=’n’;
[znum2b,flag,relresOb,niter0b,resvec]=pcg(L,b,pcgTOL,maxiter,@(w)ApplyBlockJacobiPC_direct
(w,invL1,invL2,Bapprox,Papprox,nbdry,nedge,nint),[]1,[1);
t0b = toc;

% Using Domain Decomposition and Conjugate Gradient on "L1","L2"
tic
correct=’n’;
[znum2,flag,relres0,niter0,resvec]=pcg(L,b,pcgTOL,maxiter,@(w)ApplyBlockJacobiPC_iterative
(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint), [1,[1);

t0 = toc;

% Using Domain Decomposition and Conjugate Gradient on "L1","L2" plus the Correction "A"
tic
correct=’y’;
[znumil,flag,relresl,niterl,resvec]=pcg(L,b,pcgTOL,maxiter,@(w)ApplyBlockJacobiPC_iterative
(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint), [1,[1);

tl = toc;

=
]

Tconstruct/(t0 - t1);
q = npts-nbdry+(nedge-1);
zgraph = [
zeros (nbdry-(nedge-1),1);
znuml(1:9)-z(1:q9);
zeros (nbdry-(nedge-1),1);
znuml (g+1:nint)-z(q+1:nint)];
%extrimesh(TRI,x,y,abs (zgraph))

%xlabel(’x’); ylabel(’y’); title(’Pointwise error’)

disp([’no PC computation time: ’,num2str(time)])
disp([’PC(InC) computation time: ’,num2str(tocL)])
disp([’PC(DD-Inv) computation time: ’,num2str(tOb)])
disp([’PC(DD-CG) computation time: ’,num2str(t0)])
disp([’PCA(DD-CG) computation time: ’,num2str(t1)])

disp([’no PC iteration number: ’,num2str(niter)])

20
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disp([’PC(InC)
disp([’PC(DD-Inv)
disp([’PC(DD-CG)
disp([’PCA(DD-CG)

disp([’no PC
disp([’PC(InC)
disp([’PC(DD-Inv)
disp([’PC(DD-CG)
disp([’PCA(DD-CG)

clear all

iteration number: ’,num2str(niterL)])
iteration number: ’,num2str(niterOb)])
iteration number: ’,num2str(niter0)])

iteration number: ’,num2str(niterl)])

relative residual: ’,num2str(relres)])

relative residual: ’,num2str(relresL)])
relative residual: ’,num2str(relresOb)])

relative residual: ’,num2str(relres0)])

relative residual: ’,num2str(relresi)])

ol
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% Computes approximation Az = b of the Dirichlet problem

% -Lap(w)=f , (x,y) in (0,1)X(0,1), u=0 on boundary

% using piecewise linear finite elements on the triangulation

% describe by (T,x,y). nbdry is the number of boundary nodes.

% They are assumed to come first.

% function [A, b]=GetLinearSystemDivGrad2(f,psi,T,x,y,nbdry,nedge)
function [A, b]=GetLinearSystemDivGrad2(f,psi,T,x,y,nbdry,nedge)

npts = length(x)/2;
nint = 2xnpts-2*nbdry+2*(nedge-1);

intRange=[nbdry-(nedge-1)+1,npts,npts+nbdry- (nedge-1)+1,2*npts];

[ntri d]l=size(T);

A=spalloc(nint,nint,7*nint); 7% Guessing on average < 7 nonzeros per row

b=zeros(nint,1);

% Now loop over the triangles and build the linear system
for k=1:ntri
j1=T(k,1); j2=T(k,2); j3=T(k,3);
[A_loc b_loc]=GetLinearSystemDivGrad_loc(x(j1),y(j1),x(j2),y(j2),x(j3),y(j3),f,psi);
[jitest jlref] = TestInRange(jl,intRange,nbdry,nedge);
if (jltest == 1)
kl=jl-jlref;
A(k1,k1)=A(k1,k1)+A_loc(1);
b(k1)=b(k1)+b_loc(1);

[j2test j2ref] = TestInRange(j2,intRange,nbdry,nedge);
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if (j2test == 1)
k2=j2-j2ref;
A(k1,k2)=A(k1,k2)+A_loc(2);
A(k2,k1)=A(k1,k2);
end
[j3test j3ref] = TestInRange(j3,intRange,nbdry,nedge);
if (j3test == 1)
k3=j3-j3ref;
A(k1,k3)=A(k1,k3)+A_loc(3);
A(%3,k1)=A(k1,k3);
end
end
[j2test j2ref] = TestInRange(j2,intRange,nbdry,nedge);
if (j2test == 1)
k2=j2-j2ref;
A(k2,k2)=A(k2,k2)+A_loc(4);
b(k2)=b(k2)+b_loc(2);
[j3test j3ref] = TestInRange(j3,intRange,nbdry,nedge);
if (j3test == 1)
k3=j3-j3ref;
A(k2,k3)=A(k2,k3)+A_loc(5);
A(%3,k2)=A(k2,k3);
end
end
[j3test j3ref] = TestInRange(j3,intRange,nbdry,nedge);
if (j3test == 1)
k3=j3-j3ref;
A(x3,k3)=A(k3,k3)+A_loc(6);
b(k3)=b(k3)+b_loc(3);
end

end
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function z = ApplyBlockJacobiPC_iterative(x,L1,W1,L2,W2,B,P,nbdry,nedge,nint)
SubPCparams ;

nintl = nint/2;

z = Xx;

z(1:nedge-1) = x(l:nedge-1);

z(nintil+1l:nintl+nedge-1) = x(nintl+1l:nintl+nedge-1);

[z(nintl+nedge:2*nintl) ,flag,relres,niter]=pcg(L2,x(nint1+nedge:2*nint1),subTOL,...
subITER,W2’,W2,[1);

if correct == ’y?’
qqq = P*x;
z = z + B*qqq;

end
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