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Abstract

We extend the definitions of dyadic paraproduct, dual dyadic paraproduct and
t-Haar multipliers to dyadic operators that depend on the complexity (m,n), for m
and n positive integers. We will use the ideas developed by Nazarov and Volberg in
[NV] to prove that the weighted L?(w)-norm of a paraproduct with complexity (m,n)
and the dual paraproduct associated to a function b € BM O, depends linearly on the
As-characteristic of the weight w, linearly on the BM O-norm of b, and polynomially
in the complexity. Moreover we prove that the L?*(w)-norm of the composition of
these operators depends linearly on the As-characteristic of the weight w, quadratic
on the BMO-norm of b, and polynomially in the complexity. The argument for the
paraproduct provides a new proof of the linear bound for the dyadic paraproduct
[Bel] (the one with complexity (0,0)). Paraproducts and their adjoints are examples
of Haar shift multipliers of type 2 and 3. We adapt the Nazarov and Volberg method
to show that for certain Haar shift multiplier of type 4 and complexity (m,n) the

vi



same type of bounds in L?(w) hold. Also we prove that the L?*-norm of a t-Haar
multiplier for any ¢t and weight w depends on the square root of the Cy-characteristic
of w times the square root of the A, -characteristic of w? and polynomially in the
complexity (m,n), recovering a result of Beznosova [Be]| for the (0, 0)-complexity case.
Last, we prove that for a pair of weights v and v and a class of locally integrable
function b that satisfies certain conditions, the dyadic paraproduct m, is bounded

from L%(u) into L%(v) if and only if the weights satisfies the joint A, condition.
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Chapter 1

Introduction

In the last four decades a number of mathematicians devoted their attention to
study boundedness of operators in Lebesgue weighted spaces, LP(w). Many aspects
of these theory have been studied in these years. In the 1970’s their main concern was
to find necessary and sufficient conditions for an operator to be bounded in LP(w).
In these studies it was brought to attention the importance of the Muckenhoupt

Ap-class. Recall that a weight w belongs to this class if and only if

s, =5 (7 [w@ae) (o [P d.r)pl < oo,

where [w]a, denotes the A,-characteristic of the weight. Muckenhoupt proved in
1972 that the maximal function is bounded in L”(w) for p > 1 if and only if w € AP.
In 1973 Hunt-Muckenhoupt-Wheeden extended this result to the Hilbert transform.
Also in 1973, Coiffman-Fefferman proved that

w € Ay = T fllerw) < C([w]a) 1 Fllzrw),

for all Calderén Zygmund operators 1. Even though it was known that the constant

C depended in the A, - characteristic of w, it was not known how.
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Only two decades later the mathematicians started to study how the norm of
some operators in a weighted space depends on the so called Ay-characteristic of the
weight. The first result of this type was due to Buckley in 1993, in [Bu] he proved
that, for p > 1

_1
IM fll oy < Cplw] 3" [1f 1| o),
where M is the maximal function, w is a weight that is a locally integrable positive
a.e. function, and f € LP(w) if and only if || f||zr@w) == (fg |f(ac)|pw(x)dx)1/p < 00

Later on, many results of this type followed.

In 2000, Wittwer showed in [W] that the norm of the martingale transform in
L?(w) depended linearly in the Aj-characteristic of the weight, [w]a,. Indepen-
dently the same linear bound was shown to hold for the dyadic square function [W1],
[HukTV]. This was then shown for the Ahlfors-Beurling transform [PetV], with im-
portant consequences in the theory of quasiconformal mappings. In 2007, Petermichl
[Pet2] published the linear dependence for the Hilbert transform, and soon after for
the Riesz transforms [Pet3]. Petermichl’s work is based on her representation of the
Hilbert transform as an average of dyadic shift operators of complexity (0, 1), [Pet1].
In 2008, Beznosova [Bel] also proved linear dependence in the Aj-characteristic for
the L?(w)-norm of the dyadic paraproduct. More precisely, for T, any of the above

mentioned operators, all w € Ay there is a Cr > 0 such that

1T fll 22 w) < Crlw]ag || fll£2(w)-

These linear estimates in L?(w) imply corresponding LP(w)-bounds, by the sharp
extrapolation theorem [DGPPet], i.e. it was enough to prove the linear bound in the
Ag - characteristic in L?(w) to conclude that

max{l,ﬁ}

1T F o) < Cplwla, A1 e -

All these works, except the sharp extrapolation theorem, use the Bellman func-

tion technique. Those methods were used as well by Chung [Ch] to obtain quadratic
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bounds for the commutator of the Hilbert transform and a BMO function. This
quadratic bound was later shown to be true for all operators for which the linear
bound in L?(w) holds [ChPPz] with an argument that has nothing to do with Bell-
man functions. Bellman functions have impacted not only the theory of weights as
described here, but also other areas in harmonic analysis, see [V] for more insights

and references.

Many efforts were done to show a linear dependence on the Ad-characteristic of
the L?(w) norm for a large class of operators. In particular for all Calderén-Zygmund
operators, the so-called As-conjecture. Lacey-Petermichl-Reguera in [LPetR] proved
the linear As-bounds for all Haar shift operators, and all operators that were aver-
ages of Haar shift operators with bounded complexity (including Hilbert, Riesz, and
Beurling-Ahlfors transforms), this was the first class of operators to be shown to have
the linear As-bounds. Their results depend exponentially in the complexity of the
Haar shifts, so does an alternative proof presented soon after in [CrMPz]. Despite
this fact, the argument in [CrMPz] is very flexible and can be adapted to obtain
sharp bounds for paraproducts, square functions, vector-valued operators, and two-
weight settings, as well as for fractional integrals and commutators [Le], [CrMoe],
[Or]. Neither of these arguments uses Bellman functions, unlike all the previous work

for individual operators.

Finally in the Summer 2010, Hytonen in [H] proved the As-conjecture, that is he
showed that for all Calderén-Zygmund integral singular operators 7" in R?, weights
w € A,, there is Cp 47 > 0 such that,

max{l,p%l}

1T f ey < Cparlwla, 11| 2o )

His result is based on results of Pérez, Treil, and Volberg in [PzTV], and in a very
clever representation theorem for 7' in terms of Haar shift operators of arbitrary
complezity, which generalizes Petermichl’s representation theorem for the Hilbert

transform [Pet1]. In [HPzTV] a more succinct proof of the As-conjecture was given.
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See [L1] for a survey of the Aj-conjecture including a rather complete history of
most results that appeared up to november 2010, and that contributed to the final
resolution of this mathematical puzzle. An important and hard part of the proof
was to obtain bounds for Haar shifts operators that depend linearly on the As-
characteristic and at most polynomially on the complexity (m,n). In 2011, Nazarov
and Volberg [NV] provided a beautiful new proof that still uses Bellman functions
but minimally, and that can be transferred to geometric doubling metric spaces
INV1, NRezV]. Treil [T], independently [HLM+] are able to obtain linear dependence
on the complexity. Crucial in both [NV] and [HLM+] is the use of some stopping
time argument (it is called a corona decomposition in [LPetR, L1, HLM+]).

A Haar shift operator of type 1 with complezity (m,n), m,n € N, is defined by,

(T f) @) =3 S e lf b ha(a),

LED I€Dm (L)
JEDL(L)

where |cf ;| < \/WL\'/m, D denotes the dyadic intervals, |I| the length of interval
I, D,,(L) denotes the dyadic subintervals of L of length 27™|L|, h; are the Haar
functions, and (f, g) denotes the L?-inner product. Notice that the Haar shift oper-
ators are automatically uniformly bounded in L?*(R), with operator norm less than
or equal to one. The Haar shift of complexity (0,0) is the martingale transform.

The Haar shift of complexity (0, 1) corresponds to Petermichl’s shift operator (Sha),
introduced in [Pet1].

As the martingale transform was extended to the Haar shifts with complexity
(m,n), it seems natural to attempt the same extension for other dyadic operators,
and examine if we can recover the same dependence on the A,-characteristic that we
have for the original operator (the one with complexity (0,0)) times a factor that
depends at most polynomially in the complexity of these operators. The author and
Pereyra started this analysis in [MoP], for the extension of the Haar multipliers and

the the dyadic paraproduct and these results are part of this dissertation.
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For b € BMO, m,n € N, the dyadic paraproduct of complexity (m,n) is defined

formally by, with cf ; as above,

=Y > et m> (b, hr)hy(z).

LeD IeDy (L)
JeD,L(L)

The dual dyadic paraproduct of complexity (m,n) is defined formally by, with cf 7

as above,

=3 > et ) (f R |(|)

LeD €Dy, (L)
JEDn (L)

A formal calculation shows that ;" = (m,"™)*, where T* is the formal adjoint of T":
(Tf,g)=(f,T*g). In [NTV1, HPzTV], paraproducts of complexity (0, ) depending
on two weights (average is calculated with respect to one weight, Haar functions are
with respect to the other weight, so is the inner product) were introduced and they
have necessary an sufficient testing conditions for boundedness from one weighted
space into the other with respect to the same weights that appear in the definition
of the paraproduct. In our case there are no weights in the definition, and we are
asking about boundedness in weighted space. One can check that the paraproduct of
complexity (m,n) is the composition of a Haar shift operator of complexity (m, n) and
the dyadic paraproduct of complexity (0, 0), m,"" = T}""m,. since both the Haar shift
operators [LPetR, CrMPz, H] and the dyadic paraproduct [Bel] obey linear bounds
on L?(w) on the Ay-characteristic of the weight, these estimates immediately will
provide a quadratic bound on the As-characteristic of the weight for the paraproduct

of complesity (m, n), namely, |5 |2 < Conl bl masoalwl2yl| 2.

We prove in this dissertation, that in fact, the paraproduct of complexity (m,n)
and the dual paraproduct of complexity (m, n) obey the same linear bound obtained
by Beznosova for the dyadic paraproduct of complexity (0,0), multiplied by a poly-

nomial factor that depends in the complexity.
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Theorem 1.1. For all w € A%, b € BMO?, then

I fll 22wy < C'(m+n + 2)°[w]agllbll parosl| £l z2(w)

Corollary 1.2. For all w € A%, b € BMO?, then

sy Fll 2wy = I1(my ™) Fll 21y < Clm+n+ 2)°[w] agllb] paroa | £l z2qw),

recall that [w] g = [w™] 44.

The dyadic paraproduct and the dual dyadic paraproduct of complexity (m,n)
are generalized Haar shift operators, defined as the Haar shift operators replacing
the Haar functions h; and h; in the definition by characteristic functions, x;/|/| and
x./|J], and now one has to assume boundedness on L*(R), imposing size conditions
on the coefficients is not enough. Generalized Haar shift operators where introduced
in some preprints that have now been superseded by [HLM+]. For Hytonen’s repre-
sentation theorem (and hence for the resolution of the As-conjecture) one needs Haar
shift operators of arbitrary complexity, and dyadic paraproducts of complexity (0, 0),
and their adjoints, i.e. generalized Haar shift operators of arbitrary complexity are

not needed.

We will also prove in this dissertation, similar estimates for a subclass of the
generalized Haar shifts operators with complexity (m,n), these operators will be
called composition dual dyadic paraproduct with paraproduct of complezity (m,n),
and it is defined formally by, with ¢} ; as above,

=>" > b, (b hr) {d, hi){f, |[|> ()

LeD IeDy (L) | |
JeDn(L)

for b,d € L} . then we have the following result.

locy

Theorem 1.3. For all w € A4, b,d € BMO?, then

165" fll 2y < C(m +n+ 2)°[w] agllbll parolldll paros] £l 22w)
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These operators are a particularization of operators that we will call in this dis-

sertation Haar shifts of type 4 with complexity (m,n) !. They are defined as

SRRV VT IV

LeD I€D,, (L)
JEDn (L)

The linear dependence in the A¢ characteristic for these operators is not a new
result. This dependence was proved in [HLM+] for all generalized Haar shifts (Haar
shifts of type 4 in our nomenclature) that are bounded on L? based on Sawyer two-
weight testing conditions and a complicated corona or stopping time argument. For
b,d € BMO?, these operators are bounded in L?, since they are composition of a
paraproduct and a dual paraproduct with a Haar shift of type 1 with complexity
(m,n). This decomposition immediately yields a cubic dependence [w]ig for the
operator norm, we will recover the linear dependence [w] Ad and our result explicitly
displays the dependence on ||b||gy0, the same for the paraproduct and dual para-
product of complexity (0,0) and the dependence on ||b||pyo and ||d||sao for the
composition of dual paraproduct and paraproduct. Also we present a new proof of
these facts, bypassing the more complicated Sawyer two-weight testing conditions,

providing a, from our point view, more transparent proof.

The operator ¢;';" can be decomposed, formally, as 7;77""ms. We will prove that
for the case m = n = 0 and ¢} > 0 for all dyadic intervals I, then if T3 is bounded
then it can be decomposed as m;m, for some b € BMO®. Therefore our techniques
allow us to prove linear bounds in the As-characteristic for all bounded positive op-
erators Tf 0. We would like to extend this decomposition result for bounded positive
operators of type 4 of arbitrary complexity. Such positive operators are often all one
needs, after some reductions, to estimate all Haar shifts of type 4, see for example

the recent work of Hytonen and Lacey [HL].

!The dyadic paraproduct and the dual dyadic paraproduct of complexity (m,n) are
example of Haar shifts of type 2 and 3 respectively.
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Also in the 1990’s another question was raised, that was, to study the boundedness
of operators that depend somehow on a weight in the Lebesgue space, LP. In this
problems the weight w is moved from the space into the operator. Independently
Peréz in [Pz] and Pereyra in [P] proved that the weighted maximal function M, is
bounded in L? if and only if the weight is in the RH, class. Recall that a weight
w € RH, if [w|gp, := sup; (ﬁ [; wp(x)d:c)l/p(ﬁ flw(:c)d:c)_l < 0.

Another important example of these operators are the Haar multipliers introduced
by Pereyra in [P1]. It was proved in [P2] that the L*-norm for the Haar multiplier
T, depends on the square of the RHs-characteristic of the weight w in the Haar
multiplier’s definition. The Haar multipliers and the dyadic paraproducts are closely
related: the resolvent of the dyadic paraproduct is a cousin of T, [P]. In her PhD
dissertation, Beznosova showed that the L*-norm of a ¢t-Haar multipliers, T | defined
in [KP], is bounded by a constant times the square root of the Cy-characteristic of
w times the square root of the A%characteristic of w®. For t € R, a weight w € Cy
if

1 2t 1 —2t
[w]ey, ==sup (5 [ w(z)de) (= [ w(z)dz) = < oc.
My 1] J;

For t € R, m,n € N, and weight w, the t-Haar multiplier of complexity (m,n) is
defined formally by

e =Y Y YUV @

I1€D 1€D,(L),J€Dy (L) |L| (m]w)

When (m,n) = (0,0) we denote the corresponding Haar multiplier by 7. We will

show in this dissertation that

Theorem 1.4. For all w € C%, such that w* € Ag, for some q > 1, then
1 1
T e < Clm +n +2)°[wle,, w5, [l f [l 2.

Moreover, w € CS, is a necessary condition for the boundedness of T%Y..
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This recovers results of Beznosova for T, the complexity (0, 0) case, [Be]. Observe
that T);% is different than both T7""T, and T.T/"", where T}, denotes the t-Haar
multiplier of complexity (0,0). Notice that in this case, both 77""T% and T¢7T7""
will obey exactly the same bound that T obeys in L*(R), because the Haar shift

multipliers have L2-norm less than or equal to one.

Another important problem that has been of concern to the harmonic analysts
in the last 30 years is to find necessary and sufficient conditions for operators to
be bounded from L?(u) into L?*(v) where u and v are two weights. In fact one of
the biggest open problems in the field nowadays is to find necessary and sufficient

conditions for the boundedness of the Hilbert transform in the two weights setting.

Sawyer provided in 1982, [S] conditions that are necessary and sufficient for the
boundedness of the maximal function from LP(u) into LP(v). His result states that it
is enough to test the boundedness of the operators in the class of functions u =1y, for
an interval I C R. Later in [S1], Sawyer proved a certain operator Ty with positive
kernel is bounded from L?(u) into L?(v) if and only if satisfies some type of similar

conditions.

In 1999, Nazarov, Treil and Volberg presented necessary and sufficient conditions
for the boundedness of the martingale transform and the square function from L?(u)
into L?(v). For the martingale transform they proved the boundedness reducing the
problem to analyze the boundedness of an operator Ty with positive kernel, these
conditions are Sawyer type conditions, i.e., we need to test the boundedness of the

operator in a class of simple test functions.

We will prove in this dissertation that the dyadic paraproduct 7, is bounded from
L?(u) into L?(v) for all b in a certain class, that we will call two weighted Carleson
class u, v, and the weights u and v satisfiying certain condition if and only the pair

of weights is in joint Muckenhoupt A4. Let us be more precise.
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A pair of weights, (u, v) belongs to the joint Muckenhoupt A,-class if and only if

o, o], Sup<|}‘/ (m)dm) (%/u (2 )dx)pl < 0,

where [u,v]4, denotes the Aj-characteristic of the weight. When v = v = w this

recovers the classical A,-class of weights and [w,w]a, = [w]a,.

We say that a locally integrable function b belongs to two weighted Carleson class
u, v, Carl,, if there exists C' such that for all dyadic intervals J,
1 |bI | -1
— <C
‘ J’ Z mrv m ( )7
1€D(J)
where by = (b, hy).

Theorem 1.5. Let (u,v) be a pair of weights such that v is a reqular weight and u™"

is also a reqular weight and there exists B such that for all dyadic intervals J,
’ Z {| A2 I|m(u™t)} < Bmjv.
1€D(J)

Then my, is bounded from L*(u) into L*(v) for allb € Carl,, if and only if (u,v) € A<,

By regularity of the weight we mean that the mass of the weight over both half
lines should be infinity. One would like to find conditions for boundedness of the
paraproduct from L?(u) into L?(v) with the minimal requirement possible on the
weights, in our result regularity is the minimum that we can ask, this is a very mild
condition, we will show in Chapter 2 that regularity condition is a weaker condition

than the weight being doubling.

The last result that we will prove is a connection between the two weight bound-
edness of the maximal function and the dyadic square function. The dyadic maximal

function is the operator defined as

Shf(x) = (Z imrf — mifPXI(@)

1€D

N|=

10
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Theorem 1.6. Let (u,v) be a pair of weight such that v € A% and the Mazimal
function M is bounded from L*(u) to L*(v) then there exists C' > 0, such that

15 f Nl 220y < ClIf 22w

This dissertation is organized as follows. In Chapter 2 we provide the basic def-
initions and basic results that will be used throughout this manuscript. In Chapter
3 we will prove the lemmas that are essential for the main results. In Chapter 4 we
will discuss the different definitions of dyadic shift with complexity and some of the
results known for these operators. We will also categorize the Generalized Haar shifts
in four groups and show how these categories are related to each other. In Chapter 5
we will prove the main estimate for the dyadic paraproduct with complexity (m,n)
(particular case of a dyadic shift of type 2) and we will provide a new proof of the
linear bound for the dyadic paraproduct. In Chapter 6 we will prove the main es-
timate for the composition of a dual dyadic paraproduct and a dyadic paraproduct
with complexity (m,n), particular case of a dyadic shift of type 4. In Chapter 6 we
will also prove the main estimate for the ¢t-Haar multipliers with complexity (m,n),
we also provide necessary conditions for these operators to be bounded in LP(R), for
1 < p < oo. In Chapter 7 we will discuss some of the two weighted theory for dyadic
operators and prove the main result of the dissertation, we will give conditions on u,
v and b such that the dyadic paraproduct, m,, is bounded from L?*(u) into L*(v) if
and only if (u,v) € As.
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Chapter 2

Preliminares

In this chapter we will review some basic definitions and introduce the notation
that we will use throughout this dissertation. We will work on the Euclidean space
R, but most of the results presented here will also hold for the Euclidean space R"
and more generally for metric spaces with geometric doubling. All functions will be
real valued f : R — R. Given a measurable set E, |E| will denote the Lebesgue
measure of this set and the Lebesgue measure will be denoted by dx. For a bounded
operator T' : X — Y, X, Y Banach spaces, the operator norm will be denoted by

IT]|x—y, when X =Y we may use the notation ||T||x.

Unless specified, p and ¢ represent real numbers larger or equal than 1, 1 < p,q <

oo, LP will denote the Banach function space, L?(dz,R), with norm

1 fllze = ( / |f(x)|pdx);-

A weight, w, is a locally integrable function in R that takes values in (0, 00)

almost everywhere. The w-measure of a measurable set E, denoted by w(FE), is

12
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We also define LP(w) as the Banach function space, LP(du,R) for dy = wdz, w
is the Radon-Nikodym derivative of u. The norm is defined by

11l zo )y = (/R|f(:zc)|pw(x)dx>;.

We denote

wgw=4fuw@wx

the standard L2- inner product on R and

<ﬁmw:4f@M@W®Mw

the inner product in the weighted L?*(w) space on R.

For a measure ¢ and a set E, we define

o(E) = /E do.

Let f be a locally integrable function, we define mg, f as the o-average of f on E,

g '*L x)do
mgf = O'(E)/Ef< )do.

In the case that we are working with the Lebesgue measure the average will be

denoted simply by mgf,
1

2.1 Dyadic grid in R

We will work in the dyadic setting D, where D is the collection of dyadic intervals

D:={ICR: [=[k27 (k+1)27), k,j € Z},

13
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for a dyadic interval L we define as D(L) the collection of dyadic intervals inside L
D(L):={ICL : 1eD}
we also define the collection of dyadic intervals with length 277, D;
D;:={l€D : |I|=277},
the cubes in D; are called the j-th generation.
Combining the last two definitions we define as D;(L) the collection of dyadic
intervals inside the dyadic interval L with length equal to 277|L|
Dy(L) == {I € D(L) : 1] = 27|L]},
the intervals in D;(L) are called the j-th generation of L.

Properties of the dyadic grids

e Any two dyadic interval I, J € D are either disjoint or one is contained in the

other. Any two distinct dyadic intervals I, J € D;(L) are disjoint.

e Fach dyadic interval I is in an unique generation D; and there are exactly 2
subsets of I in the next generation D;;;. Also, each dyadic interval I C L is
in an unique generation D;(L) and there are exactly 2 subsets of I in the next

generation D1 (L).

e The subsets of a dyadic intervals [ that are in D; (/) are called the children of
[. We denote the children of the interval I by I, and I_, where I, will always
denote the right half part of I and I_ denotes the left half part of I. Since the
children of I form a partition of I we have that I = I, (JI_.

e For every dyadic interval I € D; there is exactly one I e Dj_1, such that
I C f, T is the called the parent of I. Also, there is exactly 1 dyadic interval
in Dy(I)\ {I}, this interval will be called the sibling of I, which is denoted by
I, Ir=T\1I

14
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e For any j, the collection D; forms a partition of the real line and for any dyadic
cube L the collection D;(L) forms a partition of L. In particular, the collection

of children of I, D;(I), is a partition of I.

A weight w is dyadic doubling if % < C for all I € D. The smallest constant
C'is called the doubling constant of w and it is denoted by D(w).

Remark 2.1. Note that D(w) > 2, and that in fact the ratio between the length of
a child and the length of its parent is comparable to one, more precisely, D(w)™! <

wl) < -1
w(I)_l D(w)~t.

A weight w is regular if w(R™) = w(R™) = oo. This condition is weaker than
doubling in the sense that if a weight is doubling then the weight is regular, we can
show this using the remark above. Consider the dyadic interval I,, = [0,2"), then

wly) _ wlly) _
w(l) wh) ~

1 - D(w)",

let r™'=1— D(w)™ !, then r > 1 and rw(ly) < w(I;). Tterating n times we obtain
that r™w(ly) < w(l,). Since r > 1 and w(ly) > 0, for any M > 0 we can choose n
such that r"w(I;) > M. Now observe that w(l,) < w(RT) for all n > 0. Therefore
M < w(R*) for any M positive, i.e. w(R") = oo. Analogously we can show that

w(R™) = 00, so the weight is regular.

In order to show that regularity does not imply doubling consider the weight,

w(z) = xr-(T) Z 2nX[2n,2n+2—2%)(x) + X[2n+2—2in,2n+2)(x)>
n=0

where y;(z) = 1 if z € I and zero otherwise. The weight w is regular since clearly
v(R7) = v(R") = co. However this weight is not doubling, let A, = [2n + 2 —
>,2n + 2), then Ay =[2n+2— 51,2n + 2) and

(A) _ 5

Ay,

@A) - L ~ 2tk
2n

w
w

15
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which implies that w is not doubling.

This provides an "easy” divergence test to decide whether a weight is doubling

or not.

2.2 Weighted Haar funtions

For a given weight v and an interval I define the weighted Haar function as

vy 1 Jv(1-) B [v(1) .
hl(x) - \/m ( U(I+) XI+(3:) U([,) XI—( )) ) (21)

where x; is the characteristic function in the interval I, hY(z) can also be written as

1 v(I_)

Jom Vo TE L
hi(z) = _vif) zgﬁ, x el

0, otherwise

If v is the Lebesgue measure over R, we will denote the Haar function simply by

hi(z), and for any I € D
—, x€l;
hi(x) = =L xel
0, otherwise

It is an important fact that {hY} ep is an orthonormal system in L?*(v) and hY(z)
is constant in each each children of /. Also, h} has v-mean zero over the line,

/ hi(z)v(z)dx = 0. For any weight v any dyadic cube I we have that
R

/Rh?(x) = /zh?(w) o= /1+ v(zlr)% Z(B - /f v(})é ng; o
)

N[

I

16
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so, hj(x) has v-mean zero over the line, in fact, hY(x) has mean zero over any set

that contains /. Moreover, ||h}||r2@) = 1.

s — [ (@) d o) L ouly)
||h1||L2<v>—/|h )17 d / oD o) +/1_ o) o)

o) to(ly) _
= L

If the weight v is not regular, then v([0, 00)) or v((—o0,0]) is finite, maybe even

both. If v([0,00)) < oo then —242%)
v([0, 00))
interval I, and normalized in L?(v), then in order to have a complete orthonormal

will be orthonormal to A} for all dyadic

system in L?(v) we will need to include it. The same occurs if v((—o0,0]) < oo, we
X (—00,0])

v((=00,0])

Note that when v = 1, then |R*| = oo and we do not have this issue, likewise when

v is doubling, v(R*) = oo

would have to include in order to have an orthonormal basis in L*(v).

It is a simple exercise to verify that the weighted and unweighted Haar functions

are related linearly as follows,

Proposition 2.2. For any weight v, there are numbers af, 5} such that

ha(e) = o W) + gy 21 (2.2)

VI

where (i) |8| < /myo, (i) |37 < 22 and Ajv = mp, v —mp_v.

myv ’

X1

VI

Proof. In order to find 3} we can multiply equation (2.2) by and integrate with

respect vdxr we will obtain

mr,v —mp_v " Y 1A1U
—t = —3Ymv= . 2.3
2 ﬂ[ I ﬁ] 2m[’U ( )
Arv
Therefore |3;] < ——. Also note that

myrv

Apv| |mp, v —mp_v| < MY +mrv  2mpu 5

mp mrv - mrv omgu

17
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Thus Y < 1 for all I € D. Now in order to find ¥ we will compute the L?(v) norm
hi(x) in both sides of equation (2.2).

miv = il = i i+ BF | = (@) + () mew =
(1= (BD?)mrv = () = [af] = /(1 — (87)2) mrv (2.4)

Since |3Y| < 1V I € D then 1 — (3?Y)* < 1 which implies that |a*| < \/mv. Note
that if we plug equation (2.3) in (2.4) we have that

mrv

_ 2
aj| = \/mw _ lmao - m o)t (2.5)

2.3 The dyadic Muckenhoupt Class - Ag

Definition 2.3. For 1 < p < oo, a weight w s in Ag, iof

. L [P <o
[w]ag = ilel’g (m/lw(x)dx> (m/lw(x)P d ) <

Remark 2.4. The characteristic of a weight in the A% class is

[w] 44 = supmw mpw .

I€D
This class of weights is the dyadic analogue of the Muckenhoupt class A, where
the supremum is taken over all intervals in R. The constant [w]4q is called the Al

characteristic of w.

It follows from Holder’s inequality that 1 < [w] ag, for all p > 1, in order to let the
reader be familiar with this kind of calculation we show it below, however later in

the text, for similar calculations, we will just say that follows by Holder’s inequality:.

18
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= (1) = 3 o )
< (G i) 3 o)
= ) (i o) <t

Also follows by Holder’s inequality that if w € AZ then w € Ag forl <p<q< o0,

. d d
i.e. Ap C Aq, moreover
[U)]Ad < [U}]Ag.

q

Proposition 2.5. Let w € Ag, for p > 1, then it follows that

S =

1) wr € Al and [w]e < W)

d-
p

Sl

2) w is a dyadic doubling weight and D(w) < 2P[w] q.

Proof. Note that,

1 1T\ 25! 1 —1\175
(mpr)<m1(wp) Z ) :(m[wp)<m1wpfl>

p=1 =
:(mjw%)(mlwr—ll> ! (mjw)%<m1wr—ll) !

(e )

where the inequality in the last line follow by Holder’s inequality. Therefore if we

si= A

assume that w € A? then it follows that wr € A,_1, since
p

T 251 _ p=1
sy - Sup(me%)<mI(w%)2’%*l) To< SUp(me)%mI (w”%l> p
% I )
—1\P—1 » 1
= ?—gg mrw (mlwp—1> — [w]zg.

19
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In order to prove the second part of the proposition, we will just use the definition

of dyadic doubling constant.

1ep w(I) 7 rep |]|(ml<wpll>)1

71\ P —5=1\ 1
= [w] 44 sup (u) <flw—1> .
P 1eD |[| ffw_ﬁ
Jrw T

However since w is positive a.e. and I C .7\7 then f—l < 1, thus
Lw T
I

In particular if w is in Ag then w is regular, because w is doubling.

Definition 2.6. A weight w is in A% if

oy = sup (1 [wtaide)exp (1 [t @) < o 2.6

The quantity defined above is called the A% -characteristic of w, it follows from

Jensen’s inequality that for any 1 < p < oo,

[w]ag, < [w]ag.

oo

The class A, is defined in a similar fashion, with the supremum taken over all

intervals .

Definition 2.7. A weight is in A¢ if there exist C > 0 such that

ﬁ / w(y)dy < Cu(x)

20



Chapter 2. Preliminares

a.e. on I, for all dyadic intervals I. The smallest C' that satisfies this condition is

defined as the A%-characteristic of w, denoted by uprs

1
The class A, is the analogue class where il w(z)dr < Cw(x) a.e., for all in-
I

tervals 1.

The classes of weights A; and A, are considered the limit cases of the class A,.

1 —1 p—1
lim (— /w”l(l’)dl‘) = Jrnw(z) dgc7
r—oo \ |1] J;

which implies that if w € A, then w € A,. It is also true that if w € A, then

This is because

w € A, for some p, [CoFe]. Therefore

A = | Ap;

p>1

1 -1 -l 1
}gr% (m/lwpl(x)da:> = |lw™ ||,

which implies that A; C A, for all p > 1.

and

Remark 2.8. Note that if w € AL then w € Ag for some p > 1 and thus by

Proposition 2.5, w is a dyadic doubling weight,and therefore the weight w is reqular.

2.4 The dyadic Reverse Holder Class - RHg

Definition 2.9. A weight w is in RHg , 1< p<oo,if

! b : i x)dx R 00
(w]rma = igg (m/lw(x) dx) (m /Iw( )d ) <

This class of weights is the dyadic analogous of the reverse Holder RH,,, where

the supremum is taken over all intervals in R.
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Remark 2.10. The characteristic of a weight in the RHY class is

2
> my(w?)
w = Ssup —m—m/m—=.
[ ]RHg Ieg (mlw)z

In the case of p =1,

Definition 2.11. A weight w belongs to the Reverse Hélder 1 class, RHY, if

w w
[W]Rﬂf = supmy ( log )

IeD mrw mrw

Note if w € RHY for some p > 1 then there exist C' such that(mlwp)% < Cmjw,

for all I € D. Then for any 1 < g < p, using Holder’s inequality we would have
(m]wq)% < Cmjw.
Therefore if 1 < p < ¢, then RHg C RH]‘f and
1 < [w]gae < [w]rHa

If we start with w € RH; then w € RH;’Z for 1 < ¢ < p. A much deeper result,

Gehring’s theorem, is that there exists e > 0 such that w € RHY, .

Theorem 2.12 (Gehring [Ge] ). If w € RHY for some 1 < p < oco. Then there

exists € > 0, depending only in p and RH;I characteristic if w such that

d
we€ RH,, ..

This result was proved in [Ge| for Lebesgue measure. For a proof of Gehring’s

Lemma for a general measure see [Pa].

The nondyadic version of the theorem was discovered by Gehring while studing
quasiconformal mappings, see [Ge|, the theorem states that RH, classes are self-

improving.

The next theorem relates the RHg class with the A% class.
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Theorem 2.13. For p > 1 we have the following

o [fwe AL then wr € RHY

o /fwe RH;[ and w is a doubling weight then w € A%

This theorem first appeared in [Bul], the proof can be found in [KP]. These

properties first appeared for the continuous Muckenhoupt and reverse Holder classes

in [CoFe].

Proposition 2.14. Let w be a weight, then for any two real numbers p and r, such

that 1 <p <oo and 1 <r < oo, then

1) w €Al = weRH!(A% .

2) [w'aa < [w]gga [w]ziﬂfl’

™

A proof of these statements can be found in [Be], Lemma 2.5.

Remark 2.15. For p = r we would have
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2.5 (C?- Condition

The C? was first defined in [KP]. Even though the condition is equivalent to a
reverse Holder condition for s > 1 and a Muckenhoupt type condition for s < 0, its
definition is interesting because it simplifies notation when working with the type of

Haar multiplier defined in [KP], which here we will call ¢-Haar multipliers.

Definition 2.16. A weight w satisfies the C? condition, for s € R, if

mr(w?®)

[w]ca := sup < 0.

rep (myw)?

The quantity defined above is called the C%characteristic of w. Let us analyze

this definition.

For 0 < s < 1, we have that any weight satisfies the condition and its character-

istic is 1, this is just a consequence of Holder’s Inequality.

When s > 1, the condition is analogous to the reverse Holder condition and

For s < 0, we have that

_1
[w]C; = sup(myw®)”=
g IeD

so,w € C? = we A‘li 1. Moreover

or, alternatively
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2.6 Dyadic BMO

Definition 2.17. A locally integrable function b has dyadic bounded mean oscillation,

b e BMO?, if and only if

1
16/ parod == sup — / |b(x) — msbldz < 0o (2.7)
toren I1;

Note that if b(z) is constant almost everywhere then [[b][gp0a = 0, therefore
| - [ Baroa is not a well defined norm. However if we consider this BM O? the space
of all locally integrable functions that satisfies (2.7) modulo constants then BMO?

is a Banach space and || - [| gp04 18 @ norm.

The space BMO? is a larger space than L™, L> ¢ BMO“. The classical example
of a function in BMO? that is not in L* is f(x) = In|z|. In fact the famous John-
Nirenberg inequality states that the only type of singularities that a function in
BMO? is allowed to have is of In |x| type. Remember that the weight w = |z| is in
Al if —1 < a, now note that Inw = «In|z| which belong to BMO?. 1t is, in fact,
true that if w € A% then Inw is in BMO?, for more detail we refer to [P1], Theorem
3.5.

Theorem 2.18 (John-Nirenberg Inequality). Given a function b in BMO?, any
dyadic interval I € D and a positive number X\ > 0, then there are positive constants

C1, Cy that are independent of b, I and X\, such that

Co
BMO§

BRIE

H{x € I:|b(x) —mb| > A} < Cy|l]e

A stopping time proof of this theorem and the next corollary can be found in [P],

page 28.

Corollary 2.19 (Self-improvement). Given a function b in BMO?, then for all
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p > 1 there exists a constant C, > 0 such that for all dyadic intervals I € D

1 ;
(m/llb(x) —mfbl”dx) < Gyl Ibl| parog-

Note that using Holder’s inequality we also have that

i [ ) = mavlde < (|—}| [ ) - mfb|pdx) .

Therefore

1 E
1l 5arog = (m/llb(l“) —mfblpdiL“) ~ [bll zrrog- (2.8)

Therefore we have that for any p > 1, (2.8) provides an alternative definition for a
norm in BMO?. Tt will be convenient for us to define the BMO? norm using this

alternative definition p = 2, namely
1
00 = Blasog i=sup 1o [ b(o) = st (29)
2 IeD |I| I

The reason that this definition for the BMO? is preferred is because for any
dyadic interval J

/]|b(x)—mJb|2dm= > (b hy)Pda (2.10)

1€D(J)

and therefore, ultimately, we will have that

1
10|l pazos = <sup > Kb, k)l ) < 00. (2.11)

IeD(J

The equality in (2.10) follows just from the fact that {h;};ep(s) form a orthonor-
mal basis for {f € Ly(J) : myf = 0}.

Remark 2.20. Note that if by := (b, hy) then < ||bllgrproe VI € D.

\/_
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2.7 Carleson sequences

A positive sequence {\;}jep is a v-Carleson sequence if there is a C' > 0 such
that for all dyadic intervals J
> A< Co(d).
1eD(J)
For the case that v = 1 almost everywhere we just say that the sequence is a Carleson

sequence. Also note that if {\;};ep is a v-Carleson sequence with intensity C', then

if we divide both sides by |J| then

1
m Z )\[ S ij?].
1eD(J)

We will more often use this definition of v-Carleson. The infimum among all C'
that satisfies this inequality is called the intensity of the v-Carleson sequence Aj.
Therefore if b € BMO? then {[(b,h1)|*}, p is a Carleson sequence with intensity

161 000

Proposition 2.21. Let v be a weight, {\;}iep and {v;}1ep be two v-Carleson se-

quences with intensities A and B respectively then for any c¢,d > 0 we have that
(i) {cAr + dvyr}tiep is a v-Carleson sequence with intensity at most cA + dB.
(11) {N/Ar\/1}1ep is a v-Carleson sequence with intensity at most v/ AB.
(iii) {(cv/Ar + dy/71)*}iep is a v-Carleson sequence with intensity at most 2¢* A +

2d°B.

The proofs of these statements are quite simple. To prove the first one we just
need properties of supremum, for the second one we just have to apply Cauchy-
Schwarz and the third one is a consequence of the first two statements combined

with the fact that 2cdvAvVB < 2A + d?B.
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Remark 2.22. Note that if b is in BMO? and {\r}1ep is a Carleson sequence with
intensity A, then {bjv/AfYiep is a Carleson sequence with intensity ||b|| grroaVA.

Remark 2.23. If v is not a reqular weight then v(RT) < oo and/or v(R™) < oo.
in that case we can replace D by D where D = DJ{R*} if v(Rt) < oo, D =
DU{R} if v(R™) < 0o and D = DU{R*, R~} if both are finite. We will say in
this case that a sequence {\;}rep is an extended v-Carleson sequence with intensity

Bif Y A <Buv(J) forall J €D.
IeD(J)

2.8 Maximal function

In this section we will define and state some important facts about the Hardy-

Littlewood maximal function and its dyadic and weighted versions.

Definition 2.24. The Hardy-Littlewood maximal function is defined as

1
(Mf)(e) = s / f(x)de (2.12)

I>x

The next theorem was proved by Buckley in his PhD dissertation, [Bu2]. This
was the first result showing the dependence in the A, characteristic of a weight w of

the LP(w) norm of an operator.

Theorem 2.25 (Buckley, [Bu2|). Let w € A, the the Hardy-Littlewood mazimal

function is bounded in LP(w) and satisfies the following estimate

1

| M| zrw) < Cplw]h " (2.13)

P

Lerner later showed that C, = Cpip’%, for some constant C' where p’ is the dual

exponent of p.

In this dissertation will only be working with the dyadic maximal function, M¢,

the definition is the same as the previous one, but the supremum is taken over dyadic
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intervals. Theorem 2.25 is also true if we change the maximal function by the dyadic
1 1
maximal function and [w]} * by [w]’,". Also we need to define the weighted dyadic
P

maximal function.

Definition 2.26. Let v be a weight, then we define the dyadic weighted mazximal

function M¢ as follows

(MEF)() = sup —— / fl (2.14)

19:(3 U

A very important fact about this operator is the following.

Lemma 2.27. Let v be a locally integrable function such that v > 0 a.e. Then for all
1 <p< oo, My is bounded in LP(v). Moreover, for all f € LP(v)

Hva”LP(v) < p/Hf”Lp(v)-

where p’ is the dual exponent of p.

For a proof of this lemma see [CrMPz|. The important fact to note in the Lemma
above is that the LP(v)-norm of M, is bounded just by p', there is no dependence on
the weight v.

2.9 Dyadic Martingale transform

Definition 2.28. Let r(I) be a function from D into {—1,1}, then we define the

martingale transform as

ZT fh[h[ )

1€D

The next theorem was proved by Wittwer in [W]. This was the second result
showing the dependence in the A, characteristic of a weight w of the L?(w) norm of

an operator.
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Theorem 2.29 (Wittwer, [W]). For all w € A and all f € L*(w), there exists a

constant C', independent of r, such that

1T fll 2wy < Clwlagl flr2w)

By Dragicevic-Grafakos-Pereyra-Petermichl Sharp extrapolation Theorem 3.17,
[DGPPet] we have the following corollary

Corollary 2.30. For all w € A% and all f € LP(w), there exists a constant C,

independent of r, such that

max{l,p%l}

T\ y < Clew] g S || 2o ()

2.10 Dyadic Paraproduct

One of the main operators that we will work with in this dissertation is dyadic

paraproduct defined below.

Definition 2.31. We define the dyadic paraproduct as the following operator

(mf) (@) = ermpf (b, hr)hi(x) (2.15)

IeD
with |¢f] < 1.

The dyadic paraproduct is bounded L?, [Fi]. It is also bounded in L*(w), for a
proof see [C]. Beznosova proved in [Bel] that the bound of the L?(w) norm of the

paraproduct depends linearly on [w]4,.

Theorem 2.32 (Beznosova, [Bel]). There exists C > 0, such that for allb € BMO?

and for all w € A4

175l 2wy < C[w]AgHb“BMod
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Beznosova result is for the field where the Hilbert Space L?*(w) is defined over

R, the extension of this result to L?(w) over R¥ is due to Chung, [Ch] and Cruz-

Uribe, Martell and Pérez, [CrMPz]. Rubio de Francia Extrapolation theorem [Ru],

give us boundedness in LP(w) for all w € A, and Dragicevi¢ et al. Sharp extrapo-

lation Theorem 3.17, [DGPPet], will give us that, if w € A? then |||

(w)—Lr(w) <

max 7% . .
Clw] e }HbHBMod, this is sharp by Chung’s proof for the quadratic bound of

A

the commutator of the Hilbert transform, more details in [P3].

Let us now compute the formal adjoint 7}

(SSmattvmithsg) = [ X hihs(olgto)ds

IeD IeD
:Zmlf<b7h1><g>hl>
1eD
= S (b hn)oi) o [ fla)da
fe 1]

Now using the fact that / f(z)xs(z)de = /f(m)dm we have
R I

(ot = [ i) o) S )

IeD

<f > (g, ha)b, hz>m>

1eD

Therefore

(53 )(e) = S0 oo, S

I1eD
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2.11 Haar Multipliers

Definition 2.33. Given a weight w, the Haar multiplier associated to it is defined

as

(Tuf) @) = 3 2 by o) 217)

mrw
1eD

Theorem 2.34 (Pereyra, [P]). Given a dyadic doubling weight w, T, is bounded in
LP,1<p<ooiffwe RH{.

Later Pereyra and Katz, in [KP], extended the definition of Haar multiplier to

what it will be called here a t-Haar multiplier.

Definition 2.35. Given a weight w and t € R, the t-Haar multiplier associated to
it 1s defined as

(Tof) (@)= (w(x)> (f,hr)hi(z) (2.18)

mrw
IeD

They also proved that if w € A% | then the Haar multiplier operator 77 is bounded
on LP(w) if and only if w satisfies the C? condition for s = tp. Almost a decade

later, Pereyra proved in [P2] sharp bounds in L? depending on the [w] fort =1,

1
[w]?, for t = § and [w] ag for t = =t In her PhD. dissertation, Beznosova attempted
2

2
RHY
to extend these results for ¢ € R, in fact she proved the following theorem.

Theorem 2.36 (Beznosova, [Be]). Let t be a real number and w a weight in C3,,
such that w? € A, for 1 < p < oo and that satisfies the CS, condition with constant

[wleg . Then the Haar Multiplier is bounded in La. Moreover

1 1
ITo e < [l 0?1
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Unfortunately the dependence of the L2-norm of the t-Haar multiplier on the C{,

- characteristic given above is not sharp. Since for t = 1, Theorem 2.36 will give that

1Tl < CO)wlppglw®]2s

p+1
il
which is worse than the bound found by Pereyra in [P2], which is
I Tullz2 < CD(w)w] gy,

recall that we proved in Proposition 2.5 that D(w) is bounded by 2P[w]4 for all

p>1.

Let us compute the formal adjoint (T fu)*

it = (X g a)

-, h1><mgl—“j;>t,hl>
= <f,2m<gwt, m>>

=(f. (T)9).

(T ) ) = th(x). (2.19)
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Main Tools

In this section, we state and prove the lemmas and theorems necessary to obtain
one and two weighted estimates that we will prove on the next chapters. The weighted
Carleson Lemma 3.1 appears in all our main estimates, sharp weighted and two
weighted estimates. Other lemmas, like a-Lemma 3.8 and Lift Lemma 3.13 are very

important for sharp weighted estimates.

3.1 Carleson Lemmas

The weighted Carleson Lemma we present here is a variation in the same spirit
of the Folklore Lemma [NV] of weighted Carleson embedding theorems that have
appeared before in the literature, for example in [NTV1], in [LSU]. The Folklore
Lemma 3.6 was introduced and used in [NV]. Here we obtain the Folklore Lemma
as an immediate corollary of the weighted Carleson Lemma 3.1 and what we call the
Little Lemma 3.3, introduced by Beznosova in her proof of the linear bound for the

dyadic paraproduct.

34



Chapter 3. Main Tools

3.1.1 Weighted Carleson Lemma

Lemma 3.1 (Weighted Carleson Lemma). Let v be a regular weight, then {a;}Lep
1s a v-Carleson sequence with intensity B if and only if for all F' non-negative v-

measurable functions on the line,

S (inf Fa))ar < B/RF(:C)U(:U) e (3.1)

Proof. (=) Assume that F' € L'(v) otherwise the first statement is automatically

true. First we define v, = in£ F(x), we can write
re

Z’yLaL = Z/OOO)((L,t) dt oy, = /000 <Zx(L,t) aL>dt,

LeD LeD LeD

where x(L,t) =1 for t <~y and zero otherwise, and the last equality by the mono-

tone convergence theorem. Define £y = {x € R : F(x) > t}. Since F' is assumed

a v-measurable function then E, is a v-measurable set for every t. Moreover, since

F € L'(v) we have, by Chebychev’s inequality, that the v-measure of F is finite for all

real ¢, for a fixed ¢, there is an integer M; such that v(E;) < % / F(z)v(x)dr == M,.
R

Also, there is a collection of maximal disjoint dyadic intervals P; that will cover
E; \ A where A is a set that has no interval inside of it. We will now describe a
procedure to find such collection. Note that if E; has no interval inside of it, then
we have nothing to do. If E; has an interval inside of it, then v(E};) > 0 then there

exist an integer jo such that 277 < v(FE;) < 2770+,

Define DY := {I € D : 277 < w(I) < 277"}, We will say that a dyadic interval
belongs to the level j with respect to the weight v if I € D}. Note that is possible
that for a given interval [ in D7 its parent I is also in Dy. In fact for any n positive

is possible that I™ is also in DY, where I™ is the n — th grandparent of I. However

Vi ?
a given dyadic interval belongs to one and only one family D7, that is the collection

of intervals {D?} ez are disjoint: Dy N Dy = .
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None dyadic interval with v-length bigger than 277°*! can be in E;. Note that if
J is in DY, for m < jo then v(J) > 27™ > 2790+ > ¢(FE;). Thus we start our search
among all dyadic intervals in D . If there is such I, then we have to make sure that
it is the maximal dyadic interval in D} that is in E;, i.e., we want to capture the

ancestor /™ such that [™ is in E; and " is in DY, but [, = fn is not in E;. We

Jo?
have to ask if I' = [ is in E, and is in D}’O. If it is, then we ask if /2 is in £, and is
in D} . We keep repeating this process until we find some /™ that is not in E; or in

v
DjO .

This process of looking for the maximal dyadic interval in a level m with respect
to v is finite because of the regularity of the weight. Imagine that this process never
stops, then we have that R™ or R~ is in E;, depending if the starting interval I is a

positive or a negative dyadic interval. Therefore
v(R™) <v(Ey) <27t or o(RY) <v(E) <270t
which is not possible by the regularity of the weight.

We allocate the maximal dyadic interval I™ in Pj. Note that in this case P!
can have just one dyadic interval. Suppose that there exist another maximal dyadic
interval J, by dyadic filtration we have that J NI = (), because if I C J or J C I
then they could not be both maximal. However J NI = () implies that

2 dotl = 9=d0g=io < (T U J) < v(Ey),
which contradicts the fact that v(F;) < 2770+,

If there is not an interval I € D}-}O such that I € E, then we move to the level
Jo + 1 and repeat the process. Observe that we can find at most 2 disjoint maximal
intervals in E; and in D ;. If we do not find any in this level then we move to
the next level jy, + 2, the important thing is that if we find a dyadic interval that

is in F; for the first time in DY then we can have at most 2! maximal dyadic

Jot+n>
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intervals that are in DY | = are that are in ;. Since v(E;) < 277! and each such T

Jo+n
has v(I) > 277" so if we can find 2" + 1 such intervals, which by maximality are

disjoint then, 2770727+ 4 1) = 2~Jot1 4 9=jo=n < y(E}) which is a contradiction.

The collection P} should contain all the ”largest” maximal dyadic intervals that

are completely inside F;, since they will all belong to DY for a fixed k.

Jo+k1

Note that if v(E;) = € > 0 then either there is a dyadic interval with v-length 7,
0 < mg < € contained in E}, or there is none and we stop. If there is such interval, then
it must exists j, such that 277 <1y < 277%!, such that the collection D} has at least
one dyadic interval in E;. After we find the collection of maximal dyadic intervals in
E;, P}, we repeat the same procedure in the set E} := F;\ <U rep 1 ), which means
that we want to find the largest maximal dyadic intervals that are in E;\ <U 1P} 1 ) ,
we call this collection, P?. Again, if we are not able to find any dyadic intervals
completely included in E; \ (U [P} 1 ), then we stop, we already accomplished our
initial goal. If we find the maximal dyadic intervals inside Ej \ <U repr 1 ) then we
will repeat the procedure in the set Ej;\ <U epl P2 1 ) . We keep this process and at
each stage we generate a finite collection of dyadic intervals P!, all in Dy .y, where
ki1 > ki, 1 > 1, or we stop, if we stop at stage [ we say that P = () for alln > 1.

Then we write:

P=|J P
n=1

When n — oo, U, Urept I — (Ei\ A) where v(A) > 0 and A does not contains

any interval inside of it. Therefore

<UU )—W}Et\A) when n — oo, i.e.

I=11¢eP!

v( U 1) = o(l) = v(E\ A) < v(E).

I1eP, I1eP;
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The last equality because by construction the families P! C D o +k, and are there-
fore disjoint families of intervals. Moreover, maximality implies that if I,J € P!
then I N J = (), so on each family P¥ the intervals themselves are disjoints. Hence

P, is a collection of disjoint intervals in E;, hence Z v(L) < v(Ey).
LeP,

Observe that t > ~ if and only if x(L,t) = 0, and that ¢ < v, if and only if
t < inf,ep, F(z). Together these imply that L C E; if and only if x(L,t) = 1. Then
we can write that

S xLithar=> ar <Y Y a;<BY w(lL) < Bu(E), (3.2)

LeD LCE, LEP:, IeD(L) LeP;

where we used in the second inequality the fact that {a;}rep is a Carleson sequence
with intensity B.

ZWL—Z/ dtaL_Z/ LtdtaL_/ S (L

LeD LED LED LED
The last equality follows from Monotone Convergence Theorem, thus we can estimate
S e < B / o(E))dt = B / Fla)o(z) da.
LeD R

where the last equality follows from the layer cake representation.

x)

(<) Assume (3.1) is true, in particular it will hold for F(z) = X"J‘ , and since
infye; F(x) =0if INJ =0, inf,c; Fx) = \J\ otherwise, then
m Z Oq<Z;:IEIfI‘F OqSB/RF(x)U(x)dx:BmJU,
IeD(J) IeD
Therefore {a;}rep is a v-Carleson sequence with intensity B. O

Let v be a regular weight, {a;};ep a v-Carleson sequence with intensity B,

{A1}1ep a sequence of positive numbers and we define the positive function F(x) =
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A*(x) = sup;s, Ar. Now apply Lemma 3.1 noting that A\, <inf,c; F(x), to conclude
that

Z)‘Iaf < B/X‘(az)v(az) dx.

Ie€D R

This is Lemma 6 in [P], but with the hypothesis that v is in A, instead of regular.

Remark 3.2. If we do not assume v is reqular, and we assume instead that the
sequence {ay} cp is an extended v-Carleson sequence we will reach the same con-

clusion in Lemma 3.1 with D replaced by D.

3.1.2 Little Lemma

In order to prove Lemma 3.6 we need Lemma 3.3, which was proved by Beznosova

1
in [Bel| using the Bellman function B(u,v,l) = u — :
v(1+1)
Lemma 3.3 (Little Lemma, [Bel] ). Let v be a weight, such that v=' is a weight as
well, and let {\;}rep be a Carleson sequence with intensity B then {ml’\vf_l}lep s a

v-Carleson sequence with intensity at most 4B, that is for all J € D,

1 A
Z ! < 4B mjv.

m m[U_l
IeD(J)

For a proof of this result we refer [Be|, Prop. 3.4 or [Bel], Prop. 2.1.

This lemma is to be compared to Lemma 4 in [P], that says if {\; }ep is a Carleson

sequence then {\;mjv}ep is a v-Carleson sequence Note that the assumption is

-1

v € Ay, and there is no reference to v=1, however if v=! is a weight, then by Cauchy-

Schwarz, 1 < mpvmjv~!, and we will deduce from that result that if v € A, and v~}

As
mypv—1

is a weight, then { }rep is a v-Carleson sequence. The Little Lemma provides

the same result without assuming v € A,.

The next Lemma is a generalization of the Little Lemma, note that when p = 2,

Lemma 3.4 will give us the same result as Lemma 3.3.
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Lemma 3.4 (Ag Little Lemma). Let 1 < p < oo, w a weight such that wi T is also
a weight. Let {\;}1ep be a Carleson sequence of nonnegative numbers, i.e., there

exists B > 0 s.t.

VJeD Z A < B
IED
then
vVJeD 1 Z L<4B
T I T > mjw.

7] 1€D(J) (mfwﬁy
Furthermore, if w € Ag then for any J € D

Z muw A\; < 4lw]a,myw.

IeD(J)

IJI

Proof. We will show this inequality using a Bellman function type method. Consider
B(U,’U,l) = u — m

0,uvP"! >1 and 0<1[<1}. Note that D is convex. Note that

defined on the domain D = {(u,v,l) € R* u > 0,0 >

0<B(u,v,l) <u  foral (u,v,l)eD

and
B 1
aa—l(u,v ) > T for all (u,v,l) € D. (3.3)
vP~
and also
du
—(du, dv,dl)d’B | dv (3.4)
dl
0 0 0 du
= —(du,dv,dl) [ 0 p(1 - p)*Tr (1-@% dv
VP Ulfp
D () + 2(p — 1) Y dudv + 2 U ) >0
(3.5)
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since all terms are positive for p > 1.

Now let us show that if (u_,v_,l_) and (uy,vy,ly) are in D and we define

(uo, vo, 1) as ug = %, Vg = % and some [,

B(u_,v_,l_)+B(u+,v+,l+) > C

B lo) —
(1o, vo, lo) 9 = 4“5_1
Consider for —1 <t <1,
t+1 1—1t)u_ t+1 1—t)v_
u(t) — ( + >U+ —g ( )u ’U(t) — ( + )U+ —g ( )U

and
() = (t+ 1)l —;— (1-— t)l,.

We define b(t) := B(u(t),v(t),l(t)), note that b(0) = B(ug,vo,lo) , b(l) =
B(U+,U+,l+), b(_1> = B(U,,U,,l,), Ccll_? = u+;u_, % = % and % = % If

(uy,vy,ly) and (u_,v_,l_) are in D then (u(t),v(t),l(t)) is also in D for all |¢| < 1,

since D is convex. It is a calculus exercise to show that

b(0) — w _ _71 /_1(1 D (Bt

Also it is easy to check that

du
dt

du dv dl
—b'(t) =+, &, |B| =
®) (dt’dt’dt) dt
dl
dt

and

B<U*7U77 l*) + B<U+,'U+, l+)

B(UO7U07ZO) - 9 =
. U7+U+ U7+U+ l7+l+
- |:B<U'07’U07l0) B( 9 ) 9 ) 9 >:|
B(U_+U+ U_+U+ l_+l+) _ B(u_,v_,l_)+B(U+,U+,l+)
2 ’ 2 T2 2
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0B 1! !
= _ /! >
=(C— 8[ (Uo,vo,l) 9 /_1(1 ‘t’)b (t>dt = 4Ug—1

where I’ is a point between [y and % and

(UQ, Vo, l,) (36)

u_+uy vo+og I +1 0B
|:B(U0,’U(),lo) — B( + + +>:| C

2 72 72 ol

by the Mean Value Theorem.

Now we can use the Bellman function argument. Let uy = mj w, u— = m;_w,
—1 —1
_ - — =1 1
Uy = my,wrl, v o= my_vrt, Iy \J+|B drepy A and I = 7_1B > 1ep(s_) AI-
=1
Thus (u_,v_,1),(up,vy,ly) € D and ug = myw , vg = mywr-1  and [y =

_ U_+U+ U_+U+ l_+l+>_< >\J)
(u[)a/UO)lO) ( 9 ) 9 ) 9 - O’O’B’J| .

Then

|J|mjw > |J|B(ug, vo, ly)

B [ Bu_,v_,1_ 1
> |J| (U-I—?U—H +) + ’J| (u y Uy ) + - _1/\J
2 2 4B(meP 1)
1
| L | B, v, ) + [ | Bu—, v, 1-) + T AJ
4B(meP 1)
[terating, we get
R AL
my —T

Similarly we can obtain the following result.

Lemma 3.5. Let 1 < p < 0o, w a weight such that wiT s also a weight. Let

{Ar}1ep be a Carleson sequence of nonnegative numbers, i.e., there exists B > 0 s.t.

VJeD ZAI_
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then
viep L% M 4B (i)
|| mpw !
IeD(J)

-1

Furthermore, if w € Ag then for any J € D

1
/1

> (mow)" A < dfula, (mywir)T
1eD(J)

The proof is similar, however we use the Bellman function B(u,v,l) = uP~! —
1

v(1+1)"

The following lemma appeared in [NV] where they called it a folklore lemma, in
their paper the lemma is stated without asking for v be regular. It is not clear for
us if the regularity on the weight can be dropped. In all results that we will use the
Folklore Lemma and for all purposes in [NV] paper, the weight is in A¢ and therefore

it was regular.

Corollary 3.6 (Folklore Lemma [NV]). Let v be a reqular weight such that v="' is
also a weight. Let {\;}rep be a Carleson sequence with intensity B. Let F be a

non-negative measurable function on the line. Then

A

Zian(x) ngCB/F(x)U(x)da:.
zeL mrv— R

LeD

The Folklore Lemma is a consequence of Lemma 3.3, and the weighted Carleson

Lemma 3.1. Note that Lemma 3.3 can be deduced from the Folklore Lemma with

Fr) = xu(@).

3.2 «af-Lemma

The following lemma, for v = w™!, for a = 3 = %L appeared in the work of

Beznosova, see [Be], and for 0 < @ = [ < 1/2 appeared in [NV]. With small
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modification in her proof, using the Bellman function B(z,y) = 2%y° with domain
of definition the first quadrant x,y > 0 (a convex set), we can accomplish the result

below, this was observed independently by Beznosova [Be2] and the author.

Lemma 3.7. (af-Lemma) Let u,v be weights then for any J € D and any o, €
(0,3)

1 |Agul? |Arv|?
Z 7+ 5 NI (mpu)*(mgv)? < Cog(myu)®(myv)’.  (3.7)
]| 1D ((mIU) (mrv) )

36
min{a—2a2,3—232} *

The constant Cy 3 =

Proof. We will show this inequality using a Bellman function type method. Consider
B(u,v) = u®v? defined on the domain D = {(u,v) € R%,u > 0,v > 0}. Note that D

is convex. Trivially we have that

0 < B(u,v) < u*v” for all (u,v) € D.
Our first goal is to show that

d
—(du, dv)d*B ! > Cop[u® 20 (du)? + u®v"2(dv)?], (3.8)
dv

where C,, 3 = min{a — 202, 3 — 2%}, and d*B is the Hessian matrix of B(u,v).

d
—(du,dnyB | | =
dv

ala—Du2f afu* P! du
= —(du, dv)
afu* vt B(B — 1)utvP2? dv
= —ala — Du*" 2% (du)? — 208u® W’ dudv — B(B — 1)u®v”~2(dv)?
= [—a(a—1) = a®|u* 0’ (du)* + [ — B(B — 1) — F]u*v”?(dv)?

+ o2u* 208 (du)? + FPuv? 2 (dv)? — 208u* P dudv
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= [—ala—1) = a?u* 20" (du)® + [ - B(B — 1) — B2|uv?*(dv)*+
(ou? i du — Busv?'du)’

>[—ala—1) = a?Ju*0%(du)? + [ = B(B — 1) — F]uv”~*(dv)?

= (a — 2a®)u* 20 (du)? + (B — 28%)uv”~2(dv)?

> Cayp[u 0% (du)? + uv? 2 (dv)?]

where C,, 5 = min{(a — 2a?), (8 — 26%)}, note Cy 5 > 0 iff @ and 3 are in (0,1/2).

Now let us show that if (u_,v_) and (u4,vy) are in D and we define (ug, vg) as

Ug = % and vy = % then

B(u_,v_)+ B(uy,v P ug
B(ug, vo) — ( >2 (W4, 04) > Cap ltg—gafu+—u—|2+vzgg|“+—“—‘2 :
0 0

Consider for —1 <t <1,

(t+ Duy + (1 —t)u_

ulf) = 2 and  w(t) = (t+ Doy + (1 —t)o

2

We define b(t) := B(u(t),v(t)), note that b(0) = B(ug,vo) , b(1) = B(uy,vy),

b(—1) = B(u_,v_), % = == and % = = If (uy,v;) and (u_,v_) are in D

then (u(t),v(t)) is also in D for all |¢| < 1, since D is convex. It is a calculus exercise

to show that

b(0) — w - _71 /1(1 — e () dt

Also it is easy to check that

du dv du
_b// 1) = o d2B dt
( ) ( dt’ dt ) dv

Thus
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Since up = “=3"* then we can write u(t) = up + 1t(uy — u_) then for ¢t € [}, 1]

Then, for [¢t| < 1 5, and observing that because 0 < a, 3 < 1/2, then

203

8 a
v ug
g luy —u P+ lup — v |2]
Since —b"(t) > 0 for 3 < [t| <1 we have that

b(O) . b(_l);_ b(l) _/ |t| b//

v

1

> %;(u:() s —u U§?5|v+—v_|2) [0
> %f(ujg s — - + gaﬂ|v+—v_|2)
Therefore we can conclude
Blug.ve) — B(u_,v_)—QFB(u+,v+) :b(o)_b(—l);—b(l)
> ﬂ;ﬁ(%wrmuUg?ﬁ|v+—v_|2). (3.9)

Now we can use the Bellman function argument. Given weights u and v (we are
abusing notation, u, v are also the variables in the Bellman function), let uy = m, u,
u_ =my_u, vy =my v, v =my v. Thus (u_,v_), (uy,vy) € D and u = myu and

v = myu.

[J1(mgu)(mgv)? = |J|u0® > || B(u,v) >
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> |B(uy,vy) + | J-|Bu_,v-)
Cop (va) 2 4 (mu)® |2
115 (s Sl + st

T4 Bluy,v) + | Blu_, o)+

. X
1912 g (e

Agul> A0
(myu)?  (myv)?)

We can also estimate B(uy,vy), B(u—_,v_) by (3.9), continuing this process we will

have that
Cap 1 5 Al |Apf?
36 |J| Ie;} (mpu)® (mv)"| \( ora)E T ) (u,v) < (myu)®(myo)

We immediately deduce from the lemma the following,

Lemma 3.8 (a-Lemma, [Bel]). Let w € A4, then for any a € (0,3), the sequence

{VJI}IEDa where

Ajw|? Aqw
nr = (mfw)a(mlwl)a\1]<| ! | —|—| ! | ),

(mpw)? — (mpw=1)?

is a Carleson sequence with intensity at most 2C,[w]%,, with Co = m

Proof. Apply Lemma 3.8 to the weights u = w, v = w™!, 3 = «, then

31 3 (s Ml ) < Culo) . (310

1€D(J)

Now in (3.10) use that (mjw)*(mjw)* < [w]jg to get

> < Clmyw) (myw™)* < Cafwlf,

|J| I1eD(J)
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A proof of this lemma that works on geometric doubling metric spaces can be
found in [NV1, V]. In this paper o = 1/4 can be used, and in that case the constant
C, can be replaced by 288.

Remark 3.9. Throughout the proofs a constant C' will be a numerical constant that
may change from line to line, c, will be a constant depending on 0 < o < 1/2, as
a multiple of C,, or its square root that may change from line to line. Note that for

that range of a, e® < 2.

An interesting observation that we can make from the Lemma 3.7 is the fact that

it tell us that if w € Ag then the sequence

@ —71 \a(p— A 2 %112
{(m_['lU) (mlwﬁ) ( 1)‘ H(‘ 1w| ’Alwp 1 ’ )}
1€D

(myw)? (mpwer )2

is a Carleson sequence, Lemma 3.8 asserts this for p = 2.

Lemma 3.10. Given 1 < p < oo, the sequence {p}iep, where

Arwl? A 72
o T

= (mfw)a(mz(wﬁ)>a(p_l)|j| ((mzw)2 (myws=T )2

is a Carleson sequence with Carleson intensity at most Colw|y —~— for any a €

(O,max{%, m}) Moreover, the sequence {vr}iep, where

—1

Agwl* | AT
(myw)? i 712 Ieb
1 (mywr=T)

e

is a Carleson sequence with Carleson intensity at most Clw]a,.

Proof. Set u = w, v = wfp%l, B = a(p —1). By hypothesis 0 < a < % and also

0 < a< 5 L__ which implies that 0 < 3 < 1, we can now use Lemma 3.7 to
p—1) 2

show that p; is a Carleson sequence with intensity at most c,[w]%,. For the second
P

statement suffices to notice that v; < u;[w]z_f‘ for all I € D. O
P
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3.3 Buckley’s Inequality

The following theorem was proved by Buckley in [Bu], for the purpose of this
dissertation we just need Buckley’s inequality for p = 1. However we will state the
Buckley’s inequality for the general case and also the sharp version of Beznosova and

Reznikov for the case p = 1.

Theorem 3.11 (Buckley, [Bul). Suppose w is a weight, then for p # 0, p # 1 then
w e C’g if and only if for all J € D

S (mfwy’(Alw) 1] < Clwea(mw)?, (3.11)

1
7] 1eD(J) mrw

where C' s constant that only depends on p.

For p = 1, Buckley showed that the weight w is A% if and only if the sequence

Aqwl?
{ir}rep, por := myw (lmjw‘ 511, is a w-Carleson sequence with intensity that depends

on the [w]44 , however this dependence was not provided. Later, in [W], Wittwer
proved that if the w € A4 then the sequence {u;}p is a w-Carleson sequence with
intensity at most Clw] ad, where C' does not depend on the weight w. However the

sharp dependence was proved by Beznosova and Reznikov recentely in [BeRez].

Theorem 3.12 (Beznosova-Reznikov, [BeRez]). Let w € RH{, then for any dyadic
interval J € D

L > (mzw)(Alw)QUI < Clw]gggmyw

7] 1€D(J) mw

3.4 Lift Lemma

Given a dyadic interval L, and weights u, v, we introduce a family of stoping time

intervals S77" such that the averages of the weights over any stopping time interval
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K € ST are comparable to the averages on L. This construction was introduced

Lin their proof of the As-conjecture for Haar shift

in [NV] for the case u = w, v = w~
operators with complexity (m,n) with polynomial dependence in the complexity.
We also present a lemma that lifts w-Carleson sequences on intervals to w-Carleson
sequences on “stopping intervals”, this was used in [NV] for the very specific stoping

time intervals S7}'. We present the proofs for the convenience of the reader.

Lemma 3.13 (Lift Lemma [NV]). Let u and v be weights, L be a dyadic interval and

m,n be fived positive integers. Let ST7" be the collection of mazimal stopping time

Ak 1
MgV Z m—+n+2’

intervals K € D(L), where the stopping criteria are either (i) ﬁ’;i' +]
or (i) |K|=2""|L|. Then for any stopping interval K € ST, %mLu <mgu <

-1
empu, and hence also “-mpv < mgv < emgv.

Note that the roles of m and n can be interchanged and we get the family S77
using the same stopping condition (i) and condition (ii) replaced by |K| = 27"|L]|.
Notice that ST7" is a partition of L in dyadic subintervals of length at least 27™|L|.
Any collection of subintervals of L with this property will be an m-stopping time for

L.

Proof. Let K be a maximal stopping time interval, no dyadic interval strictly bigger
than K can satisfy any of the stopping criteria. If F'is a dyadic interval strictly

bigger than K and contained in L then necessarily

’AFU‘ < 1 and |AF'U’ < 1

= < . (3.12)
mru m4n -+ 2 MpV m-+n-+2

In particular this is true for the parent of K. Let us denote K the parent of K and
K™ its sibling, and

MEW + MW ‘ < ‘mKu — MU

Imxu —mpul = |mgw — 5 5
_ |Agul _ mgu
2 T 2m+n+2)
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So, mf(u(l -3

1 1
m+n+2)) S mru S ml?u(l + 2(

i) +2)). Iterating this process until

we reach L, we will get that

1 " 1 "
l— —mm8 < < 14—
mLu( 2(m+n+2)> —mKu—mLu< +2(m—|—n+2))

remember that |K| = 277|L| where 0 < j < m so we will iterate at most m times.

(-5) <)

1 m 1 2(m+n+2)
1+ ———— <14 ——"-—— .
( +2(m+n—|—2)) ( Jr2(m—|—n+2))

It is a calculus exercise to show that (1—%) is bounded below by % and (H—%)

Now observe that

and

m

is an increasing sequence that goes to e. We prove these in the appendix Lemmas

8.1 and 8.3. Therefore

671 1 m 1 2(m+n+2)
— < 1—— < < 14+ ———= <e.
5 mLu< m) _mKu_mLu( +2(m—|—n+2)> e

The following lemma lifts a w-Carleson sequence to m-stopping time intervals
with comparable intensity, it was spelled for the particular stopping time S77" and
w = 1 in [NV]. This is a property of any stopping time that stops once the m!"-

generation is reached.

Lemma 3.14. For each L € D let ST be a partition of L in dyadic subintervals
of length at least 27™|L| (in particular it could be the stopping time intervals defined
in Lemma 3.13). Assume {vi}rep is a w-Carleson sequence with intensity at most
A, let v]* = ZKGST? vr, then {v]'}rep is a w-Carleson sequence with intensity at

most (m + 1)A.
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Proof. In order to show that {v]"}.ep is a w-Carleson sequence with intensity at

most (m + 1)A, is enough to show that for any J € D

Z vt < (m+1)Amjyw.
LeD ()
Observe that for each dyadic interval K inside a fixed dyadic interval J there exist
at most m + 1 dyadic intervals L such that K € ST7'. Let us denote K* the dyadic
interval that contains K and such that |K'| = 2¢|K|. If K € D(J) then L must be
K% K, ... or K™. We just have to notice that if L = K* for i > m then K cannot
be in ST because | K| < 27™|L|. Therefore

ZVL_ ZZVK Z Z

LeD(J) LeD J) KeSTT KeD ) LeD(J
KGST’“

< il Z (m+ vk < (m+1)Amyw.
| |KeD(J)
The last inequality follows by the definition of w-Carleson sequence with intensity

A. The lemma is proved. n

Corollary 3.15 (Nazarov-Volverg, [NV]). Let L be a dyadic interval and let ST
be the collection of mazimal stopping time intervals K € D(L), where the stopping

criteria are either (i) ‘ﬁﬁj‘ + ﬁizl > —L or (i) |K| = 2"™|L|, where n is a

fized positive integer. Then for any stopping cube K € ST

S w2 L

[€D(K) () D (L) miw /||

VIR L

<2e*(m+n+2)mg (| flw) = /x(mrw mpw™")

VL]

Proof. For any stopping interval K in S77" we have that

1

Z—le’Qme mpwt < mgw mrgw "t < empw mpw?
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and if K is stopping interval by the first criteria then

71’2

Agw Agw™! A w2 Agw
1§0n+n+m‘ LI 7’_jm+n+2¢_ ’K’ Y —
MEW mrw=?! (myw)? (mKw 1)?

If K is a stopping interval by the first criteria we will have that, where in the

Arw
first inequality we just use that [Arv] <2,

mrw
|AW! 1]
> my(|flw) |ﬂw———
1€D(K) () Do (L) mpw /| 1€D(K) () Do (L) V]

RS \/T/I|f(x)w(:c)d:c

I1€D(K) N Dm (L)

|L/|f )w(e)dr = mi |f|w\/——

|AKU)| |AK’U)_1|2

(mygw)? mKw—l)

<(m+n+2)V2
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3.5 Sharp extrapolation theorem

In this section we will present one of the most important tools in the study
of weighted inequalities, the extrapolation theorem of Rubio de Francia. We also

present its sharp version due to Dragicevic et al.

Theorem 3.16 (Rubio de Francia’s extrapolation theorem [Rul). Given an operator
T, suppose that for some r, 1 <r < oo and every w € A, there exists a constant C'

depending only on [w]a,, such that

1T f Nl rwy < Il
Then for every p, 1 < p < oo and every w € A, there exists a constant depending

only on [w]a, such that

1T fll oy < N f 1oy
For a proof see [GC-RF].

Dragicevic, Grafakos, Pereyra and Petermichl proved a sharp version of this re-
sult. They trace the dependence of the LP(w) norm on the the L"(w) norm of the

operator.

Theorem 3.17 (Sharp extrapolation theorem [DGPPet]). Given an operator T,
suppose there is r, 1 < r < oo, such that the operator T is bounded on L"(w) for
all weights w € A,. Then the operator T is bounded on LP(w) for all 1 < p < oo
and weights w € A,. More precisely, suppose for each B > 1 there is a constant

N,(B) > 0, such that
T rwy £ No(B) Ywe A, with [w]a, < B,
then for any 1 < p < oo and B > 1 there exists Np(B) > 0 such that for all weights
w € Ay with [w]a, < Np(B), |T| rw) < Np(B), where
27N, (2C(p')> 1 B), if p>r;

N, -
2T N, (2HC)P ) B), if p<r.

»(B) < (3.13)
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where C(p) = Cpi(p’)%, this 1s the constant coming from the boundedness of mazximal

function in LP(w).

Remark 3.18. Note that if N,.(B) = B, then N,(B) = CmeaX{l’%}, more specif-
ically if 1 = 2 then N,(B) = CmeaX{lp%l} for some constant C,. Since for all
Calderdn-Zygmund operators it was proved by Hytonen in [H] that the dependence of

the L*(w) mnorm on the Ay characteristic is linear, by the extrapolation we have that

max{1——
the dependence of the LP(w) norm on the A, is given by [w]AP o

Cruz-Uribe and Pérez observed in [CrPz] that Theorem 3.16 holds for any pair
of of function (f, ¢g) and the same idea can be applied for Theorem 3.17 i.e., if

19llr@) < Ne(B)|f Loy forall w e A,
with [w]a, < B then
gl o) < Np(B)[fllzyw) — forall we A,

and Theorem 3.17 is a particular case of this result for g = T'f.
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Haar shift operators with

complexity (m,n)

Given a nonnegative integer number 7 > 0, the generalized Haar shift operator of

index 7 is an operator action on a locally integrable functions, and defined as follows.

Definition 4.1. The generalized Haar shift operator of index 7, G7 is defined as

=Y Y CELP)Qi)  fell, (4.1)

LED I,JeD(L)
27T LIS] ]

where Pr,Qr € {hr,x1/|1|}

We will decompose this operator in four types of operators, where in each of
them for every dyadic interval I, P; and @)y are always the Haar functions h; or the
characteristic function ﬁ The table 4 summarizes how we are going to construct
these operators. Some authors define (Q; normalized in L? | i.e. \;ﬁ in our case ()

is normalized in L'.
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Chapter 4. Haar shift operators with complexity (m,n)

Generalized Haar shift | Py Qs
type 1 hy hy
type 2 X1/ hy
type 3 hi | xs/|J]
type 4 xi/ 11| xa/1J]

A Haar shift operator of index 7 can be decomposed as sum of operators of type

1—4.

4
G f=Y Gif
=1

(GiN@) = >, Cry(f hhe); (4.2)

LeD I,JeD(L

2” TIL\<|1\ |J\

(G3f)(x) : = Z Z Critf. o (@) (4.3)

-y Zj CEf, XL, (4.4
LeD I,JeD(L ’ |J|

2” TIL\<|I\ IJ\
-y Y op e (4.5)
it 1w 117 1]

2” TIL\<|I\ IJ\

We will name the operator GG7 generalized Haar shift operator of type ¢ and index 7.

The generalized Haar shift operators of type 1 were defined by Lacey, Petermichl
and Reguera, in [LPetR], where they proved that the L?(w) norm of any operator
of this type is bounded linearly by the A¢ characteristic of the weight w, i.e., for a
weight w € A4

1 2y < Clog

provided C’L 1< \/FL\I/‘T for all I, J € D. This was the first result where the linear

dependence in the AZ characteristic was obtained for a whole class of operators. This
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class of operators played an important role in the solution of the As-conjecture. The
down side of their method of proof was that the dependence of the constant C' on
the index 7 was exponential. In order to prove As-conjecture better dependence
had to be proven. In fact it was proved later by [H, HPzTV, NV, T, L] that this
dependence could be improved to be polynomial. However instead of working with
these generalized Haar shifts operators, most of these authors preferred to work
with what are called in [HPzTV] elementary Haar shifts, which we will call here
elementary Haar shifts of type 1. We will discuss in the next section that if we
can show that these operators are bounded on L?(w) by C[w]a, where C depends
polynomially on the complexity (m,n) then operators of the form G7 will also be
bounded by a constant that depends polynomially in the index 7 and linearly in the

A4 characteristic.

4.1 FElementary Haar shifts of type 1 with com-
plexity (m,n)

We will define the elementary Haar shifts of type i for ¢ € {1,2,3,4} with com-
plexity (m,n) in a similar fashion that we defined the generalized Haar shifts of type
1, however in their definition instead of having I and J dyadic intervals such that
I,J € D(L) with 277|L| < |I|,|J| we will have I,J € D(L) with 27"|L| = |I| and
27™|L| = |J|. Let us be more precise and define these operators. We will often
omit the world elementary and call these operators just dyadic shifts of type 1 with

complexity (m,n).

Definition 4.2. An operator is elementary Haar Shifts of type 1 with complezity

o8



Chapter 4. Haar shift operators with complexity (m,n)

(m,n) if the operator has the following form

(17" f)(x Z Z CIJ (f,hr)hy (). (4.6)

LeD I€Dy, (L
JeDn(L)

where cf} < \/?L\‘/_ for all dyadic intervals I, J, L.

We impose the size condition in order for the operator to be bounded in L?.

2

Iz = |3 ( Z 1 (£, hf) IS S SRy
JED IeD,, L?  gep ! 1ep,, (Jm)
sy Y MW
JED I€D,, (J7)
N 2
In the last inequality we used the fact that Z a;l <N Z a; where N in this case
i=1 =1

is 2™, which is the amount of dyadic intervals in D,, (I ”) There are 2" interval J

whose ancestor is J". Also note that for each I € D,,(J"), |I| = 27™|J"| and since
I||J

|J| =27"J"| so % =2"""" thus

TP fl2e < 27273 27| hp) P = || f )2,

1eD

we can conclude [|[T7"" f|lz2 < ||f|lz2, so || 77" ||z < 1.

In the case m = n =0 and cf} € {—1,1} this operator is the martingale trans-
form. Another important example of elementary Haar shift is Petermichl’s Sha op-

erator, which is defined as
(TP F) (@) = (f, hr) by (2) = hy_(x)) (4.7)

The operator Sha is an an elementary Haar shift operator of complexity (0,1). A
breakthrough result from Petermichl says that the Hilbert transform can be written

as an average of dilations and translations of the Sha operator. In [Pet2], Petermichl
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makes use of this representation and Bellman function techniques to prove that the
L*(w) norm of the Hilbert transform depends linearly on the Ay characteristic. It
should be clear that a Haar shift of index 7 is the sum of the elementary shifts of

complexity (m,n) where 0 < m,n < 7.

An important and hard part of the proof of the As conjecture was to obtain
bounds for Haar shifts operators of type 1 that depend linearly on the As- characteris-
tic and at most polynomially on the complexity (m,n). In 2011, Nazarov and Volberg
[NV] provided a beautiful new proof that still uses Bellman functions but minimally,
and that can be transferred to geometric doubling metric spaces [NV1, NRezV]. Treil
[T], independently [HLM+] are able to obtain linear dependence in the complexity.
Crucial in both [NV] and [HLM+] is the use of some stopping time argument (it is
called a corona decomposition in [LPetR, L1, HLM+]).

Theorem 4.3 (Hytonen-Nazarov-Pérez-Lacey-Volberg-Treil, [HPzTV, NV, L, T}).

Let (m,n) be nonnegative integer numbers and w a weight in A3 then

1T | r2w) < Clm+n+ 1) [w] ag (4.8)

This result was proved by Hytonen,Pérez,Volberg and Treil in [HPzTV] with
k = 3, later Nazarov and Volberg gave a new and very interesting prove with £ = 4
and Lacey in [L] and Treil in [T] proved with & = 1. For the proof of the A, conjecture

estimate 4.8 for any finite k is enough.

Let us now prove that composition of Haar shits of type 1 is also a Haar shift of

type 1.

Theorem 4.4 (Composition of Haar shifts). Let m,n,r, s be nonnegative numbers
and T{™" and T} Haar shifts operators of type 1, then the composition T;""T|" is
a Haar shift of type 1 with complexity (max{m —s+rr}max{n,n+s— m})
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Proof. Let

(T f)@) =D > erp(fih)hs(x). (4.9)

LeD I1eD,, (L)
JeD (L)

(TP f)) =D > Ry hhy(). (4.10)

UeD XeD,(U)
YeDs(U)

where

| \/|T\/|7 and \cg( \/W\/V

L] U
Then for a given f

TP TP f() =) Y c,J<Z > cXYf hx)hy h1>hj(x)

LeD 1€Di (L) UeD XeD, (U
JeDn (L) YeDs(U)

=3 >0 > D ek hx) by ()

LeD I1€D,, (L) UeD XeD, (V)
JEDL (L) YeDs(U)

=X 2. > ( > #ﬁﬁ?b(hy,h1>><f,hx>hj(x)

LEDUED XeD,(U) \ I€D(L)
JeD, (L) YeDs(U)

=22, 2. il heh(@)

LeDUEeD XeD,(U)
JeDy, (L)

where

C§<UJ1 = Z C%}CXYUle hr).
I1eDp (L)
YeDs(U)
Since Y € Dy(U) and I € D,,,(L) and (hy , hy) # 0 if and only if Y = I we have that
if UM L =0 then (hy, h;) = 0. Moreover, if Y = I we have that |U|27% = 27™|L],
which implies that U € D,,_4(L) if m > s or L € Dy_,,(U) if s > m and U = L if

S =1Mm.
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If m > s then

T @) =) Y Do ki hx)hu(a)

LED UEDy,—s(L) XD (U
JeDn(L)

=3 > &GN b)),

LeD Xeleﬁ»’rfs (L)
JEDR(L)

because if U € Dm s(L) and X € D,(U) then X € D,y,—s(L). Therefore if
VIXIV I

A< YV T | ] , then Ty""T7* is Haar shift of type 1 with complexity (m +

r— s,n). Let us show now that CX?’]l satisfies the size condition, where U is the

unique interval in D,, _, containing X € D,, .

X =1 D el by, ha)
1€Dm(L)
YeDs(U)
Y J X Y
< Y s Y YRV
Y=I€D,(U) YeDs(U)
_ o2 VIV VIXZ 2 VIUT _ VIXVIY
L] U] Ll

Note that I =Y should be in U and in L, but since U C L then the first sum just
collapses to a sum for Y € Dy(U).

If s > m then

TmnTrs Z Z Z C;UJl f,hX>hJ($)

U€eD LeDs_,(U) XED,(U)
JEDR(L)

— Z Z cg(Uf(f, hx)hy(z)

UeD XeD,(U)
JEDstn—m(U)

Note if L € Ds_,,(U) and J € D (L) then J € Dgip—m(U). Therefore we just have

VIX|WVII
UL < VIXIVIJ] T in order to T7""T}"® be Haar shift of type 1
with complexity (n,n + s —m). Lets us show now that if cy

to show now that cy

LU . .
U satisfies the size
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condition.
X =1 D ey by ha)

IEDm(L)

YeDs(U)
C Y sy VIV
= 106Xy

Y=I€Dmn (L) I1€D,(U) |L| ‘U‘

w2 VLWV VIX2TE VILL  VIXV]
L] U] U]

Again note that I =Y should be in U and in L, but since L C U then the first sum
just collapses into a sum for I € D,,(U). Thus,

max{m—s—l—r,r},max{n,n-‘,—s—m})

T = Tl(

4.2 Elementary Haar shifts of type 2, 3 and 4 with

complexity (m,n)

Analogously we define the elementary Haar shifts of type 2, 3 and 4. For these op-
erators the size condition is not enough to guarantee boundedness on L?, so bounded-
ness on L? is assumed in order to prove the linear dependence on the A¢ characteristic

on weighted spaces.

Definition 4.5. We define an elementary Haar Shifts of type 2 with complexity

(m,n) as
@) =3 Y Xt (4.11)
LED [€Dpm (L)
JEDR(L)

For m = n = 0 and c” = (b, hy)for some function b € L; . this operator is the

loc

dyadic paraproduct, 7, known to be bounded in L? if and only if b € BMOY.
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Definition 4.6. An operator is an elementary Haar shifts of type 8 with complexity
(m,n) if the operator has the following form

(75" f) Z Z ery(fhr) |}|) (4.12)

LeD I1eDy (L)
JED, (L)

Remark 4.7. For m = n = 0 and cﬁ = (d, hi), for some function d € L} ., this

locy

operator is an adjoint of a dyadic paraproduct, 7%, known to be bounded in L? if and

only if b € BMO<.

Definition 4.8. We define an elementary Haar Shifts of type 4 with complexity

(m,n) as
m n )(L7( )
(T, E E |[| o (4.13)
LED I€Dn (L)
JeDy (L)

Remark 4.9. Form =n =0 and cﬁ}l = (b, hy) (d, h;) for some function b,d € L,
this operator is formally the composition of an adjoint of a dyadic paraproduct with

a dyadic paraproduct, wymy,.

Note that for ¢ € {1,2,3,4} we can estimate the norm of G] by the norm of an
elementary Haar shift of type i. For all m,n such that 0 < m,n < 7 let T,"™" be the
elementary Haar shift of type ¢ where the C[ L =Cp T - and C IL 7 are the coefficients of

G". Then for w a weight

177 fllzeqy < (7 +1)% max ||| 2w (4.14)

1<m,n<t

Therefore if for i € {1,2,3,4} we can estimate 7; " for an arbitrary m,n by
177" 220wy < C(m+ 1+ 2)*[w] 42,

for some positive integer a. Note if 7 = max{m,n}, then (m +n+2)* <2%(7+1)%,
then
1T || 2wy < C(7 4 1) w)] 2.
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It is easy to see that Haar shifts of type 1, 2, 3 can be written as Haar shifts of type
4, we just use the fact that a Haar function in an interval I can be written as a linear
combination of characteristic functions supported in the children of this interval. We

summarize these facts in the next remark.

Remark 4.10. Given m,n two nonnegative integer numbers, let T,"" fori € {1,2,3}
be elementary operators of type i with complexity (m,n) as we defined with coefficients

L
cry- Then

: mn _ mAlntl L4 L4 AW L1
(1) T, =T, where iy, = ¢y = S 1Cry
debt kA RVALRVACIBN S|
ana Cy_ g =Cr g = 1 CrJ
g ; n+1 L4 VIIl L L4 [J] L1
(i) Ty"" =T, where ¢y = Y5=¢/7y and ¢y = —¥5=¢[;
1 L4 AVALIPN S| L4 ALIpRS|
(iii) T3™" =Ty where ¢/, = %CI’J and c;’; = —%CI’J

As we already discussed, Haar shifts of type 1 are bounded in L? if we impose
size conditions on the coefficients, but in order to get boundedness of operators of
type 4 we need to impose further conditions, see Theorem 3.4 in [HPzTV]. The
advantage to separate the operators of type 1, 2 and 3 from the operators of type 4,
is that we can impose less conditions on them in order to be bounded in L?(w) for
a weight w € A,. Also instead of testing condition we will impose conditions on the

coefficients of the operator.

Operator Complexity as an operator of type 4
Martingale transform (1,1)
Paraproduct (0,1)
Dual paraproduct (1,0)
Sha (1,2)
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Next theorem relates a Haar shift of type ¢ with complexity (m,n) with its formal
adjoint. The formal adjoint of Haar shift of type 1 is also a Haar shift of type 1. The
same phenomena occurs with Haar shifts of type 4. Haar shifts of type 2 have Haar

shifts of type 3 as adjoints.

Proposition 4.11. Given nonnegative integers m and n then the formal adjoint of

the operator T;™" are given by the following

(i) (T =T{" and (T3 =T

(i) (T3") =T and (T3")° = 13"

Proof. (i)

<T1m7nf7 <Z Z C]J fahf h]a >
(L)

LED I€D,(
JEDL (L)

=3 > erlfihn(h.g)

LeD €Dy (L)
JeDy (L)

<fZ Z cug,m > (f. T{"™g),

LeD 1eD,y,
JeDn(L)

where T7""¢ : Z Z dJI g,hy)hr and dJI = CIJ obey size condition. And

LeD JeDm (L)
I€Dy (L)

(TP f, g) = <Z 3 c”fo/urm/ur g>

LeD I€Dy (L
JeDn(L)

=50 S B/ /1L 9)

LED I€D (L)
JeDy (L)

~(1X X it/ = (£107)

LeD I€D. (L)
JeD, (L)
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Chapter 4. Haar shift operators with complexity (m,n)

where T,""g := Z Z dﬁ’?(g, hyyhr and dﬁ? = cIJ obey size condition.

LeD JeDm (L)
I€Dy(L)

(i)
(T f, ) = <Z )3 c”fxf/|f|>hj,g>

LeD IeDy (L
JeDn(L)

=>. > CIJf7X1/’[|><hJ, 9)

LeD I€Dm (L
JeDn(L)

(1 X dnl) - 0.1

LED I€D (L)
JeDy (L)

where T3""g := Z Z d 3(g,hs)h; and dL] = cf? obey size condition. By

LED J€Dm(L)
IeDn(L)

what we just proved we have that (T3"")" = (T,"")" = T,"™". O
Remark 4.12. For any nonnegative integer m, T{""™ and T,"™ are self adjoint

operators.

As a corollary, if 7" is bounded in L?(w) with a bound that depends on [w] g
and on (m+n) then (7;™")* is bounded on L?*(w~") with the same bound depending

on [w'] 44 = [w]ye and m+n =n+m.

4.3 A further particularization

We will now define the particular cases of operators of type 2, 3 and 4 that we
will work on this dissertation. A paraproduct of complexity (m,n) is the operator
defined formally by

(m" Z Z C[ T sbrmrfhy(z), (4.15)

LeD IeDy (L
JeDn(L)
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Chapter 4. Haar shift operators with complexity (m,n)

where |cf ;| < \/?L\|/|7 for all dyadic intervals I, J and L and b; = (b, h;) for a

locally integrable function b.

A paraproduct of complexity (0,0) is the dyadic paraproduct m,, known to be
bounded in LP(R) if and only if b € BMO?. Similarly 7,"" will be bounded in LP(R)
if and only if b € BMO?, furthermore it will be bounded in L?(w) whenever w € A,,
and we will trace the dependence of the operator bound in the A,-characteristic of

the weight, the BMO? norm of b and the complexity (m,n) in the next chapter.

The definition of paraproduct of complexity (m,n) is inspired by the definition
of T{™", the Haar Shift operators with complexity (m,n), in [H], [HPzTV] [NV].

One can observe that the paraproduct of complexity (m,n) is the composition of
the Haar shift operator of type 1 with complexity (m,n) and the dyadic paraproduct
of complexity (0, 0).

Proposition 4.13. Consider a paraproduct of complezity (m,n), m,"", with coeffi-
cients cf ; then
7rl7)n7n = Tlm,n/]rba

m,n . L1l I
where Ty has coefficients ¢’y = cf ;.

Proof. For any f

(17" m f) (2 Z Z CIJ (mof, ha)ha(z)

LED I€D,, (L)
JGDn( )
— Z Z < Z methkahI>hJ< )
LeD I€D,, KeD
JGDH(L)
_Z Z CIJZmeKf hK,hI>hJ( )
LED I€D,, (L) KeD
JeDn( )
_ Y b (£ XYy —
- 1,0%1 ) ’[| J\L Qe '
LeD I€Dy (L
JeDn( )
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Chapter 4. Haar shift operators with complexity (m,n)

A paraproduct of complexity (m,n) is a type 2 Haar shift operator and therefore
by proposition 4.11 its adjoint should be a Haar shift operator of type 3. For a
function b € L], we define the dual paraproduct operator of complexity (m,n), r,""

by

(' =3 > er b (fh) |(‘) (4.16)

LeD 1eD, (L)
JEDm (L)

where |cf ;| < \/FIL\(E for all dyadic intervals I, J and L and b; = (b, h;) for all
IeD.

The dual paraproduct with complexity (m,n) is a type 3 Haar shift operator,

moreover

(my )" = ™ (4.17)

Using identity 4.17 and Propositions 4.14 and 4.11 we have that

ky "= (m ") = (17" )" =y (T = mp T (4.18)
Given b,d € L}, then composition of a paraproduct with dual paraproduct op-

erator of complexity (m,n),

gl:ndn Z Z C[Jbldlmlf xs(2) (4.19)

LeD [eD, (L) ’ |
JEDm (L)

where [cf ;| < \/WL\‘/U for all dyadic intervals I, J and L and b; = (b, h;) and
d; = (d,hr). These operators are particular case of a dyadic shift of type 4 with

complexity (m,n).
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Chapter 4. Haar shift operators with complexity (m,n)

Proposition 4.14. Given b,d € L} and composition of a paraproduct with dual

loc

paraproduct operator of complexity (m,n), ¢,;" with coefficients {C% s} then formally
l:z;n =, 1" 74,

: L1
where T{"™" have coefficients ¢;’; = c¥; for all I € D.

Proof. By proposition 4.14,

(17" 7q) = 73"

Then
(mp Ty " maf) (2 ZbK<Z Z C[Jdl< ; |;|)>hJ< ), hK>|J|( )
KeD  LeDIeDn(L
JEDn(L)

xi ()
-y v bKdIc”<, 0 ><h1,hK>|J|()

K€D LED I€D,, (L)
JeDn( )

=X 3wy (127)

LeD IeDy (L
JeDn(L)

-y ¥ bldlc”<f, |;T>‘><7"’(x)

LeD I€Dm (L
JeDn(L)

\_/

Remark 4.15. For m,n,r, s nonnegative integers we have,
mn_rs __ _x MM\ * T, S ___km,mar,s
Ry g =y (17) T e = w1y

« (max{n—s—i—r,r},max{m,m—i—s—n}) (max{n s+r,r},max{m,m+s— n})
= Tpt1 b,d
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Chapter 5

Bounds for Operators type 2 and 3

1
loc

A paraproduct of complexity (m,n) is the operator defined formally for b € L
by

(" ) @)=Y Y ef mfb hrhy (), (5.1)
LeD I€Dy, (L)
JED,(L)

where |cf ;| < \/WL\(E for all dyadic intervals I, J and L.

In Chapter 4 we showed that the paraproduct of complexity (m,n) is the com-
position of the Haar shift operator of complexity (m,n) and the dyadic paraproduct
of complexity (0,0), m,"" = Ty""m,. It is well known that both the Haar shift opera-
tors [LPetR, CrMPz, H, T, L] and the dyadic paraproduct [Bel] obey linear bounds
in L?(w) on the A,-characteristic of the weight, these estimates immediately will pro-
vide a quadratic bound on the As-characteristic of the weight for the paraproduct of
complexity (m,n), namely, ||7,"" f|| 2w < C’mm[w]ingHLz(w), where C,, ,,, depends
polynomially (even linearly) on n+m. We will show that in fact, the paraproduct of
complexity (m,n) obeys the same linear bound obtained by Beznosova for the dyadic
paraproduct of complexity (0,0), multiplied by a polynomial factor that depends on
the complexity.
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Chapter 5. Bounds for Operators type 2 and 3

The paper [LPetR] was the first to introduce the class of Haar shifts operators,
it also proved the linear As-bound for this class, however their bound depends expo-
nentially in the complexity of the operator. The proof given by Nazarov and Volberg,
in [NV], to show that Haar shifts operators with complexity (m,n) are bounded in
L?(w) linearly by the Ay-characteristic of w and polynomially in the complexity, with
appropriate modifications would also work for generalized Haar shifts operators with
complexity (m,n), which includes paraproduct of complexity (m,n). The modifica-
tions that are needed to cover the class of generalized Haar shift multipliers, for the
particular case that we called composition of dual paraproduct with paraproduct will
be addressed in the next chapter. In this Chapter we describe those modifications
for the paraproduct, and in our proof we trace the linear dependence in the BM O-
norm of b as well. But before, we will present this new and conceptually simpler
(in our opinion) proof for the linear bound in the Aj-characteristic for the dyadic
paraproduct, which will allow us to highlight certain elements of the general proof

without dwelling with the complexity.

5.1 Complexity (0,0)

For complexity (0,0) the operator is

(mf) (@) = ZCI myf (b, hr)hi(z) (5.2)

1€D

with |¢/| < 1.

Beznosova proved in [Bel] that the dyadic paraproduct m, obeys a linear bound
in L?*(w) both in terms of the A,-characteristic of the weight w and the BMO-norm
of b.

Theorem 5.1 (Beznosova, [Bel]). There exists C > 0, such that for all b € BMO?
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Chapter 5. Bounds for Operators type 2 and 3

and for all w € Af,

I7f || 22wy < Clw]ag |6l paroa |l f Il 22 w)-

Beznosova’s proof is based on the a-Lemma, the Little Lemma, which were
the new Bellman function ingredients that she introduced, and on Nazarov-Treil-
Volberg’s two-weight Carleson embedding theorem, which can be found on [NTV].
Next we give another proof of this result, this proof is still based in the a-Lemma 3.8,
however it does not make use of the two-weight Carleson embedding theorem, in-
stead we will use properties of Carleson sequences such as the Little Lemma 3.3, and
the Weighted Carleson Lemma 3.1, following [NV] argument for Haar Shifts of com-
plexity (m,n). We are using the same Bellman function ingredients that Beznosova

introduced in her proof, but in a more direct way.

Proof of Theorem 5.1. Fix f € L?*(w) and g € L?(w™') and define by = (b, hy), by is

a Carleson sequence with intensity ||b||2B MOd

By duality, suffices to prove:
[{mo(fw), gw™)| < Clbll mroalw] agll fll 2y 19 £2-1)- (5-3)
Note that

(5.4)

[(m(fw), gD = [ (3 erbrmi(fuw)hi(x), gu)|

Replace h; = th}”_l + ﬁ;\;‘fﬂ where a; = a}”_l and Or = ﬁ}“_l as described in

Proposition 2.2. Use the triangle inequality to break the sum in (5.4) into two

summands to be estimated separately.

<D lbrlmr (| flw){gw™ )]

I1eD

‘< Z crbrmr(fw)hy(x), gw_1>

1€D
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Chapter 5. Bounds for Operators type 2 and 3

< Z !bl‘ml(’f|w)|<gwila0‘lhw + O \/\T>|

I1eD

-1
Using the estimates oy < vmyw=1, and gGr < ﬁﬁ,ll, we have that,

< X1+

‘< Z crbymy(fw)hy(x), gw_1>

1€D

where

¥ = Z|b1|m1 | Flw)[{gw™", k¥ Y[/ mw=

1€eD

SHp ;|bf|m1<|f|w>|<w i 'jm

Estimating Y;: First using that < M,f(z) for all z € I, and that

my (| flw)
mrw
{gv, £} = (g, f)v; second using the Cauchy-Schwarz inequality and mywmpw™" <

[w] 4,, We get

21<Z\b| |f| (g, by Yt | maw ™ mgw

1€D

1nfx IM f( ) 1 .
< Z by | —= ‘(g, hY )wq’ mpw” " mrw
IeD Vi

(Zwmfme’Mf )(Dg,hw |>

1eD I1eD

[V

Using Lemma 3.6 with F(z) = M2 f(z) and v = w™?, then Using Weighted Carleson
Lemma 3.1, with F(z) = M2 f(z), v = w, and oy = % (which is an w-Carleson
sequence with intensity 4(/b]|%,,0, according to Lemma 3.3 ), then, together with the

fact that {h%  };ep is an orthonormal system in L*(w™"), we get

5 < [w]AQHbHBMOd(/RMif(x)w(x)dQ 901221y
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Chapter 5. Bounds for Operators type 2 and 3

< C[w]AzHb”BMOd“f”L?(w)HgHL?(w*l)-

In the last inequality we used the fact that M, is bounded in L?(w) with operator

norm independent of w.

Estimating Y,: Let a € (0, %), using similar arguments than the ones used for Xy,

we conclude that,

" - Aw-112 .
22 < Z |bI|mI |f| myr |g| \/lTrLITl)Q|I|(me me—l)Oc (me mw 1)1 2
1€D I
< [wli > lbrl i inf M, f(x)M,-1g(x)
B - IeD wer " N ,

where i is defined in Lemma 3.8, and in the last inequality we used the fact that

for any I € D for all x € I,

my|flmy gl < My f(2)My-1g(z).

Since {|br|*}rep and {pr}rep are Carleson sequences with intensities [|b]|%,,0a
and [w]%,, respectively then, by Proposition 2.21, the sequence {|bs|\/fi1}rep is a
Carleson sequence with intensity ||b|| zarod [w]i. Thus, by Lemma 3.1 with F'(z) =

wa(ZE)walg(l'), oy = |bl|\/Ea and v =1,
S < [w]'s [bllsarolwll, / Maf (2) My 1g(z) da.
R

finally using Cauchy-Schwarz and the fact that wiwz =1 we get

Xy < [w]AQHbHBMOd</IRMif(m)w(w)dx> <4Mi—1g(w)w‘l($)dx)

= [wla, 16l Baroa || M f1] 22y | Mo 9| 22 w1y

< C[w]AzHb”BMOd||f||L2(w)||g||L2(w*1)-

These estimates together give (5.3), and the theorem is proved. O
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Chapter 5. Bounds for Operators type 2 and 3
5.2 Complexity (m,n)

In this section we prove the linear in As-characteristic, polynomial in complexity
estimate for the paraproducts of complexity (m,n). The proof will follow the general
lines of the argument presented in Section 5.1 for the complexity (0, 0) case, with the
added refinements devised by Nazarov and Volberg [NV], adapted to our setting, to
handle the general complexity.

Theorem 5.2. For allb € BMO? and w € A3, there is ¢ > 0 such that

17" Fll 2y < e+ m 4 2)*[w] 4|0l Baroal £1] 22w

Proof. Fix f € L*(w) and g € L*(w™') and define by = (b, h;) and let C" :=
C(m +n+ 2). By duality, it is enough to show that

|<7Tz7)n’n(fw)=9w_l>| < 0(02)4[11)]142||b||BMOd||g||L2(w*1)Hf||L2(w)

We can write the left-hand-side as a double sum that we will estimate,

‘<Z Z cry brmy(fw) hy , gw™ 1>‘

LeD IeDy, (L
JeDn(L)
VIV
<30 30 Il p ) Hgw )l
LED IeD,, (L)
JeDR (L)

As before we will replace h; = « Ih}fl + Br \%’7‘ and break into two terms to be

estimated separately.

‘< > 2. crabmi(fw) hy(), gw‘1>

LED I€D,, (L)

JeDR (L)
\/U AT/
LeD I[€Dy,
JEDn( )
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<> > ] VIV ) (g™, ash”

LED I€D (L) L]

'+
Vil
JGDR(L)
[ J 1
<Z Z |b|\/’_\/’— (Iflw)[{gw™", hY Y/ mywt +

LED I€D,, (L) L]
m

JED, (L)
- [Ayw]
+> Z |1 \L\ mz(!f!w)ng 1;XJ>’W
LeD IeD,,
JE'Dn(L)
:ET,n_i_E?Z?’L,n

We define for each weight v, and ¢ a locally integrable function the quantities,

o= 3 (ol (55)

JeD (L) |L|
on Ay J
Rro= 3 o L (5.6)
JeDL (L) Y L]
v, m I
Phmoi= 3 lbrd ma(ol) VI, 67
I1€Dm (L) | |

We also define the following Carleson sequences, see Corollaries 3.14 and 3.8,

[Agw™*  |Agw]

(mgw=)? = (mgw)?

e = e ™) ;) K1, intensity Cluls,

Z px, intensity C'(n + 1)[w]%,,

KeST?

b . ’bKP -1 a
Wy = W(mKw MKW ) intensity OHb“BMOd[ ]A2’
pb" = Z pb., intensity C'(n + D16l1% 00 [w]4,

KeST?

where ST is the stopping time defined in Lemma 3.13. Note that

m,n w,m w=ln m,n w,m wln
S PO fSY g, SE <Y PP RY g,

LeD LeD
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thus in order to estimate X7"" and 37" we will use the following estimates for

PO f, SqL”fl’mg and Rffl’mg, where 0 < a < 1/2 so we can use the a-Lemma 3.8,

srg < ( 3 |<g,h?_1>wll2> g, (55)

JeDy,

Ry g < e Cp(muw) ¥ (mpw™)' % inf My ((g]")? () /4, (59)

PO f < e Ch(mpw)'™% (mpw™) = inf My ()7 (2) (1bll saos /i + 1\ 1E™).
(5.10)

Estimate (5.8) is easy to show, we just need to use Cauchy-Schwarz inequality

and the fact that {J € D,,(L)} is a partition of L.

—1 —1 \/m
Si7g = ) Hghy umlVmpw T2
JEDA(L) VI

1 1
1 2 N2
(g (5 )
JED(L) JCL,|J|=2-"|L]|
1
1 2 1
< ( S (g, h8 >w-1|2) (myw)?
JeDR (L)

Estimate (5.9) was obtained in [NV], we include their proof for completeness in
Lemma 5.5. With a variation over their argument we prove estimate (5.10) in Lemma
5.4, both lemmas we prove in Section 5.2.2. Let us first use estimates (5.8), (5.9)

and (5.10) to estimate X" and X",

Estimate for X"": Estimating the first term we get, after using Cauchy-Schwarz

inequality and the fact that {h% '} cp is an orthonormal system in L*(w™') and
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D = UrepDin (L),

m,n w,m wln
S Y PV fSE g

LeD

n —1\1—-& . % m 1
SCm Z(me mpw )1 2 ;TGlE (Mw(|f|p)($)) vy WHQHLZ(w—l

LeD

ittt e (10770 ) ol

< e JZQ(Z;”L@_l inf (1.0 >)> ol

LeD

B =

Since by Bessel’s inequality

w1 %
( S J(g.n >w1|2) < 19l 30

JeD, (L)

Using the Weighted Carleson Lemma 3.1 with F(x) = (Mw(|f|p)(x))2/p, v = w,
and ay = (LL) Recall that v} := (||b|| sarod /I + ,u%m), by Proposition 2.21,

(v}")? is a Carleson measure with intensity at most C}2 [|b[|%,,0d [w]ad. By Lemma 3.3,

nELLLw )_1 is an w-Carleson sequence with comparable intensity, thus we will have that

= < (€ suonfull, 2wl ol [ M) ute)ie)

_ eo(eny (0

[w]a, 1l Baroallgll z2w)

)
(Y] € il blsmodgli e L

(0% n 5
e*(C1)2 [wlapllbll paroa gl 2w I 1 22w -

IN

Here we are using the fact that M, is bounded in L?(w) for all ¢ > 1 and furthermore

||wa”Lq(w) S Oq/HfHLq(w)
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2 N
In our case ¢ = — and ¢’ = <—> =——=2(m+n+2).
P p 2—-p

Estimate for ¥,"": Using the fact that (m;wmyw=")'"* < [w]}.,

m,n w,n w1l m
Xy SZPbL’fRL g

LeD

<e () Y]l inf (M (1f17)(@)7 inf (Mayr(lg”) () 7vE /i,

LeD

(5.11)

Since (v*)? and i} have intensity at most C'(m~+1)[w]4, ||0]|%5a0 and C(n+1) [w]ig
respectively then, by Proposition 2.21, we have that vj*\/u7} is a Carleson measure
with intensity at most C(m + n + 2)||b|| pproe[w]%,. If we now apply Lemma 3.1 in
(5.11), with FP(x) = My(|f|P)(z)My-1(lg[?)(x), ar = v'/uF, and v = 1, we will
have, by Cauchy-Schwarz and the boundedness of M, in L%(v) for ¢ = p/2 > 1,

S5 < (o)) 3 inf (M (1f17) () My (lg17) (@) v /1

LeD

< (Y [w]a, Bl aron / (M (1))

B =

(M (lg]P)(2)) 7 da

Using Cauchy-Schwarz and the fact that

( / (Mw<\f|p><x>>iw<x>d> = nspl?;

D=

and

N

([ rtaprayirtas) = fanocamly

we have that

5P < (Ol Wlsaios PSP [10s(s)])?

2
L7 ()

S = \/

gé{(i)f(%)[ s [6saroe |11 5 H!g!pH

1)
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= ¢ (C1)° [wlaa ]l Brroall £l 2y 191l 2u-1y.

Together these estimates prove the theorem with ¢ < 6, under the assumption that

estimate (5.10) holds. O

5.2.1 Bounds for ;"

As an immediate corollary of the estimate for the paraproduct of complexity

(m,n) we get similar bounds for the adjoint.

Corollary 5.3. For allb € BMO? and w € Ay, there is ¢ > 0 such that

k™" Fll 2wy < e(n+m + 2)* [w]a, bl saroe ]| f | L2w) -

Proof. By Proposition 4.11 ;" = (m,""")*. Therefore
15y 22 ()~ 22wy = 17" ([ 2201 £21)
Using Theorem 5.2 we have that
17" | 2wty = 221y < e(m +n 4 2)*[[bll paroalw ™ ag;
and since [w]4g = [w™'] 4,4 we have that

1455 " | 2wy —L2(w) < (0 +m + 2)4||b||BMod[w]Ag-

5.2.2 Bounds for Pb;" and R;"

The missing step in the previous proof is estimate (5.10) and (5.9), which we
now prove. Inequality (5.9) was proved by Nazarov and Volberg in [NV], with an

adaptation of their argument we will prove (5.10).
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Lemma 5.4. Let b € BMO, ¢ a locally integrable function, then

PE; ™6 < ¢ (muw)' ™ (mw ™) inf (Mal(017) (@) P17

zeL

where V7" = (|1bll saoa VT +\ ™), and p =2 — .

Proof. Let STT" be the collection of stopping time intervals defined in Lemma 3.13,
then

1]
Poyg =Y |bs] m(|plw) f
I€D, (L) \% |L|

1b/] 1]

= > Z \/m(!cb\)\/m

KeSTT IeD(K

(5.12)

Now note that if K is a stopping time interval by the first criterium then

1by] 1] K|
mallol) e < [bllasrosmic(jol)~ 7
fm%pmm 1] VIL] SV T

< \/_(m—l—n—l—2)||b||BMOde(\¢|w)\{T\//TK(mKw) 2 (mgw™ 1)%&

The first inequality because % < ||bl| smoe and the second inequality because

1 <V2(m+n+2) /g (mgw mgw™) 2 .

Now we use the fact, proved in Lemma 3.13, that we can compare the averages
of the weights in the stopping interval with their averages in L, paying a price of a

constant e?, then

Ib | |
> (|plw)——=
1€D(K) () D (L) vi vi

K —a
c;"ea||b||BMOde<|¢|w>—V,’L,’\rLK(me) £ (muw )
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If K is a stopping time interval by the second criteria then the sum collapses to

just one term

\/!f| |bx| |K|
|br| mi(|olw) mg(|p|lw)—==
oo Frﬂ F\K VI

<CT mg( |¢>|w =

—_« 1\ =&
pbe(mygw)2 (mgw ™)

|L|

—a

<Cle“my ]¢|w e (mpw) = (mpw™) 2,

\L\
where in the last inequality we used Lemma 3.13 again. Then plugging 5.2.2 into we

will have

K a
PHS < O [Bllmon 3 mK<|¢\w>—V"m—<me> £ () F

Ke=; |L|

Crie® Y mic |¢!w \LI e (mpw) = (mpw™)

Ke=y

where

=1(L) ={K € 8T} : K is a stopping time interval by criteria 1}
and

Eo(L) = {K € 8T} : K is a stopping time interval by criteria 2},

note that =; (=5 is a partition of L.

K
Let Sy = 3 mie(|6fw) Fvnu‘”‘_f{
and =

2, = (mpw™) T S mc(|6lw) |L| VIRT [ o

Ke=s

Py < Cpre (myw) ¥ (mpw™)F (6l pasoeShy, + Ty ).

Sho < (X ooy (X uK)é

Ke=y
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< ( 3 <mK<|¢|w)>p(%)2)pm. (5.13)
Ke=1(L)

Note that pj' = Z Wi > Z pur and that the last inequality follows because

1€D (L) 1€5,
£ < 1. Then
K1\ K\
(S omtronl]) < 5 ontenr(f)
Ke=Z, KeSTp
o K| . .
Also, by the second stop criteria we have that m =277 for 0 < j < m, then
(@)2 — <_2_j‘L‘)2 — 9= sGrnry)
L] L]
, j , K
< 27t <2277 = 2%. (5.14)

Plug (5.14) in (5.13) we will have:

Shy < (2Z<mK<|¢|w>>P%>pm

< (2 Z (mK(Iqﬁlpw))(mKw)p_l%) p\/ﬁ-

One more time using Lemma 3.13, we have that

Th < 2ie"‘“—i><me>1“p<Z<mK<|¢\Pw>>%> Vi

Ke=,

< emmpuw(mpw) 7 (mu(olrw))” /i
= compuo ("N e (o)) /iR
< emmywinf (My(91")(@))” v/ip
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and

zas(zxmﬂmmﬁgf(zp&f

Ke=s Ke=y
K|\ ? z
< ( 3 @nK0¢hu»p(%z%) ) o,
KeSTT

Following now the same steps as we did in the estimative of X}, we will have

53, < emyw inf (My(|6)(2)) "\ "

Thus,

Py < CMe® (mpw)' ™2 (mpw™) = inf (Mw(’¢|p)($))p (1]l prroa/p + \/ Mlim)

zeL

O
For completeness we also present Nazarov and Volberg proof’s of estimative 5.9.
Lemma 5.5. Let ¢ a locally integrable function, then

Ry 6 < Clm e+ + 2)(mew) ¥ (mpw ™) inf My (1917)3 (@) /1.

Apw ' |Apwf

(mpw=)?  (mpw)?

where jig, = (me)“(mel)a( ) L] andp =2 — m+1n+2'

Proof. Let ST} be the collection of stopping time intervals from Lemma 3.13, then

w1 n |AKw | |J|
Ry o= ———my(|¢lw) —— (5.15)
JGDZ,L(L) mrw VL]

-y oy Lo

KeST} JeD(K)N\Du(L) & VIL]

By Lemma 3.13 we have that for any stopping time cube K

N
DR

-1
JED(K) (N Dn(L) mrw

< (5.16)
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K]

< 203, (mpw mpw ™) = my(|glw™)y/ux

Thus, plugging 5.16 into 5.15

Rffl’”qﬁ < 20" e (mpw mpw )2 Z mg (|gplw™
KeST}

Following the same steps as in the proof of Lemma 5.4 we can bound

E

K
L]

Z mi (|olw™") /K

KeST?

and then

Ry 6 < 205 (mpw) F (myw ) inf (Mo (1))

€L

36

L]

I

S
N7

< e"mpw inf (M (67 ())

3=

3=

Hr-

n

Hr-

(5.17)
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Chapter 6

Bounds for Haar shift operators

type 4 and Haar Multipliers

In this chapter we will prove sharp bounds for Haar shifts of type 4 and for for
t-Haar multipliers of complexity (m,n). We will prove the linear bound in the A,
characteristic for T4(0’0) and later adapt Nazarov-Volberg method, [NV] one more time
time to deal with the complexity (m,n) for Haar shifts of type 4, the particular case
composition of dual paraproduct and paraproduct, ("". We will also extend the
bounds proved by Beznosova, [Be], for the ¢t-Haar multipliers of complexity (0,0) to
complexity (m,n). For the (0,0) we will present a new proof of her result based in a
Bellman function argument. However it is important to say that for the complexity
(0,0) the best dependence is given by Pereyra, in [P], and the proof is also based in

a Bellman function techniques.
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Chapter 6. Bounds for Haar shift operators type 4 and Haar Multipliers
6.1 Haar shifts operators of type 4

We prove in this section a result similar to Theorem 5.2 and Corollary 5.3 for the
composition of dual dyadic paraproduct and dyadic paraproduct. Before proving for

the complexity (m,n), let us discuss the complexity (0, 0).

6.1.1 Bounds for Cz?,’g

The composition of a dyadic dual paraproduct and dyadic paraproduct is a Haar
shift of type 4 with complexity (0,0). Let b(z) and d(x) be two functions in BMO%;

calculating m;m,f.

mmaf = be< SN dymfhy h1>|’§—f,

IeD JeD
=3 by dymyfhy, h[)ﬁ
IeD JeD
= de br mp f %
D i
X1\ X1 (0,0)
= Zdl bilfs 777 177 = Cbd
v 1111

Estimating the L?(w)-norm for w € A, by Theorem 5.1 we trivially have that

T3 mall 220wy < C 0l Basoalldl smoalwl,
However we can improve that bound for

||7TZ7Td||L2(w) <C ”bHBMOdeHBMOd[w]Az'

In the proofs of the sharp linear dependence in the A, characteristics for para-
products, martingale transform and Sha we see that the term that looks like a Haar

shift of type 4 (the one that has characteristic function in both linear products) is the
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Chapter 6. Bounds for Haar shift operators type 4 and Haar Multipliers

hardest to prove the sharp bound, in all cases we have to use a very powerful lemma,
more commonly the a-Lemma 3.8. Surprisingly to show the sharp dependence of
these operators in the Ay characteristic is not that hard, if we can show that we are
dealing with a Haar shift of type 4 given as composition 7;m; of the adjoint of a
paraproduct and a paraproduct. This will be the case for positive operators of type

4 and complexity (0,0) if we know that they are bounded in L.

Theorem 6.1. There exists C > 0, such that for all b,d € BMO? and for all
w € AS,

||7T;7Tdf||L2(w) < O[W]Az||b||BMod||d||BMod||f||L2(w)-
Proof. By duality,

‘<7r?§7rd(wf),wlg>

< Z |br||dr|mr(wf)m(w™g)

1D
= Z br||d;]| mI wf) mi(w 7‘lg)m1wm[w_l
mrw
I€D
< fwla ) rbzudz\m?fm}”“g
I€D
AQZIszdz\mf(M @) (My-19)(z).
I€D

Using Lemma 3.6 with Carleson sequence {|b;||d;|} and intensity ||b|| garo¢||d|| Barod,

positive function F'(z) = (M, f)(x)(My,-1)(x), and Lebesgue measure dv = dz,

‘<7r£‘7fd(wf),wlg>
< |w ]A2||b||BMOd||d||BMOd(/M2fw( dﬂﬁ) (/M2—1gw 1dm)2

= [w] 4, |0l Baroa 1| Brzoel| M £ 1| 22 ) | M1 22 w1

< fulalaos o | (Maf)(o)(Morr9)(a)ds

< [w]AQHb”BMOdeHBMOd“fHL?(w)HgHL?(w*l)
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Brett Wick, [Wi], called us the attention to the fact that if a positive operator of

type 4 with complexity (0,0) is bounded in L? then it can be decomposed as m;m,
0.0 ¢

for some b € BMO®. Assume (T, f)(z) = > ,cp cr{f, % i IJ\

dyadic intervals I. Then there exist C' > 0 such that for any f, g € L2,

) where c; > 0 for all

(12°1,9)] < CUlislolio
In particular for f = g = yx for a fixed interval K, ||xx|3. = | K| and

= [( S st ity )

‘<T£’OhK, hK>

IeD
’XI,XK XI>XK
<
= Z T2 FiE + Z |[|2
IeD(K) IeDs.t
KCI
<>
IeD(K) IeDst

KcI
Since both sums are positive, then

> e < KT xwxw)l < i3 < C K.
I€D(K)

Since K was arbitrary, we have that {c;};ep is Carleson and therefore \/c(z) :=
Y rep VCrhi(x) is in BMO?, remember that ¢; > 0 for dyadic interval I. Hence,
T4(0,0)f = 77 /e Notice that if ¢; > 0 and {c}rep is Carleson then b(z) = Ve(x)
is in BMO? and T4(0’0) is bounded in L.

6.1.2 Bounds for ("

Now we prove that the L?(w), for w € Ay, norm of composition of dual dyadic
paraproduct and dyadic paraproduct of complexity (m,n) depends linearly in the

A4 characteristic and polynomially on the complexity (m,n).
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Chapter 6. Bounds for Haar shift operators type 4 and Haar Multipliers

varievari
Theorem 6.2. For all a,d € BMOY and w € A, and cﬁJ < %, there 1is
¢ > 0 such that

16" 2w < cllall saodlldl Broa(n +m + 2)* w] a, || £l 22w

where

=3 30 daddfiy
LeD [eD,,
JeDn(L)

aj = (a, h[> and dJ = <d, h]>

Proof. Fix f € L*(w) and g € L*(w™

) and let C7 := C(m +n + 2). By duality, it
is enough to show that

(o' (fw), gw™) Bl < c(Cp) llall proalldl paroa[wlas gl 2 1/l 22w

We can write the left-hand-side as a double sum that we will estimate

(X X avmdmiin) o)
LED €D, (L)
JeD, (L)

VIV
LED I€Dy (L)
JeDR (L)

P ) LWL

Er o mafe) molgw™) = 55

LeD I€Dy,
JEDn(L)

We define for each weight v, and ¢ a locally integrable function the quantities

1
Pay"¢ = ) |a1\m1(l¢\v)\/‘_|

(6.1)
16D (L) L]
om 1]
Pdy"¢:= Y dsl mi(|6lv) 7k (6.2)
JEDm (L) | |
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This is the same quantity defined in (5.7) with b instead of a or d. We also define
the following Carleson sequences, see Corollaries 3.14 and 3.8,

Agw '] |Agw]?

(mgw=)?

UK = (mKw)a(mle)a< (mKw)2> |K|, intensity C[w]4,,

uh o= Z ik, intensity C'(n 4 1)[w]4,,

KeST?
a ’aKP o itv C o
% W(mKw mrw )<, intensity Clla||garoa [w]Ag,
d |dK|2 —“1\a : Clld ey
oo L G e, sty ol

o™ = Z W, intensity C(m + 1)||a||BMOd[w]jg.
KeSTy

py™ = Z pe, intensity C(n + 1)]d|| paron [wﬁg-
KeST?
Note that

Sgt < > Pay™f Pdy g,
LeD

thus in order to estimate X("" we will use the following estimates for Pa;"™ f and

Pdfflmg, where 0 < a < 1/2 so we can use the a-Lemma 3.8,

Pay™ f < e Cpy(mpw)' ™ (muw™) 3 inf My(|f1)5 (2)v". (6.3)

where (v7" = |lall paroav/ 1 + \/17")

Pdy g < e*Cip(myw)' "% (mpw™) 7 inf My (|gl?)7 (0)vf™. (6.4)
TEe
where v%™ = ||d|| garoa/1E + \/ 14", These estimates are proved in Lemma 5.4,

just have to interchange the roles of b by a or d.
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Estimate for 3("": Using the fact that (m;wmpw )" < |[w ]A2 ,

Set <Y Pap™f PdY Mg

LeD
< (O3 Solully” il (M) ] (VP ) P
S
<e*(Cp)*[wl g Z inf (M (|f[7)(@) My (lgP)(2)) g vy (6.5)
rep”
Since (v7™)? and (v§™)? have intensity at most C(n-+1)||al|%,,,0a[w]4, and C(m

D)[16]|%,,04[w]4, respectively then, by Proposition 2.21, we have that v} " s a

Carleson measure with intensity at most C(m + n + 2)||al|gaoa||d|| sao[w]%,. If
we now apply Lemma 3.1 in (6.5), with FP(z) = My(|f?)(x)My-1(|gP)(z), p =
/
a,n_ dm

2
2—(m+n+2)"Ysothat ¢ = =) ~C!, ar =vy"vy™, and v = 1, we will have,
p

by Cauchy-Schwarz and the boundedness of M, in L%(v) for ¢ = p/2 > 1,

S < (O fwl'g® S int (Mo () (@) My (|gPP) () P

LereL
< (P ullalssiorldlssior | (a(l7P)@)? (s (lg7) o)) Pl
< e (Cp)’[w Ja¢ lall Baroalldl| Baros HM ([£17) H HMw 1 |9|p)HE%(w_l)
NE
<e|(2)] ol lalsvortdlnnos H\fl”ll sl

= eza(cﬁ)ﬂw]/xg lall prroa|ld] Barod HfHL2(w)||9HL2(w—1)-

Together these estimates prove the theorem with ¢ < 6. O
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Chapter 6. Bounds for Haar shift operators type 4 and Haar Multipliers
6.2 Haar Multipliers

For a weight w, t € R, m,n € N, a t-Haar multiplier of complexity (m,n) is the
operator defined as

=>. D, V'Q,"] (me> (b)), (6.6)

LED I€D,, (L)
JEDn(L)

For complexity (0, 0) these operators are the Haar multipliers introduced for ¢ = 1
in [P] and denoted by T, and for other real numbers ¢ introduced in [KP], denoted
by T!. Note that these operators have symbols, namely \/?L\'/F ( wiz) ) that depend
on: the space variable x, the frequency encoded on the dyadic interval L, and the
complexity encoded on the subintervals I € D, (L) and J € D,,(L). These makes
these operators more akin to pseudodifferential operators where the trigonometric
functions have been replaced by the Haar functions. Let us formally calculate 77" T%
and T, T7™" to check that these compositions are not 7},".

(TmnTt Z Z CIJ h[ h]( )

LeD IeD(L)
JEDA (L)

=2 2 C” (fut habhy () £ T7

LeD 1eD,, (L
JED, (L )

however for m =0, 17" T = (ﬂou’f)*

@ ) = (“’(x)) (TP, e ()

kxep \MEW
—Z( )Ej > cr (o ha) (b i) b ()
mgw
KeD LED 1D, (L)
JeDy (L)

DR AC
LeD IeD,,
JeDn(L)

but for n = 0, TLT7° = 7.

t,aw

) (s hah () # T
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6.2.1 Necessary conditions

Let us first show a necessary condition on the weight w so that T,;" is bounded
in LP(R). This necessary Cf-condition is the same condition found in [KP] for the

t-Haar multiplier of complexity (0,0), see also [P1]

Theorem 6.3. Let m,n be positive integers and let t be a real number then if T,

is a bounded operator on LP(R) then w is a weight in Cf,.

Proof. Assume that T}';" is bounded on LP(R) for 1 < p < oo, there exists C' such
that for any f € LP(R) we have that ||T}," f[|, < C||fll,. Thus for any I, € D we
should have that

177" hao e < CP I[P (6.7)

Let us compute then the norm on the left-hand-side of (6.7). First observe that,

T @) =S S0 VI (me) (h1y, hi)hy(). (6.8)

LeD I€Dm (L) |L|
JeDy (L)

By the properties of dyadic filtration (hy,,h;) = 1 if Iy = I and (hy,,h;) = 0
otherwise. Also there exists just one dyadic interval Ly such that Iy C Ly and
|Io] = 27™|Lg|. Therefore we can collapse the sums in (6.8) in just one sum, and

calculate the LP-norm as follows,

o I/ ||
imml = [ | 3 M

| Lo| <mL0w> h(z)

Furthermore, since D,,(Ly) is a partition of Ly, on the functions h; are supported on

p

dx.

JED,(Lo)

J € D, (Ly), the power p can travel inside the sum, and we get,

[ o] 1, (w'?)

Lol (i) (09

1T ol =
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Inserting ||hg, ||b = |Io|'~% and (6.9) in (6.7), we will have that for any dyadic

interval I there exists C' such that

P tp
| I|JIO|7|’ 1 Z”L‘)(w)pz < CP|1|E
o7 (Mr,w

which implies ?;jg(z;fj < CP|I|' 7P| Lo|P~t = CcP2m=Y) =: C,,,. Now observe that
0

this inequality should hold for any Ly € D, we just have to choose as Iy any of the

descendants of Lj in the m-th generation, also note that m is a fixed value. Therefore

[w]Cd = Sup (mL (wtp)) (me) s S Cm,p-
*  LeD

We conclude that w € Cf, moreover [wleg < 2=V 7P B

6.2.2 Sufficient condition

The C4,-condition is not only necessary but also sufficient for most ¢ for a t-Haar
multiplier of complexity (m,n) to be bounded in L*(R), this was proved in [KP] for
the case m = n = 0. Here we are concerned not only with the boundedness but
also with the dependence on the Cf,-constant of the operator norm. For the case
m =mn = 0 and t = 1,£1/2 this was studied in [P2]. Beznosova [Be] was able to
obtain estimates, under the additional condition on the weight w?* € A, for some
q > 1, for the case of complexity (0,0) and for all £ € R. We recover her results and
we will extended it for complexity (m,n). Our proof differs from hers in that we
are adapting the methods of Nazarov and Volberg [NV] to this setting as well. Both
proofs rely on the Ag — a-Lemma 3.10 and on the Ag—Little Lemma 3.4.

Theorem 6.4. Let t be a real number and w a weight in C%, such that w* € A;l,
for ¢ > 1 and that satisfies the C% condition with constant [w]eg . Then the Haar
Multiplier with depth (m,n) is bounded in Ls(R). Moreover

1 1
1T Fllze < Clm 4+ 2)[w]2, w3l £ 122
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Proof. Fix f, g € L*(R). By duality, it is enough to show that
1 1
T . )| < Clm 4+ 207y [0y 171 gl

The inner product on the left-hand-side can be expanded into a double sum, that we

now estimate,

VI w!
LeDLI]ee% (L;

<Z Z \/|]||J| |f hI ’<gwt,hJ>|.

L] (mpw)*

LED I€D, (L)
JEDy (L)

Once again, we will replace h; by a linear combination of a weighted Haar function

and a characteristic function, h; = aJh et ﬁj\/_ where a; = o/j’%, By = 0By,

lay| < Vmyw®, and |8,] < 2 ). Now break into two terms to be estimated

mezz

separately so that,
(T fg)] < 5077 + 257,

where

ST SR S LIE U T T )

LED 1€D,(L);JEDm (L) L (mpw)

gpr=yy WL AS@L o,

LeD 1€Dy(L);JE€Dm (L) |L|(me) mJ(w )

Again let p = 2 — (C™)~!, and define as in (5.5) and (5.6), the quantities S;"¢
and R7"¢, we will use here the case v = w?, and corresponding estimates. Define a

new quantity

=

7
L]

Pre:= Y |(fh)

I€Dp (L)
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We also define the following sequences for 0 < a <

2(g—1)°
2t |2 —2t\ |2
e 4 T O Y
o= ) e (e e

by Lemma 3.10, a Carleson sequence with intensity C,, [w%]jg, and

m= Yy

1eSTY

where the stopping time S77" is defined as in Lemma 3.13 but with respect to the

weight w?, and by Lemma 3.14, it is a Carleson sequence with intensity C,(m +

1) [th]jg.

Observe that on the one hand (gwt,h}”2t> = (guw™, h§2t>wzt, and on the other
my(|glw') = my(Jgw™t|w?"). Therefore,

2t

m,n 1 wt'n — m
2y :Z—( Sy " (gw™") P,
mn __ w2t n —t m
Xy = Z (me)tRL (gw™) P f.

Estimates (5.8) and (5.9) hold for Sfm’m(gw’t) and ngt’m(gw’t) with w™! and ¢
replaced by w?" and gw™":

1

w3t n — 1 _ w2t 2

S (gut) < w3 (30 Nt )
JEDm (L)

RY ™ (quw™) < e Cr (mpw)' "8 (mpweT) 7 inf F3(2) /7,
Tre

where F(z) = (M2 (|gw™|P)(z))?. Estimating P} f is very simple:

prr= Y |<f,h1>|%§( 3 %)( S |<f,hz>\2)

IeD, (L) I€Dm (L)
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Estimating ¥1"": Plug in the estimates for S“’Qt’"(gw_t) and PJ"f, observe that

(meQt)2 < [w]l

use Cauchy-Schwarz, and we get,

(mpw)? cg,
3 3
1
2rn < 3wl ( S [gut mw) ( T !<f,hz>!2)
LeD JeD (L) I€Dm (L)
1
2
< Cdllf\lz(z N mr?)
LED JeD, (L)
< uld, Iflllgw lznmy = ol I lglzn

Estimating ¥7"": Plug in the estimates for th’”(gw*t) and P/" f, where F(z) =
(szz(\gw_t]p)(x))Q/p, use Cauchy-Schwarz observing that

(mpws ) =7 ()5 i e e
(mpw)? < [wlgg v ]Aé (mpwst)==,

and get

NI

Yo < 4e*C [w ]gd [w%]jﬂfﬂz < Z 77—5% inf F(x))

rep (mpwa-1)e-t =€k

Now using Lemma 3.1 with ay = 77—52 (which by Lemma 3.4 is a w?-
(mpwar)a=t

Carleson sequence with intensity c,(m + 1)[w]%.), F'(z) = (Mthlg’LU_t|p(.7}))2/p, and
v = w?
Z5" < calC) [l [0 311 o | Mo (lgw™19)

1
P
2
3, LP (w?t)

. . . 2, oy N n
Using Lemma 2.27, that is the boundedness of M,z in L» (w?) for 2/p > 1, (=) ~ ¢,
p

1
p

1
ST < o (2/p) o]y 0?2, s
< ca(Ch) [w]gy [w 2t]i,;llfllm||g||L2-
The theorem is proved. O
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The following observations were made by Beznosova in the complexity (0, 0) case,

see her dissertation [Be].
Note that when t = —%, we have that

1 1
17" flle < Clm+n+2)°[w] 2, (w20 2,
2w ey A

by definition, [w]ca = [w]qa = [w™1] ag, therefore

17" flla < Clm+n 4 2)[w]agl fla- (6.10)

For t = %, we have that

1

1
175" fllze < C(m+n +2)*[w]ga[w]3all fl] e,
27 1 2
since [w]ca < 1 by Holder’s inequality then
1
T3 fllze < Clm 4 n+ 2 [w] 31 f 12, (6.11)

Both estimates (6.10) and (6.11) are sharp, because the same dependence on the A

-characteristic for the operators with complexity (0,0) are known to be sharp, [P2].

For t = 1 we unfortunately cannot recover the sharp dependence found in [P2],

in this case we will have
1 1
1T fll2 < C(m+n+ 2)*w] 2, [w?] 2.0 fll 22,
2 2

by definition [w]?, = [w]rpg, and by a result of Beznosova [Be], w? € A? if and only
2
if we RHY (A%, moreover [w?]?, < [w] rugw]aa . Therefore

q+1
2
75" fllze < Clm+n + 2 [wlg g [w]aa, 11 £]]ze-
which for complexity (0,0) is a little worse than the bound from [P2]
ITuf|lze < CD(w)[wlg gl £ 2.
because we have that D(w) < [w]Ad+1, see [Bel.

2
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Chapter 7

Two weighted estimates

In this chapter we will prove sufficient conditions for the boundedness of the
dyadic paraproduct m, from a weighted Lebesgue space to another, possibly different,
weighted Lebesgue space. Our conditions consist of some type of test conditions on
the pair of weights and the function b. This problem has been addressed for other
dyadic operator such as the martingale transform, the dyadic maximal function and
the dyadic square function. In fact, for all these three operators necessary and
sufficient conditions over the weights u© and v are known in order for them to be
bounded from L?(u) into L?*(v). Also many authors proved boundedness of specific
paraproducts under certain hypothesis from a weighted Lebesgue space to another
weighted Lebesgue space. In this case b comes from a known operator T" with specific
properties, and b, as well as the paraproduct depend on v and v, the paraproduct is
based on weighted Haar functions and weighted averages, this adapted paraproduct
appears for instance in [HPzTV, NTV1, HLM+]. Our conditions are the first type
of conditions that assure that the rigid form of the dyadic paraproduct, i.e. the
paraproduct based on the Haar functions {h;}ep and Lebesgue averages {mf}rep,
is bounded from L?(u) to L*(v). First let us define a two weight condition that is

necessary for all dyadic operators described above, the Muckenhoupt condition, also
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called A7 condition or joint A¢ condition.

Definition 7.1. A pair of weights (u,v) € A% if ur T, v e L}, and
(1, V] ga 1= sup (m;up;—ll)p_
P IeD

Remark 7.2. Note that (u,v) € A% if and only if there exists C' > 0 such that

1
mv < 0.

(mlup%l)p*lm]v < C for all dyadic intervals I € D. Moreover, Lebesque Differenti-

ation Theorem implies that

v(z) < Cu(x) a.e.

1
loc

1

Remark 7.3. Note that if u and v are weights such that wr T isin L1 and u~' and

v are bounded then there is C' > 0

vVIeD m]v<Candm1up%11<Cp%1 = mlvmjup%ll<C’CTil VIeD

which implies that (u,v) € AS

7.1 The issue of reduction to the one weight the-

ory

In the study of two weight inequalities, we frequently want to find conditions on
the weights u and v, i.e. a class of weights (u, v) such that a given operator is bounded
from LP(u) into LP(v). One should be careful because some conditions imposed on
the pair of weights u and v might reduce the problem to a one weight theory problem,
i.e. these type of conditions would imply that an operator is bounded from LP(u)
into LP(v) if and only if the operator is bounded from LP(u) into LP(u) or L*(v)
into LP(v). The first type of condition that reduce the two weight problem to a one
weight problem is the comparability of the weights. Consider T : LP(u) — LP(v) an

operator, and u and v weights such that there is C' > 1 where
1

Ev(:c) <u(z) < Cu(z) ae.
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Then for any g € LP(v)

/R 9()Po(x)dz < C / 9()Pu(z)dz < C / l9(2) Pu()de.

Thus
9]l 2oy < Cllgllzry < C?llgll Lo,

and this implies that

1T llrwy < Bl fllrw = 1T fllew) < CBI fllzew).-

and
ITfllzrw) < Bllfllrwy = 1T f ey < OB fllzew)-

Therefore

1T fllzrw) < Bllfller) < | T fllrwy < CB||f|Lrew)-

As we easily showed in the previous lines, comparability between the weights
reduces a two weight problem to a one one weight problem. Since this is kind of
obvious we never assumed comparability "per se” as a hypothesis for the results
we were trying to get. However comparability between the weights is sometimes
disguised in other conditions, i.e. conditions over the weights that imply that the
weights are comparable. We collect in the next proposition some conditions over
the weights u and v that imply they are comparable, we faced them at some point

working in the results of this chapter of the dissertation.

Proposition 7.4. If the pair of weights u and v, where w1 s also a weight, satisfies

any of the properties below then the weights are comparable.

(1) (u,v) € Ay and (v,u) € A,;

(i1) If there is C' > 0 such that C' < (mfup;—ll)p_lmlv for all dyadic intervals I and
(u,v) € A,.
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(iii) (u,v) € Ap, and v and u are bounded;

Proof. (i) Assume (u,v) € A, and (v,u) € A,; then
(m[up_Tll)p_lmﬂ) <Cy VI €D (71)

and

(mIUP%ll)pilm]U <(Cy VI eD (72)

Note that, 7.1, is equivalent to
myv < Coy (mlup%ll)l_p VI €D (7.3)

By Lebesgue Differentiation Theorem, equation 7.1 implies that v(z) < Cou(z) a.e.
Analogously we can show that 7.2 implies that u(x) < Cyv(z), thus the weights are

comparable.

(it) Assume there is C' > 0 such that C' < (m Iup;—ll)p_lm v for all dyadic intervals
I. Then by Lebesgue Differentiation Theorem C' < u~!(z)v(z)a.e which implies
that Cu(z) < v(z)a.e, and (u,v) € A, implies that there exists D > 0 such that

v(x) < Du(z) a.e. Therefore the weights are comparable.

(iii) Assume (u,v) € A, for p > 1, v and u bounded . Then by Remark 7.3
(v,u) € A,, therefore by part (i) the weights are comparable.

7.1.1 Power weights

The classical example in the one weighted theory of a weight w in the A, class

are the power weights w(z) = |z|* for =1 < a < p — 1. Let us study power weights
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in the two weights setting, i.e, let us answer the following question. For which 3 and

v (|z|?, |z|7) is in Ag?

Note that if (Jz|?,|z|7) is in AY for any p > 1 there is C' > 0 such that |z|" <
C|z|? a.e, which implies that |z|"=? < C a.e. v = 3.

Thus in order for (|z|%, |z|7) be A, we need —1 < 3=~ <p—1.

7.1.2 A4 and joint A¢ do not imply comparability

We will show, by providing an example, that it is not true that if the two weights
u, v are in A4 and the pair (u,v) is in joint A, then the weights are comparable. This
also implies that both weights in A% and in joint A¢ is not a sufficient condition for

the weights to be comparable.

Example 7.5. Let v(z) =1 and

u(z) = XR\(O,I)(x) + Z 2gX[2—n—l,2—n)($)
n=0

Note that for x € (0,1), 0 < u(x) < \/LE and for v € R\ (0,1) wu(z) =1 .
Therefore u € L} .. Also

loc*

VIeD mpumpu "t <1= (u,v) € A with [, v] 42 = 1

By definition of the weights we have v(x) < u(x), which is always true if (u,v) €
A4, Note that

Uil(l') = XR\(O,I) (33') + Z Q%X[Q—n—l72—n)(x).
n=0
Note that u™' € L}, since u='(z) <1 for all x € R. Suppose that there exists C' > 0
such that u(z) < Cv(z)a.e then u(x) < Ca.e, i.e u is bounded almost everywhere,

this cannot happen because if n > 2log, C' then u(x) > C for all x € [27"71,27"),

therefore the weights are not comparable.
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The second type of condition that reduces the two weights problem to a one
weight problem is if (u,v) € AZ for ¢ > 1, uw or v is in A, for some r > 1 and the
operator that we are trying to analyze is bounded in LP(w) if w € A,. Let us use
the dyadic paraproduct m, to exemplify this, it is known that if b € BMO then m, is
bounded in L?*(w) if and only if w € Ay. Therefore for any pair of weights u and v,
such that (u,v) is in joint A4 and one of them is in A¢ we have that m, is bounded
from L?(u) to L?(v), one can conclude that just using the one weight theory. This

fact is enounced and proved in the next proposition.

Proposition 7.6. Given a pair of weights (u,v) € A, for ¢ > 1. Suppose T is an
operator that is bounded on LP(w) if w € A, for some r > 1. Then if u € A, or if
v € A, the operator T is bounded from LP(u) to LP(v).

Proof. Assume that (u,v) € A?, then there exist C' > 0 such that v(z) < Cu(x)a.e.
This implies that

1T fllr) < T fllzey  and [ fllzew) < [[fllerw (7.4)
Therefore if v € A,, then by hypothesis, ||Tf||Lr() < C||fl|Lr(v), hence by (7.4)

1T fller) < Clfllzewy < Cll e (7.5)
Analogous, if u € A, then by hypothesis, || T f||rw) < C||fllzr(), by 7.4

1T fller@) < ITfller@) < Cllfllerw) (7.6)

]

7.2 Two weighted results for dyadic operators
In this section we present dyadic operators for which conditions for the two weight

norm inequality are known. The first result is for the Maximal function, due to E.

Sawyer, [S], this result is also valid for the dyadic Maximal function.
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Theorem 7.7 (Sawyer, [S]). Let u and v be weights and 1 < p < g < oo with p < oo,
then there exists C' > 0 such that

1M fllLawy < ClFllzre)
for all f € LP(u) if and only if

(/I[M(Xfuﬁ)(x)]qv(x)d:cy < C</Iup (2 )d:c)

for all dyadic intervals I.

B =

Remark 7.8. The theorem above in fact works for weighted spaces defined over RF,
we stated for weighted spaces over R, because we are working over R throughout this

dissertation and we had not set the proper definition of dyadic cubes RF.

The next result gives necessary and sufficient condition over the weights to obtain
two weight inequalities for the square function. The necessary and sufficient condition

was proved by Nazarov Treil and Volberg in [NTV].

Theorem 7.9 (Nazarov-Treil-Volberg [NTV]). Let a couple of weights,(u,v) € As.
The dyadic Square function, defined by

517() 1= (X e = mfPute >) (310 |2Xm>)l

1€eD IeD

is bounded from L*(u) to L*(v) if and only if u=' and v are weights and

{Afu_l myv|l|}rep is a u=t-Carleson sequence.

Beznonova recently proved the sharp bound for the norm of the dyadic square

form L?(u) into L*(v), she proved the following

1

RH{

1
2

Ad [w]

1570 2202y < [u,0]

107



Chapter 7. Two weighted estimates

The next and last theorem is from Nazarov-Treil-Volberg and it gives necessary

and sufficient conditions for the Martingale Transform
T, f(x) = Zﬁ(ﬁ hi)hi(x)
IeD

to be uniformly bounded from L?(u) into L?(v) with respect to all possible choices
of o, where 0 = {o7};ep and o7 € {+1, -1}, VI € D. Before we state the theorem

we need to introduce some notation. Let

o |A[U| |A[U71|
ap=-———-

mp mpu~t’

Also consider the operator

Tof(x) =Y %mff xi(2);

1€D

T}, is an positive dyadic shift operator of type 4.

Theorem 7.10 (Nazarov-Treil-Volberg, [NTV]). The martingale transform T, is
bounded from L*(u) to L?(v) if and only if the following four assertions hold simul-

taneously:

(1) (u,v) € As
(i) {Ar|lu > molI|}iep is a u=t-Carleson sequence.
(iii) {|Apv mpu 1)} 1ep is a v-Carleson sequence.
(iv) The operator Ty is bounded from L*(u) into L?(v).
Note that a pair of weights satisfies condition (i) and (i) if and only if the
dyadic square function S? is bounded from L?(u) into L?(v), and satisfies condition

(i) and (iii) if and only if the dyadic square function S? is bounded from L*(v~1!)
into L2(u™!), note that (u,v) € A4 if and only if (v=! u™1) € Ad.
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7.3 Main Result

Before stating and proving our main result, we need to define a class of objects
that will take the place of the BMO? class in the one weighted theory, we will call

this class the two weighted Carleson class.

Definition 7.11. Given two weights v and v, such that v is a reqular weight and u="

15 also a reqular weight, then we say that a locally integrable function b belongs to the
b1

two weighted Carleson class u, v, Carl,, zf{
mrv

where by = (b, hr).

} is a u~t-Carleson sequence,
1€D

b 2
Note that if u = v, then we have that that b € Carl,, if {ﬁ} is a v71-
miv ) rep
Carleson sequence, which is true by Lemma 3.3 if {b;};cp is Carleson sequence. This
is equivalent to say that b € BMOY. Therefore for any weight v, such that v=! is

also a weight, we have that

BMO? c Carl, ,.

Theorem 7.12. Let (u,v) be a pair of weights such that v is a regular weight and
u™t is also a regular weight and {|Arv|?|I|mu='}rep is a v-Carleson sequence with
intensity By. Then my, is bounded from L?(u) into L*(v) for all b € Carl,, if and

only if (u,v) € AS. Moreover, if By is the intensity of the u='-Carleson sequence
|b1]
— then
MV} rep

for some C > 0 and B = max{B, B}.

T fl 220y < CBlu, v]a, || £l 22(w):

Proof. Sufficiency of A$:

Fix f € L*(u™') and g € L*(v). Note that fu™' € L*(u) and ||fu |12 =
I fllz2u-1), gv € L*(v™!) and ||gv|lr2-1) = [|9]l2(w), T(fu™") is expected to be in
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L?(v), then gv € L?*(v™!) is in the right space for the pairing. Then, by duality,

suffices to prove:

[(m(fu™), gv)| < CBlu, v]a, | fllz2—) lgllz2w)- (7.7)

Note that
(ol fu), gv)| = ‘<Zcszmz fu e, gv)|.

Replace hy = a;hy + ﬁ;\/_| where ay = af and B; = (3] as described in Proposition
2.2, and get
(m(fu), gv) < 3 fbrlms(|flu )| (gv,ashy + 61— >\ (7.8)
I€D vau
Use the triangle inequality to break the sum in (7.8) into two summands to be

estimated separately,

(mp(fu™t), gv)| < Z|b1||041|m1 flu™! ’<9U hy >|

IeD
51
#3rl mUhv) |
IeD
. . 1 |A[U|
Using the estimates |a;| < /mjv, and |G;| < ﬁ , we have that,
myrv

[{m(fu™), gv) < Bi+ Ko,

where

S1 o=y [brlma(|flu™t) [ gv, W) |y/mro

1€D

%= 3 (1w x)l 2

[ v/

-1

Estimating >;: First using that Mﬁ_ﬁ) < My-1f(x) for all z € I, and that
mru

(g, f) = (g, f)v; second using the Cauchy-Schwarz inequality and m(u=')mv <
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[w, v] 42, We get

2< S D), B sy

§ [u,U]ASZ ‘b’ lnfMu 1f( )‘(gah?%"

/Mmv zel

o 2 ) ( )
inf M7, sy )
2(1617 mrv vl i Z‘ 9

1eD

A
3
=
=

IS

Using Weighted Carleson Lemma 3.1, with F(z) = M2, f(z), and oy = l | , which
is a u~!-Carleson sequence with intensity By, by condition (i), then, together with

the fact that {hY};cp is an orthonormal system in L?(v), we get

1
2
5 < mw@&(/wﬁwum*@mﬁ|mmm
R
< OBifu,v] el fll 22wl gl e2w)
<

CBlu, ] gl 1l 2 9l 20

In the second inequality we used the fact that M,-1 is bounded in L?*(u~!) with

operator norm independent of !, Lemma 2.27

Estimating :
Using similar arguments than the ones used for »;, we conclude that,

A
| IU| [I| mpu myv

2y < Z|b1|m1 (1f1) m7(lg |)

1eD

b . . )
- E:J%%m?(VDmﬂwmAw||ﬂmm1¢mﬁ
1eD

< 1z i
< Z;) 1] (myu™")2 inf M, f(z) inf M,g(x)
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N

b1 ) 2 ,
Ad<zmwxe£M_1f Z|AIU| mru~ |I|1nfM g(x)

1eD

Since {%}[ep is a u~! - Carleson sequence and {|Av||I|mu"}iep is a v

Carleson sequence with intensity B, and B, respectively. Thus, by Lemma 3.1

Sy < [u, v, \/BlBQ(/Mu f(@)u( da:) (/M2 )
v Ag V Bi Ba||[ My f || 21y | Mo g || L2 0)
LagV/Bi Ball Fllze gl s

OBl v] gl fllzzu 9220

IA

IA

These estimates together give (7.7), and the sufficiency of the joint A¢ condition is

proved.

In order to prove the necessity A4 we use a trick that is applied very often when
checking necessity of A2, which is particularize the inequality to f = hy for some
dyadic K. In our case we also have to make the right choice of b in Carl, ,, which is

= /|K|hk(z), this was observed by D. Chung, [Ch3].
Necessity of A4:

Let us assume 7, : L?(u) — L?(v) is bounded, i.e. there exist C' > 0 such that
for all f € L?(u),

7 fllc2) < Cllfllz2q » (7.9)

for all b € Carl,,. Fix a dyadic interval K, let us consider f(x) = yxu '(z) and

= /|K|hx(z) . Then

1 fll 22y = </’XK($)U1(37)|2u(33)d$>1/2
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= (/Ku_l(x)dx)l/2 = Vul(K).

Il = ([ |32 o /TRt )

2 1/2
U(ZL“)dZU)
IeD

— mKu_1< /K |\/u(_|hK<x>y%(x)dm) v = mru'Vo(K).

By the assumption (7.9) we have

and

. ‘ ‘ = vmgutmgv < C. (7.10)

Thus, the joint A, condition for the pair of weights (u,v), is a necessary condition for
the two weights estimate of the family of dyadic paraproducts indexed by a function

be Carl,,. O

Corollary 7.13. Given b € L}, and (u,v) a pair of weights that satisfies the con-

loc
dition {%}Iep is a u~t-Carleson sequence with intensity By. If the dyadic square
function S¢ is bounded from Ly(v™') into Lo(u™') then paraproducts m, is bounded

from Ly(u) into La(v).

Proof. Assume S? is bounded from Ly(v™!) into Ly(u~t), then Theorem 7.10 implies
that (u,v) € Ay and {|Arv|?|I|mju='}rep is a v-Carleson sequence. These two facts

with the hypothesis that {%} rep is a u~!-Carleson sequence implies, by Theorem

7.12, that 7, is bounded from L?*(u) to L*(v). O

When we apply our theorem for the one weight theory we see that we are asking
no additional hypothesis to the ones that we have for boundedness of the paraproduct
in a weighted Lebesgue space. If u = v the sequence, the joint A4 condition is nothing

more than the A4 condition, which implies that {|Av|?|I|mv~1}rep is a v-Carleson
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by Buckley’s Theorem 3.11 inequality, also as we argued before if b € BMO? then

be Carl,, for u=.

It is interesting to register that the conditions on Theorem 7.12 were not the first
ones that we obtained to prove two weighted estimates for the paraproduct. Let us

state the theorem that gave origin to the main result of the dissertation.

Theorem 7.14. Let u and v be a pair of weights in joint A% such that for any Car-

arg :
—— trep is a v-Carleson sequence

and {2} jep is a u='-Carleson sequence then for all b € BMO? there exist C > 0

myv

such that for all f € L*(u)

leson sequences {ay}trep, {Br}iep the sequence {

7o f Il 2wy —r2) < Cl fllL2qw)

The proof is very similar to the proof of Theorem 7.12. The hypothesis that for

ar
mru—1

any Carleson sequence {as}rep, {fr}rep the sequence { }rep is a v-Carleson

ar
mjyv

sequence and {-*L};cp is a u~!-Carleson sequence are stronger than the one in
Theorem 7.12, since in theorem we are asking the same thing for specific Carleson
sequences {87 = br}rep and {a; = |Af|*|I]}1ep. Also we thought that such strong
hypothesis would imply that the weights are comparable, this is certainly true if we

ask for some certain kind of uniformity in the v and u~!-Carleson sequences.
Proposition 7.15. If the a pair of weights u and v, (u,v) € A,, where w1 is also
a weight, satisfies any of the properties below then the weights are comparable.

(i) There is C' > 0 such that for all Carleson sequences {or}rep,

i E ﬂSCmﬂfl vJeD.
|| mrv
IeD(J)

(i) There is C' > 0 such that for all Carleson sequences {51} 1ep,

1 i
m Z mIU,_l S CmJU vJ eD.
IeD(J)
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Proof. (i) Fix K a dyadic interval, let {\;};ep be the Carleson sequence where
A = |K| and A\; = 0 if [ # K, then for every dyadic interval J, such that K C J

1 A K 1
Ly M Lo,

71,5 e Vet =

Now take J = K then we have

1 -1
< mgu Mmgv.
Since K was arbitrary, we would have % < mputmyv. for all dyadic intervals I,

then by (i7) the weights must be comparable.

(#) Similar to the proof of (7). O

Let us state the result for the adjoint of the paraproduct.

1

Theorem 7.16. Let (u,v) be a pair of weight such that uw=" is also a weight and

{| A P[T|mpv }rep is a u™'-Carleson sequence with intensity By. Then m} is
bounded from L?*(u) into L*(v) for all b € Carl,-1,-1 if and only if (u,v) € AL

b 2
Moreover, if By is the intensity of the v-Carleson sequence 1 - then
mpw=—") rep

175 fll 22wy < CBlu, v]a || fll 22w);
for some C' >0 and B = max{B, By }.
Proof. Fix f € L*(u™!) and g € L*(v).Since (u,v) € A% and the weights are such
that {|Aru=t?[I|mv~'}1ep is a u~'-Carleson, then by Theorem 7.12 7, is bounded

from L?(v™') into L*(u™?) for all b in Carl,-1,-1 which implies that the adjoint of

the paraproduct is bounded from L?(u) into L?(v).
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Corollary 7.17. Given b € L}, and (u,v) be a pair of weight that satisfies the

loc

lbr|?
mru—1

condition { }iep is a v-Carleson sequence. If the dyadic square function S¢
is bounded from L*(u) into L*(v) then paraproduct adjoint w; is also bounded from

L?(u) into L*(v).

Remark 7.18. Both paraproduct and adjoint are bounded from L*(u) to L?(v) if

(i) {ﬁllli bep is a ut-Carleson sequence.

(i) {|Arv|*|I|mpu"}ep is a v-Carleson sequence.

(11i) {m“;ﬁﬁl trep is a v-Carleson sequence.

(iv) {|Aru™*[T|mv}iep is a u=t-Carleson sequence.

(v) (u,v) € Aj.

Remember that (u,v) € A} < (v7',u™t) € A%, so we are not introducing extra

joint A% condition.

7.4 The maximal and the square functions

The next theorem relates the boundedness of the square function with the bound-
edness of the Maximal function from L?(u) into L?(v). If the weight v is in A% and
the Maximal function is bounded then the square function is also bounded. This
result is an adaptation of Buckley’s proof, in [Bu], for the fact that if w € A4 then
Sy is bounded in L?*(w). Pereyra, in [P], proved a similar result for the weighted

maximal function and the weighted square function in L9.

Theorem 7.19. Let (u,v) be a pair of weight such that v € Ay and the Mazimal
function M is bounded from L*(u) to L*(v) then there exists C' > 0, such that

159 f 12wy < Clf Nl r2gw)-
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First note that
||Sdf||%2(v) = Z [(f, he)Pmyv.

IeD

It is enough to check that for all f € L?(u)

2% = Z Imrf —mzfPo(I) < CHfH%Q(u)

1€D

Pairing the terms with the same parent, we have that
Yi=) (mif —mif)u(l).
IeD
Adding and subtracting 2v(I)m?f, then we get

=Y Qu)ymif —vDmif) + Y (v(I) = 20(1))mif = Tg + T3

1eD 1D

Estimating :

[e.o]

Yo = Z (20(I)ym7f — U(]N)mﬁf) = Z (Qm — 1)

1eD m=—o0

where a,, = > cp 20(I)mif = 2 [(Enf(x))*v(z)de, Enf(z) == mif z €1¢€
D,,, thus

|am| < Q/R M [f(2)Po(z)de = 2| M [l 72 < IFII720)

The last inequality follows since M is assumed to be bounded from L?(u) to L*(v).

Estimating Y5: First note that paring the terms with the parents

Z (v(I) - 20(1))m3f =0, hence

1€eD

S3=) (v(I) = 20(I))(m7f —m3f)

1€eD
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Thus, by Cauchy-Schwartz inequality

D=

N——
N

&g(zﬁm‘?mymﬁ+mﬁﬁ(2}@wm>mﬁf

IeD U(I) IeD
— iy < >+ %
2
SO
Yu+ X
1 < o+ 8 < Ol ey + 5
which implies that
1 2 X34
525 < Ol fllz20) + 5
now suffices to show that ¥, < C'Hinz(u)
Estimating ,:
5, < 42 A ’“| \I|m;
IeD
<y A it a2 ()
IeD a:e]
<o/M2 2)dz = | M £l < C 11l

Note that in the last inequality we use the fact that if v € A% then by Buckley’s

. . |Arv]®
inequality for p = 1, or Theorem 3.12, {
mrv

1]} Jep 18 a v-Carleson sequence which

implies that the last inequality follows from 3.1.

Remark 7.20. Even though not explicitly we are still assuming that (u,v) € A4,
since we assumed that M : L*(u) — L*(v) which implies (u,v) € A? (|[GC-RF],
Theorem 1.12, page 392),
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Future research

In this chapter we will point some directions for future research. We will keep
this discussion restricted to the problems related to those presented in the previous

chapters.

The first problem for future concerns is to study if the estimates for t-Haar
multipliers can be improved. Recall that for a weight w, t € R, m,n € N, a t-Haar

multiplier of complexity (m,n) is the operator defined as

rf =% ¥ (M) o) (8.1

LeD I1€D,, (L)
JEDn (L)

We proved in Theorem 6.4 that if ¢ is a real number and w a weight in C4,, such that

w® € Aj, for ¢ > 1 and that satisfies the Cf, condition with constant [w]cg . Then
1 1
T fllze < Clm+n+ 2wl [w*) 3l fllze.

We argued in Chapter 6 that the dependence in the CY, -characteristic is not sharp,

since for the case m = n = 0, Pereyra in [P2] proved

T fllze < € D(w) [w]Fopg | f 122,
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where D(w) is the doubling constant of w. This is a better dependence for T 0’ that
the one that we obtained for all complexity (m, n), which after some observations we

conclude that

1T llze < C [wlfpglwlaa, N1£llze.
2

However is not known even if the bounds proved by Pereyra are the best possi-
ble. Pérez and Hytonen improved the sharp dependence in the A, characteristic for
Calderén-Zygmund operators to bounds that involve the Ay and the RH{ character-
istic of the weight. The Haar multipliers T& ’3, were not in the scope of their analysis
and using their ideas the bounds for this operators might be improved to some sort
of mixed type bound in the RH, and RH; characteristic of the weight, i.e., we would
hope to prove that

||T00f||L2 <Clw ]RHg[w]RHfoHLQa

where C' might depend on the doubling constant. Later we shall study if similar
bounds would also hold for t-Haar multipliers and for ¢-Haar multipliers with com-
plexity (m,n). Also it is not clear for us if one can use Nazarov-Volberg techniques
to obtain the mixed type bounds proved by Pérez and Hyténen in [HPz] for Haar
shifts, and dyadic paraproduct.

Another interesting problem, at least from the theoretical perspective, is to ana-
lyze if the LP(w) norm of a square function with complexity (m,n) obeys the same
sharp dependence on the A,-characteristic that we have for the original original
square function (complexity (0,0), times a factor that depends at most polynomially

in the complexity of these operators. Given f € L} we define the dyadic square

loc

function of complexity (m,n) as the

Sm”f—(Z > |maf —myf] XJ)

LED IeD, (L)
JE€Dn(L)

Note that for m = n = 0, this is exactly the dyadic square function, S? Cruz-Uribe,
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Martell and Pérez proved in [CrMPgz] that for p > 1 and w € A¢
max {27p 1}
1S f 2oy < Cplw] g [l Ve LP(w).
This result is obtained by sharp extrapolation from p = 3, they prove that

15 llaw) < Colwl gl flloe) VS € L (w)

and then use Sharp Extrapolation Theorem 3.17. Analogous to that, in order to
prove

maX{Q:p 1}

HSmm”LP <Omn,p[ ] HfHLP (w) VfeL(w),

it would be enough to prove that

1
15" 3wy < Cmnlw] gl fllsw) ¥ F € LP(w).

In chapter 7 we proved that if (u,v) is a pair of weights such that v is a regular

weight and v« !

is also a regular weight and {|Apv|*|I|mu~"};ep is a v-Carleson
sequence then 7, is bounded from L?*(u) into L?(v) for all b € Carl,, if and only if
2
(u,v) € A. Alocally integrable function b belongs to the space Carl,,, if { ] }
MV ) rep
is a u~!-Carleson sequence, where by = (b, hy), this space is clearly a vector space.

One might define the following norm in this space,

1
1 § : |<b7 h1>|2 ’
HbHCC’/"lu,v = (Sup —1 mIU

miju
JeD My D)

Note that if ||b||car, , = 0 if and only if b is a constant function, therefore as for the
BMO* norm, | - |lcart,, defines a norm in the the quotient space Carl,, modulo
constant functions. Also if u = v =1 then | - ||can,,, is exactly the BMO? norm.
Two questions are in order here, the first one is what are the conditions, if any, on
the weights u, and v such that the vector space Carl,, with norm | - [|cem,, is a
Banach space. The second question is if there is any class of weights w such that

Carly., = BMO®. If Carly,,, # BMO? for w € A2 then Theorem 7.12 guarantee
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the boundedness of the paraproduct on L?(w) for functions b other that BMO?

functions, recall we know that BMO® C Carl,,, for any weight w.

The last question for future research is about decomposition of Haar shifts of type
4 with complexity (m,n) as the composition of a dyadic dual paraproduct with Haar
shift operator of type 1 with complexity (m,n) and a dyadic paraproduct. We proved
in Chapter 6 that if a positive operator of type 4 with complexity (0,0) is bounded
in L? then it can be decomposed as 7}, for some b € BMO?, can this be generalized
to complexity (m,n), i.e., given a positive operator of type 4 with complexity (m,n),
we want to find b,d € BMO? such that T,"" = m;T/""m,. Can one find a bounded
Haar shift operator type 4 that cannot be written as a composition 77, for b and
d in BMO® In the recent paper by Hyténen and Lacey, [HL], on mixed A, — A
estimates, they reduce their estimate to studying a positive dyadic shift operator of

type 4 with complexity (¢,0) given by

0
s = Y mad (3 w),
LeD JJeL
Ji=L
where L are the Lerner cubes obtained from Lerner’s Calderén Zygmund decompo-
sition with respect to the mean oscillation. It will be interesting if we can realize
this positive type 4 Haar shift operator as a composition of the paraproduct and

dual paraproduct with some complexity. If possible this will be based on geometric

considerations dictated by the Lerner’s cubes.
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Appendix

1
Lemma 8.1. The sequence a, = (1 + —)n, for n a positive integer, is an increasing
n

sequence.

1\

Proof. First let us show that the function f(z) = (1 + —) define for all real numbers
x

x > 1 is a increasing function. We can achieve that just using calculus tools. Note

that In(f(z)) = zIn (1 + 1), implicit differentiating we have

(=) =1n(1+1) b o— (_—1)

f(x) T x1+% x?
1 1
=In(l+—-)—
n( +x) r+1

Since f(x) > 0 for all x > 1, then f’(x) is positive in (1, c0) if and only if

1 1
1n(1+;)>x+1

(8.2)

1
Since x > 1 then 0 < — < 1, so we can expand In (1 + i) in its Taylor expansion for
x

1(1+1) 1 112+113

n —)=——=|- -] —..

x r 2\w 3\
1/2\"

Clearly, for any fixed x > 2 we have that the sequence —| —

n\x

sequence, then by the Alternating Test Series (AST), we have that

all x > 1.

is a decreasing

1 1 1
P<ln(1+;)<; (83>

K|
N | =
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1 11 1
It is easy to check that if x > 1 then — — —=— > —— plug this in (8.3) we would
r 2z x+1
have that for z > 1
1 1 11 1
<————<In(l1+- 8.4
r+1 " x 222 n( +x> (8.4)

Therefore (8.2) is satisfied for all > 1, so f’(z) > 0 for x > 1, which implies that
f(z) is increasing. Note that this certainly imply that a, is an increasing sequence
for n > 2. Now observe that a; =2 < % = a9, therefore a,, is an increasing sequence

for all n positive integer. O

Remark 8.2. It is an immediate consequence of this that a, < e* for alln > 1.

-1 1 .
Lemma 8.3. For all positive integers n > 2, % < (1 — —) .
n

Let a, = (1 — %)n for all n > 0, note that if n > m, then

1 1 1 1 1\" 1\™
—>—:>1——>1——:>an:(1——) >(1——) = Q-

m n n m n m

Thus a, is a increasing sequence, which implies that
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