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ABSTRACT

In this dissertation we will prove some ABC Theorems, namely for relatively

prime by pairs p-adic entire functions in one variable, for p-adic meromorphic func-

tions in several variables without common factors, under the hypothesis that no

subsum vanishes, and also for pairwise relatively prime p-adic entire functions of

several variables. In this thesis we will also prove a few generalizations of Buium’s

results that he used in order to prove his ABC Theorems for isotrivial abelian vari-

eties, respectively with trace zero. We hope to be able to use these results in order

to prove a version of an ABC Theorem for any abelian variety over a function field.
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ABC THEOREMS IN THE FUNCTIONAL CASE

1. Introduction

The abc-conjecture was first formulated by Masser and Oesterle in 1985 and it

consists of the following:

Conjecture 1. Given ✏ > 0 there exists k(✏) > 0 such that for any non-zero

relatively prime integers a, b, c such that a + b = c we have max{|a|, |b|, |c|} 

k(✏)R1+✏, where R is the radical of the product abc and represents the product of

distinct primes dividing abc.

Masser was inspired by the Mason’s theorem for three polynomials with coe�-

cients in an algebraically closed field of characteristic 0.

Theorem 2 (Mason). Let f(t), g(t), h(t) be three relatively prime polynomials with

coe�cients in an algebraically closed field of characteristic 0, not all constant such

that f + g = h then

max{deg f, deg g, deg h}  degR(fgh)� 1,

where degR(f) is called the degree of the radical of f and represents the number of

distinct zeros of f, or the degree of the square free part of f.

Proof. We sketch the proof for monic polynomials. Let’s assume deg(f)  deg(g) 

deg(h). Di↵erentiating f + g = h we get f
0
+ g

0
= h

0
, hence fg0 � f

0
g = fh

0 � f
0
h.

By hypothesis gcd(f, g, h) = 1. But R(f) = f

gcd(f,f 0 )
and because gcd(h, h

0
) divides

fh
0 � f

0
h, we get that gcd(h, h

0
) divides also fg

0
�f

0
g

gcd(f,f 0 )gcd(g,g0 )
, whose degree is less

or equal to degR(fg). Therefore deg(h) < degR(fgh). ⇤

A consequence of Mason’s theorem is the following theorem:
1



Theorem 3 (Fermat’s Theorem for polynomials). Under the hypothesis of Mason’s

Theorem, the equation

xn(t) + yn(t) = zn(t)

has no solution for n � 3.

Proof. Assume by the way of contradiction that there exists n � 3 such that the

given equation has a solution. Then, by Mason’s theorem we get that

deg(x(t)n) = n deg(x(t))  deg(x(t)) + deg(y(t)) + deg(z(t))� 1.

Similarly relations for y(t) and z(t) hold.

Summing them up, we get that

n deg(x(t) + deg(y(t)) + deg(z(t))  3[deg(x(t)) + deg(y(t)) + deg(z(t))]� 3,

contradicting that n � 3. So our assumption is false, hence the given equation has

no solution for n � 3.

⇤

Proof. We also present a simpler proof using algebraic geometry ideas. After divid-

ing by zn, Fermat’s Last Theorem says that there are no nontrivial rational points

on the Fermat curve xn + yn = 1. But the Fermat equation has a polynomial so-

lution which is a rational map from the projective line to the Fermat curve . They

exist only if the curve has genus 0. It’s known that the Fermat curve has genus

(n�1)(n�2)
2 , which is greater than 0 whenever n > 2.

⇤

Remark 4. Fermat’s theorem for polynomials fails if char p > 0, by letting for

example x(t) = t, y(t) = 1 and z(t) = t+ 1.
2



Mason’s theorem for polynomials has been generalized in various directions like

for example: to sums in one-dimensional function fields by Mason, by Voloch,

by Brownawell and Masser [BM], to sums in higher dimensional function field by

Hsia and Wang [HW], to sums of pairwise relatively prime polynomials of several

variables by Shapiro and Sparer [SS]. The ABC theorem has also been proved for

p-adic entire functions of one variable by Hu and Yang [HY 1].

We now recall some definitions related to p-adic valuations:

Let F denote an algebraically closed field of characteristic 0 complete with re-

spect to a non-trivial non-Archimedean valuation v. Consider |F ⇤| = {|t|v : t 2

F ⇤ = F \ {0}}. Let Fm denote the mth Cartesian product of F , which is the set of

F-points of a�ne m-space Am. Fix r > 0. Then let Bm(r) be the ”closed” ball of

radius r in Fm, or in other words

Bm(r) = {(x1, . . . xm) 2 Fm : |xj |v  r}.

By an analytic function f on Bm(r) we mean a formal power series
X

�

a�x
� in m

variables x1, . . . , xm with coe�cients in F such that lim|�|!1 |a� |vr|�| = 0. By an

entire p-dic function, we understand a formal power series with coe�cients in F

and with infinite radius of convergence. We will use Em to denote the ring of entire

functions on Am. If f =
X

�

a�x
� is analytic then define |f |r = sup� |a� |vr|�|.

The ring of analytic functions on Bm(r) when r 2 |F ⇤| is factorial (see Theorem

1, section 5.2.6 in [BGR]). Let f be an analytic function on the ball Bm(r), with

a factorisation f(x) = u
sY

j=1

pj(X)↵j , where pj are irreducible, distinct, the ↵j > 0

are integers and u is a unit in the ball. Then we define the radical of f to be

R(f) = v
sY

j=1

pj where v is another unit in Bm(r). Let us mention that although the

ring of entire functions on Fm is not a factorial ring, the notion of ”greatest common

divisors” does make sens in such a ring , and it is only defined up to units, hence

multiplicative constants (see [Ch]). We also say that two p-adic entire functions are

relatively prime if their greatest common divisor is a unit (multiplicative constant).

Then we can define a notion of the ”radical” or the ”square free part” of an entire
3



p-adic function f in characteristic zero. The notion of the radical of an entire

function in characteristic p was introduced in [ChTo], but we will not make use of

it in this dissertation. Let f be an entire function in Fm. We define the radical of

f , denoted by R(f), to be the least common multiple of the functions f

gcd(f, @f

@z

j

)
,

where j is running from 1 to m. This radical is well-defined up to units.

In our second section we present the ABC Theorem for three p-adic entire func-

tions, which is an analog of the Mason’s Theorem:

Theorem 5 (ABC Theorem for three p-adic functions). Let f2 = f0+f1 be p-adic

entire functions such that f0 and f1 are relatively prime p-adic entire functions

in Em. If F has characteristic zero, assume that at least one of f0 or f1 is non-

constant. Let r0 > 0. Then, for r � r0,

max
0i2

log |fi|r  log |R(f0f1f2)|r � log r +O(1).

Actually, a part of this dissertation involves an analog of Mason’s theorem for

p-adic entire functions of one variable, respectively in several variables in an alge-

braically closed field of characteristic 0. An and Manh, ([AM 2]) gave an ABC type

of theorem for p-adic entire functions of several variables c = a + b under some

rather restrictive hypotheses, including that a, b, c have no common zeros, which,

in several variables, is a much stronger assumption than simply assuming that they

are relatively prime in the ring of entire functions. In Section 5 a generalized ABC-

Theorem for p-adic entire functions of several variables is proved by adapting the

method of Shapiro and Sparer and thereby improving on the work of An and Manh:

Theorem 6. Let f1, . . . , fs, s � 3 be pairwise relatively prime p-adic entire func-

tions of several variables on Fm
such that at least one of the fi is non-constant and

such that f1 + . . . fs = 0. Fix r0 2 |F ⇤|. Then, for all r 2 |F ⇤| with r � r0

max
1is

(log |fi|r)  (s� 2)[log |Q|r � log r] +O(1),

4



where Q = R(
sY

i=1

fi) and the O(1) is a constant independent of r.

In Section 3, this theorem, corresponding to functions in one variable, will be

improved by adapting an earlier work on polynomials in several variables and gen-

eralized Wronskians done by Bayat and Teimoori (see [BT]):

Theorem 7. Let r > 1 and f1+ . . . fn�1 = fn, in which the f ,
is are relatively prime

by pairs p-adic entire functions in one variable in F, and k out of the n-functions

are constant ( k  n� 2).Then, for k = 0, we have

(1) max
1in

log |fi|r  (n� 2) log |Q[f1 . . . fn]|r �
(n� 1)(n� 2)

2
log r +O(1),

and when k � 1, we have

(2) max
1in

log |fi|r  (n�k�1) log |Q[f1 . . . fn]|r�
(n� k)(n� k � 1)

2
log r+O(1),

where Q[f1 . . . fn] = R(
nY

i=1

fi) and O(1) is a constant independent of r.

In Section 4 we prove a generalized ABC-Theorem for p-adic entire functions

in several variables under the hypothesis that no subsum vanishes. Our method is

essentially that of Hu and Yang ([HY 1]) for one variable, who adapted the method

of Brownawell and Masser ([BM]).

Theorem 8. Suppose that f0, f1, . . . , fn are non-constant, p-adic entire functions

in Em such that gcd(f1, . . . fn) = 1 and gcd(fs
↵�1 , . . . fs↵�1) = 1. Let

f0 + f1 . . . fn = 0

such that no subsum vanishes. Then

max
j=0,...,n

log |fj |r  l log |R(
n0Y

j=1

fj)
kY

↵=1

R(
s
↵

�1Y

j=s
↵�1

fj)|r � l log r +O(1)

for r � r0 for some fixed r0 > 1 provided that n↵ � 2 for ↵ = 0, . . . k.
5



In the case that all our p-adic entire functions are pairwise relative prime, then

max
j=0,...,n

log |fj |r  l log |R(
nY

j=0

fj)|r � l log r +O(1)

for r � r0 for some fixed r0 > 1 provided that n↵ � 2 for ↵ = 0, . . . k, where l, n↵

are defined on page 30.

A related result, in the case of polynomials, could be found in [QT1]. But the

authors don’t consider the hypothesis that no subsum vanishes.

As is well known, the ABC Conjecture is a very strong conjecture that implies

many theorems and conjectures in Diophantine equations ( see e.g. [La] and [Go])

including the Fermat’s Last Theorem for all su�ciently large exponents, proved

for arbitrary exponent by Andrew Wiles in 1994. Let us mention some of the

consequences of the ABC Conjecture:

Proposition 9. The ABC Conjecture implies that there is only a finite number of

positive integers n, x, y, z satisfying n > 3, gcd(x, y, z) = 1 and xn + yn = zn.

Proof. We prove that an explicit form of the weak ABC Conjecture: a + b 

R(ab(a + b))2 for an abc-triple (a, b, c) would imply a proof of the Asymptotic

Fermat’s Last Theorem. Assume x, y, z are positive integers that satisfy xn + yn =

zn with gcd(x, y, z) = 1 and x < y. Then (xn, yn, zn) is an abc-triple satisfying

R(xnynzn)  xyz < z3. By the explicit form of the weak ABC-Conjecture we get

that zn < z6. But the Fermat equations has no non-trivial solutions for n = 3

(Euler), n = 4 ( Fermat ) and n = 5 (Dirichlet).

⇤

Another consequence of the ABC Conjecture is Catalan Conjecture, which was

proved by P. Mihailescu in 2002 (see [Mi]) and states that the equation xp� yq = 1

where the unknowns x, y, p, q take integer values, all greater or equal to 2, has only

one solution (x, y, p, q) = (3, 2, 2, 3).

The ABC Conjecture implies the alternative of Pillai Conjecture as well, which

states that the equation xp � yq = k where the unknowns x, y, p, q take integer
6



values, all � 2, has only finitely many solutions (x, y, p, q), whenever k is a positive

integer.

Remark 10. By using the ABC Inequality for p-adic entire functions, presented in

our second chapter, we conclude that Pillai’s diophantine equation for p-adic entire

functions

fn � gm = c

where c is a constant function and n,m � 2 has no non-constant solutions.

Another application of the ABC-Conjecture is the Davenport’s theorem proved

in 1965 (see [Da]):

Theorem 11. Let f, g be non-constant polynomials over C[x] such that f2�g3 6= 0,

then we have

1

2
deg g  deg(f2 � g3)� 1.

Here is an extension of Davenport’s theorem for p-adic entire functions, obtained

by adapting the proof of the extension of Davenport’s theorem for polynomials of

Quang and Tuan (see [QT1] ) and adding the hypothesis that the functions in

any vanishing subsum be relatively prime. We will not provide the proof in our

dissertation:

Theorem 12. Let F be an algebraically closed field of characteristic 0. Given non-

constant entire functions of several variables f1, . . . , fk,(k � 2) in F [x1, . . . , xl] be

relatively prime in any vanishing subsum and positive integers lj(1  j  k) such

that l1  l2  . . . lk and at least one of the following conditions is satisfied:

(1) The functions f l1
1 , . . . , f l

k

k have no common zeros.

(2)
Pk

j=1 lj  kl1 + k(k � 1).

Suppose that f l1
1 , . . . , f l

k

k are linearly independent over F, and fix r0 2 |F ⇤| such
7



that r0 > 1. Then for all r 2 |F ⇤| with r � r0 we have

(3) {1�
kX

j=1

k � 1

lj
} max
1jk

(log |f l
j

j |r)  log |
kX

j=1

(f
l
j

j )|r � (k � 1) log r +O(1)

where O(1) is a constant independent of r.

Let us recall a version of the ABC Conjecture for n+ 1 polynomials, called the

Browkin-Brzeziński Conjecture (see [BB]):

Conjecture 13. Let F be a fixed algebraically closed field of characteristic 0 and

f0, . . . fn+1 be n + 2 polynomials not all constants in F [x] that have no common

zeros such that

f0 + . . .+ fn+1 = 0

Then

max
0jn+1

deg(fj)  (2n� 1)(degR(f0. . . . fn+1)� 1)

Remark 14. By Corollary 6.5 of the Generalized ABC Theorem for p-adic entire

functions (see [ChTo]), if F has characteristic zero and in the case of polynomials

when k = 3, and Ā = 2n � 3, we recover the Browkin-Brzeziński’s Theorem of

Quang and Tuan in [QT2]:

max
0jn

degfj  (2n� 3)[degR(f0. . . . fn+1)� 1]

if gcd(fi1 , fi2 , fi3) = 1 for all triples i1 < i2 < i3. Note that in [QT2] and [QT3]

( for the p-adic case) the authors neglected the necessary hypothesis that the func-

tions in any vanishing subsum be relatively prime.

The following theorem is another consequence of the ABC Conjecture (see [Ro]):

Theorem 15 (Roth’s Theorem). Fix ✏ > 0. For very algebraic number ↵, the

diophantine inequality

|↵� p

q
| < 1

q2+✏

has only finitely many solutions in coprime integers p, q.
8



The ABC Conjecture also implies the Mordell’s Conjecture, which has been

proved by G. Faltings in [Fa]:

Theorem 16 (Faltings’ Theorem). Any curve of genus greater than 1 defined over

a number field K has only finitely many rational points in K.

The next theorem was proved by Elkies [El] in 1991:

Theorem 17. The ABC Conjecture for number fields implies the Mordell Conjec-

ture over an arbitrary number field.

The following Mordel-Weil theorems corresponding to number fields and function

fields are related to Falting’s Theorem and the results of our last dissertation section:

Theorem 18 (Mordell-Weil). If A is an abelian variety over a number field K,

then A(K) is a finitely generated abelian group.

Theorem 19 (Lang-Néron). If A is an abelian variety over a function field K and

A has trace zero, then A(K) is a finitely generated abelian group.

In order to present the main result of our last dissertation section, we will make

use of the following definitions:

Let k be a field and K be an extension field. Fix a non-zero k-derivation � on

K. By a D-scheme we understand a K-scheme V together with a lifting of � to

a derivation of OV Then a D-group scheme is a group object in the category of

D-schemes. Finally, an algebraic D-group is a D-group scheme which is of finite

type over K. We also recall the notion of an isogeny. A homomorphism ↵ : A! B

of abelian varieties is called isogeny if it is surjective and has finite kernel.

We now state the Bounded Multiplicity Theorems for isotrivial abelian varieties,

respectively with trace zero over a function field proved by A. Buium in [Bu2] and

[Bu3]:

Theorem 20 (Buium’s Bounded Multiplicity Theorem-Isotrivial Case). Let X be

a smooth projective complex curve , A an abelian variety , and Y an e↵ective divisor

9



on A. Assume that Y contains no translate of a non zero abelian subvariety. Then

there exists a real constant C > 0, depending only on X,A, Y with the property that

for any morphism f : X ! A with f(X) 6⇢ Y , all points of the divisor f⇤Y have

multiplicity at most C.

Before we state the next theorem, we need to explain what the bounded mul-

tiplicity property is in the non-isotrivial case. Let A be an abelian variety over

a function field K over a field k of characteristic zero and U ⇢ A an a�ne open

subset. We say that a regular function f 2 O(U) has the bounded multiplicity

property if there exists a positive constant C depending on K,A,U, f such that for

any P 2 U(K) and any ⌫ 2 MK we have ⌫(f(P )) � �C. Here we denote by MK

the set of places (by which we mean here discrete valuations) of K/k such that for

all ⌫ 2MK , ⌫(K⇤) = Z.

Theorem 21 (Buium’s Bounded Multiplicity Theorem-Trace Zero Case). The

bounded multiplicity property holds for any regular function on any a�ne open

subset of any abelian variety with trace zero.

Before we make the next remark, let us recall the following definitions:

Let K be a field equipped with a family of absolute values ||v : K ! [0,1), v 2

MK , all of which, except finitely many, are non-archimedian. Set v(x) = � log |x|v

for x 2 K⇥. Let (mv) be a collection of positive integers such that the ”product

formula”
X

v

mvv(x) = 0, x 2 K⇥

holds. Set

�v := inf{v(K⇥) \ (0,1)}

Also, for any µ = (µ1, . . . µN ) 2 KN and v 2MK set

v(µ) = min
j

v(µj)

10



Define the (a�ne, logarithmic) height

heightAN : AN (K) = KN ! [0,1)

by the formula

heightAN (µ) = �
X

v(µ)0

mvv(µ) =
X

v

mv max
j

log+ |µj |v

where log+ x := max{log x, 0}, x 2 [0,1). Note that

heightAN (µ) = heightPN (1 : µ1 . . . : µN )

where

heightPN (x0 : . . . : xN ) =
X

v

mv max
j

log |xj |v

is the usual height in projective space. On the other hand define the (logarithmic)

conductor

condAN : AN (K)! [0,1)

by the formula

condAN (µ) =
X

v(µ)0

mv�v

Clearly, by the very definition of �v we have

condAN (µ)  heightAN (µ), µ 2 KN .

It is easy to see that if P : AN (K) ! An(K) is a map given by an n-tuple of

polynomials in N variables with K-coe�cients then we have

heightAn � P << heightAN +O(1)

condAn � P  condAN +O(1)

This allows to define the height and conductor for any a�ne variety as follows.

Let U be an a�ne variety over a function field K and N a positive integer. Let

11



i : U ! AN be a closed immersion and define the height and conductor

heightU : U(K)! [0,1)

condU : U(K)! [0,1)

by the formulae

heightU (P ) := heightAN (i(P )), P 2 U(K)

condU (P ) := condAN (i(P )), P 2 U(K)

Definition 22. We say that the ”abc” estimate holds on an a�ne variety U if

heightU << condU +O(1)

Remark 23. The bounded multiplicity property implies an ”abc” estimate. But

the converse is not true, because the bounded multiplicity property fails in U =

P1\3points, but Mason’s theorem (i.e. an ”abc” estimate in U = P1\3points) is

true. To see that the bounded multiplicity property fails in U = P1\3points, consider

K = C(t) and f to be the identity function. Then we could find a sequence of points

Pn 2 A1(K), where Pn = zn = zn(t) = tn such that f(Pn) = zn = tn has a zero at

0 of order n!1.

Let us now recall the definition of the Albanese variety Alb(V ), given by the

following Universality Property: There is a morphism from the variety V to its

Albanese variety Alb(V ), such that any morphism from V to an abelian variety

(taking the given point to the identity) factors uniquely through Alb(V ). In order

to prove the Bounded Multiplicity Theorem-Trace Zero Case, Buium made use of

an equivalent form of the following result (see [Bu1]):

Theorem 24 (Buium’s Theorem 2). Let W be any variety of general type over

K. Let G be any algebraic D-group, V ⇢ G a D-subvariety and u : V ! W be a

dominant morphism. Then the Albanese variety Alb(W ) descends to k.
12



In the last chapter of this dissertation we will prove a generalization of this

theorem. Let us denote by K the function field defined over an algebraically closed

field k. Before we state such a generalization, let us make the following:

Remark 25. Any abelian variety A is, up to isogeny and after replacing K by a

finite extension of it, a product B ⇥C with B isotrivial and C with trace zero. So,

from now on, we can concentrate on the case when A is actually equal to B ⇥ C.

Theorem 26. Let A be any abelian variety, W ⇢ A subvariety of general type. Let

G be any algebraic D-group, V ⇢ G a D-subvariety and u : V !W be a dominant

morphism. Then W = (ZK + Q) ⇥W
0
for some k-subvariety ZK = Z ⌦K of A,

some Q 2 A(K) and W
0 ⇢ A subvariety, such that Alb(W

0
) descends to k (where

ZK := Z ⌦k K).

In order to prove the ABC Theorem-Isotrivial Case, Buium made use of his

lemma:

Lemma 27. Let W be a projective variety of general type over K. Asume W is

a closed subvariety of AK , where A is an abelian k-variety (here k denotes the

field of complex numbers). Let G be any algebraic D-group, V ⇢ G an absolutely

irreducible, reduced, D-subscheme and u : V ! W be a dominant morphism of K-

schemes. Then after replacing K by a finite extension of it, one may find a closed

k-subvariety Z ⇢ A and a point Q 2 A(K) such that W = (ZK +Q) in AK .

We will generalize the above Buium’s Lemma (see [Bu2]) and get the following

result for any abelian variety over a function field, not necessarily isotrivial or with

trace zero:

Lemma 28. Let W be a projective variety of general type over K. Asume W is a

closed subvariety of AK , where A is an abelian k-variety, A = B⇥C with B isotrivial

and C with trace zero. Let G be any algebraic D-group, V ⇢ G an absolutely

irreducible, reduced D-schemes and u : V ! W be a dominant morphism of K-

schemes. Then after replacing K by a finite extension of it, one may find a closed

13



k-subvariety Z of A and a point Q 2 A(K) such that W = (ZK + Q) (where

ZK = Z ⌦ SpecK).

Finally, we state our main result which is stronger than the previous lemma:

Proposition 29. Let W be a projective variety of general type over K. Asume W

is a closed subvariety of AK , where A is an abelian k-variety, A = B ⇥ C with

B isotrivial and C with trace zero. Let G be any algebraic D-group, V ⇢ G an

absolutely irreducible, reduced D-scheme and u : V ! W be a dominant morphism

of K-schemes. Then after replacing K by a finite extension of it, one may find

an isotrivial k-subvariety Z ⇢ B and an abelian k-subvariety T ⇢ C with trace

zero and points Q 2 B(K),P 2 C(K) such that W = (ZK + Q) ⇥ (T + P )(where

ZK = Z ⌦ SpecK).

Remark 30. We hope to be able to use these above results in order to prove a

version of an ABC Theorem for any abelian variety over a function field, not nec-

essarily isotrivial or with trace zero.

We conclude by noting:

Remark 31. In 2012, Shinichi Mochizuki, announced the proof of the ABC The-

orem for number fields.
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2. Preliminaries

In this section we give some definitions of p-adic absolute values and present

some of their basic properties. We also present the ABC Theorem for three p-

adic entire functions and conclude by using it in order to make a remark about

the Pillai’s diophantine equation involving such functions. A non-Archimedean

absolute value || over a commutative ring A is a function on A to the non-negative

numbers satisfying the following three properties:

1) |a| = 0 if and only if a = 0;

2) |ab| = |a||b| for all a, b 2 A;

3) |a+ b|  max{|a|, |b|} for all a, b 2 A.

Let F denote an algebraically closed field of characteristic 0 complete with respect

to a non-trivial non-Archimedean absolute value |.| Let

|F ⇤| = {|t| : t 2 F ⇤ = F \ {0}}.

Fix r > 0. Then let Bm(r) be the ”closed” ball of radius r in Fm, or in other words

Bm(r) = {(x1, . . . xm) 2 Fm : |xj |  r}.

If x1, . . . , xm are F - valued variables, we use x to denote them- tuple (x1, . . . , xm).We

use multi-index notation, so if � = (�1, . . . �m), where the �j are non-negative inte-

gers, then by definition

x� = x�1
1 . . . x�

m

m , |�| = �1 + . . .+ �m, and�! = �1! . . . �m!.

By an analytic function f on Bm(r) we mean a formal power series

X

�

a�x
�

in m variables x1, . . . , xm with coe�cients in F such that

lim
|�|!1

|a� |r|�| = 0.

15



If f =
X

�

a�x
� is analytic on Bm(r), then define

|f |r = sup
�

|a� |r|�|.

Denote by Am(r) the ring of analytic functions in Bm(r), which is factorial if

r 2 |F ⇤|(see [BGR]) Theorem 1 in section 5.2.6). By an entire p-dic function, we

understand a formal power series with coe�cients in F and with infinite radius of

convergence. By a meromorphic function f on Fm (or on Bm(r)) we will mean the

quotient of two analytic functions f
g such that f and g do not have common factors

in the ring of analytic functions. Note that | |r is multiplicative, meaning that if

f, g are two analytic functions then

|fg|r = |f |r|g|r.

Let us now consider f to be an analytic function on the ball Bm(r), r 2 |F ⇤|with

the following factorisation f(x) = u
sY

j=1

pj(X)↵j , where pj are irreducible, distinct,

the ↵j > 0 are integers and u is a unit in the ball. Then we define the radical of

f to be R(f) = v
sY

j=1

pj where v is another unit in Bm(r). Let us mention that

although the ring of entire functions on Fm is not a factorial ring, the notion of

”greatest common divisors” does make sens in such a ring , and it is only defined

up to units, hence multiplicative constants (see [Ch]). We also say that two p-

adic entire functions are relatively prime if their greatest common divisor is a unit

(multiplicative constant). Then we can define a notion of the ”radical” or the

”square free part” of an entire p-adic function f in characteristic zero. Let f be an

entire function in Fm. For each j from 1 to m, define the radical of f , denoted by

R(f), to be the least common multiple of the functions f

gcd(f, @f

@z

j

)
as in [ChTo].

Proposition 32. If f is an entire function then |f |r is a non-decreasing function

of r.
16



If f happens to be a polynomial of degree d, then we easily see that as r !1,

log |f |r = d log r +O(1).

Thus, in our ABC theorems for entire functions, log |f |r will play the roll played

by the degree in the case of polynomials in the left-hand side of the inequalities.

Corollary 33. If f, g and h are p-adic entire functions such that f = gh and if

r0 > 0, then for all r � r0,

log |g|r  log |f |r +O(1).

Proof. By the multiplicativity of | |r and Proposition 32,

log |f |r = log |g|r + log |h|r � log |g|r + log |h|r0 ,

which gives the first inequality. ⇤

Lemma 34 (p-adic Logarithmic Derivative Lemma). If f is a p-adic analytic

function, then | f
0

f |r  1/r.

Proof. Let f =
P

anzn. Since |n|r  1, we have

|f
0
|r = sup

n�1
|nan|rrn�1 =

1

r
sup
n�1

|nan|rrn 
1

r
sup
n�0

|an|rrn =
1

r
|f |r.

⇤

If f = g
h is a meromorphic function, then |f |r = |g|

r

|h|
r

.

We will make use many times of the following di↵erential operator � of the form

� = (µ1 . . . µm)�1
@µ1

@xµ1
1

. . .
@µ

m

@xµ
m

m

where µi � 0 are integers. Let’s denote its rank by

⇢(�) =
mX

i=1

µi = |µ|.

17



Given �0 . . .�n such that ⇢(�i)  i, with i = 0, 1 . . . n and f0, . . . , fn are

nonzero entire functions in F l, then we define a generalized Wronskian as :

W [f0, . . . , fn] = det |�ifj |.

We will now prove the most basic version of an ABC theorem for non-Archimedean

entire functions of several variables.

Theorem 35 (ABC Theorem for three p-adic entire functions). Let f2 = f0 + f1

be entire functions such that f0 and f1 are relatively prime entire functions. If f

has characteristic zero, assume that at least one of f0 or f1 is non-constant. Let

r0 > 0. Then, for r � r0,

max
0i2

log |fi|r  log |R(f0f1f2)|r � log r +O(1).

Proof. We sketch the proof, by following the standard polynomial proof, as given

for instance in [Va] and [ChTo], mutatis mutandis. Without loss of generality

assume that f0 is non-constant and that @P0/@z1 6⌘ 0. Consider the Wronskian

determinant,

W = det

0

B@
f0 f1

@f0
@z1

@f1
@z1

1

CA = det

0

B@
f0 f2

@f0
@z1

@f2
@z1

1

CA = det

0

B@
f2 f1

@f2
@z1

@f1
@z1

1

CA ,

where the first equality defines W and the second two equalities follow from f2 =

f0 + f1.

We notice that W 6⌘ 0, because f0 and f1 were assumed relatively prime.

Let F = f0f1f2, G = gcd(F, @F/@z1), and H = F/G. Then, by definition H

divides R(f0f1f2), and so

log |H|r  log |R(f0f1f2)|r +O(1)
18



for r � r0 by Corollary 33. We notice that G divides W. Again applying Corol-

lary 33, we see that for r � r0,

log |G|r  log |W |r +O(1).

By the p-adic Logarithmic Derivative Lemma,

����fi
@fj
@z1

����
r

 |fifj |r
r

,

and hence using each of the three determinants defining W,

log |W |r  logmin{|f0f1|r, |f0f2|r, |f1f2|r}� log r.

Hence,

logmax |fi|r = log |f0|r + log |f1|r + log |f2|r � log min
0i<j2

|fifj |r

= log |F |r � log min
0i<j2

|fifj |r

= log |H|r + log |G|r � log min
0i<j2

|fifj |r

 log |R(F )|r + log |W |r � log min
0i<j2

|fifj |r +O(1)

 log |R(F )|r � log r +O(1),

for r � r0. ⇤

Remark 36. By the ABC Inequality for p-adic entire functions, because

1
n + 1

m 

1, we conclude that the Pillai’s diophantine equation for p-adic entire functions

fn � gm = c where c is a constant function and n,m � 2 has no non-constant

solutions.
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3. A Generalized ABC-Theorem For P�Adic Entire Functions In One

Variable

In this section we will prove a generalized ABC-Theorem for relatively prime by

pairs p-adic entire functions in one variable, by adapting the proof of the Theorem

5 (see [BT]). Note that the proof of their result is based on their Lemma 4 which

is false for several variable polynomials, but true for univariate ones, as remarked

by De Bondt in [DeBont]. However, their result is correct for several variable

polynomials, but one needs another idea to prove it. In order to prove the theorem,

we consider two cases as Bayat and Teimoori did. For both cases I apply Lemma 39

which is an adaption of Lemma 2.1 (see [SS]):

Lemma 37. Let � = (µ1 . . . µm)�1 @µ1

@x
µ1
1

. . . @µ

m

@xµ

m

m

be an operator with µi � 0 are

integers and the rank of � is ⇢(�) = t =
mX

i=1

µi = |µ|. Then for f 2 C[X] not zero

we have

f�1�f =
P (X)

Q[f ]t

where P = P (X) 2 C[X1, . . . , Xn],

degP  t(degQ� 1)

and Q(X) = Q[f ] = R(f).

In order to prove Lemma 39, we use the following:

Lemma 38. Let g be a meromorphic function on Fm
and � = @µ1

@x
µ1
1

. . . @µ

m

@xµ

m

m

be

an operator with µi � 0 are integers. Then |�g
g |r  1

r|⇢(�)| , where the rank of � is

⇢(�) =
mX

i=1

µi = |µ|.

Proof. See [CY, Lemma 4.1] ⇤

Lemma 39. Let r 2 |F ⇤| and let f 2 Am(r). Let Q = R(f) and � = (µ1 . . . µm)�1 @µ1

@x
µ1
1

. . . @µ

m

@xµ

m

m

be an operator with µi � 0 are integers and the rank of � is ⇢(�) =
mX

i=1

µi = |µ|.
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Then, there is an analytic function g on Bm(r) such that

f�1�f =
g

Q⇢(�)

and such that

log |g|r  ⇢(�)[log |Q|r � log r].

Proof. If ⇢(�) = 0;�f = f ; g = 1 so the lemma is true in this case.

As in [SS] if f has a factorisation

f(x) = u
sY

j=1

pj(X)↵j

where pj are irreducible, distinct, the ↵j > 0 are integers and u is a unit in Bm(r).

Then

Q = v
sY

j=1

pj

where v is another unit in Br. Then

f�1
@f

@xi
=

@u
@x

i

u
+

sX

j=1

↵j

@p
j

@x

pj
=

vg1
uQ

.

Set g2 = vg1
u . Then log

��� g2Q
���
r
= log

����
@f

@x

i

f

����
r

 � log r by Lemma 38, thus

log |g2|r  log |Q|r � log r.

Therefore

log |gg2|r = log |g|r + log |g2|r

 ⇢(�)(log |Q|r � log r) + log |Q|r � log r

= [⇢(�) + 1](log |Q|r � log r)

Let t = ⇢(�) therefore

log |gg2|r  (t+ 1)[log |Q|r � log r]
21



Proceeding by induction on t so that assuming the lemma for �, it su�ces to prove

it for

�̄ =
@

@xi
�,

as in [SS]. But as in [SS]

f�1�̄f = (f�1�f)
fx

i

f
+

gx
i

Q� tQx
i

g

Qt+1

=
g

Qt

g2
Q

+
gx

i

Q� tQx
i

g

Qt+1

where gx
i

= @g
@x

i

and Qx
i

= @Q
@x

i

. If R is the numerator in this relation, then

|R|r = |gg2 + gx
i

Q� tQx
i

g|r  max{|gg2|r, |gx
i

Q� tQx
i

g|r}

In order to show that

log |R|r  (t+ 1)[log |Q|r � log r]

we use that

|R|r  max{|gg2|r, |gx
i

Q|r, |� tQx
i

g|r}

where |� tQx
i

g|r = |tQx
i

g|r. By the p-adic Logarithmic Derivative Lemma we get

|gx
i

|r 
|g|r
r

Similarly

|Qx
i

|r 
|Q|r
r

Thus

log |R|r  max{(t+ 1)[log |Q|r � log r], (t+ 1)[log |Q|r � log r] + log |t|r}

Because |t|r  1 then we get that

log |R|r  (t+ 1)[log |Q|r � log r].

⇤
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We will now prove two lemmas, which will be used to prove our next theorem:

Lemma 40. Let �i(i = 1, . . . , s) be a di↵erential operator with ⇢(�i)  i. Then

for f nonzero entire function in several variables in F l
we have

(4) log |f |r � s log |Q|r  log |(f,�1f, . . . ,�sf)|r +O(1)

for all r 2 |F ⇤|, where Q = R(f) and (f,�1f, . . . ,�sf) is the greatest common

divisor of f,�1f, . . . ,�sf and O(1) is a constant independent of r.

Proof. Suppose pe | f and pe+1 - f. We consider the following two cases:

Case 1 : Suppose that e  s Then pe | f and pe | Qs. Therefore pe | (f,Qs),

hence p - f
(f,Qs) .

Case 2 : Suppose e > s. Hence ps | (f,Qs), also pe�s | (f,�1f, . . . ,�sf), thus

pe�s+1 - f

(f,Qs)
.

Because pe | f and pe�i | �if, also ⇢(�i)  i for all i = 1, . . . , s we get that

pe�s | (f,�1f, . . . ,�sf).

log |f |r � s log |Q|r  log
|f |r

|(f,Qs)|r

 log |(f, . . . ,�sf)|r +O(1)

⇤

Lemma 41. Suppose f1, . . . , fn are nonzero p-adic entire functions in one variable

in F. Then, for W [f1, . . . , fn] 6= 0 we have

(5) log |W [f1, . . . , fn]|r  log |f1 . . . fn|r �
n(n� 1)

2
log r.

for any r > 1
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Proof. The proof is done by induction on n. The initial step n = 1 is clear. Suppose

it’s true for (n�1) functions. By expanding theWronskian determinantW [f1, . . . , fn]

with respect to the first row , we obtain as in [BT]:

(6)

log |W [f1, . . . , fn]|r = log |
nX

i=1

(�1)i+1fiW [�1f1, . . . ,�1fi�1,�1fi+1, . . . ,�1fn]|r

We have that:

log |W [f1, . . . , fn]|r  max
1in

(log |fi|r + log |W [�1f1, . . . ,�1fi�1, . . . ,�1fn]|r),

since W [f1, . . . , fn] 6= 0, then there exists an i such that the right-hand side has the

greatest absolute valuation in logarithm, namely

log |W [f1, . . . , fn]|r  log |fi|r + log |W [�1f1, . . . ,�1fi�1, . . . ,�1fn]|r.

We now get by the induction hypothesis that

log |W [�1f1, . . . ,�1fi�1, . . . ,�1fn]|r  log |(�1f1 . . .�1fi�1�1fi+1 . . .�1fn)|r�

(7)
(n� 1)(n� 2)

2
log r  log |f1 . . . fi�1fi+1 . . . fn|r �

n(n� 1)

2
log r

since log |�1fi|r = log |fi|r + log |g|r � ⇢(�1) log |Q|r for all i by Lemma 39. Hence

⇢(�1) � 1, and log |g|r  ⇢(�1)[log |Q|r � log r] so

log |�1fi|r  log |fi|r � log r.

Therefore we get by mixing the equations ( 6) and (7):

log |W [f1, . . . , fn]|r  log |f1 . . . fn|r �
n(n� 1)

2
log r.

for any r > 1. ⇤
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Theorem 42. Let r > 1 and f1 + . . . fn�1 = fn, in which the f ,
is are relatively

prime by pairs p-adic entire functions in one variable in F, and k out of the n-

functions are constant ( k  n� 2).Then, for k = 0, we have

(8) max
1in

log |fi|r  (n� 2) log |Q[f1 . . . fn]|r �
(n� 1)(n� 2)

2
log r +O(1),

and when k � 1, we have

(9) max
1in

log |fi|r  (n�k�1) log |Q[f1 . . . fn]|r�
(n� k)(n� k � 1)

2
log r+O(1),

where Q[f1 . . . fn] = R(
nY

i=0

fi) and O(1) is a constant independent of r.

Proof. For di↵erent k,s, we distinguish two cases as in [BT]:

Case1. Let f1, . . . , fn�1, be linearly independent over F Therefore k = 0 or k = 1

and W [f1, . . . fn�2, fn�1] 6= 0. (see [Ro] and [Sc]) Without loss of generality, we

assume that fn is such that log |fn|r =
n

max
i=1

(log |fi|r), and therefore it is necessary

to prove that

log |fn|r  (n� 2) log |Q[f1 . . . fn]|r �
(n� 1)(n� 2)

2
log r.

We have f1 + . . . fn�1 = fn, so we get as in [BT] that:

W [f1, . . . fn�2, fn�1] = W [f1, . . . fn�2, fn].

But for any i(i = 1, . . . , n), we have that

(fi,�1fi, . . . ,�n�2fi) | W [f1, . . . fn�2, fn�1].

Now, since the f ,
is are relatively prime by pairs, we obtain as in [BT]

nY

i=1

(fi,�1fi, . . . ,�n�2fi) | W [f1, . . . fn�2, fn�1],

25



and since W [f1, . . . fn�2, fn�1] 6= 0, we conclude that

nX

i=1

log |(fi,�1fi, . . . ,�n�2fi)|r  log |W [f1, . . . fn�2, fn�1]|r +O(1).

Using equations (4) and (5) we obtain

nX

i=1

(log |fi|r � (n� 2) log |Q[fi]|r)  log |f1 . . . fn�1]|r �
(n� 1)(n� 2)

2
log r+O(1)

and since the f ,
is are relatively prime by pairs we get that

log |fn|r  (n� 2) log |Q[f1 . . . fn]|r �
(n� 1)(n� 2)

2
log r +O(1),

Case2. Let f1, . . . , fn�1, be linearly dependent over F. The proof is done by

induction on n. as in [BT]. For n = 3, by assumptions k = 0, 1, 2, 3, where k = 3

is trivial and k = 2 is impossible and cases k = 0, 1 are just Mason’s theorem.

Suppose that the theorem is true for all cases m,s, 3  m  n, and consider n entire

functions. In equality f1+. . . fn�1 = fn, as in [BT] assume the fi(i = 1, 2 . . . , n�1),

are linearly dependent over F, and also k out of the n- functions (k � n � 2)

are constant, when k = n inequality (9) is obvious and the case k = n � 1 is

clearly impossible, so k  n � 2. Let fi1 , . . . , fiq , q  n � k, be a maximal linearly

independent subset of the fi1 , . . . , fin�1 . Since n� k � 2, and the f ,
js are relatively

prime by pairs, it follows that q � 2. So each fj , 1  j  n� k; j not one of the i,ls,

is a linear combination of the fi
l

of the form

(10) fj = �1fi1 + . . .+ �qfi
q

,

where the �l 2 F, and at least two of these �,
ls are not zero. As in [BT] using our

inductive hypothesis we apply case 1. This yield that �l 6= 0, then

log |fi
l

|r  (q � 1) log |Q[fj(
qY

l=1

fi
l

)]|r �
q(q � 1)

2
log r +O(1),
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and so that

(11) log |fi
l

|r  (q � 1) log |Q[
nY

l=1

fi]|r �
q(q � 1)

2
log r +O(1).

Now, since k out of the f ,
is are constant we obtain

(q � 1) log |Q[
nY

l=1

fi]|r �
q(q � 1)

2
log r +O(1).

(12)  (n� k � 1) log |Q[
nY

l=1

fi]|r �
(n� k)(n� k � 1)

2
log r +O(1).

Now, by using the equations ( 11 ) and ( 12 ) we get

(13) log |fi
l

|r  (n� k � 1) log |Q[
nY

l=1

fi]|r �
(n� k)(n� k � 1)

2
log r +O(1).

Starting from ( 10 ) we get the same estimate ( 13 ) for log |fj |r. Therefore the

theorem is proved for such fj and fi
l

. As in [BT] inserting all the relations of the

form ( 10 ) into the right side of the equality f1 + . . . fn�1 = fn yields an equation

of the form

(14) fn = k1fi1 + . . .+ kqfi
q

,

where the kj 2 C. Moreover, if one of these k⌫ = 0, then the corresponding fi
⌫

must

appear in one of the equations ( 10 ) with a nonzero �⌫ . Hence ( 13 ) is proved for

this fi
⌫

. Finally for those k⌫ 6= 0, we treat ( 14 ) exactly as we did with ( 10 ), since

q+ k  n and obtain the estimate ( 13 ) for log |fi
⌫

|r, and log |fn|r. This completes

the induction in this case. ⇤
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4. A First Generalized ABC- Theorem For P�Adic Entire Functions

In Several Variables

In this section we prove a second theorem for p-adic entire functions in several

variables without common factors, under the hypothesis that no subsum vanishes.

Before proving the next theorem, we give the definitions of the characteristic and

counting functions of a p-adic entire function in several variables f. The character-

istic function of f , denoted by T (f, r), measures the growth of f and is analogous

to the degree of a polynomial. It is defined as:

T (f, r) = log |f |r,

where r > 0. Let

f =
X

�

c�z
�

be a p-adic entire function. Let r > 0 and let r = (r, . . . , r) Then the unintegrated

counting function of zeros of f , denoted by nf (0, r), is defined by Cherry and Ye

in [CY] as

nf (0, r) = sup{|�| : |c� |r� = |f |r}.

This is the number of zeros, counting multiplicity, that f has on a su�ciently generic

line through the origin with max |zj |  r. They also define

nf (0, 0) = lim
r!0

nf (0, r) = min{|�| : a� 6= 0}.

If f = g
h is a meromorphic function and g and h have no common factors, then

define the unintegrated counting function nf (a, r) by

nf (1, r) = nh(0, r).

For a 2 F and f a meromorphic function which is not identically equal to a,

define

nf (a, r) = n 1
(f�a)

(1, r).
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For a 2 P1(F ) and a meromorphic function which is not identically equal to a,

Cherry and Ye define the integrated counting function N(f, a, r), which counts the

number of times (as a logarithmic average) f takes the value a in Bm(r). They

define it in [CY] as

N(f, a, r) = nf (a, 0) log⇡ r +
1

ln⇡

Z r

0
(nf (a, t)� nf (a, 0))

dt

t

Definition 43. According to Brownawell, a finite function family F = {fi i 2 J}

is called minimal if F is linearly dependent, and for any proper subset I of J the

family {fi i 2 J} is linearly independent. We also call the indices J minimal.

Lemma 44. Let u0, . . . , un be n + 1 vectors in a vector space over a given field.

Assume u0 + . . . + un = 0 but no non-empty proper subsum vanishes. Then there

exists a partition of indices

{0, 1, . . . , n} = I0 [ . . . [ Ik

satisfying the following properties: 1) I↵ are non-empty disjoint sets;

2) There exist subsets I
0

↵ of {0, 1, . . . , n} with

I
0

0 = ?,? 6= I
0

↵ ✓ I0 [ . . . [ I↵�1(↵ = 1, . . . , k)

such that the set I↵ [ I↵
0
is minimal for each ↵ = 0, . . . , k.

Proof. See [BM] ⇤

Next, let us consider the following equation:

f0 + f1 + . . .+ fn = 0

. Assume that no proper subsum of the above equation is equal to 0. Then, by the

above lemma, there exists a partition of indices

{0, 1, . . . , n} = I0 [ . . . [ Ik
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satisfying the two properties of the lemma. Set

n0 + 1 = ]I0;n↵ = ]I↵(↵ = 1, . . . , k)

and write

s↵ = 1 +
↵X

�=0

n� ,↵ = 0, 1 . . . , k.

Then

n0 + n1 + . . .+ nk = n

Without loss of generality, we may assume that

I0 = {0, . . . , n0}, I↵ = {s↵�1, . . . , s↵ � 1}(↵ = 1, . . . , k).

Since I0 is minimal, then f1, . . . fn0 are linearly independent. Hence the Wronskian

W0 = W(f1, . . . , fn0) 6⌘ 0

Similarly the functions fs
↵�1 , . . . , fs↵�1 are linearly independent, and so

W↵ = W(fs
↵�1 , . . . , fs↵�1) 6⌘ 0,↵ = 1, . . . , k

Define

l =
kX

↵=0

n↵(n↵ � 1)

2
.

Theorem 45. Using the above notations, suppose that f0, f1, . . . , fn are non-

constant, p-adic entire functions in Em such that gcd(f1, . . . fn) = 1 and gcd(fs
↵�1 , . . . fs↵�1) =

1. Let

f0 + f1 . . . fn = 0

such that no subsum vanishes. Then

max
j=0,...,n

log |fj |r  l log |R(
n0Y

j=1

fj)
kY

↵=1

R(
s
↵

�1Y

j=s
↵�1

fj)|r � l log r +O(1)

for r � r0 for some fixed r0 > 1, provided that n↵ � 2 for ↵ = 0, . . . k.
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In the case that all our p-adic entire functions are pairwise relative prime, then

max
j=0,...,n

log |fj |r  l log |R(
nY

j=0

fj)|r � l log r +O(1)

for r � r0 for some fixed r0 > 1, provided that n↵ � 2 for ↵ = 0, . . . k.

Proof. By using the previous notations of this section, let

W↵ = W(fs
↵�1 , . . . , fs↵�1) =

�������������

fs
↵�1 · · · fs

↵

�1

@�1fs
↵�1 · · · @�1fs

↵

�1

· · · · · · · · ·

@�
n

↵

�1fs
↵�1 · · · @�

n

↵

�1fs
↵

�1

�������������

with |�i| = i. If µ is a multi-index notation and F is a meromorphic function in m

several variables then by @µF we mean @|µ|F
@x

µ1
1 ...@xµ

m

1
Then

W↵ =

����������������

P k1 ⇤ P0,1 · · · P k
t ⇤ P0,t P0,t+1 · · · P0,n

↵

· · · · · · · · · · · · · · · · · ·

P k1�[n↵

�(n
↵

�i)]⇤Pn
↵

�i,1 · · · P k
t

�[n
↵

�(n
↵

�i)]⇤Pn
↵

�i,t Pn
↵

�i,t+1 · · · Pn
↵

�i,n
↵

· · · · · · · · · · · · · · · · · ·

P k1�(n↵

�1)⇤Pn
↵

�1,1 · · · P k
t

�(n
↵

�1)⇤Pn
↵

�1,t Pn
↵

�1,t+1 · · · Pn
↵

�1,n
↵

����������������

where Q is the square-free part of
Y

fs
↵�1 , . . . , fs↵�1 and P is a non-constant

irreducible element in Em such that P | Q. Let P k̂ to be the maximal power

of P such that P k̂ |
s
↵

�1Y

i=s
↵�1

fi, hence ki � 1. We denote by Pi,j where 0  i 

n↵ � 1 and 1  j  n↵ the expressions in Em that are not divisible by P and

(k1, . . . kt, 0, . . . , 0) represents the partition of k̂. The operation ⇤ stands for the

multiplication operation. Hence

k̂ =
tX

i=1

ki
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where t = n↵�i; t < n↵, with ↵ = 0, . . . , k̂. Also i represents the number of columns

with no element divisible by P. So 0  i  n↵ � 1. In order to avoid having any of

these k + 1 Wronskians to be 1⇥ 1, we need n↵ � 2 for each ↵ = 0, . . . k.

The functions fs
↵�1 , . . . , fs↵�1 are linearly independent, and so

W↵ = W(fs
↵�1 , . . . , fs↵�1) 6⌘ 0,↵ = 1, . . . , k̂.

The general term in W↵ with the smallest power of P is

P k1�(n↵

�1)P k2�(n↵

�2) . . . P k
t

�[n
↵

�(n
↵

�i)]P0 = P k̂�n

↵

(n
↵

�1)�i(i�1)
2 P0.

where by P0 we mean an expression that is not divisible by P. We have that

N(
s
↵

�1Y

j=s
↵�1

fj , 0, r)�N(W↵, 0, r)  N

 
s
↵

�1Y

j=s
↵�1

fj

gcd

0

@
s
↵

�1Y

j=s
↵�1

fj ,W↵

1

A

, 0, r

!
+O(1)

for any r � r0 for some fixed positive real number r0.

Hence P
n

↵

(n
↵

�1)�i(i�1)
2 is the maximal power of P that divides

s
↵

�1Y

j=s
↵�1

fj

gcd

0

BB@

s
↵

�1Y

j=s
↵�1

fj ,W↵

1

CCA

and
s
↵

�1Y

j=s
↵�1

fj

gcd

0

@
s
↵

�1Y

j=s
↵�1

fj ,W↵

1

A

| Q
n

↵

(n
↵

�1)�i(i�1)
2 .

Therefore

N(
s
↵

�1Y

j=s
↵�1

fj , 0, r)�N(W↵, 0, r)  N
⇣
Q

n

↵

(n
↵

�1)
2

, 0, r
⌘
+O(1)

for any r � r0 for some fixed positive real number r0,

since
n↵(n↵ � 1)� i(i� 1)

2
=

n↵(n↵ � 1)

2
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for i = 1 and
n↵(n↵ � 1)� i(i� 1)

2
 n↵(n↵ � 1)

2

for every i � 2. Note that i 6= 0 since gcd(fs
↵�1 , . . . , fs↵�1) = 1. In the above we

used the following type of notation

fl̂ = P
min(l̂, e1)
1 . . . P

min(l̂, eh)
h

whenever f = P e1
1 . . . P e

h

h with P1, . . . , Ph be irreducible elements in Em.

Note that in general, if �f 6= 0 and ⇢(�) = l̂ then

N (l̂)(f, 0, r) = N

✓
f

gcd(f,�f)
, 0, r

◆

and if �f = 0 then N (l̂)(f, 0, r) = N(f, 0, r). So we have

N (l̂)(f, 0, r) = N(
hY

j=1

P
min{e

j

,l̂}
j , 0, r).

In our case, in order to computeW↵ we used the tuple operator� = (�1, . . . ,�n
↵

�1)

with ⇢(�i) = i for each i = 1, . . . , n↵ � 1. Then ⇢(�) = 1 + 2 + . . . + n↵ � 1 =

n
↵

(n
↵

�1)
2 . So we just verified above that N(n

↵

(n
↵

�1)
2 )(Q, 0, r) = N

⇣
Q

n

↵

(n
↵

�1)
2

, 0, r
⌘

We apply the following version of the Second Main Theorem for p-adic entire

functions (see Theorem 5.1. [CY]): Given a tuple consisting of n+ 1 linearly inde-

pendent p-adic entire functions, that are without common factors, f = (f0, . . . fn),

let �1, . . . , �n be multi-indices with |�i|  i so that the generalized Wronskian

W = W (f0, . . . fn) =

�������������

f0 · · · fn

@�1f0 · · · @�1fn

· · · · · · · · ·

@�
nf0 · · · @�

nfn

�������������

6= 0. Let B =
nX

i=1

|�i| and let r0 be a

positive real number then

T (f, r)  N(
nY

j=0

fj , 0, r)�N(W, 0, r)�B log r +O(1)
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for any r � r0 and where T (f, r) = max
j=0,...,n

log |fj |r +O(1) and n < B < n(n+1)
2 .

For our purpose, we apply this theorem k+1 times, to each tuple f̂ = (fs
↵�1 , . . . , fs↵�1),

respectively f̂0 = (f1, . . . fn) consisting of linearly independent functions such that

gcd(fs
↵�1 , . . . , fs↵�1) = 1 for each ↵ = 1, . . . , k and gcd(f0, . . . , fn) = 1. Hence:

T (f̂↵, r)  N(
s
↵

�1Y

j=s
↵�1

fj , 0, r)�N(W↵, 0, r)�B↵ log r +O(1)

for each ↵ = 1, . . . , k. and

T (f̂0, r)  N(
n0Y

j=1

fj , 0, r)�N(W0, 0, r)�B0 log r +O(1)

where B↵ = 1 + 2 + . . . n↵ � 1 = n
↵

(n
↵

�1)
2 by Cherry and Ye’s definition. We

sum up these k + 1 inequalities, and we let B = B0 + . . . Bk =
kX

↵=0

n↵(n↵ � 1)

2
= l

and get:

max
j=0,...,n

log |fj |r N(
n0Y

j=1

fj , 0, r) +
kX

↵=1

N(
s
↵

�1Y

j=s
↵�1

fj , 0, r)�
kX

↵=0

N(W↵, 0, r)�B log r +O(1)


kX

↵=0

N(Q
n

↵

(n
↵

�1)
2

, 0, r)� l log r +O(1)


kX

↵=1

n↵(n↵ � 1)

2
log |R(

s
↵

�1Y

j=s
↵�1

)fj |r +
n0(n0 � 1)

2
log |R(

n0Y

j=1

fj)|r � l log r +O(1)

l log |R(
n0Y

j=1

fj)
kY

↵=1

R(
s
↵

�1Y

j=s
↵�1

fj)|r � l log r +O(1)

We used that Cherry-Ye’s Poisson-Jensen-Green formula in [CY] says that there

exists a constant Cf that depends on f but not on r, such that N(f, 0, r) = log|f |r+

Cf , for all r.

We made also use of the property of the counting function to be multiplicative

and of the following facts:

N(
nY

j=0

fj , 0, r) = N(
n0Y

j=1

fj , 0, r) +
kX

↵=1

N(
s
↵

�1Y

j=s
↵�1

fj , 0, r)
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N(
nY

j=0

fj , 0, r) = N(f0, 0, r)+N(
nY

j=1

fj , 0, r) andN(f0, 0, r) � 0 thusN(
nY

j=0

fj , 0, r) �

N(
nY

j=1

fj , 0, r). Therefore we conclude that

max
j=0,...,n

log |fj |r  l log |R(
n0Y

j=1

fj)
kY

↵=1

R(
s
↵

�1Y

j=s
↵�1

fj)|r � l log r +O(1)

for any r � r0 for some fixed real number r0 > 1, provided that n↵ � 2 for

↵ = 0, . . . k.

In the case that all our p-adic entire functions are pairwise relative prime, then

R(
nY

i=0

fi) =
nX

i=0

R(fi)

and we get that

max
j=0,...,n

log |fj |r  l log |R(
nY

j=0

fj)|r � l log r +O(1)

for any r � r0 for some fixed real number r0 > 1,provided that n↵ � 2 for ↵ =

0, . . . k.

⇤
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5. A Second Generalized ABC- Theorem For P�Adic Entire Functions

In Several Variables

Theorem 46. Let f1, . . . , fs, with s � 3, be pairwise relatively prime p-adic entire

functions of severable on Fm
such that at least one of the fi is non-constant and

such that f1 + . . . fs = 0. Fix r0 2 |F ⇤|. Then, for all r 2 |F ⇤| with r � r0

max
1is

(log |fi|r)  (s� 2)[log |Q|r � log r] +O(1)

where Q = R(
sY

i=1

fi) and the O(1) is a constant independent of r.

Proof. We consider two cases as in [SS]). The first case is based on the second case.

If more than one fi is constant, we may combine all the constant fi and assume

without loss of generality that at most one fi is constant.

Case 1. Let �fs = f1 + . . . + fs�1. Assume that the fi, i = 1, . . . , s � 1 are

linearly dependently over F. By the above considerations, at most one of the fi, i =

1, . . . , s�1 is constant. Let fi1 , . . . , fiq ; q < s�1 be a maximal linearly independent

subset of the fj , j = 1, . . . , s � 1. Since s � 1 � 2 and the fj are relatively prime

by pairs, we get q � 2. Each fj , 1  j  s� 1, j that di↵ers from one of the ik, is a

linear combination of the fi
k

of the form

(15) fj = �1fi1 + . . .+ �qfi
q

where �k 2 F and at least two of these �k are not zero.

As in [SS] by the second case we get:

If �k 6= 0 then by the second case we get:

log |�kfi
k

|r  (q � 1)(log |Q1|r � log r) +O(1)

where Q1 is the square-free part of fj

qY

k=1

�kfi
k

But q < s� 1 thus q � 1 < s� 2.

Therefore

|Q1|r < |Q|r +O(1).
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So

log |fi
k

|r  log |�kfi
k

|r

 (s� 2)(log |Q|r � log r) +O(1)

because |Q1|r | |Q|r thus log |Q1|r  log |Q|r + O(1) We get the same bound for

log |fj |r, because, as in [SS]:

log |fj |r = log |�1fi1 + . . .+ �qfi
q

|r +O(1)

 log max
1kq

|�ifi
k

|r +O(1)

 (s� 2)(log |Q|r � log r) +O(1)

So the theorem is proved for such fj and fi
k

.

As in [SS] inserting all equations (15) into the right side of the equation

�fs = f1 + . . .+ fs�1

yields the following equation

fs = k1fi1 + . . .+ kqfi
q

where kj 2 F.

If one of these kt = 0 then fi
t

appears in one equation of type (15) with a

non-zero �t. Hence

log |fi
t

|r  (s� 2)[log |Q|r � log r] +O(1).

Finally for those kt 6= 0 applying the same reasoning as we did for fj and fi
k

(we have q + 1 < s) and we get the desired estimates for log |fi
t

|r and for log |fs|r.

Therefore the theorem is proved in this case.

Case 2. Let us denote R(fi) by Q[fi]. The f1, . . . , fs�1 are linearly independent

over F.
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Then there exists a generalized Wronskian of the following form which doesn’t

vanish.

W [f1, . . . fs�1] = det |�ifj |

where operators �i are such that µi � 0 are integers, and ⇢(�i)  i and 1 

⇢(�i) for i � 2.

As in [SS] applying the operators �i, i = 1, . . . , s� 1 to

�fs = f1 + . . .+ fs�1

yields

�f�1s �ifs =
s�1X

j=1

(f�1j �ifj)(
fj
fs

)

for i = 1, . . . , s� 1. Solving s� 1 linear equations in the f
j

f
s

we get:

(16)
fj
fs

=
det | (�i

f
k

)
f
k

fork 6= j; (��
i

f
k

)
f
s

in the j � th col.|

det | (�i

f
k

)
f
k

|

We have det | (�i

f
k

)
f
k

| equals W [f1, . . . , fs�1] divided by the product of the fk and

hence is not zero.

As in [SS] let N and D be the numerator and denominator respectively of the

right hand side of ( 16).

Fix j then we have:
fj
fs

=
N

D
.

D is a determinant, so D equals a sum of the form

(17) ±
(�i1f1) . . . (�i

s�1fs�1)

f1 . . . fs�1

38



where i1, . . . , is�1 is a permutation of 1, . . . , s� 1.

Now fix r 2 |F ⇤.| There exist Pi,k such that

�ifk
fk

=
Pi,k

Q[fk]⇢(�i

)

and by Lemma 39, ( 17) is of the form

(18) ± Pi1,1

Q[f1]⇢(�i1 )
. . .

Pi
s�1,s�1

Q[fs�1]
⇢(�

i

s�1 )

where k = 1, . . . , s� 1;Pi
k

,k 2 Bm(r) and

log |Pi
k

,k|r  ⇢(�i
k

)(log |Q[fk]|r � log r).

So there exists a function P such that

D =
P

Q[f1, . . . , fs�1]s�2

because

Q[f1]
⇢(�

i1 ) . . . Q[fs�1]
⇢(�

i

s�1 ) | Q[f1, . . . fs�1]
s�2,

as the fk are relatively prime by pairs.

Thus ( 18) has the form ± P
Q[f1...fs�1]s�2

So

log |P |r = log(|Pi1,1|r . . . |Pi
s�1,s�1|r) + log

�����
Q[f1 . . . fs�1]s�2

Q[f1]⇢(�i1 ) . . . Q[fs�1]
⇢(�

i

s�1 )

�����
r

.

But

Q[f1] = u1

kY

i=1

p1,i.

And so on,

Q[fs�1] = us�1

mY

i=1

ps�1,i.
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where u and ui for all i = 1, . . . s� 1 are units in Bm(r) and

Q[f1 . . . fs�1] = u
Y

p1,i . . .
Y

ps�1,i.

Because f1, . . . fs�1 are relatively prime we get that

u =
s�1Y

i=1

ui

So

log |P |r =
s�1X

k=1

log |Pi
k

,k||r + log

����������

us�2

s�1Y

k=1

u
⇢(�

i

k

)
i

Q[f1]s�2�⇢(�i1 ) . . . Q[fs�1]
s�2�⇢(�

i

s�1 )

s�1Y

i=1

us�2�⇢(�
i

)
i

����������
r

=
s�1X

k=1

log |Pi
k

,k|r +
s�1X

i=1

log |Q[fi]
s�2�⇢(�

i

i

)|r


s�1X

k=1

⇢(�i
k

)(log |Q[fk]|r � log r) +
s�1X

i=1

(s� 2� ⇢(�i
i

)) log |Q[fi]|r

= �
s�1X

k=1

⇢(�k) log r + (s� 2)
s�1X

i=1

log |Q[fi]|r

 (s� 2)[log
s�1Y

i=1

|Q[fi]|r � log r]

Therefore

(19) log |P |r  (s� 2)[log
s�1Y

i=1

|Q[fi]|r � log r]

We used that ⇢(�i
k

) � 1 for all �i
k

except one. But

s�1Y

i=1

|Q[fi]|r =

�����(
s�1Y

i=1

uiQ[f ])
1

u

�����
r

= |Q[f ]|r

where

f =
s�1Y

i=1

fi.

So ( 19) becomes

log |P |r  (s� 2)[log |Q[f ]|r � log r].
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Thus D has the form

D =
d

Q[f1 . . . fs]s�2

where d 2 Am(r) and

log |d|r  (s� 2)(log |Q[f1 . . . fs]|r � log r).

Analogously

N =
n

Q[f1 . . . fs�1]s�2

where n 2 Am(r) and

log |n|r  (s� 2)(log |Q[f1 . . . fs]|r � log r)

So we get f
j

f
s

= n
d hence fjd = fsn. Thus fj | fsn. Because fj and fs are relatively

prime then fj | n. So there exists gj such that n = fjgj . Therefore

log |fj |r = log |n|r � log |gj |r

 log |n|r � log |gj |r0

= log |n|r �O(1)

 (s� 2)(log |Q[f1 . . . fs]|r � log r) +O(1)

Similarly we get:

log |fs|r  log |d|r �O(1)

 (s� 2)[log |Q[f1 . . . fs]|r � log r] +O(1)

So we get that

max
i=1,...,s

log |fi|r  (s� 2)(log |Q[f1 . . . fs]|r � log r) +O(1)

= (s� 2)[log |Q|r � log r] +O(1)

since Q = R(
sY

i=1

fi).
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⇤

6. A Result On Abelian Varieties

In our last section we will prove a few generalizations of Buium’s results that he

used in order to prove his ABC Theorems for isotrivial abelian varieties, respectively

with trace zero. Before we state and prove our results, we first recall the following

definitions. Let C be a smooth projective curve defined over a closed field k with

function field K = k(C).

Definition 47. An abelian variety is a projective algebraic variety that is also an

algebraic group, i.e. has a group law that can be defined by regular functions.

Definition 48. A homomorphism ↵ : A! B of abelian varieties is called isogeny

if it is surjective and has finite kernel.

Remark 49. We write A ⇠ B if there is an isogeny A! B.

Definition 50. Let F be a field of characteristic zero with a derivation on it and C

be the field of constants. An F -variety is said to descends to constants if it comes,

via base change, from a variety over C .

Definition 51. Let A be an abelian variety over the function field K. Then A

is isotrivial if and only if there exists A0 abelian variety /k such that A ⌦K K̄ =

A0 ⌦k K̄, i.e. A is descending to k (by K̄ we understand the algebraic closure of

K).

Definition 52. An abelian variety A over the function field K is said to have

trace zero if A⌦K K̄ has no nonzero abelian subvarieties descending to k (by K̄ we

understand the algebraic closure of K).

We also need to recall the following definitions (see [Bu2]):

Let k be a field and K be its extension field. Fix a non-zero k-derivation � on

K. By a D-scheme we understand a K-scheme V together with a lifting of � to
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a derivation of OV . Then a D-group scheme is a group object in the category of

D-schemes. Finally, an algebraic D-group is a D-group scheme which is of finite

type over K.

Now we recall the construction of Buium’s jet spaces jet1(X), by following his

notations and terminology (see [Bu4]):

Let X and Y be two K-schemes. By a kernel (over K)

(f, �) : X ! Y

we will understand a pair (f, �) consisting of a morphism of K-schemes f : X ! Y

and a derivation � 2 Der(OY , f⇤OX)whose restriction to K coincides with the

derivation � on K.

By a prolongation sequence one understands two kernels of the form

X1
(f1,�1)����! X0

(f0,�0)����! X�1

such that the following diagram is commutative:

OX�1 f0⇤OX0

f0⇤OX0 f0⇤f1⇤OX1

f0

�0

�1�1

f1

One says that (f1, �1) is a prolongation of (f0, �0). Let

P = P (f, �) := SpecS(⌦X)/J

where ⌦X is the OX -module of Kähler di↵erentials (i.e. Kähler di↵erentials over

Z), S() is the symmetric algebra of an OX -module and J is the ideal generated by

local sections of the form d(f(a))� �a, where a are local sections of OY and

d = dX : OX ! ⌦X
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is the universal Kähler derivation. Let (f, �) : X ! Y be a kernel, then

(f̃ , �̃) : P = P (f, �)! X

is called its canonical prolongation. Also the composition f : X
��! SpecK! OX is

a derivation of K into OX , still denoted by �. Then we get a kernel

(f, �) : X ! SpecK

called the tautological kernel of X. By an infinite prolongation sequence we will

understand a projective system

. . .! Xr (f
r

,�
r

)����! Xr�1 ! . . .
(f0,�0)����! X�1

of kernels such that each sequence of theree terms contained in it is a prolongation

sequence. Now we are ready to construct Buium’s Jet Spaces: If X is any K-scheme

define inductively a sequence of kernels

(fr, �r) : X
r ! Xr�1, r � 0

where

(f0, �0) : X
0 ! X�1

is the tautological kernel

(f, �) : X ! SpecK

and

Xr+1 ! Xr

is the canonical prolongation of

Xr ! Xr�1

i.e

Xr+1 ! Xr

44



identifies with P (fr, �r) ! Xr.Therefore we produce an infinite prolongation se-

quence, called the canonical infinite prolongation sequence of X. Finally, we define

jet1(X)( Buium’s Infinite Jet Space of X ) to be the D-scheme obtained by taking

the projective limit of this infinite prolongation sequence.

Before we recall Buium ’s Theorem 1 (see [Bu1]), let us fix an integral scheme

S over an algebraically closed field k of characteristic zero on which is given a

derivation � 2 DerOS such that {x 2 Q(S); �x = 0} = k, where Q(S) is the

quotient field of S. Let G/S be a group scheme of finite type, X ⇢ G a closed

subscheme, W/S a projective scheme and X ! W an S-morphism. Let H/S be a

horizontal, closed subgroup scheme of finite type of jet1(G)/S. Let us also recall

the definition of the Albanese variety Alb(V ), where V is any variety, given by the

following Universality Property: There is a morphism from the variety V to its

Albanese variety Alb(V ), such that any morphism from V to an abelian variety

(taking the given point to the identity) factors uniquely through Alb(V ). Then the

following is equivalent to Buium’s Theorem 2 in the Introduction:

Theorem 53 (Buium’s Theorem 1). Assume that the generic fiber of W/S is an

irreducible variety of general type, whose Albanese variety does not descend to k.

Then the image of the morphism H
T
jet1(X)!W is not Zarinski dense in W.

We will make use of the following results:

Theorem 54 (Kobayashi-Ochiai’s Theorem). (see [KO]) Let f : V ! W be a

holomorphic map between C-varieties, where W is projective ( possibly singular) of

general type, and assume that f(V ) contains some open subset of W in the complex

topology; then f is rational.

Theorem 55 (Ueno’s Theorem). (see [Ueno]) Let A be an abelian variety and

W ⇢ A subvariety. Then there exists B ⇢ A abelian subvariety such that B+W =

W (so B acts on W ) such that W/B is of general type.

Lemma 56. Let P/S be an abelian scheme, where S is a smooth C-variety, and let

� be a vector field on S without zeros such that {f 2 Q(S); �f = 0} = C. Assume
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that, for any analytic disk � embedded into S and tangent to �, the fibers of P/S

above points in � fall into, at most, countably many isomorphism classes. Then

the geometric generic fiber of P/S descends to C.

Result 57 (Hamm’s Result). (see [Ha]) Let H� ! � be a local submersion of

analytic manifolds, where � is a disk in C, and let �, �̃ be nowhere vanishing vec-

tor fields on � and H�, respectively, with �̃ lifting �. Given holomorphic maps

µ : H� ⇥� H� ! H�, H� ! H� and � ! H� satisfying the ”usual” axioms of

multiplication, inverse and unit. Assume that these maps are horizontal (with re-

spect to the vector fields �, �̃ and �̃⌦1+1⌦ �̃ on �, H� and H�⇥�H�,respectively).

Assume also that each fiber of H� ! � has finitely many components. Then there

exists a holomorphic �-isomorphism � : H� ! H0⇥� where H0 is some Lie group

such that � transports the map µ into µ0 ⇥ 1� ( where µ0 : H0 ⇥H0 ! H0 is the

multiplication on H0) and � transports �̃ into 1⌦ �.

Before we state and prove a generalization of Buium’s Theorem 2 for any abelian

varieties, let us make the following:

Remark 58. Any abelian variety A is, up to isogeny and after replacing K by a

finite extension of it, a product B ⇥C with B isotrivial and C with trace zero. So,

from now on, we can concentrate on the case when A is actually equal to B ⇥ C.

Theorem 59. Let A be any abelian variety, and W ⇢ A subvariety of general

type. Let G be any algebraic D-group, V ⇢ G a D-subvariety and u : V ! W be a

dominant morphism. Then W = (ZK + Q) ⇥W
0
for some k-subvariety ZK of A,

some Q 2 A(K) and W
0 ⇢ A subvariety, such that Alb(W

0
) descends to k (where

ZK := Z ⌦k K).

Proof. By Ueno’s Theorem, there exists an abelian subvariety T of A such that W

is, up to isogeny, T ⇥ (W/T ) and W/T is a subvariety of general type. Because

T = T + 0 there exists some k-subvariety ZK of A and some Q 2 A(K) such that

T = (ZK +Q). It is left to show that Alb((W/T )) descends to k. We give a sketch
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proof of this fact by following some notations and arguments of Buium’s proof of

his Theorem 1 in the case where k = C and S is a smooth, a�ne, irreducible C-

variety. We don’t mention anything about the general case, because it’s similar to

his general case proof (see [Bu1]). Exactly as in [Bu1], it will su�ce to prove the

theorem after S is replaced by S
0
, an étale covering of a Zariski-opet set of S. Then,

we may assume that H/S is smooth,W/S is flat with geometrically integral fibers

and � doesn’t cancel anywhere on S. Suppose that H
T
jet1(X) dominates W and

choose a component V of H
T
jet1(X) that dominates W. Because H

T
jet1(X)

is a horizontal subscheme of jet1(G), so V will be, too and therefore we get the

diagram

W
↵ � V ! H,

where V ! H is a closed immersion with V horizontal in H. Let � be an analytic

disk embedded in S, which is tangent to � and via the change base �! S we get

the diagram

W�
↵� �� V� ! H�

Hence V� is horizontal in H� for �̃. By Hamm’s Result , there exists an analytic

isomorphism � : H� ! H0 ⇥�. Thus �(V�) = H1 ⇥� since any closed analytic

subset of H0⇥�, which is horizontal for 1⌦ �, is of the form H1⇥�, for H1 closed

analytic subset of H0.

By composing the morphisms ↵ : V ! W and � : W ! W/T we get the

morphism � : V ! W/T. This is a rational dominant morphism, because ↵ is

dominant and � is surjective, hence � is a rational dominant morphism. For any

b 2 �, let (W/T )b, Vb be the fibers of the corresponding families at b. Fix a point

b0 2 �, let ub : Vb0 ! (W/T )b be the composition of morphisms Vb0
�
b�! Vb with

Vb
�
b�! (W/T )b. Since Wb, (W/T )b are of general type, by the Big Picard Theorem

we get that ub is rational; therefore we have that Alb(Vb0) ! Alb((W/T )b) is a

rational dominant map at fibers levels, hence a surjective one. Because there exist

only countable many quotients of an abelian variety and by Lemma 56, we get that
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W = (ZK + Q) ⇥W/T for some k-subvariety ZK of A and some Q 2 A(K) such

that Alb(W/T ) descends to k. Denote W/T by W
0
, hence Alb(W

0
) descends to k.

⇤

We now recall Buium’s Lemma (see [Bu2]) for isotrivial abelian varieties:

Lemma 60 (Buium’s Lemma). Let W be a projective variety of general type over

K. Assume W is a closed subvariety of AK , where A is an abelian k-variety ( here

k denotes the field of complex numbers). Let G be any algebraic D-group, V ⇢ G an

absolutely irreducible, reduced, D-scheme and u : V !W be a dominant morphism

of K-schemes.Then, after replacing K by a finite extension of it, one may find a

closed k-subvariety Z ⇢ A and a point Q 2 A(K) such that W = ZK + Q in AK .

Moreover, if we view W as a D-scheme by trivially lifting � from K to W ' ZK ,

then u : V !W is necessarily a morphism of D-schemes.

Let us state our following result:

Lemma 61. Let W be a projective variety of general type over K. Asume W

is a closed subvariety of AK , where A is an abelian k-variety, A = B ⇥ C with

B isotrivial and C with trace zero. Let G be any algebraic D-group, V ⇢ G an

absolutely irreducible, reduced D-scheme and u : V ! W be a dominant morphism

of K-schemes. Then after replacing K by a finite extension of it, one may find a

closed k-subvariety Z ⇢ Aand a point Q 2 A(K) such that W = (ZK +Q).

Proof. By using some notations and arguments of the proof of Buium’ s Theorem

2 in the Introduction, for some fixed b0 2 � we have that Vb0 ! Wb ⇢ Ab =

Bb ⇥ Cb0 ! Bb, for all b 2 �. Let ⇡b : Alb(Wb) ! Bb and ⇢b : Alb(Wb) ! Ab.

Because Alb(Wb)! ⇡b(Alb(Wb)) is a surjective morphism and Alb(Wb) is isotrivial

then ⇡b(Alb(Wb)) is isotrivial, too. Because the abelian variety Alb(Vb0) has only

contable many quotients then Alb(Wb) = Alb(Wb0). Also ⇡b(Alb(Wb)) ⇢ Bb and

Bb is with trace 0, therefore if ⇡b(Alb(Wb)) 6= 0 then we would get a contradiction,

since ⇡b(Alb(Wb)) is isotrivial. Hence ⇡b(Alb(Wb)) = 0. Also Im ⇢p ⇢ 0 ⇥ Cb0 so
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we get that Wb ⇢ 0 ⇥ Cb0 with Wb of general type and Cb0 isotrivial, so by the

above Buium’s Lemma, after replacing K by a finite extension of it, one may find a

closed k-subvariety ZbK of A and a point Qb 2 A(K) such that Wb = (ZbK +Qb).

Therefore, we conclude that after replacing K by a finite extension of it, one may

find a closed k-subvariety Z ⇢ A and a point Q 2 A(K) such that W = (ZK +Q).

⇤

We now state and prove our main result, which is stronger than the previous

lemma:

Proposition 62. Let W be a projective variety of general type over K. Asume W

is a closed subvariety of AK , where A is an abelian k-variety, A = B ⇥ C with

B isotrivial and C with trace zero. Let G be any algebraic D-group, V ⇢ G an

absolutely irreducible, reduced D-scheme and u : V ! W be a dominant morphism

of K-schemes. Then after replacing K by a finite extension of it, one may find an

isotrivial k-subvariety Z ⇢ B and an abelian k-subvariety T ⇢ C with trace zero

and points Q 2 B(K), P 2 C(K) such that W = (ZK +Q)⇥ (T + P ).

Proof. Let A = B ⇥ C where B is an isotrivial abelian variety and C is an abelian

variety with trace 0. By Ueno’s Theorem there exists an abelian subvariety S of A

such that W , is up to isogeny, W/S ⇥ S with W/S ⇢ A subvariety of general type.

We apply the previous lemma to W/S, so after replacing K by a finite extension of

it, one may find an isotrivial k-subvariety Z ⇢ B and a point Q 2 B(K) such

that W/S = (ZK + Q). Also S = S + 0, therefore one may find an abelian

k-subvariety T ⇢ C with trace zero and a point P 2 C(K) and conclude that

W = (ZK +Q)⇥ (T + P ). ⇤

Now let X be a smooth projective curve, A an abelian variety, and Y an e↵ective

divisor on A. Assume that Y contains no translate of a non zero abelian subvariety.

Let AK , YK denote the K-schemes, obtained from A, Y by tensorization with K.

So, let’s consider for each n, the n-th jet spaces (along a non-zero k-derivation on
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K) An
K , Y n

K assotiated to AK , YK . Let

5n : W (K)!Wn(K)

and for P 2W (K) write Pn = 5n(P ).

By composing A(K)
52��! A2(K) with A2(K) ! KN we get the Buium-Manin

map � : A(K)! KN (where g = dimA and by Theorem 1.1 in [Bu4]: g  N  2g).

We will next apply Theorem 2 in [Bu1], which is the following:

Theorem 63. Let A be an abelian K-variety and � ⇢ A(K) a finite-rank subgroup.

Then there exists a horizontal, irreducible, closed subgroup scheme H/K of finite

type of jet1(A/K) such that � ⇢ AH(K).

Let us mention that a closed subsheme of jet1(A/K) is called horizontal, if

its ideal is preserved by the derivation on jet1(A/K). By this theorem, there

exists H 2 (KN )1 an algebraic D-group such that for any Q 2 �(A(K)) we have

Q1 2 H(K). Let G 2 A1 be the pull back of H via A1 ! (KN )1. It is easy

to show that G is an algebraic D-group. Let Gn 2 An be the projection of G via

⇡ : A1 ! An. Let Vn = Y n
T

Gn.

Assume A = B ⇥C, where B is an isotrivial abelian variety and C is an abelian

variety with trace zero. Let us denote the Zariski closure of ⇡(V ) by W where

W ⇢ A. By our previous Proposition applied to V := lim Vn and the Zariski

closure of ⇡(V ), after replacing K by a finite extension of it, one may find an

isotrivial k-subvariety Z ⇢ B and an abelian k-subvariety T ⇢ C with trace zero

and points Q 2 B(K), P 2 C(K) such that W = (ZK +Q)⇥ (T + P ).

Remark 64. We hope to be able to use these above results in order to prove a

version of an ABC Theorem for any abelian variety over a function field.
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