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Abstra
t

When trying to solve ellipti
al problems su
h as the Poisson problem on 
ompli
ated

domains, one pro
edure is to split the domain into a union of simpler subdomains.

When solving these problems iteratively, it be
omes important to be able to pre
on-

dition the 
oupling between the subdomains. Using the Poisson problem as a test


ase, this thesis explores one idea for pre
onditioning this 
oupling, an idea based on

interpolative de
omposition and random matri
es. We �nd that this pro
edure does


reate an e�
ient pre
onditioner to get at the 
oupling between subdomains.
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Chapter 1

Introdu
tion

1.1 Obje
tive

When trying to solve ellipti
al problems su
h as the Poisson problem on 
ompli
ated

domains, one pro
edure is to split the domain into a union of simpler subdomains.

These subdomains may overlap or share 
ommon boundaries. We shall be looking

at the non-overlapping 
ase. When solving these problems iteratively, it be
omes

important to be able to pre
ondition the 
oupling between the subdomains. Using

the Poisson problem as a test 
ase, this thesis explores one idea for pre
onditioning

this 
oupling, an idea based on interpolative de
omposition and random matri
es.

1.2 Preliminaries

1.2.1 Linear systems

Finding solutions to nonsingular linear systems of the form

(1.1) Ax = b,

where A is a large m×m matrix and b is a size m ve
tor, is an ongoing issue today in

many real world problems. There are basi
ally two methods to solving these systems,
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a dire
t method or an iterative method.

In exa
t arithmeti
, dire
t methods re
over the exa
t solution x = A−1b in a

�nite number of operations. For very large matri
es however, they tend to run into

problems with time as well as storage. Gaussian Elimination is an example of the

dire
t method.

Iterative methods 
reate a sequen
e of improving approximations to the solu-

tion until this solution meets a satisfa
tory toleran
e. Examples of iterative methods

in
lude Ja
obi's Method, Gauss-Seidel, and Su

essive Over-Relaxation method. An-

other popular method, appli
able to the 
ase where A is symmetri
 positive de�nite,

is the Conjugate Gradient Method whi
h is dire
t in prin
iple. For a size N system,

it is dire
t in exa
t arithmeti
 if N iterations are done, however in appli
ation it is

desirable to perform far fewer iterations. One reason these iterative methods have

gained su
h popularity lately is that in some problems, the number of unknowns are

a million or more, making dire
t methods unusable. In our study, we will use itera-

tive methods 
ombined with pre
onditioning to solve the variable 
oe�
ient Poisson

problem.

1.2.2 Pre
onditioning

The use of pre
onditioning is an important ongoing area of study in today's te
h-

nology �elds. Given a linear system like (1.1), sometimes it is better to 
hange the

stru
ture of the system by introdu
ing a pre
onditioner in order to solve it more

e�
iently. Pre
onditioning is a way for improving the 
ondition number of a matrix,

whi
h renders an asso
iated linear system more amendable to solution by iterative

methods.

We 
an solve (1.1) indire
tly by solving

(1.2) M−1Ax =M−1b.

M is 
hosen su
h that k(M−1A) ≪ k(A), where k is the 
ondition number. Therefore,

with M 
hosen appropriately, (1.2) 
an be solved faster than the original problem.
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Ideally, a good 
hoi
e forM would be something 
lose to A, yet also easy to 
onstru
t,

invert, and apply. Also, this pre
onditioned system (1.2) is not a
tually formed in

pra
ti
e, rather it has the ability (in 
ode) to apply A and apply M−1
.

1.3 Outline

The outline for this thesis is as follows. In our �rst main 
hapter, we will go into detail

about various fa
torization te
hniques, e.g., the singular value de
omposition and

pivoted-QR fa
torization. We will dis
uss di�erent approximations whi
h stem from

these fa
torizations. We are interested in these approximations be
ause they will

redu
e the 
omputational 
ost involved in eventually �nding satisfa
tory solutions

to our problem. We will then show a te
hnique in
orporating random matri
es as

well as �nding the interpolative de
omposition of matri
es. These 
on
epts will be

used in later 
hapters to test 
ertain proposed methods for pre
onditioning using the

Poisson problem. We will also look at a spe
i�
 algorithm 
reated by G. W. Stewart

for �nding the pivoted-QR fa
torization in a 
reative way. This algorithm will be

used be
ause of it is unique properties.

Chapter 3 will involve solving the variable 
oe�
ient Poisson problem using the

�nite element method. We will go into detail of what the �nite element method is

and how it is derived. We will des
ribe the pro
edure for 
reating a mesh grid to

use as our domain. We will 
reate a [0, 1] × [0, 1] grid of randomly 
hosen interior

points to use as our domain, but also try a [0, 1] × [0, 1] domain with uniformly

spa
ed points for 
omparison as well. We will state our problem's details and de�ne

the solution as well so that we 
an test the error estimates in the end. We will also

des
ribe the set up for implementing the pro
edure for repeatable tests. To make

sure our algorithm is set up 
orre
tly and 
onverges 
orre
tly, we will 
reate an FEM


onvergen
e test plot, whi
h will also be used in 
omparison of di�erent values of the

variable 
oe�
ient.

The �nal 
hapter will entail putting 
on
epts from the previous 
hapters to work
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for our ultimate goal of 
onstru
ting and testing our pre
onditioners. First, we will

split our previous domain up into two subdomains. They will share a boundary side

whi
h often times is not easy to a

ount for. We will des
ribe a way to a

ount for

this 
onforming pie
e using te
hniques from the earlier 
hapters. Then, using it along

with the two subdomain pie
es together, should work as a good pre
onditioner to

solve the Poisson problem we wish to solve. To test the validity of our pre
onditioner,

we will solve the problem using other pre
onditioners too, and we will show the

results in a table. We 
an then 
ompare and 
ontrast the e�
ien
ies of the di�erent

methods. We will also dis
uss the 
ost of 
onstru
ting our pre
onditioner and �nally,

possibilities for appli
ations in the future.
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Chapter 2

Low-rank approximation of matri
es

In this 
hapter we des
ribe di�erent pro
edures for �nding low-rank approximations

of matri
es.

2.1 Singular value de
omposition

The singular value de
omposition, or SVD, is a matrix fa
torization whi
h has great

value in linear algebra problems. From [6℄, given A ∈ R
m×n

where m ≥ n and A has

full 
olumn rank n, the redu
ed SVD of A is the fa
torization

(2.1) A = Û Σ̂V T ,

where

Û ∈ R
m×n

has orthonormal 
olumns,

Σ̂ ∈ R
n×n

is diagonal,

V ∈ R
n×n

is orthogonal.

The full or "thi
k" SVD A = UΣV T
features a square m × m orthogonal matrix

U = [Û , Ũ ], with Σ =
[

Σ̂
0

]

∈ R
m×n

padded with zeros. The diagonal entries σj of Σ̂

are non-negative and in non-in
reasing order; σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The SVD is

one of the most reliable fa
torizations, but unfortunately it is also one of the most
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expensive. A

ording to [7℄, the 
ost of 
omputing the SVD 
ould be as mu
h as

∼ 4m2n + 22n3
.

The SVD also allows for low-rank approximations of a matrix. One way to do

this is to get rid of "small" singular values. We 
hoose a k < n that we think (or

hope) might give good results. Again, A's singular values are σi where i = 1, ..., n.

Now we set σk+1:n to zero "by hand". This de�nes a matrix

(2.2) Σ̂(k) =



























σ1
.

.

.

σk

0
.

.

.

0



























with whi
h we de�ne

(2.3) A
(k)
SVD

= Û Σ̂(k)V T = Û



























σ1
.

.

.

σk

0
.

.

.

0



























V T .

A
(k)
SVD


learly has rank-k, sin
e from (2.3) only k 
olumns of Û parti
ipate in the

multipli
ation. In fa
t, A
(k)
SVD

is the optimal rank-k approximation to A in the 2-norm

(and also the Frobenius norm) [6℄. That is

(2.4) ‖A− A
(k)
SVD

‖2 = min{‖A−B‖2 : B is rank k}.

While A
(k)
SVD

is in this sense the optimal approximation of A, due to the high 
ost of

the SVD, it is often prohibitively expensive to 
ompute.
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2.2 Pivoted-QR fa
torization

The QR-fa
torization 
an be 
omputed in various ways. We have used an algorithm

due to Stewart [4℄, des
ribed later in Se
tion 2.2.4. For now we present the stru
ture

of the fa
torization, and show how it may be used to 
onstru
t a low-rank approx-

imation of a matrix A. From this point forward, we will be dealing with the 
ase

where A is a square matrix.

2.2.1 Basi
 stru
ture

A "thin", or redu
ed, pivoted QR-fa
torization of a rank p matrix A is

(2.5) Am×m · Pm×m = Qm×p · Rp×m.

P is a permutation matrix, Q is a matrix with orthonormal 
olumns, and R is an

upper triangular matrix. With some manipulation,

(2.6) AP = QR = Q [R11, R1,p+1] = QR11

[

I, R−1
11 R1,p+1

]

,

R11 is p × p and R1,p+1 is p × m − p. For better visualization, we use northwest

indexing at times, for example with R11, in whi
h ea
h blo
k 
arries the indi
es of

the element in the northwest 
orner. By assumption, (i) AP 's �rst p 
olumns are

linearly independent, (ii) the 
olumns of Q are orthonormal, and (iii) R11 is upper

triangular with no zeros on the diagonal. From the last equation,

(2.7) (AP )(:, 1 : p) = QR11.

Due to 
ondition (iii), R11 has linearly independent 
olumns and is therefore in-

vertible and therefore equation (2.6) makes sense. The 
ost of 
omputing the QR

fa
torization using Householder triangularization is ∼ 4
3
m3

. [6℄

2.2.2 Rank-k approximation

The pivoted-QR algorithm also de�nes a low-rank approximation to a matrix A.

Although p is the rank of A, we would like to approximate A by a lower rank, say k.
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On
e again, we start with a thin pivoted QR-fa
torization of a rank p matrix A,

(2.8) Am×m · Pm×m = Qm×p · Rp×m.

P is a permutation matrix, Q is a matrix with orthonormal 
olumns, and R is an

upper triangular matrix. We partition the equation AP = Qm×p · Rp×m as

(2.9) A = [Qm×k, Qm×(p−k)] ·





R11 R1,k+1

0 Rk+1,k+1



 · P T
m×m.

If A were exa
tly rank-k then Rk+1,k+1 = 0, so to get a low-rank approximation to

A, we drop Rk+1,k+1 and write

(2.10) A
(k)
QR

= Qm×k · [R11, R1,k+1] · P
T
m×m

as a rank-k approximation to A.

2.2.3 Errors

Now we shall 
al
ulate the error ‖A− A
(k)
QR

‖2. We �nd

A−A
(k)
QR

=
[

[Qm×k, Qm×(p−k)] ·





R11 R1,k+1

0 Rk+1,k+1



 · P T

− [Qm×k, Qm×(p−k)] ·





R11 R1,k+1

0 0



 · P T
]

= [Qm×k, Qm×(p−k)] ·





0 0

0 Rk+1,k+1



 · P T .

(2.11)

Realizing that [Qm×k, Qm×(p−k)] and P T
both have orthonormal 
olumns and that

‖ · ‖2 is invariant under orthogonal transformations [6℄, taking the 2-norm of both

sides of the equation gives us

‖A−A
(k)
QR

‖2 =

∥

∥

∥

∥

∥

∥

[Qm×k, Qm×(p−k)] ·





0 0

0 Rk+1,k+1



 · P T

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥





0 0

0 Rk+1,k+1





∥

∥

∥

∥

∥

∥

2

= ‖Rk+1,k+1‖2

(2.12)
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Assuming we have 
hosen an appropriate k, ‖Rk+1,k+1‖2 will be small enough and

A
(k)
QR

will be a good approximation to A (assuming that a good approximation is even

possible; it depends solely on the A as well as the k).

2.2.4 Stewart's algorithm

In the previous se
tions, we have des
ribed how a low-rank approximation 
omes

from a fa
torization. In Se
tion 2.1 we began with an SVD fa
torization, and then

we threw out singular values to get our approximation. In Se
tion 2.2.2 we started

with a QR fa
torization, then we partitioned it to get rid of unwanted terms to get

our approximation.

In this se
tion we des
ribe an algorithm by Stewart [4℄ to approximate a matrix

A by a rank-k matrix A(k)
. This algorithm is based on a pivoted QR fa
torization,

but it is halted at an appropriate time during the fa
torization. Unlike the previous

approximations, one advantage this algorithm gives us is, that it allows us to 
reate

the approximation without a
tually doing the full fa
torization �rst.

Table 2.1: Trun
ated pivoted QR fa
torization algorithm from Stewart [4℄

Given an m × n (m ≥ n) matrix A this algorithm returns a trun
ated

pivoted QR de
omposition of A. Initially, the matri
es Q and R are void.

1. νj = ‖A[:, j]‖2, j = 1, . . . , n
2. Determine an index n1 su
h that νn1 is maximal

3. For q = 1 to n
4. A[:, q] ↔ A[:, nq]
5. R[1 : q − 1, q] ↔ R[1 : k − 1, nq]
6. Q[:, q] = A[:, q]−Q[:, 1 : q − 1] ∗R[1 : q − 1, q]
7. R[q, q] = ‖Q[:, q]‖
8. Q[:, q] = Q[:, q]/R[q, q]
9. If ne
essary reorthogonalize Q[:, q] and adjust R[1 : q − 1, q]
10. R[q, q + 1 : n] = Q[:, q]T ∗ A[:, q + 1 : n]
11. νj = νj − R[q, j]2, j = q + 1, . . . , m
12. Determine an index nq+1 ≥ q + 1 su
h that νnq+1 is maximal

13. If (νnq+1 is su�
iently small) leave q �
14. end for q.
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Table 2.1 shows the steps in Stewart's algorithm. To �nd the 
omplexity of the

algorithm, we must examine ea
h line thoroughly. The 
ost of line 6 is ∼ mn2−4mn.

Line 7 
al
ulates a matrix norm whi
h 
osts ∼ 2mn − n. Line 8 
osts ∼ mn. The


ost of line 10 is ∼ mn2 −mn − n2/2 + n/2. And line 11 is ∼ 2mn − n2 + n. The

overall 
ost for this pro
edure when not halted is roughly ∼ 2mn2
. If we repla
e line

3 with "q = 1 to k" and remove line 13, then it be
omes a rank k approximation.

This would drop the 
ost down to ∼ 2mk2 whi
h 
ould be quite signi�
ant (as stated

previously, the 
ost of 
omputing the QR fa
torization for a square matrix using

Householder triangularization is ∼ 4
3
m3

).

This algorithm is also parti
ularly useful for sparse matri
es be
ause it has the

extra bene�t of not destroying the sparsity of A, if present. The pri
e paid here is

that it relies on 
lassi
al Gram-S
hmidt whi
h is known to be numeri
ally unstable.

Although one would think to use modi�ed Gram-S
hmidt to help with stability, this

would be unwise. Modi�ed Gram-S
hmidt does proje
tions onto all of the 
olumns

as it goes along, yet in this algorithm most likely, we will end up not even using

many of those 
olumns in the end. So, not only would this be doing unne
essary

work, it would also destroy the sparsity of a sparse matrix. To 
ombat this stability

problem, we use the algorithm with reorthogonalization (see line 9).

2.3 Randomized algorithm for the interpolative de-


omposition

2.3.1 Interpolative de
omposition

The interpolative de
omposition of a matrix A involves 
hoosing spe
i�
 
olumns of

the matrix and 
reating a "
olumn skeleton" matrix B of the original matrix. Let

matrix A be size m×m and have rank p. The de
omposition is

(2.13) Am×m = Bm×p · Cp×m.
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Matrix B's 
olumns 
onsist of a subset of the 
olumns of matrix A. Matrix C has

the form where some subset of its 
olumns are the 
anoni
al basis ve
tors ej where

j = 1, ..., p.

A 
hosen k < p, where the (k+1)st singular value of A is su�
iently small, from

[3℄ it turns out, will give us a good approximation,

(2.14) Bm×k · Ck×m ≈ Am×m.

We now use results from Se
tion 2.2 to �nd the B and C we need. Using equation

(2.10), we have A
(k)
QR

= QR11 · [I, R
−1
11 R1,k+1] · P

T
. The QR11 is the matrix B we are

striving for, while

[

I R−1
11 R1,k+1

]

P T
is our C. The algorithm from Table 2.1 will

be used to 
olle
t all these important pie
es and have ready at hand for use in the

up
oming se
tion.

2.3.2 The randomized algorithm

We will now be des
ribing a te
hnique using random matri
es to 
onstru
t an inter-

polative de
omposition using a 
hosen rank as in Se
tion 2.2.2 together with 
on
epts

from previous se
tions. This follows 
losely from [3℄. As stated previously, the Stew-

art algorithm is espe
ially good for sparse matri
es and for retaining the matrix's

sparsity. This algorithm will be used, although here the issue of sparsity plays no

role.

First we form a new ℓ × m matrix Y by multiplying our original matrix A by

a randomly generated ℓ × m matrix N . Here ℓ is our guess for k, perhaps a little

larger, p > ℓ & k. The matrix N 's entries are ea
h distributed as a Gaussian random

variable of zero mean and unit varian
e.

(2.15) Yℓ×m = Nℓ×m · Am×m.

From general matrix multipli
ation, Y 's rows are linear 
ombinations of matrix A's

rows. The 
oe�
ients in these linear expansions are random variables, and we there-

fore assume that su
h a re
ombination of the rows leaves the linear dependen
ies of
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the 
olumn spa
e inta
t. We 
an then apply the algorithm in Table 2.1 to this new

Y to �nd its interpolative de
omposition.

Mu
h like (2.6) in Se
tion 2.2, we now seek a fa
torization

(2.16) Yℓ×m · Pm×m = Q̃ℓ×k · Rk×m.

The R we get here should be the same one as the one in (2.6) in theory but in

pra
ti
e, it may be a little o� due to round-o� error. The algorithm will identify the

important k 
hosen 
olumns of Y . We then use those k 
hosen 
olumns but instead

of Y , we 
hoose them from our original matrix A. This be
omes our 
olumn skeleton

matrix B that we were striving for. The algorithm also returns for us its R11, R1,k+1,

and P whi
h we will need to 
reate the matrix

(2.17) C =
[

I R−1
11 R1,k+1

]

P T .

We now have the pie
es to make A,

(2.18) Bm×k · Ck×m ≈ Am×m.

Use of random matri
es allows us to 
ompute the relevant fa
torization on a smaller

problem. The randomized algorithm used here is displayed in Appendix B. This

method has a high probability of approximating the matrix A within reason, while

taking less operations in doing so.

2.3.3 Testing the algorithm

In order to know if the algorithm in Table 2.1 is indeed in working order, we must test

it out to see if the results are reasonable. We will repeat an experiment demonstrated

in [3℄.

We apply the algorithm to matri
es A given by the formula

(2.19) A =
∆100

||∆100||2
+

1

ν2
c · cT ,

where c is the ν2×1 
olumn ve
tor whose entries are all ones, and ∆ is the standard

�ve-point dis
retization of the Lapla
ian on a ν× ν uniform grid (all of the diagonal
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entries of ∆ are equal to −4, ∆p,q = 1 if the grid points p and q are neighbors, and

all other entries of ∆ are zeros.) A is an m×m matrix, and m = ν2. The Lapla
ian

to su
h a high order features high-order derivatives and therefore ∆100
has a very

large null spa
e.

The results of the set of tests are shown in Table 2.2. Table 2.2 's 
olumns are:

• m is the dimensionality of the m×m matrix A.

• k is the rank of the matrix approximating A.

• ℓ is the �rst dimension of the ℓ×m matrix N .

• σk+1 is the (k + 1)st greatest singular value of A, that is, the spe
tral norm of

the di�eren
e between A and the optimal rank-k approximation to A.

• δ is the spe
tral norm of the di�eren
e between the original matrix A and

its approximation obtained via the algorithm of appendix A. We denote the

spe
tral (ℓ2 - operator) norm of A by ‖A‖2. ‖A‖2 is the greatest singular value

of A.

The singular values σi measure the errors in the 2-norm. Again, σk+1 gives

the optimal rank-k approximation in the 2-norm, although 
omputing this requires


omputing the SVD of the matrix whi
h s
ales like O(m3) for an m×m matrix. The


omputed δ's 
ome at a 
ost of O(ℓ ·m2) and yet are a

eptably 
lose to the optimal

σk+1 values.

The δ's from Table 2.2 were 
hosen as a representative of many; trial runs, ran

with di�erent random matrix Ns per trial. The results in Table 2.2 are 
onsistent

with those obtained in [3℄.
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Table 2.2: Interpolative De
omposition of the m×m matrix A.

m k ℓ σk+1 δ
400 48 56 .277E-08 .361E-07

1600 192 200 .449E-08 .234E-06

3600 432 440 .457E-08 .610E-06

6400 768 776 .553E-08 .218E-05

10000 1200 1208 .590E-08 .367E-05
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Chapter 3

Finite element method - 2D Poisson

problem

The �nite element method (FEM) is a numeri
al method used in 
omputational anal-

ysis, me
hani
al and stru
tural engineering problems, as well as problems involving

liquid �ow and heat loss. As this presentation follows [2℄ 
losely, our fo
us is on using

the FEM to solve partial di�erential equations (PDE).

3.1 Variable 
oe�
ient Poisson problem

Let u and f be fun
tions of x and y. The standard two-dimensional Diri
hlet-Poisson

problem is

(3.1) −∆u = f on Ω, where ∆u =
∂2u

∂x2
+
∂2u

∂y2
and u = 0 on ∂Ω.

Here, ∆ is the Lapla
e operator. Written another way,

(3.2) ∆u = ∇ · ∇u,

where ∇u is the gradient of u, i.e. ∇u =
(

∂u
∂x
, ∂u
∂y

)

.

We will work with a variable 
oe�
ient version of (3.1). Generalizing (3.2) we
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onsider

(3.3) −∇ · ρ∇u = f in Ω, u = 0 on ∂Ω,

where our domain Ω is the [0, 1]×[0, 1] square in R
2
with boundary ∂Ω. The fun
tions

f and ρ are given, and ρ is smooth and stri
tly positive on Ω.

We seek a weak formulation of (3.3). This weak formulation will then be dis-


retized in a �nite dimensional spa
e, whi
h will result in a linear problem whose

solution approximately solves the original problem.

We now multiply (3.3) by a test fun
tion φ and integrate over Ω, thereby �nding

−

∫

Ω

φ∇ · ρ∇u dA =

∫

Ω

φf dA, where φ ∈ V.

The spa
e V is de�ned as follows:

V =
{

φ : φ is 
ontinuous on Ω, ∂φ/∂x and ∂φ/∂y are pie
ewise 
ontinuous on Ω,

and φ = 0 on ∂Ω
}

.

Integration by parts shows that

−

∫

Ω

φ∇ · ρ∇u dA = −

∫

Ω

(

∇ ·
(

φρ∇u
)

− ρ∇φ · ∇u

)

dA

= −

∫

∂Ω

φρ n̂ · ∇u ds+

∫

Ω

ρ∇φ · ∇u dA.

Sin
e φ ∈ V , we know φ
∣

∣

∂Ω
= 0, and so

−

∫

∂Ω

n̂ · φρ∇u ds = 0.

Therefore, for any su
h test fun
tion

−

∫

Ω

φ∇ · ρ∇u dA = −

∫

Ω

ρ
(

∇φ · ∇u
)

dA.

The weak formulation of (3.3) is

(3.4)

∫

Ω

φf dA = −

∫

Ω

ρ
(

∇φ · ∇u
)

dA ∀ φ ∈ V.

We now have a weak formulation of (3.3). We shall now dis
retize (3.4) using the

Finite Element Method.
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3.2 Triangularization of geometry and FEM approx-

imation

In this se
tion, we 
reate a triangularization and a dis
retization in a �nite dimen-

sional spa
e; as des
ribed in [2℄. We must now 
onstru
t a �nite dimensional subspa
e

Vh of V . For simpli
ity we shall assume Ω is a polygonal domain. Now, we 
reate a

triangulation of Ω by subdividing it into a set T = {T1, ..., Tm} of non-overlapping

triangles Ti,

Ω = T1 ∪ T2 ∪ ... ∪ Tm.

We de�ne Vh as follows:

Vh =
{

φ : φ is 
ontinuous on Ω, φ
∣

∣

T
is linear for T ∈ T ,

and φ = 0 on ∂Ω
}

.

This de�nition ensures that Vh ⊂ V . The spa
e Vh 
onsists of all the 
ontinuous

fun
tions that are linear on ea
h triangle T and vanish on ∂Ω.

We now must 
hoose a basis 
orresponding to the triangularization for the set of

test fun
tions. We 
hoose values φ(ni) at the nodes ni, i = 1, ...,M of T but ex
lude

the nodes on the boundary sin
e φ = 0 on ∂Ω. The 
orresponding pie
ewise linear

basis fun
tions φj are de�ned by,

φj(ni) = δij =







1 if i = j

0 if i 6= j
where i, j = 1, ...,M.

We shall repla
e φ with φk for any k, and repla
e u(x) with

uh(x) =

M
∑

j=1

ujφj(x), for x ∈ Ω, where uj = uh(xj).

We now enfor
e (3.4) for all φ ∈ Vh, rather than φ ∈ V . Sin
e (3.4) is linear in φ,
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this restri
tion is equivalent to

∫

Ω

φkf dA = −

∫

Ω

ρ
(

∇φk · ∇uh
)

dA ∀ k

= −

∫

Ω

ρ
(

∇φk · ∇
(

M
∑

j=1

ujφj

))

dA

= −

M
∑

j=1

[
∫

Ω

ρ∇φk · ∇φj dA

]

uj.

Introdu
e the matrix S with elements

(3.5) Skj =

∫

ρ∇φk · ∇φjdA,

whi
h obeys

∫

Ω

ρ
(

∇φk · ∇uh
)

dA =

M
∑

j=1

Skjuj

and the right hand side of our linear system is

(3.6) bk =

∫

Ω

φkf dA.

Clearly, sin
e the dot produ
t is symmetri
, this matrix S is symmetri
. Also, we

have

〈v, Sv〉 = vTSv

=

M
∑

i,j=1

visijvj

=

M
∑

i,j=1

vi

(
∫

ρ∇φi · ∇φjdA

)

vj

=

∫

ρ (∇vh · ∇vh) dA where vh =
M
∑

i=1

viφi

〈v, Sv〉 =

∫

ρ ‖∇vh‖
2 dA > 0 for v 6= ~0.

Sin
e ρ > 0, we see that S is positive de�nite. S is also a sparse matrix sin
e most

of its entries are zero (Skj = 0 when nj , nk are not on the same triangle T ).

Our problem is now dis
retized in a �nite dimensional spa
e whi
h will allow us

to pro
eed in �nding an approximate solution.



Chapter 3. Finite element method - 2D Poisson problem 19

3.3 Numeri
al implementation for Ω = [0, 1]× [0, 1]

To implement our algorithm, we must �rst input 
ertain parameters. The number of

edge points per side, nedge, around our square mesh must be 
hosen and will di
tate

how many internal nodes, nint, there will be; nint = (nedge − 1)2. Also, we 
all the

total number of boundary points nbnd = 4× nedge.
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0.9

1

x

y

Figure 3.1: Triangle mesh on [0, 1] × [0, 1] grid. nedge = 20 and nint = 361.

The internal nodes pla
ement is 
hosen at random whi
h in turn 
reates random

sized triangles. Matlab's built in fun
tion delaunay is used to 
reate these triangles

and the output is written in the form G(k, α) where k is the number of triangles

and α = 1, 2, 3. On
e the grid is in pla
e, the triangles are formed and the spe
i�


nodes from ea
h triangle are re
orded. Figure 3.1 shows this triangularization on the

[0, 1]× [0, 1] grid for nint = 361.

At times, we will also 
onsider using a uniform grid. The uniform grid is 
omprised

basi
ally of right-angle isos
eles triangles, rather than equilateral triangles. As in the

random 
ase, the triangularizations 
onsidered are easily generated with Matlab's
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delaunay fun
tion. Figure 3.2 shows an example of a uniform mesh, where the

internal nodes are not 
hosen at random. We are 
onsidering both types of meshes

to study the di�erent e�e
ts of ea
h. The randomized mesh is 
onsidered bad, while

the uniform one is 
onsidered good.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3.2: Triangle mesh on a uniform [0, 1]×[0, 1] grid. nedge = 20 and nint = 361.

As demonstrated in se
tion 1.8 of [2℄, we will now build the triangularization

linear system using pie
ewise linear �nite elements. This is done by 
omputing the

lo
al matrix elements of the system, Skj, given by (3.5) along with the right hand

side elements, bk, given by (3.6). We know that Skj 6= 0 only if nk and nj are of the

same triangle T (k) ∈ G. Then G(α, β), α = 1, 2, 3, are the numbers of the verti
es

of T (k)
, and the x, y 
oordinates for these verti
es are given. Knowing the verti
es

of T (k)
we 
an now 
ompute the lo
al matrix elements S(k) = s

(k)
αγ , α, β = 1, 2, 3 for

element T (k)

s
(k)
αβ =

∫

T (k)

ρ∇ψα∇ψβ dA,

where ψα is the linear fun
tion on T (k)
that takes the following values:

ψ(k)
α = φj

∣

∣

T (k),
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ψ(k)
α (nG(k,β)) = δαβ =







1 if α = β

0 if α 6= β
where α, β = 1, 2, 3.

Now we 
reate a matrix M that maps the triangles to a referen
e triangle Tref ,

M (k) =





x(G(k, 2))− x(G(k, 1)) x(G(k, 3))− x(G(k, 1))

y(G(k, 2))− y(G(k, 1)) y(G(k, 3))− y(G(k, 1))





and

Tref = {(s, t) : 0 ≤ s ≤ 1 , 0 ≤ t ≤ 1− s} ,

where

F (k) : Tref −→ T (k),




s

t



 7−→





x

y



 =M (k)





s

t



+





x1

y1



 .

The referen
e triangle basis fun
tions be
ome

θα(s, t) = ψα

(

F (k)(s, t)
)

= ψα

(

F
(k)
1 (s, t) , F

(k)
2 (s, t)

)

.

We use the transformation,

s
(k)
αβ =

∣

∣detM
∣

∣

∫

Tref

ρ∇θα · ∇θβ ds dt

to better 
ompute these integrals, whi
h are 
omputed using 3-point Gaussian quadra-

ture. Our algorithm loops over all the elements T (k)
and su

essively adds the 
on-

tributions from ea
h together to get the global matrix S.

S (G(k, α), G(k, β)) = S (G(k, α), G(k, β)) + s
(k)
αβ .

We 
an also 
ompute

b(k)α =

∫

T (k)

fψα ds, α = 1, 2, 3

and similarly,

b (G(k, α))) = b (G(k, α))) + b(k)α .
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3.4 Numeri
al tests

3.4.1 Solver

For our testing purposes, we shall be using the method of manufa
tured solutions.

We 
hoose the exa
t solution as

(3.7) u(x, y) = sinh
(

Nx(1 − x)
)

sin
(

Mπy
)

,

whi
h determines the right hand side to be

f (x, y) = ρ(x, y)
{

2ν
(

x− 1/2
)(

1− 2x
)

cosh
[

Nx(1 − x)
]

sin(Mπy)

+ 2Mπν
(

y − 1/2
)

sinh
[

Nx(1 − x)
]

cos(Mπy)

−
[

M2π2 −N2(1− 2x)2
]

sinh
(

Nx(1 − x)
)

sin(Mπy)

+ 2N cosh
(

Nx(1 − x)
)

sin(Mπy)
}

.

and

(3.8) ρ(x, y) = e−ν
[

(x−1/2)2+(y−1/2)2
]

.

We use 
onstants, M = 1, N = 0.5, and ν = {0.01, 0.001, 0.0001, 0.00001, 0}. Using

smaller and smaller ν, our problem be
omes nearly the ordinary Poisson problem.

We shall test our grid with an in
reasing amount of points: 802, 902, 1002, ... As

the number of points in
reases, the a

ura
y should also in
rease. The �nite element

method with hat fun
tions is se
ond order a

urate.

To visualize the errors we are getting, we shall plot the error estimates for nedge =

80. Figure 3.3 shows the point-wise error estimates for nedge = 80 points on the

random grid, and Figure 3.4 shows the point-wise error estimates for nedge = 80

points on the uniform grid. Noti
e how mu
h smoother the plot of the error estimates

using the uniform grid is 
ompared to results from the random grid.
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Figure 3.3: FEM Point-wise error estimates. Graph of the point-wise error estimate

for nedge = 80 points.

3.4.2 Finite element 
onvergen
e

The Finite Element Method quanti�es the a

ura
y and reliability of a numeri
al

solution by error estimates on the FEM error vs. the mesh spa
ing of the FEM mesh.

We refer the reader to [5℄ for a more detailed des
ription. These error estimates are

(3.9) ‖u(·, ·)− uh(·, ·)‖L2(Ω) =

(
∫∫

∣

∣

∣
u(x, y)− uh(x, y)

∣

∣

∣

2

dxdy

)1/2

≤ Ch2,

as h → 0. Here, u(x, y) denotes the PDE solution of the problem and uh(x, y) the

FEM solution. The mesh size is denoted by h = 1/nedge and C is a 
onstant.

We would like to set up an easily repeated uniform mesh re�nement to test our

algorithm for 
orre
t 
onvergen
e. One good test for reliability of a FEM solution

is to re�ne the FEM mesh, 
ompute the solution again on the re�ned mesh, and

qualitatively 
ompare the solutions on the di�erent meshes. In solving the system,

we use the 
onjugate gradient method pre
onditioned with the in
omplete Cholesky
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Figure 3.4: FEM Point-wise error estimates on a uniform grid. Graph of the

point-wise error estimate for nedge = 80 points.

fa
torization. For the 
onjugate gradient method we use a toleran
e of 10−10
, and

for the in
omplete Cholesky fa
torization we use a drop toleran
e of 10−7
.

Figure 3.5 shows a log-log plot of the error on the left hand side of (3.9) vs. the

re
ipro
al of the mesh spa
ing, 1/h. In this form, the estimate (3.9) plots as a line

with its slope being equal to the negative of the 
onvergen
e order 2. The predi
ted

slope of −2 is shown as a dashed line in the �gure.

We also perform the 
onvergen
e test from the results gotten when using the

uniform meshes. These are shown in Figure 3.6. These results follow the predi
ted

slope of−2 even more pre
isely than the non-uniform 
ases whi
h should be expe
ted,

and the errors themselves are 
onsiderably lower then the non-uniform 
ases. The

errors are basi
ally an order of magnitude smaller when using the uniform grid.
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Figure 3.5: FEM Convergen
e test. log(error-norm) vs. log(1/h).
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Figure 3.6: FEM Convergen
e test using a uniform grid. log(error-norm) vs.

log(1/h).
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Chapter 4

Solving the Poisson problem using

pre
onditioning

In this 
hapter we will solve the variable 
oe�
ient Poisson problem on a [0, 1]× [0, 1]

grid using �nite element dis
retization. In order to examine the pre
onditioning of


onforming subdomains through the te
hniques introdu
ed in previous 
hapters, we

here (somewhat arti�
ially) split our re
tangular domain into two subdomains.

4.1 Problem set up

We will be solving the variable-
oe�
ient Poisson problem

−∇ · ρ∇u = f in Ω, u = 0 on ∂Ω,

where Ω = [0, 1]× [0, 1] .

We refer the reader to Se
tion 3.4, as we 
hoose the same ρ(x, y), u(x, y), and

f(x, y). We pi
k our 
onstants to be M = 1, N = 0.5, and ν = 10−3
. Now we move

on to the details and implementation of our pro
edure.
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4.2 Obtaining a pre
onditioner

Often the Poisson or a similar ellipti
 problem needs to be solved on a geometri
ally


ompli
ated domain Ω. One numeri
al approa
h towards solving su
h a problem

splits Ω into a union of simpler subdomains whi
h 
over all of Ω. These 
onstituent

subdomains may overlap or share 
ommon boundaries. In any 
ase, the presen
e

of multiple subdomains often slows down the 
onvergen
e of iterative solvers of the

dis
retized equations (whi
h enfor
e both the bulk PDE and the 
oupling between

the subdomains). The pra
ti
al use of multiple subdomains therefore often requires

extra pre
onditioning, beyond any pre
onditioning of the bulk equations.

Often the need for multiple subdomains arises when the basi
 domainΩ is geomet-

ri
ally 
ompli
ated. Here we 
onsider the simplest possible de
omposed geometry: a

re
tangle split into two subre
tangles.

(4.1) Ω = Ω1 ∪ Ω2 where Ω1 = [0, 0.5]× [0, 1], Ω2 = [0.5, 1]× [0, 1]

Figure 4.1 shows this triangularization on the [0, 1] × [0, 1] grid. Noti
e the evenly

spa
ed line of points in the 
enter whi
h be
ome a boundary side for ea
h subdomain.

nint represents all of the interior points of the main domain (in
luding those points

on the 
enter line) and nedge is the number of points per edge on the boundary.

Introdu
e nc as the number of uniformly spa
ed interior points that run along the

verti
al 
enter line of the domain; nc = nedge − 1. The total number of boundary

points around the domain is nbnd = 4× nedge.

Due to the formation of the subdomains, our nint here di�ers slightly from the

nint of Se
tion 3.3. Here, nint 6= (nedge − 1)2, rather nint = nint1 + nint2 + nc where

nint1 = nint2 = (nedge − 1)(nedge/2 − 1) is the number of interior points in ea
h

subdomain (and therefore, we must always 
hoose nedge even).

Based on the setup presented earlier, the matrix L represents the linear system

for the interior nodes of the domain. As shown in Se
tion 3.2, the matrix L is also

symmetri
 positive de�nite. Splitting the domain into the two subdomains, we see
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Figure 4.1: Triangle mesh on [0, 1] × [0, 1] grid. nbnd = 80 and nint = 380. In

splitting the domain up into 2 subdomains, the 
enter line of points be
omes a boundary

for ea
h subdomain.

that the matrix L takes the form

(4.2) L =











L11 L1J

LJ1 LJJ LJ2

L2J L22











where the inner Lαβ are blo
k matri
es, α, β = 1, 2, J . To represent a "joining" of

the two subdomains, the variable J is used here. L11 and L22 
ontain the interior

points of ea
h subdomain; and thus, L11, L22 ∈ R
nint1×nint1

. The other blo
k matri
es

L1J , LJ1, L2J , LJ2, and LJJ are part of the 
oupling between the two subdomains.

LJJ ∈ R
nc×nc

, L1J , L2J ∈ R
nint1×nc

, LJ2, LJ1 ∈ R
nc×nint1

(and sin
e L is symmetri
,

L1J = LT
J1 and L2J = LT

J2).

For a 
oe�
ient matrix L with the stru
ture above, a standard 
hoi
e of pre
on-

ditioner is the blo
k-Ja
obi pre
onditioner. When solving on ea
h subdomain, we

assume Diri
hlet boundary 
onditions and ignore the 
oupling between the subdo-



Chapter 4. Solving the Poisson problem using pre
onditioning 30

mains. We set L1J , LJ1, L2J , LJ2 all to zero and let LJJ be
ome the nc × nc identity

matrix. Call G, the approximate inverse of L, the blo
k-Ja
obi pre
onditioner

(4.3) G =











L−1
11

I

L−1
22











.

We are given G, or rather it is easily 
onstru
ted, and our goal is to improve upon

it by in
orporating information about the mat
hing of the two subdomains.

For L−1
being the exa
t inverse of L and G our approximate inverse, the di�eren
e

is the matrix A.

(4.4) A = L−1 −G

Be
ause the inverse of a symmetri
 matrix is also symmetri
, L−1
, G, and 
onse-

quently A are ea
h symmetri
. We propose to approximate the 
orre
tion A using

te
hniques from 
hapter 2, and then adding it on to G for an even more 
apable

pre
onditioner G′
.

4.3 Corre
tion of the "rough pre
onditioner" G

4.3.1 Matlab 
ode: PerformSolve

The main matlab 
ode we use is displayed in Appendix B. This program de�nes the

fun
tions and sets the parameters we de
ide on. It then de�nes the exa
t solution,

u(x, y), whi
h will be needed in the end to 
ompare the a

ura
y. Two sets of

random points plus hand sele
ted uniformly spa
ed nc points on the 
enter line are

then formed, assuming a uniform grid along the boundary, with ea
h edge divided

into 1/nedge equally spa
ed subintervals. Again, using the setup from Se
tion 3.3, the

matlab fun
tion delaunay is used to 
reate the triangles. The result is a [0, 1]× [0, 1]

grid of random triangles.
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On
e the triangles are known, along with the positions of their verti
es, the

linear system 
an be built. The fun
tion GetLinearSystem loops over all the triangles

to produ
e the sparse matrix, L, and the right hand side ve
tor, b, whi
h de�ne the

linear system Lu = b. This is also done for the subdomains, produ
ing L11, L22 and

b1, b2 respe
tfully, as in Se
tion 4.2.

The matri
es L11 and L22 are important for the 
onstru
tion of the blo
k-Ja
obi

pre
onditioner, G. This matrix G is de�ned by the a
tion of L−1
11 and L−1

22 , whi
h we


an implement by solving L11z1 = b1 and L22z2 = b2 for z1 and z2 given the sour
es

b1 and b2. These solves are performed using the 
onjugate gradient method, in whi
h

they are themselves pre
onditioned with the in
omplete Cholesky fa
torization.

4.3.2 Building the 
orre
tion of the "rough pre
onditioner"

G

To produ
e the 
orre
tion we are looking for, we must go through several steps. L

is size nint × nint. First, we introdu
e the random 4nc × nint matrix K whose entries

are ea
h distributed as a Gaussian random variable of zero mean and unit varian
e.

Next, de�ne

(4.5) NT = LKT

Here we are using N as if it is the original random matrix, but it a
tually 
omes

from applying L to the random matrix KT
. We seek a smaller, approximate version
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A ≡ L−1 −G, and 
ompute the following.

A = L−1 −G

ANT = L−1NT −GNT

ANT = L−1(LKT )−GNT

ANT = KT −GNT

(

ANT
)T

=
(

KT −GNT
)T

NA = K −
(

GNT
)T

Y = K −
(

GNT
)T

(4.6)

By 
onstru
tion, the rows of Y ≡ NA are linear 
ombinations of the rows of A,

and importantly, Y is smaller than A. Therefore performing a matrix de
omposition

(here pivoted-QR) on Y will be 
heaper than on A.

We know K by 
onstru
tion, but we need GNT
. Using the fun
tion ApplyBlo
k-

Ja
obiPCiterative in Appendix D, we apply G to ea
h of the 
olumns of NT
. With

these pie
es, we 
an then form the matrix Y .

Now we use Stewart's algorithm from Appendix A on the matrix Y . Using

Stewart's pivoted-QR algorithm allows for an early exit on
e a desired toleran
e is

met but this feature is not exploited here. Here, it runs to the end, yet it 
ould

possibly be faster if it were to exit earlier (the use of Stewart's algorithm allows for

exploration of this possibility later). The algorithm is needed to �nd the positions

of the 
olumns we want to use in 
reating the desired interpolative de
omposition:

(4.7)

[

Q(Y ), R(Y ), R
(Y )
11 , R

(Y )
12 , k

(Y ), pivots(Y ), P (Y )
]

= PivotedQR

(

Y, tol
)

Similar to Se
tion 2.3.1, the outputs determine the equation

(4.8) Y = Q(Y )R
(Y )
11 ·

[

Ik(Y )
×k(Y ), R

(Y )
11 \R

(Y )
12

]

·
(

P (Y )
)T

The output pivots(Y )
is a ve
tor whi
h des
ribes the reordering of matrix Y 's 
olumns.

We will use the ve
tor pivots(Y )
to reorder the 
olumns of the matrix A in an impli
it

manner.
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De�ne a mapping

(4.9) Π : {1, 2, ..., k} −→ {1, 2, ..., k}

(4.10) j → Π(j)

(4.11) pivots(Y ) =
[

Π(1),Π(2), ...,Π(k)
]

Now we have eΠ(j) where ej is the j
th

anoni
al basis ve
tor.

We 
an now apply G to eΠ(j), on
e again using ApplyBlo
kJa
obiPCiterative. Also,

using L, eΠ(j) and the pre
onditioned 
onjugate gradient fun
tion p
g, we 
an now


onstru
t L−1eΠ(j). From these formulations, we 
an now form B̃,

(4.12) B̃(:, j) = Q(A)R
(Y )
11 (:, j) = L−1eΠ(j) −GeΠ(j)

Also, from equation (4.8), we 
an also form C̃,

(4.13) C̃ =
[

Ik(Y )
×k(Y ), R

(Y )
11 \R

(Y )
12

]

·
(

P (Y )
)T
.

Now we have the pie
es to formulate our 
orre
tion

(4.14) Ã = B̃ · C̃.

Addition of this 
orre
tion Ã to our approximate inverse G gives us our pre
on-

ditioner G′
,

(4.15) G′ = G+ Ã.

Using this �nal pre
onditioner G′
involves �rst applying G and then applying Ã,

y = Gz(4.16)

y = y + Ãz(4.17)

The fun
tion p
g is now used to solve this new pre
onditioned system.
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This pro
edure may be used as an alternate way of dealing with non-overlapping


onforming subdomains when the purpose is for 
reating a pre
onditioner. Again,

using multiple subdomains in this fashion is espe
ially helpful when dealing with


ompli
ated geometries.

An added bene�t of using multiple subdomains is that they have good paralleliz-

ing qualities. So, as long as the subdomains are of similar sizes, the blo
k-Ja
obi

pre
onditioner should parallelize e�e
tively. Also, on
e it is 
onstru
ted, the appli-


ation of the 
orre
tion is also very parallelizable (for instan
e, using parallel-matrix

multipli
ation).

4.4 Results

For 
omparison, we will solve the variable 
oe�
ient Poisson problem a variety of

di�erent ways. The �rst two ways we solve the system, there will be no dividing up

of our domain. The subs
ript noPC is used when solving the system without using a

pre
onditioner. We also solve the system with the in
omplete Cholesky fa
torization

as a pre
onditioner and represent this with the subs
ript PC(InC). We found that a

drop toleran
e of 5× 10−3
for the in
omplete Cholesky was satisfa
tory in weighing

the 
ost vs. the better approximation of the matrix.

The following fa
torizations will involve the use of domain de
omposition. The

subs
ript PC(DD-Inv) will be used for solving the system using domain de
omposition

along with dire
tly applying the a
tual inverses of L1 and L2, PC(DD-CG) will be the

subs
ripts for solving the system using domain de
omposition along with the blo
k-

Ja
obi pre
onditioner found by performing the 
onjugate gradient method on L1 and

L2 
omputed via LU-fa
torization. The last subs
ript used, PCA(DD-CG), is similar

to the above subs
ript, but it also in
ludes applying our 
onstru
ted 
orre
tion Ã.

We ran our algorithm many times, and the results in Table 4.1 are representative.

Table 4.1's rows are as follows:
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• nedge is the number of edge points per side.

• t
noPC

, t
PC(InC)

, t
PC(DD-Inv)

, t
PC(DD-CG)

and t
PCA(DD-CG)

are the 
omputational times in

se
onds taken to solve the system.

• i
noPC

, i
PC(InC)

, i
PC(DD-Inv)

, i
PC(DD-CG)

and i
PCA(DD-CG)

are the number of iterations

required when solving the system.

• res
noPC

, res
PC(InC)

, res
PC(DD-Inv)

, res
PC(DD-CG)

and res
PCA(DD-CG)

are the relative

residuals when solving the system, res = ‖b−Ax‖/‖b‖.

Table 4.1: Comparisons of the Poisson problem negle
ting the 
osts of the 
onstru
tion

of the pre
onditioners.

nedge 10 20 30 40 50

t
noPC

0.0282 0.0525 0.0947 0.1554 0.2376

t
PC(InC)

0.0251 0.0278 0.0325 0.0362 0.0451

t
PC(DD-Inv)

0.0196 0.0930 0.1873 0.6993 1.3806

t
PC(DD-CG)

0.1767 1.2746 1.2170 3.0615 3.8832

t
PCA(DD-CG)

0.0140 0.0269 0.0435 0.0558 0.0760

i
noPC

67 189 340 468 624

i
PC(InC)

7 13 17 21 26

i
PC(DD-Inv)

36 80 120 230 221

i
PC(DD-CG)

40 107 141 284 272

i
PCA(DD-CG)

2 3 4 4 4

res
noPC

5.5574E-11 9.9022E-11 8.0423E-11 9.5044E-11 8.5179E-11

res
PC(InC)

3.2793E-11 8.4074E-12 2.2930E-11 7.6781E-11 4.5419E-11

res
PC(DD-Inv)

7.0380E-11 1.5619E-11 9.8126E-11 8.0093E-11 8.3283E-11

res
PC(DD-CG)

6.8307E-11 7.9035E-11 6.6010E-11 9.8751E-11 7.9270E-11

res
PCA(DD-CG)

1.5702E-11 2.0771E-12 5.2776E-13 4.2361E-14 1.5003E-13

The 
omputational times when using the blo
k-Ja
obi pre
onditioners without the


orre
tion Ã, t
PC(DD-Inv)

and t
PC(DD-CG)

, appear quite slow 
ompared to the others. A

main reason for this is that the 
ost of applying these blo
k-Ja
obi pre
onditioners is

in
luded in the 
omputational times sin
e ea
h of the lo
al solves for these are nested

within ea
h iteration. This is also true for t
PCA(DD-CG)

, but with so fewer iterations, is

not as apparent.

Solving the system with the in
omplete Cholesky fa
torization as a pre
ondi-

tioner, PC(InC), is a very e�
ient way to solve the system. Yet the results of
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t
PCA(DD-CG)

are 
omparable, and in some 
ases show improvement in the 
omputa-

tional time over the in
omplete Cholesky (along with the other methods). Also,

the relative residual for the PCA(DD-CG) method is almost always smaller than the

other methods whi
h indi
ates that its asso
iated pre
onditioned linear system has

better 
onditioning. However, the time in 
onstru
ting this pre
onditioner for the

PCA(DD-CG) is also something that should be 
onsidered. We return to this issue

below.

Table 4.2: Comparisons of the Poisson problem on a uniform grid negle
ting the 
osts of

the 
onstru
tion of the pre
onditioners.

nedge 10 20 30 40 50

t
noPC

0.0224 0.0288 0.0371 0.0495 0.0706

t
PC(InC)

0.0246 0.0256 0.0288 0.0328 0.0446

t
PC(DD-Inv)

0.0120 0.0231 0.0556 0.1368 0.3390

t
PC(DD-CG)

0.0846 0.1742 0.2676 0.4183 0.6283

t
PCA(DD-CG)

0.0128 0.0228 0.0380 0.0494 0.0656

i
noPC

32 64 94 121 146

i
PC(InC)

6 10 14 17 21

i
PC(DD-Inv)

18 29 37 43 49

i
PC(DD-CG)

20 31 37 44 49

i
PCA(DD-CG)

2 3 4 4 4

res
noPC

8.5341E-11 5.1537E-11 7.1472E-11 9.1416E-11 9.372E-11

res
PC(InC)

5.5046E-11 4.3825E-11 8.1638E-12 7.4034E-11 4.9169E-11

res
PC(DD-Inv)

1.0477E-11 3.0291E-11 6.3688E-11 9.6758E-11 6.5653E-11

res
PC(DD-CG)

1.1874E-11 1.8829E-11 7.0006E-11 6.8281E-11 6.6870E-11

res
PCA(DD-CG)

1.1139E-12 4.8106E-11 2.3436E-13 3.5745E-14 2.4468E-13

Table 4.2 shows results gotten by solving the problem just like before ex
ept

this time using a uniform grid. With a uniform mesh, all the performan
es are

slightly better. Solving with no pre
onditioner (noPC) shows substantial improve-

ment using the uniform grid over the random grid. As before with the random grid,

solving the system with the in
omplete Cholesky fa
torization as a pre
onditioner,

PC(InC), is very e�
ient. And like before, the results of t
PCA(DD-CG)

are 
omparable

here, and sometimes show improvement in the 
omputational time over the in
om-

plete Cholesky (along with the other methods). Here, the relative residual for the

PCA(DD-CG) method is very good again, as it was when using the non-uniform mesh.
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4.4.1 Verti
ally skewed domain

As an experiment, we 
hanged up our simple [0, 1]× [0, 1] grid. We de
ided to move

the whole 
enter portion verti
ally up to add a
ute 
orners to the grid and see if the

results would 
hange (see Figure 4.2). But, the results we got here were 
onsistent

with the results we got with the [0, 1]× [0, 1] grid.
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Figure 4.2: Triangle mesh performed on a verti
ally skewed grid. nbnd =
40 and nint = 90. This domain is split along the verti
al 
enter line resulting in two

subdomains, similar as before.

4.5 Cost of 
onstru
ting Ã

Although this pre
onditioner does indeed help with solving the system faster, we

should also 
onsider the 
ost of 
onstru
ting the 
orre
tion Ã. Again t
PC(DD-CG)

de-

notes the time taken to solve the two-domain problem using the blo
k-Ja
obi pre
on-

ditioner without the 
orre
tion Ã, and t
PCA(DD-CG)

is the time taken to solve it with the


orre
tion Ã. We will 
all T the time taken to 
onstru
t Ã. Now t
PCA(DD-CG)

< t
PC(DD-CG)
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and presumably t
PC(DD-CG)

< T + t
PCA(DD-CG)

. There exists a break even point k
LS

, LS

represents linear solves, where approximately

(4.18) k
LS

· t
PC(DD-CG)

≃ T + k
LS

· t
PCA(DD-CG)

or

(4.19) k
LS

≃ T/(t
PC(DD-CG)

− t
PCA(DD-CG)

).

Clearly it is advantageous if one 
ould 
onstru
t Ã, and then use it multiple

times in the same problem. In these 
ases, it would be 
ost e�e
tive if Ã is used

more than k
LS

times. An example might be a problem involving a time-stepping

method, like say the ba
kward Euler method. Solving the heat equation using the

ba
kward Euler method 
onsists of doing a number of these solves over and over

again for many di�erent right hand sides. In the future we hope to explore the use

of our pre
onditioning methods in this 
ontext.

We ran our algorithm multiple times with di�erent amounts of points and Table

4.3 shows the averaged results.

Table 4.3: Break even point k
LS

, with the size of the system, nint.

nedge nint k
LS

10 109 10.7

20 419 24.7

30 929 31.2

40 1639 38.4

50 2549 46.2

As an example, we ran the algorithm for nedge = 20. We got ba
k t
PC(DD-CG)

= .868,

t
PCA(DD-CG)

= .0342, and T = 20.614. So,

(4.20) k
LS

≃
T

t
PC(DD-CG)

− t
PCA(DD-CG)

≃
20.614

.868− .0342
≃ 24.7
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4.6 The S
hur 
omplement method

Another approa
h for using non-overlapping domain de
omposition worth mention-

ing is the S
hur 
omplement method. As des
ribed in [8℄, this method involves

breaking down our matrix L into the blo
k LDU de
omposition (for LDU ; L repre-

sents a lower triangular matrix with ones along its diagonal, D represents a diagonal

matrix, and U represents an upper triangular matrix with ones along its diagonal).

Again, we have our symmetri
 positive de�nite matrix

L =











L11 L1J 0

LJ1 LJJ LJ2

0 L2J L22











The blo
k LDU de
omposition be
omes

(4.21) L =











I 0 0

LJ1L
−1
11 I 0

0 LJ2L
−1
22 I





















I 0 0

0 S 0

0 0 I





















L11 L1J 0

0 I LJ2

0 0 L22











Where

(4.22) S = LJJ − LJ1L
−1
11 L1J − LJ2L

−1
22 L2J

is 
alled the S
hur 
omplement of the leading prin
ipal submatrix 
ontaining L11

and L22. Cal
ulating L
−1
, we get

(4.23)

L−1 =











L−1
11 −L−1

11 L1J 0

0 I −L−1
22 L2J

0 0 L−1
22





















I 0 0

0 S−1 0

0 0 I





















I 0 0

−LJ1L
−1
11 I 0

0 −LJ2L
−1
22 I











Here, multiplying a ve
tor by L−1
entails multiplying by the blo
ks in the entries

of this fa
tored form of L−1
; this in
ludes L1J and L2J (and their transposes LJ1 =

LT
1J and LJ2 = LT

2J), L
−1
11 and L−1

22 , and S
−1
. Multiplying by L1J and L2J is 
heap

be
ause they are very sparse. Multiplying by L−1
11 and L−1

22 should not be expensive if

we 
hoose a suitable fast method (i.e. fast Fourier transform, multigrid method,...).
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We now explain multiplying by S−1
; as indi
ated by [8℄. Be
ause there are mu
h

fewer grid points on the boundary than in the subdomains, LJJ and S have a mu
h

smaller dimension than L11 and L22 (this situation grows for �ner grid spa
ings). S is

symmetri
 positive de�nite and dense. To get S−1
expli
itly, one would need to solve

with ea
h subdomain on
e per boundary grid point (from the L−1
11 L1J and L−1

22 L2J

terms in equation (4.22)). This 
ould be done, then afterward fa
tor S using dense

Cholesky and then 
ontinue to solve the system. But this would be expensive, mu
h

more so than just multiplying a ve
tor by S. A better way would be by using the


onjugate gradient method, whi
h requires only multiplying a ve
tor by S (requiring

only one solve per subdomain using equation (4.22)).

With the 
onjugate gradient method, the number of matrix-ve
tor multipli
a-

tions depends on the 
ondition number of S. The key to this method is that S is

mu
h better 
onditioned than the original matrix L. Therefore, using the 
onjugate

gradient method would be ideal here and would result in fast 
onvergen
e involving

less iterations.

It should also be noted that a 
ommon pre
onditioner for use when two sub-

domains are involved with an overlap of their boundaries is the additive S
hwartz

pre
onditioner. For this pro
edure, you would solve on one side, then use the solution

to set the boundary 
onditions for the other side iterating ba
k and forth. Further

resear
h 
omparing and 
ontrasting the di�erent overlapping and non-overlapping

methods may be worth while in the future.
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Chapter 5

Con
lusion

The Poisson equation is instrumental in a variety of di�erent �elds su
h as ele
tro-

stati
s, ele
tromagneti
s, a
ousti
s, me
hani
al engineering, and theoreti
al physi
s.

Any progress in better solving this important problem should only bene�t the future

of these �elds among others.

This study was set out to explore a di�erent pro
edure for 
reating an e�e
-

tive pre
onditioner to help solve the variable 
oe�
ient Poisson problem using the

�nite element method. Te
hniques were implored using random matri
es while 
on-

stru
ting the interpolative de
omposition of matri
es as well as the use of domain

de
omposition to establish this pre
onditioner. We looked 
losely at two questions

regarding the Poisson problem:

• Can sampling a matrix with the interpolative de
omposition (i.e., pi
king the

most important 
olumns of a matrix and having them represent the entire ma-

trix) and also 
ombining the use of random matri
es, be an e�e
tive te
hnique

for 
reating a pre
onditioner?

• For a non-overlapping domain de
omposition pre
onditioner method, 
an we

�nd a good way to a

ount for the 
onforming boundary area?

Using this interpolative de
omposition to 
reate the pre
onditioner with the 
or-
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re
tion does indeed redu
e the number of iterations involved. It does also speed up

the time involved. But it may be possible to �gure out a way to apply it faster for

even less time taken. This would of 
ourse be bene�
ial espe
ially sin
e the 
reation

of the pre
onditioner takes a good amount of time by itself.

This pre
onditioner may also be bene�
ial for problems involving time-stepping,

e.g., the heat equation. When solving problems of this sort, expli
it methods en-


ounter a stability limit, so impli
it methods are favored. Although these methods

take larger steps in their pro
ess, they must solve an equation at ea
h step. This


ould be ideal for this kind of pre
onditioner sin
e on
e it's 
reated, it 
an be used

over and over again, making up for the 
ost of its 
reation. One other possible ap-

pli
ation 
ould be for 
ases involving more 
ompli
ated geometri
al domains. This

pro
edure may be e�e
tive when others are not. Again, these 
on
epts should be

explored more in the future.

Interpolative de
omposition using statisti
al sampling on a matrix seems to be

a worthy endeavor. As far as building a pre
onditioner, employing this method 
an

be useful, but to what extent though is the question. Going through all the trouble

of it seems to be worth it in this situation and as stated, one may �nd more usable

appli
ations in the future.
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Appendix A

Stewart's Pivoted-QR Algorithm

% Computes pivoted QR-de
omposition A*P = Q*R of an m-by-n matrix

% via method des
ribed in G. W. Stewart, "Two Algorithms for the

% Effi
ient Computation of Trun
ated Pivoted QR Approximations to

% a Sparse Matrix." Well suited for low-rank approximation of a

% sparse matrix A. Inputs are A (possibly sparse), and desired

% toleran
e tol for the approximation. Outputs are as follows.

% Matri
es Q [m-by-k℄, R11 [k-by-k℄, R12 [k-by-(n-k)℄, P [n-by-n℄

% su
h that A*P \simeq Q*[R11 R12℄. P is a permutation matrix, Q

% is an orthonormal matrix, and R = [R11 R12℄ is upper triangular.

% n
ol is the (numeri
al) rank of matrix/approximation.

% fun
tion [Q, R11, R12, n
ol, pivots, P℄ = PivotedQR(A,tol,n
ol)

fun
tion [Q, R, R11, R12, n
ol, pivots, P℄ = PivotedQR(A,tol,n
ol)

[m, n℄ = size(A);

pivots = 1:n;

%n
ol = min([m, n℄);

for j=1:n

nu(j) = norm(A(:,j))^2; % nu for squared 2-norms as in Stewart.

end

R = zeros(n
ol,n);

for k=1:n
ol % Loop over 
olumns of A.

%------------------------------------------------

% Determine the pivot 
olumn and swap it with

% 
olumn k. Sin
e max taken over length-(n-k+1)

% ve
tor, readjust index relative to length n.

%------------------------------------------------

[maxnorm, jmax℄ = max(nu(k:n));

jmax = jmax + (k-1);
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%------------------------------------------------

% Perform pivot.

%------------------------------------------------

pivots([k jmax℄) = pivots([jmax k℄);

nu([k jmax℄) = nu([jmax k℄);

if k > 1;

R(1:k-1,jmax) = R(1:k-1,k);

end

% Gram-S
hmidt step with reorthogonalization.

a = A(:,pivots(k));

if k == 1

R(1,1) = norm(a);

q = a/R(1,1);

Q = q;

else

%------------------------------------------------

% With A_k-1 = A(:,pivots(1:k-1)) = Q_k-1 R_k-1,

% Q_k-1 = A_k-1 inv(R_k-1) is an o.n. basis for

% these 
olumns of A_k-1. With a = A(:,pivots(k))

% we have r_kj = a'*Q_k-1(:,j) as a row ve
tor

% r_k = [r_k1 r_k2 ... r_k,k-1℄. Transpose it.

%------------------------------------------------

r = a'*A(:,pivots(1:k-1))/R(1:k-1,1:k-1); r = r';

%------------------------------------------------

% Subtra
t out proj. onto 
olumn spa
e of Q_k-1.

% A_k-1 (R_k-1\r) = A_k-1 inv(R_k-1) r = Q_k-1 r.

%------------------------------------------------

q = a - A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\r);

%------------------------------------------------

% Reorthogonalization for good measure

%------------------------------------------------

Dr = q'*A(:,pivots(1:k-1))/R(1:k-1,1:k-1); Dr = Dr';

q = q - A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\Dr);

%------------------------------------------------

% Update R.

%------------------------------------------------

r = r + Dr; R(1:k-1,k) = r; R(k,k) = norm(q);

%------------------------------------------------

% Compute the kth 
olumn of Q.

%------------------------------------------------

q = (a-A(:,pivots(1:k-1))*(R(1:k-1,1:k-1)\r))/R(k,k);

Q = [Q q℄;



Appendix A. Stewart's Pivoted-QR Algorithm 46

end

if k+1<=n

% Compute the k-th row of R, Eq.(4) from Stewart.

R(k,k+1:n) = q'*A(:,pivots(k+1:n));

% Update nu.

nu(k+1:n) = max([nu(k+1:n) - R(k,k+1:n).^2; zeros(1,n-k)℄);

nu(k) = sum(nu(k+1:n));

if (sqrt(nu(k)) < tol) break; end

else

nu(k) = 0;

end

end % End loop over 
olumns of A.

% Finish up.

n
ol = k;

R = R(1:n
ol,:);

R11 = R(:,1:k);

R12 = R(:,k+1:n);

if (nargout == 7)

P = zeros(n,n);

for i = 1:n

for j = 1:n

if pivots(i)==j

P(j,i) = 1;

end

end

end

end
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Appendix B

Perform Solve Algorithm

%-------------------------------------------------------

% Solution and 
ompatible sour
e for -div(psi grad u)=f.

% fun
tion PerformSolveDivGrad2_Alternate(nedge)

fun
tion PerformSolveDivGrad2_Alternate(nedge)

SubPCparams;

%-------------------------------------------------------

N = 1.6; M = 2;

u =�(x,y)sinh(N*x*(1-x))*sin(M*pi*y);

%

ux =�(x,y)N*(1-2*x)*
osh(N*x*(1-x))*sin(M*pi*y);

uxx =�(x,y)(-2*N*
osh(N*x*(1-x)) ...

+N*N*(1-2*x)^2*sinh(N*x*(1-x)))*sin(M*pi*y);

%

uy =�(x,y)M*pi*sinh(N*x*(1-x))*
os(M*pi*y);

uyy =�(x,y)( ...

-M*M*pi*pi*sinh(N*x*(1-x))*sin(M*pi*y));

%

uxxPLUSuyy=�(x,y)(uxx(x,y)+uyy(x,y));

nu = 1e-8;

psi =�(x,y)exp(-nu*((x-0.5)^2+(y-0.5)^2));

psix =�(x,y)(-2*nu*(x-0.5)*psi(x,y));

psiy =�(x,y)(-2*nu*(y-0.5)*psi(x,y));

%

f =�(x,y)(-psix(x,y)*ux(x,y) ...

-psiy(x,y)*uy(x,y) ...

-psi(x,y)*uxxPLUSuyy(x,y));

f_Lap =�(x,y)(-uxxPLUSuyy(x,y));

%-------------------------------------------------------
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% Build triangularization for ea
h blo
k and then put together.

%

a = 0; b = 0.5; 
 = 0.0; d=1.0;

%[TRI1,x1,y1,nbdry℄ = BuildSquareGrid(nedge,a,b,
,d,'R');

[TRI1,x1,y1,nbdry℄ = BuildRomGrid(nedge,a,b,
,d,'R');

%

a = 0.5; b = 1.0; 
 = 0.0; d=1.0;

%[TRI2,x2,y2,nbdry℄ = BuildSquareGrid(nedge,a,b,
,d,'L');

[TRI2,x2,y2,nbdry℄ = BuildRomGrid(nedge,a,b,
,d,'L');

%

x = [x1;x2℄; y = [y1;y2℄; TRI = [TRI1; TRI2 + length(x1)℄;

%-------------------------------------------------------------------

%-------------------------------------------------------------------

extrimesh(TRI,x,y)

xlabel('x'); ylabel('y'); title('nedge = 20')

saveas(g
f,'grid30.pdf','pdf')

saveas(g
f,'grid30.eps','eps
')

% Fill up exa
t solution ve
tor. Does not in
lude boundary points.

npts = length(x1); nint = 2*npts-2*nbdry+2*(nedge-1); z = zeros(nint,1);

for k = 1:nint

if k+nbdry-(nedge-1) <= npts

kint = k + nbdry-(nedge-1);

else

kint = k + 2*nbdry-2*(nedge-1);

end

z(k) = u(x(kint),y(kint));

end

% Get the sparse matrix and righthand side whi
h define linear system.

[L1, b1℄ = GetLinearSystemDivGrad(f,psi,TRI1,x1,y1,nbdry); W1=
holin
(L1,5e-3);

[L2, b2℄ = GetLinearSystemDivGrad(f,psi,TRI2,x2,y2,nbdry); W2=
holin
(L2,5e-3);

[L, b℄ = GetLinearSystemDivGrad2(f,psi,TRI,x,y,nbdry,nedge); W=
holin
(L,5e-3);

%%%%%% Commented out various full matrix operations used for testing.

%%%%%%

invL1 = inv(full(L1)); invL2 = inv(full(L2));

%%%%%% [L_L, L_U℄ = GE(L);

%%%%%%

%%%%%% Eye = eye(nedge-1);

%%%%%% G = blkdiag(Eye,invL1,Eye,invL2);

%%%%%% invL = inv(L);

%%%%%% A = invL-G;

%%%%%% N = randn(76,enn);

%

%
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%

[enn, emm℄ = size(L);

ell = nedge*4 - 4;

%

% Preallo
ation of memory.

%

Bapprox = zeros(enn,ell); Papprox = zeros(ell,enn);

GNt = zeros(enn,ell); Ge = zeros(enn,1);

e = zeros(enn,1);

invLe = zeros(enn,1);

%

%

%

ti


R = randn(ell,enn); Rt = transpose(R); Nt = L*Rt;

for j = 1:ell

GNt(:,j) = ApplyBlo
kJa
obiPC_iterative(Nt(:,j),L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint);

end

Y = R - transpose(GNt);

tol = 1e-10;

[QY, R, R11Y, R12Y, kY, pivotsY, PY℄ = PivotedQR(Y,tol);

%Y_ = QY*R11Y;

ISY = [eye(kY) R11Y\R12Y℄;

%

%

%

p
gTOL=1e-10; maxiter = 2000;

subTOL=1e-6; subITER = 2000;


orre
t='n';

for q = 1:kY

e = zeros(enn,1);

e(pivotsY(q)) = 1;

Ge = ApplyBlo
kJa
obiPC_iterative(e,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint);

[invLe,flag,relres,niter,resve
℄=p
g(L,e,p
gTOL,maxiter,�(w)ApplyBlo
kJa
obiPC_iterative

(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

Bapprox(:,q) = invLe - Ge;

end

Papprox = ISY*transpose(PY);

Aapprox = Bapprox*Papprox;

T
onstru
t = to
;

%

%-------------------------------------------------------------------

%

% No Pre
onditioner used

ti


[znum3,flag,relres,niter℄=p
g(L,b,p
gTOL,maxiter,[℄,[℄,[℄);
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time = to
;

% In
omplete LU fa
torization (Cholesky) on entire "L"

ti


[znumL,flag,relresL,niterL,resve
℄=p
g(L,b,p
gTOL,maxiter,W',W,[℄);

to
L = to
;

% Using Domain De
omposition along with the dire
t inverse of "L1" and dire
t inverse of h"L2"

ti



orre
t='n';

[znum2b,flag,relres0b,niter0b,resve
℄=p
g(L,b,p
gTOL,maxiter,�(w)ApplyBlo
kJa
obiPC_dire
t

(w,invL1,invL2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

t0b = to
;

% Using Domain De
omposition and Conjugate Gradient on "L1","L2"

ti



orre
t='n';

[znum2,flag,relres0,niter0,resve
℄=p
g(L,b,p
gTOL,maxiter,�(w)ApplyBlo
kJa
obiPC_iterative

(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

t0 = to
;

% Using Domain De
omposition and Conjugate Gradient on "L1","L2" plus the Corre
tion "A"

ti



orre
t='y';

[znum1,flag,relres1,niter1,resve
℄=p
g(L,b,p
gTOL,maxiter,�(w)ApplyBlo
kJa
obiPC_iterative

(w,L1,W1,L2,W2,Bapprox,Papprox,nbdry,nedge,nint),[℄,[℄);

t1 = to
;

%--------------------------------------------------------------------

k = T
onstru
t/(t0 - t1);

q = npts-nbdry+(nedge-1);

zgraph = [

zeros(nbdry-(nedge-1),1);

znum1(1:q)-z(1:q);

zeros(nbdry-(nedge-1),1);

znum1(q+1:nint)-z(q+1:nint)℄;

%extrimesh(TRI,x,y,abs(zgraph))

%xlabel('x'); ylabel('y'); title('Pointwise error')

disp(['no PC 
omputation time: ',num2str(time)℄)

disp(['PC(InC) 
omputation time: ',num2str(to
L)℄)

disp(['PC(DD-Inv) 
omputation time: ',num2str(t0b)℄)

disp(['PC(DD-CG) 
omputation time: ',num2str(t0)℄)

disp(['PCA(DD-CG) 
omputation time: ',num2str(t1)℄)

disp(['------------------------------------'℄)

disp(['no PC iteration number: ',num2str(niter)℄)
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disp(['PC(InC) iteration number: ',num2str(niterL)℄)

disp(['PC(DD-Inv) iteration number: ',num2str(niter0b)℄)

disp(['PC(DD-CG) iteration number: ',num2str(niter0)℄)

disp(['PCA(DD-CG) iteration number: ',num2str(niter1)℄)

disp(['------------------------------------'℄)

disp(['no PC relative residual: ',num2str(relres)℄)

disp(['PC(InC) relative residual: ',num2str(relresL)℄)

disp(['PC(DD-Inv) relative residual: ',num2str(relres0b)℄)

disp(['PC(DD-CG) relative residual: ',num2str(relres0)℄)

disp(['PCA(DD-CG) relative residual: ',num2str(relres1)℄)


lear all
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Appendix C

Get Linear System

% Computes approximation Az = b of the Diri
hlet problem

%

% -Lap(u)=f , (x,y) in (0,1)X(0,1), u=0 on boundary

%

% using pie
ewise linear finite elements on the triangulation

% des
ribe by (T,x,y). nbdry is the number of boundary nodes.

% They are assumed to 
ome first.

% fun
tion [A, b℄=GetLinearSystemDivGrad2(f,psi,T,x,y,nbdry,nedge)

fun
tion [A, b℄=GetLinearSystemDivGrad2(f,psi,T,x,y,nbdry,nedge)

npts = length(x)/2;

nint = 2*npts-2*nbdry+2*(nedge-1);

intRange=[nbdry-(nedge-1)+1,npts,npts+nbdry-(nedge-1)+1,2*npts℄;

[ntri d℄=size(T);

A=spallo
(nint,nint,7*nint); % Guessing on average < 7 nonzeros per row

b=zeros(nint,1);

% Now loop over the triangles and build the linear system

for k=1:ntri

j1=T(k,1); j2=T(k,2); j3=T(k,3);

[A_lo
 b_lo
℄=GetLinearSystemDivGrad_lo
(x(j1),y(j1),x(j2),y(j2),x(j3),y(j3),f,psi);

[j1test j1ref℄ = TestInRange(j1,intRange,nbdry,nedge);

if (j1test == 1)

k1=j1-j1ref;

A(k1,k1)=A(k1,k1)+A_lo
(1);

b(k1)=b(k1)+b_lo
(1);

[j2test j2ref℄ = TestInRange(j2,intRange,nbdry,nedge);
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if (j2test == 1)

k2=j2-j2ref;

A(k1,k2)=A(k1,k2)+A_lo
(2);

A(k2,k1)=A(k1,k2);

end

[j3test j3ref℄ = TestInRange(j3,intRange,nbdry,nedge);

if (j3test == 1)

k3=j3-j3ref;

A(k1,k3)=A(k1,k3)+A_lo
(3);

A(k3,k1)=A(k1,k3);

end

end

[j2test j2ref℄ = TestInRange(j2,intRange,nbdry,nedge);

if (j2test == 1)

k2=j2-j2ref;

A(k2,k2)=A(k2,k2)+A_lo
(4);

b(k2)=b(k2)+b_lo
(2);

[j3test j3ref℄ = TestInRange(j3,intRange,nbdry,nedge);

if (j3test == 1)

k3=j3-j3ref;

A(k2,k3)=A(k2,k3)+A_lo
(5);

A(k3,k2)=A(k2,k3);

end

end

[j3test j3ref℄ = TestInRange(j3,intRange,nbdry,nedge);

if (j3test == 1)

k3=j3-j3ref;

A(k3,k3)=A(k3,k3)+A_lo
(6);

b(k3)=b(k3)+b_lo
(3);

end

end
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Appendix D

Apply Blo
k Ja
obi Pre
onditioner

fun
tion z = ApplyBlo
kJa
obiPC_iterative(x,L1,W1,L2,W2,B,P,nbdry,nedge,nint)

SubPCparams;

nint1 = nint/2;

z = x;

z(1:nedge-1) = x(1:nedge-1);

%

%

%

[z(nedge:nint1),flag,relres,niter℄=p
g(L1,x(nedge:nint1),subTOL,subITER,W1',W1,[℄);

%

%

%

z(nint1+1:nint1+nedge-1) = x(nint1+1:nint1+nedge-1);

%

%

%

[z(nint1+nedge:2*nint1),flag,relres,niter℄=p
g(L2,x(nint1+nedge:2*nint1),subTOL,...

subITER,W2',W2,[℄);

%

%

%

if 
orre
t == 'y'

qqq = P*x;

z = z + B*qqq;

end
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