Positive Sasakian Structures on Links of Weighted Complete Intersection Singularities

Christopher Stuart Inbody

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

Recommended Citation

Inbody, Christopher Stuart. "Positive Sasakian Structures on Links of Weighted Complete Intersection Singularities." (2013).
https://digitalrepository.unm.edu/math_etds/21

Positive Sasakian Structures on Links of Weighted Complete Intersection Singularities

by

Christopher Stuart Inbody
B.A., St. John's College, 1989
M.A., Mathematics, University of New Mexico, 1998

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
Mathematics

The University of New Mexico
Albuquerque, New Mexico

May, 2013
(C)2013, Christopher Stuart Inbody

Dedication

To my wife, Willa, and our babies, Gus, Charlie, Othello, and Donovan, who have all endured so much over the years.

Also to the memory of my mother and father who did not live to see the end of this.

Acknowledgments

I would like to thank Charles Boyer, Ivan Cheltsov, Michael Nakamaye, and Dimiter Vassilev for their service on my committee. I would, in particular, like to thank my advisor, Charles Boyer, for his suggestion of a fruitful topic, and his support and patience over the last two years. I would also like to thank Michael Nakamaye for his help with Lemmas 68 and 69. Ivan Cheltsov has been especially helpful with advice on avenues of future research and pointers to the current literature.

Positive Sasakian Structures on Links of Weighted Complete Intersection Singularities

by

Christopher Stuart Inbody

B.A., St. John's College, 1989
M.A., Mathematics, University of New Mexico, 1998
Ph.D., Mathematics, University of New Mexico, 2013

Abstract

Links of isolated singularities defined by weighted homogeneous polynomials have a natural Sasakian structure. Since it is known that Sasaki-Einstein metrics have positive Ricci curvature, and since positive Sasakian structures give rise to Sasakian metrics with positive Ricci curvature, it is useful to determine which links have a positive Sasakian structure. This corresponds to the Fano index of the associated weighted projective variety being positive. Links of dimension $2 n-1$ are ($n-2$)connected. In dimension 5 , there is a complete classification of simply connected spin manifolds due to Smale [28]. Hypersurface singularities yielding links of dimension 5 have been treated in [3] and [5]. This paper investigates isolated singularities of codimension 2 complete intersections with 5 dimensional links of positive index and provides a complete list up to degree 600, hence a complete (up to degree 600) list of types of links having positive Sasakian structures.

Contents

1 Introduction 1
2 WPS and Sasakian Links 4
2.1 Weighted projective spaces and varieties 4
2.2 Sasakian manifolds and the Sasakian structure on the weighted sphere 6
2.3 Links of weighted complete intersections and Sasakian structures on them 8
3 Enumeration of Positive Sasakian Links 10
3.1 Numerical Conditions for Quasismoothness 10
3.1.1 Hypersurfaces 10
3.1.2 Codimension 2 12
3.1.3 Codimension 3 16
3.1.4 General Codimensions 28
3.2 Additional constraints required for positivity 30
3.2.1 Codimension 2 30
3.2.2 Codimension 3 32
3.2.3 General Codimension 35
3.3 Enumeration of 5 -dimensional links of codimension 2 complete inter- section singularities 36
4 Topology of Links 38
4.1 Hypersurface singularities 38
4.2 Higher codimension singularities 40
4.3 Topology of Sasakian Structures in Dimension 5 44
5 Sasaki-Einstein Structures on Links 51
5.1 Einstein metrics 51
5.2 Existence Results 52
5.3 An obstruction 57
Appendices 60
A Types satisfying the bounds of Lemmas 68 or 69 62
B Lists of types 69
B. 1 One parameter families of types 70
B. 2 Three parameter families of types 76
B.2.1 Selected topology 79
B. 3 Sporadic types 82
C Well-formed types 98
C. 1 One parameter families of well-formed types 99
C. 2 Three parameter families of well-formed types 100
C. 3 Sporadic well-formed types 103
D Cases broken down by highest two weights 107
D. 1 General requirements 107
D.1.1 Possibilities for w_{3} 107
D.1.2 Possibilities for w_{4} 109
D.1.3 Possible pairs for w_{3} and w_{4} 110
D.1.4 Restrictions because of $\{3,4\}$ 115
D.1.5 Order constraints 119
D. 2 Cases by constraints 123
D.2.1 Cases with at most 3 distinct weights 123
D.2.2 Cases with $d_{2}=2 w_{3}=2 w_{4}$ cases 126
D.2.3 Cases with $w_{2}=w_{3}<w_{4}$ 128
D.2.4 Cases with $d_{1}=2 w_{3}<2 w_{4}=d_{2}$ 129
D.2.5 Cases with $d_{1}=2 w_{3}=w_{i}+w_{4}$ 130
D.2.6 Cases with $d_{2}=2 w_{3}=w_{i}+w_{4}$ 132
D.2.7 A case involving all five weights 133
D.2.8 $d_{1}=w_{j}+w_{3}=w_{i}+w_{4}, w_{2}<w_{3}$ 133
D.2.9 $d_{2}=2 w_{3}+w_{i}$ 134
D. 3 Summary 140
D. 4 Details of cases 147
References 184

Chapter 1

Introduction

A singularity defined by weighted homogeneous polynomials in affine space invariant under a weighted \mathbb{C}^{*} action is isolated if the projective variety defined by the same polynomials is quasismooth. Such quasismooth varieties have only orbifold (quotient) singularities. Links of isolated singularities defined by weighted homogeneous polynomials have a natural quasi-regular Sasakian structure. Since it is known that Sasaki-Einstein metrics have positive Ricci curvature, and since positive Sasakian structures give rise to Sasakian metrics with positive Ricci curvature, it is useful to determine which links have a positive Sasakian structure. Manifolds with positive Ricci curvature are of interest in their own right. Positivity of the Sasakian structure on a link corresponds to the index of the associated weighted projective variety being positive, hence Fano or log Fano. Furthermore, the existence of a Sasaki-Einstein metric on a link corresponds to the existence of a Kähler-Einstein metric on the corresponding log Fano variety. In particular, a 5-dimensional algebraic link that has a positive quasi-regular Sasakian structure is the link of an isolated singularity of an affine cone over a log del Pezzo surface. The classification problem for these links, therefore, is related to the classification problem for \log del Pezzo surfaces. This is a subject of current widespread interest, see $[6,17,13]$ for example. Del Pezzo surfaces

Chapter 1. Introduction

and del Pezzo singularities are also of interest in high energy physics, see [15, 23, 11]. Links of dimension $2 n-1$ are $(n-2)$-connected, so for dimension 5 , links are simply connected. Also for dimension 5, there is a complete classification of simply connected spin manifolds due to Smale [28]. Hypersurface singularities yielding links of dimension 5 have been treated in [3] and [5]. This paper investigates isolated singularities of codimension 2 complete intersections with 5 dimensional links of positive index. It provides a start of a general classification and a complete list up to degrees $d_{1} \leq d_{2} \leq 600$.

Important definitions are given in Chapter 2. Weighted projective spaces and varieties are described in 2.1, Sasakian structures, especially the Sasakian structure on a weighted sphere, in 2.2 , and links of isolated singularities of weighted complete intersections and their induced Sasakian structure in 2.3. Next, Chapter 3 gives numerical conditions for identifying which links possess positive Sasakian structures. Necessary and sufficient conditions on weights and degrees are given in 3.1 for quasismoothness. In 3.2, bounds on dimension and codimension as well as additional relations between weights and degrees are given relating to positivity. The main result is in 3.3: a complete listing of positive quasismooth complete intersections of codimension 2 in weighted \mathbb{P}^{4} with degrees $d_{1} \leq d_{2} \leq 600$. Chapter 4 discusses some results about the topology of links. Simple formulas for the Alexander polynomial and Milnor number are given in special cases. General results for the middle Betti number are given as well. 4.3 applies these results to the 5 dimensional case, and includes a technique for computing the torsion of any Smale manifold admitting a Sasakian structure. Chapter 5 defines Sasaki-Einstein structures and gives some existence and obstruction results. In particular, some general properties of SasakiEinstein structures are in 5.1, a sufficient condition for existence of Sasaki-Einstein metrics is described in 5.2, and the Lichnerowicz obstruction is considered in 5.3. Appendix A contains a table of (\mathbf{w}, \mathbf{d}) types shown to possess Sasaki-Einstein metrics. Appendix B contains tables of families of types and sporadic types possessing

Chapter 1. Introduction

positive Sasakian structures, up to $d_{1} \leq d_{2} \leq 600$. Appendix C contains tables of types that are well-formed, a concept of interest to those who study log del Pezzo surfaces. Details of a partial classification of types, based on the relations of the highest two weights to the degrees of the hypersurfaces are worked out in Appendix D.

This paper is in some senses an addendum to parts of Chapters 9, 10, and 11 of [3]. Future research will include an attempt to extend the classification approach here to arbitrary degree. In fact, I conjecture that the list of sporadic cases in B. 3 is complete, and that the one and three parameter families of types included in B. 1 and B. 2 account for all higher degree types. Topology computations for the three parameter families will be completed. Moduli spaces should be examined as well.

Some work remains in the hypersurface case to complete the list of (w,d) types and compute the topology for each. The general approach used here will be much simpler in the hypersurface case, as there is an explicit formula for computation of the topology.

Finally, there is of course, the same question in higher dimensions.

Chapter 2

Weighted Projective Varieties, Sasakian structures, and Links

2.1 Weighted projective spaces and varieties

The main references for this section are [10] and [14]
Let $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{+}^{n+1}$, let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be affine coordinates on \mathbb{C}^{n+1}, and let \mathbb{C}^{*} act by

$$
\begin{equation*}
\lambda\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(\lambda^{w_{0}} x_{0}, \lambda^{w_{1}} x_{1}, \ldots, \lambda^{w_{n}} x_{n}\right) \tag{2.1}
\end{equation*}
$$

Then

$$
\mathbb{P}(\mathbf{w})=\mathbb{P}\left(w_{0}, w_{1}, \ldots, w_{n}\right):=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}
$$

is weighted projective space of weight $\mathbf{w} . \mathbb{P}(\mathbf{w})$ is a rational n-dimensional projective variety. Let $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}(\mathbf{w})$ be the canonical projection. $\mathbb{P}(\mathbf{w})$ has the structure of an orbifold (a complex variety possessing only quotient singularities). In particular, the affine pieces $U_{i}=\left(x_{i} \neq 0\right) \cong \mathbb{C}^{n} /\left(\mathbb{Z} / w_{i} \mathbb{Z}\right)$ determine an orbifold atlas.

If ε is a primitive $w_{i}^{t h}$ root of unity, then the group acts via $z_{j} \mapsto \varepsilon^{w_{i}} z_{j}$ for $j \neq i$. Thus $z_{j}=\left(x_{j} / x_{i}\right)^{w_{j} / w_{i}}$. As varieties $\mathbb{P}\left(w_{0}, q w_{1}, \ldots, q w_{n}\right) \cong \mathbb{P}\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ for $q \geq 1$, but they have different orbifold structures (see [10]).

Definition 1 The expression $\mathbb{P}\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ is well-formed if

$$
\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{1}, \ldots, w_{n}\right)=1
$$

for each i.

A polynomial $f \in \mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is called a weighted homogeneous polynomial of degree d and weight $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ if for $\lambda \in \mathbb{C}^{*}$,

$$
f\left(\lambda^{w_{0}} x_{0}, \lambda^{w_{1}} x_{1}, \ldots, \lambda^{w_{n}} x_{n}\right)=\lambda^{d} f\left(x_{0}, x_{1}, \ldots, x_{n}\right)
$$

A weighted projective variety is the zero-set of an ideal generated by weighted homogeneous polynomials all having the same weight.

If $V \subset \mathbb{C}^{n+1}$ is a variety defined by weighted homogeneous polynomials f_{1}, \ldots, f_{r} all having the same weights \mathbf{w}, then V is invariant under the weighted \mathbb{C}^{*} action (2.1). The converse is true as well [26]: if a variety V is invariant under the weighted \mathbb{C}^{*} action (2.1), it can be defined by weighted homogeneous polynomials. Therefore, the quotient V / \mathbb{C}^{*} is well-defined in $\mathrm{P}(\mathbf{w})$ and so is a weighted projective variety. Let X be any weighted projective variety and let $\mathcal{C}_{X}^{*}=\pi^{-1}(X)$ where π is the canonical projection. Then we have the following commutative diagram:

Let \mathcal{C}_{X} be the affine closure of \mathcal{C}_{X}^{*} in $\mathbb{C}^{n+1} . \mathcal{C}_{X}$ is called the affine cone and \mathcal{C}_{X}^{*} the punctured affine cone over X.

A variety V is a complete intersection if the minimal number of generators of its ideal is equal to its codimension.

Given weights \mathbf{w} denote by $X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}(\mathbf{w})$ the family of all complete intersections of multidegree $\mathbf{d}=\left(d_{1}, \ldots, d_{c}\right)$. This notation will also sometimes denote a sufficiently general member of the family.

Definition $2 A$ complete intersection $X=X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is quasismooth if its affine cone C_{X} is smooth outside its vertex.

Conditions will be given in Section 3 for quasismoothness in terms of the weights and degrees.

Definition $3 A$ variety $X=X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ of codimension c is wellformed if the expression for \mathbb{P} is well-formed (see Definition 1) and X contains no codimension $c+1$ singular stratum of \mathbb{P}.

Conditions will be given in Section 3 for X to be well-formed in terms of the weights and degrees.

2.2 Sasakian manifolds and the Sasakian structure on the weighted sphere

The main reference for this section is [3]. A contact manifold is a (2n+1)-dimensional manifold with a contact form, that is, a 1 -form η such that $\eta \wedge(d \eta)^{n} \neq 0$. The Reeb vector field ξ, is the unique vector field such that $\xi\lrcorner \eta=1$ and $\xi\lrcorner d \eta=0$. Let $\mathcal{D}=\operatorname{ker} \eta$. Then $(\mathcal{D}, d \eta)$ is a symplectic structure. An almost contact structure is a structure (ξ, η, Φ) where ξ is a vector field, η is a 1 -form, and Φ is a $(1,1)$ tensor field such that
$\eta(\xi)=1$ and $\Phi \circ \Phi=-\mathbb{1}+\xi \otimes \eta . \Phi \circ \xi=0$ and $\eta \circ \Phi=0$ follow. If (M, ξ, η, Φ) is an almost contact manifold and (M, g) is a Riemannian manifold then g is compatible with the almost contact structure if $g(\Phi X, \Phi Y)=g(X, Y)-\eta(X) \eta(Y)$ for all X, Y vector fields on M. If (M, η) is a contact manifold and $d \eta(\Phi X, \Phi Y)=d \eta(X, Y)$ for all X, Y vector fields on M and $d \eta(\Phi X, X)>0$ for $X \neq 0$, then the almost contact structure is compatible with the contact structure. If, in addition, $g(X, \Phi Y)=d \eta(X, Y)$, (M, ξ, η, Φ, g) is a contact metric structure. The cone on $\left(M, g_{M}\right), C(M)=M \times \mathbb{R}^{+}$ has a Riemannian structure $(C(M), g)$ where $g=d r^{2}+r^{2} g_{M}$. Let $\Psi=r \frac{\partial}{\partial r}$. If M is almost contact, define I by $I Y=\Phi Y+\eta(Y) \Psi, I \Psi=-\xi$. Then I is an almost complex structure. An almost contact structure (ξ, η, Φ) is normal if I is integrable. If it is contact as well, then it is Sasakian. That is, a structure is Sasakian if it is a normal contact metric structure.

Let $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n}\right)$. Consider the standard contact form on $\mathbb{R}^{2 n+2}=\{(\mathbf{x}, \mathbf{y})\}$ given by $\eta_{\mathbf{1}}=\sum_{i=0}^{n}\left(y_{i} d x_{i}-x_{i} d y_{i}\right)$ restricted to the sphere

$$
S^{2 n+1}=\left\{\mathbf{z}=\left.(\mathbf{x}, \mathbf{y}) \in \mathbb{C}^{n+1}\left|\sum_{i=o}^{n}\right| z_{i}\right|^{2}=1\right\}
$$

The Reeb vector field is given by

$$
\xi_{\mathbf{1}}=\sum_{i=0}^{n}\left(y_{i} \frac{\partial}{\partial x_{i}}-x_{i} \frac{\partial}{\partial y_{i}}\right)
$$

Let Φ_{1} be the restriction of the standard complex structure on $\mathbb{R}^{2 n+2}$ to $\mathcal{D}=$ $\operatorname{ker}\left(\left.\eta_{1}\right|_{S^{2 n+1}}\right)$. Let g_{1} be the flat metric on $\mathbb{R}^{2 n+2}$ restricted to $S^{2 n+1}$. g_{1} has constant sectional curvature 1 and satisfies

$$
g_{1}=d \eta_{1} \circ\left(\Phi_{1} \otimes \mathbb{1}\right)+\eta_{\mathbf{1}} \otimes \eta_{1}
$$

so is compatible with the contact form. Since the structure is almost complex, the contact structure ($S^{2 n+1}, \eta_{1}, \Phi_{1}, g_{1}$) is normal, hence Sasakian.

With the above notation let $H_{i}=y_{i} \frac{\partial}{\partial x_{i}}-x_{i} \frac{\partial}{\partial y_{i}}$ so $\xi_{\mathbf{1}}=\sum_{i=0}^{n} H_{i}$.

Let $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}_{+}^{n+1}$ and define $\xi_{\mathbf{w}}=\sum_{i=0}^{n} w_{i} H_{i}$ This determines a flow on $S^{2 n+1}$ given by

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \mapsto\left(e^{2 \pi i w_{0} t}, e^{2 \pi i w_{1} t}, \ldots, e^{2 \pi i w_{n} t}\right)
$$

Define $\eta_{\mathbf{w}}=\frac{\eta_{1}}{\sum_{i=0}^{n} w_{i}\left|z_{i}\right|^{2}}, g_{\mathbf{w}}=d \eta_{\mathbf{w}} \circ\left(\Phi_{\mathbf{w}} \otimes\right)+\eta_{\mathbf{w}} \otimes \eta_{\mathbf{w}}$, and $\Phi_{\mathbf{w}}=\Phi_{\mathbf{1}}-\Phi\left(\xi_{\mathbf{w}}-\xi_{\mathbf{1}}\right) \otimes \eta_{\mathbf{w}}$ then $\mathcal{S}_{\mathbf{w}}^{2 n+1}=\left(\eta_{\mathbf{w}}, \xi_{\mathbf{w}}, \Phi_{\mathbf{w}}, g_{\mathbf{w}}\right)$ is a weighted Sasakian structure on $S^{2 n+1}$. [Note: the standard structure has $\mathbf{w}=(1,1, \ldots, 1)$, whence the subscript 1.]

The leaves of the foliation $\mathcal{F}_{\xi_{\mathrm{w}}}$ generated by ξ_{w} are all circles, so $\mathcal{F}_{\xi_{\mathrm{w}}}$ is equivalent to a locally free circle action. The structure $\mathcal{S}_{\mathrm{w}}^{2 n+1}$ is quasiregular, that is, there is a $k>0$ such that each point has a foliated coordinate chart (U, x) such that each leaf of $\mathcal{F}_{\xi_{\mathrm{w}}}$ passes through U at most k times.

2.3 Links of weighted complete intersections and Sasakian structures on them

Let $V_{f}=V_{f_{1}, \ldots, f_{c}}=\left\{\mathbf{z} \in \mathbb{C}^{n+1} \mid f_{1}(\mathbf{z})=\cdots=f_{c}(\mathbf{z})\right\}$. Suppose V_{f} has an isolated critical point at the origin. Then for ε sufficiently small the sphere $S_{\varepsilon}^{2 n+1}=\{\mathbf{z} \in$ $\left.\left.\mathbb{C}^{n+1}\left|\sum_{i=0}^{n}\right| z_{i}\right|^{2}=\varepsilon\right\}$ only encloses one critical point. Let $L_{f}=V_{f} \cap S_{\varepsilon}^{2 n+1} . L_{f}$ is called the link of V_{f} at the origin. By scaling we can let $\varepsilon=1$ so $L_{f}=V_{f} \cap S^{2 n+1}$. L_{f} is a $(2(n+1-c)-1)$-dimensional manifold.

Suppose $f=\left(f_{1}, \ldots, f_{c}\right)$ and for each i, f_{i} is weighted homogeneous of degree d_{i} with weight $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$ independent of i. If V_{f} has an isolated critical point at the origin and no other critical points, then $V_{f}=\mathcal{C}_{X_{f}}$ the affine cone over a quasismooth weighted projective variety X_{f} in the family $X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}(\mathbf{w}) . V_{f}$ is invariant under the weighted \mathbb{C}^{*} action (2.1).

Given such V_{f} with weight \mathbf{w}, consider the Sasakian structure on $S_{\mathbf{w}}^{2 n+1}, \mathcal{S}_{\mathbf{w}}=$
$\left(\xi_{\mathbf{w}}, \eta_{\mathbf{w}}, \Phi_{\mathbf{w}}, g_{\mathbf{w}}\right)$. It is invariant under the same weighted \mathbb{C}^{*} action (2.1). For $P \in L_{f}$, $\left(\xi_{\mathbf{w}}\right)_{P} \in \mathrm{~T}_{P} L_{f}$ and $\Phi_{\mathbf{w}} \mathrm{T}_{P} L_{f} \subset \mathrm{~T}_{P} L_{f}$ so $\mathcal{S}_{\mathbf{w}}$ restricts to a Sasakian structure on L_{f}, which is quasiregular as well.

Proposition 4 ([3, Proposition 9.2.4]) Given L_{f} and $\mathcal{S}_{\mathbf{w}}$ be its induced Sasakian structure. Then $\mathcal{S}_{\mathbf{w}}$ is
(i) positive (anticanonical) if and only if $|\mathbf{w}|-|\mathbf{d}|>0$,
(ii) null if and only if $|\mathbf{w}|-|\mathbf{d}|=0$, and
(iii) negative (canonical) if and only if $|\mathbf{w}|-|\mathbf{d}|<0$.

The integer $I=|\mathbf{w}|-|\mathbf{d}|$ is called the Fano index of X_{f} when it is positive, and in general the index of V_{f} or L_{f}.

Theorem 5 ([3, Theorem 9.5.1]) If L_{f} is the link of an isolated complete intersection singularity of weighted homogeneous polynomials $f=\left(f_{1}, \ldots, f_{c}\right)$, and $|\mathbf{w}|-|\mathbf{d}|>$ 0, then L_{f} admits a Sasakian metric with positive Ricci curvature.

Chapter 3

Enumeration of Positive Sasakian

Links

3.1 Numerical Conditions for Quasismoothness

3.1.1 Hypersurfaces

General conditions for quasismoothness of hypersurfaces are given by [14, Theorem 8.1]:

Theorem 6 A general hypersurface, not a linear cone, $X_{d} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ of degree d, where $n \geq 1$ is quasismooth if and only if for every nonempty subset $\mathcal{I}=$ $\left\{i_{0}, \ldots, i_{k-1}\right\}$ of $\{0, \ldots, n\}$, either

(b) for $\nu=1, \ldots, k$, there exist monomials $x_{\mathcal{I}}^{M_{\nu}} x_{e_{\nu}}=x_{i_{0}}^{m_{0, \nu}} \cdots x_{i_{k-1}}^{m_{k-1, \nu}} x_{e_{\nu}}$ of degree d and $\left\{e_{\nu}\right\}$ are k distinct elements.

Precise conditions for curves in $\mathbb{P}\left(w_{0}, w_{1}, w_{2}\right)$ to be quasismooth are given by [14, Corollary 8.4]:

Corollary 7 The curve $C_{d} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}\right)$, with $d>w_{i}$, is quasismooth if and only if the following hold for all i :
(1) there exists a monomial $x_{i}^{n} x_{e_{i}}$, for some e_{i}, of degree d.
(2) there exists a monomial of degree d which does not involve x_{i}.

Precise conditions for surfaces in $\mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ to be quasismooth are given by [14, Corollary 8.5]:

Corollary 8 The surface $S_{d} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$, with $d>w_{i}$, is quasismooth if and only if the following hold:
(1) for all i there exists a monomial $x_{i}^{n} x_{e_{i}}$, for some e_{i}, of degree d.
(2) for all $i<j$ either
(a) there exists a monomial $x_{i}^{m} x_{j}^{n}$ of degree d, or
(b) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}} x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d with $e_{1} \neq e_{2}$.
(3) there exists a monomial of degree d which does not involve x_{i}.

Precise conditions for 3 -folds in $\mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ to be quasismooth are given by [14, Corollary 8.6]:

Corollary 9 The 3 -fold $X_{d} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$, with $d>w_{i}$, is quasismooth if and only if the following hold:
(1) for all i there exists a monomial $x_{i}^{n} x_{e_{i}}$, for some e_{i}, of degree d.
(2) for all $i<j$ either
(a) there exists a monomial $x_{i}^{m} x_{j}^{n}$ of degree d, or
(b) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}} x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d with $e_{1} \neq e_{2}$.
(3) for all $i<j$ there exists a monomial of degree d which does not involve either x_{i} or x_{j}.

Chapter 3. Enumeration of Positive Sasakian Links

Remark 10 A hypersurface variety satisfying condition (1) in any dimension is called semiquasismooth [2].

Conditions for a hypersurface to be well-formed are given by ([14],6.10):

Remark 11 A hypersurface $X_{d} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is well formed if and only if
(i) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, w_{n}\right)=1$ for each i, and
(ii) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, \hat{w}_{j}, \ldots, w_{n}\right) \mid d$ for each $i<j$.

3.1.2 Codimension 2

General conditions for quasismoothness of codimension 2 weighted complete intersections are given by [14, Theorem 8.7]:

Theorem 12 Suppose the general codimension 2 weighted complete intersection

$$
X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)
$$

of multidegree $\left\{d_{1}, d_{2}\right\}$, where $n \geq 2$, is not the intersection of a linear cone with another hypersurface. Then $X_{d_{1}, d_{2}}$ in \mathbb{P} is quasismooth if and only if for each nonempty subset $\mathcal{I}=\left\{i_{0}, \ldots, i_{k-1}\right\}$ of $\{0, \ldots, n\}$, one of the following holds:
(a) there exists a monomial $x_{\mathcal{I}}^{M_{1}}$ of degree d_{1} and there exists a monomial $x_{\mathcal{I}}^{M_{2}}$ of degree d_{2}, or
(b) there exists a monomial $x_{\mathcal{I}}^{M}$ of degree d_{1}, and for $\nu=1, \ldots, k-1$, there exist monomials $x_{\mathcal{I}}^{M_{\nu}} x_{e_{\nu}}$ of degree d_{2}, where $\left\{e_{\nu}\right\}$ are $k-1$ distinct elements, or
(c) there exists a monomial $x_{\mathcal{I}}^{M}$ of degree d_{2}, and for $\nu=1, \ldots, k-1$, there exist monomials $x_{\mathcal{I}}^{M_{\nu}} x_{e_{\nu}}$ of degree d_{1}, where $\left\{e_{\nu}\right\}$ are $k-1$ distinct elements, or
(d) for $\nu=1, \ldots, k$, there exist monomials $x_{\mathcal{I}}^{M_{\nu, 1}} x_{e_{\nu, 1}}$ of degree d_{1}, and $x_{\mathcal{I}}^{M_{\nu, 2}} x_{e_{\nu, 2}}$ of degree d_{2}, such that $\left\{e_{\nu, 1}\right\}$ are k distinct elements, $\left\{e_{\nu, 2}\right\}$ are k distinct elements, and $\left\{e_{\nu, 1}, e_{\nu, 2}\right\}$ contains at least $k+1$ distinct elements.

Chapter 3. Enumeration of Positive Sasakian Links

Some general properties this condition requires are included in [14, Corollary 8.8]:

Corollary 13 Suppose $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is quasismooth and not the intersection of a linear cone with another hypersurface. Then the following hold:
(i) Every variable x_{i} occurs in at least one of the defining equations.
(ii) All but at most one variable are in both equations.
(iii) If x_{i} does not appear in one defining equation then there exists a monomial x_{i}^{m} occurring in the other equation.

Precise conditions for codimension 2 quasismooth complete intersections (curves) in $\mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ are given by:

Corollary 14 Suppose the general codimension 2 weighted complete intersection (curve) $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ of multidegree $\left\{d_{1}, d_{2}\right\}$, is not the intersection of a linear cone with another hypersurface. Then $X_{d_{1}, d_{2}}$ in \mathbb{P} is quasismooth if and only if
(1) for all i either
(b) there exists a monomial $x_{i}^{m_{1}}$ of degree d_{1}, or
(c) there exists a monomial $x_{i}^{m_{2}}$ of degree d_{2}, or
(d) there exist monomials $x_{i}^{n_{1}} x_{e_{1}}$ of degree d_{1} for some e_{1}, and $x_{i}^{n_{2}} x_{e_{2}}$ of degree d_{2} for some e_{2}, with $e_{1} \neq e_{2}$
(2) for all $i<j$ either
(a) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2}, or
(b) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d_{2}, or
(c) there exists a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2} and a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}}$ of degree d_{1}
(3) for all $i<j<k$

Chapter 3. Enumeration of Positive Sasakian Links
(a) there exists monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree d_{1} and $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}

Proof: Conditions (1), (2), and (3) come from applying the conditions of Theorem 12 for $|\mathcal{I}|=1,|\mathcal{I}|=2$, and $|\mathcal{I}|=3$ respectively.

Remark 15 The condition (3) is equivalent to requiring for each $i=0,1,2,3$ that there exists a monomial not involving x_{i} for each degree d_{1}, d_{2}.

Precise conditions for codimension 2 quasismooth complete intersections (surfaces) in $\mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ are given by:

Corollary 16 Suppose the general codimension 2 weighted complete intersection (surface) $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ of multidegree $\left\{d_{1}, d_{2}\right\}$, is not the intersection of a linear cone with another hypersurface. Then $X_{d_{1}, d_{2}}$ in \mathbb{P} is quasismooth if and only if
(1) for all i either
(b) there exists a monomial $x_{i}^{m_{1}}$ of degree d_{1}, or
(c) there exists a monomial $x_{i}^{m_{2}}$ of degree d_{2}, or
(d) there exist monomials $x_{i}^{n_{1}} x_{e_{1}}$ of degree d_{1} for some e_{1}, and $x_{i}^{n_{2}} x_{e_{2}}$ of degree d_{2} for some e_{2}, with $e_{1} \neq e_{2}$
(2) for all $i<j$ either
(a) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2}, or
(b) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d_{2}, or
(c) there exists a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2} and a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}}$ of degree d_{1}, or
(d) there exist monomials $x_{i}^{m_{1,1}} x_{j}^{n_{1,1}} x_{e_{1,1}}$ and $x_{i}^{m_{1,2}} x_{j}^{n_{1,2}} x_{e_{1,2}}$ of degree d_{1} and monomials $x_{i}^{m_{2,1}} x_{j}^{n_{2,1}} x_{e_{2,1}}$ and $x_{i}^{m_{2,2}} x_{j}^{n_{2,2}} x_{e_{2,2}}$ of degree d_{2} such that $e_{1,1} \neq e_{1,2}, e_{2,1} \neq$

Chapter 3. Enumeration of Positive Sasakian Links

$e_{2,2}$, and $\left\{e_{1,1}, e_{1,2}, e_{2,1}, e_{2,2}\right\}$ contains 3 distinct elements.
(3) for all $i<j<k$ either
(a) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}, or
(b) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree d_{1} and monomials $x_{i}^{m_{2,1}} x_{j}^{n_{2,1}} x_{k}^{p_{2,1}} x_{e_{2,1}}$ and $x_{i}^{m_{2,2}} x_{j}^{n_{2,2}} x_{k}^{p_{2,2}} x_{e_{2,2}}$ of degree d_{2}, with $e_{2,1} \neq e_{2,2}$, or
(c) there exists a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2} and monomials $x_{i}^{m_{1,1}} x_{j}^{n_{1,1}} x_{k}^{p_{1,1}} x_{e_{1,1}}$ and $x_{i}^{m_{1,2}} x_{j}^{n_{1,2}} x_{k}^{p_{1,2}} x_{e_{1,2}}$ of degree $d_{1}, e_{1,1} \neq e_{1,2}$
(4) for all $i<j<k<l$
(a) there exists monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}^{q_{1}}$ of degree d_{1} and $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}^{q_{2}}$ of degree d_{2}.

Proof: Conditions (1), (2), (3), and (4) come from applying the conditions of Theorem 12 for $|\mathcal{I}|=1,|\mathcal{I}|=2,|\mathcal{I}|=3$, and $|\mathcal{I}|=4$ respectively.

Remark 17 The condition (4) is equivalent to requiring for each $i=0,1,2,3,4$ that there exists a monomial not involving x_{i} for each degree d_{1}, d_{2}.

Conditions for a codimension 2 complete intersection to be well-formed are given by ([14],6.11):

Remark 18 A complete intersection $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is well formed if and only if
(i) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, w_{n}\right)=1$ for each i, and
(ii) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, \hat{w}_{j}, \ldots, w_{n}\right) \mid d_{m}$ for each m for each $i<j$, and
(iii) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, \hat{w}_{j}, \ldots, \hat{w}_{k}, \ldots, w_{n}\right) \mid d_{m}$ for some m for each $i<j<k$.

Chapter 3. Enumeration of Positive Sasakian Links

3.1.3 Codimension 3

These results can be generalized to codimension 3 by a simple generalization of the proofs for the hypersurface [14, Theorem 8.1] and codimension 2 [14, Theorem 8.7] cases. First, the following, [14, Lemma 6.19], is used in the proof of 20 below.

Lemma 19 Let Z be the affine variety of all points P which satisfy the determinantal condition:

$$
\operatorname{rank}\left(\begin{array}{ccc}
g_{1}^{1}(P) & \cdots & g_{1}^{m}(P) \\
\vdots & & \vdots \\
g_{c}^{1}(P) & \cdots & g_{c}^{m}(P)
\end{array}\right) \leq k
$$

where $\left\{g_{i}^{j}\right\}$ are general weighted homogeneous nonzero polynomials. If Z is nonempty then $\operatorname{codim} Z \leq(m-k)(c-k)$.

Precise conditions for quasismoothness in codimension 3 are given by the following.

Theorem 20 Suppose the general codimension 3 weighted complete intersection

$$
X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)
$$

of multidegree $\left\{d_{1}, d_{2}, d_{3}\right\}$, where $n \geq 3$, is not the intersection of a linear cone with a codimension 2 subvariety. Then $X_{d_{1}, d_{2}, d_{3}}$ in \mathbb{P} is quasismooth if and only if for each nonempty subset $\mathcal{I}=\left\{i_{0}, \ldots, i_{k-1}\right\}$ of $\{0, \ldots, n\}$, one of the following holds:
(a) there exist monomials $x_{\mathcal{I}}^{M_{1}}$ of degree $d_{1}, x_{\mathcal{I}}^{M_{2}}$ of degree d_{2}, and $x_{\mathcal{I}}^{M_{3}}$ of degree d_{3}, or
(b) there exist monomials $x_{\mathcal{I}}^{M_{1}}$ of degree d_{1} and $x_{\mathcal{I}}^{M_{2}}$ of degree d_{2}, and for $\nu=$ $1, \ldots, k-2$, there exist monomials $x_{\mathcal{I}}^{M_{\nu}} x_{e_{\nu}}$ of degree d_{3}, where $\left\{e_{\nu}\right\}$ are $k-2$ distinct elements, or
(c) there exist monomials $x_{\mathcal{I}}^{M_{1}}$ of degree d_{1} and $x_{\mathcal{I}}^{M_{3}}$ of degree d_{3}, and for $\nu=$ $1, \ldots, k-2$, there exist monomials $x_{\mathcal{I}}^{M_{\nu}} x_{e_{\nu}}$ of degree d_{2}, where $\left\{e_{\nu}\right\}$ are $k-2$ distinct elements, or
(d) there exist monomials $x_{\mathcal{I}}^{M_{2}}$ of degree d_{2} and $x_{\mathcal{I}}^{M_{3}}$ of degree d_{3}, and for $\nu=$ $1, \ldots, k-2$, there exist monomials $x_{\mathcal{I}}^{M_{\nu}} x_{e_{\nu}}$ of degree d_{1}, where $\left\{e_{\nu}\right\}$ are $k-2$ distinct elements, or
(e) there exists a monomial $x_{\mathcal{I}}^{M}$ of degree d_{1}, and for $\nu=1, \ldots, k-1$, there exist monomials $x_{\mathcal{I}}^{M_{\nu, 2}} x_{e_{\nu, 2}}$ of degree d_{2} and $x_{\mathcal{I}}^{M_{\nu, 3}} x_{e_{\nu, 3}}$ of degree d_{3}, where $\left\{e_{\nu, 2}\right\}$ are $k-1$ distinct elements, $\left\{e_{\nu, 3}\right\}$ are $k-1$ distinct elements, and $\left\{e_{\nu, 2}, e_{\nu, 3}\right\}$ contains at least k distinct elements, or
(f) there exists a monomial $x_{\mathcal{I}}^{M}$ of degree d_{2}, and for $\nu=1, \ldots, k-1$, there exist monomials $x_{\mathcal{I}}^{M_{\nu, 1}} x_{e_{\nu, 1}}$ of degree d_{1} and $x_{\mathcal{I}}^{M_{\nu, 3}} x_{e_{\nu, 3}}$ of degree d_{3}, where $\left\{e_{\nu, 1}\right\}$ are $k-1$ distinct elements, $\left\{e_{\nu, 3}\right\}$ are $k-1$ distinct elements, and $\left\{e_{\nu, 1}, e_{\nu, 3}\right\}$ contains at least k distinct elements, or
(g) there exists a monomial $x_{\mathcal{I}}^{M}$ of degree d_{3}, and for $\nu=1, \ldots, k-1$, there exist monomials $x_{\mathcal{I}}^{M_{\nu, 1}} x_{e_{\nu, 1}}$ of degree d_{1} and $x_{\mathcal{I}}^{M_{\nu, 2}} x_{e_{\nu, 2}}$ of degree d_{2}, where $\left\{e_{\nu, 1}\right\}$ are $k-1$ distinct elements, $\left\{e_{\nu, 2}\right\}$ are $k-1$ distinct elements, and $\left\{e_{\nu, 1}, e_{\nu, 2}\right\}$ contains at least k distinct elements, or
(h) for $\nu=1, \ldots, k$, there exist monomials $x_{\mathcal{I}}^{M_{\nu, 1}} x_{e_{\nu, 1}}$ of degree $d_{1}, x_{\mathcal{I}}^{M_{\nu, 2}} x_{e_{\nu, 2}}$ of degree d_{2}, and $x_{\mathcal{I}}^{M_{\nu, 3}} x_{e_{\nu, 3}}$ of degree d_{3} such that $\left\{e_{\nu, 1}\right\}$ are k distinct elements, $\left\{e_{\nu, 2}\right\}$ are k distinct elements, $\left\{e_{\nu, 3}\right\}$ are k distinct elements, and $\left\{e_{\nu, 1}, e_{\nu, 2}, e_{\nu, 3}\right\}$ contains at least $k+2$ distinct elements.

Proof: Let F_{1}, F_{2}, F_{3} be linear systems of all homogeneous polynomials of degrees d_{1}, d_{2}, and d_{3}, respectively, with respect to the weights w_{0}, \ldots, w_{n}. Let $f_{1} \in F_{1}$, $f_{2} \in F_{2}$, and $f_{3} \in F_{3}$ be sufficiently general polynomials. Define

$$
X=X_{d_{1}, d_{2}, d_{3}}:\left(f_{1}=f_{2}=f_{3}=0\right) \subset \mathbb{P}(\mathbf{w})
$$

We have the following commutative diagram:

From Bertini's Theorem [12, Corollary III.10.9 and Remark III.10.9.2] the only singularities that can occur in the general \mathcal{C}_{X}^{*} lie on the base loci of the linear systems F_{1}, F_{2}, and F_{3}. Any component of the base loci is a coordinate k-plane for some $k=0, \ldots, n$. So the complete intersection $X_{d_{1}, d_{2}, d_{3}}$ is quasismooth if and only if its punctured affine cone \mathcal{C}_{X}^{*} is nonsingular at each point of its intersection with every coordinate k-plane contained in the base loci. That is, X is quasismooth if and only if \mathcal{C}_{X}^{*} is smooth along all the coordinate strata.

Let Π be a coordinate k-plane for some k. By renumbering, we can assume that Π is given by $x_{k}=\cdots=x_{n}=0$, corresponding to the subset $I=\{0, \ldots, k-1\}$. Let $\Pi^{0} \subset \Pi$ be the open toric stratum where x_{0}, \ldots, x_{k-1} are all nonzero. Expand f_{1}, f_{2}, f_{3} in terms of the coordinates $\left\{x_{k}, \ldots, x_{n}\right\}$:

$$
f_{\lambda}=h_{\lambda}\left(x_{0}, \ldots, x_{k-1}\right)+\sum_{i=k}^{n} x_{i} g_{\lambda}^{i}\left(x_{0}, \ldots, x_{k-1}\right)+\text { h.o.t. }
$$

for $\lambda=1,2,3$.
Assume that one of the conditions (a), (b), (c), (d), (e), (f), (g), (h) holds for each non-empty subset I.

If (a) holds, then h_{1}, h_{2}, and h_{3} are nonzero on Π^{0}. If any of h_{1}, h_{2}, and h_{3} involve only two variables, then $\Pi^{0} \cap \mathcal{C}_{X}^{*}$ is empty. This would include the cases $k=1$ and $k=2$, so without loss of generality, assume that h_{1}, h_{2}, and h_{3} each involve at least three variables and hence $k \geq 3$. Π^{0} is not part of the base locus of F_{1}, F_{2},or F_{3}. By Bertini's Theorem, $\left(f_{1}=0\right),\left(f_{2}=0\right)$, and $\left(f_{3}=0\right)$ are nonsingular on Π^{0}. Since $\left(h_{1}=0\right),\left(h_{2}=0\right)$, and $\left(h_{3}=0\right)$ are free linear systems on $\Pi^{0},\left(h_{1}=0\right),\left(h_{2}=0\right)$, and $\left(h_{3}=0\right)$ intersect transversally. Thus, at each point of $\left(h_{1}=h_{2}=h_{3}=0\right) \cap \Pi^{0}$, there exist three distinct normals. Therefore \mathcal{C}_{X}^{*} is nonsingular along Π^{0}.

Suppose (b) holds. Then h_{1} and h_{2} are nonzero and at least $k-2$ of the $\left\{g_{3}^{i}\right\}$ are nonzero. Π^{0} is not part of the base locus for F_{1} or F_{2}, so by Bertini's Theorem $\left(f_{1}=f_{2}=0\right)$ is nonsingular on Π^{0}. Singular points occur exactly on the locus

$$
Z=\left(h_{1}=h_{2}=0\right) \bigcap_{i}\left(g_{3}^{i}=0\right) \subset \Pi^{0}
$$

which is an intersection of at least $k-2$ free linear systems on $\left(h_{1}=h_{2}=0\right) \cap \Pi^{0}$. Thus $\operatorname{dim} Z \leq 0$ and hence is at worst the origin. Therefore \mathcal{C}_{X}^{*} is nonsingular along Π^{0}.
(c) and (d) are similar to (b).

Suppose (e) holds. Then h_{1} is nonzero and at least $k-1$ of the $\left\{g_{2}^{i}\right\}$ are nonzero and at least $k-1$ of the $\left\{g_{3}^{i}\right\}$ are nonzero. Furthermore, the matrix

$$
\left(\begin{array}{ccc}
g_{2}^{k} & \cdots & g_{2}^{n} \\
g_{3}^{k} & \cdots & g_{3}^{n}
\end{array}\right)
$$

has at least k nonzero columns. Π^{0} is not part of the base locus for F_{1}, so by Bertini's Theorem $\left(f_{1}=0\right)$ is nonsingular on Π^{0}. Define the matrix M_{P} by

$$
\left(\begin{array}{ccc}
g_{2}^{k}(P) & \cdots & g_{2}^{n}(P) \\
g_{3}^{k}(P) & \cdots & g_{3}^{n}(P)
\end{array}\right)
$$

Singular points occur on the locus $Z=\left\{P \mid \operatorname{rank} M_{P} \leq 2\right\}$.
As there are at least $k-1$ monomials of the form $x_{I}^{M} x_{e}$ of degree $d_{\lambda}, \lambda=2,3$, at least $k-1$ of the $\left\{g_{\lambda}^{i}\right\}$ are nonzero. As these are free on Π^{0}, each row of the matrix M_{P} is nonzero for each $P \in \Pi^{0}$. Furthermore this matrix for any $P \in Z$ has at least k nonzero columns, since there are at least k distinct elements in $\left\{e_{\nu}^{2}, e_{\nu}^{3}\right\}$. By renumbering we can assume that the first k columns of M_{P} are not identically zero on Π^{0}. Fix $P \in \Pi^{0}$. Without loss of generality we can assume that $g_{2}^{k}(P) \neq 0$. If $g_{3}^{k}(P)=0$ then $g_{3}^{i}(P) \neq 0$ for some $i>k$ so M_{P} has rank 2 , and $P \in \mathcal{C}_{X}^{*}$ is nonsingular.

Suppose $g_{3}^{k}(P) \neq 0$. Define $a=g_{2}^{k}, b=g_{3}^{k}$, and

$$
Z_{P}=\left\{Q \in \Pi^{0} \mid \bigcap_{i>k}\left(a g_{3}^{i}(Q)-b g_{2}^{i}(Q)=0\right)\right\}
$$

Then, $P \in Z_{P}$ if and only if $\operatorname{rank} M_{P} \leq 1$ in this case, which is equivalent to $P \in \mathcal{C}_{X}^{*}$ being singular. Since Z_{P} is the intersection of at least $k-1$ free linear systems on $\Pi^{0}, \operatorname{dim} Z_{P} \leq 0$ and so Z_{P} is at worst the origin. In particular, $P \notin Z_{P}$ and hence $P \in \mathcal{C}_{X}^{*}$ is nonsingular. Therefore, \mathcal{C}_{X}^{*} is nonsingular along Π^{0}.
(f) and (g) are similar to (e).

Suppose only (h) holds. Then

$$
f_{\lambda}=\sum_{i=k}^{n} x_{i} g_{\lambda}^{i}\left(x_{0}, \ldots, x_{k-1}\right)+\text { h.o.t. }
$$

for $\lambda=1,2,3$. The normal directions, perpendicular to the k-plane Π, to the hypersurfaces are $\left(g_{1}^{k}, \ldots, g_{1}^{n}\right),\left(g_{2}^{k}, \ldots, g_{2}^{n}\right)$, and $\left(g_{3}^{k}, \ldots, g_{3}^{n}\right)$. Define the matrix M_{P} by

$$
M_{P}=\left(\begin{array}{ccc}
g_{1}^{k}(P) & \cdots & g_{1}^{n}(P) \\
g_{2}^{k}(P) & \cdots & g_{2}^{n}(P) \\
g_{3}^{k}(P) & \cdots & g_{3}^{n}(P)
\end{array}\right)
$$

Singular points occur on the locus $Z=\left\{P \mid \operatorname{rank} M_{P} \leq 2\right\}$. As there are at least k monomials of the form $x_{I}^{M} x_{e}$ of degree d_{λ}, at least k of the $\left\{g_{\lambda}^{i}\right\}$ are nonzero. As these are free on Π^{0}, each row of the matrix M_{P} is nonzero for each $P \in \Pi^{0}$. Furthermore this matrix for any $P \in Z$ has at least $k+2$ nonzero columns, since there are at least $k+2$ distinct elements in $\left\{e_{\nu}^{1}, e_{\nu}^{2}, e_{\nu}^{3}\right\}$. By renumbering we can assume that the first $k+2$ columns of M_{P} are not identically zero on Π^{0}.

Fix $P \in \Pi^{0}$. Without loss of generality we can assume that $g_{1}^{k}(P) \neq 0$. If $g_{2}^{k}(P)=0$ then $g_{2}^{i}(P) \neq 0$ for some $i>k$. Without loss of generality we can assume that $i=k+1$. If $g_{3}^{k}(P)=g_{3}^{k+1}=0$, then $g_{3}^{j}(P) \neq 0$ for some $j>k+1$ so M_{P} has rank 3 and $P \in \mathcal{C}_{X}^{*}$
is nonsingular. Suppose $g_{3}^{k}(P)=0$ and $g_{3}^{k+1}(P) \neq 0$. Define $b=g_{2}^{k+1}, c=g_{3}^{k+1}$, and

$$
Z_{P}=\left\{Q \in \Pi^{0} \mid \bigcap_{i>k+1}\left(b g_{3}^{i}(Q)-c g_{2}^{i}(Q)=0\right)\right\} .
$$

Then $P \in Z_{P}$ if and only if $\operatorname{rank} M_{P} \leq 2$ in this case, which is equivalent to $P \in \mathcal{C}_{X}^{*}$ being singular. Since Z_{P} is the intersection of at least k free linear systems on Π^{0}, $\operatorname{dim} Z_{P} \leq 0$ and so Z_{P} is at worst the origin. In particular, $P \notin Z_{P}$ and hence $P \in \mathcal{C}_{X}^{*}$ is nonsingular. Now, suppose either $g_{2}^{k}(P) \neq 0$ or $g_{3}^{k}(P) \neq 0$. Then, define $a=g_{1}^{k}(P)$, $b=g_{2}^{k}(P), c=g_{2}^{k}(P)$ and

$$
\begin{aligned}
Z_{P}=\left\{Q \in \Pi^{0} \mid \cap_{j>i>k}\right. & \left(a\left(g_{2}^{i}(Q) g_{3}^{j}(Q)-g_{2}^{j}(Q) g_{3}^{i}(Q)\right)\right. \\
& -b\left(g_{1}^{i}(Q) g_{3}^{j}(Q)-g_{1}^{j}(Q) g_{3}^{i}(Q)\right) \\
& \left.\left.+c\left(g_{1}^{i}(Q) g_{2}^{j}(Q)-g_{1}^{j}(Q) g_{2}^{i}(Q)\right)=0\right)\right\} .
\end{aligned}
$$

Then, again, $P \in Z_{P}$ if and only if $\operatorname{rank} M_{P} \leq 2$ in this case, which is equivalent to $P \in \mathcal{C}_{X}^{*}$ being singular. Since Z_{P} is the intersection of at least k free linear systems on $\Pi^{0}, \operatorname{dim} Z_{P} \leq 0$ and so Z_{P} is at worst the origin. In particular, $P \notin Z_{P}$ and hence $P \in \mathcal{C}_{X}^{*}$ is nonsingular. Therefore, \mathcal{C}_{X}^{*} is nonsingular along Π^{0}.

As one of these eight conditions holds for every nonempty set I, \mathcal{C}_{X}^{*} is nonsingular.
Conversely, assume that none of the conditions (a), (b), (c), (d), (e), (f), (g), (h) hold for some non-empty subset I. Without loss of generality we can assume that $I=\{0, \ldots, k-1\}$ for some k. Let Π be the corresponding coordinate plane $x_{k}=\cdots=x_{n}=0$. There are several cases:
(i) $\Pi \not \subset \mathcal{C}_{X_{d_{1}}} \cup \mathcal{C}_{X_{d_{2}}}$. Then h_{1} and h_{2} are nonzero and since conditions (b) does not hold, there are at most $k-3$ of the $\left\{g_{3}^{i}\right\}$ which are nonzero. The singular points are exactly the locus

$$
Z=\left(h_{1}=h_{2}=0\right) \bigcap_{i}\left(g_{3}^{i}=0\right)
$$

Chapter 3. Enumeration of Positive Sasakian Links

so

$$
\operatorname{dim} Z \geq k-(k-3)-2=1
$$

Then Z contains more than the origin and \mathcal{C}_{X}^{*} is singular along Π.
(ii) $\Pi \not \subset \mathcal{C}_{X_{d_{1}}} \cup \mathcal{C}_{X_{d_{3}}}$. As in case (i), \mathcal{C}_{X}^{*} is singular along Π.
(iii) $\Pi \not \subset \mathcal{C}_{X_{d_{2}}} \cup \mathcal{C}_{X_{d_{3}}}$. As in case (i), \mathcal{C}_{X}^{*} is singular along Π.
(iv) $\Pi \subset\left(\mathcal{C}_{X_{d_{2}}} \cap \mathcal{C}_{X_{d_{3}}}\right) \backslash \mathcal{C}_{X_{d_{1}}}$. Then h_{1} is nonzero and since condition (e) does not hold, either
(1) there are at most $k-2$ of the $\left\{g_{2}^{i}\right\}$ which are nonzero,
(2) there are at most $k-2$ of the $\left\{g_{3}^{i}\right\}$ which are nonzero, or
(3) there are at most $k-1$ nonzero columns in the matrix

$$
\left(\begin{array}{ccc}
g_{2}^{k} & \cdots & g_{2}^{n} \\
g_{3}^{k} & \cdots & g_{3}^{n}
\end{array}\right)
$$

In case (1) the intersection $Z=\bigcap_{i}\left(g_{2}^{i}=0\right)$ has dimension at least 1 and so the $\left\{g_{2}^{i}\right\}$ have a common solution and the matrix

$$
M_{P}=\left(\begin{array}{lll}
g_{2}^{k}(P) & \cdots & g_{2}^{n}(P) \\
g_{3}^{k}(P) & \cdots & g_{3}^{n}(P)
\end{array}\right)
$$

has rank less than 2 for some $P \in Z$ and hence \mathcal{C}_{X}^{*} is singular along Π. Case (2) is similar to case (1). In case (3) let $Z=\left\{P \mid \operatorname{rank} M_{P} \leq 1\right\}$. Then, by Lemma 19,

$$
\operatorname{dim} Z \geq k-(k-2)-1=1,
$$

so Z contains more than just the origin. Therefore \mathcal{C}_{X}^{*} is singular along Π.
(v) $\Pi \subset\left(\mathcal{C}_{X_{d_{1}}} \cap \mathcal{C}_{X_{d_{3}}}\right) \backslash \mathcal{C}_{X_{d_{2}}}$. As in case (iv), \mathcal{C}_{X}^{*} is singular along Π.
(vi) $\Pi \subset\left(\mathcal{C}_{X_{d_{1}}} \cap \mathcal{C}_{X_{d_{2}}}\right) \backslash \mathcal{C}_{X_{d_{3}}}$. As in case (iv), \mathcal{C}_{X}^{*} is singular along Π.
(vii) $\Pi \subset \mathcal{C}_{X_{d_{1}}} \cap \mathcal{C}_{X_{d_{3}}} \cap \mathcal{C}_{X_{d_{2}}}$. In this case, h_{1}, h_{2}, and h_{3} are all identically zero. Then

$$
f_{\lambda}=\sum_{i=k}^{n} x_{i} g_{\lambda}^{i}\left(x_{0}, \ldots, x_{k-1}\right)+\text { h.o.t. }
$$

for $\lambda=1,2,3$. As condition (h) does not hold, one of two cases occurs: (1) for some λ there are at most $k-1$ of the $\left\{g_{\lambda}^{i}\right\}$ which are nonzero, or (2) there are at most $k+1$ distinct elements in the set $\left\{e_{\nu}^{1}, e_{\nu}^{2}, e_{\nu}^{3}\right\}$. In case (1), the intersection $Z_{\lambda}=\bigcap_{i}\left(g_{\lambda}^{i}=0\right)$ has dimension at least 1 , so the matrix

$$
M_{P}=\left(\begin{array}{ccc}
g_{1}^{k}(P) & \cdots & g_{1}^{n}(P) \\
g_{2}^{k}(P) & \cdots & g_{2}^{n}(P) \\
g_{3}^{k}(P) & \cdots & g_{3}^{n}(P)
\end{array}\right)
$$

has rank less than 3 for some $P \in Z_{\lambda}$ and hence \mathcal{C}_{X}^{*} is singular along Π. In case (2) there are at most $k+1$ nonzero columns in M_{P}. Let $Z=\left\{P \mid \operatorname{rank} M_{P} \leq 2\right\}$. Then

$$
\operatorname{dim} Z \geq k-(k-1)=1
$$

so Z contains more than just the origin. Therefore \mathcal{C}_{X}^{*} is singular along Π.
Corollary 13 has its counterpart in codimension 3:

Corollary 21 Suppose $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is quasismooth and not the intersection of a linear cone with another subvariety. Then the following hold:
(i) Every variable x_{i} occurs in at least one of the defining equations.
(ii) If x_{i} does not appear in two of the defining equations then there exists a monomial x_{i}^{m} occurring in the other equation.
(iii) Every pair of variables x_{i}, x_{j} occurs in at least two of the defining equations.
(iv) If neither x_{i} and x_{j} appear in one of the defining equations, then both the other equations contain a monomial of the form $x_{i}^{m} x_{j}^{n}$.
(v) Each defining equation lacks at most two variables.

Proof: (i) and (ii) follow from Theorem 20 for $|I|=1$. (iii) and (iv) follow from Theorem 20 for $|I|=2$. (v) follows from Theorem 20 for $|I|=3$.

Precise conditions for codimension 3 quasismooth complete intersections (curves) in $\mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ are given by:

Corollary 22 Suppose the general codimension 3 weighted complete intersection (curve) $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ of multidegree $\left\{d_{1}, d_{2}, d_{3}\right\}$ is not the intersection of a linear cone with a codimension 2 subvariety. Then $X_{d_{1}, d_{2}, d_{3}}$ in \mathbb{P} is quasismooth if and only if
(1) for each i one of the following holds:
(e) there exists a monomial x_{i}^{m} of degree d_{1}, or
(f) there exists a monomial x_{i}^{m} of degree d_{2}, or
(g) there exists a monomial x_{i}^{m} of degree d_{3}, or
(h) there exist monomials $x_{i}^{m_{1}} x_{e_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{e_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{e_{3}}$ of degree d_{3} such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ contains 3 distinct elements.
(2) for each $i<j$ one of the following holds:
(b) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2}, or
(c) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and $x_{i}^{m_{3}} x_{j}^{n_{3}}$ of degree d_{3}, or
(d) there exist monomials $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2} and $x_{i}^{m_{3}} x_{j}^{n_{3}}$ of degree d_{3}, or
(e) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d_{2} and a monomial $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{e_{3}}$ of degree d_{3} where $e_{2} \neq e_{3}$, or
(f) there exists a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2} and a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{e_{3}}$ of degree d_{3} where $e_{1} \neq e_{3}$, or
(g) there exists a monomial $x_{i}^{m_{3}} x_{j}^{n_{3}}$ of degree d_{3} and a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d_{2} where $e_{1} \neq e_{2}$
(3) for each $i<j<k$ one of the following holds:
(a) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}}$ of degree d_{3}, or

Chapter 3. Enumeration of Positive Sasakian Links

(b) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}$ of degree d_{3}, or
(c) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}}$ of degree d_{3}, or
(d) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}}$ of degree d_{3}
(4) for each $i<j<k<l$ one of the following holds:
(a) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}^{q_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}^{q_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}^{q_{3}}$ of degree d_{3}

Proof: Direct application of Theorem 20 for $|\mathcal{I}|=1,|\mathcal{I}|=2,|\mathcal{I}|=3$, and $|\mathcal{I}|=4$.

Remark 23 The condition (4) is equivalent to requiring for each $i=0,1,2,3,4$ that there exists a monomial not involving x_{i} for each degree d_{1}, d_{2}, and d_{3}.

Precise conditions for quasismooth codimension 3 complete intersections (surfaces) in $\mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ are given by:

Corollary 24 Suppose the general codimension 3 weighted complete intersection (surface) $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of multidegree $\left\{d_{1}, d_{2}, d_{3}\right\}$ is not the intersection of a linear cone with a codimension 2 subvariety. Then $X_{d_{1}, d_{2}, d_{3}}$ in \mathbb{P} is quasismooth if and only if
(1) for each i one of the following holds:
(e) there exists a monomial x_{i}^{m} of degree d_{1}, or
(f) there exists a monomial x_{i}^{m} of degree d_{2}, or
(g) there exists a monomial x_{i}^{m} of degree d_{3}, or
(h) there exist monomials $x_{i}^{m_{1}} x_{e_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{e_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{e_{3}}$ of degree d_{3} such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ contains 3 distinct elements.
(2) for each $i<j$ one of the following holds:
(b) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2}, or
(c) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and $x_{i}^{m_{3}} x_{j}^{n_{3}}$ of degree d_{3}, or
(d) there exist monomials $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2} and $x_{i}^{m_{3}} x_{j}^{n_{3}}$ of degree d_{3}, or
(e) there exists a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d_{2} and a monomial $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{e_{3}}$ of degree d_{3} where $e_{2} \neq e_{3}$, or
(f) there exists a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}}$ of degree d_{2} and a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{e_{3}}$ of degree d_{3} where $e_{1} \neq e_{3}$, or
(g) there exists a monomial $x_{i}^{m_{3}} x_{j}^{n_{3}}$ of degree d_{3} and a monomial $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1}}$ of degree d_{1} and a monomial $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2}}$ of degree d_{2} where $e_{1} \neq e_{2}$, or
(h)there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1,1}}$ and $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{e_{1,2}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2,1}}$ and $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{e_{2,2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{e_{3,1}}$ and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{e_{3,2}}$ of degree d_{3} such that $\left\{e_{1,1}\right\} \neq\left\{e_{1,1}\right\},\left\{e_{2,1}\right\} \neq\left\{e_{2,1}\right\},\left\{e_{3,1}\right\} \neq\left\{e_{3,1}\right\}$, and $\left\{e_{1,1}, e_{1,2}, e_{2,1}, e_{2,2}, e_{3,1}, e_{3,2}\right\}$ contains at least 4 distinct elements.
(3) for each $i<j<k$ one of the following holds:
(a) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}}$ of degree d_{3}, or
(b) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}$ of degree d_{3}, or
(c) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}}$ of degree d_{3}, or
(d) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}}$ of degree d_{3}, or
(e) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}}$ of degree $d_{1}, x_{i}^{m_{2,1}} x_{j}^{n_{2,1}} x_{k}^{p_{2,1}} x_{e_{2,1}}$ and $x_{i}^{m_{2,2}} x_{j}^{n_{2,2}} x_{k}^{p_{2,2}} x_{e_{2,2}}$ of degree d_{2}, and $x_{i}^{m_{3,1}} x_{j}^{n_{3,1}} x_{k}^{p_{3,1}} x_{e_{3,1}}$ and $x_{i}^{m_{3,2}} x_{j}^{n_{3,2}} x_{k}^{p_{3,2}} x_{e_{3,2}}$ of degree d_{3}, where $e_{2,1} \neq e_{2,2}, e_{3,1} \neq e_{3,2}$, and $\left\{e_{2,1}, e_{2,2}, e_{3,1}, e_{3,2}\right\}$ contains at least 3 distinct elements, or
(f) there exist monomials $x_{i}^{m_{1,1}} x_{j}^{n_{1,1}} x_{k}^{p_{1,1}} x_{e_{1,1}}$ and $x_{i}^{m_{1,2}} x_{j}^{n_{1,2}} x_{k}^{p_{1,2}} x_{e_{1,2}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}$ of degree d_{2}, and $x_{i}^{m_{3,1}} x_{j}^{n_{3,1}} x_{k}^{p_{3,1}} x_{e_{3,1}}$ and $x_{i}^{m_{3,2}} x_{j}^{n_{3,2}} x_{k}^{p_{3,2}} x_{e_{3,2}}$ of degree

Chapter 3. Enumeration of Positive Sasakian Links

d_{3}, where $e_{1,1} \neq e_{1,2}, e_{3,1} \neq e_{3,2}$, and $\left\{e_{1,1}, e_{1,2}, e_{3,1}, e_{3,2}\right\}$ contains at least 3 distinct elements, or
(g) there exist monomials $x_{i}^{m_{1,1}} x_{j}^{n_{1,1}} x_{k}^{p_{1,1}} x_{e_{1,1}}$ and $x_{i}^{m_{1,2}} x_{j}^{n_{1,2}} x_{k}^{p_{1,2}} x_{e_{1,2}}$ of degree $d_{1} x_{i}^{m_{2,1}} x_{j}^{n_{2,1}} x_{k}^{p_{2,1}} x_{e_{2,1}}$ and $x_{i}^{m_{2,2}} x_{j}^{n_{2,2}} x_{k}^{p_{2,2}} x_{e_{2,2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}}$ of degree d_{3}, where $e_{1,1} \neq e_{1,2}, e_{2,1} \neq e_{2,2}$, and $\left\{e_{1,1}, e_{1,2}, e_{2,1}, e_{2,2}\right\}$ contains at least 3 distinct elements
(4) for each $i<j<k<l$ one of the following holds:
(a) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}^{q_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}^{q_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}^{q_{3}}$ of degree d_{3}, or
(b) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}^{q_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}^{q_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}^{q_{3}} x_{e_{1}}$ and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}^{q_{3}} x_{e_{2}}$ of degree d_{3}, where $e_{1} \neq e_{2}$, or
(c) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}^{q_{1}}$ of degree $d_{1}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}^{q_{2}} x_{e_{1}}$ and $x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}^{q_{2}} x_{e_{2}}$ of degree d_{2}, where $e_{1} \neq e_{2}$, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}^{q_{3}}$ of degree d_{3}, or
(d) there exist monomials $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}^{q_{1}} x_{e_{1}}$ and $x_{i}^{m_{1}} x_{j}^{n_{1}} x_{k}^{p_{1}} x_{l}^{q_{1}} x_{e_{2}}$ of degree d_{1}, where $e_{1} \neq e_{2}, x_{i}^{m_{2}} x_{j}^{n_{2}} x_{k}^{p_{2}} x_{l}^{q_{2}}$ of degree d_{2}, and $x_{i}^{m_{3}} x_{j}^{n_{3}} x_{k}^{p_{3}} x_{l}^{q_{3}}$ of degree d_{3}
(5) for each $h<i<j<k<l$
(a) there exist monomials $x_{h}^{m_{1}} x_{i}^{n_{1}} x_{j}^{p_{1}} x_{k}^{q_{1}} x_{l}^{r_{1}}$ of degree $d_{1}, x_{h}^{m_{2}} x_{i}^{n_{2}} x_{j}^{p_{2}} x_{k}^{q_{2}} x_{l}^{r_{2}}$ of degree d_{2}, and $x_{h}^{m_{3}} x_{i}^{n_{3}} x_{j}^{p_{3}} x_{k}^{q_{3}} x_{l}^{r_{3}}$ of degree d_{3}.

Proof: Direct application of Theorem 20 for $|\mathcal{I}|=1,|\mathcal{I}|=2,|\mathcal{I}|=3,|\mathcal{I}|=4$, and $|\mathcal{I}|=5$.

Remark 25 The condition (5) is equivalent to requiring for each $i=0,1,2,3,4,5$ that there exists a monomial not involving x_{i} for each degree d_{1}, d_{2}, and d_{3}.

Conditions for a codimension 3 complete intersection to be well-formed are given by (see [14],6.12):

Remark 26 A complete intersection $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is well formed if and only if

Chapter 3. Enumeration of Positive Sasakian Links
(i) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, w_{n}\right)=1$ for each i, and
(ii) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, \hat{w}_{j}, \ldots, w_{n}\right) \mid d_{m}$ for each m for each $i<j$, and
(iii) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, \hat{w}_{j}, \ldots, \hat{w}_{k}, \ldots, w_{n}\right) \mid d_{m}$ for at least two m for each $i<j<$ k, and
(iv) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, \hat{w}_{j}, \ldots, \hat{w}_{k}, \ldots, \hat{w}_{l}, \ldots, w_{n}\right) \mid d_{m}$ for some m for each $i<$ $j<k<l$.

3.1.4 General Codimensions

The technique of proof given in [14] for Theorems 6 and 12, and extended to Theorem 20 above, clearly generalizes. The number of possible cases is 2^{c}, where c is the codimension.

Let Σ_{c} be the set of permutations of $\{1, \ldots, c\}$.
Let $\Sigma_{c, i}=\left\{\sigma \in \Sigma_{c} \mid \sigma(1)<\cdots<\sigma(i), \sigma(i+1)<\cdots<\sigma(c)\right\}$

Theorem 27 Suppose the general codimension c weighted complete intersection

$$
X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)
$$

of multidegree $\left\{d_{1}, \ldots, d_{c}\right\}$, where $n \geq 2$ and $n-c \geq 1$, is not the intersection of a linear cone with a codimension c-1 subvariety. Then $X_{d_{1}, \ldots, d_{c}}$ in \mathbb{P} is quasismooth if and only if for each nonempty subset $\mathcal{I}=\left\{i_{0}, \ldots, i_{k-1}\right\}$ of $\{0, \ldots, n\}$, one of the following holds:
(0) there exist monomials $x_{\mathcal{I}}^{M_{1}}$ of degree d_{1}, \ldots, and $x_{\mathcal{I}}^{M_{c}}$ of degree d_{c}
(1) for some $\sigma \in \Sigma_{c, c-1}$, there exist monomials $x_{\mathcal{I}}^{M_{\sigma(1)}}$ of degree $d_{\sigma(1)}, \ldots, x_{\mathcal{I}}^{M_{\sigma(c-1)}}$ of degree $d_{\sigma(c-1)}$, and for $\nu=1, \ldots, k-c+1$, there exist monomials $x_{\mathcal{I}}^{M_{\nu}} x_{e_{\nu}}$ of degree $d_{\sigma(c)}$, where $\left\{e_{\nu}\right\}$ are $k-c+1$ distinct elements

Chapter 3. Enumeration of Positive Sasakian Links
(j) for some $\sigma \in \Sigma_{c, c-j}$, there exist monomials $x_{\mathcal{I}}^{M_{\sigma(1)}}$ of degree $d_{\sigma(1)}, \ldots, x_{\mathcal{I}}^{M_{\sigma(c-j)}}$ of degree $d_{\sigma(c-j)}$, and for $\nu=1, \ldots, k-c+j$, there exist monomials $x_{\mathcal{I}}^{M_{c-j+1, \nu}} x_{e_{c-j+1, \nu}}$ of degree $d_{\sigma(c-j+1)}$, where $\left\{e_{c-j+1, \nu}\right\}$ are $k-c+j$ distinct elements, \ldots, there exist monomials $x_{\mathcal{I}}^{M_{c, \nu}} x_{e_{c, \nu}}$ of degree $d_{\sigma(c)}$, where $\left\{e_{c, \nu}\right\}$ are $k-c+2 j-1$ distinct elements
(n-1) for some $\sigma \in \Sigma_{c, 1}$, there exists a monomial $x_{\mathcal{I}}^{M_{\sigma(1)}}$ of degree $d_{\sigma(1)}$, and for $\nu=1, \ldots, k-1$, there exist monomials $x_{\mathcal{I}}^{M_{\sigma(2), \nu}} x_{e_{\sigma(2), \nu}}$ of degree $d_{\sigma(2)}, \ldots, x_{\mathcal{I}}^{M_{\sigma(c), \nu}} x_{e_{\sigma(c), \nu}}$ of degree $d_{\sigma(c)}$, where $\left\{e_{\sigma(2), \nu}\right\}$ are $k-1$ distinct elements, $\ldots,\left\{e_{\sigma(c), \nu}\right\}$ are $k-1$ distinct elements, and $\left\{e_{\sigma(2), \nu}, e_{\sigma(c) \nu}\right\}$ contains at least $k+c-3$ distinct elements
(n) for $\nu=1, \ldots, k$, there exist monomials $x_{\mathcal{I}}^{M_{1, \nu}} x_{e_{1, \nu}}$ of degree $d_{1}, \ldots, x_{\mathcal{I}}^{M_{c, \nu}} x_{e c, \nu}$ of degree d_{c} such that $\left\{e_{1, \nu}\right\}$ are k distinct elements, $\ldots,\left\{e_{c, \nu}\right\}$ are k distinct elements, and $\left\{e_{1, \nu}, \ldots, e_{3, \nu}\right\}$ contains at least $k+c-1$ distinct elements.

Proof: As illustrated above in the case $c=3$ (Theorem 20), using Bertini's Theorem, linear algebra, and dimensionality arguments.

Corollaries 13 and 21 also generalize:

Corollary 28 Suppose $X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is quasismooth and not the intersection of a linear cone with another subvariety. Then the following hold for $k \in$ $\{1, \ldots, c-1\}$:
(i) Every k-tuple of variables $\left\{x_{i_{0}}, \ldots, x_{i_{k-1}}\right\}$ occurs in at least k of the defining equations.
(ii) If none of a k-tuple of variables $\left\{x_{i_{0}}, \ldots, x_{i_{k-1}}\right\}$ occur in $c-k$ of the defining equations then each of the other k equations contain a monomial of the form $x_{i_{0}}^{m_{0}} \cdots x_{i_{k-1}}^{m_{k-1}}$.
(iii) Each order k subset of defining equations lacks at most $c-k$ variables.
[Note: Chen, Chen, and Chen [7, Proposition 3.1(1)] prove this for $k=1$.]

Conditions for a general codimension complete intersection to be well-formed are given by ([14],6.12):

Remark 29 A complete intersection $X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ is well formed if and only if
(i) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots, w_{n}\right)=1$ for each i, and
(ii) for each $\mu=1, \ldots, c$, the greatest common divisor of any $(n-1-c+\mu)$ of the $\left\{w_{i}\right\}$ must divide at least μ of the $\left\{d_{j}\right\}$.

3.2 Additional constraints required for positivity

3.2.1 Codimension 2

Lemma 30 Let $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ of multidegree $\left\{d_{1}, d_{2}\right\}$ be a codimension 2 weighted complete intersection. Suppose $X_{d_{1}, d_{2}}$ is quasismooth and not the intersection of a linear cone with another hypersurface. Assume $w_{0} \leq \cdots \leq w_{n}$ and $d_{1} \leq d_{2}$. Then (a) $d_{2} \geq w_{n}+w_{1}$ and (b) $d_{1} \geq w_{n-1}+w_{0}$.

Proof: (a) Apply Theorem 12 to $I=\{n\}$. Then one of the following holds:
(i) $m_{1} w_{n}=d_{1}$, or
(ii) $m_{2} w_{n}=d_{2}$, or
(iii) $m_{3} w_{n}+w_{i}=d_{1}$ and $m_{4} w_{n}+w_{j}=d_{2}$ with $i, j \in\{0, \ldots, n-1\}$ and $i \neq j$.
(i) $\Rightarrow d_{2} \geq d_{1} \geq 2 w_{n} \geq w_{n}+w_{1}$. (ii) $\Rightarrow d_{2} \geq 2 w_{n} \geq w_{n}+w_{1}$. (iii) If $j>0, d_{2}=m_{4} w_{n}+$ $w_{j} \geq w_{n}+w_{j} \geq w_{n}+w_{1}$. If $j=0$, then $i>0$, so $d_{2} \geq d_{1}=m_{4} w_{n}+w_{i} \geq w_{n}+w_{i} \geq w_{n}+w_{1}$.
(b) Apply Theorem 12 to $I=\{n-1, n\}$. Then one of the following holds:
(i) $m w_{n-1}+p w_{n}=d_{1}$ or
(ii) $m_{1} w_{n-1}+p_{1} w_{n}+w_{i}=d_{1}$ with $i \in\{0, \ldots, n-2\}$.

Chapter 3. Enumeration of Positive Sasakian Links
(i) $\Rightarrow d_{1} \geq 2 w_{n-1} \geq w_{n-1}+w_{0}$. (ii) $\Rightarrow d_{1} \geq w_{n-1}+w_{i} \geq w_{n-1}+w_{0}$.

Lemma 31 Let $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ of multidegree $\left\{d_{1}, d_{2}\right\}$ be a codimension 2 weighted complete intersection. Suppose $X_{d_{1}, d_{2}}$ is quasismooth and not the intersection of a linear cone with another hypersurface. Assume $w_{0} \leq w_{1} \leq w_{2} \leq w_{3}$ and $d_{1} \leq d_{2}$. Then $|\mathbf{w}| \leq|\mathbf{d}|$. Furthermore, if $|\mathbf{w}|=|\mathbf{d}|$, then $w_{3}<d_{1}$.

Proof: First suppose $|\mathbf{w}| \geq|\mathbf{d}|$ and $d_{1}<w_{3}$. From Lemma 30 we have $d_{2} \geq w_{3}+w_{1}$ and $d_{1} \geq w_{2}+w_{0}$, so under our assumption, $w_{3}>w_{2}$. Then (iii) of Corollary 13 requires $d_{2} \geq 2 w_{3}$. Then

$$
w_{0}+w_{1}+w_{2}+w_{3} \geq d_{1}+d_{2} \geq d_{1}+2 w_{3}>d_{1}+w_{2}+w_{3} \Rightarrow w_{0}+w_{1}>d_{1}
$$

which contradicts $d_{1} \geq w_{2}+w_{0}$.
Now suppose $|\mathbf{w}|>|\mathbf{d}|$. Then by Lemma 30

$$
w_{0}+w_{1}+w_{2}+w_{3}>d_{1}+d_{2} \geq w_{0}+w_{1}+w_{2}+w_{3}
$$

which is a contradiction. Therefore $|\mathbf{w}| \leq|\mathbf{d}|$.

Example $32 X_{2,2} \subset \mathbb{P}(1,1,1,1)$ is quasismooth and has $|\mathbf{w}|=|\mathbf{d}|$.

Example $33 X_{2,6} \subset \mathbb{P}(1,1,1,3)$ is quasismooth and has $|\mathbf{w}|<|\mathbf{d}|$ and $w_{3}<d_{1}$

Lemma 34 Let $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ of multidegree $\left\{d_{1}, d_{2}\right\}$ be a codimension 2 weighted complete intersection. Suppose $X_{d_{1}, d_{2}}$ is quasismooth and not the intersection of a linear cone with another hypersurface. Assume $w_{0} \leq w_{1} \leq w_{2} \leq w_{3} \leq w_{4}$ and $d_{1} \leq d_{2}$. If $|\mathbf{w}| \geq|\mathbf{d}|$, then $w_{4}<d_{1}$.

Chapter 3. Enumeration of Positive Sasakian Links

Proof: Suppose, on the contrary, that $d_{1}<w_{4}$. By Lemma 30 we have $d_{2} \geq w_{4}+w_{1}$ and $d_{1} \geq w_{3}+w_{0}$ respectively, so under our assumption, $w_{4}>w_{3}$. From (iii) of Corollary 13 we have that $d_{2}=k w_{4} \geq 2 w_{4}$. Then

$$
w_{0}+w_{1}+w_{2}+w_{3}+w_{4} \geq d_{1}+d_{2} \geq w_{0}+w_{3}+2 w_{4}
$$

so

$$
w_{1}+w_{2} \geq w_{4}>d_{1}
$$

From (3) of Corollary 16 applied to $\{2,3,4\}$, we must have either (i) $m w_{2}+n w_{3}+p w_{4}=$ d_{1} or both (ii) $m_{0} w_{2}+n_{0} w_{3}+p_{0} w_{4}+w_{0}=d_{1}$ and (iii) $m_{1} w_{2}+n_{1} w_{3}+p_{1} w_{4}+w_{1}=d_{1}$. (i) and (iii) are impossible since $w_{1}+w_{2}>d_{1}$.

Example $35 X_{2,6} \subset \mathbb{P}(1,1,1,1,3)$ is quasismooth and has both $d_{1}<w_{4}$ and $|\mathbf{w}|<|\mathbf{d}|$.

3.2.2 Codimension 3

Lemma 36 Let $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ of multidegree $\left\{d_{1}, d_{2}, d_{3}\right\}$ be a codimension 3 weighted complete intersection. Suppose $X_{d_{1}, d_{2}, d_{3}}$ is quasismooth and not the intersection of a linear cone with another hypersurface. Assume $w_{0} \leq \cdots \leq w_{n}$ and $d_{1} \leq d_{2}$. Then (a) $d_{3} \geq w_{n}+w_{2}$, (b) $d_{2} \geq w_{n-1}+w_{1}$, and (c) $d_{1} \geq w_{n-2}+w_{0}$.

Proof: (a) Apply Theorem 20 to $I=\{n\}$. Then one of the following holds:
(i) $m_{1} w_{n}=d_{1}$, or
(ii) $m_{2} w_{n}=d_{2}$, or
(ii) $m_{3} w_{n}=d_{3}$, or
(iv) $m_{4} w_{n}+w_{i}=d_{1}, m_{5} w_{n}+w_{j}=d_{2}$, and $m_{6} w_{n}+w_{k}=d_{3}$ with $i, j, k \in\{0, \ldots, n-1\}$, $\{i, j, k\}$ distinct.
(i) $\Rightarrow d_{3} \geq d_{2} \geq d_{1} \geq 2 w_{n} \geq w_{n}+w_{2}$. (ii) $\Rightarrow d_{3} \geq d_{2} \geq 2 w_{n} \geq w_{n}+w_{2}$. (iii) $\Rightarrow d_{3} \geq$ $2 w_{n} \geq w_{n}+w_{2}$. (iv) If $k \geq 2, d_{3}=m_{6} w_{n}+w_{k} \geq w_{n}+w_{k} \geq w_{n}+w_{2}$. If $k<2$, then either

Chapter 3. Enumeration of Positive Sasakian Links
$i \geq 2$ in which case $d_{3} \geq d_{2} \geq d_{1}=m_{4} w_{n}+w_{i} \geq w_{n}+w_{i} \geq w_{n}+w_{2}$ or $j \geq 2$ in which case $d_{3} \geq d_{2}=m_{5} w_{n}+w_{j} \geq w_{n}+w_{j} \geq w_{n}+w_{2}$.
(b) Apply Theorem 20 to $I=\{n-1, n\}$. Then at least one of the following holds:
(i) $m_{1} w_{n-1}+p_{1} w_{n}=d_{1}$, or
(ii) $m_{2} w_{n-1}+p_{2} w_{n}=d_{2}$ or
(iii) $m_{3} w_{n-1}+p_{3} w_{n}+w_{i}=d_{1}$ and $m_{4} w_{n-1}+p_{4} w_{n}+w_{j}=d_{2}$ with $i, j \in\{0, \ldots, n-2\}$ and $i \neq j$.
(i) $\Rightarrow d_{2} \geq d_{1} \geq 2 w_{n-1} \geq w_{n-1}+w_{1}$. (i) $\Rightarrow d_{2} \geq 2 w_{n-1} \geq w_{n-1}+w_{1}$. (iii) If $j>0$, $d_{2} \geq w_{n-1}+w_{j} \geq w_{n-1}+w_{1}$. If $j=0$, then $i>0$ so $d_{2} \geq d_{1} \geq w_{n-1}+w_{i} \geq w_{n-1}+w_{1}$.
(c) Apply Theorem 20 to $I=\{n-2, n-1, n\}$. Then at least one of the following holds:
(i) $m w_{n-2}+p w_{n-1}+q w_{n}=d_{1}$ or
(ii) $m_{1} w_{n-2}+p_{1} w_{n-1}+q_{1} w_{n}+w_{i}=d_{1}$ with $i \in\{0, \ldots, n-3\}$.
(i) $\Rightarrow d_{1} \geq 2 w_{n-2} \geq w_{n-2}+w_{0}$. (ii) $\Rightarrow d_{1} \geq w_{n-2}+w_{i} \geq w_{n-2}+w_{0}$.

Lemma 37 Let $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ of multidegree $\left\{d_{1}, d_{2}, d_{3}\right\}$ be a codimension 3 weighted complete intersection. Suppose $X_{d_{1}, d_{2}, d_{3}}$ is quasismooth and not the intersection of a linear cone with another subvariety. Assume $w_{0} \leq w_{1} \leq w_{2} \leq$ $w_{3} \leq w_{4}$ and $d_{1} \leq d_{2} \leq d_{3}$. Then $|\mathbf{w}|<|\mathbf{d}|$.

Proof: Suppose on the contrary that $|\mathbf{w}| \geq|\mathbf{d}|$. Lemma 36 implies that $d_{3} \geq w_{4}+w_{2}$, $d_{2} \geq w_{3}+w_{1}$, and $d_{1} \geq w_{2}+w_{0}$. Then

$$
w_{0}+w_{1}+w_{2}+w_{3}+w_{4} \geq d_{1}+d_{2}+d_{3} \geq\left(w_{0}+w_{2}\right)+\left(w_{1}+w_{3}\right)+\left(w_{2}+w_{4}\right)
$$

which is a contradiction. Therefore $|\mathbf{w}|<|\mathbf{d}|$.

Lemma 38 Let $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$ of multidegree $\left\{d_{1}, d_{2}, d_{3}\right\}$ be a codimension 3 weighted complete intersection. Suppose $X_{d_{1}, d_{2}, d_{3}}$ is quasismooth and

Chapter 3. Enumeration of Positive Sasakian Links

not the intersection of a linear cone with another subvariety. Then $|\mathbf{w}| \leq|\mathbf{d}|$. Suppose $w_{0} \leq w_{1} \leq w_{2} \leq w_{3} \leq w_{4} \leq w_{5}$ and $d_{1} \leq d_{2} \leq d_{3}$. If $|\mathbf{w}|=|\mathbf{d}|$, then $w_{5}<d_{1}$.

Proof: Suppose $|\mathbf{w}| \geq|\mathbf{d}|$. Lemma 36 implies that $d_{3} \geq w_{5}+w_{2}, d_{2} \geq w_{4}+w_{1}$, and $d_{1} \geq w_{3}+w_{0}$. We have

$$
w_{0}+w_{1}+w_{2}+w_{3}+w_{4}+w_{5} \geq d_{1}+d_{2}+d_{3} \geq\left(w_{0}+w_{3}\right)+\left(w_{1}+w_{4}\right)+\left(w_{2}+w_{5}\right)
$$

so $|\mathbf{w}|=|\mathbf{d}|$ Now suppose further that $w_{5}>d_{1}$. Then, since $d_{1} \geq w_{3}+w_{0}, w_{5}>d_{1}$. From (1) of Corollary 24, we have that $w_{5} \mid d_{2}$ or $w_{5} \mid d_{3}$. Either way $d_{3} \geq 2 w_{5}$ which would imply

$$
\begin{aligned}
w_{0}+w_{1}+w_{2}+w_{3}+w_{4}+w_{5} & =d_{1}+d_{2}+d_{3} \\
& \geq\left(w_{0}+w_{3}\right)+\left(w_{1}+w_{4}\right)+2 w_{5} \\
& >\left(w_{0}+w_{3}\right)+\left(w_{1}+w_{4}\right)+\left(w_{2}+w_{5}\right)
\end{aligned}
$$

which is a contradiction.

Example $39 X_{2,2,2} \subset \mathbb{P}(1,1,1,1,1,1)$ is quasismooth and has $|\mathbf{w}|=|\mathbf{d}|$.

Example $40 X_{2,2,6} \subset \mathbb{P}(1,1,1,1,1,3)$ is quasismooth and has both $w_{5}>d_{2}$ and $|\mathbf{w}|<$ |d|.

Example $41 X_{2,6,6} \subset \mathbb{P}(1,1,1,1,1,3)$ is quasismooth and has both $d_{2}>w_{5}>d_{1}$ and $|\mathbf{w}|<|\mathbf{d}|$.

Proposition 42 1. Let $X_{d_{1}, \ldots, d_{n-1}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ be a weighted complete intersection curve.
(a) If $|\mathbf{w}|>|\mathbf{d}|$ then $n=2$.

Chapter 3. Enumeration of Positive Sasakian Links
(b) If $|\mathbf{w}|=|\mathbf{d}|$ then $n=2$ or $n=3$.
2. Let $X_{d_{1}, \ldots, d_{n-2}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ be a weighted complete intersection surface.
(a) If $|\mathbf{w}|>|\mathbf{d}|$ then $n=3$ or $n=4$.
(b) If $|\mathbf{w}|=|\mathbf{d}|$ then $n=3, n=4$, or $n=5$.

Proof: These are implied by Lemmas 31, 34, 37, and 38 above.

3.2.3 General Codimension

Lemma 43 Let $X_{d_{1}, \ldots, d_{c}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ be a codimension c weighted complete intersection. Suppose $X_{d_{1}, \ldots, d_{c}}$ is quasismooth and is not the intersection of a linear cone with a codimension c-1 subvariety. Assume $w_{0} \leq \cdots \leq w_{n}$ and $d_{1} \leq \cdots \leq d_{c}$. Then $d_{c} \geq w_{n}+w_{c-1}, \ldots, d_{1} \geq w_{n-c+1}+w_{0}$.

Proof: Apply Theorem 27 here as Theorem 12 and Theorem 20 were used in the proofs of Lemma 30 and Lemma 36 respectively.

Proposition 44 Assume $w_{0} \leq \cdots \leq w_{n}$ and $d_{1} \leq \cdots \leq d_{c}$. Let $p=n-c$. 1. If a weighted complete intersection p-fold $X_{d_{1}, \ldots, d_{n-p}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ has $|\mathbf{w}|>|\mathbf{d}|$ then $p+1 \leq n<2 p+1$.
2. If a weighted complete intersection p-fold $X_{d_{1}, \ldots, d_{n-p}} \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ has $|\mathbf{w}|=|\mathbf{d}|$ then $p+1 \leq n<2 p+2$.
[Note: Chen, Chen, and Chen prove a stronger result with a slightly different approach in [7, Theorem 1.3]]

Proof: By Lemma 43 we have $d_{n-p} \geq w_{n}+w_{n-p-1}, \ldots, d_{1} \geq w_{p+1}+w_{0}$ so

$$
d_{1}+\cdots+d_{n-p} \geq\left(w_{n}+w_{n-p-1}\right)+\cdots+\left(w_{p+1}+w_{0}\right) .
$$

Chapter 3. Enumeration of Positive Sasakian Links

Then $p+1 \leq n-p-1 \Rightarrow|\mathbf{w}|<|\mathbf{d}|$ and $p<n-p-1 \Rightarrow|\mathbf{w}| \leq|\mathbf{d}|$

3.3 Enumeration of 5 -dimensional links of codimension 2 complete intersection singularities

3-dimensional positive links of hypersurface singularities were enumerated in [26] (with corrections in [2]). From Proposition 42 above, there are no positive 3dimensional links of higher codimension. 5-dimensional positive links of hypersurface singularities were enumerated in $[29,30]$.

Based on the conditions in Corollary 16 and Lemma 34, along with positivity, we have the following result:

Lemma 45 If $\mathbf{w}=\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ with $w_{0} \leq w_{1} \leq w_{2} \leq w_{3} \leq w_{4}$ and $\mathbf{d}=\left(d_{1}, d_{2}\right)$ with $d_{1} \leq d_{2}$, then if $X_{\mathbf{d}} \subset \mathbb{P}(\mathbf{w})$ is quasismooth and $|\mathbf{w}|>|\mathbf{d}|, X_{\mathbf{d}}$ belongs to one of 41 classes when categorized by how condition (1) of Corollary 16 is satisfied with respect to $I=\{3\}$ and $I=\{4\}$ and how condition (2) is satisfied with respect to $I=\{3,4\}$. These classes are listed in Appendix D.

Proof: Details are worked out in Appendix D.

Based on these classes, a program was written in Mathematica 9 (see documentation at [1]) to implement the conditions of Corollary 16.

Theorem 46 Let $\mathbf{w}=\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ and $\mathbf{d}=\left(d_{1}, d_{2}\right)$ with $d_{1} \leq d_{2} \leq 600$. If $X_{\mathbf{d}} \subset \mathbb{P}(\mathbf{w})$ is quasismooth and $|\mathbf{w}|>|\mathbf{d}|$, then (\mathbf{w}, \mathbf{d})
(i) belongs to one of the one parameter families in Table B. 1 of the Appendix,
(ii) belongs to one of the three parameter families in Table B.2, or
(iii) is one of the sporadic cases in Table B.3.

Chapter 3. Enumeration of Positive Sasakian Links

Proposition 42 implies that positive quasismooth weighted projective surfaces (which yield 5 dimensional links) must be either codimension 1 or 2 . Therefore, if this list were completed in the codimension 2 case, all 5 dimensional Sasakian algebraic links would be known.

Appendix C lists all the well-formed types amongst the list above.

Chapter 4

Topology of Links

4.1 Hypersurface singularities

In the hypersurface case, we have [24]:

Theorem 47 (Milnor fibration theorem for hypersurface singularities) Let $z_{0} \in V_{f}$, a hypersurface in \mathbb{C}^{n+1}. Then, for $\varepsilon>0$ sufficiently small, the map

$$
\phi: S_{\varepsilon}^{2 n+1}\left(z_{0}\right) \backslash L_{f} \rightarrow S^{1}
$$

defined by

$$
\phi(z)=\frac{f(z)}{|f(z)|}
$$

is the projection map of a smooth fiber bundle, with smooth parallizable fiber. If z_{0} is an isolated singular point of f, then each fiber F has the homotopy type of a bouquet of n-spheres: $S^{n} \vee \cdots \vee S^{n} . \bar{F}$ is a compact manifold with boundary L_{f}. Furthermore, L_{f} is a smooth ($n-2$)-connected manifold of dimension $2 n-1$, and F is $a(n-1)$-connected manifold of dimension $2 n$.

The number of S^{n} is $\mu=\mu_{f}$, the Milnor number of the singularity. It is strictly positive and can be computed in general as the degree of the Gauss map

$$
z \mapsto \frac{d f(z)}{\|d f(z)\|}
$$

Alternately,

$$
\mu_{f}=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]}{\left(\frac{\partial f}{\partial z_{0}}, \cdots, \frac{\partial f}{\partial z_{n}}\right)} .
$$

$\mathrm{H}_{n}(F, \mathbb{Z})$ is free abelian of rank μ.
For a weighted homogeneous polynomial with an isolated critical point at the origin,

$$
\mu=\left(q_{0}-1\right) \cdots\left(q_{n}-1\right)
$$

where $\left\{q_{0}, \ldots, q_{i}\right\}$ are the rational weights $q_{i}=d / w_{i} . \quad \mu$ must be an integer, even though the q_{i} may not be. This puts a constraint on the q_{i}, which is satisfied by the conditions for quasismoothness.

Consider the covering homotopy:

$$
F_{0} \times[0,2 \pi] \xrightarrow{h_{t}} S_{\varepsilon}^{2 n+1} \backslash L_{f} .
$$

h_{0} is the identity on F_{0} and $h=h_{2 \pi}: F_{0} \rightarrow F_{2 \pi} \cong F_{0}$ is the characteristic homeomorphism or monodromy map of the fiber. This induces an exact sequence:

$$
0 \rightarrow \mathrm{H}_{n}\left(L_{f}, \mathbb{Z}\right) \rightarrow \mathrm{H}_{n}(F, \mathbb{Z}) \xrightarrow{\mathbb{1}-h_{*}} \mathrm{H}_{n}(F, \mathbb{Z}) \rightarrow \mathrm{H}_{n-1}\left(L_{f}, \mathbb{Z}\right) \rightarrow 0
$$

Thus, $\mathrm{H}_{n}\left(L_{f}, \mathbb{Z}\right)=\operatorname{ker}\left(\mathbb{1}-h_{*}\right)$ is free abelian. $\mathrm{H}_{n-1}\left(L_{f}, \mathbb{Z}\right)=\operatorname{coker}\left(\mathbb{1}-h_{*}\right)$ may have torsion, but the free part is $\mathrm{H}_{n-1}\left(L_{f}, \mathbb{Z}\right) \otimes \mathbb{Q}=\mathrm{H}_{n}\left(L_{f}, \mathbb{Z}\right)$ by duality. Since L_{f} is ($n-2$)-connected, the only non-trivial homology is in dimensions $0, n-1, n$, and $2 n-1$. Let

$$
\Delta(t)=\operatorname{det}\left(t \mathbb{1}_{*}-h_{*}\right)
$$

$\Delta(t)$ is the characteristic polynomial of the monodromy map or Alexander polynomial of the link. $\Delta(1) \neq 0$ implies $\mathbb{1}_{*}-h_{*}$ is nonsingular so $\mathrm{H}_{n}\left(L_{f}, \mathbb{Z}\right)=0$ and L_{f} is a rational homology sphere. If $|\Delta(1)|=1$ then L_{f} is a homology sphere. More generally, $\Delta(1) \neq 0 \Rightarrow|\Delta(1)|=\left|\mathrm{H}_{n-1}\left(L_{f}, \mathbb{Z}\right)\right|$.

Let

$$
\Lambda_{n}=\operatorname{div}\left(t^{n}-1\right)=\langle 1\rangle+\left\langle\zeta_{n}\right\rangle+\cdots+\left\langle\zeta_{n}^{n-1}\right\rangle
$$

where ζ_{n} is a primitive $n^{\text {th }}$ root of unity. Rewrite $q_{i}=d / w_{i}=u_{i} / v_{i}$ with $\operatorname{gcd}\left(u_{i}, v_{i}\right)=1$. Then

$$
\operatorname{div} \Delta=\prod_{i}\left(\frac{\Lambda_{u_{i}}}{v_{i}}-1\right)
$$

and $b_{n}\left(L_{f}\right)=b_{n-1}\left(L_{f}\right)$ equals the number of factors of $t-1$ in $\Delta(t)$, that is, the order of vanishing of $\Delta(t)$ at $t=1$.

This can be calculated explicitly [25]:

Corollary 48 Given the above situation:

$$
b_{n}\left(L_{f}\right)=\sum(-1)^{n+1-s} \frac{u_{i_{1} \cdots} \cdots u_{i_{s}}}{v_{i_{1} \cdots} \cdots v_{i_{s}} \operatorname{lcm}\left(u_{i_{1}}, \ldots, u_{i_{s}}\right)}
$$

where the sum is taken over all the 2^{n+1} subsets $\left\{i_{1}, \ldots, i_{s}\right\}$ of $\{0, \ldots, n\}$.

4.2 Higher codimension singularities

In higher codimension, we have [22]:

Theorem 49 (Generalized Milnor Fibration Theorem) Let $f=\left(f_{1}, \ldots, f_{c}\right)$, $V_{f}=$ $\left\{\mathbf{z} \in \mathbb{C}^{n+1} \mid f_{1}(\mathbf{z})=\cdots=f_{c}(\mathbf{z})=0\right\}$. Suppose V_{f} has an isolated singularity at the origin
and let $L_{f}=V_{f} \cap S_{\varepsilon}^{2 n+1}$ for $\varepsilon>0$ sufficiently small that $S_{\varepsilon}^{2 n+1}$ only encloses the one singularity. Consider f as a map $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{c}$. Then the map

$$
\phi: S_{\varepsilon}^{2 n+1} \backslash L_{f} \rightarrow S^{2 c-1}
$$

defined by

$$
\phi_{j}(z)=\frac{f_{j}(z)}{|f(z)|}
$$

is the projection map of a smooth fiber bundle, with smooth parallizable fiber. The general fiber F has the homotopy type of a bouquet of $(n+1-c)$-spheres. \bar{F} is a compact manifold with boundary L_{f}. Furthermore, L_{f} is a smooth ($n-c-1$)-connected $(2(n-c)+1)$ manifold, and F is a $(n-c)$-connected $(2(n+1-c))$-manifold.

Again, the number of S^{n+1-c} is $\mu=\mu_{f}$, the Milnor number of the singularity. The Milnor number can be calculated as follows [21, Corollary 3.7.2]:

Theorem 50 If for $1 \leq j \leq c$ the equations $f_{1}=0, \ldots, f_{j}=0$ define a complete intersection with isolated singularity at 0 (that is, $X_{d_{1}, \ldots, d_{j}} \subset \mathbb{P}^{n}$ is quasismooth), then

$$
\mu\left(L_{d_{1}, \ldots, d_{c}}\right)=\sum_{j=1}^{c}(-1)^{c-j} \operatorname{dim}_{\mathbb{C}} A_{j}
$$

where

$$
A_{j}=\mathcal{O}_{\mathbb{C}^{n+1}, 0} /\left(\left\{\frac{\partial\left(f_{1}, \ldots, f_{j}\right)}{\partial\left(z_{\nu_{1}}, \ldots, z_{\nu_{j}}\right)}: 1 \leq \nu_{1} \leq \cdots \leq \nu_{j} \leq n+1\right\}, f_{1}, \ldots, f_{j-1}\right) \mathcal{O}_{\mathbb{C}^{n+1}, 0}
$$

In particular, we have [27, Theorem 1]:

Corollary 51 If $\operatorname{deg} f_{1}=\cdots=\operatorname{deg} f_{c}$ then $q_{i}=d_{j} / w_{i}$ is independent of j. Let

$$
p(t)=\prod_{i=1}^{n+1}\left(q_{i} t+\left(q_{i}-1\right)\right)=\beta_{n+1} t^{n+1}+\cdots+\beta_{1} t+\beta_{0} .
$$

Then

$$
\mu\left(V_{f}\right)=\beta_{c-1}-\beta_{c-2}+\cdots+(-1)^{c-1} \beta_{0} .
$$

Again, since L_{f} is $(n-c-1)$-connected, the only non-trivial homology is in dimensions $0, n-c, n+1-c$, and $(2(n-c)+1)$.

The Alexander polynomial also generalizes easily [27, Theorem 2] if $\operatorname{deg} f_{1}=$ $\cdots=\operatorname{deg} f_{c}$ so $q_{i}=d_{j} / w_{i}$ is independent of j. Again, rewrite $q_{i}=d / w_{i}=u_{i} / v_{i}$ with $\operatorname{gcd}\left(u_{i}, v_{i}\right)=1$, and let $\Lambda_{u_{i}}$ be as above. Then

$$
\operatorname{div} \Delta(t)=\sum_{r=0}^{c-1} \sum_{I_{r}}(-1)^{r-c+1} \frac{\Lambda_{u_{\sigma_{0}}}}{v_{\sigma_{1}}} \cdots \frac{\Lambda_{u_{\sigma_{r-1}}}}{v_{\sigma_{r-1}}}\left(\frac{\Lambda_{u_{\sigma_{r}}}}{v_{\sigma_{r}}}-1\right) \cdots\left(\frac{\Lambda_{u_{\sigma_{n}}}}{v_{\sigma_{n}}}-1\right)
$$

where I_{r} runs over partitions of $\{0, \ldots, n\}$ into sets $\left\{\sigma_{0}, \ldots, \sigma_{r-1}\right\}$ and $\left\{\sigma_{r}, \ldots, \sigma_{n}\right\}$.
Dimca [9] provides another approach to finding the middle Betti numbers of links. Let $f_{a}=\left(f_{1}, \ldots, f_{p}, f\right)$ be an ordered set of weighted homogeneous polynomials of the same weights $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right)$, and degrees $\mathbf{d}=\left(d_{1}, \ldots, d_{p}, d\right)$, and suppose $f_{0}=\left(f_{1}, \ldots, f_{p}\right)$. Suppose $V_{f_{0}}$ and $V_{f_{a}}$ have isolated singularities at the origin. If f is considered as a map $f: V_{f_{0}} \rightarrow \mathbb{C}$, then $V_{f_{a}}=f^{-1}(0)$. Let $L_{f_{0}}=V_{f_{0}} \cap S^{2 n+1}$ and $L_{f_{a}}=V_{f_{a}} \cap S^{2 n+1}$ and let $X_{f_{0}}$ and $X_{f_{a}}$ be the projective quasi-smooth weighted complete intersections defined by $f_{0}=\left(f_{1}, \ldots, f_{p}\right)$ and $f_{a}=\left(f_{1}, \ldots, f_{p}, f\right)$. Let \mathcal{O}_{n+1} be the \mathbb{C}-algebra of germs of holomorphic functions at the origin of \mathbb{C}^{n+1}, I_{X} the ideal generated by f_{1}, \ldots, f_{p} in \mathcal{O}_{n+1}. Let Ω^{k} be the \mathcal{O}_{n+1}-module of germs of holomorphic k-forms at the origin of \mathbb{C}^{n+1}. If $a=\left(a_{0}, \ldots, a_{n}\right)$, let $x^{a}=x_{0}^{a_{0} \cdots x_{n}^{a_{n}} \text {. The weights } \mathbf{w}, ~}$ induce a filtration on Ω^{k} such that a monomial form $\phi \in \Omega^{k}$,

$$
\phi=x^{a} \mathrm{~d} x_{i_{1}} \wedge \ldots \wedge \mathrm{~d} x_{i_{k}}
$$

has degree

$$
\operatorname{deg}(\phi)=\operatorname{deg}\left(x^{a}\right)+w_{i_{1}}+\cdots+w_{i_{k}},
$$

where

$$
\operatorname{deg}\left(x^{a}\right)=a_{0} w_{0}+\cdots+a_{n} w_{n}
$$

In turn, this induces a filtration on the stalk at the origin of the sheaf of holomorphic k-forms relative to f,

$$
\Omega_{f}^{k}=\Omega^{k} / I_{X} \cdot \Omega^{k}+\mathrm{d} f_{1} \wedge \Omega^{k-1}+\cdots+\mathrm{d} f_{p} \wedge \Omega^{k-1}+\mathrm{d} f \wedge \Omega^{k-1}
$$

Then $\Omega_{f}^{n-p} / \mathrm{d} \Omega_{f}^{n-p-1}$ is a free \mathcal{O}_{1}-module of rank $\mu=\mu\left(X_{f_{a}}\right)$, the Milnor number of $X_{f_{a}}$ at the origin. Let

$$
A:=\Omega_{f}^{n-p} / \mathrm{d} \Omega_{f}^{n-p-1}+(f) \Omega_{f}^{n-p}=\Omega_{X_{a}}^{n-p} / \mathrm{d} \Omega_{X_{f_{a}}}^{n-p-1}
$$

Then A is a μ-dimensional vector space over \mathbb{C} with a natural grading $A=\oplus_{k \geq 0} A_{k}$ coming from the above filtration. Let

$$
P(s)=\sum_{k \geq 0}\left(\operatorname{dim} A_{k}\right) s^{k}
$$

be the Poincaré series of A. Then

$$
P(s)=\operatorname{res}_{t=0} \frac{t^{-n-1+p}}{1+t}\left[\prod_{i=1}^{n+1} \frac{1+t s^{w_{i}}}{1-s^{w_{i}}} \prod_{j=1}^{p+1} \frac{1-s^{d_{j}}}{1+t s^{d_{j}}}\right]
$$

where $d_{p+1}=d$.

Theorem 52 ([9, Theorem 1]) The complex monodromy operator h is diagonalizable and its eigenvalues are d-roots of unity. The multiplicity of the root $e^{-2 \pi k i / d}$ is

$$
\sum_{j \equiv k} \bmod d i m A_{j}=d^{-1} \sum_{s^{d}=1} P(s) s^{-k}
$$

Then the following proposition [9, Proposition 6] allows computation of the Betti numbers of $L_{f}, X_{f}, L_{f_{0}}$, and $X_{f_{0}}$.

Proposition 53 Given the notation above,
(i) $b_{k}\left(X_{f}\right)=b_{k}\left(\mathbb{P}^{n}\right)$ for $k \neq n$ and $b_{n}\left(X_{f}\right)=b_{n}\left(\mathbb{P}^{n}\right)+b_{n}\left(L_{f}\right)$, where \mathbb{P}^{n} is the
usual projective n-space.
(ii) For $n \geq 2$,

$$
b_{n}\left(L_{f}\right)+b_{n-1}\left(L_{f_{0}}\right)=\operatorname{dim} \operatorname{ker}(h-\mathbb{1})
$$

Remark 54 As a special case, for $f_{a}=\left(f_{1}\right)(p=0), b_{n-1}\left(L_{f_{0}}\right)=\operatorname{dim} \operatorname{ker}(h-\mathbb{1})$, where h is the complex monodromy operator associated with the map $f_{1}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$.

Proposition 55 ([9, Proposition 3]) If f, f^{\prime} both have same type (\mathbf{w}, \mathbf{d}), then L_{f} and $L_{f^{\prime}}$ are homeomorphic.

4.3 Topology of Sasakian Structures in Dimension 5

Smale [28] classified all closed simply connected 5-manifolds admitting spin structures. Any such manifold M has the form

$$
M=k M_{\infty} \# M_{m_{1}} \# \cdots \# M_{m_{n}}
$$

where $M_{\infty}=S^{2} \times S^{3}, k M_{\infty}$ is the k-fold connected sum of $M_{\infty}, k \in \mathbb{N},\left\{m_{i}\right\}$ are positive integers with $1 \leq m_{1}|\cdots| m_{n}$ and M_{m} is a rational homology sphere with $H_{2}\left(M_{m}, \mathbb{Z}\right)=\mathbb{Z} / m \otimes \mathbb{Z} / m$ if $m>1$, and $M_{1}=S^{5}$. For convenience, let $0 M_{\infty}=S^{5}$. In other words, closed simply-connected 5 -manifolds with vanishing second StiefelWhitney class are characterized completely by their homology.

If $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ and $X_{d_{1}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ are both quasismooth, the Milnor number of $L_{f_{1}, f_{2}}$ can be computed by applying Theorem 50:

$$
\mu\left(L_{f_{1}, f_{2}}\right)+\mu\left(L_{f_{1}}\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{5}, 0} /\left(\left\{\frac{\partial\left(f_{1}, f_{2}\right)}{\partial\left(z_{i},, z_{j}\right)}: 0 \leq i \leq j \leq 4\right\}, f_{1}\right) \mathcal{O}_{\mathbb{C}^{5}, 0}
$$

In particular, from Corollary 51, if $d_{1}=d_{2}=d$, we have:

$$
\mu\left(L_{f_{1}, f_{2}}\right)=\left(-1+\sum_{j=0}^{4} \frac{d}{d-w_{j}}\right)\left(\prod_{i=0}^{4} \frac{d-w_{i}}{w_{i}}\right) .
$$

The Dimca technique [9] may be applied in two different ways to compute the Betti numbers of 5 -dimensional links of codimension 2 complete intersection singularities in \mathbb{P}^{4}, say $X_{d_{1}, d_{2}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$. Let f_{1}, f_{2} be sufficiently general weighted homogeneous polynomials of degrees d_{1}, d_{2} respectively. First, suppose $X_{d_{1}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ is quasismooth, and h_{1}, h_{2} the complex monodromy operators associated with the maps $f_{1}: \mathbb{C}^{5} \rightarrow \mathbb{C}, f_{2}: X_{d_{1}} \rightarrow \mathbb{C}$, respectively. Then

$$
b_{2}\left(L_{f_{1}, f_{2}}\right)=\operatorname{dim} \operatorname{ker}\left(h_{2}-\mathbb{1}\right)-b_{3}\left(L_{f_{1}}\right)=\operatorname{dim} \operatorname{ker}\left(h_{2}-\mathbb{1}\right)-\operatorname{dim} \operatorname{ker}\left(h_{1}-\mathbb{1}\right)
$$

Example 56 Consider $\mathbf{w}=(1,1,2,2,2), \mathbf{d}=(3,4) . X_{\mathbf{w}, \mathbf{d}}$ is quasismooth. $X_{(\mathbf{w}, 3)}$ is not quasismooth ((3) of Corollary 9 is not satisfied for $i=0, j=1) . X_{(\mathbf{w}, 4)}$ is quasismooth, however. Let $d / w_{i}=u_{i} / v_{i}$ with $\operatorname{gcd}\left(u_{i}, v_{i}\right)=1$. Then $u_{0}=u_{1}=4$, $u_{2}=u_{3}=u_{4}=2$, and $v_{0}=v_{1}=v_{2}=v_{3}=v_{4}=1 . b_{3}\left(L_{(\mathbf{w}, 4)}\right)=$ the order of vanishing of $\Delta(t)$ at $t=1$. From Corollary 48 :

$$
\begin{aligned}
b_{3}= & (-1)^{5}(1) \\
& +(-1)^{4}\left(2\left(\frac{4}{4}\right)+3\left(\frac{2}{2}\right)\right) \\
& +(-1)^{3}\left(\frac{4 \cdot 4}{4}+6\left(\frac{4 \cdot 2}{4}\right)+3\left(\frac{2 \cdot 2}{2}\right)\right) \\
& +(-1)^{2}\left(3\left(\frac{4 \cdot 4 \cdot 2}{4}\right)+6\left(\frac{4 \cdot 2 \cdot 2}{4}\right)+\frac{2 \cdot 2 \cdot 2}{2}\right) \\
& +(-1)\left(3\left(\frac{4 \cdot 4 \cdot 2 \cdot 2}{4}\right)+2\left(\frac{4 \cdot 2 \cdot 2 \cdot 2}{4}\right)\right) \\
& +\frac{4 \cdot 4 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{4} \\
= & 2
\end{aligned}
$$

$$
\begin{aligned}
P(s) & =\operatorname{res}_{t=0} \frac{t^{-4}}{1+t}\left[\frac{1+t s^{2}}{1-s} \cdot \frac{1+t s^{2}}{1-s^{2}} \cdot \frac{1-s^{3}}{1+t s^{3}} \cdot \frac{1-s^{4}}{1+t s^{4}}\right] \\
& =3 s^{6}+5 s^{7}+7 s^{8}+6 s^{9}+3 s^{10}+s^{11}
\end{aligned}
$$

Then $\operatorname{dim} \operatorname{ker}(h-\mathbb{1})=\sum_{j \equiv 0(\bmod (3))} a_{j}=3+6=9$.
Therefore, $b_{2}\left(L_{\mathbf{w}, \mathrm{d}}\right)=9-2=7$.

Another technique is necessary if neither $X_{d_{1}} \subset \mathbb{P}(\mathbf{w})$ or $X_{d_{2}} \subset \mathbb{P}(\mathbf{w})$ is quasismooth. If $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}(\mathbf{w})$ is quasismooth for some $f: X_{d_{1}, d_{2}} \rightarrow \mathbb{C}$, f of degree d_{3}, then in fact, $X_{d_{1}, d_{2}, d_{3}}$ is a smooth curve and

$$
b_{1}\left(L_{f_{1}, f_{2}, f_{3}}\right)=b_{1}\left(X_{d_{1}, d_{2}, d_{3}}\right)=2 p_{g}\left(X_{d_{1}, d_{2}, d_{3}}\right)
$$

where $p_{g}(Y)$ is the geometric genus. Then

$$
b_{2}\left(L_{f_{1}, f_{2}}\right)+2 p_{g}\left(X_{d_{1}, d_{2}, d_{3}}\right)=\operatorname{dim} \operatorname{ker}(h-\mathbb{1})
$$

A general formula for the genus $p_{g}(Y)$ in terms of (\mathbf{w}, \mathbf{d}) is given below in Corollary 60.

Such an f always exists, as, in particular, $d_{3}=2 \cdot \operatorname{lcm}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ will work $\left(d_{3}=\operatorname{lcm}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)\right.$ if $\left.\operatorname{lcm}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)>w_{4}\right)$. That is, if $X_{d_{1}, d_{2}} \subset$ $\mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ is quasismooth, then $X_{d_{1}, d_{2}, d_{3}} \subset \mathbb{P}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ is as well.

Example 57 Consider $\mathbf{w}=(2,3,3,4,4), \mathbf{d}=(6,8) . X_{\mathbf{w}, \mathbf{d}}$ is quasismooth. On the other hand, $X_{(\mathbf{w}, 6)}$ is not quasismooth (Corollary 9 is not satisfied for $\left\{x_{3}, x_{4}\right\}$) and $X_{(\mathbf{w}, 8)}$ is not quasismooth (Corollary 9 is not satisfied for $\left\{x_{1}, x_{2}\right\}$). $X_{(\mathbf{w},(6,8,7))}$ is quasismooth as well, with $|\mathbf{d}|-|\mathbf{w}|=5$.

$$
\begin{gathered}
P(s)=\operatorname{res}_{t=0} \frac{t^{3}}{1+t}\left[\frac{1+t s^{2}}{1-s^{2}} \frac{1+t s^{3}}{1-s^{3}} \frac{1+t s^{3}}{1-s^{3}} \frac{1+t s^{4}}{1-s^{4}} \frac{1+t s^{4}}{1-s^{4}} \frac{1-s^{6}}{1+t s^{6}} \frac{1-s^{8}}{1+t s^{8}} \frac{1-s^{7}}{1+t s^{7}}\right] \\
P(s)=s^{8}+4 s^{9}+4 s^{10}+6 s^{11}+7 s^{12}+9 s^{13}+8 s^{14}+9 s^{15}+6 s^{16}+6 s^{17}+4 s^{18}+3 s^{19}+s^{20}+s^{21}
\end{gathered}
$$

Chapter 4. Topology of Links

Then $\operatorname{dim} \operatorname{ker}(h-\mathbb{1})=8+1=9$. Then (see Corollary 60 below): $p_{g}\left(X_{6,7,8}\right)=a_{|\mathbf{d}|-|\mathbf{w}|}$ in the series

$$
\begin{aligned}
& \quad \sum_{i=0}^{\infty} a_{i} t^{i}=\frac{\left(1-t^{6}\right)\left(1-t^{7}\right)\left(1-t^{8}\right)}{\left(1-t^{2}\right)\left(1-t^{3}\right)\left(1-t^{3}\right)\left(1-t^{4}\right)\left(1-t^{4}\right)}=1+t^{2}+2 s^{3}+3 s^{4}+2 s^{5}+O\left(s^{6}\right) \\
& b_{2}\left(L_{\mathbf{w}, \mathbf{d}}\right)=9-2(2)=5 .
\end{aligned}
$$

Kollár has shown in [19] that if a Smale manifold M admits a Sasakian structure, then

$$
H_{2}(M, \mathbb{Z})=\mathbb{Z}^{k} \oplus \sum_{i}\left(\mathbb{Z}_{m_{i}}\right)^{2 g\left(D_{i}\right)}
$$

where $g\left(D_{i}\right)$ is the genus, and m_{i} the ramification index, of the branch divisor D_{i}. Here k is the second Betti number of M which we showed earlier how to calculate. $2 g(D) \neq 0$ precisely when D is non-rational.

Kollár has also shown in [19]:

Theorem 58 If M is a 5-dimensional simply connected positive Sasakian manifold, then the torsion subgroup of $\mathrm{H}_{2}(M, \mathbb{Z})$ is one of the following: $\left(\mathbb{Z}_{m}\right)^{2}$ for any $m \in \mathbb{Z}^{+}$, $\left(\mathbb{Z}_{5}\right)^{4},\left(\mathbb{Z}_{4}\right)^{4},\left(\mathbb{Z}_{3}\right)^{4},\left(\mathbb{Z}_{3}\right)^{6},\left(\mathbb{Z}_{3}\right)^{8}$, or $\left(\mathbb{Z}_{2}\right)^{2 n}$ for any $n \in \mathbb{Z}^{+}$(where \mathbb{Z}_{1} denotes trivial torsion).ㅁ.

The genus of the branch divisor can be computed by a method given by Dolgachev in [10]: For X a quasismooth weighted complete intersection, define the Poincaré series of X by

$$
P_{X}(t)=\sum_{m=0}^{\infty} a_{m} t^{m}=\sum_{m=0}^{\infty}\left(\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \mathcal{O}_{X}(m)\right)\right) t^{m}
$$

Theorem 59 If X is a quasismooth weighted complete intersection with weights $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right)$ and multidegree $\mathbf{d}=\left(d_{1}, \ldots, d_{c}\right)$, then

$$
P_{X}(t)=\frac{\prod_{i=1}^{c}\left(1-t^{d_{i}}\right)}{\prod_{j=0}^{n}\left(1-t^{w_{j}}\right)}
$$

Chapter 4. Topology of Links

Corollary 60 The genus, $p_{g}(X)=\operatorname{dim}_{\mathbb{C}} H^{\operatorname{dim} X}\left(X, \mathcal{O}_{X}\right)$, is given by

$$
p_{g}(X)=a_{|\mathbf{d}|-|\mathbf{w}|}
$$

Example 61 1. The formula of Corollary 60 reduces to the standard formula in the case of a curve X_{d} in the standard \mathbb{P}^{2} :

$$
P_{X_{d}}(t)=\frac{\left(1-t^{d}\right)}{(1-t)^{3}}=\left(1-t^{d}\right) \sum_{m=0}^{\infty}\binom{m+2}{2} t^{m}
$$

and $|\mathbf{d}|-|\mathbf{w}|=d-3$. So the coefficient of t^{d-3} in $P_{X_{d}}(t)$ is

$$
\binom{d-1}{2}=\frac{(d-1)(d-2)}{2}
$$

2. The formula of Corollary 60 also reduces to the standard formula in the case of a curve $X_{d_{1}, d_{2}}$ in the standard \mathbb{P}^{3} :

$$
P_{X_{d_{1}, d_{2}}}(t)=\frac{\left(1-t^{d_{1}}\right)\left(1-t^{d_{2}}\right)}{(1-t)^{4}}=\left(1-t^{d_{1}}-t^{d_{2}}+t^{d_{1}+d_{2}}\right) \sum_{m=0}^{\infty}\binom{m+3}{3} t^{m}
$$

and $|\mathbf{d}|-|\mathbf{w}|=d_{1}+d_{2}-4$. So the coefficient of $t^{d_{1}+d_{2}-4}$ in $P_{X_{d_{1}, d_{2}}}(t)$ is

$$
\begin{aligned}
& a_{d_{1}+d_{2}-4}=\binom{d_{1}+d_{2}-1}{3}-\binom{d_{2}-1}{3}-\binom{d_{1}-1}{3} \\
& a_{d_{1}+d_{2}-4}=\frac{d_{1} d_{2}\left(d_{1}+d_{2}-4\right)}{2}+1
\end{aligned}
$$

3. Consider $(\mathbf{w}, \mathbf{d})=((3,4,4,6,6),(10,12))$. Since $\operatorname{gcd}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=2$, there is a branch divisor D_{0} of ramification index 2. $D_{0} \cong X_{((2,2,3,3),(5,6))}$. The genus of D_{0} is the coefficient of t^{1} in

$$
\frac{\left(1-t^{5}\right)\left(1-t^{6}\right)}{\left(1-t^{2}\right)\left(1-t^{2}\right)\left(1-t^{3}\right)\left(1-t^{3}\right)}=1+2 t^{2}+2 t^{3}+O\left(t^{4}\right)
$$

Thus $g_{p}\left(D_{0}\right)=0$ and thus D_{0} does not contribute to torsion.
4. Consider $(\mathbf{w}, \mathbf{d})=((6,8,8,10,15),(16,30))$. Since $\operatorname{gcd}\left(w_{0}, w_{1}, w_{2}, w_{3}\right)=2$, there is a branch divisor D_{4} of ramification index 2 . We must compute the genus of the complete intersection $X_{((3,4,4,5),(8,15))}$ which is the coefficient of t^{7} in

$$
\frac{\left(1-t^{8}\right)\left(1-t^{15}\right)}{\left(1-t^{3}\right)\left(1-t^{4}\right)\left(1-t^{4}\right)\left(1-t^{5}\right)}=1+t^{3}+2 t^{4}+t^{5}+t^{6}+2 t^{7}+O\left(t^{8}\right)
$$

Then the torsion component of $\mathrm{H}_{2}(L, \mathbb{Z})$ is \mathbb{Z}_{2}^{4}.

Programs in Mathematica 9 (see documentation at [1]) were written to compute $\mathrm{H}_{2}(L, \mathbb{Z})$ based on the above techniques for each of the entries of Tables B. 1 and B. 3 and selected entries in Table B. 2 in the Appendix, and are listed in Tables B.1, B.2.1, and B. 3 of the Appendix. This shows:

Corollary 62 There exist positive Sasakian structures on links of weighted complete intersection singularities of the following topological types:
(i) $k \#\left(S^{2} \times S^{3}\right)$, for all $k \geq 0$,
(ii) $k M_{2}$, for all $k \geq 1$,
(iii) $M_{3}, 2 M_{3}$,
(iv) M_{4},
(v) $M_{\infty} \# M_{2 k+1}$, for all $k \geq 1$,
(vi) $5 M_{\infty} \# M_{k}$, for all $k \geq 2$,
(vii) $M_{\infty} \# k M_{2}$, for all $k \geq 1$,
(viii) $2 M_{\infty} \# M_{2}, 2 M_{\infty} \# 3 M_{2}$,
(ix) $M_{\infty} \# M_{3}, 2 M_{\infty} \# M_{3}, M_{\infty} \# 2 M_{3}$,
(x) $M_{\infty} \# M_{4}$,
(xi) $M_{\infty} \# M_{5}$

Furthermore, there exist countably many (w,d) types on:
(i) $k \#\left(S^{2} \times S^{3}\right)$, for all $k \geq 0$,
(ii) $M_{\infty} \# k M_{2}$, for all $k \geq 1$,
(iii) $M_{\infty} \# M_{3}, 2 M_{\infty} \# M_{2}, 5 M_{\infty} \# M_{2}$.

Chapter 4. Topology of Links

Structures on all of these topologies were previously exhibited in the hypersurface singularity case, for example, in [3] and [5].

Chapter 5

Sasaki-Einstein Structures on Links

5.1 Einstein metrics

Recall, a Riemannian metric g is called an Einstein metric if there is a constant λ such that $\operatorname{Ric}_{g}=\lambda g$. If $\mathcal{S}=(\xi, \eta, \Phi, g)$ is a Sasakian structure and g is Einstein, then \mathcal{S} is Sasaki-Einstein.

If \mathcal{S} is a quasi-regular Sasaki manifold, then [3, Theorem 7.1.3] then the space of leaves M / \mathcal{F}_{ξ} is an almost Kähler orbifold (\mathcal{Z}, h). Then [3, Theorem 11.1.3, Corollary 11.1.4]:

Theorem 63 Let M be a compact manifold of dimension $2 n+1$ with a quasi-regular K-contact structure (ξ, η, Φ, g). Then g is Sasaki-Einstein if and only if h is KählerEinstein with scalar curvature $4 n(n+1)$. In this case, g has Einstein constant $2 n$.

Chapter 5. Sasaki-Einstein Structures on Links

5.2 Existence Results

Demailly and Kollár [8], give sufficient conditions for a log del Pezzo surface to possess a Kähler-Einstein metric. The link of the singularity at the origin of the affine cone over a \log del Pezzo surface has a positive Sasakian structure, which is Einstein if the log del Pezzo surface has a Kähler-Einstein orbifold metric. Johnson and Kollár [16] obtain a sufficient bound on weights and degrees of weighted projective hypersurfaces to guarantee the existence of Kähler-Einstein metrics. This bound was extended to the existence of Sasaki-Einstein metrics on 5-manifolds given as links of hypersurface singularities by Boyer, Galicki, and Nakamaye [4].

Definition 64 Let \mathcal{Z} be a log del Pezzo surface and D a \mathbb{Q}-divisor on \mathcal{Z}. Then the pair (\mathcal{Z}, D) is klt or Kawamata log-terminal if for each local uniformizing neighborhood \tilde{U} there exists a \log resolution of singularities $\mu: X \rightarrow \tilde{U}$ and a \mathbb{Q}-divisor $D_{X}=\sum a_{i} E_{i}$ on X such that

$$
K_{X} \equiv_{n} \mu^{*}\left(K_{\tilde{U}}^{o r b}+D\right)+D_{X}
$$

with $a_{i}>-1$ for all i.

Then [8]:

Theorem 65 Let X be an n dimensional Fano variety (possibly with quotient singularities). Assume there is an $\epsilon>0$ such that

$$
\left(X, \frac{n+\epsilon}{n+1} D\right)
$$

is klt for every effective Q -divisor $D \equiv-K_{X}$. Then X has a Kähler-Einstein metric.

Johnson and Kollár give sufficient conditions for (X, D) to be klt given a surface X and a Q-divisor D on X. Let X be a surface with quotient singularities $P_{i} \in X$, and write these locally analytically as

$$
p_{i}:\left(\mathbb{C}^{2}, Q_{i}\right) \rightarrow\left(\mathbb{C}^{2} / G_{i}, P_{i}\right) \cong\left(X, P_{i}\right),
$$

where $G_{i} \subset G L(2, \mathbb{C})$ is a finite subgroup (see [18] and [20]). Let D be an effective Q-divisor on X. Then (X, D) is klt if the following three conditions hold:
(i) D does not contain an irreducible component with coefficient ≥ 1.
(ii) $\operatorname{mult}_{P} D \leq 1$ at every smooth point $P \in X$.
(iii) $\operatorname{mult}_{Q_{i}} D_{i} \leq 1$ for every i where $D_{i}:=p_{i}^{*} D$.

They give the following estimate for multiplicity of points [16, Proposition 11]:

Proposition 66 Let $X \subset \mathbb{P}\left(w_{0}, \ldots, w_{n}\right)$ be a d-dimensional subvariety of weighted projective space. Assume that X is not contained in the singular locus and $w_{0} \leq \cdots \leq$ w_{n}. Let $X_{i} \subset \mathbb{C}^{n}$ denote the preimage of X in the orbifold chart

$$
\mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / \mathbb{Z} \cong \mathbb{P}\left(w_{0}, \ldots, w_{n}\right) \backslash\left(x_{i}=0\right)
$$

Then for every i and every $p \in X_{i}$,

$$
\operatorname{mult}_{p} X_{i} \leq\left(w_{n} \cdots w_{n-d}\right)\left(X \cdot \mathcal{O}(1)^{d}\right)
$$

Moreover, if $Z \neq\left(z_{0}=\cdots z_{n-d-1}=0\right)$ then a stronger inequality holds:

$$
\operatorname{mult}_{p} X_{i} \leq\left(w_{n} \cdots w_{n-d+1} w_{n-d-1}\right)\left(X \cdot \mathcal{O}(1)^{d}\right)
$$

The following is the Sasakian equivalent of [16, Corollary 13] (see also [5, Lemma 2.3]).

Lemma 67 Let $L(\mathbf{w}, d)$ be a link of a weighted homogeneous hypersurface with weight vector $\mathbf{w}=\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$ ordered as $w_{0} \leq w_{1} \leq w_{2} \leq w_{3}$. Let $\mathcal{Z}_{\mathbf{w}}$ denote

Chapter 5. Sasaki-Einstein Structures on Links

the corresponding projective algebraic orbifold. Furthermore, let $I=|\mathbf{w}|-d$ denote the Fano index. Then
(1) The 5-manifold $L(\mathbf{w}, d)$ admits a Sasaki-Einstein metric if $2 I d<3 w_{0} w_{1}$.
(2) If the line $z_{0}=z_{1}=0$ does not lie in $\mathcal{Z}_{\mathbf{w}}$ and the weaker condition $2 I d<3 w_{0} w_{2}$ holds, then $L(\mathbf{w}, d)$ admits a Sasaki-Einstein metric.

Proof: Let $D \equiv-\frac{2+\epsilon}{3} K_{X}$ be \mathbb{Q}-effective. (1) Then we have, from Proposition 66,

$$
\operatorname{mult}_{P} D_{i} \leq\left(w_{3} w_{2}\right)(D \cdot \mathcal{O}(1)) \leq\left(w_{3} w_{2}\right) d I\left(\frac{2+\epsilon}{3 w_{0} w_{1} w_{2} w_{3}}\right)
$$

so $\operatorname{mult}_{P} D_{i} \leq 1$ if $\frac{2 d I}{3 w_{0} w_{1}}<1$
(2) If the line $\left\{z_{0}=z_{1}=0\right\}$ does not lie in $\mathcal{Z}_{\mathbf{w}}$, then $\left\{z_{0}=z_{1}=0\right\}$ does not lie in D either, and from Proposition 66,

$$
\operatorname{mult}_{P} D_{i} \leq\left(w_{3} w_{1}\right)(D \cdot \mathcal{O}(1)) \leq\left(w_{3} w_{1}\right) d I\left(\frac{2+\epsilon}{3 w_{0} w_{1} w_{2} w_{3}}\right)
$$

so mult ${ }_{P} D_{i} \leq 1$ if $\frac{2 d I}{3 w_{0} w_{2}}<1$.

This easily extends to the codimension 2 case since we can still use Proposition 66.

Lemma 68 Let $L(\mathbf{w}, \mathbf{d})$ be a link of a weighted complete intersection with weight vector $\mathbf{w}=\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ ordered as $w_{0} \leq w_{1} \leq w_{2} \leq w_{3} \leq w_{4}$ and multidegree $\mathbf{d}=$ $\left(d_{1}, d_{2}\right)$. Let $\mathcal{Z}_{\mathbf{w}}$ denote the corresponding projective algebraic orbifold. Furthermore, let $I=|\mathbf{w}|-|\mathbf{d}|$ denote the Fano index. Then
(1) The 5-manifold $L(\mathbf{w}, \mathbf{d})$ admits a Sasaki-Einstein metric if $2 I d_{1} d_{2}<3 w_{0} w_{1} w_{2}$.
(2) If the line $z_{0}=z_{1}=z_{2}=0$ does not lie in $\mathcal{Z}_{\mathbf{w}}$ and the weaker condition $2 I d_{1} d_{2}<3 w_{0} w_{1} w_{3}$ holds, then $L(\mathbf{w}, \mathbf{d})$ admits a Sasaki-Einstein metric.

Proof: Let $D \equiv-\frac{2+\epsilon}{3} K_{X}$ be \mathbb{Q}-effective. (1) Then we have, from Proposition 66,

$$
\operatorname{mult}_{P} D_{i} \leq\left(w_{4} w_{3}\right)(D \cdot \mathcal{O}(1)) \leq\left(w_{4} w_{3}\right) d_{1} d_{2} I\left(\frac{2+\epsilon}{3 w_{0} w_{1} w_{2} w_{3} w_{4}}\right)
$$

so $\operatorname{mult}_{P} D_{i} \leq 1$ if $\frac{2 d_{1} d_{2} I}{3 w_{0} w_{1} w_{2}}<1$
(2) If $\left\{z_{0}=z_{1}=z_{2}=0\right\}$ does not lie in $\mathcal{Z}_{\mathbf{w}}$, then $\left\{z_{0}=z_{1}=z_{2}=0\right\}$ does not lie in D either, and from Proposition 66,

$$
\operatorname{mult}_{P} D_{i} \leq\left(w_{4} w_{2}\right)(D \cdot \mathcal{O}(1)) \leq\left(w_{4} w_{2}\right) d_{1} d_{2} I\left(\frac{2+\epsilon}{3 w_{0} w_{1} w_{2} w_{3} w_{4}}\right)
$$

so $\operatorname{mult}_{P} D_{i} \leq 1$ if $\frac{2 d_{1} d_{2} I}{3 w_{0} w_{1} w_{3}}<1$.

This is consistent with Lemma 67 above. If $w_{0}=1$, and $d_{2}=1$, and $\mathcal{Z}_{\mathbf{w}}=\mathcal{Z}^{\prime}{ }_{\mathbf{w}} \cap Z_{0}$ where Z_{0} is the hyperplane $z_{0}=0$ and $\mathcal{Z}^{\prime}{ }_{\mathrm{w}}$ has a defining equation not containing z_{0}, then the conjecture applied to $\mathcal{Z}_{\mathbf{w}}$ reduces to Lemma 67 applied to $\mathcal{Z}^{\prime}{ }_{\mathbf{w}}$.

The third result in [5, Lemma 2.3] requires a slightly different argument (but see the proof of Proposition 66 in [16, Proposition 11]). It also can be extended to the complete intersection case.

Lemma 69 (1) In the hypersurface case, if the point $(0,0,0,1)$ does not lie in $\mathcal{Z}_{\mathbf{w}}$ and the weaker condition $2 I d<3 w_{0} w_{3}$ holds, then $L(\mathbf{w}, d)$ admits a Sasaki-Einstein metric.
(2) In the codimension 2 case, if the point $(0,0,0,0,1)$ does not lie in \mathcal{Z}_{w} and the weaker condition $2 I d_{1} d_{2}<3 w_{0} w_{1} w_{4}$ holds, then $L(\mathbf{w}, \mathbf{d})$ admits a Sasaki-Einstein metric.

Proof: (1) Again, let $D \equiv-\frac{2+\epsilon}{3} K_{X}$ be \mathbb{Q}-effective, and let $P \in D$. Let $C(P) \subset \mathbb{C}^{4}$ be the cone over P with vertex 0 . Let $D_{i}=D \cap\left\{z_{i}=1\right\}$. $\operatorname{mult}_{0} C(P)=\operatorname{mult}_{P} D \leq w_{3}$. $Q=(0,0,0,1)$ is the only point in \mathcal{Z}_{w} with $\operatorname{mult}_{Q} \mathcal{Z}_{\mathrm{w}}=w_{3}$, all other points having multiplicity $\leq w_{2}$, so in fact, $\operatorname{mult}_{0} C(P)=\operatorname{mult}_{P} D \leq w_{2}$. Let $D_{i}=\sum a_{j} V_{j}$ where each V_{j} is irreducible. Now, $(0,0,0,1) \notin D_{i}$ and $(0,0,0,1) \in\left\{z_{0}=z_{1}=0\right\}$ so $\left\{z_{0}=z_{1}=0\right\} \notin$ D_{i}. Then for each j, either $\left\{z_{0}=0\right\}$ meets V_{j} properly or $\left\{z_{1}=0\right\}$ meets V_{j} properly, and in either case, with multiplicity $w_{j} \leq w_{1}$ at any point.

Therefore,

$$
\begin{aligned}
\operatorname{mult}_{0} C\left(D_{i}\right) & =\sum_{j} \operatorname{mult}_{0} C\left(V_{j}\right) \\
& \leq \sum_{j} w_{j} V_{j} \\
& \leq w_{1} \operatorname{mult}_{0} C\left(\mathcal{Z}_{\mathbf{w}}\right) \\
& \leq w_{2} w_{1}(D \cdot \mathcal{O}(1)) \\
& \leq\left(w_{2} w_{1}\right) d I\left(\frac{2+\epsilon}{3 w_{0} w_{1} w_{2} w_{3}}\right)
\end{aligned}
$$

so mult ${ }_{P} D_{i} \leq 1$ if $\frac{2 d I}{3 w_{0} w_{3}}<1$.
(2) Again, let $D \equiv-\frac{2+\epsilon}{3} K_{X}$ be \mathbb{Q}-effective, and let $P \in D$. Let $C(P) \subset \mathbb{C}^{5}$ be the cone over P with vertex 0. mult $_{0} C(P)=\operatorname{mult}_{P} D \leq w_{4} . Q=(0,0,0,0,1)$ is the only point with $\operatorname{mult}_{Q} \mathcal{Z}_{\mathbf{w}}=w_{4}$, all other points having multiplicity $\leq w_{3}$, so in fact, $\operatorname{mult}_{0} C(P)=\operatorname{mult}_{P} D \leq w_{3}$. Let $D=\sum a_{j} V_{j}$ where each V_{j} is irreducible. Now, $(0,0,0,0,1) \notin D$ and $(0,0,0,0,1) \in\left\{z_{0}=z_{1}=z_{2}=0\right\}$ so $\left\{z_{0}=z_{1}=z_{2}=0\right\} \notin D$. Then for each j, at least one of $\left\{z_{0}=0\right\},\left\{z_{1}=0\right\}$, or $\left\{z_{2}=0\right\}$ meets V_{j} properly, and in any case, with multiplicity $\leq w_{2}$ at any point. Therefore,

$$
\begin{aligned}
\operatorname{mult}_{0} C\left(D_{i}\right) & =\sum_{j} \operatorname{mult}_{0} C\left(V_{j}\right) \\
& \leq \sum_{j} w_{j} V_{j} \\
& \leq w_{2} \text { mult }_{0} C\left(\mathcal{Z}_{\mathbf{w}}\right) \\
& \leq w_{3} w_{2}(D \cdot \mathcal{O}(1)) \\
& \leq\left(w_{3} w_{2}\right) d_{1} d_{2} I\left(\frac{2+\epsilon}{3 w_{0} w_{1} w_{2} w_{3} w_{4}}\right)
\end{aligned}
$$

so $\operatorname{mult}_{P} D_{i} \leq 1$ if $\frac{2 d_{1} d_{2} I}{3 w_{0} w_{1} w_{4}}<1$.
Table A lists the 154 cases which meet the bounds of Lemmas 68 or 69 with $d_{1} \leq d_{2} \leq 600$, along with their Smale type. 36 families are structures on S^{5}. 71 are structures on $S^{2} \times S^{3}$. 20 are structures on $2 \#\left(S^{2} \times S^{3}\right)$. 21 are structures on
$3 \#\left(S^{2} \times S^{3}\right)$. There is one family on the rational homology sphere M_{2} and two on M_{3}. There are 2 families on the connected sum $M_{\infty} \# M_{2}$ and one on $M_{\infty} \# 2 M_{2}$. Sasaki-Einstein structures on all of these topologies were previously exhibited in the hypersurface singularity case (see [3] and [5]).

5.3 An obstruction

One important obstruction to the existence of a Sasaki-Einstein metric is the Lichnerowicz obstruction, [3, Corollary 11.3.11ff.]:

Theorem 70 Let $M^{2 n-1}$ be a compact manifold with a Sasaki-Einstein structure $\mathcal{S}=(\xi, \eta, \Phi, g)$. Then the first non-zero eigenvalue λ_{1} of the Laplace operator Δ_{g} is bounded: $\lambda_{1} \geq 2 n-1$ and $\lambda_{1}=2 n-1$ if and only if \mathcal{S} is the standard Sasaki-Einstein structure on $S^{2 n-1}$.

Let $Y=C(M)$ be the associated cone with the induced Kähler structure. Let f be a holomorphic function on Y with $\mathcal{L}_{\xi} f=c i f$ where $c>0$ is a real constant called the charge of f with respect to ξ. We have $\Delta_{Y} f=0$, so at $r=1$,

$$
\Delta_{Y}=\frac{1}{r^{2}} \Delta_{M}-\frac{1}{r^{2 n-1}} \frac{\partial}{\partial r}\left(r^{2 n-1} \frac{\partial}{\partial r}\right)
$$

so $\Delta_{M} \tilde{f}=\lambda \tilde{f}$, where $\lambda=c[c+(2 n-2)]$ and $f=r^{c} \tilde{f}$. Then, if $\left(M, g_{M}\right)$ is SasakiEinstein, by Theorem $70 \lambda_{1} \geq 2 n-1$, so $c \geq 1$.

The following is from [11]. Now consider a link $L(\mathbf{w}, d)$ of a hypersurface in weighted projective space with isolated singularity, defined by a weighted homogeneous polynomial F of weights $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right)$, with $w_{0} \leq \cdots \leq w_{n}$. Let X be the affine cone $X=C(L)$. Let $\left\{U_{j}\right\}$ be a cover of X given by $U_{j}=\left\{z \in X \left\lvert\, \frac{\partial F}{\partial z_{j}} \neq 0\right.\right\}$. Then on each U_{j} we can define a nowhere zero holomorphic $(n, 0)$-form

$$
\Omega=\frac{d z_{0} \wedge \cdots \wedge \widehat{d z}_{j} \wedge \cdots \wedge d z_{n}}{\partial F / \partial z_{j}}
$$

If ζ is the holomorphic vector field on $X \backslash\{0\}$ with $\mathcal{L}_{\zeta} z_{j}=w_{j} i z_{j}$ for each $j=0, \ldots, n$, then $\mathcal{L}_{\zeta} \Omega=(|w|-d) i \Omega$. If there is a Ricci-flat Kähler metric on X then ζ normalizes to $\xi=\frac{n}{|w|-d} \zeta$.

Proposition 71 If $L(\mathbf{w}, d)$ is a smooth link, then if the index $I=|w|-d>n w_{0}$, $L(\mathbf{w}, d)$ cannot admit any Sasaki-Einstein structure.

Proof: In fact, z_{0} has charge $c=\frac{n w_{0}}{|w|-d}$ with respect to ξ.

Corollary 72 In particular, in the 5 -dimensional link case, $n=3$, so $L(\mathbf{w}, d)$ cannot admit any Sasaki-Einstein structure if $I>3 w_{0}$.

This generalizes to the codimension 2 complete intersection case in the following way. Let $\mathbf{w}=\left(w_{0}, \ldots, w_{n+1}\right)$. Suppose $X_{d_{1}, d_{2}} \subset \mathbb{P}(\mathbf{w})$ is quasismooth, $X=C\left(X_{d_{1}, d_{2}}\right)$ and suppose $\left(f_{1}, f_{2}\right)$ generate I_{X}. Then the sets $\left\{U_{j, k}\right\}$ cover $X \backslash\{0\}$ where $U_{j, k}=$ $\left\{z \in X \left\lvert\, \frac{\partial f_{l}}{\partial z_{j}} \frac{\partial f_{2}}{\partial z_{k}}-\frac{\partial f_{l}}{\partial z_{k}} \frac{\partial f_{2}}{\partial z_{j}} \neq 0\right.\right\}$. Then on $\left\{U_{j, k}\right\}$

$$
\Omega=\frac{d z_{0} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge \widehat{d z_{k}} \wedge \cdots \wedge d z_{n+1}}{\frac{\partial f_{k}}{\partial z_{j}} \frac{\partial f_{2}}{\partial z_{k}}-\frac{\partial f_{k}}{\partial z_{k}} \frac{\partial f_{2}}{\partial z_{j}}}
$$

defines a nowhere zero $(n, 0)$-form on X. Again, as above, if ζ is the holomorphic vector field on $X \backslash\{0\}$ with $\mathcal{L}_{\zeta} z_{j}=w_{j} i z_{j}$ for each $j=0, \ldots, n+1$, then $\mathcal{L}_{\zeta} \Omega=$ $(|w|-|d|) i \Omega$. If there is a Ricci-flat Kähler metric on X then ζ normalizes to $\xi=\frac{n}{|w|-[d \mid} \zeta$.

Then we have:

Proposition 73 If $L(\mathbf{w}, \mathbf{d})$ is a smooth link, then if the index $I=|w|-|d|>n w_{0}$, $L(\mathbf{w}, \mathbf{d})$ cannot admit any Sasaki-Einstein structure.

Proof: In fact, z_{0} has charge $c=\frac{n w_{0}}{|w|-|d|}$ with respect to ξ.

Chapter 5. Sasaki-Einstein Structures on Links

Corollary 74 Again, in the 5 -dimensional link case, $n=3$, so $L(\mathbf{w}, d)$ cannot admit any Sasaki-Einstein structure if $I>3 w_{0}$.

A similar argument will generalize this to any codimension complete intersection link.

Tables B.1, B.2, and B. 3 of the Appendix indicate when this obstruction occurs in the 23438 types with $d_{1} \leq d_{2} \leq 600$.

Appendices

A Types satisfying the bounds of Lemmas 68 or 69 63
B Lists of types 70
B. 1 One parameter families of types 70
B. 2 Three parameter families of types 76
B.2.1 Selected topology 79
B. 3 Sporadic types 82
C Well-formed types 98
C. 1 One parameter families of well-formed types 99
C. 2 Three parameter families of well-formed types 100
C. 3 Sporadic well-formed types 103
D Cases broken down by highest two weights 107
D. 1 General requirements 107
D.1.1 Possibilities for w_{3} 107
D.1.2 Possibilities for w_{4} 109
D.1.3 Possible pairs for w_{3} and w_{4} 110
D.1.4 Restrictions because of $\{3,4\}$ 115
D.1.5 Order constraints 119
D. 2 Cases by constraints 123
D.2.1 Cases with at most 3 distinct weights 123
D.2.2 Cases with $d_{2}=2 w_{3}=2 w_{4}$ cases 126
D.2.3 Cases with $w_{2}=w_{3}<w_{4}$ 128
D.2.4 Cases with $d_{1}=2 w_{3}<2 w_{4}=d_{2}$ 129
D.2.5 Cases with $d_{1}=2 w_{3}=w_{i}+w_{4}$ 130
D.2.6 Cases with $d_{2}=2 w_{3}=w_{i}+w_{4}$ 132
D.2.7 A case involving all five weights 133
D.2.8 $d_{1}=w_{j}+w_{3}=w_{i}+w_{4}, w_{2}<w_{3}$ 133
D.2.9 $d_{2}=2 w_{3}+w_{i}$ 134
D. 3 Summary 140
D. 4 Details of cases 147

Appendix A

Types satisfying the bounds of Lemmas 68 or 69

\mathbf{w}	\mathbf{d}	I	Smale type
$(5,16,24,28,32)$	$(48,56)$	1	$2 M_{\infty}$
$(6,6,10,10,15)$	$(16,30)$	1	M_{∞}
$(6,7,9,11,14)$	$(18,28)$	1	$3 M_{\infty}$
$(6,8,8,10,15)$	$(16,30)$	1	$M_{\infty} \# 2 M_{2}$
$(6,8,9,11,13)$	$(22,24)$	1	$2 M_{\infty}$
$(6,9,10,13,18)$	$(19,36)$	1	$3 M_{\infty}$
$(6,9,14,14,22)$	$(28,36)$	1	$3 M_{\infty}$
$(6,10,10,15,15)$	$(25,30)$	1	M_{∞}
$(6,10,10,15,20)$	$(30,30)$	1	M_{1}
$(6,10,14,18,23)$	$(24,46)$	1	$M_{\infty} \# M_{2}$
$(6,10,15,15,15)$	$(30,30)$	1	M_{1}
$(6,10,15,20,20)$	$(30,40)$	1	M_{∞}
$(6,12,14,17,22)$	$(34,36)$	1	$2 M_{\infty}$
$(6,12,16,21,27)$	$(33,48)$	1	M_{∞}
$(6,12,22,27,33)$	$(33,66)$	1	M_{1}
$(6,14,18,19,23)$	$(37,42)$	1	$3 M_{\infty}$

Appendix A. Types satisfying the bounds of Lemmas 68 or 69

\mathbf{w}	\mathbf{d}	I	Smale type
$(6,14,18,23,28)$	$(42,46)$	1	$2 M_{\infty}$
$(6,14,19,24,29)$	$(43,48)$	1	$3 M_{\infty}$
$(6,20,25,30,35)$	$(55,60)$	1	$2 M_{\infty}$
$(6,20,30,35,40)$	$(60,70)$	1	M_{∞}
$(7,12,18,18,24)$	$(36,42)$	1	M_{∞}
$(7,12,18,24,30)$	$(42,48)$	1	M_{∞}
$(8,10,16,17,23)$	$(33,40)$	1	$3 M_{\infty}$
$(8,10,16,23,30)$	$(40,46)$	1	$2 M_{\infty}$
$(8,10,17,24,31)$	$(41,48)$	1	$3 M_{\infty}$
$(8,12,18,19,29)$	$(37,48)$	1	$3 M_{\infty}$
$(8,13,20,20,32)$	$(40,52)$	1	M_{∞}
$(8,14,21,28,35)$	$(49,56)$	1	M_{∞}
$(8,14,26,32,39)$	$(40,78)$	1	$M_{\infty} \# M_{2}$
$(8,14,28,35,42)$	$(56,70)$	1	M_{1}
$(8,18,24,31,41)$	$(49,72)$	1	$3 M_{\infty}$
$(8,20,23,26,30)$	$(46,60)$	1	M_{∞}
$(8,20,27,34,46)$	$(54,80)$	1	M_{∞}
$(8,26,32,39,46)$	$(72,78)$	1	$2 M_{\infty}$
$(8,26,32,39,70)$	$(78,96)$	1	$2 M_{\infty}$
$(8,34,48,55,62)$	$(96,110)$	1	M_{∞}
$(8,42,56,63,70)$	$(112,126)$	1	M_{∞}
$(9,10,12,15,21)$	$(30,36)$	1	M_{3}
$(9,12,13,16,24)$	$(25,48)$	1	$2 M_{\infty}$
$(9,13,15,18,21)$	$(36,39)$	1	M_{∞}
$(9,14,21,29,34)$	$(43,63)$	1	$3 M_{\infty}$
$(9,15,22,30,36)$	$(45,66)$	1	M_{∞}
$(9,15,22,30,51)$	$(60,66)$	1	M_{∞}
$(9,15,23,23,31)$	$(46,54)$	1	$3 M_{\infty}$
$(9,15,23,23,37)$	$(46,60)$	1	$3 M_{\infty}$
$(9,21,28,28,35)$	$(56,63)$	2	M_{∞}

Appendix A. Types satisfying the bounds of Lemmas 68 or 69

w	d	I	Smale type
(9, 23, 30, 38, 67)	$(76,90)$	1	M_{∞}
$(9,24,32,32,40)$	$(64,72)$	1	M_{∞}
($10,12,20,29,31)$	$(41,60)$	1	$3 M_{\infty}$
$(10,12,21,30,39)$	$(51,60)$	1	$2 M_{\infty}$
$(10,12,30,39,48)$	$(60,78)$	1	M_{∞}
$(10,16,25,40,55)$	$(65,80)$	1	M_{∞}
($10,16,40,55,70)$	$(80,110)$	1	M_{1}
($10,17,25,26,34)$	$(51,60)$	1	$3 M_{\infty}$
$(10,17,25,34,41)$	$(51,75)$	1	$3 M_{\infty}$
$(10,17,25,34,43)$	$(60,68)$	1	$3 M_{\infty}$
$(10,17,25,34,58)$	$(68,75)$	1	$3 M_{\infty}$
(10, 22, 40, 49, 58)	$(80,98)$	1	M_{∞}
$(10,24,32,55,86)$	$(96,110)$	1	M_{2}
$(10,27,36,45,54)$	$(81,90)$	1	M_{∞}
(10, 27, 45, 54, 63)	$(90,108)$	1	M_{∞}
(11, 18, 27, 28, 44)	$(55,72)$	1	$3 M_{\infty}$
(11,18, 27, 37, 44)	$(55,81)$	1	$3 M_{\infty}$
$(11,18,27,44,61)$	$(72,88)$	1	$3 M_{\infty}$
$(11,18,27,44,70)$	$(81,88)$	1	$3 M_{\infty}$
$(11,25,32,34,41)$	$(66,75)$	2	M_{∞}
$(11,25,34,43,52)$	$(77,86)$	2	M_{∞}
$(11,25,34,43,57)$	$(68,100)$	2	M_{∞}
(11,27, 36, 62, 97)	$(108,124)$	1	M_{∞}
(11,29, 38, 39, 48)	$(77,87)$	1	M_{∞}
$(11,29,38,48,85)$	$(96,114)$	1	M_{∞}
(11, 29, 39, 49, 59)	$(88,98)$	1	M_{∞}
$(11,29,39,49,67)$	$(78,116)$	1	M_{∞}
$(11,36,45,54,63)$	$(99,108)$	2	M_{1}
($11,40,50,60,70)$	$(110,120)$	1	M_{1}
$(12,14,15,18,21)$	$(36,42)$	2	M_{3}

Appendix A. Types satisfying the bounds of Lemmas 68 or 69

w	d	I	Smale type
$(12,14,24,35,46)$	$(60,70)$	1	$2 M_{\infty}$
$(12,14,24,35,58)$	$(70,72)$	1	$2 M_{\infty}$
$(12,15,20,26,34)$	$(46,60)$	1	$2 M_{\infty}$
$(12,15,25,25,35)$	$(50,60)$	2	M_{∞}
$(12,18,22,27,33)$	$(45,66)$	1	M_{∞}
$(12,21,32,32,52)$	$(64,84)$	1	M_{∞}
$(12,30,40,51,69)$	$(81,120)$	1	M_{∞}
$(12,32,42,43,53)$	$(85,96)$	1	$2 M_{\infty}$
$(12,32,43,54,65)$	$(97,108)$	1	$2 M_{\infty}$
$(12,42,52,63,114)$	$(126,156)$	1	M_{1}
$(12,44,55,66,77)$	$(121,132)$	1	M_{∞}
$(13,20,29,31,47)$	$(60,78)$	2	M_{∞}
$(13,20,31,42,49)$	$(62,91)$	2	M_{∞}
$(13,22,55,76,97)$	$(110,152)$	1	M_{∞}
$(13,23,34,35,56)$	$(69,91)$	1	M_{∞}
$(13,23,34,56,89)$	$(102,112)$	1	M_{∞}
$(13,23,35,47,57)$	$(70,104)$	1	M_{∞}
$(13,23,35,57,79)$	$(92,114)$	1	M_{∞}
$(14,16,42,55,68)$	$(84,110)$	1	M_{∞}
$(14,17,27,29,39)$	$(56,68)$	2	M_{∞}
$(14,17,29,41,44)$	$(58,85)$	2	M_{∞}
$(14,19,25,32,43)$	$(57,75)$	1	M_{∞}
$(14,19,25,32,45)$	$(64,70)$	1	M_{∞}
$(15,24,35,48,57)$	$(72,105)$	2	M_{∞}
$(15,26,40,65,90)$	$(105,130)$	1	M_{∞}
($15,26,65,90,115)$	$(130,180)$	1	M_{∞}
$(15,27,40,54,66)$	$(81,120)$	1	M_{∞}
$(15,27,40,54,93)$	$(108,120)$	1	M_{∞}
$(15,33,44,57,75)$	$(90,132)$	2	M_{∞}
$(15,39,52,66,90)$	$(105,156)$	1	M_{∞}

Appendix A. Types satisfying the bounds of Lemmas 68 or 69

w	d	I	Smale type
(15, 39, 52, 90, 141)	$(156,180)$	1	M_{∞}
$(15,48,59,72,129)$	$(144,177)$	2	M_{1}
(15, 54, $67,81,147)$	$(162,201)$	1	M_{1}
$(16,18,48,63,78)$	$(96,126)$	1	M_{∞}
$(16,21,28,36,48)$	$(64,84)$	1	M_{∞}
$(16,21,28,48,68)$	$(84,96)$	1	M_{∞}
$(16,28,42,43,69)$	$(85,112)$	1	$2 M_{\infty}$
$(16,28,43,70,97)$	$(113,140)$	1	$2 M_{\infty}$
$(16,29,44,72,100)$	$(116,144)$	1	M_{1}
$(16,42,56,71,97)$	$(113,168)$	1	$2 M_{\infty}$
(16, 44, 59, 74, 102)	$(118,176)$	1	M_{1}
(16, 46, 56, 69, 82)	$(128,138)$	3	M_{∞}
$(16,58,72,87,102)$	$(160,174)$	1	M_{∞}
(16, 58, 72, 87, 158)	$(174,216)$	1	M_{∞}
$(16,62,88,101,114)$	$(176,202)$	3	M_{1}
$(16,74,104,119,134)$	$(208,238)$	1	M_{1}
$(16,78,104,117,130)$	$(208,234)$	3	M_{1}
$(16,90,120,135,150)$	$(240,270)$	1	M_{1}
$(17,20,35,50,65)$	$(85,100)$	2	M_{1}
(18, 21, 35, 51, 54)	$(72,105)$	2	M_{∞}
$(18,22,27,33,39)$	$(66,72)$	1	M_{∞}
$(18,22,27,33,48)$	$(66,81)$	1	M_{∞}
$(18,23,30,39,51)$	$(69,90)$	2	M_{1}
$(18,24,32,41,55)$	$(73,96)$	1	$2 M_{\infty}$
$(18,24,40,63,102)$	$(120,126)$	1	M_{1}
$(18,32,48,65,79)$	$(97,144)$	1	$2 M_{\infty}$
$(18,33,49,81,129)$	$(147,162)$	1	M_{1}
$(18,42,50,59,76)$	$(118,126)$	1	M_{1}
$(18,50,66,83,148)$	$(166,198)$	1	M_{1}
$(20,28,47,66,74)$	$(94,140)$	1	M_{1}

Appendix A. Types satisfying the bounds of Lemmas 68 or 69

\mathbf{w}	\mathbf{d}	I	Smale type
$(20,36,55,90,125)$	$(145,180)$	1	M_{∞}
$(21,24,29,36,51)$	$(72,87)$	2	M_{1}
$(21,24,41,60,99)$	$(120,123)$	2	M_{1}
$(22,40,60,99,138)$	$(160,198)$	1	M_{∞}
$(22,40,60,99,158)$	$(180,198)$	1	M_{∞}
$(22,60,80,139,218)$	$(240,278)$	1	M_{1}
$(24,30,38,53,82)$	$(106,120)$	1	M_{1}
$(24,34,40,63,86)$	$(120,126)$	1	M_{1}
$(24,34,56,79,134)$	$(158,168)$	1	M_{1}
$(24,38,84,107,130)$	$(168,214)$	1	M_{1}
$(24,66,88,111,153)$	$(177,264)$	1	M_{∞}
$(24,90,112,135,246)$	$(270,336)$	1	M_{1}
$(26,36,48,83,118)$	$(144,166)$	1	M_{1}
$(26,36,60,95,154)$	$(180,190)$	1	M_{1}
$(26,48,120,167,214)$	$(240,334)$	1	M_{1}
$(30,42,70,99,111)$	$(141,210)$	1	M_{∞}
$(30,56,140,195,250)$	$(280,390)$	1	M_{1}
$(30,84,112,195,306)$	$(336,390)$	1	M_{1}

Appendix B

Lists of types

B. 1 One parameter families of types

\mathbf{w}	t constraint	Smale type
\mathbf{d}	I	Lichnerowicz obstruction
$(1,1,1, t, t)$	$1 \leq t$	$(2 t+3) M_{\infty}$
$(t+1, t+1)$	1	none
$(1,1, t, t, t)$	$1 \leq t$	$(2 t+3) M_{\infty}$
$(1+t, 2 t)$	1	none
$(1,1, t+1, t+1,2 t+1)$	$0 \leq t$	$(2 t+5) M_{\infty}$
$(2 t+2,2 t+2)$	1	none
$(1,2, t+2, t+2,2 t+3)$	$0 \leq t$	$(t+7) M_{\infty}$
$(2 t+4,2 t+5)$	1	none
$(1, t, t, t, t)$	$1 \leq t$	$5 M_{\infty} \# M_{t}$
$(2 t, 2 t)$	1	none
$(1, t+1,2 t+1,2 t+1,3 t+1)$	$0 \leq t$	$5 M_{\infty}$
$(3 t+2,4 t+2)$	$t+1$	$t>2$
$(1,2 t+1,2 t+1,3 t+1,4 t+1)$	$0 \leq t$	$5 M_{\infty}$
$(4 t+2,6 t+2)$	$t+1$	$t>2$

w d	t constraint I	Smale type Lichnerowicz obstruction
$\begin{gathered} (1,3 t+2,4 t+2,6 t+3,9 t+4) \\ (9 t+5,12 t+6) \end{gathered}$	$\begin{aligned} & 0 \leq t \\ & t+1 \end{aligned}$	$\begin{aligned} & 7 M_{\infty} \\ & t>2 \end{aligned}$
$\begin{gathered} (1,4 t+2,6 t+3,9 t+4,12 t+5) \\ (12 t+6,18 t+8) \\ \hline \end{gathered}$	$\begin{aligned} & 0 \leq t \\ & t+1 \end{aligned}$	$\begin{aligned} & 7 M_{\infty} \\ & t>2 \end{aligned}$
$\begin{gathered} \hline(2,2,2 t+1,2 t+1,2 t+1) \\ (2 t+3,4 t+2) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 2 \end{gathered}$	$\begin{gathered} (2 t+2) M_{\infty} \\ \text { none } \end{gathered}$
$\begin{gathered} (2,2,2 t+1,2 t+1,4 t) \\ (4 t+2,4 t+2) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 2 \end{gathered}$	$(2 t+2) M_{\infty}$ none
$\begin{gathered} (2,3, t+1, t+2, t+2) \\ (t+4,2 t+4) \\ \hline \end{gathered}$	$1 \leq t, t \neq 0 \bmod 3$ 2	$\left\{\begin{array}{c} \left(\frac{t-1}{3}+4\right) M_{\infty} \text { if } t=1 \bmod 3 \\ \left(\frac{t-2}{3}+5\right) M_{\infty} \text { if } t=2 \bmod 3 \\ \text { none } \end{array}\right.$
$\begin{gathered} (2,3, t+1, t+2,2 t+1) \\ (2 t+3,2 t+4) \\ \hline \end{gathered}$	$1 \leq t, t \neq 2 \bmod 3$ 2	
$(2,4, t+1, t+2, t+3)$ $(t+5,2 t+4)$	$1 \leq t, t \neq 1 \bmod 4$ 3	$\begin{cases}3 M_{\infty} & \text { if } t=2 \bmod 4 \\ M_{\infty} \# M_{2} & \text { if } t=3 \bmod 4 \\ 2 M_{\infty} & \text { if } t=0 \bmod 4\end{cases}$
$\begin{gathered} (2,4,2 t+3,2 t+3,4 t+4) \\ (4 t+6,4 t+8) \end{gathered}$	$\begin{gathered} 0 \leq t \\ 2 \end{gathered}$	$(t+5) M_{\infty}$ none
$\begin{gathered} (2, t+1, t+1, t+2,2 t+1) \\ (2 t+3,3 t+3) \end{gathered}$	$\begin{gathered} 0 \leq t \\ 1 \end{gathered}$	$\begin{cases}7 M_{\infty} & \text { if } t=0 \bmod 2 \\ 5 M_{\infty} & \text { if } t=1 \bmod 2 \\ \text { none }\end{cases}$
$\begin{gathered} (2, t+1, t+1,2 t+1,3 t+1) \\ (3 t+3,4 t+2) \\ \hline \end{gathered}$	$\begin{gathered} 1 \leq t \\ 1 \end{gathered}$	$\begin{cases}6 M_{\infty} & \text { if } t=0 \bmod 2 \\ 2 M_{\infty} \# 3 M_{2} & \text { if } t=1 \bmod 2\end{cases}$
$\begin{gathered} (2, t+1, t+2,2 t+2,3 t+2) \\ (3 t+4,4 t+4) \\ \hline \end{gathered}$	$\begin{gathered} 0 \leq t \\ 1 \end{gathered}$	$\begin{cases}5 M_{\infty} \# M_{2} & \text { if } t=0 \bmod 2 \\ 5 M_{\infty} & \text { if } t=1 \bmod 2 \\ \text { none }\end{cases}$

Appendix B. Lists of types

\(\left.$$
\begin{array}{|c|c|c|}\hline \mathbf{w} & t \text { constraint } & \text { Smale type } \\
\mathbf{d} & I & \text { Lichnerowicz obstruction }\end{array}
$$ \left\lvert\, \begin{array}{cc}5 M_{\infty} \# M_{2} if t=0 \bmod 2

M_{\infty} \# 4 M_{2} if t=1 \bmod 2

(2, t+1,2 t+2,3 t+2,4 t+2) \& 0 \leq t\end{array}\right.\right]\)| none |
| :---: |

Appendix B. Lists of types

w d	t constraint I	Smale type Lichnerowicz obstruction
$\begin{gathered} (3,4 t+2,6 t+3,9 t+3,12 t+3) \\ (12 t+6,18 t+6) \\ \hline \end{gathered}$	$\begin{gathered} 0 \leq t, t \neq 1 \bmod 3 \\ t+2 \end{gathered}$	$\begin{gathered} M_{\infty} \# M_{3} \\ t>7 \end{gathered}$
$\begin{gathered} (4,6,2 t+1,2 t+3,2 t+3) \\ (2 t+7,4 t+6) \\ \hline \end{gathered}$	$1 \leq t, t \neq 2 \bmod 3$ 4	$\begin{cases}\left(\frac{t}{3}+2\right) M_{\infty} & \text { if } t=0 \bmod 3 \\ \left(\frac{t-1}{3}+3\right) M_{\infty} & \text { if } t=1 \bmod 3\end{cases}$ none
$\begin{gathered} (4,6,2 t+1,2 t+3,4 t) \\ (4 t+4,4 t+6) \\ \hline \end{gathered}$	$1 \leq t, t \neq 1 \bmod 3$ 4	$\begin{cases}\left(\frac{t}{3}+2\right) M_{\infty} & \text { if } t=0 \bmod 3 \\ \left(\frac{t-2}{3}+2\right) M_{\infty} & \text { if } t=2 \bmod 3\end{cases}$ none
$\begin{gathered} (4, t+1, t+2, t+3, t+3) \\ (2 t+4,2 t+6) \end{gathered}$	$1 \leq t, t=0,3 \bmod 4$ 3	$2 M_{\infty}$ none
$\begin{gathered} (4, t+1, t+2, t+3,2 t) \\ (2 t+4,3 t+3) \end{gathered}$	$1 \leq t, t=0,3 \bmod 4$ 3	$2 M_{\infty}$ none
$\begin{gathered} (4,2 t+2,2 t+3,2 t+4,2 t+5) \\ (4 t+7,4 t+8) \\ \hline \end{gathered}$	$\begin{gathered} 0 \leq t \\ 3 \end{gathered}$	$3 M_{\infty}$ none
$\begin{gathered} (4,2 t+1,2 t+1,2 t+3,4 t) \\ (4 t+4,6 t+3) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 2 \end{gathered}$	$5 M_{\infty}$ none
$\begin{gathered} (4,2 t+1,2 t+3,4 t+2,6 t+1) \\ (6 t+5,8 t+4) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 2 \end{gathered}$	$4 M_{\infty}$ none
$\begin{gathered} (4,2 t+3,2 t+3,4 t+4,6 t+5) \\ (6 t+9,8 t+8) \end{gathered}$	$\begin{gathered} 0 \leq t \\ 2 \end{gathered}$	$5 M_{\infty}$ none
$\begin{gathered} (4,2 t+3,4 t+2,4 t+2,6 t+1) \\ (6 t+5,8 t+4) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 2 t+3 \end{gathered}$	$\begin{gathered} 2 M_{\infty} \\ t>4 \end{gathered}$
$\begin{gathered} (4,2 t+1,4 t+2,6 t+1,8 t) \\ (8 t+4,12 t+2) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 2 \end{gathered}$	$4 M_{\infty}$ none
$\begin{gathered} (4,4 t+2,4 t+2,6 t+1,8 t) \\ (8 t+4,12 t+2) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 2 t+3 \end{gathered}$	$\begin{aligned} & M_{\infty} \\ & t>4 \end{aligned}$
$\begin{gathered} (4,6 t+5,8 t+4,12 t+6,18 t+7) \\ (18 t+11,24 t+12) \end{gathered}$	$\begin{gathered} 0 \leq t \\ 2 t+3 \end{gathered}$	$\begin{aligned} & 3 M_{\infty} \\ & t>4 \end{aligned}$

Appendix B. Lists of types

\mathbf{w}	t constraint	Smale type			
\mathbf{d}	I	Lichnerowicz obstruction	$	$	$3 M_{\infty}$
:---:					
none					

Appendix B. Lists of types

w d	t constraint I	Smale type Lichnerowicz obstruction
$\begin{gathered} (7,4 t+6,6 t+9,9 t+10,12 t+11) \\ (12 t+18,18 t+20) \end{gathered}$	$\begin{gathered} 0 \leq t, t \neq 2 \bmod 7 \\ t+5 \end{gathered}$	$\begin{gathered} M_{\infty} \\ t>16 \end{gathered}$
$\begin{gathered} (8,4 t+1,4 t+3,4 t+5,4 t+7) \\ (8 t+8,8 t+10) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 6 \end{gathered}$	M_{∞} none
$\begin{gathered} (8,4 t+5,4 t+7,4 t+9,8 t+6) \\ (8 t+14,12 t+15) \end{gathered}$	$\begin{gathered} 0 \leq t \\ 6 \end{gathered}$	M_{∞} none
$\begin{gathered} (8,6 t+7,8 t+4,12 t+6,18 t+5) \\ (18 t+13,24 t+12) \end{gathered}$	$\begin{gathered} 0 \leq t \\ 2 t+5 \end{gathered}$	$\begin{gathered} M_{\infty} \\ t>14 \end{gathered}$
$\begin{gathered} (9,3 t+2,3 t+5,3 t+8,6 t+1) \\ (6 t+10,9 t+9) \end{gathered}$	$\begin{gathered} 1 \leq t \\ 6 \end{gathered}$	M_{∞} none
$\begin{gathered} (9,3 t+5,3 t+8,6 t+7,9 t+6) \\ (9 t+15,12 t+14) \end{gathered}$	$\begin{gathered} 0 \leq t \\ 6 \end{gathered}$	M_{∞} none
$\begin{gathered} (9,3 t+6,4 t+2,6 t+3,9 t) \\ (9 t+9,12 t+6) \end{gathered}$	$\begin{gathered} 1 \leq t, t \neq 1 \bmod 3 \\ t+5 \end{gathered}$	$\begin{gathered} M_{\infty} \\ t>22 \end{gathered}$
$\begin{gathered} (9,4 t+6,6 t+9,9 t+9,12 t+9) \\ (12 t+18,18 t+18) \end{gathered}$	$\begin{gathered} 0 \leq t, t \neq 0 \bmod 3 \\ t+6 \end{gathered}$	$\begin{gathered} M_{\infty} \\ t>21 \end{gathered}$
$\begin{gathered} (10,2 t+4,4 t+8,6 t+7,8 t+6) \\ (8 t+16,12 t+14) \end{gathered}$	$0 \leq t, t \neq 3 \bmod 5$ 5	M_{∞} none
$\begin{gathered} (12,4 t+4,4 t+7,4 t+10,8 t+2) \\ (8 t+14,12 t+12) \end{gathered}$	$1 \leq t, t \neq 2 \bmod 3$ 9	$\begin{gathered} M_{1} \\ \text { none } \end{gathered}$
$\begin{gathered} (12,6 t+5,6 t+9,12 t+6,18 t+3) \\ (18 t+15,24 t+12) \\ \hline \end{gathered}$	$\begin{gathered} 1 \leq t \\ 8 \end{gathered}$	$\begin{gathered} M_{1} \\ \text { none } \end{gathered}$
$\begin{gathered} \hline(12,6 t+9,8 t+4,12 t+6,18 t+3) \\ (18 t+15,24 t+12) \end{gathered}$	$\begin{gathered} 1 \leq t, t \neq 1 \bmod 3 \\ 2 t+7 \end{gathered}$	$\begin{gathered} M_{\infty} \\ t>21 \end{gathered}$
$\begin{gathered} (14,8 t+8,12 t+12,18 t+11,24 t+10) \\ (24 t+24,36 t+22) \end{gathered}$	$0 \leq t, t \neq 6 \bmod 7$ 9	$\begin{gathered} M_{1} \\ \text { none } \end{gathered}$
$\begin{gathered} (18,8 t+8,12 t+12,18 t+9,24 t+6) \\ (24 t+24,36 t+18) \end{gathered}$	$\begin{gathered} 1 \leq t, t \neq 2 \bmod 3 \\ 2 t+11 \end{gathered}$	$\begin{gathered} M_{1} \\ t>21 \end{gathered}$

B. 2 Three parameter families of types

1. $\mathbf{w}=(u, u+2 s, t(u+2 s), t(u+2 s)+s, 2 t(u+2 s)-u)$
$\mathbf{d}=(2 t(u+2 s), 2 t(u+2 s)+2 s)$
$I=u+s$
Lichnerowicz obstruction when $s>2 u$
$u \geq 1$,
$s \geq 1,\left\{\begin{array}{ll}\operatorname{gcd}(s, u)=1 & \text { if } u=2 v+1 \\ \operatorname{gcd}(2 s, u)=2 & \text { if } u=4 v \\ \operatorname{gcd}(s, 2 v+1)=1 & \text { if } u=4 v+2\end{array}\right\}$
$t \geq 1,\left\{\begin{array}{ll}t=v, 2 v \bmod (2 v+1) & \text { if } u=2 v+1 \\ 2 t=(2 v-1),(4 v-2),(4 v-1) \bmod (4 v) & \text { if } u=4 v \\ \left\{\begin{array}{ll}2 t=(2 v-1),(2 v) \bmod (2 v+1) & \text { if } s=1 \bmod (2) \\ 2 t=(4 v+1) \bmod (4 v+2) & \text { if } s=0 \bmod (2)\end{array}\right\} & \text { if } u=4 v+2\end{array}\right\}$
(t can be half integer)
2. $\mathbf{w}=(u, u+2 s, t(u+2 s)+s, t(u+2 s)+2 s, 2 t(u+2 s)+2 s-u)$
$\mathbf{d}=(2 t(u+2 s)+2 s, 2 t(u+2 s)+4 s)$
$I=u+s$

Lichnerowicz obstruction when $s>2 u$
$u \geq 1$
$s \geq 1, \operatorname{gcd}(s, u)=1$
$t \geq 1, t= \begin{cases}(v-1), 2 v \bmod (2 v+1) & \text { if } u=2 v+1 \\ 2 v \bmod (2 v+1) & \text { if } u=4 v+2 \\ (v-1),(2 v-1) \bmod (2 v) & \text { if } u=4 v\end{cases}$

Appendix B. Lists of types
3. $\mathbf{w}=(u, u+2 s, t(u+2 s), t(u+2 s)+s, t(u+2 s)+2 s)$
$\mathbf{d}=(t(u+2 s)+u+2 s, 2 t(u+2 s)+2 s)$
$I=u+s$
Lichnerowicz obstruction when $s>2 u$
$u \geq 1$,
$s \geq 1, \operatorname{gcd}(s, u)=1$,
$t \geq 1, t= \begin{cases}v, 2 v \bmod (2 v+1) & \text { if } u=2 v+1 \text { or } u=4 v+2 \\ (2 v-1) \bmod (2 v) & \text { if } u=4 v\end{cases}$
4. $\mathbf{w}=(u, u+2 s, t(u+2 s)-s, t(u+2 s), t(u+2 s)+s)$
$\mathbf{d}=(t(u+2 s)+s+u, 2 t(u+2 s))$
$I=u+s$
Lichnerowicz obstruction when $s>2 u$
$u \geq 1$,
$s \geq 1, \begin{cases}\operatorname{gcd}(s, u)=1 & \text { if } u=2 v+1 \\ \operatorname{gcd}(s, u)=1 & \text { if } u=4 v \\ \operatorname{any} s \geq 1 & \text { if } u=2 \\ \operatorname{gcd}(s, 2 v+1)=1 & \text { if } u=4 v+2, v \geq 1\end{cases}$
$2 t \geq 3, \begin{cases}t=0, v \bmod (2 v+1) & \text { if } u=2 v+1 \\ 2 t=0,(2 v-1), 2 v \bmod (4 v) & \text { if } u=4 v \\ 2 t=\left\{\begin{array}{ll}r(2 v+1) & \text { if } s=1 \bmod (2) \\ (2 q+1)(2 v+1) & \text { if } s=0 \bmod (2)\end{array}\right\} & \text { if } u=4 v+2\end{cases}$
(t can be half integer)

Appendix B. Lists of types
5. $\mathbf{w}=(u, u+s, u+2 s, t(u+2 s)-u-s, t(u+2 s)-u)$
$\mathbf{d}=(t(u+2 s), t(u+2 s)+s)$
$I=u+s$
Lichnerowicz obstruction when $s>2 u$
$u \geq 1$
$s \geq 1, \operatorname{gcd}(s, u)=1$
$t \geq 2, t= \begin{cases}0, v \bmod (2 v+1) & \text { if } u=2 v+1 \\ r v & \text { if } u=2 v\end{cases}$
6. $\mathbf{w}=(u, u+s, u+2 s,(t-1)(u+2 s),(t-1)(u+2 s)+s)$
$\mathbf{d}=(t(u+2 s)-s, t(u+2 s))$
$I=u+s$

Lichnerowicz obstruction when $s>2 u$
$u \geq 1$
$s \geq 1, \operatorname{gcd}(s, u)=1$
$t \geq 2, t= \begin{cases}0,(v+1) \bmod (2 v+1) & \text { if } u=2 v+1 \\ r v & \text { if } u=2 v\end{cases}$

B.2.1 Selected topology

type	(\mathbf{w}, \mathbf{d})	Smale type
1	$((1,3,3 t, 3 t+1,6 t-1),(6 t, 6 t+2))$	$(2 t+3) M_{\infty}$
1	$((1,5,5 t, 5 t+2,10 t-1),(10 t, 10 t+4))$	$(2 t+3) M_{\infty}$
1	$((1,7,7 t, 7 t+3,14 t-1),(14 t, 14 t+6))$	$(2 t+3) M_{\infty}$
1	$((2,4,4 t, 4 t+1,8 t-2),(8 t, 8 t+2))$	$M_{\infty} \# t M_{2}$
1	$((2,4,4 t+2,4 t+3,8 t+2),(8 t+4,8 t+6))$	$(t+1) M_{2}$
1	$((2,6,6 t+3,6 t+5,12 t+4),(12 t+6,12 t+10))$	$(2 t+2) M_{\infty}$
1	$((2,8,8 t, 8 t+3,16 t-2),(16 t, 16 t+6))$	$M_{\infty} \# t M_{2}$
1	$((2,8,8 t+4,8 t+7,16 t+6),(16 t+8,16 t+14))$	$(t+1) M_{2}$
1	$((2,10,10 t+5,10 t+9,20 t+8),(20 t+10,20 t+18))$	$(2 t+2) M_{\infty}$
1	$((3,5,5 t, 5 t+1,10 t-3),(10 t, 10 t+2)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+3\right) M_{\infty}$
1	$((3,5,5 t, 5 t+1,10 t-3),(10 t, 10 t+2)), t=2 \bmod 3$	$\left(2\left(\frac{t-2}{3}\right)+3\right) M_{\infty}$
1	$((3,7,7 t, 7 t+2,14 t-3),(14 t, 14 t+4)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+3\right) M_{\infty}$
1	$((3,7,7 t, 7 t+2,14 t-3),(14 t, 14 t+4)), t=2 \bmod 3$	$\left(2\left(\frac{t-2}{3}\right)+3\right) M_{\infty}$
2	$((1,3,3 t+1,3 t+2,6 t+1),(6 t+2,6 t+4))$	$(2 t+3) M_{\infty}$
2	$((1,5,5 t+2,3 t+4,6 t+3),(6 t+4,6 t+8))$	$(2 t+3) M_{\infty}$
2	$((1,7,7 t+3,3 t+6,6 t+5),(6 t+6,6 t+12))$	$(2 t+3) M_{\infty}$
2	$((2,4,4 t+1,4 t+2,8 t),(8 t+2,8 t+4))$	$M_{\infty} \# t M_{2}$
2	$((2,8,8 t+3,8 t+6,16 t+4),(16 t+6,16 t+12))$	$M_{\infty} \# t M_{2}$
2	$((2,12,12 t+5,12 t+10,24 t+8),(24 t+10,24 t+20))$	$M_{\infty} \# t M_{2}$
2	$((3,5,5 t+1,5 t+2,10 t-1),(10 t+2,10 t+4)), t=2 \bmod 3$	$\left(\frac{t-2}{3}+3\right) M_{\infty}$
2	$((3,5,5 t+1,5 t+2,10 t-1),(10 t+2,10 t+4)), t=0 \bmod 3$	$\left(\frac{t}{3}+2\right) M_{\infty}$
2	$((3,7,7 t+2,7 t+4,14 t+1),(14 t+4,14 t+8)), t=2 \bmod 3$	$\left(\frac{t-2}{3}+3\right) M_{\infty}$
2	$((3,7,7 t+2,7 t+4,14 t+1),(14 t+4,14 t+8)), t=0 \bmod 3$	$\left(\frac{t}{3}+2\right) M_{\infty}$

Appendix B. Lists of types

type	(\mathbf{w}, \mathbf{d})	Smale type
3	$((1,3,3 t, 3 t+1,3 t+2),(3 t+3,6 t+2))$	$(2 t+3) M_{\infty}$
3	$((1,5,5 t, 5 t+2,5 t+4),(5 t+5,10 t+4))$	$(2 t+3) M_{\infty}$
3	$((1,7,7 t, 7 t+3,7 t+6),(7 t+7,14 t+6))$	$(2 t+3) M_{\infty}$
3	$((2,4,4 t, 4 t+1,4 t+2),(4 t+4,8 t+2))$	$M_{\infty} \# t M_{2}$
3	$((2,8,8 t, 8 t+3,8 t+6),(8 t+8,16 t+6))$	$M_{\infty} \# t M_{2}$
3	$((2,12,12 t, 12 t+5,12 t+10),(12 t+12,24 t+10))$	$M_{\infty} \# t M_{2}$
3	$((3,5,5 t, 5 t+1,5 t+2),(5 t+5,10 t+2)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+3\right) M_{\infty}$
3	$((3,5,5 t, 5 t+1,5 t+2),(5 t+5,10 t+2)), t=2 \bmod 3$	$\left(2\left(\frac{t-2}{3}\right)+3\right) M_{\infty}$
3	$((3,7,7 t, 7 t+2,7 t+4),(7 t+7,14 t+4)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+3\right) M_{\infty}$
3	$((3,7,7 t, 7 t+2,7 t+4),(7 t+7,14 t+4)), t=2 \bmod 3$	$\left(2\left(\frac{t-2}{3}\right)+3\right) M_{\infty}$
4	$((1,3,3 t-1,3 t, 3 t+1),(3 t+2,6 t))$	$(2 t+3) M_{\infty}$
4	$((1,5,5 t-2,5 t, 5 t+2),(5 t+3,10 t))$	$(2 t+3) M_{\infty}$
4	$((1,7,7 t-3,7 t, 7 t+3),(7 t+4,14 t))$	$(2 t+3) M_{\infty}$
4	$((2,4,4 t+1,4 t+2,4 t+3),(4 t+5,8 t+4))$	$2 M_{\infty}$
4	$((2,4,4 t+3,4 t+4,4 t+5),(4 t+7,8 t+8))$	$3 M_{\infty}$
4	$((2,6,6 t+1,6 t+3,6 t+5),(6 t+7,12 t+6))$	$(2 t+2) M_{\infty}$
4	$((2,8,8 t+1,8 t+4,8 t+7),(8 t+9,16 t+8))$	$2 M_{\infty}$
4	$((2,8,8 t+5,8 t+8,8 t+11),(8 t+13,16 t+16))$	$3 M_{\infty}$
4	$((2,10,10 t+1,10 t+5,10 t+9),(10 t+11,20 t+10))$	$(2 t+2) M_{\infty}$
4	$((3,5,5 t-1,5 t, 5 t+1),(5 t+4,10 t)), t=0 \bmod 3$	$\left(2\left(\frac{t}{3}\right)+5\right) M_{\infty}$
4	$((3,5,5 t-1,5 t, 5 t+1),(5 t+4,10 t)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+5\right) M_{\infty}$
4	$((3,7,7 t-2,7 t, 7 t+2),(7 t+4,14 t)), t=0 \bmod 3$	$\left(2\left(\frac{t}{3}\right)+5\right) M_{\infty}$
4	$((3,7,7 t-2,7 t, 7 t+2),(7 t+4,14 t)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+5\right) M_{\infty}$

Appendix B. Lists of types

type	(\mathbf{w}, \mathbf{d})	Smale type
5	$((1,2,3,3 t-2,3 t-1),(3 t, 3 t+1))$	$(2 t+1) M_{\infty}$
5	$((1,3,5,5 t-3,5 t-1),(5 t, 5 t+2))$	$(2 t+1) M_{\infty}$
5	$((1,4,7,7 t-4,7 t-1),(7 t, 7 t+3))$	$(2 t+1) M_{\infty}$
5	$((2,3,4,4 t-3,4 t-2),(4 t, 4 t+1))$	$(t+1) M_{\infty}$
5	$((2,5,8,8 t-5,8 t-2),(8 t, 8 t+3))$	$(t+1) M_{\infty}$
6	$((1,2,3,3 t, 3 t+1),(3 t+2,3 t+3))$	$(2 t+3) M_{\infty}$
6	$((1,3,5,5 t, 5 t+2),(5 t+3,5 t+5))$	$(2 t+3) M_{\infty}$
6	$((1,4,7,7 t, 7 t+3),(7 t+4,7 t+7))$	$(2 t+3) M_{\infty}$
6	$((2,3,4,4 t, 4 t+1),(4 t+3,4 t+4))$	$(t+2) M_{\infty}$
6	$((2,5,8,8 t, 8 t+3),(8 t+5,8 t+8))$	$(t+2) M_{\infty}$
6	$((3,4,5,5 t, 5 t+1),(5 t+4,5 t+5)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+3\right) M_{\infty}$
6	$((3,4,5,5 t, 5 t+1),(5 t+4,5 t+5)), t=2 \bmod 3$	$\left(2\left(\frac{t-2}{3}\right)+3\right) M_{\infty}$
6	$((3,5,7,7 t, 7 t+2),(7 t+5,7 t+7)), t=1 \bmod 3$	$\left(2\left(\frac{t-1}{3}\right)+3\right) M_{\infty}$
6	$((3,5,7,7 t, 7 t+2),(7 t, 5,7 t+7)), t=2 \bmod 3$	$\left(2\left(\frac{t-2}{3}\right)+3\right) M_{\infty}$
6	$((4,5,6,6 t, 6 t+1),(6 t+5,6 t+6)), t=1 \bmod 2$	$t M_{\infty}$

Appendix B. Lists of types

B. 3 Sporadic types

None of these instances meet the Lichnerowicz obstruction.

\mathbf{w}	\mathbf{d}	I	Smale type
$(1,2,2,3,3)$	$(4,6)$	1	$7 M_{\infty}$
$(1,3,3,4,6)$	$(7,9)$	1	$8 M_{\infty}$
$(1,3,3,5,5)$	$(6,10)$	1	$9 M_{\infty}$
$(1,3,4,6,6)$	$(7,12)$	1	$8 M_{\infty}$
$(1,3,4,6,8)$	$(9,12)$	1	$8 M_{\infty}$
$(1,3,4,6,9)$	$(10,12)$	1	$8 M_{\infty}$
$(1,4,5,7,11)$	$(12,15)$	1	$8 M_{\infty}$
$(1,4,5,8,8)$	$(9,16)$	1	$9 M_{\infty}$
$(1,4,5,8,12)$	$(13,16)$	1	$9 M_{\infty}$
$(1,4,6,8,11)$	$(12,17)$	1	$9 M_{\infty}$
$(1,4,7,10,13)$	$(14,20)$	1	$8 M_{\infty}$
$(1,5,6,9,14)$	$(15,19)$	1	$9 M_{\infty}$
$(1,5,7,10,14)$	$(15,21)$	1	$10 M_{\infty}$
$(1,5,8,12,19)$	$(20,24)$	1	$8 M_{\infty}$
$(1,5,9,13,17)$	$(18,26)$	1	$9 M_{\infty}$
$(1,6,10,15,15)$	$(16,30)$	1	$9 M_{\infty}$
$(1,6,10,15,20)$	$(21,30)$	1	$9 M_{\infty}$
$(1,6,10,15,24)$	$(25,30)$	1	$9 M_{\infty}$
$(1,7,11,17,27)$	$(28,34)$	1	$9 M_{\infty}$
$(1,7,12,17,23)$	$(24,35)$	1	$9 M_{\infty}$
$(1,7,12,18,18)$	$(19,36)$	1	$10 M_{\infty}$
$(1,7,12,18,24)$	$(25,36)$	1	$10 M_{\infty}$
$(1,8,13,19,31)$	$(32,39)$	1	$9 M_{\infty}$
$(1,8,13,20,20)$	$(21,40)$	1	$10 M_{\infty}$
$(1,8,13,20,32)$	$(33,40)$	1	$10 M_{\infty}$

Appendix B. Lists of types

w	d	I	Smale type
(1, 8, 14, 20, 27)	$(28,41)$	1	$10 M_{\infty}$
(1,9, 15, 22, 30)	$(31,45)$	1	$10 M_{\infty}$
(1,9, 15, 22, 36)	$(37,45)$	1	$10 M_{\infty}$
(1, 9, 15, 23, 23)	$(24,46)$	1	$11 M_{\infty}$
$(1,10,16,24,39)$	$(40,49)$	1	$10 M_{\infty}$
$(1,10,17,25,34)$	$(35,51)$	1	$11 M_{\infty}$
$(1,11,18,27,44)$	$(45,55)$	1	$11 M_{\infty}$
(2, 2, 2, 2, 3)	$(4,6)$	1	$M_{\infty} \# 4 M_{2}$
(2, 2, 3, 3, 3)	$(6,6)$	1	$6 M_{\infty}$
$(2,2,3,3,4)$	$(6,7)$	1	$6 M_{\infty}$
(2, 2, 3, 4, 4)	$(6,8)$	1	$3 M_{\infty} \# 2 M_{2}$
(2, 3, 4, 4, 5)	$(8,9)$	1	$5 M_{\infty}$
(2,3,4,5,5)	$(8,10)$	1	$5 M_{\infty}$
(2,3,4,5,6)	$(9,10)$	1	$5 M_{\infty}$
$(2,3,4,6,8)$	$(10,12)$	1	$5 M_{\infty} \# M_{2}$
(2, 3, 5, 6, 7)	$(10,12)$	1	$5 M_{\infty}$
(2,4, 5, 6, 6)	$(10,12)$	1	$2 M_{\infty} \# 2 M_{2}$
$(2,4,5,6,7)$	$(11,12)$	1	$4 M_{\infty}$
(2, 4, 6, 7, 8)	$(12,14)$	1	$M_{\infty} \# 3 M_{2}$
(2, 4, 6, 9, 14)	$(16,18))$	1	$M_{\infty} \# 4 M_{2}$
(2, 4, 8, 11, 14)	$(16,22))$	1	$M_{\infty} \# 4 M_{2}$
(2, 5, 6, 9, 13)	$(15,18)$	2	$4 M_{\infty}$
(2, 5, 6, 10, 14)	$(16,20)$	1	$5 M_{\infty} \# M_{2}$
(2, 5, 8, 11, 14)	$(16,22)$	2	$5 M_{\infty}$
(2, 6, 8, 9, 10)	$(16,18)$	1	$M_{\infty} \# 3 M_{2}$
$(2,7,8,13,19)$	$(21,26)$	1	$5 M_{\infty}$
$(2,7,10,13,18)$	$(20,28)$	2	$5 M_{\infty}$
(2,7,10, 15, 15)	$(17,30)$	2	$6 M_{\infty}$
(2,7,10, 15, 20)	$(22,30)$	2	$6 M_{\infty}$
(2,9,12,17,24)	$(26,36)$	2	$6 M_{\infty}$

Appendix B. Lists of types

w	d	I	Smale type
(2,9,12,17, 27)	$(29,36)$	2	$6 M_{\infty}$
(2,9,12,19,19)	$(21,38)$	2	$7 M_{\infty}$
$(2,11,14,21,33)$	$(35,44)$	2	$7 M_{\infty}$
(3, 3, 4, 4, 6)	$(7,12)$	1	$4 M_{\infty}$
(3, 3, 4, 6, 6)	$(9,12)$	1	$M_{\infty} \# 2 M_{3}$
(3, 3, 4, 6, 9)	$(12,12)$	1	$M_{\infty} \# 2 M_{3}$
(3, 3, 5, 5, 7)	$(10,12)$	1	$7 M_{\infty}$
(3, 4, 4, 6, 6)	$(10,12)$	1	$4 M_{\infty}$
(3, 4, 4, 6, 8)	$(12,12)$	1	$4 M_{\infty}$
(3, 4, 4, 6, 9)	$(12,13)$	1	$5 M_{\infty}$
(3, 4, 5, 6, 7)	$(10,12)$	1	$2 M_{\infty}$
(3, 4, 5, 6, 8)	$(9,16)$	1	$5 M_{\infty}$
(3, 4, 5, 7, 9)	$(12,14)$	2	$3 M_{\infty}$
(3, 4, 6, 6, 6)	$(12,12)$	1	$M_{\infty} \# M_{3}$
(3, 4, 6, 6, 9)	$(12,15)$	1	$2 M_{\infty} \# M_{3}$
(3, 4, 6, 8, 8)	$(12,16)$	1	$5 M_{\infty}$
(3, 4, 6, 9, 9)	$(12,18)$	1	$2 M_{\infty} \# M_{3}$
(3, 5, 6, 7, 8)	$(13,15)$	1	$5 M_{\infty}$
(3, 5, 6, 8, 10)	$(15,16)$	1	$5 M_{\infty}$
(3, 5, 6, 8, 13)	$(16,18)$	1	$5 M_{\infty}$
(3, 5, 6, 9, 12)	$(15,18)$	2	$M_{\infty} \# M_{3}$
(3, 5, 7, 9, 11)	$(14,18)$	3	$3 M_{\infty}$
(3, 5, 7, 9, 11)	$(16,18)$	1	$5 M_{\infty}$
(3, 6, 7, 9, 15)	$(18,21)$	1	$2 M_{3}$
(3, $6,8,8,10)$	$(16,18)$	1	$5 M_{\infty}$
(3, 7, 8, 9, 13)	$(16,21)$	3	$3 M_{\infty}$
(3, 7, 8, 12, 12)	$(15,24)$	3	$4 M_{\infty}$
(3, 7, 8, 12, 16)	$(19,24)$	3	$4 M_{\infty}$
(3, $8,9,15,21)$	$(24,30)$	2	M_{∞}
(3, $8,10,12,14)$	$(22,24)$	1	$4 M_{\infty}$

Appendix B. Lists of types

w	d	I	Smale type
$(3,8,10,12,17)$	$(20,27)$	3	$4 M_{\infty}$
$(3,8,12,14,16)$	$(24,28)$	1	$4 M_{\infty}$
$(3,10,11,15,22)$	$(25,33)$	3	$5 M_{\infty}$
(4, 4, 6, 7, 9)	$(13,16)$	1	$5 M_{\infty}$
($4,4,7,10,10$)	$(14,20)$	1	$4 M_{\infty}$
($4,4,7,10,13$)	$(17,20)$	1	$5 M_{\infty}$
($4,5,7,10,11$)	$(15,21)$	1	$4 M_{\infty}$
$(4,5,7,10,13)$	$(18,20)$	1	$4 M_{\infty}$
($4,5,7,10,16$)	$(20,21)$	1	$4 M_{\infty}$
$(4,5,8,8,12)$	$(16,20)$	1	$M_{\infty} \# M_{4}$
$(4,5,8,12,16)$	$(20,24)$	1	$M_{\infty} \# M_{4}$
$(4,6,6,6,9)$	$(12,18)$	1	M_{2}
$(4,6,6,7,9)$	$(13,18)$	1	$3 M_{\infty}$
($4,6,6,8,11$)	$(12,22)$	1	$M_{\infty} \# 2 M_{2}$
$(4,6,7,9,9)$	$(16,18)$	1	$3 M_{\infty}$
(4,6,7, 9, 14)	$(18,21)$	1	$3 M_{\infty}$
$(4,6,8,11,13)$	$(17,24)$	1	$3 M_{\infty}$
$(4,6,8,11,14)$	$(20,22)$	1	$2 M_{\infty} \# M_{2}$
$(4,6,8,11,18)$	$(22,24)$	1	$2 M_{\infty} \# M_{2}$
$(4,6,9,12,15)$	$(21,24)$	1	$3 M_{\infty}$
($4,6,9,14,14)$	$(18,28)$	1	$2 M_{\infty} \# M_{2}$
$(4,6,10,12,15)$	$(16,30)$	1	$M_{\infty} \# 2 M_{2}$
$(4,6,12,15,18)$	$(24,30)$	1	$M_{\infty} \# M_{2}$
$(4,7,8,10,13)$	$(20,21)$	1	$3 M_{\infty}$
$(4,8,10,11,13)$	$(21,24)$	1	$4 M_{\infty}$
$(4,8,11,14,14)$	$(22,28)$	1	$3 M_{\infty}$
$(4,8,11,14,17)$	$(25,28)$	1	$4 M_{\infty}$
$(4,8,11,14,18)$	$(22,32)$	1	$3 M_{\infty}$
$(4,9,15,18,21)$	$(30,36)$	1	$2 M_{\infty}$
$(4,10,12,15,18)$	$(28,30)$	1	$2 M_{\infty} \# M_{2}$

Appendix B. Lists of types

\mathbf{w}	\mathbf{d}	I	Smale type
$(4,10,12,15,26)$	$(30,36)$	1	$2 M_{\infty} \# M_{2}$
$(4,12,15,18,18)$	$(30,36)$	1	$2 M_{\infty}$
$(4,12,15,18,21)$	$(33,36)$	1	$3 M_{\infty}$
$(4,14,20,23,26)$	$(40,46)$	1	$M_{\infty} \# M_{2}$
$(4,18,24,27,30)$	$(48,54)$	1	$M_{\infty} \# M_{2}$
$(5,6,6,9,9)$	$(15,18)$	2	$2 M_{\infty}$
$(5,6,8,10,12)$	$(18,20)$	3	$3 M_{\infty}$
$(5,6,8,12,19)$	$(24,25)$	1	$3 M_{\infty}$
$(5,6,9,13,13)$	$(18,26)$	2	$3 M_{\infty}$
$(5,6,10,12,14)$	$(20,24)$	3	$3 M_{\infty}$
$(5,6,10,15,20)$	$(25,30)$	1	$M_{\infty} \# M_{5}$
$(5,6,14,18,22)$	$(28,36)$	1	$3 M_{\infty}$
$(5,6,15,20,25)$	$(30,40)$	1	$M_{\infty} \# M_{5}$
$(5,7,8,11,14)$	$(21,22)$	2	$3 M_{\infty}$
$(5,7,10,11,14)$	$(21,25)$	1	$5 M_{\infty}$
$(5,7,10,14,16)$	$(21,30)$	1	$5 M_{\infty}$
$(5,7,10,14,18)$	$(25,28)$	1	$5 M_{\infty}$
$(5,7,10,14,23)$	$(28,30)$	1	$5 M_{\infty}$
$(5,8,8,12,12)$	$(20,24)$	1	$2 M_{\infty}$
$(5,8,9,12,19)$	$(24,27)$	2	$2 M_{\infty}$
$(5,8,12,14,16)$	$(24,28)$	3	$2 M_{\infty}$
$(5,9,12,15,18)$	$(27,30)$	2	$3 M_{\infty}$
$(5,9,12,16,20)$	$(25,36)$	1	$3 M_{\infty}$
$(5,9,12,20,31)$	$(36,40)$	1	$3 M_{\infty}$
$(5,9,15,18,21)$	$(30,36)$	2	$3 M_{\infty}$
$(5,11,14,18,22)$	$(33,36)$	1	$3 M_{\infty}$
$(5,12,16,20,24)$	$(36,40)$	1	$3 M_{\infty}$
$(5,12,18,21,24)$	$(36,42)$	2	$2 M_{\infty}$
$(5,12,20,24,28)$	$(40,48)$	1	$3 M_{\infty}$
$(5,14,17,21,37)$	$(42,51)$	1	$2 M_{\infty}$

Appendix B. Lists of types

w	d	I	Smale type
($5,16,24,28,32)$	$(48,56)$	1	$2 M_{\infty}$
($6,6,8,11,13$)	$(19,24)$	1	$4 M_{\infty}$
(6,6, $8,11,16)$	$(22,24)$	1	$3 M_{\infty}$
($6,6,10,10,15)$	$(16,30)$	1	M_{∞}
$(6,6,10,15,15)$	$(21,30)$	1	M_{∞}
($6,6,10,15,24)$	$(30,30)$	1	M_{1}
(6,7,9,11, 14)	$(18,28)$	1	$3 M_{\infty}$
($6,7,9,12,15$)	$(21,24)$	4	$1 M_{\infty}$
$(6,8,8,10,15)$	$(16,30)$	1	$M_{\infty} \# 2 M_{2}$
($6,8,9,9,12$)	$(18,24)$	2	$M_{\infty} \# M_{3}$
(6, 8, 9, 11, 13)	$(22,24)$	1	$2 M_{\infty}$
$(6,8,12,17,19)$	$(25,36)$	1	$4 M_{\infty}$
$(6,8,18,23,28)$	$(36,46)$	1	$M_{\infty} \# M_{2}$
(6, 8, 20, 27, 34)	$(40,54)$	1	$2 M_{2}$
($6,9,10,13,18$)	$(19,36)$	1	$3 M_{\infty}$
($6,9,13,21,33$)	$(39,42)$	1	M_{3}
($6,9,14,14,22)$	$(28,36)$	1	$3 M_{\infty}$
($6,10,10,15,15$)	$(25,30)$	1	M_{∞}
$(6,10,10,15,20)$	$(30,30)$	1	M_{1}
$(6,10,12,15,24)$	$(30,36)$	1	M_{∞}
$(6,10,14,18,23)$	$(24,46)$	1	$M_{\infty} \# M_{2}$
($6,10,15,15,15$)	$(30,30)$	1	M_{1}
$(6,10,15,20,20)$	$(30,40)$	1	M_{∞}
($6,12,14,17,22)$	$(34,36)$	1	$2 M_{\infty}$
$(6,12,16,21,27)$	$(33,48)$	1	M_{∞}
(6, 12, 16, 27, 42)	$(48,54)$	1	M_{1}
$(6,14,18,19,23)$	$(37,42)$	1	$3 M_{\infty}$
($6,14,18,23,28)$	$(42,46)$	1	$2 M_{\infty}$
($6,14,18,23,40)$	$(46,54)$	1	$2 M_{\infty}$
($6,14,19,24,29)$	$(43,48)$	1	$3 M_{\infty}$

Appendix B. Lists of types

\mathbf{w}	\mathbf{d}	I	Smale type
$(6,18,22,27,48)$	$(54,66)$	1	M_{1}
$(6,20,25,30,35)$	$(55,60)$	1	$2 M_{\infty}$
$(6,20,30,35,40)$	$(60,70)$	1	M_{∞}
$(7,8,12,12,16)$	$(24,28)$	3	M_{∞}
$(7,8,12,16,20)$	$(28,32)$	3	M_{∞}
$(7,9,15,21,27)$	$(36,42)$	1	$3 M_{\infty}$
$(7,9,21,27,33)$	$(42,54)$	1	$3 M_{\infty}$
$(7,10,15,15,20)$	$(30,35)$	2	M_{∞}
$(7,10,15,20,25)$	$(35,40)$	2	M_{∞}
$(7,12,18,18,24)$	$(36,42)$	1	M_{∞}
$(7,12,18,24,30)$	$(42,48)$	1	M_{∞}
$(8,8,10,15,22)$	$(30,32)$	1	$3 M_{\infty}$
$(8,9,9,12,15)$	$(24,27)$	2	$2 M_{\infty}$
$(8,9,12,20,28)$	$(36,40)$	1	M_{4}
$(8,10,15,20,25)$	$(35,40)$	3	M_{∞}
$(8,10,16,17,23)$	$(33,40)$	1	$3 M_{\infty}$
$(8,10,16,19,22)$	$(32,38)$	5	M_{∞}
$(8,10,16,23,30)$	$(40,46)$	1	$2 M_{\infty}$
$(8,10,16,23,38)$	$(46,48)$	1	$2 M_{\infty}$
$(8,10,17,24,31)$	$(41,48)$	1	$3 M_{\infty}$
$(8,10,20,25,30)$	$(40,50)$	3	M_{1}
$(8,12,13,14,18)$	$(26,36)$	3	M_{∞}
$(8,12,13,18,23)$	$(31,36)$	7	$2 M_{\infty}$
$(8,12,17,22,26)$	$(34,48)$	3	M_{∞}
$(8,12,18,19,29)$	$(37,48)$	1	$3 M_{\infty}$
$(8,12,19,30,41)$	$(49,60)$	1	$3 M_{\infty}$
$(8,13,20,20,32)$	$(40,52)$	1	M_{∞}
$(8,13,20,32,44)$	$(52,64)$	1	M_{∞}
$(8,14,16,21,26)$	$(40,42)$	3	$2 M_{\infty}$
$(8,14,16,21,34)$	$(42,48)$	3	$2 M_{\infty}$

Appendix B. Lists of types

w	d	I	Smale type
$(8,14,21,28,35)$	$(49,56)$	1	M_{∞}
$(8,14,26,32,39)$	$(40,78)$	1	$M_{\infty} \# M_{2}$
$(8,14,28,35,42)$	$(56,70)$	1	M_{1}
$(8,18,24,27,30)$	$(48,54)$	5	M_{∞}
$(8,18,24,31,41)$	$(49,72)$	1	$3 M_{\infty}$
(8, 20, 23, 26, 30)	$(46,60)$	1	M_{∞}
(8,20,27, 34, 46)	$(54,80)$	1	M_{∞}
$(8,22,32,37,42)$	$(64,74)$	3	M_{∞}
(8,26,32, 39, 46)	$(72,78)$	1	$2 M_{\infty}$
$(8,26,32,39,70)$	$(78,96)$	1	$2 M_{\infty}$
$(8,30,40,45,50)$	$(80,90)$	3	M_{∞}
(8, 34, 48, 55, 62)	$(96,110)$	1	M_{∞}
$(8,42,56,63,70)$	$(112,126)$	1	M_{∞}
$(9,10,12,15,18)$	$(27,30)$	7	M_{∞}
$(9,10,12,15,21)$	$(30,36)$	1	M_{3}
$(9,10,15,22,23)$	$(32,45)$	2	$3 M_{\infty}$
$(9,11,12,17,25)$	$(34,36)$	4	M_{∞}
$(9,12,13,16,24)$	$(25,48)$	1	$2 M_{\infty}$
$(9,12,16,16,20)$	$(32,36)$	5	M_{∞}
$(9,12,17,24,27)$	$(36,51)$	2	M_{∞}
$(9,12,17,24,39)$	$(48,51)$	2	M_{∞}
$(9,12,17,27,42)$	$(51,54)$	2	M_{∞}
$(9,12,19,19,26)$	$(38,45)$	2	$3 M_{\infty}$
$(9,12,19,19,29)$	$(38,48)$	2	$3 M_{\infty}$
$(9,13,15,18,21)$	$(36,39)$	1	M_{∞}
$(9,14,15,21,27)$	$(36,42)$	8	M_{∞}
$(9,14,21,29,34)$	$(43,63)$	1	$3 M_{\infty}$
$(9,15,20,20,25)$	$(40,45)$	4	M_{∞}
$(9,15,22,30,36)$	$(45,66)$	1	M_{∞}
$(9,15,22,30,51)$	$(60,66)$	1	M_{∞}

Appendix B. Lists of types

w	d	I	Smale type
(9, 15, 22, 36, 57)	$(66,72)$	1	M_{∞}
$(9,15,23,23,31)$	$(46,54)$	1	$3 M_{\infty}$
$(9,15,23,23,37)$	$(46,60)$	1	$3 M_{\infty}$
(9, 19, 24, 31, 53)	$(62,72)$	2	M_{∞}
(9, 21, 28, 28, 35)	$(56,63)$	2	M_{∞}
(9, 23, 30, 38, 67)	$(76,90)$	1	M_{∞}
(9, 24, 32, 32, 40)	$(64,72)$	1	M_{∞}
$(10,11,15,18,22)$	$(33,40)$	3	$3 M_{\infty}$
$(10,11,15,22,23)$	$(33,45)$	3	$3 M_{\infty}$
$(10,11,15,22,29)$	$(40,44)$	3	$3 M_{\infty}$
$(10,11,15,22,34)$	$(44,45)$	3	$3 M_{\infty}$
$(10,12,16,25,38)$	$(48,50)$	3	M_{2}
(10,12, 20, 29, 31)	$(41,60)$	1	$3 M_{\infty}$
$(10,12,21,30,39)$	$(51,60)$	1	$2 M_{\infty}$
$(10,12,30,39,48)$	$(60,78)$	1	M_{∞}
$(10,13,25,31,37)$	$(50,62)$	4	M_{∞}
$(10,16,25,40,55)$	$(65,80)$	1	M_{∞}
$(10,16,30,37,44)$	$(60,74)$	3	M_{∞}
($10,16,40,55,70)$	$(80,110)$	1	M_{1}
($10,17,25,26,34)$	$(51,60)$	1	$3 M_{\infty}$
$(10,17,25,34,41)$	$(51,75)$	1	$3 M_{\infty}$
$(10,17,25,34,43)$	$(60,68)$	1	$3 M_{\infty}$
$(10,17,25,34,58)$	$(68,75)$	1	$3 M_{\infty}$
$(10,19,35,43,51)$	$(70,86)$	2	M_{∞}
($10,21,28,35,42)$	$(63,70)$	3	M_{∞}
$(10,21,35,42,49)$	$(70,84)$	3	M_{∞}
$(10,22,40,49,58)$	$(80,98)$	1	M_{∞}
$(10,24,32,55,86)$	$(96,110)$	1	M_{2}
(10, 27, 36, 45, 54)	$(81,90)$	1	M_{∞}
$(10,27,45,54,63)$	$(90,108)$	1	M_{∞}

Appendix B. Lists of types

w	d	I	Smale type
$(11,12,15,18,21)$	$(33,36)$	8	M_{1}
(11, 13, 14, 19, 20)	$(33,39)$	5	M_{∞}
($11,13,14,20,29)$	$(40,42)$	5	M_{∞}
($11,13,19,25,27)$	$(38,52)$	5	M_{∞}
$(11,13,19,25,31)$	$(44,50)$	5	M_{∞}
(11,14, 21, 23, 33)	$(44,56)$	2	$3 M_{\infty}$
($11,14,21,30,33)$	$(44,63)$	2	$3 M_{\infty}$
(11,14, 21, 33, 45)	$(56,66)$	2	$3 M_{\infty}$
(11,14, 21, 33, 52)	$(63,66)$	2	$3 M_{\infty}$
($11,15,20,32,49)$	$(60,64)$	3	M_{∞}
($11,16,20,24,28)$	$(44,48)$	7	M_{1}
(11,17, 20, 24, 27)	$(44,51)$	4	M_{∞}
(11,17, 20, 27, 43)	$(54,60)$	4	M_{∞}
($11,17,24,31,37)$	$(48,68)$	4	M_{∞}
(11,17, 24, 31, 38)	$(55,62)$	4	M_{∞}
(11, 18, 27, 28, 44)	$(55,72)$	1	$3 M_{\infty}$
($11,18,27,37,44$)	$(55,81)$	1	$3 M_{\infty}$
(11, 18, 27, 44, 61)	$(72,88)$	1	$3 M_{\infty}$
($11,18,27,44,70)$	$(81,88)$	1	$3 M_{\infty}$
$(11,20,25,30,35)$	$(55,60)$	6	M_{1}
(11, 21, 26, 29, 34)	$(55,63)$	3	M_{∞}
(11,21, 26, 34, 57)	$(68,78)$	3	M_{∞}
(11,21, 28, 47, 73)	$(84,94)$	2	M_{∞}
$(11,21,29,37,45)$	$(66,74)$	3	M_{∞}
$(11,21,29,37,47)$	$(58,84)$	3	M_{∞}
($11,24,30,36,42)$	$(66,72)$	5	M_{1}
$(11,25,32,34,41)$	$(66,75)$	2	M_{∞}
$(11,25,32,41,71)$	$(82,96)$	2	M_{∞}
($11,25,34,43,52)$	$(77,86)$	2	M_{∞}
$(11,25,34,43,57)$	$(68,100)$	2	M_{∞}

91

Appendix B. Lists of types

w	d	I	Smale type
($11,27,36,62,97)$	$(108,124)$	1	M_{∞}
$(11,28,35,42,49)$	$(77,84)$	4	M_{1}
$(11,29,38,39,48)$	$(77,87)$	1	M_{∞}
$(11,29,38,48,85)$	$(96,114)$	1	M_{∞}
$(11,29,39,49,59)$	$(88,98)$	1	M_{∞}
(11, 29, 39, 49, 67)	$(78,116)$	1	M_{∞}
$(11,32,40,48,56)$	$(88,96)$	3	M_{1}
$(11,36,45,54,63)$	$(99,108)$	2	M_{1}
($11,40,50,60,70)$	$(110,120)$	1	M_{1}
$(12,14,15,18,21)$	$(36,42)$	2	M_{3}
$(12,14,18,20,27)$	$(32,54)$	5	M_{∞}
$(12,14,24,35,46)$	$(60,70)$	1	$2 M_{\infty}$
$(12,14,24,35,58)$	(70,72)	1	$2 M_{\infty}$
$(12,15,20,26,34)$	$(46,60)$	1	$2 M_{\infty}$
$(12,15,25,25,35)$	$(50,60)$	2	$1 M_{\infty}$
$(12,16,18,23,25)$	$(41,48)$	5	$2 M_{\infty}$
$(12,16,23,30,37)$	$(53,60)$	5	$2 M_{\infty}$
$(12,18,20,27,42)$	$(54,60)$	5	M_{1}
$(12,18,22,27,33)$	$(45,66)$	1	M_{∞}
$(12,20,21,30,39)$	$(51,60)$	11	M_{∞}
$(12,20,25,30,35)$	$(55,60)$	7	M_{∞}
$(12,21,32,32,52)$	$(64,84)$	1	M_{∞}
$(12,28,35,42,49)$	$(77,84)$	5	M_{∞}
(12,30, 40, 51, 69)	$(81,120)$	1	M_{∞}
$(12,32,42,43,53)$	$(85,96)$	1	$2 M_{\infty}$
$(12,32,43,54,65)$	$(97,108)$	1	$2 M_{\infty}$
$(12,42,52,63,114)$	$(126,156)$	1	M_{1}
$(12,44,55,66,77)$	$(121,132)$	1	M_{∞}
$(13,14,19,23,29)$	$(42,52)$	4	M_{∞}
$(13,14,19,29,44)$	$(57,58)$	4	M_{∞}
92			

Appendix B. Lists of types

\mathbf{w}	\mathbf{d}	I	Smale type
$(13,14,23,32,33)$	$(46,65)$	4	M_{∞}
$(13,14,35,46,57)$	$(70,92)$	3	M_{∞}
$(13,17,24,27,38)$	$(51,65)$	3	M_{∞}
$(13,17,24,38,59)$	$(72,76)$	3	M_{∞}
$(13,17,27,37,41)$	$(54,78)$	3	M_{∞}
$(13,18,45,61,77)$	$(90,122)$	2	M_{∞}
$(14,15,19,26,31)$	$(45,57)$	3	M_{∞}
$(14,15,19,26,37)$	$(52,56)$	3	M_{∞}
$(14,15,25,35,45)$	$(60,70)$	4	M_{∞}
$(14,15,35,45,55)$	$(70,90)$	4	M_{∞}
$(14,16,42,55,68)$	$(84,110)$	1	M_{∞}
$(14,17,27,29,39)$	$(56,68)$	2	M_{∞}
$(14,17,27,39,64)$	$(78,81)$	2	M_{∞}
$(14,17,29,41,44)$	$(58,85)$	2	M_{∞}
$(14,17,29,41,53)$	$(70,82)$	2	M_{∞}
$(14,19,25,32,43)$	$(57,75)$	1	M_{∞}
$(14,19,25,32,45)$	$(64,70)$	1	M_{∞}
$(15,16,20,28,32)$	$(48,60)$	3	M_{∞}
$(15,16,20,32,44)$	$(60,64)$	3	M_{∞}
$(15,18,19,27,39)$	$(54,57)$	7	M_{1}
$(15,18,25,36,39)$	$(54,75)$	4	M_{∞}
$(15,18,25,36,57)$	$(72,75)$	4	M_{∞}
$(15,21,28,39,45)$	$(60,84)$	4	M_{∞}
$(15,21,28,45,69)$	$(84,90)$	4	M_{∞}
$(15,22,55,75,95)$	$(110,150)$	2	M_{∞}
$(15,24,35,48,57)$	$(72,105)$	2	M_{∞}
$(15,24,35,48,81)$	$(96,105)$	2	M_{∞}
$(15,26,65,90,115)$	$(130,180)$	1	M_{∞}
$(15,27,40,54,66)$	$(81,120)$	1	M_{∞}
$(15,27,40,54,93)$	$(108,120)$	1	M_{∞}

Appendix B. Lists of types

\mathbf{w}	\mathbf{d}	I	Smale type
$(15,33,44,57,75)$	$(90,132)$	2	M_{∞}
$(15,33,44,75,117)$	$(132,150)$	2	M_{∞}
$(15,36,43,54,93)$	$(108,129)$	4	M_{1}
$(15,39,52,66,90)$	$(105,156)$	1	M_{∞}
$(15,39,52,90,141)$	$(156,180)$	1	M_{∞}
$(15,48,59,72,129)$	$(144,177)$	2	M_{1}
$(15,54,67,81,147)$	$(162,201)$	1	M_{1}
$(16,18,24,27,30)$	$(48,54)$	13	M_{1}
$(16,18,24,35,37)$	$(53,72)$	5	$2 M_{\infty}$
$(16,18,48,63,78)$	$(96,126)$	1	M_{∞}
$(16,20,29,38,42)$	$(58,80)$	7	M_{1}
$(16,20,30,33,47)$	$(63,80)$	3	$2 M_{\infty}$
$(16,21,28,36,48)$	$(64,84)$	1	M_{∞}
$(16,21,28,48,68)$	$(84,96)$	1	M_{∞}
$(16,22,24,33,42)$	$(64,66)$	7	M_{∞}
$(16,22,24,33,50)$	$(66,72)$	7	M_{∞}
$(16,26,40,47,54)$	$(80,94)$	9	M_{1}
$(16,28,39,50,62)$	$(78,112)$	5	M_{1}
$(16,28,42,43,69)$	$(85,112)$	1	$2 M_{\infty}$
$(16,30,40,45,50)$	$(80,90)$	11	M_{1}
$(16,30,40,53,67)$	$(83,120)$	3	$2 M_{\infty}$
$(16,34,40,51,62)$	$(96,102)$	5	M_{∞}
$(16,34,40,51,86)$	$(102,120)$	5	M_{∞}
$(16,36,49,62,82)$	$(98,144)$	3	M_{∞}
$(16,38,56,65,74)$	$(112,130)$	7	M_{∞}
$(16,42,56,63,70)$	$(112,126)$	9	M_{1}
$(16,42,56,71,97)$	$(113,168)$	1	$2 M_{\infty}$
$(16,44,59,74,102)$	$(118,176)$	1	M_{1}
$(16,46,56,69,82)$	$(128,138)$	3	M_{∞}
$(16,46,56,69,122)$	$(138,168)$	3	M_{∞}

Appendix B. Lists of types

w	d	I	Smale type
$(16,50,72,83,94)$	$(144,166)$	5	M_{1}
$(16,54,72,81,90)$	$(144,162)$	7	M_{1}
(16, 58, 72, 87, 102)	$(160,174)$	1	M_{∞}
$(16,58,72,87,158)$	$(174,216)$	1	M_{∞}
($16,62,88,101,114)$	$(176,202)$	3	M_{1}
(16, 66, 88, 99, 110)	$(176,198)$	5	M_{1}
(16, 74, 104, 119, 134)	$(208,238)$	1	M_{1}
$(16,78,104,117,130)$	$(208,234)$	3	M_{1}
$(16,90,120,135,150)$	$(240,270)$	1	M_{1}
$(17,20,35,50,65)$	$(85,100)$	2	M_{1}
$(18,19,24,33,39)$	$(57,72)$	4	M_{1}
$(18,20,21,27,33)$	$(54,60)$	5	M_{1}
$(18,21,29,45,69)$	$(87,90)$	5	M_{1}
(18, 21, 35, 51, 54)	$(72,105)$	2	M_{∞}
$(18,21,35,54,87)$	$(105,108)$	2	M_{∞}
$(18,22,27,33,39)$	$(66,72)$	1	M_{∞}
($18,22,27,33,48)$	$(66,81)$	1	M_{∞}
$(18,23,30,39,51)$	$(69,90)$	2	M_{1}
(18, 24, 26, 35, 46)	$(70,72)$	7	M_{1}
(18, 24, 32, 41, 55)	$(73,96)$	1	$2 M_{\infty}$
(18, 24, 40, 63, 102)	$(120,126)$	1	M_{1}
(18, 26, 30, 41, 64)	$(82,90)$	7	M_{1}
$(18,30,34,43,56)$	$(86,90)$	5	M_{1}
($18,32,48,65,79)$	$(97,144)$	1	$2 M_{\infty}$
(18, 33, 49, 81, 129)	$(147,162)$	1	M_{1}
(18, 34, 42, 55, 92)	$(110,126)$	5	M_{1}
(18, 42, 50, 59, 76)	$(118,126)$	1	M_{1}
(18, 50, $66,83,148)$	$(166,198)$	1	M_{1}
(19, 20, 24, 36, 52)	$(72,76)$	3	M_{1}
(20, 24, 41, 58, 62)	$(82,120)$	3	M_{1}
95			

Appendix B. Lists of types

\mathbf{w}	\mathbf{d}	I	Smale type
$(20,28,47,66,74)$	$(94,140)$	1	M_{1}
$(21,24,29,36,51)$	$(72,87)$	2	M_{1}
$(21,24,41,60,99)$	$(120,123)$	2	M_{1}
$(22,24,32,49,74)$	$(96,98)$	7	M_{1}
$(22,24,36,55,74)$	$(96,110)$	5	M_{∞}
$(22,24,36,55,86)$	$(108,110)$	5	M_{∞}
$(22,32,48,77,106)$	$(128,154)$	3	M_{∞}
$(22,32,48,77,122)$	$(144,154)$	3	M_{∞}
$(22,36,48,79,122)$	$(144,158)$	5	M_{1}
$(22,40,60,99,138)$	$(160,198)$	1	M_{∞}
$(22,40,60,99,158)$	$(180,198)$	1	M_{∞}
$(22,48,64,109,170)$	$(192,218)$	3	M_{1}
$(22,60,80,139,218)$	$(240,278)$	1	M_{1}
$(24,26,32,51,70)$	$(96,102)$	5	M_{1}
$(24,26,40,59,94)$	$(118,120)$	5	M_{1}
$(24,26,60,77,94)$	$(120,154)$	7	M_{1}
$(24,30,32,45,66)$	$(90,96)$	11	M_{1}
$(24,30,38,53,82)$	$(106,120)$	1	M_{1}
$(24,30,40,57,63)$	$(87,120)$	7	M_{∞}
$(24,34,40,63,86)$	$(120,126)$	1	M_{1}
$(24,34,56,79,134)$	$(158,168)$	1	M_{1}
$(24,38,84,107,130)$	$(168,214)$	1	M_{1}
$(24,42,56,75,93)$	$(117,168)$	5	M_{∞}
$(24,54,64,81,138)$	$(162,192)$	7	M_{1}
$(24,66,80,99,174)$	$(198,240)$	5	M_{1}
$(24,66,88,111,153)$	$(177,264)$	1	M_{∞}
$(24,90,112,135,246)$	$(270,336)$	1	M_{1}
$(26,30,40,67,94)$	$(120,134)$	3	M_{1}
$(26,30,50,77,124)$	$(150,154)$	3	M_{1}
$(26,32,80,107,134)$	$(160,214)$	5	M_{1}

Appendix B. Lists of types

\mathbf{w}	\mathbf{d}	I	Smale type
$(26,36,48,83,118)$	$(144,166)$	1	M_{1}
$(26,36,60,95,154)$	$(180,190)$	1	M_{1}
$(26,40,100,137,174)$	$(200,274)$	3	M_{1}
$(26,48,120,167,214)$	$(240,334)$	1	M_{1}
$(30,32,80,105,130)$	$(160,210)$	7	M_{1}
$(30,42,70,99,111)$	$(141,210)$	1	M_{∞}
$(30,48,64,105,162)$	$(192,210)$	7	M_{1}
$(30,56,140,195,250)$	$(280,390)$	1	M_{1}
$(30,84,112,195,306)$	$(336,390)$	1	M_{1}

Appendix C

Well-formed types

C. 1 One parameter families of well-formed types

w	d	I
$(1,1, t+1, t+1,2 t+1), 0 \leq t$	$(2 t+2,2 t+2)$	1
$(1,2, t+2, t+2,2 t+3), 0 \leq t, t$ odd	$(2 t+4,2 t+5)$	1
$(2, t+1, t+1,2 t+1,3 t+1), 1 \leq t, t$ even	$(3 t+3,4 t+2)$	1
$(2,2,2 t+1,2 t+1,4 t), 1 \leq t$	$(4 t+2,4 t+2)$	2
$(2,3, t+1, t+2, t+2), 1 \leq t, t=2 \bmod 3$	$(t+4,2 t+4)$	2
$(2,3, t+1, t+2,2 t+1), 1 \leq t, t=0 \bmod 3$	$(2 t+3,2 t+4)$	2
$(2,4,2 t+3,2 t+3,4 t+4), 0 \leq t$	$(4 t+6,4 t+8)$	2
$(3, t+1, t+2, t+2,2 t+1), t \neq 1 \bmod 3$	$(2 t+4,3 t+3)$	2
$(3,3 t, 3 t+1,3 t+1,3 t+2), 1 \leq t$	$(6 t+2,6 t+3)$	2
$(3,3 t+1,3 t+2,6 t+1,6 t+3), 1 \leq t$	$(9 t+3,12 t+2)$	2
$(4,2 t+1,2 t+1,2 t+3,4 t), 1 \leq t$	$(4 t+4,6 t+3)$	2
$(4,2 t+3,2 t+3,4 t+4,6 t+5), 0 \leq t$	$(6 t+9,8 t+8)$	2
$(4,2 t+1,2 t+3,4 t+2,6 t+1), 1 \leq t$	$(6 t+5,8 t+4)$	2
$(4,2 t+1,4 t+2,6 t+1,8 t), 1 \leq t$	$(8 t+4,12 t+2)$	2
$(4,4 t+1,4 t+2,4 t+3,4 t+3), 1 \leq t$	$(8 t+4,8 t+6))$	3
$(4,6,6 t+3,6 t+5,6 t+5), 1 \leq t$	$(6 t+9,12 t+10)$	4
$(4,6,6 t+5,6 t+7,12 t+8), 1 \leq t$	$(12 t+12,12 t+14)$	4
$(6,6 t+3,6 t+5,6 t+5,6 t+7), 0 \leq t$	$(12 t+10,12 t+12)$	4
$(6,6 t+3,6 t+5,6 t+5,12 t+4), 1 \leq t$	$(12 t+10,18 t+9)$	4
$(6,6 t+1,6 t+3,6 t+4,6 t+5), 1 \leq t$	$(12 t+6,12 t+8)$	5
$(8,4 t+1,4 t+3,4 t+5,4 t+7), 1 \leq t$	$(8 t+8,8 t+10)$	6
$(8,4 t+5,4 t+7,4 t+9,8 t+6), 0 \leq t$	$(8 t+14,12 t+15)$	6
$(9,3 t+2,3 t+5,3 t+8,6 t+1), 1 \leq t$	$(6 t+10,9 t+9)$	6
$(9,3 t+5,3 t+8,6 t+7,9 t+6), 0 \leq t$	$(9 t+15,12 t+14)$	6
$(1,4 t-2,6 t-3,9 t-5,12 t-7)$	($12 t-6,18 t-10)$	t
$(1,3 t-1,4 t-2,6 t-3,9 t-5), t$ even	$(9 t-4,12 t-6)$	t
$\begin{gathered} (7,4 t+6,6 t+9,9 t+10,12 t+11) \\ 0 \leq t, t \neq 2 \bmod 7 \end{gathered}$	$(12 t+18,18 t+20)$	$t+5$

C. 2 Three parameter families of well-formed types】

1. For index $I \geq 2$:

$$
\begin{aligned}
& \mathbf{w}=(u, 2 I-u, t(2 I-u), t(2 I-u)+I-u, 2 t(2 I-u)-u) \\
& \mathbf{d}=(2 t(2 I-u), 2 t(2 I-u)+2 I-2 u)
\end{aligned}
$$

Either:
a. $\quad 1 \leq u<I, u$ odd, $\operatorname{gcd}(u, I)=1$
$t \geq 1, t=\frac{u-1}{2}, u-1 \bmod (u)$
or
b. $u=4 v+2 I-u$ even, $\operatorname{gcd}(I-u, 2 v+1)=1$
$2 t=(4 v+1) \bmod (4 v+2)$
2. For index $I \geq 2$:
$\mathbf{w}=(u, 2 I-u, t(2 I-u)+I-u, t(2 I-u)+2 I-2 u, 2 t(2 I-u)+2 I-3 u)$ $\mathbf{d}=(2 t(2 I-u)+2 I-2 u, 2 t(2 I-u)+4 I-4 u)$
$1 \leq u<I, \operatorname{gcd}(u, 2)=1 \operatorname{gcd}(u, I)=1$
$t \geq 1, t=\frac{u-3}{2}, u-1 \bmod (u)$
3. For index $I \geq 2$:

$$
\begin{aligned}
& \mathbf{w}=(u, 2 I-u, t(2 I-u), t(2 I-u)+I-u, t(2 I-u)+2 I-2 u) \\
& \mathbf{d}=(t(2 I-u)+2 I-u, 2 t(2 I-u)+2 I-2 u) \\
& 1 \leq u<I, \operatorname{gcd}(u, 2)=1 \operatorname{gcd}(u, I)=1 \\
& t \geq 1, t=\frac{u-1}{2}, u-1 \bmod (u)
\end{aligned}
$$

4. For index $I \geq 2$:

$$
\begin{aligned}
& \mathbf{w}=(u, 2 I-u, t(2 I-u)+u-I, t(2 I-u), t(2 I-u)+I-u) \\
& \mathbf{d}=(t(2 I-u)+I, 2 t(2 I-u))
\end{aligned}
$$

Either:
a. $\quad 1 \leq u<I, u$ odd, $\operatorname{gcd}(u, I)=1$
$t \geq 1, t=0, \frac{u-1}{2} \bmod (u)$
or
b. $\quad u=4 v+2 I-u$ even, $\operatorname{gcd}(I-u, 2 v+1)=1$
$2 t=(2 q+1)(2 v+1)$ for some $q \geq 1, \operatorname{gcd}(2 t, I-u)=1 t$ can be half integer.

Appendix C. Well-formed types
5. For index $I \geq 2$:

$$
\begin{aligned}
& \mathbf{w}=(u, I, 2 I-u, t(2 I-u)-I, t(2 I-u)-u) \\
& \mathbf{d}=(t(2 I-u), t(2 I-u)+I-u) \\
& u \equiv 1 \bmod 2, \operatorname{gcd}(u, I)=1 \\
& t \geq 2, t \equiv 0, \frac{u-1}{2} \bmod (u) \operatorname{gcd}(I-u, t-1)=1
\end{aligned}
$$

6. For index $I \geq 2$:

$$
\begin{aligned}
& \mathbf{w}=(u, I, 2 I-u,(t-1)(2 I-u),(t-1)(2 I-u)+I-u) \\
& \mathbf{d}=(t(2 I-u)+u-I, t(2 I-u)) \\
& u \equiv 1 \bmod 2, \operatorname{gcd}(u, I)=1 \\
& t \geq 2, t \equiv 0, \frac{u+1}{2} \bmod (u) \operatorname{gcd}(I-u, t-1)=1
\end{aligned}
$$

Appendix C. Well-formed types
C. 3 Sporadic well-formed types

w	d	I	KE
$(1,2,2,3,3)$	$(4,6)$	1	?
$(1,3,3,5,5)$	$(6,10)$	1	?
(1, 4, 5, 7, 11)	$(12,15)$	1	?
(1, 4, 7, 10, 13)	$(14,20)$	1	?
$(1,5,8,12,19)$	$(20,24)$	1	?
$(1,5,9,13,17)$	$(18,26)$	1	?
($1,7,11,17,27)$	$(28,34)$	1	?
($1,7,12,17,23)$	$(24,35)$	1	?
$(1,8,13,19,31)$	$(32,39)$	1	?
$(1,9,15,23,23)$	$(24,46)$	1	?
$(2,2,3,3,3)$	$(6,6)$	1	?
$(2,3,4,5,5)$	$(8,10)$	1	?
(2,3, 5, 6, 7)	$(10,12)$	1	?
$(3,3,5,5,7)$	$(10,12)$	1	?
$(3,5,6,8,13)$	$(16,18)$	1	?
(3, 5, 7, 9, 11)	$(16,18)$	1	?
$(4,5,7,10,13)$	$(18,20)$	1	?
($5,7,10,14,23)$	$(28,30)$	1	?
($5,9,12,20,31)$	$(36,40)$	1	?
$(5,14,17,21,37)$	$(42,51)$	1	?
(6,7, 9, 11, 14)	$(18,28)$	1	Y
($6,8,9,11,13)$	$(22,24)$	1	Y
$(9,15,23,23,31)$	$(46,54)$	1	Y
$(9,15,23,23,37)$	$(46,60)$	1	Y
$(9,23,30,38,67)$	$(76,90)$	1	Y

Appendix C. Well-formed types

w	d	I	KE
$(10,17,25,34,43)$	$(60,68)$	1	Y
$(11,18,27,44,61)$	$(72,88)$	1	Y
($11,27,36,62,97)$	$(108,124)$	1	Y
$(11,29,38,48,85)$	$(96,114)$	1	Y
$(11,29,39,49,59)$	$(88,98)$	1	Y
(11, 29, 39, 49, 67)	$(78,116)$	1	Y
$(13,22,55,76,97)$	$(110,152)$	1	Y
$(13,23,34,56,89)$	$(102,112)$	1	Y
$(13,23,35,47,57)$	$(70,104)$	1	Y
$(13,23,35,57,79)$	$(92,114)$	1	Y
$(14,19,25,32,45)$	$(64,70)$	1	Y
(2, 5, 6, 9, 13)	$(15,18)$	2	?
$(2,5,8,11,14)$	$(16,22)$	2	?
(2,7, 8, 13, 19)	$(21,26)$	2	?
(2,7,10,13,18)	$(20,28)$	2	?
(2, 9, 12, 19, 19)	$(21,38)$	2	?
$(3,4,5,6,7)$	$(11,12)$	2	?
$(3,4,6,7,8)$	$(12,14)$	2	?
$(5,6,9,13,13)$	$(18,26)$	2	?
$(5,7,8,11,14)$	$(21,22)$	2	?
($5,8,9,12,19)$	$(24,27)$	2	?
$(9,10,15,22,23)$	$(32,45)$	2	?
$(9,12,19,19,26)$	$(38,45)$	2	?
$(9,12,19,19,29)$	$(38,48)$	2	?
$(9,19,24,31,53)$	$(62,72)$	2	?
$(10,19,35,43,51)$	$(70,86)$	2	?
$(11,14,21,33,52)$	$(63,66)$	2	?
(11, 21, 28, 47, 73)	$(84,94)$	2	?

Appendix C. Well-formed types

w	d	I	KE
$(11,25,32,34,41)$	$(66,75)$	2	Y
$(11,25,32,41,71)$	$(82,96)$	2	?
$(11,25,34,43,52)$	$(77,86)$	2	Y
$(11,25,34,43,57)$	$(68,100)$	2	Y
$(13,18,45,61,77)$	$(90,122)$	2	?
$(13,20,29,31,47)$	$(60,78)$	2	Y
(13, 20, 29, 47, 74)	$(87,94)$	2	?
$(13,20,31,42,49)$	$(62,91)$	2	Y
$(13,20,31,49,67)$	$(80,98)$	2	?
$(14,17,27,39,64)$	$(78,81)$	2	?
$(14,17,29,41,44)$	$(58,85)$	2	Y
$(14,17,29,41,53)$	$(70,82)$	2	?
$(3,4,5,6,7)$	$(10,12)$	3	?
(3, 5, 7, 9, 11)	$(14,18)$	3	?
(3, 7, 8, 9, 13)	$(16,21)$	3	?
$(1,10,15,22,29)$	$(30,44)$	3	?
$(10,11,15,22,29)$	$(40,44)$	3	?
$(11,15,20,32,49)$	$(60,64)$	3	?
$(11,21,26,34,57)$	$(68,78)$	3	?
$(11,21,29,37,45)$	$(66,74)$	3	?
$(11,21,29,37,47)$	$(58,84)$	3	?
$(13,14,35,46,57)$	$(70,92)$	3	?
$(13,17,24,38,59)$	$(72,76)$	3	?
$(13,17,27,37,41)$	$(54,78)$	3	?
$(13,17,27,41,55)$	$(68,82)$	3	?
$(14,15,19,26,37)$	$(52,56)$	3	?

Appendix C. Well-formed types

\mathbf{w}	\mathbf{d}	I	KE
$(4,5,6,7,8)$	$(12,14)$	4	$?$
$(9,11,12,17,25)$	$(34,36)$	4	$?$
$(10,13,25,31,37)$	$(50,62)$	4	$?$
$(11,17,20,24,27)$	$(44,51)$	4	$?$
$(11,17,20,27,43)$	$(54,60)$	4	$?$
$(11,17,24,31,37)$	$(48,68)$	4	$?$
$(11,17,24,31,38)$	$(55,62)$	4	$?$
$(13,14,19,23,29)$	$(42,52)$	4	$?$
$(13,14,19,29,44)$	$(57,58)$	4	$?$
$(13,14,23,32,33)$	$(46,65)$	4	$?$
$(13,14,23,33,43)$	$(56,66)$	4	$?$
$(11,13,14,20,29)$	$(40,42)$	5	$?$
$(11,13,19,25,27)$	$(38,52)$	5	$?$
$(11,13,19,25,31)$	$(44,50)$	5	$?$

Appendix D

Cases broken down by highest two weights

D. 1 General requirements

Suppose, as usual, that $w_{0} \leq w_{1} \leq w_{2} \leq w_{3} \leq w_{4}<d_{1} \leq d_{2}$ and $w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>$ $d_{1}+d_{2}$. We have $d_{1} \geq w_{3}+w_{0}, d_{1} \geq w_{4}$, and $d_{2} \geq w_{4}+w_{1}$ from Lemmas 30 and 34 .

D.1.1 Possibilities for w_{3}

From Corollary 16 applied to $\{3\}$, we need one of the following: (i) $d_{1}=m_{1} w_{3}$, (ii) $d_{2}=m_{2} w_{3}$, or (iii) $d_{1}=m_{3} w_{3}+w_{i}$ and $d_{2}=m_{4} w_{3}+w_{j}$ with $i, j \in\{0,1,2,4\}$ and $i \neq j$. (i) $2 \leq m_{1}<3$ else $d_{1}+d_{2} \geq 3 w_{3}+w_{1}+w_{4} \geq w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. (ii) $2 \leq m_{2}<4$ else $d_{1}+d_{2} \geq w_{4}+4 w_{3} \geq w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. (iii) $d_{1}<2 w_{3}+w_{0}$ else $d_{1}+d_{2} \geq 2 w_{3}+w_{0}+w_{1}+w_{4} \geq$ $w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. Therefore $d_{1}=w_{3}+w_{0}$, $d_{1}=w_{3}+w_{1}, d_{1}=w_{3}+w_{2}$, or $d_{1}=w_{3}+w_{4}$ in this case. $d_{2}<3 w_{3}+w_{0}$ else $\left.d_{1}+d_{2}\right\rangle$

Appendix D. Cases broken down by highest two weights

$w_{4}+3 w_{3}+w_{0} \geq w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. Therefore $d_{2}=w_{3}+w_{0}, d_{2}=w_{3}+w_{1}, d_{2}=w_{3}+w_{2}, d_{2}=w_{3}+w_{4}, d_{2}=2 w_{3}+w_{0}, d_{2}=2 w_{3}+w_{1}$, or $d_{2}=2 w_{3}+w_{2}$. Without loss of generality we can assume that if $d_{1}=w_{3}+w_{i}$ and $d_{2}=w_{3}+w_{j}$ then $i<j$, since, if not, then $d_{1} \leq d_{2}$ would imply $w_{j}=w_{i}$.

Tabling these possibilities:

d_{1}	d_{2}	
$2 w_{3}$		
	$2 w_{3}$	
	$3 w_{3}$	
$w_{0}+w_{3}$	$w_{1}+w_{3}$	
$w_{0}+w_{3}$	$w_{2}+w_{3}$	
$w_{0}+w_{3}$	$w_{3}+w_{4}$	
$w_{0}+w_{3}$	$2 w_{3}+w_{1}$	
$w_{0}+w_{3}$	$2 w_{3}+w_{2}$	
$w_{1}+w_{3}$	$w_{2}+w_{3}$	
$w_{1}+w_{3}$	$w_{3}+w_{4}$	
$w_{1}+w_{3}$	$2 w_{3}+w_{0}$	
$w_{1}+w_{3}$	$2 w_{3}+w_{2}$	
$w_{2}+w_{3}$	$w_{3}+w_{4}$	
$w_{2}+w_{3}$	$2 w_{3}+w_{0}$	
$w_{2}+w_{3}$	$2 w_{3}+w_{1}$	
$w_{3}+w_{4}$	$2 w_{3}+w_{0}$	too great
$w_{3}+w_{4}$	$2 w_{3}+w_{1}$	too great
$w_{3}+w_{4}$	$2 w_{3}+w_{2}$	too great

D.1.2 Possibilities for w_{4}

From the Corollary applied to $\{4\}$, we need one of the following: (i) $d_{1}=n_{1} w_{4}$, (ii) $d_{2}=n_{2} w_{4}$, or (iii) $d_{1}=n_{3} w_{4}+w_{i}$ and $d_{2}=n_{4} w_{4}+w_{j}$ with $i, j \in\{0,1,2,4\}$ and $i \neq j$. (i) $2 \leq n_{1}<3$ else $d_{1}+d_{2} \geq w_{0}+w_{3}+3 w_{4} \geq w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. (ii) $2 \leq n_{2}<3$ else $d_{1}+d_{2} \geq 3 w_{4}+w_{3}+w_{0} \geq w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. (iii) $d_{1}<2 w_{4}+w_{0}$ else $d_{1}+d_{2} \geq 2 w_{4}+w_{0}+w_{1}+w_{4} \geq$ $w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. Therefore $d_{1}=w_{4}+w_{0}$, $d_{1}=w_{4}+w_{1}, d_{1}=w_{4}+w_{2}$, or $d_{1}=w_{4}+w_{3}$ in this case. $d_{2}<2 w_{4}+w_{1}$ else $\left.d_{1}+d_{2}\right\rangle$ $w_{4}+3 w_{3}+w_{0} \geq w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}$ which is a contradiction. Therefore $d_{2}=w_{4}+w_{0}, d_{2}=w_{4}+w_{1}, d_{2}=w_{4}+w_{2}, d_{2}=w_{4}+w_{3}$, or $d_{2}=2 w_{4}+w_{0}$. Without loss of generality we can assume that if $d_{1}=w_{4}+w_{i}$ and $d_{2}=w_{4}+w_{j}$ then $i<j$, since, if not, then $d_{1} \leq d_{2}$ would imply $w_{j}=w_{i}$.

Tabling these possibilities:

d_{1}	d_{2}	
$2 w_{4}$		
	$2 w_{4}$	
$w_{0}+w_{4}$	$w_{1}+w_{4}$	
$w_{0}+w_{4}$	$w_{2}+w_{4}$	
$w_{0}+w_{4}$	$w_{3}+w_{4}$	
$w_{1}+w_{4}$	$w_{2}+w_{4}$	
$w_{1}+w_{4}$	$w_{3}+w_{4}$	
$w_{1}+w_{4}$	$2 w_{4}+w_{0}$	too great
$w_{2}+w_{4}$	$w_{3}+w_{4}$	
$w_{3}+w_{4}$	$2 w_{4}+w_{0}$	too great

D.1.3 Possible pairs for w_{3} and w_{4}

Combining the previous conditions and noting those ruled out those by immediately violating positivity:

d_{1}	d_{2}	
$2 w_{3}=2 w_{4}$		see below
$2 w_{3}$	$2 w_{4}$	
$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	
$2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}$	
$2 w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	
$2 w_{3}=w_{1}+w_{4}$	$w_{2}+w_{4}$	
$2 w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	
$2 w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	
$2 w_{4}$	$2 w_{3}$	
	$2 w_{3}=2 w_{4}$	see below
$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	
$w_{0}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	
$w_{0}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	
$w_{1}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	
$w_{1}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	
$w_{2}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	

Appendix D. Cases broken down by highest two weights

$2 w_{4}$	$3 w_{3}$	too great
	$3 w_{3}=2 w_{4}$	see below
$w_{0}+w_{4}$	$3 w_{3}=w_{1}+w_{4}$	too great
$w_{0}+w_{4}$	$3 w_{3}=w_{2}+w_{4}$	too great
$w_{0}+w_{4}$	$3 w_{3}=w_{3}+w_{4}$	too great
$w_{1}+w_{4}$	$3 w_{3}=w_{2}+w_{4}$	too great
$w_{1}+w_{4}$	$3 w_{3}=w_{3}+w_{4}$	too great
$w_{2}+w_{4}$	$3 w_{3}=w_{3}+w_{4}$	too great
d_{1}	d_{2}	
$w_{0}+w_{3}=2 w_{4}$	$w_{1}+w_{3}$	
$w_{0}+w_{3}$	$w_{1}+w_{3}=2 w_{4}$	
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+w_{3}=w_{1}+w_{4}$	see below
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+w_{3}=w_{2}+w_{4}$	see below
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+w_{3}=w_{2}+w_{4}$	
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	
$w_{0}+w_{3}=2 w_{4}$	$w_{2}+w_{3}$	
$w_{0}+w_{3}$	$w_{2}+w_{3}=2 w_{4}$	
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{1}+w_{4}$	see below
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$	see below
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$	see below
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	

Appendix D. Cases broken down by highest two weights

$w_{0}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	
$w_{0}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{0}+w_{3}=2 w_{4}$	$w_{1}+2 w_{3}$	too great
$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+2 w_{3}=w_{1}+w_{4}$	too great
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{1}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{0}+w_{3}=2 w_{4}$	$w_{2}+2 w_{3}$	too great
$w_{0}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+2 w_{3}=w_{1}+w_{4}$	too great
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{2}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{2}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{2}+2 w_{3}=w_{3}+w_{4}$	too great

Appendix D. Cases broken down by highest two weights

d_{1}	d_{2}	
$w_{1}+w_{3}=2 w_{4}$	$w_{2}+w_{3}$	
$w_{1}+w_{3}$	$w_{2}+w_{3}=2 w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{1}+w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$	see below
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$	see below
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	
$w_{1}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	
$w_{1}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{1}+w_{3}=2 w_{4}$	$w_{0}+2 w_{3}$	too great
$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}$	see below
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	too great

Appendix D. Cases broken down by highest two weights

$w_{1}+w_{3}=2 w_{4}$	$w_{2}+2 w_{3}$	too great
$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+2 w_{3}=w_{1}+w_{4}$	too great
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{2}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{2}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{2}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{2}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	
$w_{2}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{2}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}=w_{3}+w_{4}$	
$w_{2}+w_{3}=2 w_{4}$	$w_{0}+2 w_{3}$	too great
$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}$	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	see below
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{2}+w_{3}=w_{2}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	too great

Appendix D. Cases broken down by highest two weights

d_{1}	d_{2}	
$w_{2}+w_{3}=2 w_{4}$	$w_{1}+2 w_{3}$	too great
$w_{2}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{1}+2 w_{3}=w_{1}+w_{4}$	too great
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{1}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{1}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{1}+2 w_{3}=w_{2}+w_{4}$	too great
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{1}+2 w_{3}=w_{3}+w_{4}$	too great
$w_{2}+w_{3}=w_{2}+w_{4}$	$w_{1}+2 w_{3}=w_{3}+w_{4}$	too great

D.1. 4 Restrictions because of $\{3,4\}$

We also need to consider Corollary 16 applied to $\{3,4\}$. All of the above satisfy it immediately except the following:

d_{1}	d_{2}
$2 w_{3}=2 w_{4}$	
	$2 w_{3}=2 w_{4}$
	$3 w_{3}=2 w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+w_{3}=w_{1}+w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+w_{3}=w_{2}+w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{1}+w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{2}+w_{4}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}$
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$

Appendix D. Cases broken down by highest two weights

Take each of these in turn. If $d_{1}=2 w_{3}=2 w_{4}$, positivity requires $d_{1}+d_{2}<$ $w_{0}+w_{1}+w_{2}+w_{3}+w_{4} \leq w_{0}+4 w_{4}$, so $d_{2}<w_{0}+2 w_{4}=w_{0}+2 w_{3}$. But Corollary 14 applied to $\{3,4\}$ implies that d_{2} must involve at least one of w_{3} or w_{4}, so $d_{2}=2 w_{3}$, $d_{2}=w_{3}+w_{0}, d_{2}=w_{3}+w_{1}$, or $d_{2}=w_{3}+w_{2}$. In any case, Therefore $2 w_{3} \geq d_{2} \geq d_{1}=2 w_{3}$.

If $d_{2}=2 w_{3}=2 w_{4}$, Corollary 14 applied to $\{3,4\}$ implies that $d_{1}=2 w_{3}$ or $d_{1}=$ $w_{3}+w_{i}$ for some $i=0,1,2$.

If $d_{2}=3 w_{3}=2 w_{4}$, Corollary 14 applied to $\{3,4\}$ gives nine possibilities for $d_{1}: 2 w_{4}$, $2 w_{3}, w_{0}+w_{3}, w_{0}+w_{4}, w_{1}+w_{3}, w_{1}+w_{4}, w_{2}+w_{3}, w_{2}+w_{4}, w_{3}+w_{4}$. Positivity eliminates all of these that contain w_{4} since $d_{2}=3 w_{3}$. This leaves $d_{1}=2 w_{3}, d_{1}=w_{0}+w_{3}$, $d_{1}=w_{1}+w_{3}, d_{1}=w_{2}+w_{3}$.

If $d_{1}=w_{0}+w_{3}=w_{0}+w_{4}$ and $d_{2}=w_{1}+w_{3}=w_{1}+w_{4}$ then $w_{3}=w_{4}$. Consider Corollary 14 applied to $\{3,4\}$. We need either (i) $d_{1}=2 w_{3}$, (ii) $d_{2}=2 w_{3}$, (iii) $d_{1}=w_{2}+w_{3}$ and $d_{2}=w_{0}+w_{3}$, (iv) $d_{1}=w_{1}+w_{3}$ and $d_{2}=w_{2}+w_{3}$, or (v) $d_{1}=w_{2}+w_{3}$ and $d_{2}=w_{2}+w_{3}$. (i) implies $w_{0}=w_{3}$, hence $w_{0}=w_{4}$, (ii) implies $w_{1}=w_{3}$, hence $w_{1}=w_{4}$, and (iii),(iv), or (v) imply $w_{0}=w_{2}$.

If either $d_{1}=w_{0}+w_{3}=w_{0}+w_{4}$ and $d_{2}=w_{1}+w_{3}=w_{2}+w_{4}$, or $d_{1}=w_{0}+w_{3}=w_{0}+w_{4}$ and $d_{2}=w_{2}+w_{3}=w_{1}+w_{4}$, then $w_{1}=w_{2}$ and $w_{3}=w_{4}$. Consider Corollary 14 applied to $\{3,4\}$. We need either (i) $d_{1}=2 w_{3}$, (ii) $d_{2}=2 w_{3}$, (iii) $d_{1}=w_{1}+w_{3}$, or (iv) $d_{1}=w_{2}+w_{3}$. (i) implies $w_{0}=w_{3}$, hence $w_{0}=w_{4}$, (ii) implies $w_{1}=w_{3}$, hence $w_{1}=w_{4}$, and (iii) or (iv) imply $w_{0}=w_{2}$.

If $d_{1}=w_{0}+w_{3}=w_{0}+w_{4}$ and $d_{2}=w_{2}+w_{3}=w_{2}+w_{4}$ then $w_{3}=w_{4}$. Consider Corollary 14 applied to $\{3,4\}$. We need either (i) $d_{1}=2 w_{3}$, (ii) $d_{2}=2 w_{3}$, (iii) $d_{1}=w_{1}+w_{3}$ and $d_{2}=w_{0}+w_{3}$, (iv) $d_{1}=w_{2}+w_{3}$ and $d_{2}=w_{1}+w_{3}$, or (v) $d_{1}=w_{1}+w_{3}$ and $d_{2}=w_{1}+w_{3}$. (i) implies $w_{0}=w_{3}$, hence $w_{0}=w_{4}$, (ii) implies $w_{2}=w_{3}$, hence $w_{2}=w_{4}$, and (iii),(iv), or (v) imply $w_{0}=w_{2}$.

If either $d_{1}=w_{0}+w_{3}=w_{1}+w_{4}$ and $d_{2}=w_{2}+w_{3}=w_{2}+w_{4}$, or $d_{1}=w_{1}+w_{3}=w_{0}+w_{4}$

Appendix D. Cases broken down by highest two weights

and $d_{2}=w_{2}+w_{3}=w_{2}+w_{4}$, then $w_{0}=w_{1}$ and $w_{3}=w_{4}$. Consider Corollary 14 applied to $\{3,4\}$. We need either (i) $d_{1}=2 w_{3}$, (ii) $d_{2}=2 w_{3}$, (iii) $d_{2}=w_{0}+w_{3}$, or (iv) $d_{2}=w_{1}+w_{3}$. (i) implies $w_{0}=w_{3}$, hence $w_{0}=w_{4}$, (ii) implies $w_{2}=w_{3}$, hence $w_{2}=w_{4}$, and (iii) or (iv) imply $w_{0}=w_{2}$.

If $d_{1}=w_{1}+w_{3}=w_{1}+w_{4}$ and $d_{2}=w_{2}+w_{3}=w_{2}+w_{4}$ then $w_{3}=w_{4}$. Consider Corollary 14 applied to $\{3,4\}$. We need either (i) $d_{1}=2 w_{3}$, (ii) $d_{2}=2 w_{3}$, (iii) $d_{1}=w_{0}+w_{3}$ and $d_{2}=w_{0}+w_{3}$, (iv) $d_{1}=w_{0}+w_{3}$ and $d_{2}=w_{1}+w_{3}$, or (v) $d_{1}=w_{2}+w_{3}$ and $d_{2}=w_{0}+w_{3}$. (i) implies $w_{1}=w_{3}$, hence $w_{1}=w_{4}$, (ii) implies $w_{2}=w_{3}$, hence $w_{2}=w_{4}$, and (iii),(iv), or (v) imply $w_{0}=w_{2}$.

If $d_{1}=w_{1}+w_{3}=w_{0}+w_{4}$ and $d_{2}=w_{0}+2 w_{3}=w_{1}+w_{4}$, then $w_{0}<w_{1}, w_{3}<w_{4}$, and $d_{1}<d_{2}$. Consider Corollary 14 applied to $\{3,4\}$. We need either (i) $d_{1}=2 w_{3}$, (ii) $d_{1}=w_{3}+w_{4}$, (iii) $d_{1}=2 w_{4}$, (iv) $d_{2}=2 w_{3}$, (v) $d_{2}=w_{3}+w_{4}$, (vi) $d_{2}=2 w_{4}$, (vii) $d_{1}=w_{2}+w_{3}$, (viii) $d_{1}=w_{2}+w_{4}$, (ix) $d_{2}=w_{2}+w_{3}$, (\mathbf{x}) $d_{2}=w_{2}+2 w_{3}$, or (xi) $d_{2}=w_{2}+w_{4}$. (i) or (v) imply $w_{1}=w_{3}$, (ii) implies $w_{0}=w_{3}$ which is a contradiction, (iii) implies $w_{0}=w_{4}$ which is a contradiction, (iv) is impossible, (vi) implies $w_{1}=w_{4}$ which is a contradiction, (vii) or (xi) imply $w_{1}=w_{2}$, (viii) or (x) imply $w_{0}=w_{2}$ which is a contradiction, and (ix) is impossible.

If $d_{1}=w_{2}+w_{3}=w_{0}+w_{4}$ and $d_{2}=w_{0}+2 w_{3}=w_{2}+w_{4}$, then $w_{0}<w_{1}, w_{3}<w_{4}$, and $d_{1}<d_{2}$. Consider Corollary 14 applied to $\{3,4\}$. We need either (i) $d_{1}=2 w_{3}$, (ii) $d_{1}=w_{3}+w_{4}$, (iii) $d_{1}=2 w_{4}$, (iv) $d_{2}=2 w_{3}$, (v) $d_{2}=w_{3}+w_{4}$, (vi) $d_{2}=2 w_{4}$, (vii) $d_{1}=w_{1}+w_{3}$, (viii) $d_{1}=w_{1}+w_{4}$, (ix) $d_{2}=w_{1}+w_{3},(x) d_{2}=w_{1}+2 w_{3}$, or (xi) $d_{2}=w_{1}+w_{4}$. (i) or (v) imply $w_{2}=w_{3}$, (ii) implies $w_{0}=w_{3}$ which is a contradiction, (iii) implies $w_{0}=w_{4}$ which is a contradiction, (iv) is impossible, (vi) implies $w_{2}=w_{4}$ which is a contradiction, (vii) or (xi) imply $w_{1}=w_{2}$, (viii) or (x) imply $w_{0}=w_{1}$ and is hence too great, and (ix) is impossible.

In sum, replace the above twelve cases with the following:

Appendix D. Cases broken down by highest two weights

d_{1}	d_{2}
$2 w_{3}=2 w_{4}$	$2 w_{3}=2 w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{3}=2 w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$2 w_{3}=2 w_{4}$
$w_{2}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$
$2 w_{3}$	$3 w_{3}=2 w_{4}$
$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$
$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$
$w_{2}+w_{3}$	$3 w_{3}=2 w_{4}$
$2 w_{0}=2 w_{4}$	$2 w_{0}=2 w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{1}=2 w_{4}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{0}+w_{3}=w_{2}+w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{2}=2 w_{4}$
$2 w_{1}=2 w_{4}$	$2 w_{1}=2 w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$2 w_{2}=2 w_{4}$
$w_{1}+w_{3}=2 w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}=w_{3}+w_{4}$
$w_{1}+w_{3}=w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}=w_{2}+w_{4}$
$w_{2}+w_{3}=2 w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}=w_{3}+w_{4}$

Appendix D. Cases broken down by highest two weights

D.1.5 Order constraints

Next, we note any additional constraints put on the weights by the relations.

d_{1}	d_{2}	constraints
$2 w_{3}=2 w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}, d_{1}=d_{2}$
$2 w_{3}$	$2 w_{4}$	
$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	
$2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}$	
$2 w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	
$2 w_{3}=w_{1}+w_{4}$	$w_{2}+w_{4}$	
$2 w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	
$2 w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	
$2 w_{4}$	$2 w_{3}$	$w_{3}=w_{4}, d_{1}=d_{2}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}$
$w_{2}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}$
$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	
$w_{0}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	
$w_{0}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	
$w_{1}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	
$w_{1}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{2}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	$w_{3}=w_{4}$
$2 w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{3}$ even
$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{3}$ even
$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{3}$ even
$w_{2}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{3}$ even
$w_{0}+w_{3}=2 w_{4}$	$w_{1}+w_{3}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}$	$w_{1}+w_{3}=2 w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$

Appendix D. Cases broken down by highest two weights

d_{1}	d_{2}	constraints
$2 w_{0}=2 w_{4}$	$2 w_{0}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{1}=2 w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{0}+w_{3}=w_{2}+w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}, w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+w_{3}=w_{2}+w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}, w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}=2 w_{4}$	$w_{2}+w_{3}$	$\begin{gathered} w_{0}=w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}$	$w_{2}+w_{3}=2 w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{2}=2 w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{0}=w_{1}, w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{0}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	$w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{0}=w_{1}, w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}, w_{3}=w_{4}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}=w_{2}, w_{3}=w_{4}$

Appendix D. Cases broken down by highest two weights

d_{1}	d_{2}	constraints
$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{3}<w_{4}, w_{1} \text { even } \\ d_{1}<d_{2} \end{gathered}$
$w_{0}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{3}<w_{4}, w_{2} \text { even } \\ d_{1}<d_{2} \end{gathered}$
$w_{1}+w_{3}=2 w_{4}$	$w_{2}+w_{3}$	$\begin{gathered} w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{1}+w_{3}$	$w_{2}+w_{3}=2 w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{1}+w_{4}$	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{0}=w_{1}, w_{2}=w_{3}=w_{4}$
$2 w_{1}=2 w_{4}$	$2 w_{1}=2 w_{4}$	
$w_{1}+w_{3}=w_{1}+w_{4}$	$2 w_{2}=2 w_{4}$	
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$\begin{aligned} w_{3} & =w_{4} \\ d_{1} & =d_{2} \end{aligned}$
$w_{1}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	$\begin{gathered} w_{1}=w_{2}=w_{3}=w_{4} \\ d_{1}=d_{2} \end{gathered}$
$w_{1}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	$w_{3}=w_{4}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	$w_{1}=w_{2}=w_{3}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{1}=w_{2}, w_{3}=w_{4}$
$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{0}$ even $d_{1}<d_{2}$
$\begin{gathered} 2 w_{3}=w_{0}+w_{4} \\ w_{1}+w_{3} \end{gathered}$	$\begin{gathered} w_{0}+2 w_{3}=w_{3}+w_{4} \\ w_{1}+w_{4} \end{gathered}$	$\begin{gathered} w_{0}<w_{1}=w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
$\begin{gathered} w_{2}+w_{3}=w_{0}+w_{4} \\ w_{1}+w_{3} \end{gathered}$	$\begin{gathered} w_{0}+2 w_{3}=w_{2}+w_{4} \\ w_{1}+w_{4} \end{gathered}$	$\begin{gathered} w_{0}<w_{1}=w_{2}, w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$

Appendix D. Cases broken down by highest two weights

d_{1}	d_{2}	constraints
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	$w_{0}<w_{1}, w_{3}<w_{4}$ $d_{1}<d_{2}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	$w_{0}<w_{1}, w_{3}<w_{4}$ $d_{1}<d_{2}$
$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{2}$ even
		$d_{1}<d_{2}$
$w_{2}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	$w_{2}=w_{3}=w_{4}$
		$d_{1}=d_{2}$
$w_{2}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	$w_{3}=w_{4}$
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	$w_{1}=w_{2}=w_{3}$
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}$
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}$
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	
$w_{2}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{0}$ even
		$d_{1}<d_{2}$
$w_{2}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, w_{1}$ even
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}$	$w_{0}<w_{1}, w_{3}<w_{4}$
		$d_{1}<d_{2}$
$=2 w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	$w_{0}<w_{1}, w_{2}=w_{3}<w_{4}$
$w_{2}+w_{3}$	$w_{2}+w_{4}$	$d_{1}<d_{2}$
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	$w_{0}<w_{1}, w_{3}<w_{4}$
$d_{1}<d_{2}$		

D. 2 Cases by constraints

Now regroup the above by constraints.

D.2.1 Cases with at most 3 distinct weights

1.

d_{1}	d_{2}	constraints
$w_{0}+w_{3}=2 w_{4}$	$w_{1}+w_{3}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$w_{0}+w_{3}=2 w_{4}$	$w_{2}+w_{3}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$w_{0}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$2 w_{0}=2 w_{4}$	$2 w_{0}=2 w_{4}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$

Given the constraint, these are all identical.

d_{1}	d_{2}	constraints
$w_{1}+w_{3}=2 w_{4}$	$w_{2}+w_{3}$	$w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$w_{1}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
$2 w_{1}=2 w_{4}$	$2 w_{1}=2 w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$

Given the constraint, these are identical. Assume that $w_{0}<w_{1}$ else this reduces to case 1 .
3.

d_{1}	d_{2}	constraint
$w_{0}+w_{3}$	$w_{1}+w_{3}=2 w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{1}+w_{3}=w_{3}+w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{1}=2 w_{4}$	$w_{1}=w_{2}=w_{3}=w_{4}$

Appendix D. Cases broken down by highest two weights

Given the constraint, these are identical. Assume that $w_{0}<w_{1}$ (and hence also $\left.d_{1}<d_{2}\right)$ else this reduces to case 1.

We must have $\operatorname{gcd}\left(w_{0}, w_{1}\right)=1$. Thus this form is $\mathbf{w}=(r, s, s, s, s), \mathbf{d}=(r+s, 2 s)$, with $\operatorname{gcd}(r, s)=1$ and $r<s$. The Corollary for $\{0\}$ requires either $r \mid 2 s$, or $r \mid(r+s)$, or $r \mid(2 s-s)$ and $r \mid(r+s-s)$. In any case, $r \mid 2 s$, so $r=1,2$. Consider the Corollary for $\{2,3,4\}$. Since $s+(r+s)$ unless $r=s$, this rules out cases (a) and (b), leaving case (c). This requires $s \mid(r+s)-w_{i}$ for two different weights w_{i}, but $r=w_{0}$ is the only weight satisfying the relation, so case (c) cannot be satisfied either. Therefore, there are no possibilities.

d_{1}	d_{2}	constraints
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{0}=w_{1}, w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{0}=w_{1}, w_{2}=w_{3}=w_{4}$
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{0}=w_{1}, w_{2}=w_{3}=w_{4}$

Given the constraints, these are identical. Assume $w_{1}<w_{2}$ else this reduces to case 1.

d_{1}	d_{2}	constraints
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{0}=w_{1}=w_{2}, w_{3}=w_{4}, d_{1}=d_{2}$
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{0}=w_{1}=w_{2}, w_{3}=w_{4}, d_{1}=d_{2}$

Given the constraints, these are identical. Assume $w_{2}<w_{3}$ else this reduces to case 1.
6.

d_{1}	d_{2}	constraints
$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}=w_{2}, w_{3}=w_{4}$

Assume $w_{2}<w_{3}$ else this reduces to case 1.

7. | d_{1} | d_{2} | constraints |
| :---: | :---: | :---: |
| $w_{2}+w_{3}=2 w_{4}$ | $w_{3}+w_{4}$ | $w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$ |

Assume $w_{1}<w_{2}$ else this reduces to case 2. This case can be split up into two:

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraints
7 a	$w_{2}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$
7 b	$w_{2}+w_{3}=2 w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}=w_{4}, d_{1}=d_{2}$

d_{1}	d_{2}	constraints
$w_{0}+w_{3}$	$w_{2}+w_{3}=2 w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{2}=2 w_{4}$	$w_{2}=w_{3}=w_{4}$

Given the constraint, these are identical. Assume $w_{0}<w_{1}$ else this reduces to case 4 . Assume $w_{1}<w_{2}$ else this reduces to case 3 .

There are no instances. We must have $\operatorname{gcd}\left(w_{0}, w_{1}, w_{2}\right)=1$. Thus this form is $\mathbf{w}=(r, s, t, t, t), \mathbf{d}=(r+t, 2 t)$, with $\operatorname{gcd}(r, s, t)=1$ and $r<s<t$.

Consider the Corollary for $\{2,3,4\}$. Then since $d_{1}=r+t<2 t$, (a) and (b) cannot hold. (c) requires $r+t=d_{1}=m t+r$ and $r+t=d_{1}=n t+s$. The first is satisfied with $m=1$. The second requires $r+t=n t+s$ so $r=(n-1) t+s>(n-1) r+s>(n-1) r$ so $n-1 \leq 0$. On the other hand $s+t>r+t$ so this is a contradiction.

d_{1}	d_{2}	constraints
$w_{1}+w_{3}$	$w_{2}+w_{3}=2 w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{2}+w_{3}=w_{3}+w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}=w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$2 w_{2}=2 w_{4}$	$w_{2}=w_{3}=w_{4}$

Given the constraint, these are identical. Assume $w_{0}<w_{1}$ else this reduces to case 4. Assume $w_{1}<w_{2}$ else this reduces to case 2.

There are no instances. We must have $\operatorname{gcd}\left(w_{0}, w_{1}, w_{2}\right)=1$. This form is $\mathbf{w}=$ $(r, s, t, t, t), \mathbf{d}=(s+t, 2 t)$, with $\operatorname{gcd}(r, s, t)=1$ and $r<s<t$.

Consider the Corollary for $\{2,3,4\}$. Then since $d_{1}=s+t<2 t$, (a) and (b) cannot hold. (c) requires $s+t=d_{1}=m t+r$ and $s+t=d_{1}=n t+s$. The second is satisfied with $n=1$. The first requires $s+t=m t+r$ so $s=(m-1) t+r>(m-1) s+r>(m-1) s$ so $m-1 \leq 0$. On the other hand $s+t>r+t$ so this is a contradiction.
10.

d_{1}	d_{2}	constraints
$w_{1}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{1}=w_{2}, w_{3}=w_{4}$

Assume $w_{0}<w_{1}$ else this reduces to case 6. Assume $w_{2}<w_{3}$ else this reduces to case 2.
11.

d_{1}	d_{2}	constraints
$w_{0}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}, w_{3}=w_{4}$

Assume $w_{1}<w_{2}$ else this reduces to case 6. Assume $w_{2}<w_{3}$ else this reduces to case 4.

d_{1}	d_{2}	constraints			
	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$	$w_{1}=w_{2}=w_{3}, ~$	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{1}+w_{4}$
:---:	:---:				
$w_{1}=w_{2}=w_{3}$					

Given the constraint, these are identical. Assume $w_{0}<w_{1}$ and $w_{3}<w_{4}$ else this reduces to case 1.

D.2.2 Cases with $d_{2}=2 w_{3}=2 w_{4}$ cases

13.

d_{1}	d_{2}	constraint
$2 w_{3}=2 w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}, d_{1}=d_{2}$
$2 w_{4}$	$2 w_{3}$	$w_{3}=w_{4}, d_{1}=d_{2}$

Given the constraint, these are identical.
If $w_{0}=w_{1}=w_{2}=w_{3}$ this reduces to case 1. If $w_{0}<w_{1}=w_{2}=w_{3}$ this reduces to case 2. If $w_{0}=w_{1}<w_{2}=w_{3}$ this reduces to case 7 a . If $w_{0}<w_{1}<w_{2}=w_{3}$ this reduces

Appendix D. Cases broken down by highest two weights

to case 7b. So, assume $w_{2}<w_{3}$. Positivity requires $w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}=$ $3 w_{3}+w_{4}$, so $w_{0}+w_{1}+w_{2}>2 w_{3}$ and $w_{3}<\left(w_{0}+w_{1}+w_{2}\right) / 2$

Consider the corollary for $\{2\}$. Then we must have either (i) $m w_{2}=2 w_{4}$ for some $m>1$, or (ii) $n_{1} w_{2}+w_{i}=2 w_{4}$ and $n_{2} w_{2}+w_{j}=2 w_{4}$ for some $i \neq j$ and some $n_{1}, n_{2}>0$. (i) $m w_{2}=2 w_{4}<w_{0}+w_{1}+w_{2} \leq 3 w_{2}$ so $m=2$. But then $2 w_{2}=d_{1}=2 w_{3}>2 w_{2}$ which is a contradiction. This leaves: (ii) $n_{1} w_{2}+w_{i}=2 w_{4}<w_{0}+w_{1}+w_{2} \leq w_{0}+2 w_{2} \leq w_{1}+2 w_{2}<$ $2 w_{2}+w_{3}=2 w_{2}+w_{4}$. Thus at most, $n_{1}=1$. Then $w_{2}+w_{i}=d_{1}=2 w_{4}>w_{2}+w_{4} \geq w_{2}+w_{j}$ for any $j=0,1,3,4$, which is a contradiction. Therefore, there are no instances.

14.	d_{1}	d_{2}	constraint
	$w_{0}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	$w_{3}=w_{4}$
	$w_{0}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{3}=w_{4}$
	$w_{0}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	$w_{3}=w_{4}$
	$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}$

Given the constraint, these are identical. If $w_{0}=w_{1}=w_{2}=w_{3}$ this reduces to case 1. If $w_{0}<w_{1}=w_{2}=w_{3}$ this reduces to case 3. If $w_{0}=w_{1}<w_{2}=w_{3}$ this reduces to case 4. If $w_{0}<w_{1}<w_{2}=w_{3}$ this reduces to case 8 . So, assume $w_{2}<w_{3}$. If $w_{0}=w_{1}=w_{2}$ this reduces to case 6. If $w_{0}=w_{1}<w_{2}$ this reduces to case 11. So, assume $w_{0}<w_{1}$ and split up as follows:

case	d_{1}	d_{2}	constraints
14 a	$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}=w_{4}$
14 b	$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}=w_{4}$

15.

d_{1}	d_{2}	constraint
$w_{1}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{1}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	$w_{3}=w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{1}+w_{3}=w_{1}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}$

Given the constraint, these are identical. If $w_{0}=w_{1}=w_{2}=w_{3}$ this reduces to case 1. If $w_{0}<w_{1}=w_{2}=w_{3}$ this reduces to case 2. If $w_{0}=w_{1}<w_{2}=w_{3}$ this reduces to case 4 . If $w_{0}<w_{1}<w_{2}=w_{3}$ this reduces to case 9 . So, assume $w_{2}<w_{3}$. If $w_{0}=w_{1}=w_{2}$ this reduces to case 6. If $w_{0}<w_{1}=w_{2}$ this reduces to case 10. If $w_{0}=w_{1}<w_{2}$ this reduces to case 11. So we can assume $w_{0}<w_{1}<w_{2}<w_{3}$.

d_{1}	d_{2}	constraint
$w_{2}+w_{4}$	$2 w_{3}=w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{2}+w_{3}$	$w_{3}+w_{4}=2 w_{4}$	$w_{3}=w_{4}$
$w_{2}+w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{3}=w_{4}$
$w_{2}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{3}=w_{4}$

Given the constraint, these are identical. If $w_{0}=w_{1}=w_{2}=w_{3}$ this reduces to case 1. If $w_{0}<w_{1}=w_{2}=w_{3}$ this reduces to case 2. If $w_{0}=w_{1}<w_{2}=w_{3}$ this reduces to case 7 a . If $w_{0}<w_{1}<w_{2}=w_{3}$ this reduces to case 7 b . So, assume $w_{2}<w_{3}$. If $w_{0}=w_{1}=w_{2}$ this reduces to case 6. If $w_{0}<w_{1}=w_{2}$ this reduces to case 10. So assume $w_{1}<w_{2}$ and split up as follows:

case	d_{1}	d_{2}	constraints
16 a	$w_{2}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}=w_{4}$
16 b	$w_{2}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}=w_{4}$

D.2.3 Cases with $w_{2}=w_{3}<w_{4}$

17.

d_{1}	d_{2}	constraint
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}$

Assume $w_{3}<w_{4}$ else $w_{0}=w_{1}$ and this reduces to case 4. Assume $w_{0}<w_{1}$ else $w_{3}=w_{4}$ and this reduces to case 4 . Assume $w_{1}<w_{2}$ else this reduces to case 12 .

18. | d_{1} | d_{2} | constraint |
| :---: | :---: | :---: |
| $w_{2}+w_{3}=w_{0}+w_{4}$ | $w_{3}+w_{4}=w_{2}+w_{4}$ | $w_{2}=w_{3}$ |

Assume $w_{3}<w_{4}$ else $w_{0}=w_{1}=w_{2}$ and this reduces to case 1. Assume $w_{1}<w_{2}$ else this reduces to case 12 . Split up as follows:

case	d_{1}	d_{2}	constraints
18 a	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}<w_{4}$
18 b	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}$

19.

d_{1}	d_{2}	constraint
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}=w_{2}+w_{4}$	$w_{2}=w_{3}$

Assume $w_{3}<w_{4}$ else $w_{1}=w_{2}$ and this reduces to case 2. Assume $w_{1}<w_{2}$ else $w_{3}=w_{4}$ and this reduces to case 2. Assume $w_{0}<w_{1}$ else this reduces to case 18a.

D.2.4 Cases with $d_{1}=2 w_{3}<2 w_{4}=d_{2}$

20.

d_{1}	d_{2}
$2 w_{3}$	$2 w_{4}$

We can assume $w_{3}<w_{4}$ else this reduces to Case 13. Split up as follows:

case	d_{1}	d_{2}	constraint
20 a	$2 w_{3}$	$2 w_{4}$	$w_{0}=w_{1}=w_{2}=w_{3}<w_{4}, d_{1}<d_{2}$
20 b	$2 w_{3}$	$2 w_{4}$	$w_{0}<w_{1}=w_{2}=w_{3}<w_{4}, d_{1}<d_{2}$
20 c	$2 w_{3}$	$2 w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}$
20 d	$2 w_{3}$	$2 w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}$
20 e	$2 w_{3}$	$2 w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$
20 f	$2 w_{3}$	$2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$
20 g	$2 w_{3}$	$2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$
20 h	$2 w_{3}$	$2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$

D.2.5 Cases with $d_{1}=2 w_{3}=w_{i}+w_{4}$
21.

d_{1}	d_{2}
$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$

Assume $w_{3}<w_{4}$ else this reduces to case 1. Assume $w_{0}<w_{3}$ else this reduces to case 1. If $w_{1}=w_{2}=w_{3}$ then this reduces to case 12. Split up as follows:

case	d_{1}	d_{2}	constraint
21 a	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}<w_{4}$
21 b	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}$
21 c	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}<w_{4}$
21 d	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$
21 e	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$
21 f	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

22.

d_{1}	d_{2}
$2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}$

Assume $w_{3}<w_{4}$ else this reduces to case 1. Assume $w_{2}<w_{3}$ else this reduces to case 18. Assume $w_{1}<w_{2}$ else this reduces to case 21. Split up as follows:

case	d_{1}	d_{2}	constraint
22 a	$2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$
22 b	$2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

23.

d_{1}	d_{2}
$2 w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$

Assume $w_{3}<w_{4}$ else this reduces to case 1. Assume $w_{2}<w_{3}$ else this reduces to case 18. Split up as follows:

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraint
23 a	$2 w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}<w_{4}$
23 b	$2 w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$
23 c	$2 w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$
23 d	$2 w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

24.

d_{1}	d_{2}
$2 w_{3}=w_{1}+w_{4}$	$w_{2}+w_{4}$

Assume $w_{3}<w_{4}$ else this reduces to case 2. Assume $w_{2}<w_{3}$ else this reduces to case 19. If $w_{0}=w_{1}=w_{2}$ this reduces to case 21c. If $w_{0}=w_{1}<w_{2}$ this reduces to case 22a. Assume $w_{0}<w_{1}$ and split up as follows:

case	d_{1}	d_{2}	constraint
24 a	$2 w_{3}=w_{1}+w_{4}$	$w_{2}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$
24 b	$2 w_{3}=w_{1}+w_{4}$	$w_{2}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

25.

d_{1}	d_{2}
$2 w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$

Assume $w_{3}<w_{4}$ else this reduces to case 2. Assume $w_{2}<w_{3}$ else this reduces to case 19. If $w_{0}=w_{1}=w_{2}$ this reduces to case 23a. If $w_{0}=w_{1}<w_{2}$ this reduces to case 23c. Assume $w_{0}<w_{1}$ and split up as follows:

case	d_{1}	d_{2}	constraint
25 a	$2 w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$
25 b	$2 w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

26.

d_{1}	d_{2}
$2 w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$

Assume $w_{3}<w_{4}$ else this reduces to case 7. Assume $w_{2}<w_{3}$ else this reduces to case 7. If $w_{0}=w_{1}=w_{2}$ this reduces to case 23a. If $w_{0}<w_{1}=w_{2}$ this reduces to case

Appendix D. Cases broken down by highest two weights

25a. Assume $w_{1}<w_{2}$ and split up as follows:

case	d_{1}	d_{2}	constraint
26 a	$2 w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$
26 b	$2 w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

D.2.6 Cases with $d_{2}=2 w_{3}=w_{i}+w_{4}$

27.

d_{1}	d_{2}
$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$

Assume $w_{3}<w_{4}$ else $w_{1}=w_{3}$ and this reduces to case 3. Assume $w_{1}<w_{3}$ else $w_{3}=w_{4}$ and this reduces to case 3 . Assume $w_{0}<w_{1}$ else $d_{1}=d_{2}$ and this reduces to case 21. Split up as follows:

case	d_{1}	d_{2}	constraint
27 a	$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$
27 b	$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}$
27 c	$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$

28.

d_{1}	d_{2}
$w_{0}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$

Assume $w_{3}<w_{4}$ else $w_{2}=w_{3}$ and this reduces to case 8. Assume $w_{2}<w_{3}$ else $w_{3}=w_{4}$ and this reduces to case 8. Assume $w_{1}<w_{2}$ else this reduces to case 27a. Split up as follows:

case	d_{1}	d_{2}	constraint
28 a	$w_{0}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$
28 b	$w_{0}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$

29.

d_{1}	d_{2}
$w_{1}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$

Assume $w_{3}<w_{4}$ else $w_{2}=w_{3}$ and this reduces to case 9. Assume $w_{2}<w_{3}$ else $w_{3}=w_{4}$ and this reduces to case 9 . Assume $w_{1}<w_{2}$ else $d_{1}=d_{2}$ and this reduces to case 24a. Assume $w_{0}<w_{1}$ else this reduces to case 28a.

D.2.7 A case involving all five weights

30.

d_{1}	d_{2}
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{3}=w_{1}+w_{4}$

Assume $w_{3}<w_{4}$ else $w_{0}=w_{1}=w_{2}$ and this reduces to case 5. Assume $w_{0}<w_{1}$ else $w_{3}=w_{4}$ and this reduces to case 5. Assume $w_{1}<w_{2}$ else $w_{3}=w_{4}$ and this reduces to case 5. Assume $w_{2}<w_{3}$ else this reduces to case 27b.
D.2.8 $d_{1}=w_{j}+w_{3}=w_{i}+w_{4}, w_{2}<w_{3}$
31.

d_{1}	d_{2}
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$

Assume $w_{3}<w_{4}$ else $w_{0}=w_{1}$ and this reduces to case 11. Assume $w_{2}<w_{3}$ else this reduces to case 17. Assume $w_{0}<w_{1}$ else $w_{3}=w_{4}$ and this reduces to case 11 . Split up as follows:

case	d_{1}	d_{2}	
31 a	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$
31 b	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

32.

d_{1}	d_{2}
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$

Assume $w_{3}<w_{4}$ else $w_{0}=w_{1}=w_{2}$ and this reduces to case 6. Assume $w_{2}<w_{3}$ else this reduces to case 18. Assume $w_{1}<w_{2}$ else this reduces to case 31a. Split up as follows:

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	
32 a	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$
32 b	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$

33.

d_{1}	d_{2}
$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$

Assume $w_{3}<w_{4}$ else $w_{1}=w_{2}$ and this reduces to case 10. Assume $w_{2}<w_{3}$ else this reduces to Case 19. Assume $w_{1}<w_{2}$ else $w_{3}=w_{4}$ and this reduces to case 10 . Assume $w_{0}<w_{1}$ else this reduces to case 32a.
D.2.9 $d_{2}=2 w_{3}+w_{i}$
34.

d_{1}	d_{2}	constraints
$2 w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even

This is a special case of case 20.
35.

d_{1}	d_{2}	
$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even

Assume $w_{0}<w_{3}$ else this is a special case of 20 .

case	d_{1}	d_{2}	
35 a	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
35 b	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
35 c	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
35 d	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
35 e	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
35 f	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
35 g	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even

Appendix D. Cases broken down by highest two weights
36.

d_{1}	d_{2}	
$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even

Assume $w_{1}<w_{3}$ else this reduces to a special case of 20. Assume $w_{0}<w_{1}$ else this reduces to 35 .

case	d_{1}	d_{2}	
36 a	$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
36 b	$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
$36 \mathbf{c}$	$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even

37.

d_{1}	d_{2}	
$w_{2}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even

Assume $w_{2}<w_{3}$ else this reduces to a special case of 20. Assume $w_{1}<w_{2}$ else this reduces to 36. Split up as follows:

case	d_{1}	d_{2}	
37 a	$w_{2}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even
37 b	$w_{2}+w_{3}$	$3 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{3}$ even

38.

d_{1}	d_{2}	
$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even

Assume $w_{1}<w_{3}$ else this is a special case of case 35. Split up as follows:

case	d_{1}	d_{2}	
38 a	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even
38 b	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even
38 c	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even
38 d	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even
38 e	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even
38 f	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even

Appendix D. Cases broken down by highest two weights
39.

d_{1}	d_{2}	
$w_{0}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even

Assume $w_{2}<w_{3}$ else this is a special case of case 35. Assume $w_{1}<w_{2}$ else this is reduces to case 38 c or 38 d . Split up as follows:

case	d_{1}	d_{2}	
39 a	$w_{0}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even
39 b	$w_{0}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even

40.

d_{1}	d_{2}	
$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even

Assume $w_{0}<w_{3}$ else this is a special case of case 36. Assume $w_{0}<w_{1}$ else this reduces to case 38 .

case	d_{1}	d_{2}	
40 a	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even
40 b	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even
40 c	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even
40 d	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even

41.

d_{1}	d_{2}	
$2 w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	$w_{0}<w_{1}=w_{2}=w_{3}<w_{4}$
$w_{1}+w_{3}$	$w_{1}+w_{4}$	$d_{1}<d_{2}$

This is a special case of 12 .
42.

d_{1}	d_{2}	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	$w_{0}<w_{1}=w_{2}, w_{3}<w_{4}$
$w_{1}+w_{3}$	$w_{1}+w_{4}$	$d_{1}<d_{2}$

Assume $w_{2}<w_{3}$ else this reduces to 41 .

Appendix D. Cases broken down by highest two weights
43.

d_{1}	d_{2}	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{0}<w_{1}$

Assume $w_{1}<w_{2}$ else this reduces to case 41 or 42 . Split up as follows:

case	d_{1}	d_{2}	
43 a	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}, d_{1}<d_{2}$
43 b	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}$

44.

d_{1}	d_{2}	
$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{0}<w_{1}$

This is a special case of 31 .
45.

d_{1}	d_{2}	
$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even

Assume $w_{2}<w_{3}$ else this is a special case of case 36. Split up as follows:

case	d_{1}	d_{2}	
45 a	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even
45 b	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even
45 c	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even
45 d	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{2}$ even

46. | d_{1} | d_{2} | |
| :---: | :---: | :---: |
| $w_{2}+w_{3}$ | $w_{0}+2 w_{3}=2 w_{4}$ | $w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even |

Assume $w_{0}<w_{2}$ else this is reduces to case 45. Assume $w_{2}<w_{3}$ else this is a special case of 20 . Split up as follows:

case	d_{1}	d_{2}	
46 a	$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even
46 b	$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even
$46 \mathbf{c}$	$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}, d_{1}<d_{2}, w_{0}$ even

Appendix D. Cases broken down by highest two weights
47.

d_{1}	d_{2}	
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{0}<w_{1}$

Assume $w_{1}<w_{2}$ else this is a special case of 42. Assume $w_{2}<w_{3}$ else this is a special case of 21 .
48.

d_{1}	d_{2}	constraints
$2 w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	$w_{0}<w_{1}, w_{2}=w_{3}<w_{4}$
$w_{2}+w_{3}$	$w_{2}+w_{4}$	$d_{1}<d_{2}$

Assume $w_{1}<w_{2}$ else this is a special case of case 47. This is a special case of 18 .
49.

d_{1}	d_{2}	constraints
$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{3}+w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{0}<w_{2}$

This is a special case of 32 .
50.

d_{1}	d_{2}	constraints
$w_{2}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$w_{3}<w_{4}, d_{1}<d_{2}, w_{1}$ even

Assume $w_{1}<w_{2}$ else this reduces to case 45. Assume $w_{2}<w_{3}$ else this is a special case of 20 . Assume $w_{0}<w_{1}$ else this is a special case of case 49 .

Positivity requires $w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}=w_{2}+w_{3}+2 w_{4}$ so $w_{0}+w_{1}>$ $w_{4}=w_{3}+w_{1} / 2>w_{2}+w_{1} / 2>3 w_{1} / 2$, thus $w_{1}<2 w_{0}$ and $w_{2}<w_{3}<w_{0}+w_{1} / 2$.

Consider the Corollary applied to $\{1\}$. At least one of the following must hold: (i) $w_{1} \mid d_{1}$, (ii) $w_{1} \mid d_{2}$, (iii) $w_{1} \mid\left(d_{1}-w_{0}\right)$, (iv) $w_{1} \mid\left(d_{1}-w_{2}\right)$, (v) $w_{1} \mid\left(d_{1}-w_{3}\right)$, or (vi) $w_{1} \mid\left(d_{1}-w_{4}\right)$,
(i) $d_{1}=k w_{1}$. But $2 w_{1}<2 w_{2}<2 w_{0}+w_{1}<3 w_{1}$ so no such k exists.
(ii) $d_{2}=k w_{1}$. But $3 w_{1}<2 w_{3}+w_{1}<2 w_{0}+2 w_{1}<4 w_{1}$ so no such k exists.
(iii) $d_{1}=k w_{1}+w_{0} . k w_{1}=d_{1}-w_{0}=w_{2}+w_{3}-w_{0}<2 w_{0}+w_{1}-w_{0}=w_{0}+w_{1}<2 w_{1}$ so $k=1$ and $d_{1}=w_{0}+w_{1}<w_{2}+w_{3}$ which is a contradiction.

Appendix D. Cases broken down by highest two weights
(iv) $d_{1}=k w_{1}+w_{2} . k w_{1}=d_{1}-w_{2}=w_{3}$, so $w_{1}<w_{3}<w_{0}+w_{1} / 2<2 w_{1}$ so no such k exists.
(v) $d_{1}=k w_{1}+w_{3} . k w_{1}=d_{1}-w_{3}=w_{2}$, so $w_{1}<w_{2}<w_{0}+w_{1} / 2<2 w_{1}$ so no such k exists.
(vi) $d_{1}=k w_{1}+w_{4} . k w_{1}=d_{1}-w_{4}=w_{2}+w_{3}-w_{4}=w_{2}+w_{3}-\left(w_{3}+w_{1} / 2\right)=w_{2}-w_{1} / 2$. $k w_{0}+w_{1} / 2<k w_{1}+w_{1} / 2=w_{2}<w_{0}+w_{1} / 2$ so $k<1$ which is impossible. Therefore, there are no instances.

Appendix D. Cases broken down by highest two weights

D. 3 Summary

case	d_{1}	d_{2}	constraints
1	$2 w_{0}=2 w_{4}$	$2 w_{0}=2 w_{4}$	$w_{0}=w_{1}=w_{2}=w_{3}=w_{4}$ $d_{1}=d_{2}$
2	$2 w_{1}=2 w_{4}$	$2 w_{1}=2 w_{4}$	$w_{0}<w_{1}=w_{2}=w_{3}=w_{4}$ $d_{1}=d_{2}$
4	$w_{0}+w_{2}=w_{1}+w_{4}$	$2 w_{2}=2 w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}=w_{4}$ $d_{1}<d_{2}$
5	$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{0}+w_{3}=w_{2}+w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}=w_{4}$ $d_{1}=d_{2}$
6	$w_{0}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}=w_{4}$ $d_{1}<d_{2}$
7 a	$2 w_{2}=2 w_{4}$	$2 w_{2}=2 w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}=w_{4}$ $d_{1}=d_{2}$
7 b	$2 w_{2}=2 w_{4}$	$2 w_{2}=2 w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}=w_{4}$ $d_{1}=d_{2}$
10	$w_{1}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}=w_{4}$ $d_{1}<d_{2}$
14 a	$w_{0}+w_{3}=w_{0}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}=w_{4}$ $d_{1}<d_{2}$
11	$w_{0}+w_{3}=w_{1}+w_{4}$	$2 w_{3}=2 w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}=w_{4}$
$d_{1}<d_{2}$			

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraints
16a	$w_{2}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}=w_{4} \\ d_{1}<d_{2} \end{gathered}$
16b	$w_{2}+w_{3}=w_{2}+w_{4}$	$2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}=w_{4} \\ d_{1}<d_{2} \end{gathered}$
17	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}=w_{3}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
18a	$2 w_{2}=2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}=w_{3}+w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
18b	$2 w_{2}=2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}=w_{3}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
19	$2 w_{2}=2 w_{3}=w_{1}+w_{4}$	$w_{2}+w_{4}=w_{3}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20a	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20b	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20c	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20d	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20 e	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20f	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20 g	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
20h	$2 w_{3}$	$2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraints
21 a	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}=w_{1}<w_{2}=w_{3}<w_{4}$ $d_{1}=d_{2}$
21 b	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}$ $d_{1}<d_{2}$
21 c	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}=w_{1}=w_{2}<w_{3}<w_{4}$ $d_{1}=d_{2}$
21 d	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
21 e	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$ $d_{1}=d_{2}$
21 f	$2 w_{3}=w_{0}+w_{4}$	$w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
22 a	$2 w_{3}=w_{0}+w_{4}$	$w_{2}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$
$d_{1}<d_{2}$			

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraints
25 a	$2 w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
25 b	$2 w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
26 a	$2 w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
26 b	$2 w_{3}=w_{2}+w_{4}$	$w_{3}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
27 a	$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	$w_{0}<w_{1}=w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
27 b	$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}=w_{3}<w_{4}$ $d_{1}<d_{2}$
27 c	$w_{0}+w_{4}$	$2 w_{3}=w_{1}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
28 a	$w_{0}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	$w_{0}=w_{1}<w_{2}<w_{3}<w_{4}$ $d_{1}<d_{2}$
28 b	$w_{0}+w_{4}$	$2 w_{3}=w_{2}+w_{4}$	$w_{0}<w_{1}<w_{2}<w_{3}<w_{4}$
$d_{1}<d_{2}$			

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraints
32a	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
32b	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{3}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
33	$w_{2}+w_{3}=w_{1}+w_{4}$	$w_{3}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
35a	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
35b	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
35 c	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
35d	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
35 e	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
35 f	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
35 g	$w_{0}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
36a	$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
36b	$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
36c	$w_{1}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraints
37a	$w_{2}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
37 b	$w_{2}+w_{3}$	$3 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{3} \text { even } \end{gathered}$
38a	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{1} \text { even } \end{gathered}$
38b	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{1} \text { even } \end{gathered}$
38c	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{1} \text { even } \end{gathered}$
38d	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{1} \text { even } \end{gathered}$
38 e	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{1} \text { even } \end{gathered}$
38 f	$w_{0}+w_{3}$	$w_{1}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{1} \text { even } \end{gathered}$
39a	$w_{0}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{2} \text { even } \end{gathered}$
39b	$w_{0}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{2} \text { even } \end{gathered}$
40a	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{0} \text { even } \end{gathered}$
40b	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2}, w_{0} \text { even } \end{gathered}$
40c	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{0} \text { even } \end{gathered}$
40d	$w_{1}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{0} \text { even } \end{gathered}$

Appendix D. Cases broken down by highest two weights

case	d_{1}	d_{2}	constraints
41	$\begin{gathered} 2 w_{3}=w_{0}+w_{4} \\ w_{1}+w_{3} \end{gathered}$	$\begin{gathered} w_{0}+2 w_{3}=w_{3}+w_{4} \\ w_{1}+w_{4} \end{gathered}$	$\begin{gathered} w_{0}<w_{1}=w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
42	$\begin{gathered} w_{2}+w_{3}=w_{0}+w_{4} \\ w_{1}+w_{3} \end{gathered}$	$\begin{gathered} w_{0}+2 w_{3}=w_{2}+w_{4} \\ w_{1}+w_{4} \end{gathered}$	$\begin{gathered} w_{0}<w_{1}=w_{2}, w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
43a	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}=w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
43b	$w_{1}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{2}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$
45a	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{2} \text { even } \end{gathered}$
45b	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{2} \text { even } \end{gathered}$
45c	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{2} \text { even } \end{gathered}$
45d	$w_{1}+w_{3}$	$w_{2}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{2} \text { even } \end{gathered}$
46a	$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}=w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{0} \text { even } \end{gathered}$
46b	$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}=w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{0} \text { even } \end{gathered}$
46c	$w_{2}+w_{3}$	$w_{0}+2 w_{3}=2 w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2}, w_{0} \text { even } \end{gathered}$
47	$w_{2}+w_{3}=w_{0}+w_{4}$	$w_{0}+2 w_{3}=w_{1}+w_{4}$	$\begin{gathered} w_{0}<w_{1}<w_{2}<w_{3}<w_{4} \\ d_{1}<d_{2} \end{gathered}$

D. 4 Details of cases

1. Given that $\operatorname{gcd}\left(w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\right)=1$, these reduce to the single instance $\mathbf{w}=$ $(1,1,1,1,1)$. By positivity, the only choice for degree is $d_{1}=d_{2}=2$. Thus, the only instance is

$$
\mathbf{w}=(1,1,1,1,1), \mathbf{d}=(2,2) .
$$

2. We must have $\operatorname{gcd}\left(w_{0}, w_{1}\right)=1$. Thus this form is $\mathbf{w}=(r, s, s, s, s), \mathbf{d}=(2 s, 2 s)$, with $\operatorname{gcd}(r, s)=1$ and $r<s$. The Corollary for $\{0\}$ requires either $r \mid 2 s$, or $r \mid(2 s-s)$. Thus $r=1,2$. Possibilities are:

$$
\begin{aligned}
& \mathbf{w}=(1, s, s, s, s), \mathbf{d}=(2 s, 2 s), 2 \leq s \text { and } \\
& \mathbf{w}=(2,2 t+1,2 t+1,2 t+1,2 t+1), \mathbf{d}=(4 t+2,4 t+2), 1 \leq t
\end{aligned}
$$

For $s=1$, the first is case 1 .
4. We must have $\operatorname{gcd}\left(w_{0}, w_{2}\right)=1$. Thus this form is $\mathbf{w}=(r, r, s, s, s), \mathbf{d}=(r+s, 2 s)$, with $\operatorname{gcd}(r, s)=1$ and $r<s$. The Corollary for $\{0\}$ requires either $r \mid 2 s$, or $r \mid(r+s)$, or $r \mid(2 s-s)$ and $r \mid(r+s-s)$, or $r \mid(2 s-r)$ and $r \mid(r+s-s)$, or $r \mid(2 s-s)$ and $r \mid(r+s-r)$. In any case, $r \mid 2 s$, so $r=1,2$. This leaves
$\mathbf{w}=(1,1, s, s, s), \mathbf{d}=(1+s, 2 s) 2 \leq s$ and
$\mathbf{w}=(2,2,2 t+1,2 t+1,2 t+1), \mathbf{d}=(2 t+3,4 t+2), 1 \leq t$.
For $t=1$ this is the same as 17 b for $t=1$.
For $s=1$, the first is case 1 .
5. We must have $\operatorname{gcd}\left(w_{0}, w_{3}\right)=1$. Thus this form is $\mathbf{w}=(r, r, r, s, s), \mathbf{d}=$ $(r+s, r+s)$, with $\operatorname{gcd}(r, s)=1$ and $r<s$. Consider the Corollary for $\{0,1\}$. If (a), (b), or (c) hold, then $r|(r+s) \Rightarrow r| s \Rightarrow r=1$. If (d) holds, then $r \mid(r+s-s)$ and $r \mid(r+s-r)$. The latter implies $r \mid s$, so again $r=1$. Thus the only case is
$\mathbf{w}=(1,1,1, s, s), \mathbf{d}=(s+1, s+1), 2 \leq s$.
For $s=1$, this is case 1 .
6. We must have $\operatorname{gcd}\left(w_{0}, w_{3}\right)=1$. Thus this form is $\mathbf{w}=(r, r, r, s, s), \mathbf{d}=(r+s, 2 s)$, with $\operatorname{gcd}(r, s)=1$ and $r<s$. Consider the Corollary for $\{0\}$. Then either $r \mid(r+s)$, or $r \mid 2 s$, or $r \mid(r+s-s)$ and $r \mid(2 s-s)$, or $r \mid(r+s-s)$ and $r \mid(2 s-r)$, or $r \mid(r+s-r)$ and $r \mid(2 s-s)$, or $r \mid(r+s-r)$ and $r \mid(2 s-r)$. In any case, $r \mid s$ or $r \mid 2 s$, so $r=1,2$. If $r=1$, then for positivity, we need $3+2 s>3 s+1$, so $1<s<2$, which is a contradiction. If $r=2$, then for positivity, we need $6+2 s>3 s+2$, so $2<s<4$. The only instance is:

$$
\mathbf{w}=(2,2,2,3,3), \mathbf{d}=(5,6) .
$$

7 a.

We must have $\operatorname{gcd}\left(w_{0}, w_{2}\right)=1$. Thus this form is $\mathbf{w}=(r, r, s, s, s), \mathbf{d}=(2 s, 2 s)$, with $\operatorname{gcd}(r, s)=1$ and $r<s$. Positivity implies $2 r+3 s>4 s \Rightarrow 2 r>s$. The Corollary for $\{0\}$ implies $r \mid 2 s$, or $r \mid(2 s-s)=s$, or $r \mid(2 s-r)$ and $r \mid(2 s-s)=s$. In any case, $r \mid 2 s$, so $r=1,2 . r=1 \Rightarrow 2>s>1$ which is a contradiction. $r=2 \Rightarrow 4>s>2 \Rightarrow s=3$. The only case is:

$$
(\mathbf{w}=(2,2,3,3,3), \mathbf{d}=(6,6)) .
$$

7b. Computer search located the following:

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((3,4,6,6,6),(12,12)) \\
& (\mathbf{w}, \mathbf{d})=((6,10,15,15,15),(30,30))
\end{aligned}
$$

10. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,4,4,6,6),(10,12))$
$(\mathbf{w}, \mathbf{d})=((5,6,6,9,9),(15,18))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((5,8,8,12,12),(20,24)) \\
& (\mathbf{w}, \mathbf{d})=((6,10,10,15,15),(25,30))
\end{aligned}
$$

11. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((2,2,3,4,4),(6,8))$
$(\mathbf{w}, \mathbf{d})=((3,3,4,6,6),(9,12))$
$(\mathbf{w}, \mathbf{d})=((4,4,5,6,6),(10,12))$
$(\mathbf{w}, \mathbf{d})=((4,4,7,10,10),(14,20))$
$(\mathbf{w}, \mathbf{d})=((6,6,10,15,15),(21,30))$
12. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,2,2,2,3),(4,5))$
14a. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,2,2,3,3),(4,6))$
$(\mathbf{w}, \mathbf{d})=((1,3,3,5,5),(6,10))$
$(\mathbf{w}, \mathbf{d})=((2,3,3,4,4),(6,8))$
14b.
$(\mathbf{w}, \mathbf{d})=((2,3,3 t+2,3 t+3,3 t+3),(3 t+5,6 t+6)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((2,3,3 t+3,3 t+4,3 t+4),(3 t+6,6 t+8)), 0 \leq t$
or $(\mathbf{w}, \mathbf{d})=((2,3, t+1, t+2, t+2),(t+4,2 t+4)), 1 \leq t, t \neq 0 \bmod (3)$
$(\mathbf{w}, \mathbf{d})=((4,6,6 t+1,6 t+3,6 t+3),(6 t+7,12 t+6)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((4,6,6 t+3,6 t+5,6 t+5),(6 t+9,12 t+10)), 0 \leq t$

Appendix D. Cases broken down by highest two weights
or $(\mathbf{w}, \mathbf{d})=((4,6,2 t+1,2 t+3,2 t+3),(2 t+7,4 t+6)), 1 \leq t, t \neq 2 \bmod (3)$
Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,3,4,6,6),(7,12))$
$(\mathbf{w}, \mathbf{d})=((1,4,5,8,8),(9,16))$
$(\mathbf{w}, \mathbf{d})=((1,6,10,15,15),(16,30))$
$(\mathbf{w}, \mathbf{d})=((1,7,12,18,18),(19,36))$
$(\mathbf{w}, \mathbf{d})=((1,8,13,20,20),(21,40))$
$(\mathbf{w}, \mathbf{d})=((1,9,15,23,23),(24,46))$
$(\mathbf{w}, \mathbf{d})=((2,7,10,15,15),(17,30))$
$(\mathbf{w}, \mathbf{d})=((2,9,12,19,19),(21,38))$
$(\mathbf{w}, \mathbf{d})=((3,4,6,9,9),(12,18))$
$(\mathbf{w}, \mathbf{d})=((3,7,8,12,12),(15,24))$
$(\mathbf{w}, \mathbf{d})=((4,6,9,14,14),(18,28))$
$(\mathbf{w}, \mathbf{d})=((5,6,9,13,13),(18,26))$
15.
$(\mathbf{w}, \mathbf{d})=((4,4 t+1,4 t+2,4 t+3,4 t+3),(8 t+4,8 t+6)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((4,4 t+4,4 t+5,4 t+6,4 t+6),(8 t+10,8 t+12)), 1 \leq t$
or $(\mathbf{w}, \mathbf{d})=((4, t+1, t+2, t+3, t+3),(2 t+4,2 t+6)), 1 \leq t, t=0,3 \bmod (4)$
Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((2,3,4,5,5),(8,10))$

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((2,4,5,6,6),(10,12)) \\
& (\mathbf{w}, \mathbf{d})=((3,4,6,8,8),(12,16)) \\
& (\mathbf{w}, \mathbf{d})=((4,8,11,14,14),(22,28)) \\
& (\mathbf{w}, \mathbf{d})=((4,12,15,18,18),(30,36)) \\
& (\mathbf{w}, \mathbf{d})=((6,10,15,20,20),(30,40))
\end{aligned}
$$

16a. There are no instances. We have $w_{0}=w_{1}<w_{2}<w_{3}=w_{4}, d_{1}=w_{2}+w_{4}$, $d_{2}=2 w_{3}=2 w_{4}$.

$$
w_{0}+w_{1}+w_{2}+w_{3}+w_{4}>d_{1}+d_{2}=w_{2}+2 w_{3}+w_{4} \Rightarrow w_{0}+w_{1}>w_{3}
$$

Consider the corollary for $\{0,1,2\}$. We must have at least one of (i) $m_{1} w_{0}+n_{1} w_{1}+$ $p_{1} w_{2}=w_{2}+w_{4}$ for some $m_{1}+n_{1}+p_{1} \geq 2$, or (ii) $m_{2} w_{0}+n_{2} w_{1}+p_{2} w_{2}=2 w_{3}$ for some $m_{2}+n_{2}+p_{2} \geq 2$. (i) $\left(m_{1}+n_{1}\right) w_{0}+\left(p_{1}-1\right) w_{2}=w_{4}=w_{3}<w_{0}+w_{1}=2 w_{0}<w_{0}+w_{2}$. This is only satisfied by $m_{1}+n_{1}=2$ and $p_{1}=0, m_{1}+n_{1}=1$ and $p_{1}=1$, or $m_{1}+n_{1}=0$ and $p_{1}=2$. At most, then $d_{1}=2 w_{2}<w_{2}+w_{4}=d_{1}$ which is a contradiction.
(ii) $\left(m_{2}+n_{2}\right) w_{0}+p_{2} w_{2}=2 w_{4}<2 w_{0}+2 w_{1}=4 w_{0}<4 w_{2}$. This is only satisfied if $m_{2}+n_{2}+p_{2}<4$. Since (i) does not hold, in addition we require $d_{1}=m_{3} w_{0}+n_{3} w_{1}+$ $p_{3} w_{2}+w_{4}$ with $m_{3}+n_{3}+p_{3} \geq 1$. Then $0=\left(m_{4}+n_{4}\right) w_{0}+\left(p_{4}-1\right) w_{2}$. This can only be true if $p_{4}=0$, in which case it would be $\left(m_{4}+n_{4}\right) w_{0}=w_{2}<w_{3}<w_{0}+w_{1}=2 w_{0}$, and so $m_{4}+n_{4}=1$. This would imply $w_{0}=w_{2}$ which is a contradiction.

16b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((4,6,7,9,9),(16,18))$
17. No instances were found by computer search.

18a. Computer search located the following:

$$
(\mathbf{w}, \mathbf{d})=((2,2,3,3,4),(6,7))
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((3,3,4,4,5),(8,9)) \\
& (\mathbf{w}, \mathbf{d})=((3,3,5,5,7),(10,12))
\end{aligned}
$$

18b.
$(\mathbf{w}, \mathbf{d})=((3, t+1, t+2, t+2,2 t+1),(2 t+4,3 t+3)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,6 t+1,6 t+3,6 t+3,12 t),(12 t+6,18 t+3)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,6 t+3,6 t+5,6 t+5,12 t+4),(12 t+10,18 t+9)), 1 \leq t$
or $(\mathbf{w}, \mathbf{d})=((6,2 t+1,2 t+3,2 t+3,4 t),(4 t+6,6 t+2)), 1 \leq t, t \neq 2 \bmod (3)$
Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,4,6,6,9),(12,15))$
$(\mathbf{w}, \mathbf{d})=((4,5,8,8,12),(16,20))$
$(\mathbf{w}, \mathbf{d})=((6,9,14,14,22),(28,36))$
$(\mathbf{w}, \mathbf{d})=((8,13,20,20,32),(40,52))$
$(\mathbf{w}, \mathbf{d})=((9,12,19,19,29),(38,48))$
$(\mathbf{w}, \mathbf{d})=((9,15,23,23,37),(46,60))$
$(\mathbf{w}, \mathbf{d})=((12,21,32,32,52),(64,84))$
19.
$(3,3 t, 3 t+1,3 t+1,3 t+2),(6 t+2,6 t+3), 1 \leq t$
$(6,6 t+3,6 t+5,6 t+5,6 t+7),(12 t+10,12 t+12), 0 \leq t$
Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((2,3,4,4,5),(8,9))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((3,6,8,8,10),(16,18)) \\
& (\mathbf{w}, \mathbf{d})=((7,8,12,12,16),(24,28)) \\
& (\mathbf{w}, \mathbf{d})=((7,10,15,15,20),(30,35)) \\
& (\mathbf{w}, \mathbf{d})=((7,12,18,18,24),(36,42)) \\
& (\mathbf{w}, \mathbf{d})=((9,12,16,16,20),(32,36)) \\
& (\mathbf{w}, \mathbf{d})=((9,12,19,19,26),(38,45)) \\
& (\mathbf{w}, \mathbf{d})=((9,15,20,20,25),(40,45)) \\
& (\mathbf{w}, \mathbf{d})=((9,15,23,23,31),(46,54)) \\
& (\mathbf{w}, \mathbf{d})=((9,21,28,28,35),(56,63)) \\
& (\mathbf{w}, \mathbf{d})=((9,24,32,32,40),(64,72)) \\
& (\mathbf{w}, \mathbf{d})=((12,15,25,25,35),(50,60))
\end{aligned}
$$

20a. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((2,2,2,2,3),(4,6))$
20b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((4,6,6,6,9),(12,18))$
20c. No instances were found by computer search.
20d. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((6,8,9,9,12),(18,24))$
20 efg . No instances were found by computer search.
20h. Computer search located the following:

Appendix D. Cases broken down by highest two weights
$(\mathbf{w}, \mathbf{d})=((12,14,15,18,21),(36,42))$
21a.
$(\mathbf{w}, \mathbf{d})=((1,1, t+1, t+1,2 t+1),(2 t+2,2 t+2)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((2,2,2 t+1,2 t+1,4 t),(4 t+2,4 t+2)), 1 \leq t$
Computer search located no sporadic cases.

21b.
$(\mathbf{w}, \mathbf{d})=((1,2, t+2, t+2,2 t+3),(2 t+4,2 t+5)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((2,4,2 t+3,2 t+3,4 t+4),(4 t+6,4 t+8)), 0 \leq t$
Computer search located no sporadic cases.

21c. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((2,2,2,3,4),(6,6))$
21d. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,4,4,6,9),(12,13))$
21e. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,3,4,6,9),(12,12))$
$(\mathbf{w}, \mathbf{d})=((6,6,10,15,24),(30,30))$
21f.Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,5,6,8,13),(16,18))$
$(\mathbf{w}, \mathbf{d})=((3,6,7,9,15),(18,21))$
$(\mathbf{w}, \mathbf{d})=((4,5,7,10,16),(20,21))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((4,6,8,11,18),(22,24)) \\
& (\mathbf{w}, \mathbf{d})=((4,10,12,15,26),(30,36)) \\
& (\mathbf{w}, \mathbf{d})=((5,6,8,12,19),(24,25)) \\
& (\mathbf{w}, \mathbf{d})=((5,7,10,14,23),(28,30)) \\
& (\mathbf{w}, \mathbf{d})=((5,8,9,12,19),(24,27)) \\
& (\mathbf{w}, \mathbf{d})=((5,14,17,21,37),(42,51)) \\
& (\mathbf{w}, \mathbf{d})=((6,14,18,23,40),(46,54)) \\
& (\mathbf{w}, \mathbf{d})=((6,18,22,27,48),(54,66)) \\
& (\mathbf{w}, \mathbf{d})=((8,10,16,23,38),(46,48)) \\
& (\mathbf{w}, \mathbf{d})=((8,14,16,21,34),(42,48)) \\
& (\mathbf{w}, \mathbf{d})=((8,26,32,39,70),(78,96)) \\
& (\mathbf{w}, \mathbf{d})=((9,11,12,17,25),(34,36)) \\
& (\mathbf{w}, \mathbf{d})=((9,12,17,24,39),(48,51)) \\
& (\mathbf{w}, \mathbf{d})=((9,15,22,30,51),(60,66)) \\
& (\mathbf{w}, \mathbf{d})=((9,19,24,31,53),(62,72)) \\
& (\mathbf{w}, \mathbf{d})=((9,23,30,38,67),(76,90)) \\
& (\mathbf{w}, \mathbf{d})=((10,11,15,22,34),(44,45)) \\
& (\mathbf{w}, \mathbf{d})=((10,17,25,34,58),(68,75)) \\
& (\mathbf{w}, \mathbf{d})=((11,13,14,20,29),(40,42)) \\
& (\mathbf{w}, \mathbf{d})=((11,17,20,27,43),(54,60))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((11,21,26,34,57),(68,78)) \\
& (\mathbf{w}, \mathbf{d})=((11,25,32,41,71),(82,96)) \\
& (\mathbf{w}, \mathbf{d})=((11,29,38,48,85),(96,114)) \\
& (\mathbf{w}, \mathbf{d})=((12,14,24,35,58),(70,72)) \\
& (\mathbf{w}, \mathbf{d})=((12,18,20,27,42),(54,60)) \\
& (\mathbf{w}, \mathbf{d})=((12,42,52,63,114),(126,156)) \\
& (\mathbf{w}, \mathbf{d})=((14,17,27,39,64),(78,81)) \\
& (\mathbf{w}, \mathbf{d})=((15,18,19,27,39),(54,57)) \\
& (\mathbf{w}, \mathbf{d})=((15,18,25,36,57),(72,75)) \\
& (\mathbf{w}, \mathbf{d})=((15,24,35,48,81),(96,105)) \\
& (\mathbf{w}, \mathbf{d})=((15,27,40,54,93),(108,120)) \\
& (\mathbf{w}, \mathbf{d})=((15,36,43,54,93),(108,129)) \\
& (\mathbf{w}, \mathbf{d})=((15,48,59,72,129),(144,177)) \\
& (\mathbf{w}, \mathbf{d})=((15,54,67,81,147),(162,201)) \\
& (\mathbf{w}, \mathbf{d})=((16,22,24,33,50),(66,72)) \\
& (\mathbf{w}, \mathbf{d})=((16,34,40,51,86),(102,120)) \\
& (\mathbf{w}, \mathbf{d})=((16,46,56,69,122),(138,168)) \\
& (\mathbf{w}, \mathbf{d})=((16,58,72,87,158),(174,216)) \\
& (\mathbf{w}, \mathbf{d})=((18,26,30,41,64),(82,90)) \\
& (\mathbf{w}, \mathbf{d})=((18,34,42,55,92),(110,126))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((18,50,66,83,148),(166,198)) \\
& (\mathbf{w}, \mathbf{d})=((21,24,41,60,99),(120,123)) \\
& (\mathbf{w}, \mathbf{d})=((24,26,40,59,94),(118,120)) \\
& (\mathbf{w}, \mathbf{d})=((24,30,32,45,66),(90,96)) \\
& (\mathbf{w}, \mathbf{d})=((24,34,56,79,134),(158,168)) \\
& (\mathbf{w}, \mathbf{d})=((24,54,64,81,138),(162,192)) \\
& (\mathbf{w}, \mathbf{d})=((24,66,80,99,174),(198,240)) \\
& (\mathbf{w}, \mathbf{d})=((24,90,112,135,246),(270,336)) \\
& 22 \mathrm{a} . \mathrm{Computer} \text { search located the following: } \\
& (\mathbf{w}, \mathbf{d})=((6,6,8,11,16),(22,24)) \\
& (\mathbf{w}, \mathbf{d})=((8,8,10,15,22),(30,32))
\end{aligned}
$$

22b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((4,6,7,9,14),(18,21))$
$(\mathbf{w}, \mathbf{d})=((6,10,12,15,24),(30,36))$
$(\mathbf{w}, \mathbf{d})=((24,30,38,53,82),(106,120))$
23abc. No instances were found by computer search.
23d. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((9,10,12,15,21),(30,36))$
$(\mathbf{w}, \mathbf{d})=((18,22,27,33,48),(66,81))$
$(\mathbf{w}, \mathbf{d})=((21,24,29,36,51),(72,87))$

Appendix D. Cases broken down by highest two weights

24a. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,4,4,6,8),(12,12))$
$(\mathbf{w}, \mathbf{d})=((6,10,10,15,20),(30,30))$
24b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((4,7,8,10,13),(20,21))$
$(\mathbf{w}, \mathbf{d})=((6,12,14,17,22),(34,36))$
$(\mathbf{w}, \mathbf{d})=((14,15,19,26,37),(52,56))$
$(\mathbf{w}, \mathbf{d})=((14,19,25,32,45),(64,70))$
$(\mathbf{w}, \mathbf{d})=((18,24,26,35,46),(70,72))$
$(\mathbf{w}, \mathbf{d})=((18,30,34,43,56),(86,90))$
$(\mathbf{w}, \mathbf{d})=((18,42,50,59,76),(118,126))$
$(\mathbf{w}, \mathbf{d})=((19,20,24,36,52),(72,76))$
25a. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((8,9,9,12,15),(24,27))$
25b. No instances were found by computer search.
26a. No instances were found by computer search.
26b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((6,8,9,11,13),(22,24))$
$(\mathbf{w}, \mathbf{d})=((9,13,15,18,21),(36,39))$
$(\mathbf{w}, \mathbf{d})=((18,20,21,27,33),(54,60))$

Appendix D. Cases broken down by highest two weights
$(\mathbf{w}, \mathbf{d})=((18,22,27,33,39),(66,72))$
27a.
$(\mathbf{w}, \mathbf{d})=((1,2 t+1,2 t+1,3 t+1,4 t+1),(4 t+2,6 t+2)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((2, t+1, t+1,2 t+1,3 t+1),(3 t+3,4 t+2)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((2,4 t+4,4 t+4,6 t+5,8 t+6),(8 t+8,12 t+10)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((3,6 t+5,6 t+5,9 t+6,12 t+7),(12 t+10,18 t+12)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((3,6 t+7,6 t+7,9 t+9,12 t+11),(12 t+14,18 t+18)), 0 \leq t$
or $(\mathbf{w}, \mathbf{d})=((3,2 t+5,2 t+5,3 t+6,4 t+7),(4 t+10,6 t+12)), 0 \leq t, t \neq 2 \bmod 3$
$(\mathbf{w}, \mathbf{d})=((4,2 t+3,2 t+3,4 t+4,6 t+5),(6 t+9,8 t+8)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((4,4 t+2,4 t+2,6 t+1,8 t),(8 t+4,12 t+2)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,6 t+2,6 t+2,12 t+1,18 t),(18 t+6,24 t+2)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,6 t+4,6 t+4,12 t+5,18 t+6),(18 t+12,24 t+10)), 0 \leq t$
or $(\mathbf{w}, \mathbf{d})=((6,2 t+2,2 t+2,4 t+1,6 t),(6 t+6,8 t+2)), 1 \leq t, t \neq 2 \bmod 3$
$(\mathbf{w}, \mathbf{d})=((6,12 t+4,12 t+4,18 t+3,24 t+2),(24 t+8,36 t+6)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,12 t+8,12 t+8,18 t+9,24 t+10),(24 t+16,36 t+18)), 0 \leq t$
or $(\mathbf{w}, \mathbf{d})=((6,4 t+4,4 t+4,6 t+3,8 t+2),(8 t+8,12 t+6)), 1 \leq t, t \neq 2 \bmod 3$
Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,2,2,3,4),(5,6))$
27b.
$(\mathbf{w}, \mathbf{d})=((1, t+1,2 t+1,2 t+1,3 t+1),(3 t+2,4 t+2)), 0 \leq t$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((2,2 t+3,4 t+4,4 t+4,6 t+5),(6 t+7,8 t+8)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((3,3 t+2,6 t+1,6 t+1,9 t),(9 t+3,12 t+2)), 1 \leq t \\
& (\mathbf{w}, \mathbf{d})=((3,3 t+4,6 t+5,6 t+5,9 t+6),(9 t+9,12 t+10)), 0 \leq t \\
& \text { or }(\mathbf{w}, \mathbf{d})=((3, t+2,2 t+1,2 t+1,3 t),(3 t+3,4 t+2)), 1 \leq t, t \neq 1 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((4,2 t+3,4 t+2,4 t+2,6 t+1),(6 t+5,8 t+4)), 1 \leq t
\end{aligned}
$$

Computer search located no sporadic cases.
27c.
$(\mathbf{w}, \mathbf{d})=((u, u+2 s, t(u+2 s), t(u+2 s)+s, 2 t(u+2 s)-u),(2 t(u+2 s), 2 t(u+2 s)+2 s))$ $u \geq 1$
$s \geq 1,\left\{\begin{array}{ll}\operatorname{gcd}(s, u)=1 & \text { if } u=2 v+1 \\ \operatorname{gcd}(2 s, u)=2 & \text { if } u=4 v \\ \operatorname{gcd}(s, 2 v+1)=1 & \text { if } u=4 v+2\end{array}\right\}$
$t \geq 1,\left\{\begin{array}{ll}t=v, 2 v \bmod (2 v+1) & \text { if } u=2 v+1 \\ 2 t=(2 v-1),(4 v-2),(4 v-1) \bmod (4 v) & \text { if } u=4 v \\ \left\{\begin{array}{ll}2 t=(2 v-1),(2 v) \bmod (2 v+1) & \text { if } s=1 \bmod (2) \\ 2 t=(4 v+1) \bmod (4 v+2) & \text { if } s=0 \bmod (2)\end{array}\right\} & \text { if } u=4 v+2\end{array}\right\}$
(t can be half integer)
$(\mathbf{w}, \mathbf{d})=((u, u+2 s, t(u+2 s)+s, t(u+2 s)+2 s, 2 t(u+2 s)+2 s-u),(2 t(u+2 s)+$ $2 s, 2 t(u+2 s)+4 s))$
$u \geq 1$
$s \geq 1, \operatorname{gcd}(s, u)=1$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& t \geq 1, t= \begin{cases}(v-1), 2 v \bmod (2 v+1) & \text { if } u=2 v+1 \\
2 v \bmod (2 v+1) & \text { if } u=4 v+2 \\
(v-1),(2 v-1) \bmod (2 v) & \text { if } u=4 v\end{cases} \\
& (\mathbf{w}, \mathbf{d})=((2,3,3 t+1,3 t+2,6 t+1),(6 t+3,6 t+4)), 1 \leq t \\
& (\mathbf{w}, \mathbf{d})=((2,3,3 t+2,3 t+3,6 t+3),(6 t+5,6 t+6)), 0 \leq t \\
& \text { or }(\mathbf{w}, \mathbf{d})=((2,3, t+1, t+2,2 t+1),(2 t+3,2 t+4)), 1 \leq t, t \neq 2 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((4,6,6 t+1,6 t+3,12 t),(12 t+4,12 t+6)), 1 \leq t \\
& (\mathbf{w}, \mathbf{d})=((4,6,6 t+5,6 t+7,12 t+8),(12 t+12,12 t+14)), 0 \leq t \\
& \text { or }(\mathbf{w}, \mathbf{d})=((4,6,2 t+1,2 t+3,4 t),(4 t+4,4 t+6)), 1 \leq t, t \neq 1 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((1,3 t+2,4 t+2,6 t+3,9 t+4),(9 t+5,12 t+6)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((2,6 t+7,8 t+8,12 t+12,18 t+17),(18 t+19,24 t+24)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((3,9 t+3,12 t+2,18 t+3,27 t+3),(27 t+6,36 t+6)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((3,9 t+9,12 t+10,18 t+15,27 t+21),(27 t+24,36 t+30)), 0 \leq t \\
& \text { or }(\mathbf{w}, \mathbf{d})=((3,3 t+3,4 t+2,6 t+3,9 t+3),(9 t+6,12 t+6)), 0 \leq t, t \neq 1 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((4,6 t+5,8 t+4,12 t+6,18 t+7),(18 t+11,24 t+12)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((6,18 t+9,24 t+8,36 t+12,54 t+15),(54 t+21,72 t+24)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((6,18 t+15,24 t+16,36 t+24,54 t+33),(54 t+39,72 t+48)), 0 \leq t \\
& \text { or }(\mathbf{w}, \mathbf{d})=((6,6 t+9,8 t+8,12 t+12,18 t+15),(18 t+21,24 t+24)), 0 \leq t, t \neq 2
\end{aligned}
$$

$\bmod 3$
$(\mathbf{w}, \mathbf{d})=((8,6 t+7,8 t+4,12 t+6,18 t+5),(18 t+13,24 t+12)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((9,9 t+6,12 t+2,18 t+3,27 t),(27 t+9,36 t+6)), 1 \leq t$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((9,9 t+12,12 t+10,18 t+15,27 t+18),(27 t+27,36 t+30)), 0 \leq t \\
& \text { or }(\mathbf{w}, \mathbf{d})=((9,3 t+6,4 t+2,6 t+3,9 t),(9 t+9,12 t+6)), 1 \leq t, t \neq 1 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((12,18 t+9,24 t+4,36 t+6,54 t+3),(54 t+15,72 t+12)), 1 \leq t \\
& (\mathbf{w}, \mathbf{d})=((12,18 t+21,24 t+20,36 t+30,54 t+39),(54 t+51,72 t+60)), 0 \leq t \\
& \text { or }(\mathbf{w}, \mathbf{d})=((12,6 t+9,8 t+4,12 t+6,18 t+3),(18 t+15,24 t+12)), 1 \leq t, t \neq 1
\end{aligned}
$$ $\bmod 3$

Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,3,4,6,9),(10,12))$
$(\mathbf{w}, \mathbf{d})=((1,4,5,8,12),(13,16))$
$(\mathbf{w}, \mathbf{d})=((1,5,8,12,19),(20,24))$
$(\mathbf{w}, \mathbf{d})=((1,6,10,15,24),(25,30))$
$(\mathbf{w}, \mathbf{d})=((1,7,11,17,27),(28,34))$
$(\mathbf{w}, \mathbf{d})=((1,8,13,20,32),(33,40))$
$(\mathbf{w}, \mathbf{d})=((2,4,6,9,14),(16,18))$
$(\mathbf{w}, \mathbf{d})=((2,5,6,9,13),(15,18))$
$(\mathbf{w}, \mathbf{d})=((2,7,8,13,19),(21,26))$
$(\mathbf{w}, \mathbf{d})=((5,9,12,20,31),(36,40))$
$(\mathbf{w}, \mathbf{d})=((6,9,13,21,33),(39,42))$
$(\mathbf{w}, \mathbf{d})=((6,12,16,27,42),(48,54))$
$(\mathbf{w}, \mathbf{d})=((9,12,17,27,42),(51,54))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((9,15,22,36,57),(66,72)) \\
& (\mathbf{w}, \mathbf{d})=((10,12,16,25,38),(48,50)) \\
& (\mathbf{w}, \mathbf{d})=((10,24,32,55,86),(96,110)) \\
& (\mathbf{w}, \mathbf{d})=((11,14,21,33,52),(63,66)) \\
& (\mathbf{w}, \mathbf{d})=((11,15,20,32,49),(60,64)) \\
& (\mathbf{w}, \mathbf{d})=((11,18,27,44,70),(81,88)) \\
& (\mathbf{w}, \mathbf{d})=((11,21,28,47,73),(84,94)) \\
& (\mathbf{w}, \mathbf{d})=((11,27,36,62,97),(108,124)) \\
& (\mathbf{w}, \mathbf{d})=((13,14,19,29,44),(57,58)) \\
& (\mathbf{w}, \mathbf{d})=((13,17,24,38,59),(72,76)) \\
& (\mathbf{w}, \mathbf{d})=((13,20,29,47,74),(87,94)) \\
& (\mathbf{w}, \mathbf{d})=((13,23,34,56,89),(102,112)) \\
& (\mathbf{w}, \mathbf{d})=((15,21,28,45,69),(84,90)) \\
& (\mathbf{w}, \mathbf{d})=((15,33,44,75,117),(132,150)) \\
& (\mathbf{w}, \mathbf{d})=((15,39,52,90,141),(156,180)) \\
& (\mathbf{w}, \mathbf{d})=((18,21,29,45,69),(87,90)) \\
& (\mathbf{w}, \mathbf{d})=((18,21,35,54,87),(105,108)) \\
& (\mathbf{w}, \mathbf{d})=((18,24,40,63,102),(120,126)) \\
& (\mathbf{w}, \mathbf{d})=((18,33,49,81,129),(147,162)) \\
& (\mathbf{w}, \mathbf{d})=((22,24,32,49,74),(96,98))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((22,24,36,55,86),(108,110)) \\
& (\mathbf{w}, \mathbf{d})=((22,32,48,77,122),(144,154)) \\
& (\mathbf{w}, \mathbf{d})=((22,36,48,79,122),(144,158)) \\
& (\mathbf{w}, \mathbf{d})=((22,40,60,99,158),(180,198)) \\
& (\mathbf{w}, \mathbf{d})=((22,48,64,109,170),(192,218)) \\
& (\mathbf{w}, \mathbf{d})=((22,60,80,139,218),(240,278)) \\
& (\mathbf{w}, \mathbf{d})=((26,30,50,77,124),(150,154)) \\
& (\mathbf{w}, \mathbf{d})=((26,36,60,95,154),(180,190)) \\
& (\mathbf{w}, \mathbf{d})=((30,48,64,105,162),(192,210)) \\
& (\mathbf{w}, \mathbf{d})=((30,84,112,195,306),(336,390)) \\
& 28 a .
\end{aligned}
$$

Computer search located the following:

$$
(\mathbf{w}, \mathbf{d})=((2,2,3,4,5),(7,8))
$$

$$
(\mathbf{w}, \mathbf{d})=((2,2,4,5,6),(8,10))
$$

$$
(\mathbf{w}, \mathbf{d})=((4,4,5,6,7),(11,12))
$$

$$
(\mathbf{w}, \mathbf{d})=((4,4,7,10,13),(17,20))
$$

28b.
$(\mathbf{w}, \mathbf{d})=((u, 2 s+u, t(2 s+u), t(2 s+u)+s, t(2 s+u)+2 s),(t(2 s+u)+2 s+u, 2 t(2 s+$ $u)+2 s)$)

$$
u \geq 1,
$$

Appendix D. Cases broken down by highest two weights
$s \geq 1, \operatorname{gcd}(s, u)=1$,
$t \geq 1, t= \begin{cases}v, 2 v \bmod (2 v+1) & \text { if } u=2 v+1 \text { or } u=4 v+2 \\ (2 v-1) \bmod (2 v) & \text { if } u=4 v\end{cases}$
$(\mathbf{w}, \mathbf{d})=((u, 2 s+u, t(2 s+u)-s, t(2 s+u), t(2 s+u)+s),(t(2 s+u)+s+u, 2 t(2 s+u)))$ $u \geq 1$,
$s \geq 1, \begin{cases}\operatorname{gcd}(s, u)=1 & \text { if } u=2 v+1 \\ \operatorname{gcd}(s, u)=1 & \text { if } u=4 v \\ \operatorname{any} s \geq 1 & \text { if } u=2 \\ s \neq 0 \bmod (2 v+1) & \text { if } u=4 v+2, v \geq 1\end{cases}$
$2 t \geq 3, \begin{cases}t=0, v \bmod (2 v+1) & \text { if } u=2 v+1 \\ 2 t=0,(2 v-1), 2 v \bmod (4 v) & \text { if } u=4 v \\ 2 t=\left\{\begin{array}{ll}r(2 v+1) & \text { if } s=1 \bmod (2) \\ (2 q+1)(2 v+1) & \text { if } s=0 \bmod (2)\end{array}\right\} & \text { if } u=4 v+2\end{cases}$
(t can be half integer)
$(\mathbf{w}, \mathbf{d})=((1,4 t+2,6 t+3,9 t+4,12 t+5),(12 t+6,18 t+8)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((2, t+1,2 t+2,3 t+2,4 t+2),(4 t+4,6 t+4)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((2,8 t+8,12 t+12,18 t+17,24 t+22),(24 t+24,36 t+34)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((3,4 t+2,6 t+3,9 t+3,12 t+3),(12 t+6,18 t+6)), 0 \leq t, t \neq 1 \bmod 3$
$(\mathbf{w}, \mathbf{d})=((4,2 t+1,4 t+2,6 t+1,8 t),(8 t+4,12 t+2)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6, t+2,2 t+4,3 t+3,4 t+2),(4 t+8,6 t+6)), 1 \leq t, t \neq 1 \bmod 3$
$(\mathbf{w}, \mathbf{d})=((6,8 t+8,12 t+12,18 t+15,24 t+18),(24 t+24,36 t+30)), 0 \leq t, t \neq 2$ $\bmod 3$
$(\mathbf{w}, \mathbf{d})=((7,4 t+6,6 t+9,9 t+10,12 t+11),(12 t+18,18 t+20)), 0 \leq t, t \neq 2 \bmod 7$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((9,4 t+6,6 t+9,9 t+9,12 t+9),(12 t+18,18 t+18)), 0 \leq t, t \neq 0 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((10,2 t+4,4 t+8,6 t+7,8 t+6),(8 t+16,12 t+14)), 0 \leq t, t \neq 3 \bmod 5 \\
& (\mathbf{w}, \mathbf{d})=((14,8 t+8,12 t+12,18 t+11,24 t+10),(24 t+24,36 t+22)), 0 \leq t, t \neq 6
\end{aligned}
$$ $\bmod 7$

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((18,8 t+8,12 t+12,18 t+9,24 t+6),(24 t+24,36 t+18)), 1 \leq t, t \neq 2 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((2,4, t, t+1, t+2),(t+4,2 t+2)), 1 \leq t, t \neq 2 \bmod 4 \\
& (\mathbf{w}, \mathbf{d})=((2, t+1, t+2,2 t+2,3 t+2),(3 t+4,4 t+4)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((3, t+1, t+2,2 t+1,3 t),(3 t+3,4 t+2)), 1 \leq t, t \neq 2 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((4,2 t+1,2 t+3,4 t+2,6 t+1),(6 t+5,8 t+4)), 1 \leq t \\
& (\mathbf{w}, \mathbf{d})=((6,6 t+7,6 t+9,12 t+12,18 t+15),(18 t+21,24 t+24)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((6, t+1, t+4,2 t+2,3 t),(3 t+6,4 t+4)), 1 \leq t, t \neq 2 \bmod 3 \\
& (\mathbf{w}, \mathbf{d})=((9,3 t+5,3 t+8,6 t+7,9 t+6),(9 t+15,12 t+14)), 0 \leq t \\
& (\mathbf{w}, \mathbf{d})=((12,6 t+5,6 t+9,12 t+6,18 t+3),(18 t+15,24 t+12)), 1 \leq t
\end{aligned}
$$

Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,3,4,6,8),(9,12))$
$(\mathbf{w}, \mathbf{d})=((1,4,7,10,13),(14,20))$
$(\mathbf{w}, \mathbf{d})=((1,5,9,13,17),(18,26))$
$(\mathbf{w}, \mathbf{d})=((1,6,10,15,20),(21,30))$
$(\mathbf{w}, \mathbf{d})=((1,7,12,18,24),(25,36))$
$(\mathbf{w}, \mathbf{d})=((2,4,8,11,14),(16,22))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((2,5,8,11,14),(16,22)) \\
& (\mathbf{w}, \mathbf{d})=((2,7,10,15,20),(22,30)) \\
& (\mathbf{w}, \mathbf{d})=((3,4,5,6,7),(10,12)) \\
& (\mathbf{w}, \mathbf{d})=((3,4,5,7,9),(12,14)) \\
& (\mathbf{w}, \mathbf{d})=((3,5,7,9,11),(14,18)) \\
& (\mathbf{w}, \mathbf{d})=((3,7,8,12,16),(19,24)) \\
& (\mathbf{w}, \mathbf{d})=((4,5,6,7,8),(12,14)) \\
& (\mathbf{w}, \mathbf{d})=((4,5,8,12,16),(20,24)) \\
& (\mathbf{w}, \mathbf{d})=((5,6,10,15,20),(25,30)) \\
& (\mathbf{w}, \mathbf{d})=((5,6,15,20,25),(30,40)) \\
& (\mathbf{w}, \mathbf{d})=((6,7,9,12,15),(21,24)) \\
& (\mathbf{w}, \mathbf{d})=((6,8,9,12,15),(21,24)) \\
& (\mathbf{w}, \mathbf{d})=((6,8,20,27,34),(40,54)) \\
& (\mathbf{w}, \mathbf{d})=((8,9,12,20,28),(36,40)) \\
& (\mathbf{w}, \mathbf{d})=((8,12,13,18,23),(31,36)) \\
& (\mathbf{w}, \mathbf{d})=((8,12,19,30,41),(49,60)) \\
& (\mathbf{w}, \mathbf{d})=((8,13,20,32,44),(52,64)) \\
& (\mathbf{w}, \mathbf{d})=((9,10,12,15,18),(27,30)) \\
& (\mathbf{w}, \mathbf{d})=((9,14,15,21,27),(36,42)) \\
& (\mathbf{w}, \mathbf{d})=((10,16,25,40,55),(65,80))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((10,16,40,55,70),(80,110)) \\
& (\mathbf{w}, \mathbf{d})=((12,20,21,30,39),(51,60)) \\
& (\mathbf{w}, \mathbf{d})=((11,14,21,33,45),(56,66)) \\
& (\mathbf{w}, \mathbf{d})=((11,18,27,44,61),(72,88)) \\
& (\mathbf{w}, \mathbf{d})=((13,14,35,46,57),(70,92)) \\
& (\mathbf{w}, \mathbf{d})=((13,18,45,61,77),(90,122)) \\
& (\mathbf{w}, \mathbf{d})=((13,22,55,76,97),(110,152)) \\
& (\mathbf{w}, \mathbf{d})=((15,22,55,75,95),(110,150)) \\
& (\mathbf{w}, \mathbf{d})=((15,26,65,90,115),(130,180)) \\
& (\mathbf{w}, \mathbf{d})=((16,21,28,48,68),(84,96)) \\
& (\mathbf{w}, \mathbf{d})=((22,24,36,55,74),(96,110)) \\
& (\mathbf{w}, \mathbf{d})=((22,32,48,77,106),(128,154)) \\
& (\mathbf{w}, \mathbf{d})=((22,40,60,99,138),(160,198)) \\
& (\mathbf{w}, \mathbf{d})=((26,30,40,67,94),(120,134)) \\
& (\mathbf{w}, \mathbf{d})=((26,32,80,107,134),(160,214)) \\
& (\mathbf{w}, \mathbf{d})=((26,36,48,83,118),(144,166)) \\
& (\mathbf{w}, \mathbf{d})=((26,40,100,137,174),(200,274)) \\
& (\mathbf{w}, \mathbf{d})=((26,48,120,167,214),(240,334)) \\
& (\mathbf{w}, \mathbf{d})=((30,32,80,105,130),(160,210)) \\
& (\mathbf{w}, \mathbf{d})=((30,56,140,195,250),(280,390))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights
29.
$(\mathbf{w}, \mathbf{d})=((4,2 t+2,2 t+3,2 t+4,2 t+5),(4 t+7,4 t+8)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,3 t+1,3 t+3,3 t+4,3 t+5),(6 t+6,6 t+8)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((8,4 t+1,4 t+3,4 t+5,4 t+7),(8 t+8,8 t+10)), 1 \leq t$
Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((2,3,4,5,6),(9,10))$
$(\mathbf{w}, \mathbf{d})=((2,3,5,6,7),(10,12))$
$(\mathbf{w}, \mathbf{d})=((2,4,5,6,7),(11,12))$
$(\mathbf{w}, \mathbf{d})=((2,4,6,7,8),(12,14))$
$(\mathbf{w}, \mathbf{d})=((2,6,8,9,10),(16,18))$
$(\mathbf{w}, \mathbf{d})=((3,4,5,6,7),(11,12))$
$(\mathbf{w}, \mathbf{d})=((3,4,6,7,8),(12,14))$
$(\mathbf{w}, \mathbf{d})=((3,5,6,8,10),(15,16))$
$(\mathbf{w}, \mathbf{d})=((3,5,7,9,11),(16,18))$
$(\mathbf{w}, \mathbf{d})=((3,8,10,12,14),(22,24))$
$(\mathbf{w}, \mathbf{d})=((3,8,12,14,16),(24,28))$
$(\mathbf{w}, \mathbf{d})=((4,5,7,10,13),(18,20))$
$(\mathbf{w}, \mathbf{d})=((4,6,8,9,10),(16,18))$
$(\mathbf{w}, \mathbf{d})=((4,6,8,11,14),(20,22))$
$(\mathbf{w}, \mathbf{d})=((4,6,9,12,15),(21,24))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((4,6,12,15,18),(24,30)) \\
& (\mathbf{w}, \mathbf{d})=((4,8,11,14,17),(25,28)) \\
& (\mathbf{w}, \mathbf{d})=((4,9,15,18,21),(30,36)) \\
& (\mathbf{w}, \mathbf{d})=((4,10,12,15,18),(28,30)) \\
& (\mathbf{w}, \mathbf{d})=((4,12,15,18,21),(33,36)) \\
& (\mathbf{w}, \mathbf{d})=((4,14,20,23,26),(40,46)) \\
& (\mathbf{w}, \mathbf{d})=((4,18,24,27,30),(48,54)) \\
& (\mathbf{w}, \mathbf{d})=((5,6,8,10,12),(18,20)) \\
& (\mathbf{w}, \mathbf{d})=((5,6,10,12,14),(20,24)) \\
& (\mathbf{w}, \mathbf{d})=((5,6,14,18,22),(28,36)) \\
& (\mathbf{w}, \mathbf{d})=((5,7,8,11,14),(21,22)) \\
& (\mathbf{w}, \mathbf{d})=((5,7,10,14,18),(25,28)) \\
& (\mathbf{w}, \mathbf{d})=((5,8,12,14,16),(24,28)) \\
& (\mathbf{w}, \mathbf{d})=((5,9,12,15,18),(27,30)) \\
& (\mathbf{w}, \mathbf{d})=((5,9,15,18,21),(30,36)) \\
& (\mathbf{w}, \mathbf{d})=((5,11,14,18,22),(33,36)) \\
& (\mathbf{w}, \mathbf{d})=((5,12,16,20,24),(36,40)) \\
& (\mathbf{w}, \mathbf{d})=((5,12,18,21,24),(36,42)) \\
& (\mathbf{w}, \mathbf{d})=((5,12,20,24,28),(40,48)) \\
& (\mathbf{w}, \mathbf{d})=((5,16,24,28,32),(48,56))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((6,8,18,23,28),(36,46)) \\
& (\mathbf{w}, \mathbf{d})=((6,14,18,23,28),(42,46)) \\
& (\mathbf{w}, \mathbf{d})=((6,14,19,24,29),(43,48)) \\
& (\mathbf{w}, \mathbf{d})=((6,20,25,30,35),(55,60)) \\
& (\mathbf{w}, \mathbf{d})=((6,20,30,35,40),(60,70)) \\
& (\mathbf{w}, \mathbf{d})=((7,8,12,16,20),(28,32)) \\
& (\mathbf{w}, \mathbf{d})=((7,9,15,21,27),(36,42)) \\
& (\mathbf{w}, \mathbf{d})=((7,9,21,27,33),(42,54)) \\
& (\mathbf{w}, \mathbf{d})=((7,10,15,20,25),(35,40)) \\
& (\mathbf{w}, \mathbf{d})=((7,12,18,24,30),(42,48)) \\
& (\mathbf{w}, \mathbf{d})=((8,10,15,20,25),(35,40)) \\
& (\mathbf{w}, \mathbf{d})=((8,10,16,19,22),(32,38)) \\
& (\mathbf{w}, \mathbf{d})=((8,10,16,23,30),(40,46)) \\
& (\mathbf{w}, \mathbf{d})=((8,10,17,24,31),(41,48)) \\
& (\mathbf{w}, \mathbf{d})=((8,10,20,25,30),(40,50)) \\
& (\mathbf{w}, \mathbf{d})=((8,14,16,21,26),(40,42)) \\
& (\mathbf{w}, \mathbf{d})=((8,14,21,28,35),(49,56)) \\
& (\mathbf{w}, \mathbf{d})=((8,14,28,35,42),(56,70)) \\
& (\mathbf{w}, \mathbf{d})=((8,18,24,27,30),(48,54)) \\
& (\mathbf{w})=((8,22,32,37,42),(64,74))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((8,26,32,39,46),(72,78)) \\
& (\mathbf{w}, \mathbf{d})=((8,30,40,45,50),(80,90)) \\
& (\mathbf{w}, \mathbf{d})=((8,34,48,55,62),(96,110)) \\
& (\mathbf{w}, \mathbf{d})=((8,42,56,63,70),(112,126)) \\
& (\mathbf{w}, \mathbf{d})=((10,11,15,22,29),(40,44)) \\
& (\mathbf{w}, \mathbf{d})=((10,12,21,30,39),(51,60)) \\
& (\mathbf{w}, \mathbf{d})=((10,12,30,39,48),(60,78)) \\
& (\mathbf{w}, \mathbf{d})=((10,13,25,31,37),(50,62)) \\
& (\mathbf{w}, \mathbf{d})=((10,16,30,37,44),(60,74)) \\
& (\mathbf{w}, \mathbf{d})=((10,17,25,34,43),(60,68)) \\
& (\mathbf{w}, \mathbf{d})=((10,19,35,43,51),(70,86)) \\
& (\mathbf{w}, \mathbf{d})=((10,21,28,35,42),(63,70)) \\
& (\mathbf{w}, \mathbf{d})=((10,21,35,42,49),(70,84)) \\
& (\mathbf{w}, \mathbf{d})=((10,22,40,49,58),(80,98)) \\
& (\mathbf{w}, \mathbf{d})=((10,27,36,45,54),(81,90)) \\
& (\mathbf{w}, \mathbf{d})=((10,27,45,54,63),(90,108)) \\
& (\mathbf{w}, \mathbf{d})=((11,12,15,18,21),(33,36)) \\
& (\mathbf{w}, \mathbf{d})=((11,13,19,25,31),(44,50)) \\
& (\mathbf{w}, \mathbf{d})=((11,16,20,24,28),(44,48)) \\
& (\mathbf{w}, \mathbf{d})=((11,17,24,31,38),(55,62))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((11,20,25,30,35),(55,60)) \\
& (\mathbf{w}, \mathbf{d})=((11,21,29,37,45),(66,74)) \\
& (\mathbf{w}, \mathbf{d})=((11,24,30,36,42),(66,72)) \\
& (\mathbf{w}, \mathbf{d})=((11,25,34,43,52),(77,86)) \\
& (\mathbf{w}, \mathbf{d})=((11,28,35,42,49),(77,84)) \\
& (\mathbf{w}, \mathbf{d})=((11,29,39,49,59),(88,98)) \\
& (\mathbf{w}, \mathbf{d})=((11,32,40,48,56),(88,96)) \\
& (\mathbf{w}, \mathbf{d})=((11,36,45,54,63),(99,108)) \\
& (\mathbf{w}, \mathbf{d})=((11,40,50,60,70),(110,120)) \\
& (\mathbf{w}, \mathbf{d})=((12,14,24,35,46),(60,70)) \\
& (\mathbf{w}, \mathbf{d})=((12,16,23,30,37),(53,60)) \\
& (\mathbf{w}, \mathbf{d})=((12,20,25,30,35),(55,60)) \\
& (\mathbf{w}, \mathbf{d})=((12,28,35,42,49),(77,84)) \\
& (\mathbf{w}, \mathbf{d})=((12,32,43,54,65),(97,108)) \\
& (\mathbf{w}, \mathbf{d})=((12,44,55,66,77),(121,132)) \\
& (\mathbf{w}, \mathbf{d})=((14,15,25,35,45),(60,70)) \\
& (\mathbf{w}, \mathbf{d})=((14,15,35,45,55),(70,90)) \\
& (\mathbf{w}, \mathbf{d})=((14,16,42,55,68),(84,110)) \\
& (\mathbf{w}, \mathbf{d})=((14,17,29,41,53),(70,82)) \\
& (\mathbf{w}, \mathbf{d})=((15,16,20,32,44),(60,64)) \\
& ((1), ~
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((16,18,24,27,30),(48,54)) \\
& (\mathbf{w}, \mathbf{d})=((16,18,48,63,78),(96,126)) \\
& (\mathbf{w}, \mathbf{d})=((16,22,24,33,42),(64,66)) \\
& (\mathbf{w}, \mathbf{d})=((16,26,40,47,54),(80,94)) \\
& (\mathbf{w}, \mathbf{d})=((16,30,40,45,50),(80,90)) \\
& (\mathbf{w}, \mathbf{d})=((16,34,40,51,62),(96,102)) \\
& (\mathbf{w}, \mathbf{d})=((16,38,56,65,74),(112,130)) \\
& (\mathbf{w}, \mathbf{d})=((16,42,56,63,70),(112,126)) \\
& (\mathbf{w}, \mathbf{d})=((16,46,56,69,82),(128,138)) \\
& (\mathbf{w}, \mathbf{d})=((16,50,72,83,94),(144,166)) \\
& (\mathbf{w}, \mathbf{d})=((16,54,72,81,90),(144,162)) \\
& (\mathbf{w}, \mathbf{d})=((16,58,72,87,102),(160,174)) \\
& (\mathbf{w}, \mathbf{d})=((16,62,88,101,114),(176,202)) \\
& (\mathbf{w}, \mathbf{d})=((16,66,88,99,110),(176,198)) \\
& (\mathbf{w}, \mathbf{d})=((16,74,104,119,134),(208,238)) \\
& (\mathbf{w}, \mathbf{d})=((16,78,104,117,130),(208,234)) \\
& (\mathbf{w}, \mathbf{d})=((16,90,120,135,150),(240,270)) \\
& (\mathbf{w}, \mathbf{d})=((17,20,35,50,65),(85,100)) \\
& (\mathbf{w}, \mathbf{d})=((24,26,32,51,70),(96,102)) \\
& (\mathbf{w}, \mathbf{d})=((24,26,60,77,94),(120,154))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights
$(\mathbf{w}, \mathbf{d})=((24,34,40,63,86),(120,126))$
$(\mathbf{w}, \mathbf{d})=((24,38,84,107,130),(168,214))$
30.
$\mathbf{w}=(u, u+s, u+2 s, t(u+2 s)-u-s, t(2 s+u)-u)$
$\mathbf{d}=(t(u+2 s), 2 t(u+2 s))$
$u \geq 1$
$s \geq 1$
$t \geq 2 t= \begin{cases}0, v \bmod (2 v+1) & \text { if } u=2 v+1 \\ r v & \text { if } u=2 v\end{cases}$
$\mathbf{w}=(u, u+s, u+2 s,(t-1)(u+2 s),(t-1)(2 s+u)+s)$
$\mathbf{d}=(t(u+2 s)-s, t(u+2 s))$
$u \geq 1$
$s \geq 1$
$t \geq 2 t= \begin{cases}0,(v+1) \bmod (2 v+1) & \text { if } u=2 v+1 \\ r v & \text { if } u=2 v\end{cases}$
Computer search located no sporadic cases.
31a.
$(\mathbf{w}, \mathbf{d})=((2, t+1, t+1, t+2,2 t+1),(2 t+3,3 t+3)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((4,2 t+1,2 t+1,2 t+3,4 t),(4 t+4,6 t+3)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,6 t+2,6 t+2,6 t+5,12 t+1),(12 t+7,18 t+6)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((6,6 t+4,6 t+4,6 t+7,12 t+5),(12 t+11,18 t+12)), 0 \leq t$

Appendix D. Cases broken down by highest two weights
or $(\mathbf{w}, \mathbf{d})=((6,2 t+2,2 t+2,2 t+5,4 t+1),(4 t+7,6 t+6)), 1 \leq t, t \neq 2 \bmod 3$
Computer search located no sporadic cases.

31b.
$(\mathbf{w}, \mathbf{d})=((4,4 t+1,4 t+2,4 t+3,8 t),(8 t+4,12 t+3)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((4,4 t+4,4 t+5,4 t+6,8 t+6),(8 t+10,12 t+12)), 0 \leq t$
or $(\mathbf{w}, \mathbf{d})=((4, t+1, t+2, t+3,2 t),(2 t+4,3 t+3)), 1 \leq t, t=0,3 \bmod 4$
$(\mathbf{w}, \mathbf{d})=((8,4 t+5,4 t+7,4 t+9,8 t+6),(8 t+14,12 t+15)), 0 \leq t$
$(\mathbf{w}, \mathbf{d})=((9,3 t+2,3 t+5,3 t+8,6 t+1),(6 t+10,9 t+9)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((12,12 t+4,12 t+7,12 t+10,24 t+2),(24 t+14,36 t+12)), 1 \leq t$
$(\mathbf{w}, \mathbf{d})=((12,12 t+8,12 t+11,12 t+14,24 t+10),(24 t+22,36 t+24)), 0 \leq t$
or $(\mathbf{w}, \mathbf{d})=((12,4 t+4,4 t+7,4 t+10,8 t+2),(8 t+14,12 t+12)), 1 \leq t, t \neq 2 \bmod 3$
Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((4,5,7,10,11),(15,21))$
$(\mathbf{w}, \mathbf{d})=((4,6,8,11,13),(17,24))$
$(\mathbf{w}, \mathbf{d})=((4,8,11,14,18),(22,32))$
$(\mathbf{w}, \mathbf{d})=((5,7,10,14,16),(21,30))$
$(\mathbf{w}, \mathbf{d})=((5,9,12,16,20),(25,36))$
$(\mathbf{w}, \mathbf{d})=((6,8,12,17,19),(25,36))$
$(\mathbf{w}, \mathbf{d})=((6,12,16,21,27),(33,48))$
$(\mathbf{w}, \mathbf{d})=((8,12,17,22,26),(34,48))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((8,18,24,31,41),(49,72)) \\
& (\mathbf{w}, \mathbf{d})=((8,20,27,34,46),(54,80)) \\
& (\mathbf{w}, \mathbf{d})=((9,10,15,22,23),(32,45)) \\
& (\mathbf{w}, \mathbf{d})=((9,12,17,24,27),(36,51)) \\
& (\mathbf{w}, \mathbf{d})=((9,14,21,29,34),(43,63)) \\
& (\mathbf{w}, \mathbf{d})=((9,15,22,30,36),(45,66)) \\
& (\mathbf{w}, \mathbf{d})=((10,11,15,22,23),(33,45)) \\
& (\mathbf{w}, \mathbf{d})=((10,12,20,29,31),(41,60)) \\
& (\mathbf{w}, \mathbf{d})=((10,17,25,34,41),(51,75)) \\
& (\mathbf{w}, \mathbf{d})=((11,13,19,25,27),(38,52)) \\
& (\mathbf{w}, \mathbf{d})=((11,14,21,30,33),(44,63)) \\
& (\mathbf{w}, \mathbf{d})=((11,17,24,31,37),(48,68)) \\
& (\mathbf{w}, \mathbf{d})=((11,18,27,37,44),(55,81)) \\
& (\mathbf{w}, \mathbf{d})=((11,21,29,37,47),(58,84)) \\
& (\mathbf{w}, \mathbf{d})=((11,25,34,43,57),(68,100)) \\
& (\mathbf{w}, \mathbf{d})=((11,29,39,49,67),(78,116)) \\
& (\mathbf{w}, \mathbf{d})=((12,30,40,51,69),(81,120)) \\
& (\mathbf{w}, \mathbf{d})=((13,14,23,32,33),(46,65)) \\
& (\mathbf{w}, \mathbf{d})=((13,17,27,37,41),(54,78)) \\
& (\mathbf{w}, \mathbf{d})=((13,20,31,42,49),(62,91))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((13,23,35,47,57),(70,104)) \\
& (\mathbf{w}, \mathbf{d})=((14,17,29,41,44),(58,85)) \\
& (\mathbf{w}, \mathbf{d})=((15,18,25,36,39),(54,75)) \\
& (\mathbf{w}, \mathbf{d})=((15,21,28,39,45),(60,84)) \\
& (\mathbf{w}, \mathbf{d})=((15,24,35,48,57),(72,105)) \\
& (\mathbf{w}, \mathbf{d})=((15,27,40,54,66),(81,120)) \\
& (\mathbf{w}, \mathbf{d})=((15,33,44,57,75),(90,132)) \\
& (\mathbf{w}, \mathbf{d})=((15,39,52,66,90),(105,156)) \\
& (\mathbf{w}, \mathbf{d})=((16,18,24,35,37),(53,72)) \\
& (\mathbf{w}, \mathbf{d})=((16,20,29,38,42),(58,80)) \\
& (\mathbf{w}, \mathbf{d})=((16,28,39,50,62),(78,112)) \\
& (\mathbf{w}, \mathbf{d})=((16,30,40,53,67),(83,120)) \\
& (\mathbf{w}, \mathbf{d})=((16,36,49,62,82),(98,144)) \\
& (\mathbf{w}, \mathbf{d})=((16,42,56,71,97),(113,168)) \\
& (\mathbf{w}, \mathbf{d})=((16,44,59,74,102),(118,176)) \\
& (\mathbf{w}, \mathbf{d})=((18,21,35,51,54),(72,105)) \\
& (\mathbf{w}, \mathbf{d})=((18,32,48,65,79),(97,144)) \\
& (\mathbf{w}, \mathbf{d})=((20,24,41,58,62),(82,120)) \\
& (\mathbf{w}, \mathbf{d})=((20,28,47,66,74),(94,140)) \\
& (\mathbf{w}, \mathbf{d})=((24,30,40,57,63),(87,120)) \\
& (1)
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((24,42,56,75,93),(117,168)) \\
& (\mathbf{w}, \mathbf{d})=((24,66,88,111,153),(177,264)) \\
& (\mathbf{w}, \mathbf{d})=((30,42,70,99,111),(141,210))
\end{aligned}
$$

32a. Computer search located the following:

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((4,4,6,7,9),(13,16)) \\
& (\mathbf{w}, \mathbf{d})=((6,6,8,11,13),(19,24))
\end{aligned}
$$

32b. Computer search located the following:

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((8,12,18,19,29),(37,48)) \\
& (\mathbf{w}, \mathbf{d})=((11,14,21,23,33),(44,56)) \\
& (\mathbf{w}, \mathbf{d})=((11,18,27,28,44),(55,72)) \\
& (\mathbf{w}, \mathbf{d})=((12,15,20,26,34),(46,60)) \\
& (\mathbf{w}, \mathbf{d})=((13,14,19,23,29),(42,52)) \\
& (\mathbf{w}, \mathbf{d})=((13,17,24,27,38),(51,65)) \\
& (\mathbf{w}, \mathbf{d})=((13,20,29,31,47),(60,78)) \\
& (\mathbf{w}, \mathbf{d})=((13,23,34,35,56),(69,91)) \\
& (\mathbf{w}, \mathbf{d})=((14,15,19,26,31),(45,57)) \\
& (\mathbf{w}, \mathbf{d})=((14,19,25,32,43),(57,75)) \\
& (\mathbf{w}, \mathbf{d})=((16,20,30,33,47),(63,80)) \\
& (\mathbf{w}, \mathbf{d})=((16,21,28,36,48),(64,84)) \\
& (\mathbf{w}, \mathbf{d})=((16,28,42,43,69),(85,112))
\end{aligned}
$$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((18,19,24,33,39),(57,72)) \\
& (\mathbf{w}, \mathbf{d})=((18,23,30,39,51),(69,90)) \\
& (\mathbf{w}, \mathbf{d})=((18,24,32,41,55),(73,96))
\end{aligned}
$$

33. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,5,6,7,8),(13,15))$
$(\mathbf{w}, \mathbf{d})=((4,8,10,11,13),(21,24))$
$(\mathbf{w}, \mathbf{d})=((5,7,10,11,14),(21,25))$
$(\mathbf{w}, \mathbf{d})=((6,14,18,19,23),(37,42))$
$(\mathbf{w}, \mathbf{d})=((8,10,16,17,23),(33,40))$
$(\mathbf{w}, \mathbf{d})=((10,11,15,18,22),(33,40))$
$(\mathbf{w}, \mathbf{d})=((10,17,25,26,34),(51,60))$
$(\mathbf{w}, \mathbf{d})=((11,13,14,19,20),(33,39))$
$(\mathbf{w}, \mathbf{d})=((11,17,20,24,27),(44,51))$
$(\mathbf{w}, \mathbf{d})=((11,21,26,29,34),(55,63))$
$(\mathbf{w}, \mathbf{d})=((11,25,32,34,41),(66,75))$
$(\mathbf{w}, \mathbf{d})=((11,29,38,39,48),(77,87))$
$(\mathbf{w}, \mathbf{d})=((12,16,18,23,25),(41,48))$
$(\mathbf{w}, \mathbf{d})=((12,32,42,43,53),(85,96))$
$(\mathbf{w}, \mathbf{d})=((14,17,27,29,39),(56,68))$
$(\mathbf{w}, \mathbf{d})=((15,16,20,28,32),(48,60))$

Appendix D. Cases broken down by highest two weights

35a. No instances were found by computer search.
35b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,3,4,4,6),(7,12))$
$(\mathbf{w}, \mathbf{d})=((6,6,10,10,15),(16,30))$
35 cd . No instances were found by computer search.
35e. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((6,8,8,10,15),(16,30))$
35f. No instances were found by computer search.
35 g. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((9,12,13,16,24),(25,48))$
36abc. No instances were found by computer search.
37ab. No instances were found by computer search.

38abc. No instances were found by computer search.
38d. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((4,6,6,8,11),(12,22))$
38e. No instances were found by computer search.
38f. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((3,4,5,6,8),(9,16))$
$(\mathbf{w}, \mathbf{d})=((4,6,10,12,15),(16,30))$
$(\mathbf{w}, \mathbf{d})=((6,10,14,18,23),(24,46))$

Appendix D. Cases broken down by highest two weights
$(\mathbf{w}, \mathbf{d})=((8,14,26,32,39),(40,78))$
$(\mathbf{w}, \mathbf{d})=((12,14,18,20,27),(32,54))$
39a. No instances were found by computer search.
39b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((6,9,10,13,18),(19,36))$
40ab. No instances were found by computer search.
40c. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((4,6,6,7,9),(13,18))$
40d. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((6,7,9,11,14),(18,28))$
$(\mathbf{w}, \mathbf{d})=((8,12,13,14,18),(26,36))$
$(\mathbf{w}, \mathbf{d})=((8,20,23,26,30),(46,60))$
$(\mathbf{w}, \mathbf{d})=((12,18,22,27,33),(45,66))$
41. No instances were found by computer search.
42. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,3,3,4,6),(7,9))$
43a. No instances were found by computer search.

43b. Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,4,6,8,11),(12,17))$
$(\mathbf{w}, \mathbf{d})=((1,5,7,10,14),(15,21))$

Appendix D. Cases broken down by highest two weights

$$
\begin{aligned}
& (\mathbf{w}, \mathbf{d})=((1,7,12,17,23),(24,35)) \\
& (\mathbf{w}, \mathbf{d})=((1,8,14,20,27),(28,41)) \\
& (\mathbf{w}, \mathbf{d})=((1,9,15,22,30),(31,45)) \\
& (\mathbf{w}, \mathbf{d})=((1,10,17,25,34),(35,51)) \\
& (\mathbf{w}, \mathbf{d})=((2,7,10,13,18),(20,28)) \\
& (\mathbf{w}, \mathbf{d})=((2,9,12,17,24),(26,36)) \\
& (\mathbf{w}, \mathbf{d})=((3,7,8,9,13),(16,21)) \\
& (\mathbf{w}, \mathbf{d})=((3,8,10,12,17),(20,27)) \\
& (\mathbf{w}, \mathbf{d})=((3,10,11,15,22),(25,33))
\end{aligned}
$$

$45 a b c d$. No instances were found by computer search.
46abc. No instances were found by computer search.
47 Computer search located the following:
$(\mathbf{w}, \mathbf{d})=((1,4,5,7,11),(12,15))$
$(\mathbf{w}, \mathbf{d})=((1,5,6,9,14),(15,19))$
$(\mathbf{w}, \mathbf{d})=((1,8,13,19,31),(32,39))$
$(\mathbf{w}, \mathbf{d})=((1,9,15,22,36),(37,45))$
$(\mathbf{w}, \mathbf{d})=((1,10,16,24,39),(40,49))$
$(\mathbf{w}, \mathbf{d})=((1,11,18,27,44),(45,55))$
$(\mathbf{w}, \mathbf{d})=((2,9,12,17,27),(29,36))$
$(\mathbf{w}, \mathbf{d})=((2,11,14,21,33),(35,44))$

References

[1] http://reference.wolfram.com/mathematica/guide/mathematica.html.
[2] V. I. Arnol'd, Normal forms of functions in the neighborhood of degenerate critical points, Uspehi Mat. Nauk 29 (1974), no. 2(176), 11-49, Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901-1973), I. MR 0516034 (58 \# 24324)
[3] Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008. MR 2382957 (2009c:53058)
[4] Charles P. Boyer, Krzysztof Galicki, and Michael Nakamaye, On the geometry of Sasakian-Einstein 5-manifolds, Math. Ann. 325 (2003), no. 3, 485-524. MR 1968604 (2004b:53061)
[5] Charles P. Boyer and Michael Nakamaye, On Sasaki-Einstein manifolds in dimension five, Geom. Dedicata 144 (2010), 141-156. MR 2580423 (2011d:53085)
[6] Ivan Cheltsov and Constantin Shramov, Del pezzo zoo, eprint arXiv:0904.0114.
[7] Jheng-Jie Chen, Jungkai A. Chen, and Meng Chen, On quasismooth weighted complete intersections, J. Algebraic Geom. 20 (2011), no. 2, 239-262. MR 2762991 (2012b:14090)
[8] Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525-556. MR 1852009 (2002e:32032)
[9] Alexandru Dimca, Monodromy and Betti numbers of weighted complete intersections, Topology 24 (1985), no. 3, 369-374. MR 815487 (87h:14003)
[10] Igor Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981), Lecture Notes in Math., vol. 956, Springer, Berlin, 1982, pp. 34-71. MR 704986 (85g:14060)
[11] Jerome P. Gauntlett, Dario Martelli, James Sparks, and Shing-Tung Yau, Obstructions to the existence of Sasaki-Einstein metrics, Comm. Math. Phys. 273 (2007), no. 3, 803-827. MR 2318866 (2008e:53070)
[12] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157 (57 \#3116)
[13] Dong Seon Hwang and Jinhyung Park, Characterization of log del pezzo pairs via anticanonical models, http://arxiv.org/pdf/1303.2973.pdf.
[14] A. R. Iano-Fletcher, Working with weighted complete intersections, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 101-173. MR 1798982 (2001k:14089)
[15] Amer Iqbal, Andrew Neitzke, and Cumrun Vafa, A mysterious duality, Adv. Theor. Math. Phys. 5 (2001), no. 4, 769-807. MR 1926295 (2004e:81138)
[16] J. M. Johnson and J. Kollár, Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 1, 69-79. MR 1821068 (2002b:32041)
[17] In-Kyun Kim, Log canonical thresholds of complete intersection log del pezzo surfaces, Ph.D. Dissertation, Pohang University of Science and Technology.
[18] János Kollár, Singularities of pairs, Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221-287. MR 1492525 (99m:14033)
[19] , Einstein metrics on five-dimensional Seifert bundles, J. Geom. Anal. 15 (2005), no. 3, 445-476. MR 2190241 (2007c:53056)
[20] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)
[21] Dung Tráng Lê, Computation of the Milnor number of an isolated singularity of a complete intersection, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 45-49. MR 0350064 (50 \#2557)
[22] E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77, Cambridge University Press, Cambridge, 1984. MR 747303 (86a:32021)
[23] Dmitry Malyshev, Del Pezzo singularities and SUSY breaking, Adv. High Energy Phys. (2011), Art. ID 630892, 30. MR 2794326 (2012k:81218)
[24] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J., 1968. MR 0239612 (39 \#969)
[25] John Milnor and Peter Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393.
[26] Peter Orlik and Philip Wagreich, Isolated singularities of algebraic surfaces with C^{*} action, Ann. of Math. (2) 93 (1971), 205-228. MR 0284435 (44 \#1662)
[27] Richard Randell, The Milnor number of some isolated complete intersection singularities with C^{*}-action, Proc. Amer. Math. Soc. 72 (1978), no. 2, 375-380. MR 507342 (80a:32008)
[28] Stephen Smale, On the structure of 5-manifolds, Ann. of Math. (2) 75 (1962), 38-46. MR 0141133 (25 \#4544)
[29] Stephen S.-T. Yau and Yung Yu, Classification of 3-dimensional isolated rational hypersurface singularities with \mathbf{C}^{*}-action, eprint $=$ arXiv:math.AG/0303302.
[30] _, Classification of 3-dimensional isolated rational hypersurface singularities with \mathbf{C}^{*}-action, Rocky Mountain J. Math. 35 (2005), no. 5, 1795-1809. MR 2206037 (2006j:32034)

