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Abstract

We examine the solution to the system of partial differential equations for the trans-

port and continuity equations. The model for our system of equations closely resem-

bles the Payne-Whitham model for traffic flow. The solution can be approximated

closely through the method of finite differencing. We approach this approximation

of the solution through computer simulation in Matlab.
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Chapter 1

Introduction

Our investigation into the flow of traffic leads us to describe the behavior of velocity

and density of traffic in terms of waves. And so, these waves of traffic lead us to our

hydrodynamic model. The study of traffic flow has become a rich topic of current

research in both physics and mathematics.

Figure 1.1: Phantom Traffic Jam
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Chapter 1. Introduction

A collaborative research group at MIT currently has a website that presents

theoretical results concerning specific wave solutions of continuum traffic models.

Their research is summarized in an article where they describe how traffic models

behavior similar to the equations of fluid flow. They describe how instabilities of

traffic flow are observed to grow into traveling waves by modeling the behavior of

traffic on a closed, circular track. They also explain how at low densities, traffic may

behave nicely. Whereas, at a critical density, traffic becomes unstable, and small

disturbances amplify, growing into traveling waves (which we also shall see in our

discussion). These incidents lead into what they consider “phantom traffic jams”

and “jamitons” (as an analogy to other traveling waves, “solitons”). When many

jamitons occur this can lead to behavior in traffic flow similar to what we see in

detonation theory, such as “traveling roll waves”. Then, this in turn, can lead to

highly complex traffic behavior. The traffic model they use is similar to what we will

be using in our thesis. Of particular interest is what transpires when instabilities

occur in this system [4].

A new presence in the study of traffic flow is the “intelligent car”. These are cars

not entirely operated by people. Essentially, these cars are equipped with sensors and

intervehicular communications systems. With sensors and adaptive cruise control

(ACC), highway capacity could increase by a factor of 1.4 to 3.7. Smarter cars could

also mean less traffic congestion and the ability of cars to drive on their own (through

ACC) [1].

Equipping cars with new technology, such as sensors and vehicle-to-vehicle (v2v)

communication, may make the car aware of other cars on the road and road condi-

tions, and may also help in the avoidance of collisions. In turn, this may also lead to

saving a driver’s money and life. With the evolution of these new types of technology

and phenomena, the result may be a dramatic change of the number of cars on the

road, as well as, the density of cars on the road (in terms of a noticeable increase)

2



Chapter 1. Introduction

[9].

In another related topic of traffic flow we can see how congestion on the internet

affects network efficiency similar to the way busy roads during rush hour can affect

the efficiency of traffic. Researchers from the Chinese Academy of Sciences in Beijing

in a recent paper discuss different strategies of network efficiency, including how

developing better routing strategies and optimizing the network itself can help in

increasing an internet’s transmission efficiency. These strategies may cross-over into

helping areas of biology, sociology (like transportation or traffic flow), and statistics

[11].

In support of better technology, the Physics Research Division and Development

of Physics also suggest that one way of achieving better traffic flow is by ACC. They

propose that the behavior of traffic flow has origins in phase transitions, hysteresis,

and historical dependence. Their article relates the relevance of vehicular density,

flux, and synchronized speeds of vehicles as they relate to the behavior of traffic flow.

In addition to ACC, the article describes how downstream traffic information can

also lead to “jam dissolution”. Also, being made aware of information of upcoming

vehicles on the road can lead to an alternate driving strategy to avoid a traffic jam

that lie ahead [5].

At Shizuoka University in Japan, a group of engineers study the formation of

traffic jams with some slowdown sections. In the study they discuss that when

slowdown sections of traffic form, they may develop by a single stationary shockwave

or by some discontinuous fronts. They go on to discuss that when a saturated flow

of traffic occurs, this may be due to the maximal value in the current strongest

slowdown sections. Also, they examine how the dependence of traffic jam lengths

can be determined numerically and analytically [2].

So, as we can see, there is a considerable interest in understanding the phenomena

3



Chapter 1. Introduction

of traffic flow. If we can better understand traffic flow, then we may be able to solve

more traffic problems, such as traffic jams.

For our model we will be treating the flow of traffic as a continuum having a

density defined by the number of cars per unit length. We are considering the

simplest case, where the number of cars is conserved, that is, the track for the cars

will have no entries or exits. The model involves a numerical simulation leading to

a numerical solution of a system of two partial differential equations, one nonlinear,

the other, linear. The first is the transport equation of velocity. For the velocity of

cars, we are using the general Hopf equation where the right-hand side is a piece-wise

function dependent on density and velocity. The second equation is the continuity

equation of the density of cars on a closed track. The solution of the system is used

to achieve an efficient movement of traffic and minimal traffic congestion. We will

be using Matlab for our simulation and solution.

4



Chapter 2

System of Equations

In this chapter we will be introducing both the transport and continuity equations,

and the system of these equations. Then we will explain how we will be modeling

the right-hand side of our transport equation. We will be considering the simplest

case in the flow of traffic of cars, in that our system of equations is based on the

velocity and density of cars traveling in the same direction on a closed, circular track.

We consider the flow of traffic as a hydrodynamic model, in that cars traveling on

a road behave similarly to the properties of the flow of a fluid. Our model will be

similar to the Payne-Whitham model of traffic flow [10]. Our system will consist of

a nonlinear inhomogeneous transport equation and a linear homogeneous continuity

equation. For this chapter we will be introducing both equations, how we solve

the system of equations and how we model the general function of the transport

equation that concerns the behavior of the driver. Because cars are all traveling in

the same direction on a closed, circular track, the number of cars is conserved. Please

note, that although we are considering a simple version of a roadway, we could make

adjustments to our model and system of equations to account for the entries and

exits to our roadway. We are truly interested in the general results of situations on

the roadway that occur due to the various interplays between velocity and density

5



Chapter 2. System of Equations

on a closed track, which we will model.

2.1 Introducing the Transport Equation

For velocity, we consider the Hopf (nonlinear transport or advection) equation

ut + uux = f (2.1)

where in our case, the right-hand side is a function attempting to model the behavior

of the driver. This function will be dependent on both density and velocity. The

transport equation is inhomogeneous. The transport equation that we will be using

is as follows:

vt + vvx = f(ρ, v) (2.2)

where v is the velocity of cars and ρ is the density of cars, i.e., the number of cars

per unit length.

2.2 Introducing the Continuity Equation

The next equation of the system we will be solving is the continuity equation. This is

a linear, homogeneous, partial differential equation. Below is the continuity equation

that will be used in our system of equations:

ρt + (ρv)x = 0. (2.3)

6



Chapter 2. System of Equations

The right-hand side of the continuity equation is zero due to modeling a closed

track, without any entrances or exits. By adding a nonzero right-hand side, we can

model ramps and exits. But for now, we shall consider the simplest case.

2.3 Solving the System of Equations

After building the arrays for the transport and continuity equations, we will use

them in our schemes for solving the system of equations numerically. As a result, we

have a system of two partial differential equations which we will solve. This model

is what we will use for the system of traffic flow on a circular track. Using a circular

track, implies use of periodic boundary conditions. To find an analytical solution of

the system is a complex problem. So, through our investigation of this system, we

will solve the system numerically, through numerical simulation.







vt + vvx = f(ρ, v)

ρt + (ρv)x = 0

2.4 Modeling the Right-Hand Side of the Trans-

port Equation

In this section we explain the right-hand side of the transport equation, f , the

parameters to be used in our equations, and desired velocity. Some of the parameters

will be used to model the desired velocity, v0, and the right-hand side of the transport

equation, f , as well as its time derivative, ft . Let us begin by our explanation of

parameters to be used in our system of equations.

We want the right-hand side of the transport equation, f , to model the behavior of

7



Chapter 2. System of Equations

the driver. We build this piece-wise function by the desired velocity v0, the maximum

velocity at a specific time, vmax, and the characteristic time, Tc. The desired velocity,

v0, will use the density of cars, ρ, and the parameters of the current speed limit, vmax,

average length of a car, L, and safe-time separation between cars, tsep. The values of

these parameters and the building of the desired velocity function will be discussed

shortly.

The function will be built as follows:

v0(x, t) =
ρ−1(x, t)− L

tsep
, (2.4)

f(ρ, v) =







v0−v
Tc

if v0 < vmax

vmax−v
Tc

if v0 ≥ vmax.
(2.5)

After this, we have ft, the partial derivative of f with respect to time, t, to

calculate. Using the power-rule inside the function v0, we have:

ft =







− 1
Tctsep

(
ρt
ρ2

+ tsepvt

)

if v0 < vmax

− 1
Tc
vt if v0 ≥ vmax

(2.6)

2.4.1 Parameters

For our first constant, we consider the length of our circular track to be 10 miles.

We set the number of grid steps at N = 10, 000. We are using the average length

of a car, L, as being equal to five yards (or fifteen feet). For our numerical scheme,

the grid step size, h, will be the length of our track divided by the number of grids

steps, yielding h = 0.001.

8



Chapter 2. System of Equations

Let Tc be the characteristic time, v(t, x) be velocity of a car on the track as a

function of time t and x, and vi be the initial velocity (at time t = 0 seconds). Our

model corresponds to exponential change of v, so we can say that

v(t) = vie
t
Tc . (2.7)

Let us suppose that we want to change our velocity from 60mph to 75mph. For a

typical car it takes approximately 3 seconds to do this. And so, we have the following

equation for Tc:

75 = 60e
3

Tc ⇒ (2.8)

ln
5

4
=

3

Tc

⇒ (2.9)

Tc =
3

ln 1.25
(2.10)

≈ 13.4443 sec (2.11)

= 0.003735 hours. (2.12)

Next, let tsep be the safe-time separation between cars. Then, by the driver’s

manual by DMV, New Mexico, we have the safe-time separation of tsep = 2 sec

= 0.0005 hours [6].

2.4.2 Desired Velocity

What follows is our explanation of desired (or “safe”) velocity v0. We are treating

the right-hand side of the transport equation as a general function dependent on

density and velocity. This is done by our interpretation of a driver’s desired velocity,

v0. We will see how the right-hand side of the transport equation is derived in the

next chapter. For now we will examine how our desired velocity, v0 is derived.

Cars are trying to reach their desired velocity. This desired velocity cannot be

higher than the maximum velocity of the road (speed limit). And so, if a driver is

9



Chapter 2. System of Equations

traveling faster than the speed limit, then the desired velocity is to return to the

speed limit. On the other hand, if the driver is traveling slower than the speed limit,

then the desired velocity is to increase toward the speed limit. In this case, density

needs to be taken into consideration. So, velocity changes based upon the current

density, the speed limit, the current velocity, and the desired velocity. We also see

how this change depends upon how our desired velocity v0 compares to the speed

limit vmax. On the road, the speed limit becomes a crucial aspect of how we view

the driver’s desired velocity v0. If v < min{v0, vmax}, the driver desires to speed-up

in order to try and attain the desired speed. On the other hand, if the driver is

speeding, then the driver will want to slow-down.

Also related to the driver’s desired velocity v0, are the conditions for each piece

of the function for v0. If ρ 6= 0 (where ρ is density of the cars), then the driver is

not alone on the road. On the other hand, the other situation is where the driver is

alone and we consider the density, ρ, equal to zero. For the value of the function for

desired velocity, v0, when density is zero, it is the maximum velocity. When density

is other than zero, our desired velocity relates to other cars on the road. For this

desired velocity, it is the distance between cars divided by the safe-time separation

(the safe-time separation is taken to be a constant of 2 seconds as stated above).

The distance between cars is taken to be the difference between the reciprocal of the

current value of density less the average length of a car, L, equal to five yards.

The interpretation of the distance between cars is to begin with the reciprocal

of the density of our cars on the track. The reciprocal of density is taken to be the

length of an average car plus the distance between that car’s rear bumper and the

front bumper of another car behind it. So, to subtract the average length of a car

from the reciprocal of density is the “distance” between cars. Then, dividing this

distance by the safe-time separation, we get our desired velocity when other cars are

on the road.

10



Chapter 2. System of Equations

Figure 2.1: Distance between cars

ρ−1 − L L

ρ−1

✲✛

✲✛ ✲✛
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Chapter 3

Numerical Scheme

In this chapter we will be deriving our numerical schemes, evaluating the stability

conditions for each scheme, and also investigating the error approximations of each

scheme . For the sections on error approximation, we will need to verify that our

simulations are second order in both time and space. We will show this through

charts and tables that show our errors vary quadratically in both time and space

with the change of time and coordinate steps.

One condition for solving both equations is a choice for the time-step, which

we will call τ . For the maximum velocity max |v|, at each grid spacing h, we use

the Courant-Friedrich-Lewy condition for our choice of τ , i.e. τ ≤ a
h

max |v| , for
0 ≤ a < 1. For our simulations we used a = 0.1 (see sections 3.3 and 3.6 on error

approximation)[8]. When describing how our errors vary in this chapter, we will refer

to this specific number a as our “CFL factor”.

12



Chapter 3. Numerical Scheme

3.1 Numerical Scheme for the Transport Equation

As will be seen in this chapter for our numerical schemes, in order to get second

order in both time and space, we will use the Taylor expansion for both equations

up through the third term.

This leads us to the numerical scheme for the transport equation. Since the

transport equation is inhomogeneous, we need to handle our non-zero right-hand

side of the equation, f , differently from the “zero” right-hand side of the equation

for the continuity equation. Because we are considering the transport of the velocity

field by itself, we first want to derive the scheme for the transport equation.

We begin with the basic transport equation

vt + vvx = f (3.1)

and solve for the partial derivative of v with respect to t, namely,

vt = f − vvx (3.2)

= f − 1

2
· ∂

∂x
(v2). (3.3)

We use (3.3) to substitute later in our scheme. Then, using

∂f

∂x

∣
∣
∣
∣
x=xj

=
fj+1 − fj−1

2h
︸ ︷︷ ︸

2nd order scheme

(3.4)

13



Chapter 3. Numerical Scheme

and the Taylor expansion of v(t+ τ), we have

v(t+ τ) ≈ v(t) + vtτ +
1

2
· ∂

∂t
(vt)τ

2 (3.5)

= v(t) + vtτ +
1

2
· ∂

∂t

[

f − 1

2

∂

∂x
(v2)

]

τ 2 (3.6)

= v(t) + vtτ +
τ 2

2

[

ft −
1

2

∂

∂t

∂

∂x
(v2)

]

(3.7)

= v(t) + vtτ +
τ 2

2

[

ft −
1

2

∂

∂x

∂

∂t
(v2)

]

(3.8)

= v(t) + vtτ +
τ 2

2

[

ft −
1

2

∂

∂x
(2vvt)

]

(3.9)

= v(t) + vtτ +
τ 2

2

[

ft −
∂

∂x
(vvt)

]

. (3.10)

From what was written above, this directly translates into our code for finding

the next value of time for velocity, thereby solving the transport equation:

vn+1
1 = vn1 + (vt)

n
1τ +

τ 2

2

{

(ft)
n
1 −

1

2h
[(vvt)

n
2 − (vvt)

n
N ]

}

, (3.11)

vn+1
j = vnj +(vt)

n
j τ+

τ 2

2

{

(ft)
n
j −

1

2h

[
(vvt)

n
j+1 − (vvt)

n
j−1

]
}

, for j = 2, ..., N−1 (3.12)

vn+1
N = vnN + (vt)

n
Nτ +

τ 2

2

{

(ft)
n
N − 1

2h

[
(vvt)

n
1 − (vvt)

n
N−1

]
}

. (3.13)

Now, this leads us to building certain arrays to be used in our numerical scheme

in order to find the next value of time for the transport equation. This value will

estimate our derivative for velocity v with respect to time.

The next four arrays that need to be built will be for the transport equation.

First, we have (vt)
n
j which uses fn

j , which can be seen being built below:

(vt)
n
1 = fn

1 − 1

4h
[(vn2 )

2 − (vnN)
2], (3.14)

14



Chapter 3. Numerical Scheme

(vt)
n
j = fn

j − 1

4h
[(vnj+1)

2 − (vnj−1)
2], for j = 2, ..., N − 1 (3.15)

(vt)
n
N = fn

N − 1

4h
[(vn1 )

2 − (vnN−1)
2]. (3.16)

Next, we introduce (vvt)
n
j = (vnj )(vt)

n
j which we get in our code again by term-wise

products of arrays:

vv t = v · v t. (3.17)

Translating our right-hand side of the transport equation numerically, we have:

fn
j =







1
Tc
[(v0)

n
j − vnj ] if (v0)

n
j < (vmax)j

1
Tc
[(vmax)

n
j − vnj ] if (v0)

n
j ≥ (vmax)j

(3.18)

for j = 1, ..., N .

The last array to build is ft. This will also be used to find the next value of time

for velocity. And so, for our code we have:

(ft)
n
j =







− 1
Tctsep

[
(ρt)nj
(ρn

j
)2
+ tsep(vt)

n
j

]

if (v0)
n
j < (vmax)j

− 1
Tc
(vt)

n
j if (v0)

n
j ≥ (vmax)j

(3.19)

for j = 1, ..., N .

After building these arrays, we will use them in our scheme for solving the trans-

port equation.

This leads us to how we find the next value of time for velocity. In the next

section, we investigate the stability conditions for the transport equation.
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Chapter 3. Numerical Scheme

3.2 Stability Conditions for the Transport Equa-

tion

Let us consider a nonlinear transport equation:

ut + uux = 0 t > 0,−∞ < x < ∞ (3.20)

u(x, 0) = φ(x) (3.21)

Figure 3.1: Schematic representation of our numerical scheme

r r r r r r r

r r r r r r r

n

n+ 1

j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3

✲ ✲ ✲ ✛ ✛ ✛
✻

h

τ

︸ ︷︷ ︸







h
︸ ︷︷ ︸

In order to analyze stability, we cannot use un
j = ξneikjh because it is not a

solution to a nonlinear equation. Solving for un+1
j we have:

un+1
j = un

j + τ

[

fn
j − 1

2

(un
j+1)

2 − (un
j−1)

2

2h

]

(3.22)

+
τ 2

2

[

gnj −
un
j+1f

n
j+1 − un

j−1f
n
j−1

2h
+

1

3

(un
j+1)

3 − 2(un
j )

3 + (un
j−1)

3

h2

]

Let us notice that the second derivative has to be finite. Now, if we let f = g = 0

and un
j = un

j + δnj for the exact solution, un
j and the error δnj then, by substitution

16



Chapter 3. Numerical Scheme

(leaving only linear terms in δ), we have:

δn+1
j = δnj − τ

4h

(
2un

j+1δj+1 − un
j−1δ

n
j−1

)
(3.23)

+
τ 2

2 · 3h2

[
3(un

j+1)
2δnj+1 − 2 · 3(un

j )
2δnj

+ 3(un
j )

2δnj + 3(un
j−1)

2δnj + 3(un
j−1)

2δnj−1

]

= δnj − τ 2

2h
(un

j+1δ
n
j+1 − un

j−1δ
n
j−1) (3.24)

+
τ 2

2h2
[(un

j+1)
2δnj+1 − 2(un

j )
2δnj + (un

j−1)
2δnj−1]

Then, if we let δnj = Cλneikjh and solve for λ, we have:

λ = 1− τ

2h
(un

j+1e
ikh − un

j−1e
−ikh) (3.25)

+
τ 2

2h2
[(un

j+1)
2eikh − 2(un

j )
2 + (un

j−1)
2e−ikh]

Let us try to estimate λ. If we use the von Neumann stability criterion [3], then,

|λ| ≤ 1 + |c1|τ , for some finite constant c1. Now, let us use the method of “frozen

coefficients [7],” where we let ρ = τ
h
un
j . Then, after some bulky calculations (and

letting α = kh), we get:

1− 4ρ2 sin4 α

2
+ 4ρ4 sin4 α

2
≤ 1. (3.26)

After solving for ρ, we get ρ2 ≤ 1.

Then, this implies:
∣
∣
∣
τ

h
un
j

∣
∣
∣ ≤ 1 (3.27)

and the von Neumann stability criterion is satisfied.

There is an additional condition for stability, that

∣
∣
∣
∣

∂u

∂x

∣
∣
∣
∣
≤ c2, for some constant

c2 < ∞. This in turn, implies a finite

∣
∣
∣
∣

∂u

∂x

∣
∣
∣
∣
.

Also, notice that the limitation for τ = tn+1 − tn ≤ h

maxj,n ||un
j ||

.

17



Chapter 3. Numerical Scheme

3.3 Error Approximation for the

Transport Equation

To show that our errors vary quadratically with respect to time, we set our number of

time-steps to 10,000, use a CFL-factor of 0.1 and set the number of grid steps to 1000

for our “general” case. The final time of simulation was 1.0 hours. Then we compare

results for having a specific number time steps to the results for our reference case

where there were 10,000 time steps. The parameters were a track length of 2π miles,

3 cycles, for a total period of 6π miles. In order to find the accuracy of our numerical

scheme for the transport equation

vt + vvx = f(ρ, v), (3.28)

we used the initial condition of

v(x, 0) = sin(A0x) (3.29)

and the right-hand side of

f(x, t) = − sin t · sin(A0x) + cos2 t · sin(A0x) · cos(A0x) (3.30)

(fabricated solution), where the parameter A0 = 6π · 10−3, to yield the computed

solution. The initial condition and right-hand side were chosen so that the exact

solution could be found by hand. As seen in the charts and tables, the number of

time steps will take on the values of N . The different number of time steps steps

comparing to the reference case will have the values of: 500, 1000, 1500, 2000, 2500,

3000, 3500, and 4000. For the varying number of time steps, we used a CFL-factor

of 0.1 and set the number of grid steps to 1000. As can be seen from the chart

and table, our errors with respect to time for the numerical scheme of the transport

equation, vary quadratically. We also include a log vs log graph to see linearly that

our errors truly are varying quadratically with respect to time.

18
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Figure 3.2: Transport: Max Error vs. τ
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Then, to show our errors vary quadratically with respect to the space step (in

our case, space is the one-dimensional x-space step), we use the exact (fabricated)

solution to a specific number of grid steps. We compare the exact solution

u(x, t) = cos t · sin(A0x) (3.31)

to the computed solution. We used a CFL factor of 0.1. For the number of grid steps

that vary, they will take on the same values that were used for the varying number

of time steps in the previous section, namely: 500, 1000, 1500, 2000, 2500, 3000,

3500, and 4000. As can be seen from the chart and table, our errors with respect to

space for the numerical scheme of the transport equation, vary quadratically. Again,

we include a log vs log graph to view linearly that our errors truly are varying

quadratically, in this case, with respect to space.
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Figure 3.3: Transport: log(Max Error) vs. log(τ)
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3.4 Numerical Scheme for the Continuity Equa-

tion

In order to solve the continuity equation numerically, we begin by building the array

for (ρt)
n
j . Instead of building this array from inception, we first build the array

ρvx = ρnj · (vx)nj and use the fact that from the continuity equation, ρt = −ρvx to

derive in our code that (ρt)
n
j = −ρnj ·(vx)nj . The next array is also built by multiplying

arrays “term-wise”, namely, (ρtv)
n
j = (ρt)

n
j ·vnj . Lastly, we again build the next array

by term-wise multiplication of arrays, namely, (ρvt)
n
j = ρnj · (vt)nj . This uses vt which

can be seen being built above in the arrays for the transport equation.

Using the arrays we just built, these will be used in the scheme below for the

continuity equation (and again, uses the schematic representation seen in Figure

3.1). What follows is our method for solving the continuity equation. Starting from
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Table 3.1: Transport Equation Errors, τ vs. N
τ N Max Error with respect to “exact” solution

0.0020018228 500 0.00000413162802
0.0010009114 1000 0.00000102659930
0.0006672743 1500 0.00000045071714
0.0005004557 2000 0.00000024904742
0.0004003646 2500 0.00000015567609
0.0003336371 3000 0.00000010494673
0.0002859747 3500 0.00000007435476
0.0002502279 4000 0.00000005449762

Table 3.2: Transport Equation Errors, h vs. N
h N Max Error with respect to exact solution

0.0376991118 500 0.00047137127720
0.0188495559 1000 0.00011782132857
0.0125663706 1500 0.00005239861284
0.009424778 2000 0.00002948261787
0.0075398224 2500 0.00001886185223
0.0062831853 3000 0.00001309512870
0.0053855874 3500 0.00000962290281
0.004712389 4000 0.00000736863092

ρt +
∂
∂x
(ρv) = 0 and solving for ρt, ρt = − ∂

∂x
(ρv). Then, using

∂f

∂x

∣
∣
∣
∣
x=xj

=
fj+1 − fj−1

2h
︸ ︷︷ ︸

2nd order scheme

(3.32)

and the Taylor expansion of ρ(t + τ), and replacement of our partial derivative, ρt,

we have

ρ(t+ τ) ≈ ρ(t) +
∂ρ

∂t
τ +

1

2
· ∂

2ρ

∂t2
τ 2 (3.33)

= ρ(t)− ∂

∂x
(ρv)τ +

1

2
· ∂

∂t

[

− ∂

∂x
(ρv)

]

τ 2 (3.34)

= ρ(t)− ∂

∂x
(ρv)τ +

1

2
· ∂

∂x

[

− ∂

∂t
(ρv)

]

τ 2 (3.35)

= ρ(t)− ∂

∂x
(ρv)τ − τ 2

2
· ∂

∂x

[

−v
∂

∂x
(ρv) + vtρ

]

(3.36)
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Figure 3.4: Transport: Max Error vs. h
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From what is written above, we now will see what translates to our code for

finding the next value for density with respect to time. And so, the next value of

density is as follows:

ρn+1
1 = ρn1 −

τ

2h
(ρn2v

n
2 − ρnNv

n
N) (3.37)

− τ 2

2

∂

∂x

[

vn1
ρn2v

n
2 − ρnNv

n
N

2h
+ (vt)

n
1ρ

n
1

]

= ρn1 −
τ

2h
(ρn2v

n
2 − ρnNv

n
N) (3.38)

+
τ 2

4h

[

vn2
ρn3v

n
3 − ρn1v

n
1

2h
− vnN

ρn1v
n
1 − ρnN−1v

n
N−1

2h

−(vt)
n
2ρ

n
2 + (vt)

n
Nρ

n
N ], (3.39)

22



Chapter 3. Numerical Scheme

Figure 3.5: Transport: log(Max Error) vs. log(h)
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ρn+1
2 = ρn2 −

τ

2h
(ρn3v

n
3 − ρn1v

n
1 ) (3.40)

− τ 2

2

∂

∂x

[

vn2
ρn3v

n
3 − ρn1v

n
1

2h
+ (vt)

n
2ρ

n
2

]

= ρn2 −
τ

2h
(ρn3v

n
3 − ρn1v

n
1 ) (3.41)

+
τ 2

4h

[

vn3
ρn4v

n
4 − ρn2v

n
2

2h
− vn1

ρn2v
n
2 − ρnNv

n
N

2h

−(vt)
n
3ρ

n
3 + (vt)

n
1ρ

n
1 ], (3.42)
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ρn+1
j = ρnj −

τ

2h
(ρnj+1v

n
j+1 − ρnj−1v

n
j−1) (3.43)

− τ 2

2

∂

∂x

[

vnj
ρnj+1v

n
j+1 − ρnj−1v

n
j−1

2h
+ (vt)

n
j ρ

n
j

]

= ρnj −
τ

2h
(ρnj+1v

n
j+1 − ρnj−1v

n
j−1) (3.44)

+
τ 2

4h

[

vnj+1

ρnj+2v
n
j+2 − ρnj v

n
j

2h
− vnj−1

ρnj v
n
j − ρnj−2v

n
j−2

2h

−(vt)
n
j+1ρ

n
j+1 + (vt)

n
j−1ρ

n
j−1

]
, for j = 3, ..., N − 2 (3.45)

ρn+1
N−1 = ρnN−1 −

τ

2h
(ρnNv

n
N − ρnN−2v

n
N−2) (3.46)

− τ 2

2

∂

∂x

[

vnN−1

ρnNv
n
N − ρnN−2v

n
N−2

2h
+ (vt)

n
N−1ρ

n
N−1

]

= ρnN−1 −
τ

2h
(ρnNv

n
N − ρnN−2v

n
N−2) (3.47)

+
τ 2

4h

[

vnN
ρn1v

n
1 − ρnN−1v

n
N−1

2h
− vnN−2

ρnN−1v
n
N−1 − ρnN−3v

n
N−3

2h

−(vt)
n
Nρ

n
N + (vt)

n
N−2ρ

n
N−2

]
, (3.48)

ρn+1
N = ρnN − τ

2h
(ρn1v

n
1 − ρnN−1v

n
N−1) (3.49)

− τ 2

2

∂

∂x

[

vnN
ρn1v

n
1 − ρnN−1v

n
N−1

2h
+ (vt)

n
Nρ

n
N

]

= ρnN − τ

2h
(ρn1v

n
1 − ρnN−1v

n
N−1) (3.50)

+
τ 2

4h

[

vn1
ρn2v

n
2 − ρnNv

n
N

2h
− vnN−1

ρnNv
n
N − ρnN−2v

n
N−2

2h

−(vt)
n
1ρ

n
1 + (vt)

n
N−1ρ

n
N−1

]
. (3.51)
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3.5 Stability Conditions for the Continuity

Equation

Then, if we continue with the stability analysis, by letting ρnj = c3ξ
neikh and vnj+1 =

vnj + ∂v
∂x
h, after substitution and some calculations we will get:

ξ = 1− τ

2h

[

ivnj sin(kh) +
∂v

∂x
h cos(kh)

]

(3.52)

+
τ 2

2h

[

−
(vnj )

2

h
sin2(kh) + i

3

2

∂v

∂x
vnj sin(2kh) +

(
∂v

∂x

)2

h cos(2kh)

−i(vt)
n
j sin(kh)− vtxh cos(kh)

]
.

Then, by using “frozen coefficients”, if we let ǫ =
τvnj
h

sin(kh), b = ∂v
∂x

cos(kh), and

a =
(vt)nj
vn
j

, then we will get

ξ = 1− 1

2
bτ − 1

2
ǫ2 − i

ǫ

2
(1− 2bτ + aτ). (3.53)

Using this to continue to verify stability conditions we have:

|ξ|2 =
(

1− 1

2
bτ − 1

2
ǫ2
)2

+
ǫ2

2
(1− 3bτ + aτ)2 (3.54)

=

(

1− 1

2
bτ

)2

−
(

1− 1

2
bτ

)

ǫ2 +
1

4
ǫ4 (3.55)

+
ǫ2

2

[
(1− 3bτ)2 + 2aτ(1− 3bτ) + a2τ 2

]
.

By omitting terms with τ 2 and higher powers we have:

|ξ|2 = 1− bτ − ǫ2 +
1

2
bτǫ2 +

1

4
ǫ4 +

ǫ2

2
− 3ǫ2bτ + aτǫ2 (3.56)

= 1− 1

2
ǫ2 +

1

4
ǫ4 +

(
1

2
bǫ2 − 3ǫ2b+ aǫ2

)

τ (3.57)

= 1− 1

2
ǫ2 +

1

4
ǫ4 +

(

−5

2
b+ a

)

ǫ2τ. (3.58)
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If we let
(
−5

2
b+ a

)
= c4 for |c4| < ∞, then for 1− 1

2
ǫ2 + 1

4
ǫ4 ≤ 1 we have:

|ξ|2 = 1− 1

2
ǫ2 +

1

4
ǫ4 + c4ǫ

2τ (3.59)

≤ 1 + c4ǫ
2τ (3.60)

and the von Neumann stability criterion has been satisfied. With this, if we continue

solving for ǫ, we have :

1

2
ǫ2
(

ǫ2 − 1

2

)

≤ 0. (3.61)

This implies:

ǫ2 ≤ 1

2
and |ǫ| ≤ 1√

2
. (3.62)

So, in turn, this implies that we will have one condition for stability for

τ ≤ 1√
2

h

maxj,n vnj
(3.63)

which implies

τ < 0.7
h

maxj,n vnj
. (3.64)

Overall, we will have stability for τ being less than the CFL factor of 0.7 (for our

simulations we will be using the CFL factor of 0.1 to ensure stability).

Another condition is that b and a both have to be finite in order for c4 to be

finite. Our final condition for stability is that
∣
∣ ∂v
∂x

∣
∣ and

∣
∣vt
v

∣
∣ both have to be finite.

This requires that vt is finite and v 6= 0. Together, these three conditions verify that

we have satisfied stability conditions for our numerical scheme for the continuity

equation.
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3.6 Error Approximation for the Continuity

Equation

To show that our errors vary quadratically with respect to time, we used exactly the

same method for the continuity equation as we did for the transport equation, i.e.,

we used the result of the computed solution with the number of time steps set at

10,000 as a reference case over the time interval [0, 1]. The varying number of time

steps used to compare with the reference case are the same as listed above for the

transport equation. The same parameters were used for the error approximation of

the continuity equation as were used for the transport equation. In order to find the

accuracy of our numerical scheme for the continuity equation

ρt + (ρv)x = 0, (3.65)

we used the initial conditions of

v(x, 0) = 1 (3.66)

and

ρ(x, 0) = sin(A0x) (3.67)

(with a right-hand side of 0), to yield the computed solution. As can be seen from

the chart and table, our errors with respect to time for the numerical scheme of the

transport equation, vary quadratically. We also include a log vs log graph for errors

in the continuity equation with respect to time.

Next, to show our errors vary quadratically with respect to space (again, our

space is the one-dimensional x-space), we use the exact solution to a specific number

of grid steps. The exact (fabricated) solution was

ρ(x, t) = sin[A0x− v(x, 0) · t] (3.68)
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Figure 3.6: Continuity: Max Error vs. τ
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The initial conditions were as before, but the number of spacial grid steps was chang-

ing. These number of grid steps vary, and again, take on the same values that were

used for showing the varying number of time steps. As can be seen from the chart

and table, our errors with respect to space for the numerical scheme of the continuity

equation, vary quadratically. Lastly, again, we include a log vs log graph for errors

in the continuity equation with respect to space.

We have just shown that our errors vary quadratically with respect to time and

space for both the transport and continuity equations. This implies that the numer-

ical scheme for our system of equations is second order for both time and space.

Let us suppose that the length of the track is 10 miles. Then, if the number of

grid points is 10,000, each car covers three grid-points, since we consider the average

length of our car to be 5 yards (15 feet). Also, since we are not interested in individual

cars, rather the behavior of the cars in general, we consider the results of velocity in

terms of a “point-average”. This means that instead of each individual point on the
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Figure 3.7: Continuity: log(Max Error) vs. log(τ)

−8.5 −8 −7.5 −7 −6.5 −6
−19

−18

−17

−16

−15

−14

−13

−12

−11

−10
Max error vs tau for continuity equation

tau

M
ax

 e
rr

or

 

 
y = 2x + 1.5
log(Max error) vs log(tau)

grid representing the velocity of only that point, each point of velocity is an average

of two points ahead, two points behind, and the three points that each car covers (for

an average of seven points). This is a way to more accurately view the velocity and

behavior of velocity in our model. Also, as we saw in the previous section, it allows

us to satisfy stability conditions, namely, finiteness of the derivative of velocity.
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Table 3.3: Continuity Equation Errors, τ vs. N
τ N Max Error with respect to “exact” solution

0.0020018228 500 0.00000066670140
0.0010009114 1000 0.00000016542207
0.0006672743 1500 0.00000007259261
0.0005004557 2000 0.00000004010230
0.0004003646 2500 0.00000002506393
0.0003336371 3000 0.00000001689495
0.0002859747 3500 0.00000001196930
0.0002502279 4000 0.00000000877237

Table 3.4: Continuity Equation Errors, h vs. N
h N Max Error with respect to exact solution

0.0376991118 500 0.00023514157845
0.0188495559 1000 0.00005867783290
0.0125663706 1500 0.00002609550171
0.009424778 2000 0.00001468347395
0.0075398224 2500 0.00000939212838
0.0062831853 3000 0.00000651985258
0.0053855874 3500 0.00000479139453
0.004712389 4000 0.00000366915198

Figure 3.8: Continuity: Max Error vs. h
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Figure 3.9: Continuity: log(Max Error) vs. log(h)
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Chapter 4

Modeling

This section is to describe the scenarios of road conditions. Certain road conditions

directly relate to how the speed limit, vmax, is changed. The speed limit had two basic

settings: 75mph and 25mph. For the five different scenarios that were simulated,

velocity started at 75mph, went down to 25mph, and then returned to 75mph. Within

the scenarios, we used a “smoothing” function that helped simulate an abrupt or

smooth change in speed limit. The smoothing function used was the inverse tangent

function.

Another aspect of our scenarios was the density of cars. For four of the scenarios,

we simulated a high density of cars. Then, we considered density either to be homo-

geneous, that is, “spread-out” or “flat”; or inhomogeneous, as in a “tightly-packed”

concentration of cars in an otherwise fairly empty road.

In order to achieve the different types of densities considered above for our sce-

narios we used two types of density variables. In order for cars to drive at the speed

of 75mph on our 10 mile track, we found that our maximum capacity was approx-

imately 22.3 cars per mile. So setting a lower density limit for the cars yielded a

variable of density for the scenarios. The other aspect of density we considered was
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that of a density “bump”. A zero value for the “bump” yielded a homogeneous

density, whereas a value nearing the maximum capacity for the “bump” yielded an

inhomogeneous density.

4.1 Traffic Jams and Work Zones

We wanted to consider what will happen when there are situations on the road, such

as: traffic jams and work zones. For a traffic jam, velocity will unexpectedly or

abruptly change. Then, for a work zone, such as those on a highway, speed starts

out high, say, 75mph, gradually decreases to a safe speed through the work zone, say,

25mph, then gradually returns to a high rate of speed. When these types of situations

are considered, with the different types of densities, they result in the different types

of scenarios that can be seen by our simulations. Our system of equations was






vt + vvx = f(ρ, v)

ρt + (ρv)x = 0,

with the right-hand side of the transport equation

f(ρ, v) =







v0−v
Tc

if v0 < vmax

vmax−v
Tc

if v0 ≥ vmax,
(4.1)

where

v0(x, t) =
ρ−1(x, t)− L

tsep
. (4.2)

The parameters of our simulations can be found in Table (4.1).

4.2 Scenarios

As mentioned, there were five different scenarios we considered through our simula-

tions. Through varying velocity situations and types of densities, we were able to

33



Chapter 4. Modeling

Table 4.1: Table of Parameters for Simulations
Parameter Value

Track LT = 10 miles
Grid Steps N = 10,000
CFL Factor a = 0.1

Spatial Grid Increment h = 0.001 miles
Car Length L = 2.841× 10−3 miles

Time Characteristic Tc = 3.735× 10−3 hours
Safe Time Separation tsep = 5.556× 10−4 hours

develop each type of scenario.

The first scenario had a high, yet homogeneous density of cars. The initial con-

ditions of this scenario were:

vmax(x) = 25 + 50

{

1− 1

π
[arctan(50x− 200)− arctan(50x− 250)]

}

, (4.3)

v(x, 0) = vmax(x), (4.4)

ρ(x, 0) = 22. (4.5)

Also, the cars experienced an abrupt change in velocity. This scenario was to describe

cars driving on a busy highway, during a time such as the morning when people are

driving to work, then suddenly encountering a velocity change. As a result, the cars

could be encountering a situation similar to that of a traffic jam.

The second scenario had the same type of density, yet a smoother transition in

velocity. The initial conditions of this scenario were:

vmax(x) = 23 + 52

{

1− 1

π
[arctan(10x− 37)− arctan(10x− 53)]

}

, (4.6)

v(x, 0) = vmax(x), (4.7)

ρ(x, 0) = 22. (4.8)

This situation would be similar to cars driving on a highway in the morning, yet

having to pass through a work zone or an accident that has been put under control.
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Our third scenario was our first type of density that would be considered inho-

mogeneous. The initial conditions of this scenario were:

vmax(x) = 25 + 50

{

1− 1

π
[arctan(50x− 200)− arctan(50x− 250)]

}

, (4.9)

v(x, 0) = vmax(x), (4.10)

ρ(x, 0) = 0.2 + 22 · exp[−2(x− 2.5)2]. (4.11)

What is meant by inhomogeneous is that there is a high concentration or density of

cars, like a “pack” of cars traveling in an otherwise lightly traveled highway. For this

scenario an abrupt change in velocity occurred. This situation was to describe what

happens when a special event (like a movie, concert, or sporting event), completes

in the evening, then cars are leaving and suddenly get caught-up in a situation, like

that of an accident or hazardous road condition.

The fourth scenario was where the density was similar to that of the third scenario,

in that it was considered inhomogeneous or “pack-like”. The initial conditions of this

scenario were:

vmax(x) = 23 + 52

{

1− 1

π
[arctan(10x− 37)− arctan(10x− 53)]

}

, (4.12)

v(x, 0) = vmax(x), (4.13)

ρ(x, 0) = 0.2 + 22 · exp[−2(x− 2.5)2]. (4.14)

On the other hand, there was a smooth transition in velocity. This would be like

a situation of a special event completing, cars begin traveling, then encounter a

construction site or work zone. This would have the cars gradually decreasing their

velocity until they passed the zone, then gradually returning to their higher speed

velocity.

The final scenario was a situation in which the cars had a low, homogeneous
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density. The initial conditions of this scenario were:

vmax(x) = 25 + 50

{

1− 1

π
[arctan(50x− 200)− arctan(50x− 250)]

}

, (4.15)

v(x, 0) = vmax(x), (4.16)

ρ(x, 0) = 5. (4.17)

Also, there was the situation of abrupt speed limit change. This was to describe

the situation of a rural highway or late-night highway driving. Through the various

scenarios of our simulations, the interplay of velocity and density progressed into a

variety of results, which will be seen next.

4.3 Results of Simulation

In the previous section, the five different scenarios were suggested. What follows

are the results that transpired after running our simulations in Matlab. For each

scenario, we took a snapshot of what took place during the initial conditions, at

the time of 0 hours (which can be seen on the chart at t = 0.000), after the initial

boundary was entered (which can be seen at about x = 4), the middle of our spatial

interval (which can be seen at about x = 4.5), and at either the final time (at the

time of 0.1 hours) or after the final boundary was passed (which can be seen at about

x = 5.0), whichever came first.

As can be seen in each figure, there are four different snapshots of time for each

scenario. In the titles, N is the number of grid steps, τ is the increment for the

time step, and h is the increment for the grid step. For each figure, the time of

each snapshot is listed under the variable t and the horizontal axis is the horizontal

x-value on our track. For each snapshot on each y-axis, we show the velocity v, the

speed limit or maximum velocity, vmax, and the desired or “safe” velocity, v0 of the
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Figure 4.1: High Homogeneous ρ, Sharp ∆v Top Left: t=0.000; Top Right: t=0.004;
Bottom Left: t=0.015; Bottom Right: t=0.100
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cars in the top diagram, the density, ρ, of the cars in the middle diagram, and lastly,

the proportions v/vmax and v0/vmax in the bottom diagram.

For our first scenario, our cars enter the interval of abruptly changing velocity

with a high, homogeneous density. To achieve this, the lower limiting density was set

close to the maximum capacity at 22 cars per mile for the initial conditions. Then,

since the change of velocity is sharp, we begin to see a spike for the desired velocity

below the speed limit after entering the interval. The average velocity is above the
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Figure 4.2: High Homogeneous ρ, Smooth ∆v Top Left: t=0.000; Top Right:
t=0.009; Bottom Left: t=0.031; Bottom Right: t=0.100
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speed limit at this time, then becomes only slightly below the speed limit in the

middle of the interval. The safe velocity has an even sharper spike in the middle

of the interval. Then, at the end of the interval, when the speed limit is increased

abruptly, both the desired and average velocities are considerably below the speed

limit. (See Figure 4.1)

For the second scenario, our density of cars is also homogeneous and high as

they enter the interval of changing velocity. So, the initial conditions are similar to

the first scenario. Since the change of velocity is more gradual after entering the
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interval (compared to the first scenario), we see the desired velocity begin to be

below the speed limit. Whereas, the average velocity is only slightly above the speed

limit compared to the first scenario. The safe velocity being below the speed limit

becomes pronounced as the cars progress to the middle of the interval. This is also

where the average velocity is below the speed limit and even more pronounced than

in the first scenario. Then by the end of the interval, both the desired and average

velocities are considerably below the speed limit. Also, with the time frame used,

through the sixth minute (or 100 seconds), this scenario of cars does not appear to

have made it through the end of the interval (at the fifth mile). Yet, the levels are

not as pronounced as the last snapshot of the first scenario. (See Figure 4.2)

We have a high, inhomogeneous density for the third scenario as the cars enter

the interval. In order to achieve this, we set our initial conditions to have a lower

limiting density close to zero (but slightly above zero to avoid negative densities) and

the density “bump” nearing the maximum capacity. After entering the interval, we

do not see much of a difference in the desired and maximum (speed limit) velocities,

whereas the average velocity is markedly above the speed limit. We do not see much

of a change in the middle of the interval for the desired velocity, but the average

velocity is more coincident with the speed limit. Then the speed limit abruptly

changes back to the high velocity and we see a spike below the speed limit for the

desired velocity and the average velocity is now below the speed limit, although just

slightly. Noticeably different is that the cars pass through the interval in almost half

of the time for the third scenario than in either the first or second scenarios.(See

Figure 4.3)

For the fourth scenario, the density of cars is high, yet inhomogeneous, similar to

the initial conditions of the third scenario. Yet, the cars begin to enter the interval

of a more smoothly changing speed limit. After entering the interval we see that

the speed limit and desired velocity are similar and the average velocity is not much
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Figure 4.3: High Inhomogeneous ρ, Sharp ∆v Top Left: t=0.000; Top Right:
t=0.018; Bottom Left: t=0.030; Bottom Right: t=0.055
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higher than the speed limit, especially compared to the third scenario. In the middle

of the interval we see that the desired velocity has a small dip below the speed limit,

although now the average velocity is about the same as the speed limit. Then, as

in the third scenario, the average velocity is below the speed limit, yet the desired

velocity has shifted forward with a more pronounced, yet smooth, level below the

speed limit as the cars pass through the end of the interval. Also, we see that the

time for the cars to complete the interval takes longer, compared to the third scenario

(yet still, about two thirds as fast as either the first or second scenarios). (See Figure
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Figure 4.4: High Inhomogeneous ρ, Smooth ∆v Top Left: t=0.000; Top Right:
t=0.021; Bottom Left: t=0.040; Bottom Right: t=0.060
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4.4)

For the fifth and final scenario we have a low, homogeneous density as we enter

the interval of a sharply changing speed limit. In order to achieve this type of density,

the lower limiting density is set to slightly lower than one fourth of the maximum

capacity and the “bump” is set to zero for the initial conditions. After entering the

interval, the desired velocity is the same as the speed limit, yet the average velocity

is above the speed limit. In the middle of the interval, we do not have any change, as
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Figure 4.5: Low Homogeneous ρ, Sharp ∆v Top Left: t=0.000; Top Right: t=0.002;
Bottom Left: t=0.014; Bottom Right: t=0.031
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desired and average velocity is the same as it relates to the speed limit. After passing

through the interval, both the desired and average velocity appear to be coincident

with the speed limit. What is markedly different in this scenario compared with the

other scenarios is how fast the cars pass through the interval. The cars pass through

the interval in about two thirds of the time as the next fastest scenario (that being

the third scenario). (See Figure 4.5)
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Chapter 5

Conclusion

In terms of the first two scenarios, where the cars have a high, homogeneous density,

during the middle of the interval it is as if the rapidly changing velocity scenario

had an unexpected drop in the desired velocity compared to the second scenario.

Also, when the speed limit gradually changed, it is as if the desired and average

velocities have already accounted for road conditions, and so, no shock to the system

is seen. For the third scenario, in the end, the desired velocity has a spike below

the speed limit compared to the smoother, continuing nature of the shape of the

desired velocity curve below the speed limit of the fourth scenario. It is as if the

drivers were able to make a more comfortable adjustment in controlling the velocity

of their car. Then, in the last scenario, the overriding quality of the cars is that

there is a low homogeneous density. So, in this case, it did not seem to matter if

there was a sharp change in the speed limit, since the desired or safe velocity was

consistently the same as the speed limit (and actually cannot go any higher, based

on our definition of desired velocity) throughout the entire interval. We also see that

the average velocities are not as far above the speed limits for scenarios where there

is a gradual change of the speed limit (scenarios two and four) compared to a more

abruptly changing speed limit (scenarios one and three). Through our simulations
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Chapter 5. Conclusion

and analysis of results, we are led to conclude that in terms of being able to adjust

to road conditions, a gradual change of speed limit benefits drivers compared to a

more abruptly changing one.
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