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Abstract

Links of isolated singularities defined by weighted homogeneous polynomials have

a natural Sasakian structure. Since it is known that Sasaki-Einstein metrics have

positive Ricci curvature, and since positive Sasakian structures give rise to Sasakian

metrics with positive Ricci curvature, it is useful to determine which links have a

positive Sasakian structure. This corresponds to the Fano index of the associated

weighted projective variety being positive. Links of dimension 2n − 1 are (n − 2)-

connected. In dimension 5, there is a complete classification of simply connected spin

manifolds due to Smale [28]. Hypersurface singularities yielding links of dimension

5 have been treated in [3] and [5]. This paper investigates isolated singularities of

codimension 2 complete intersections with 5 dimensional links of positive index and

provides a complete list up to degree 600, hence a complete (up to degree 600) list

of types of links having positive Sasakian structures.
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Chapter 1

Introduction

A singularity defined by weighted homogeneous polynomials in affine space invariant

under a weighted C∗ action is isolated if the projective variety defined by the same

polynomials is quasismooth. Such quasismooth varieties have only orbifold (quo-

tient) singularities. Links of isolated singularities defined by weighted homogeneous

polynomials have a natural quasi-regular Sasakian structure. Since it is known that

Sasaki-Einstein metrics have positive Ricci curvature, and since positive Sasakian

structures give rise to Sasakian metrics with positive Ricci curvature, it is useful to

determine which links have a positive Sasakian structure. Manifolds with positive

Ricci curvature are of interest in their own right. Positivity of the Sasakian structure

on a link corresponds to the index of the associated weighted projective variety being

positive, hence Fano or log Fano. Furthermore, the existence of a Sasaki-Einstein

metric on a link corresponds to the existence of a Kähler-Einstein metric on the cor-

responding log Fano variety. In particular, a 5-dimensional algebraic link that has a

positive quasi-regular Sasakian structure is the link of an isolated singularity of an

affine cone over a log del Pezzo surface. The classification problem for these links,

therefore, is related to the classification problem for log del Pezzo surfaces. This is a

subject of current widespread interest, see [6, 17, 13] for example. Del Pezzo surfaces
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Chapter 1. Introduction

and del Pezzo singularities are also of interest in high energy physics, see [15, 23, 11].

Links of dimension 2n− 1 are (n− 2)-connected, so for dimension 5, links are simply

connected. Also for dimension 5, there is a complete classification of simply con-

nected spin manifolds due to Smale [28]. Hypersurface singularities yielding links of

dimension 5 have been treated in [3] and [5]. This paper investigates isolated singu-

larities of codimension 2 complete intersections with 5 dimensional links of positive

index. It provides a start of a general classification and a complete list up to degrees

d1 ≤ d2 ≤ 600.

Important definitions are given in Chapter 2. Weighted projective spaces and

varieties are described in 2.1, Sasakian structures, especially the Sasakian structure

on a weighted sphere, in 2.2, and links of isolated singularities of weighted complete

intersections and their induced Sasakian structure in 2.3. Next, Chapter 3 gives

numerical conditions for identifying which links possess positive Sasakian structures.

Necessary and sufficient conditions on weights and degrees are given in 3.1 for qua-

sismoothness. In 3.2, bounds on dimension and codimension as well as additional

relations between weights and degrees are given relating to positivity. The main

result is in 3.3: a complete listing of positive quasismooth complete intersections of

codimension 2 in weighted P4 with degrees d1 ≤ d2 ≤ 600. Chapter 4 discusses some

results about the topology of links. Simple formulas for the Alexander polynomial

and Milnor number are given in special cases. General results for the middle Betti

number are given as well. 4.3 applies these results to the 5 dimensional case, and

includes a technique for computing the torsion of any Smale manifold admitting

a Sasakian structure. Chapter 5 defines Sasaki-Einstein structures and gives some

existence and obstruction results. In particular, some general properties of Sasaki-

Einstein structures are in 5.1, a sufficient condition for existence of Sasaki-Einstein

metrics is described in 5.2, and the Lichnerowicz obstruction is considered in 5.3.

Appendix A contains a table of (w,d) types shown to possess Sasaki-Einstein met-

rics. Appendix B contains tables of families of types and sporadic types possessing

2



Chapter 1. Introduction

positive Sasakian structures, up to d1 ≤ d2 ≤ 600. Appendix C contains tables of types

that are well-formed, a concept of interest to those who study log del Pezzo surfaces.

Details of a partial classification of types, based on the relations of the highest two

weights to the degrees of the hypersurfaces are worked out in Appendix D.

This paper is in some senses an addendum to parts of Chapters 9, 10, and 11

of [3]. Future research will include an attempt to extend the classification approach

here to arbitrary degree. In fact, I conjecture that the list of sporadic cases in B.3

is complete, and that the one and three parameter families of types included in B.1

and B.2 account for all higher degree types. Topology computations for the three

parameter families will be completed. Moduli spaces should be examined as well.

Some work remains in the hypersurface case to complete the list of (w,d) types

and compute the topology for each. The general approach used here will be much

simpler in the hypersurface case, as there is an explicit formula for computation of

the topology.

Finally, there is of course, the same question in higher dimensions.

3



Chapter 2

Weighted Projective Varieties,

Sasakian structures, and Links

2.1 Weighted projective spaces and varieties

The main references for this section are [10] and [14]

Let w = (w0,w1, . . . ,wn) ∈ Zn+1
+ , let (x0, x1, . . . , xn) be affine coordinates on Cn+1,

and let C∗ act by
λ(x0, x1, . . . , xn) = (λ

w0x0, λ
w1x1, . . . , λ

wnxn) (2.1)

Then P(w) = P(w0,w1, . . . ,wn) ∶= (Cn+1 ∖ {0})/C∗
is weighted projective space of weight w. P(w) is a rational n-dimensional projective

variety. Let π ∶ Cn+1 ∖ {0} → P(w) be the canonical projection. P(w) has the

structure of an orbifold (a complex variety possessing only quotient singularities). In

particular, the affine pieces Ui = (xi ≠ 0) ≅ Cn/(Z/wiZ) determine an orbifold atlas.
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Chapter 2. WPS and Sasakian Links

If ε is a primitive wth
i root of unity, then the group acts via zj ↦ εwizj for j ≠ i. Thus

zj = (xj/xi)wj/wi. As varieties P(w0, qw1, . . . , qwn) ≅ P(w0,w1, . . . ,wn) for q ≥ 1, but

they have different orbifold structures (see [10]).

Definition 1 The expression P(w0,w1, . . . ,wn) is well-formed if

gcd(w0, . . . , ŵ1, . . . ,wn) = 1

for each i.

A polynomial f ∈ C[x0, x1, . . . , xn] is called a weighted homogeneous polynomial

of degree d and weight w = (w0,w1, . . . ,wn) if for λ ∈ C∗,
f(λw0x0, λ

w1x1, . . . , λ
wnxn) = λdf(x0, x1, . . . , xn)

A weighted projective variety is the zero-set of an ideal generated by weighted homo-

geneous polynomials all having the same weight.

If V ⊂ Cn+1 is a variety defined by weighted homogeneous polynomials f1, . . . , fr

all having the same weights w, then V is invariant under the weighted C∗ action

(2.1). The converse is true as well [26]: if a variety V is invariant under the weightedC∗ action (2.1), it can be defined by weighted homogeneous polynomials. Therefore,

the quotient V /C∗ is well-defined in P(w) and so is a weighted projective variety. Let

X be any weighted projective variety and let C∗X = π−1(X) where π is the canonical

projection. Then we have the following commutative diagram:

C∗X Cn+1 ∖ {0}P(w)X

Let CX be the affine closure of C∗X in Cn+1. CX is called the affine cone and C∗X
the punctured affine cone over X .

5



Chapter 2. WPS and Sasakian Links

A variety V is a complete intersection if the minimal number of generators of its

ideal is equal to its codimension.

Given weights w denote by Xd1,...,dc ⊂ P(w) the family of all complete intersec-

tions of multidegree d = (d1, . . . , dc). This notation will also sometimes denote a

sufficiently general member of the family.

Definition 2 A complete intersection X = Xd1,...,dc ⊂ P(w0, . . . ,wn) is quasismooth

if its affine cone CX is smooth outside its vertex.

Conditions will be given in Section 3 for quasismoothness in terms of the weights

and degrees.

Definition 3 A variety X = Xd1,...,dc ⊂ P(w0, . . . ,wn) of codimension c is well-

formed if the expression for P is well-formed (see Definition 1) and X contains

no codimension c + 1 singular stratum of P.
Conditions will be given in Section 3 for X to be well-formed in terms of the

weights and degrees.

2.2 Sasakian manifolds and the Sasakian structure

on the weighted sphere

The main reference for this section is [3]. A contact manifold is a (2n+1)-dimensional

manifold with a contact form, that is, a 1-form η such that η ∧ (dη)n ≠ 0. The Reeb

vector field ξ, is the unique vector field such that ξ⌟η = 1 and ξ⌟dη = 0. Let D = ker η.
Then (D, dη) is a symplectic structure. An almost contact structure is a structure

(ξ, η,Φ) where ξ is a vector field, η is a 1-form, and Φ is a (1,1) tensor field such that

6



Chapter 2. WPS and Sasakian Links

η(ξ) = 1 and Φ○Φ = −1+ξ⊗η. Φ○ξ = 0 and η○Φ = 0 follow. If (M,ξ, η,Φ) is an almost

contact manifold and (M,g) is a Riemannian manifold then g is compatible with the

almost contact structure if g(ΦX,ΦY ) = g(X,Y ) − η(X)η(Y ) for all X , Y vector

fields on M . If (M,η) is a contact manifold and dη(ΦX,ΦY ) = dη(X,Y ) for all X , Y

vector fields on M and dη(ΦX,X) > 0 for X ≠ 0, then the almost contact structure

is compatible with the contact structure. If, in addition, g(X,ΦY ) = dη(X,Y ),
(M,ξ, η,Φ, g) is a contact metric structure. The cone on (M,gM), C(M) =M ×R+
has a Riemannian structure (C(M), g) where g = dr2 + r2gM . Let Ψ = r ∂

∂r
. If M is

almost contact, define I by IY = ΦY +η(Y )Ψ, IΨ = −ξ. Then I is an almost complex

structure. An almost contact structure (ξ, η,Φ) is normal if I is integrable. If it is

contact as well, then it is Sasakian. That is, a structure is Sasakian if it is a normal

contact metric structure.

Let x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn). Consider the standard contact

form on R2n+2 = {(x,y)} given by η1 =
n∑
i=0
(yidxi − xidyi) restricted to the sphere

S2n+1 = {z = (x,y) ∈ Cn+1∣ n∑
i=o

∣zi∣2 = 1}
The Reeb vector field is given by

ξ1 =
n∑
i=0

(yi ∂

∂xi

− xi

∂

∂yi
)

Let Φ1 be the restriction of the standard complex structure on R2n+2 to D =
ker(η1∣S2n+1). Let g1 be the flat metric on R2n+2 restricted to S2n+1. g1 has constant

sectional curvature 1 and satisfies

g1 = dη1 ○ (Φ1 ⊗ 1) + η1 ⊗ η1
so is compatible with the contact form. Since the structure is almost complex, the

contact structure (S2n+1, η1,Φ1, g1) is normal, hence Sasakian.

With the above notation let Hi = yi
∂
∂xi
− xi

∂
∂yi

so ξ1 =
n∑
i=0

Hi.

7



Chapter 2. WPS and Sasakian Links

Let w = (w0,w1, . . . ,wn) ∈ Zn+1
+ and define ξw =

n∑
i=0

wiHi This determines a flow

on S2n+1 given by

(z0, z1, . . . , zn)↦ (e2πiw0t, e2πiw1t, . . . , e2πiwnt)
Define ηw =

η1
n

∑
i=0

wi∣zi∣2
, gw = dηw ○ (Φw ⊗ ) + ηw ⊗ ηw, and Φw = Φ1 − Φ(ξw − ξ1) ⊗ ηw

then S2n+1w = (ηw, ξw,Φw, gw) is a weighted Sasakian structure on S2n+1. [Note: the

standard structure has w = (1,1, . . . ,1), whence the subscript 1.]

The leaves of the foliation Fξw generated by ξw are all circles, so Fξw is equivalent

to a locally free circle action. The structure S2n+1w is quasiregular, that is, there is a

k > 0 such that each point has a foliated coordinate chart (U,x) such that each leaf

of Fξw passes through U at most k times.

2.3 Links of weighted complete intersections and

Sasakian structures on them

Let Vf = Vf1,...,fc = {z ∈ Cn+1∣f1(z) = ⋯ = fc(z)}. Suppose Vf has an isolated

critical point at the origin. Then for ε sufficiently small the sphere S2n+1
ε = {z ∈Cn+1∣∑n

i=0 ∣zi∣2 = ε} only encloses one critical point. Let Lf = Vf ∩ S2n+1
ε . Lf is called

the link of Vf at the origin. By scaling we can let ε = 1 so Lf = Vf ∩ S2n+1. Lf is a

(2(n + 1 − c) − 1)-dimensional manifold.

Suppose f = (f1, . . . , fc) and for each i, fi is weighted homogeneous of degree

di with weight w = (w0,w1, . . . ,wn) independent of i. If Vf has an isolated critical

point at the origin and no other critical points, then Vf = CXf
the affine cone over

a quasismooth weighted projective variety Xf in the family Xd1,...,dc ⊂ P(w). Vf is

invariant under the weighted C∗ action (2.1).

Given such Vf with weight w, consider the Sasakian structure on S2n+1
w , Sw =

8



Chapter 2. WPS and Sasakian Links

(ξw, ηw,Φw, gw). It is invariant under the same weighted C∗ action (2.1). For P ∈ Lf ,

(ξw)P ∈ TPLf and ΦwTPLf ⊂ TPLf so Sw restricts to a Sasakian structure on Lf ,

which is quasiregular as well.

Proposition 4 ([3, Proposition 9.2.4]) Given Lf and Sw be its induced Sasakian

structure. Then Sw is

(i) positive (anticanonical) if and only if ∣w∣ − ∣d∣ > 0,
(ii) null if and only if ∣w∣ − ∣d∣ = 0, and
(iii) negative (canonical) if and only if ∣w∣ − ∣d∣ < 0. ◻

The integer I = ∣w∣− ∣d∣ is called the Fano index of Xf when it is positive, and in

general the index of Vf or Lf .

Theorem 5 ([3, Theorem 9.5.1]) If Lf is the link of an isolated complete intersec-

tion singularity of weighted homogeneous polynomials f = (f1, . . . , fc), and ∣w∣− ∣d∣ >
0, then Lf admits a Sasakian metric with positive Ricci curvature. ◻

9



Chapter 3

Enumeration of Positive Sasakian

Links

3.1 Numerical Conditions for Quasismoothness

3.1.1 Hypersurfaces

General conditions for quasismoothness of hypersurfaces are given by [14, Theorem

8.1]:

Theorem 6 A general hypersurface, not a linear cone, Xd ⊂ P(w0, . . . ,wn) of de-
gree d, where n ≥ 1 is quasismooth if and only if for every nonempty subset I =

{i0, . . . , ik−1} of {0, . . . , n}, either
(a) there exists a monomial xM

I = x
m0

i0
⋯xmk−1

ik−1
of degree d, or

(b) for ν = 1, . . . , k, there exist monomials xMν

I xeν = x
m0,ν

i0
⋯x

mk−1,ν

ik−1
xeν of degree d

and {eν} are k distinct elements. ◻

10



Chapter 3. Enumeration of Positive Sasakian Links

Precise conditions for curves in P(w0,w1,w2) to be quasismooth are given by [14,

Corollary 8.4]:

Corollary 7 The curve Cd ⊂ P(w0,w1,w2), with d > wi, is quasismooth if and only

if the following hold for all i:

(1) there exists a monomial xn
i xei, for some ei, of degree d.

(2) there exists a monomial of degree d which does not involve xi. ◻

Precise conditions for surfaces in P(w0,w1,w2,w3) to be quasismooth are given

by [14, Corollary 8.5]:

Corollary 8 The surface Sd ⊂ P(w0,w1,w2,w3), with d > wi, is quasismooth if and

only if the following hold:

(1) for all i there exists a monomial xn
i xei, for some ei, of degree d.

(2) for all i < j either

(a) there exists a monomial xm
i x

n
j of degree d, or

(b) there exist monomials xm1

i xn1

j xe1 xm2

i xn2

j xe2 of degree d with e1 ≠ e2.

(3) there exists a monomial of degree d which does not involve xi. ◻

Precise conditions for 3-folds in P(w0,w1,w2,w3,w4) to be quasismooth are given

by [14, Corollary 8.6]:

Corollary 9 The 3-fold Xd ⊂ P(w0,w1,w2,w3,w4), with d > wi, is quasismooth if

and only if the following hold:

(1) for all i there exists a monomial xn
i xei, for some ei, of degree d.

(2) for all i < j either

(a) there exists a monomial xm
i x

n
j of degree d, or

(b) there exist monomials xm1

i xn1

j xe1 xm2

i xn2

j xe2 of degree d with e1 ≠ e2.

(3) for all i < j there exists a monomial of degree d which does not involve either

xi or xj. ◻

11
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Remark 10 A hypersurface variety satisfying condition (1) in any dimension is

called semiquasismooth [2].

Conditions for a hypersurface to be well-formed are given by ([14],6.10):

Remark 11 A hypersurface Xd ⊂ P(w0, . . . ,wn) is well formed if and only if

(i) gcd(w0, . . . , ŵi, . . . ,wn) = 1 for each i, and

(ii) gcd(w0, . . . , ŵi, . . . , ŵj , . . . ,wn) ∣ d for each i < j.

3.1.2 Codimension 2

General conditions for quasismoothness of codimension 2 weighted complete inter-

sections are given by [14, Theorem 8.7]:

Theorem 12 Suppose the general codimension 2 weighted complete intersection

Xd1,d2 ⊂ P(w0, . . . ,wn)
of multidegree {d1, d2}, where n ≥ 2, is not the intersection of a linear cone with an-

other hypersurface. Then Xd1,d2 in P is quasismooth if and only if for each nonempty

subset I = {i0, . . . , ik−1} of {0, . . . , n}, one of the following holds:

(a) there exists a monomial xM1

I of degree d1 and there exists a monomial xM2

I of

degree d2, or

(b) there exists a monomial xM
I of degree d1, and for ν = 1, . . . , k − 1, there exist

monomials xMν

I xeν of degree d2,where {eν} are k − 1 distinct elements, or

(c) there exists a monomial xM
I of degree d2, and for ν = 1, . . . , k − 1, there exist

monomials xMν

I xeν of degree d1,where {eν} are k − 1 distinct elements, or

(d) for ν = 1, . . . , k, there exist monomials x
Mν,1

I xeν,1 of degree d1, and x
Mν,2

I xeν,2

of degree d2, such that {eν,1} are k distinct elements, {eν,2} are k distinct elements,

and {eν,1, eν,2} contains at least k + 1 distinct elements. ◻

12
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Some general properties this condition requires are included in [14, Corollary 8.8]:

Corollary 13 Suppose Xd1,d2 ⊂ P(w0, . . . ,wn) is quasismooth and not the intersec-

tion of a linear cone with another hypersurface. Then the following hold:

(i) Every variable xi occurs in at least one of the defining equations.

(ii) All but at most one variable are in both equations.

(iii) If xi does not appear in one defining equation then there exists a monomial

xm
i occurring in the other equation. ◻

Precise conditions for codimension 2 quasismooth complete intersections (curves)

in P(w0,w1,w2,w3) are given by:

Corollary 14 Suppose the general codimension 2 weighted complete intersection

(curve) Xd1,d2 ⊂ P(w0,w1,w2,w3) of multidegree {d1, d2}, is not the intersection of a

linear cone with another hypersurface. Then Xd1,d2 in P is quasismooth if and only

if

(1) for all i either

(b) there exists a monomial xm1

i of degree d1, or

(c) there exists a monomial xm2

i of degree d2, or

(d) there exist monomials xn1

i xe1 of degree d1 for some e1, and xn2

i xe2 of degree

d2 for some e2, with e1 ≠ e2

(2) for all i < j either

(a) there exists a monomial xm1

i xn1

j of degree d1 and a monomial xm2

i xn2

j of

degree d2, or

(b) there exists a monomial xm1

i xn1

j of degree d1 and a monomial xm2

i xn2

j xe2

of degree d2, or

(c) there exists a monomial xm2

i xn2

j of degree d2 and a monomial xm1

i xn1

j xe1

of degree d1

(3) for all i < j < k

13



Chapter 3. Enumeration of Positive Sasakian Links

(a) there exists monomials xm1

i xn1

j x
p1
k of degree d1 and xm2

i xn2

j x
p2
k of degree d2

Proof : Conditions (1), (2), and (3) come from applying the conditions of Theorem 12

for ∣I ∣ = 1, ∣I ∣ = 2, and ∣I ∣ = 3 respectively. ◻

Remark 15 The condition (3) is equivalent to requiring for each i = 0,1,2,3 that

there exists a monomial not involving xi for each degree d1, d2.

Precise conditions for codimension 2 quasismooth complete intersections (sur-

faces) in P(w0,w1,w2,w3,w4) are given by:

Corollary 16 Suppose the general codimension 2 weighted complete intersection

(surface) Xd1,d2 ⊂ P(w0,w1,w2,w3,w4) of multidegree {d1, d2}, is not the intersec-

tion of a linear cone with another hypersurface. Then Xd1,d2 in P is quasismooth if

and only if

(1) for all i either

(b) there exists a monomial xm1

i of degree d1, or

(c) there exists a monomial xm2

i of degree d2, or

(d) there exist monomials xn1

i xe1 of degree d1 for some e1, and xn2

i xe2 of degree

d2 for some e2, with e1 ≠ e2

(2) for all i < j either

(a) there exists a monomial xm1

i xn1

j of degree d1 and a monomial xm2

i xn2

j of

degree d2, or

(b) there exists a monomial xm1

i xn1

j of degree d1 and a monomial xm2

i xn2

j xe2

of degree d2, or

(c) there exists a monomial xm2

i xn2

j of degree d2 and a monomial xm1

i xn1

j xe1

of degree d1, or

(d) there exist monomials x
m1,1

i x
n1,1

j xe1,1 and x
m1,2

i x
n1,2

j xe1,2 of degree d1 and

monomials x
m2,1

i x
n2,1

j xe2,1 and x
m2,2

i x
n2,2

j xe2,2 of degree d2 such that e1,1 ≠ e1,2, e2,1 ≠

14
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e2,2, and {e1,1, e1,2, e2,1, e2,2} contains 3 distinct elements.

(3) for all i < j < k either

(a) there exists a monomial xm1

i xn1

j x
p1
k of degree d1 and a monomial xm2

i xn2

j x
p2
k

of degree d2, or

(b) there exists a monomial xm1

i xn1

j x
p1
k of degree d1 and monomials

x
m2,1

i x
n2,1

j x
p2,1
k xe2,1 and x

m2,2

i x
n2,2

j x
p2,2
k xe2,2 of degree d2, with e2,1 ≠ e2,2, or

(c) there exists a monomial xm2

i xn2

j x
p2
k of degree d2 and monomials

x
m1,1

i x
n1,1

j x
p1,1
k xe1,1 and x

m1,2

i x
n1,2

j x
p1,2
k xe1,2 of degree d1, e1,1 ≠ e1,2

(4) for all i < j < k < l

(a) there exists monomials xm1

i xn1

j x
p1
k x

q1
l of degree d1 and xm2

i xn2

j x
p2
k x

q2
l of de-

gree d2.

Proof : Conditions (1), (2), (3), and (4) come from applying the conditions of The-

orem 12 for ∣I ∣ = 1, ∣I ∣ = 2, ∣I ∣ = 3, and ∣I ∣ = 4 respectively. ◻

Remark 17 The condition (4) is equivalent to requiring for each i = 0,1,2,3,4 that

there exists a monomial not involving xi for each degree d1, d2.

Conditions for a codimension 2 complete intersection to be well-formed are given

by ([14],6.11):

Remark 18 A complete intersection Xd1,d2 ⊂ P(w0, . . . ,wn) is well formed if and

only if

(i) gcd(w0, . . . , ŵi, . . . ,wn) = 1 for each i, and

(ii) gcd(w0, . . . , ŵi, . . . , ŵj , . . . ,wn) ∣ dm for each m for each i < j, and

(iii) gcd(w0, . . . , ŵi, . . . , ŵj , . . . , ŵk, . . . ,wn) ∣ dm for some m for each i < j < k.

15
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3.1.3 Codimension 3

These results can be generalized to codimension 3 by a simple generalization of the

proofs for the hypersurface [14, Theorem 8.1] and codimension 2 [14, Theorem 8.7]

cases. First, the following, [14, Lemma 6.19], is used in the proof of 20 below.

Lemma 19 Let Z be the affine variety of all points P which satisfy the determinantal

condition:

rank

⎛⎜⎜⎜⎜⎝

g1
1
(P ) ⋯ gm

1
(P )

⋮ ⋮

g1c(P ) ⋯ gmc (P )

⎞⎟⎟⎟⎟⎠
≤ k

where {gji } are general weighted homogeneous nonzero polynomials. If Z is nonempty

then codimZ ≤ (m − k)(c − k). ◻

Precise conditions for quasismoothness in codimension 3 are given by the follow-

ing.

Theorem 20 Suppose the general codimension 3 weighted complete intersection

Xd1,d2,d3 ⊂ P(w0, . . . ,wn)
of multidegree {d1, d2, d3}, where n ≥ 3, is not the intersection of a linear cone with a

codimension 2 subvariety. Then Xd1,d2,d3 in P is quasismooth if and only if for each

nonempty subset I = {i0, . . . , ik−1} of {0, . . . , n}, one of the following holds:

(a) there exist monomials xM1

I of degree d1, x
M2

I of degree d2, and xM3

I of degree

d3, or

(b) there exist monomials xM1

I of degree d1 and xM2

I of degree d2, and for ν =

1, . . . , k − 2, there exist monomials xMν

I xeν of degree d3, where {eν} are k − 2 distinct

elements, or

16
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(c) there exist monomials xM1

I of degree d1 and xM3

I of degree d3, and for ν =

1, . . . , k − 2, there exist monomials xMν

I xeν of degree d2, where {eν} are k − 2 distinct

elements, or

(d) there exist monomials xM2

I of degree d2 and xM3

I of degree d3, and for ν =

1, . . . , k − 2, there exist monomials xMν

I xeν of degree d1, where {eν} are k − 2 distinct

elements, or

(e) there exists a monomial xM
I of degree d1, and for ν = 1, . . . , k − 1, there exist

monomials x
Mν,2

I xeν,2 of degree d2 and x
Mν,3

I xeν,3 of degree d3, where {eν,2} are k − 1

distinct elements, {eν,3} are k − 1 distinct elements, and {eν,2, eν,3} contains at least
k distinct elements, or

(f) there exists a monomial xM
I of degree d2, and for ν = 1, . . . , k − 1, there exist

monomials x
Mν,1

I xeν,1 of degree d1 and x
Mν,3

I xeν,3 of degree d3, where {eν,1} are k − 1

distinct elements, {eν,3} are k − 1 distinct elements, and {eν,1, eν,3} contains at least
k distinct elements, or

(g) there exists a monomial xM
I of degree d3, and for ν = 1, . . . , k − 1, there exist

monomials x
Mν,1

I xeν,1 of degree d1 and x
Mν,2

I xeν,2 of degree d2, where {eν,1} are k − 1

distinct elements, {eν,2} are k − 1 distinct elements, and {eν,1, eν,2} contains at least
k distinct elements, or

(h) for ν = 1, . . . , k, there exist monomials x
Mν,1

I xeν,1 of degree d1, x
Mν,2

I xeν,2 of

degree d2, and x
Mν,3

I xeν,3 of degree d3 such that {eν,1} are k distinct elements, {eν,2}
are k distinct elements, {eν,3} are k distinct elements, and {eν,1, eν,2, eν,3} contains

at least k + 2 distinct elements.

Proof: Let F1, F2, F3 be linear systems of all homogeneous polynomials of degrees

d1, d2, and d3, respectively, with respect to the weights w0, . . . ,wn. Let f1 ∈ F1,

f2 ∈ F2, and f3 ∈ F3 be sufficiently general polynomials. Define

X =Xd1,d2,d3 ∶ (f1 = f2 = f3 = 0) ⊂ P(w)
We have the following commutative diagram:

17
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C∗X Cn+1 ∖ {0}P(w)X

From Bertini’s Theorem [12, Corollary III.10.9 and Remark III.10.9.2] the only

singularities that can occur in the general C∗X lie on the base loci of the linear systems

F1, F2, and F3. Any component of the base loci is a coordinate k-plane for some

k = 0, . . . , n. So the complete intersection Xd1,d2,d3 is quasismooth if and only if its

punctured affine cone C∗X is nonsingular at each point of its intersection with every

coordinate k-plane contained in the base loci. That is, X is quasismooth if and only

if C∗X is smooth along all the coordinate strata.

Let Π be a coordinate k-plane for some k. By renumbering, we can assume that

Π is given by xk = ⋯ = xn = 0, corresponding to the subset I = {0, . . . , k − 1}. Let

Π0 ⊂ Π be the open toric stratum where x0, . . . , xk−1 are all nonzero. Expand f1, f2,

f3 in terms of the coordinates {xk, . . . , xn}:
fλ = hλ(x0, . . . , xk−1) + n∑

i=k

xig
i
λ(x0, . . . , xk−1) + h.o.t.

for λ = 1,2,3.

Assume that one of the conditions (a), (b), (c), (d), (e), (f), (g), (h) holds for

each non-empty subset I.

If (a) holds, then h1, h2, and h3 are nonzero on Π0. If any of h1, h2, and h3

involve only two variables, then Π0∩C∗X is empty. This would include the cases k = 1

and k = 2, so without loss of generality, assume that h1, h2, and h3 each involve at

least three variables and hence k ≥ 3. Π0 is not part of the base locus of F1, F2,or F3.

By Bertini’s Theorem, (f1 = 0), (f2 = 0), and (f3 = 0) are nonsingular on Π0. Since

(h1 = 0), (h2 = 0), and (h3 = 0) are free linear systems on Π0, (h1 = 0), (h2 = 0), and
(h3 = 0) intersect transversally. Thus, at each point of (h1 = h2 = h3 = 0) ∩Π0, there

exist three distinct normals. Therefore C∗X is nonsingular along Π0.

18
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Suppose (b) holds. Then h1 and h2 are nonzero and at least k − 2 of the {gi
3
}

are nonzero. Π0 is not part of the base locus for F1 or F2, so by Bertini’s Theorem

(f1 = f2 = 0) is nonsingular on Π0. Singular points occur exactly on the locus

Z = (h1 = h2 = 0)⋂
i

(gi3 = 0) ⊂ Π0

which is an intersection of at least k − 2 free linear systems on (h1 = h2 = 0) ∩ Π0.

Thus dimZ ≤ 0 and hence is at worst the origin. Therefore C∗X is nonsingular along

Π0.

(c) and (d) are similar to (b).

Suppose (e) holds. Then h1 is nonzero and at least k − 1 of the {gi
2
} are nonzero

and at least k − 1 of the {gi
3
} are nonzero. Furthermore, the matrix

⎛⎜⎝
gk
2
⋯ gn

2

gk
3
⋯ gn

3

⎞⎟⎠
has at least k nonzero columns. Π0 is not part of the base locus for F1, so by Bertini’s

Theorem (f1 = 0) is nonsingular on Π0. Define the matrix MP by

⎛⎜⎝
gk
2
(P ) ⋯ gn

2
(P )

gk
3
(P ) ⋯ gn

3
(P )

⎞⎟⎠ .

Singular points occur on the locus Z = {P ∣rankMP ≤ 2}.
As there are at least k − 1 monomials of the form xM

I xe of degree dλ, λ = 2,3,

at least k − 1 of the {giλ} are nonzero. As these are free on Π0, each row of the

matrix MP is nonzero for each P ∈ Π0. Furthermore this matrix for any P ∈ Z has

at least k nonzero columns, since there are at least k distinct elements in {e2ν , e3ν}.
By renumbering we can assume that the first k columns of MP are not identically

zero on Π0. Fix P ∈ Π0. Without loss of generality we can assume that gk
2
(P ) ≠ 0. If

gk
3
(P ) = 0 then gi

3
(P ) ≠ 0 for some i > k so MP has rank 2, and P ∈ C∗X is nonsingular.
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Suppose gk
3
(P ) ≠ 0. Define a = gk

2
, b = gk

3
, and

ZP = {Q ∈ Π0∣⋂
i>k

(agi3(Q) − bgi2(Q) = 0)}.
Then, P ∈ ZP if and only if rankMP ≤ 1 in this case, which is equivalent to P ∈ C∗X
being singular. Since ZP is the intersection of at least k − 1 free linear systems on

Π0, dimZP ≤ 0 and so ZP is at worst the origin. In particular, P ∉ ZP and hence

P ∈ C∗X is nonsingular. Therefore, C∗X is nonsingular along Π0.

(f) and (g) are similar to (e).

Suppose only (h) holds. Then

fλ =
n∑
i=k

xig
i
λ(x0, . . . , xk−1) + h.o.t.

for λ = 1,2,3. The normal directions, perpendicular to the k-plane Π, to the hy-

persurfaces are (gk
1
, . . . , gn

1
), (gk

2
, . . . , gn

2
), and (gk

3
, . . . , gn

3
). Define the matrix MP

by

MP =

⎛⎜⎜⎜⎜⎝

gk
1
(P ) ⋯ gn

1
(P )

gk
2
(P ) ⋯ gn

2
(P )

gk
3
(P ) ⋯ gn

3
(P )

⎞⎟⎟⎟⎟⎠
.

Singular points occur on the locus Z = {P ∣rankMP ≤ 2}. As there are at least

k monomials of the form xM
I xe of degree dλ, at least k of the {giλ} are nonzero.

As these are free on Π0, each row of the matrix MP is nonzero for each P ∈ Π0.

Furthermore this matrix for any P ∈ Z has at least k+2 nonzero columns, since there

are at least k + 2 distinct elements in {e1ν , e2ν , e3ν}. By renumbering we can assume

that the first k + 2 columns of MP are not identically zero on Π0.

Fix P ∈ Π0. Without loss of generality we can assume that gk
1
(P ) ≠ 0. If gk

2
(P ) = 0

then gi
2
(P ) ≠ 0 for some i > k. Without loss of generality we can assume that i = k+1.

If gk
3
(P ) = gk+1

3
= 0, then g

j
3
(P ) ≠ 0 for some j > k + 1 so MP has rank 3 and P ∈ C∗X
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is nonsingular. Suppose gk
3
(P ) = 0 and gk+1

3
(P ) ≠ 0. Define b = gk+1

2
, c = gk+1

3
, and

ZP = {Q ∈ Π0∣ ⋂
i>k+1

(bgi3(Q) − cgi2(Q) = 0)}.
Then P ∈ ZP if and only if rankMP ≤ 2 in this case, which is equivalent to P ∈ C∗X
being singular. Since ZP is the intersection of at least k free linear systems on Π0,

dimZP ≤ 0 and so ZP is at worst the origin. In particular, P ∉ ZP and hence P ∈ C∗X
is nonsingular. Now, suppose either gk

2
(P ) ≠ 0 or gk

3
(P ) ≠ 0. Then, define a = gk

1
(P ),

b = gk
2
(P ), c = gk

2
(P ) and

ZP = {Q ∈ Π0∣ ⋂j>i>k (a(gi2(Q)gj3(Q) − gj2(Q)gi3(Q))
−b(gi1(Q)gj3(Q) − gj1(Q)gi3(Q))
+c(gi1(Q)gj2(Q) − gj1(Q)gi2(Q)) = 0)}.

Then, again, P ∈ ZP if and only if rankMP ≤ 2 in this case, which is equivalent to

P ∈ C∗X being singular. Since ZP is the intersection of at least k free linear systems

on Π0, dimZP ≤ 0 and so ZP is at worst the origin. In particular, P ∉ ZP and hence

P ∈ C∗X is nonsingular. Therefore, C∗X is nonsingular along Π0.

As one of these eight conditions holds for every nonempty set I, C∗X is nonsingular.

Conversely, assume that none of the conditions (a), (b), (c), (d), (e), (f), (g),

(h) hold for some non-empty subset I. Without loss of generality we can assume

that I = {0, . . . , k − 1} for some k. Let Π be the corresponding coordinate plane

xk = ⋯ = xn = 0. There are several cases:

(i) Π ⊄ CXd1
∪CXd2

. Then h1 and h2 are nonzero and since conditions (b) does not

hold,there are at most k − 3 of the {gi
3
} which are nonzero. The singular points are

exactly the locus

Z = (h1 = h2 = 0)⋂
i

(gi3 = 0)
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so

dimZ ≥ k − (k − 3) − 2 = 1.
Then Z contains more than the origin and C∗X is singular along Π.

(ii) Π ⊄ CXd1
∪ CXd3

. As in case (i), C∗X is singular along Π.

(iii) Π ⊄ CXd2
∪ CXd3

. As in case (i), C∗X is singular along Π.

(iv) Π ⊂ (CXd2
∩CXd3

)∖CXd1
. Then h1 is nonzero and since condition (e) does not

hold, either

(1) there are at most k − 2 of the {gi
2
} which are nonzero,

(2) there are at most k − 2 of the {gi
3
} which are nonzero, or

(3) there are at most k − 1 nonzero columns in the matrix

⎛⎜⎝
gk
2
⋯ gn

2

gk
3
⋯ gn

3

⎞⎟⎠ .

In case (1) the intersection Z = ⋂i(gi2 = 0) has dimension at least 1 and so the

{gi
2
} have a common solution and the matrix

MP =
⎛⎜⎝
gk
2
(P ) ⋯ gn

2
(P )

gk
3
(P ) ⋯ gn

3
(P )

⎞⎟⎠
has rank less than 2 for some P ∈ Z and hence C∗X is singular along Π. Case (2) is

similar to case (1). In case (3) let Z = {P ∣rankMP ≤ 1}. Then, by Lemma 19,

dimZ ≥ k − (k − 2) − 1 = 1,
so Z contains more than just the origin. Therefore C∗X is singular along Π.

(v) Π ⊂ (CXd1
∩ CXd3

) ∖ CXd2
. As in case (iv), C∗X is singular along Π.
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(vi) Π ⊂ (CXd1
∩ CXd2

) ∖ CXd3
. As in case (iv), C∗X is singular along Π.

(vii) Π ⊂ CXd1
∩ CXd3

∩ CXd2
. In this case, h1, h2, and h3 are all identically zero.

Then

fλ =
n∑
i=k

xig
i
λ(x0, . . . , xk−1) + h.o.t.

for λ = 1,2,3. As condition (h) does not hold, one of two cases occurs: (1) for some

λ there are at most k−1 of the {giλ} which are nonzero, or (2) there are at most k+1

distinct elements in the set {e1ν , e2ν , e3ν}. In case (1), the intersection Zλ = ⋂i(giλ = 0)
has dimension at least 1, so the matrix

MP =

⎛⎜⎜⎜⎜⎝

gk
1
(P ) ⋯ gn

1
(P )

gk
2
(P ) ⋯ gn

2
(P )

gk
3
(P ) ⋯ gn

3
(P )

⎞⎟⎟⎟⎟⎠
has rank less than 3 for some P ∈ Zλ and hence C∗X is singular along Π. In case (2)

there are at most k + 1 nonzero columns in MP . Let Z = {P ∣rankMP ≤ 2}. Then
dimZ ≥ k − (k − 1) = 1,

so Z contains more than just the origin. Therefore C∗X is singular along Π. ◻

Corollary 13 has its counterpart in codimension 3:

Corollary 21 Suppose Xd1,d2,d3 ⊂ P(w0, . . . ,wn) is quasismooth and not the inter-

section of a linear cone with another subvariety. Then the following hold:

(i) Every variable xi occurs in at least one of the defining equations.

(ii) If xi does not appear in two of the defining equations then there exists a

monomial xm
i occurring in the other equation.

(iii) Every pair of variables xi, xj occurs in at least two of the defining equations.

(iv) If neither xi and xj appear in one of the defining equations, then both the

other equations contain a monomial of the form xm
i x

n
j .

(v) Each defining equation lacks at most two variables.
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Proof: (i) and (ii) follow from Theorem 20 for ∣I ∣ = 1. (iii) and (iv) follow from

Theorem 20 for ∣I ∣ = 2. (v) follows from Theorem 20 for ∣I ∣ = 3. ◻
Precise conditions for codimension 3 quasismooth complete intersections (curves)

in P(w0,w1,w2,w3,w4) are given by:

Corollary 22 Suppose the general codimension 3 weighted complete intersection

(curve) Xd1,d2,d3 ⊂ P(w0,w1,w2,w3,w4) of multidegree {d1, d2, d3} is not the inter-

section of a linear cone with a codimension 2 subvariety. Then Xd1,d2,d3 in P is

quasismooth if and only if

(1) for each i one of the following holds:

(e) there exists a monomial xm
i of degree d1, or

(f) there exists a monomial xm
i of degree d2, or

(g) there exists a monomial xm
i of degree d3, or

(h) there exist monomials xm1

i xe1 of degree d1, x
m2

i xe2 of degree d2, and xm3

i xe3

of degree d3 such that {e1, e2, e3} contains 3 distinct elements.

(2) for each i < j one of the following holds:

(b) there exist monomials xm1

i xn1

j of degree d1 and xm2

i xn2

j of degree d2, or

(c) there exist monomials xm1

i xn1

j of degree d1 and xm3

i xn3

j of degree d3, or

(d) there exist monomials xm2

i xn2

j of degree d2 and xm3

i xn3

j of degree d3, or

(e) there exists a monomial xm1

i xn1

j of degree d1 and a monomial xm2

i xn2

j xe2

of degree d2 and a monomial xm3

i xn3

j xe3 of degree d3 where e2 ≠ e3, or

(f) there exists a monomial xm2

i xn2

j of degree d2 and a monomial xm1

i xn1

j xe1 of

degree d1 and a monomial xm3

i xn3

j xe3 of degree d3 where e1 ≠ e3, or

(g) there exists a monomial xm3

i xn3

j of degree d3 and a monomial xm1

i xn1

j xe1

of degree d1 and a monomial xm2

i xn2

j xe2 of degree d2 where e1 ≠ e2

(3) for each i < j < k one of the following holds:

(a) there exist monomials xm1

i xn1

j x
p1
k of degree d1, x

m2

i xn2

j x
p2
k of degree d2, and

xm3

i xn3

j x
p3
k of degree d3, or
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(b) there exist monomials xm1

i xn1

j x
p1
k of degree d1, x

m2

i xn2

j x
p2
k of degree d2, and

xm3

i xn3

j x
p3
k xl of degree d3, or

(c) there exist monomials xm1

i xn1

j x
p1
k of degree d1, x

m2

i xn2

j x
p2
k xl of degree d2,

and xm3

i xn3

j x
p3
k of degree d3, or

(d) there exist monomials xm1

i xn1

j x
p1
k xl of degree d1, x

m2

i xn2

j x
p2
k of degree d2,

and xm3

i xn3

j x
p3
k of degree d3

(4) for each i < j < k < l one of the following holds:

(a) there exist monomials xm1

i xn1

j x
p1
k x

q1
l of degree d1, x

m2

i xn2

j x
p2
k x

q2
l of degree

d2, and xm3

i xn3

j xp3
k
xq3
l

of degree d3

Proof: Direct application of Theorem 20 for ∣I∣ = 1, ∣I∣ = 2, ∣I∣ = 3, and ∣I∣ = 4. ◻

Remark 23 The condition (4) is equivalent to requiring for each i = 0,1,2,3,4 that

there exists a monomial not involving xi for each degree d1, d2, and d3.

Precise conditions for quasismooth codimension 3 complete intersections (sur-

faces) in P(w0,w1,w2,w3,w4,w5) are given by:

Corollary 24 Suppose the general codimension 3 weighted complete intersection

(surface) Xd1,d2,d3 ⊂ P(w0,w1,w2,w3,w4,w5) of multidegree {d1, d2, d3} is not the

intersection of a linear cone with a codimension 2 subvariety. Then Xd1,d2,d3 in P is

quasismooth if and only if

(1) for each i one of the following holds:

(e) there exists a monomial xm
i of degree d1, or

(f) there exists a monomial xm
i of degree d2, or

(g) there exists a monomial xm
i of degree d3, or

(h) there exist monomials xm1

i xe1 of degree d1, x
m2

i xe2 of degree d2, and xm3

i xe3

of degree d3 such that {e1, e2, e3} contains 3 distinct elements.

(2) for each i < j one of the following holds:
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(b) there exist monomials xm1

i xn1

j of degree d1 and xm2

i xn2

j of degree d2, or

(c) there exist monomials xm1

i xn1

j of degree d1 and xm3

i xn3

j of degree d3, or

(d) there exist monomials xm2

i xn2

j of degree d2 and xm3

i xn3

j of degree d3, or

(e) there exists a monomial xm1

i xn1

j of degree d1 and a monomial xm2

i xn2

j xe2

of degree d2 and a monomial xm3

i xn3

j xe3 of degree d3 where e2 ≠ e3, or

(f) there exists a monomial xm2

i xn2

j of degree d2 and a monomial xm1

i xn1

j xe1 of

degree d1 and a monomial xm3

i xn3

j xe3 of degree d3 where e1 ≠ e3, or

(g) there exists a monomial xm3

i xn3

j of degree d3 and a monomial xm1

i xn1

j xe1

of degree d1 and a monomial xm2

i xn2

j xe2 of degree d2 where e1 ≠ e2, or

(h)there exist monomials xm1

i xn1

j xe1,1 and xm1

i xn1

j xe1,2 of degree d1, x
m2

i xn2

j xe2,1

and xm2

i xn2

j xe2,2 of degree d2, and xm3

i xn3

j xe3,1 and xm3

i xn3

j xe3,2 of degree d3 such that

{e1,1} ≠ {e1,1}, {e2,1} ≠ {e2,1}, {e3,1} ≠ {e3,1}, and {e1,1, e1,2, e2,1, e2,2, e3,1, e3,2} con-

tains at least 4 distinct elements.

(3) for each i < j < k one of the following holds:

(a) there exist monomials xm1

i xn1

j x
p1
k of degree d1, x

m2

i xn2

j x
p2
k of degree d2, and

xm3

i xn3

j x
p3
k of degree d3, or

(b) there exist monomials xm1

i xn1

j x
p1
k of degree d1, x

m2

i xn2

j x
p2
k of degree d2, and

xm3

i xn3

j xp3
k
xl of degree d3, or

(c) there exist monomials xm1

i xn1

j x
p1
k of degree d1, x

m2

i xn2

j x
p2
k xl of degree d2,

and xm3

i xn3

j x
p3
k of degree d3, or

(d) there exist monomials xm1

i xn1

j x
p1
k xl of degree d1, x

m2

i xn2

j x
p2
k of degree d2,

and xm3

i xn3

j x
p3
k of degree d3, or

(e) there exist monomials xm1

i xn1

j x
p1
k of degree d1, x

m2,1

i x
n2,1

j x
p2,1
k xe2,1 and

x
m2,2

i x
n2,2

j x
p2,2
k xe2,2 of degree d2, and x

m3,1

i x
n3,1

j x
p3,1
k xe3,1 and x

m3,2

i x
n3,2

j x
p3,2
k xe3,2of degree

d3, where e2,1 ≠ e2,2, e3,1 ≠ e3,2, and {e2,1, e2,2, e3,1, e3,2} contains at least 3 distinct

elements, or

(f) there exist monomials x
m1,1

i x
n1,1

j x
p1,1
k

xe1,1 and x
m1,2

i x
n1,2

j x
p1,2
k

xe1,2of degree

d1, x
m2

i xn2

j x
p2
k xl of degree d2, and x

m3,1

i x
n3,1

j x
p3,1
k xe3,1 and x

m3,2

i x
n3,2

j x
p3,2
k xe3,2of degree
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d3, where e1,1 ≠ e1,2, e3,1 ≠ e3,2, and {e1,1, e1,2, e3,1, e3,2} contains at least 3 distinct

elements, or

(g) there exist monomials x
m1,1

i x
n1,1

j x
p1,1
k xe1,1 and x

m1,2

i x
n1,2

j x
p1,2
k xe1,2of degree

d1 x
m2,1

i x
n2,1

j x
p2,1
k xe2,1 and x

m2,2

i x
n2,2

j x
p2,2
k xe2,2of degree d2, and xm3

i xn3

j x
p3
k of degree d3,

where e1,1 ≠ e1,2, e2,1 ≠ e2,2, and {e1,1, e1,2, e2,1, e2,2} contains at least 3 distinct ele-

ments

(4) for each i < j < k < l one of the following holds:

(a) there exist monomials xm1

i xn1

j x
p1
k x

q1
l of degree d1, x

m2

i xn2

j x
p2
k x

q2
l of degree

d2, and xm3

i xn3

j xp3
k
xq3
l

of degree d3, or

(b) there exist monomials xm1

i xn1

j x
p1
k x

q1
l of degree d1, x

m2

i xn2

j x
p2
k x

q2
l of degree

d2, and xm3

i xn3

j x
p3
k x

q3
l xe1 and xm3

i xn3

j x
p3
k x

q3
l xe2 of degree d3, where e1 ≠ e2, or

(c) there exist monomials xm1

i xn1

j x
p1
k x

q1
l of degree d1, xm2

i xn2

j x
p2
k x

q2
l xe1 and

xm2

i xn2

j x
p2
k x

q2
l xe2 of degree d2, where e1 ≠ e2, and xm3

i xn3

j x
p3
k x

q3
l of degree d3, or

(d) there exist monomials xm1

i xn1

j x
p1
k x

q1
l xe1 and xm1

i xn1

j x
p1
k x

q1
l xe2 of degree d1,

where e1 ≠ e2, x
m2

i xn2

j x
p2
k x

q2
l of degree d2, and xm3

i xn3

j x
p3
k x

q3
l of degree d3

(5) for each h < i < j < k < l

(a) there exist monomials xm1

h xn1

i x
p1
j x

q1
k xr1

l of degree d1, xm2

h xn2

i x
p2
j x

q2
k x

r2
l of

degree d2, and xm3

h
xn3

i xp3
j xq3

k
xr3
l

of degree d3.

Proof: Direct application of Theorem 20 for ∣I∣ = 1, ∣I∣ = 2, ∣I∣ = 3, ∣I∣ = 4, and

∣I∣ = 5. ◻
Remark 25 The condition (5) is equivalent to requiring for each i = 0,1,2,3,4,5

that there exists a monomial not involving xi for each degree d1, d2, and d3.

Conditions for a codimension 3 complete intersection to be well-formed are given

by (see [14],6.12):

Remark 26 A complete intersection Xd1,d2,d3 ⊂ P(w0, . . . ,wn) is well formed if and

only if
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(i) gcd(w0, . . . , ŵi, . . . ,wn) = 1 for each i, and

(ii) gcd(w0, . . . , ŵi, . . . , ŵj , . . . ,wn) ∣ dm for each m for each i < j, and

(iii) gcd(w0, . . . , ŵi, . . . , ŵj , . . . , ŵk, . . . ,wn) ∣ dm for at least two m for each i < j <

k, and

(iv) gcd(w0, . . . , ŵi, . . . , ŵj , . . . , ŵk, . . . , ŵl, . . . ,wn) ∣ dm for some m for each i <

j < k < l.

3.1.4 General Codimensions

The technique of proof given in [14] for Theorems 6 and 12, and extended to Theo-

rem 20 above, clearly generalizes. The number of possible cases is 2c, where c is the

codimension.

Let Σc be the set of permutations of {1, . . . , c}.
Let Σc,i = {σ ∈ Σc∣σ(1) < ⋯ < σ(i), σ(i + 1) < ⋯ < σ(c)}

Theorem 27 Suppose the general codimension c weighted complete intersection

Xd1,...,dc ⊂ P(w0, . . . ,wn)
of multidegree {d1, . . . , dc}, where n ≥ 2 and n − c ≥ 1, is not the intersection of a

linear cone with a codimension c − 1 subvariety. Then Xd1,...,dc in P is quasismooth

if and only if for each nonempty subset I = {i0, . . . , ik−1} of {0, . . . , n}, one of the

following holds:

(0) there exist monomials xM1

I of degree d1, . . . , and xMc

I of degree dc

(1) for some σ ∈ Σc,c−1, there exist monomials x
Mσ(1)

I of degree dσ(1),. . . , x
Mσ(c−1)

I

of degree dσ(c−1), and for ν = 1, . . . , k − c + 1, there exist monomials xMν

I xeν of degree

dσ(c), where {eν} are k − c + 1 distinct elements

⋮ ⋮ ⋮ ⋮ ⋮
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(j) for some σ ∈ Σc,c−j, there exist monomials x
Mσ(1)

I of degree dσ(1),. . . ,x
Mσ(c−j)

I

of degree dσ(c−j), and for ν = 1, . . . , k− c+ j, there exist monomials x
Mc−j+1,ν

I xec−j+1,ν of

degree dσ(c−j+1), where {ec−j+1,ν} are k − c + j distinct elements,. . . ,there exist mono-

mials x
Mc,ν

I xec,ν of degree dσ(c), where {ec,ν} are k − c + 2j − 1 distinct elements

⋮ ⋮ ⋮ ⋮ ⋮

(n-1) for some σ ∈ Σc,1, there exists a monomial x
Mσ(1)

I of degree dσ(1), and for

ν = 1, . . . , k−1, there exist monomials x
Mσ(2),ν

I xeσ(2),ν of degree dσ(2),. . . ,x
Mσ(c),ν

I xeσ(c),ν

of degree dσ(c), where {eσ(2),ν} are k − 1 distinct elements,. . . ,{eσ(c),ν} are k − 1 dis-

tinct elements, and {eσ(2),ν , eσ(c)ν} contains at least k + c − 3 distinct elements

(n) for ν = 1, . . . , k, there exist monomials x
M1,ν

I xe1,ν of degree d1, . . . , x
Mc,ν

I xec,ν of

degree dc such that {e1,ν} are k distinct elements, . . . , {ec,ν} are k distinct elements,

and {e1,ν , . . . , e3,ν} contains at least k + c − 1 distinct elements.

Proof : As illustrated above in the case c = 3 (Theorem 20), using Bertini’s Theorem,

linear algebra, and dimensionality arguments. ◻

Corollaries 13 and 21 also generalize:

Corollary 28 Suppose Xd1,...,dc ⊂ P(w0, . . . ,wn) is quasismooth and not the inter-

section of a linear cone with another subvariety. Then the following hold for k ∈

{1, . . . , c − 1}:
(i) Every k-tuple of variables {xi0 , . . . , xik−1} occurs in at least k of the defining

equations.

(ii) If none of a k-tuple of variables {xi0 , . . . , xik−1} occur in c − k of the defin-

ing equations then each of the other k equations contain a monomial of the form

xm0

i0
⋯xmk−1

ik−1
.

(iii) Each order k subset of defining equations lacks at most c − k variables. ◻

[Note: Chen, Chen, and Chen [7, Proposition 3.1(1)] prove this for k = 1.]
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Conditions for a general codimension complete intersection to be well-formed are

given by ([14],6.12):

Remark 29 A complete intersection Xd1,...,dc ⊂ P(w0, . . . ,wn) is well formed if and

only if

(i) gcd(w0, . . . , ŵi, . . . ,wn) = 1 for each i, and

(ii) for each µ = 1, . . . , c, the greatest common divisor of any (n− 1− c+µ) of the
{wi} must divide at least µ of the {dj}.

3.2 Additional constraints required for positivity

3.2.1 Codimension 2

Lemma 30 Let Xd1,d2 ⊂ P(w0, . . . ,wn) of multidegree {d1, d2} be a codimension 2

weighted complete intersection. Suppose Xd1,d2 is quasismooth and not the intersec-

tion of a linear cone with another hypersurface. Assume w0 ≤ ⋯ ≤ wn and d1 ≤ d2.

Then (a) d2 ≥ wn +w1 and (b) d1 ≥ wn−1 +w0.

Proof : (a) Apply Theorem 12 to I = {n}. Then one of the following holds:

(i) m1wn = d1, or

(ii) m2wn = d2, or

(iii) m3wn +wi = d1 and m4wn +wj = d2 with i, j ∈ {0, . . . , n − 1} and i ≠ j.

(i)⇒ d2 ≥ d1 ≥ 2wn ≥ wn +w1. (ii)⇒ d2 ≥ 2wn ≥ wn +w1. (iii) If j > 0, d2 =m4wn +

wj ≥ wn +wj ≥ wn+w1. If j = 0, then i > 0, so d2 ≥ d1 =m4wn+wi ≥ wn+wi ≥ wn +w1.

(b) Apply Theorem 12 to I = {n − 1, n}. Then one of the following holds:

(i) mwn−1 + pwn = d1 or

(ii) m1wn−1 + p1wn +wi = d1 with i ∈ {0, . . . , n − 2}.
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(i)⇒ d1 ≥ 2wn−1 ≥ wn−1 +w0. (ii)⇒ d1 ≥ wn−1 +wi ≥ wn−1 +w0. ◻

Lemma 31 Let Xd1,d2 ⊂ P(w0,w1,w2,w3) of multidegree {d1, d2} be a codimension

2 weighted complete intersection. Suppose Xd1,d2 is quasismooth and not the inter-

section of a linear cone with another hypersurface. Assume w0 ≤ w1 ≤ w2 ≤ w3 and

d1 ≤ d2. Then ∣w∣ ≤ ∣d∣. Furthermore, if ∣w∣ = ∣d∣, then w3 < d1.

Proof : First suppose ∣w∣ ≥ ∣d∣ and d1 < w3. From Lemma 30 we have d2 ≥ w3 + w1

and d1 ≥ w2 + w0, so under our assumption, w3 > w2. Then (iii) of Corollary 13

requires d2 ≥ 2w3. Then

w0 +w1 +w2 +w3 ≥ d1 + d2 ≥ d1 + 2w3 > d1 +w2 +w3⇒ w0 +w1 > d1

which contradicts d1 ≥ w2 +w0.

Now suppose ∣w∣ > ∣d∣. Then by Lemma 30

w0 +w1 +w2 +w3 > d1 + d2 ≥ w0 +w1 +w2 +w3

which is a contradiction. Therefore ∣w∣ ≤ ∣d∣. ◻.

Example 32 X2,2 ⊂ P(1,1,1,1) is quasismooth and has ∣w∣ = ∣d∣.

Example 33 X2,6 ⊂ P(1,1,1,3) is quasismooth and has ∣w∣ < ∣d∣ and w3 < d1

Lemma 34 Let Xd1,d2 ⊂ P(w0,w1,w2,w3,w4) of multidegree {d1, d2} be a codimen-

sion 2 weighted complete intersection. Suppose Xd1,d2 is quasismooth and not the in-

tersection of a linear cone with another hypersurface. Assume w0 ≤ w1 ≤ w2 ≤ w3 ≤ w4

and d1 ≤ d2. If ∣w∣ ≥ ∣d∣, then w4 < d1.
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Proof : Suppose, on the contrary, that d1 < w4. By Lemma 30 we have d2 ≥ w4 +w1

and d1 ≥ w3 + w0 respectively, so under our assumption, w4 > w3. From (iii) of

Corollary 13 we have that d2 = kw4 ≥ 2w4. Then

w0 +w1 +w2 +w3 +w4 ≥ d1 + d2 ≥ w0 +w3 + 2w4

so

w1 +w2 ≥ w4 > d1.

From (3) of Corollary 16 applied to {2,3,4}, we must have either (i)mw2+nw3+pw4 =

d1 or both (ii) m0w2 + n0w3 + p0w4 +w0 = d1 and (iii) m1w2 + n1w3 + p1w4 +w1 = d1.

(i) and (iii) are impossible since w1 +w2 > d1. ◻

Example 35 X2,6 ⊂ P(1,1,1,1,3) is quasismooth and has both d1 < w4 and ∣w∣ < ∣d∣.

3.2.2 Codimension 3

Lemma 36 Let Xd1,d2,d3 ⊂ P(w0, . . . ,wn) of multidegree {d1, d2, d3} be a codimen-

sion 3 weighted complete intersection. Suppose Xd1,d2,d3 is quasismooth and not the

intersection of a linear cone with another hypersurface. Assume w0 ≤ ⋯ ≤ wn and

d1 ≤ d2. Then (a) d3 ≥ wn +w2, (b) d2 ≥ wn−1 +w1, and (c) d1 ≥ wn−2 +w0.

Proof : (a) Apply Theorem 20 to I = {n}. Then one of the following holds:

(i) m1wn = d1, or

(ii) m2wn = d2, or

(ii) m3wn = d3, or

(iv) m4wn+wi = d1, m5wn+wj = d2, and m6wn+wk = d3 with i, j, k ∈ {0, . . . , n−1},
{i, j, k} distinct.

(i)⇒ d3 ≥ d2 ≥ d1 ≥ 2wn ≥ wn + w2. (ii)⇒ d3 ≥ d2 ≥ 2wn ≥ wn + w2. (iii)⇒ d3 ≥

2wn ≥ wn +w2. (iv) If k ≥ 2, d3 =m6wn +wk ≥ wn +wk ≥ wn +w2. If k < 2, then either
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i ≥ 2 in which case d3 ≥ d2 ≥ d1 =m4wn +wi ≥ wn +wi ≥ wn +w2 or j ≥ 2 in which case

d3 ≥ d2 =m5wn +wj ≥ wn +wj ≥ wn +w2.

(b) Apply Theorem 20 to I = {n−1, n}. Then at least one of the following holds:

(i) m1wn−1 + p1wn = d1, or

(ii) m2wn−1 + p2wn = d2 or

(iii) m3wn−1 + p3wn +wi = d1 and m4wn−1 + p4wn +wj = d2 with i, j ∈ {0, . . . , n− 2}
and i ≠ j.

(i)⇒ d2 ≥ d1 ≥ 2wn−1 ≥ wn−1 + w1. (i)⇒ d2 ≥ 2wn−1 ≥ wn−1 + w1. (iii) If j > 0,

d2 ≥ wn−1 +wj ≥ wn−1 +w1. If j = 0, then i > 0 so d2 ≥ d1 ≥ wn−1 +wi ≥ wn−1 +w1.

(c) Apply Theorem 20 to I = {n − 2, n − 1, n}. Then at least one of the following

holds:

(i) mwn−2 + pwn−1 + qwn = d1 or

(ii) m1wn−2 + p1wn−1 + q1wn +wi = d1 with i ∈ {0, . . . , n − 3}.
(i)⇒ d1 ≥ 2wn−2 ≥ wn−2 +w0. (ii)⇒ d1 ≥ wn−2 +wi ≥ wn−2 +w0. ◻

Lemma 37 Let Xd1,d2,d3 ⊂ P(w0,w1,w2,w3,w4) of multidegree {d1, d2, d3} be a codi-

mension 3 weighted complete intersection. Suppose Xd1,d2,d3 is quasismooth and not

the intersection of a linear cone with another subvariety. Assume w0 ≤ w1 ≤ w2 ≤

w3 ≤ w4 and d1 ≤ d2 ≤ d3. Then ∣w∣ < ∣d∣.
Proof : Suppose on the contrary that ∣w∣ ≥ ∣d∣. Lemma 36 implies that d3 ≥ w4 +w2,

d2 ≥ w3 +w1, and d1 ≥ w2 +w0. Then

w0 +w1 +w2 +w3 +w4 ≥ d1 + d2 + d3 ≥ (w0 +w2) + (w1 +w3) + (w2 +w4)
which is a contradiction. Therefore ∣w∣ < ∣d∣. ◻
Lemma 38 Let Xd1,d2,d3 ⊂ P(w0,w1,w2,w3,w4,w5) of multidegree {d1, d2, d3} be a

codimension 3 weighted complete intersection. Suppose Xd1,d2,d3 is quasismooth and
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not the intersection of a linear cone with another subvariety. Then ∣w∣ ≤ ∣d∣. Suppose
w0 ≤ w1 ≤ w2 ≤ w3 ≤ w4 ≤ w5 and d1 ≤ d2 ≤ d3. If ∣w∣ = ∣d∣, then w5 < d1.

Proof : Suppose ∣w∣ ≥ ∣d∣. Lemma 36 implies that d3 ≥ w5 + w2, d2 ≥ w4 + w1, and

d1 ≥ w3 +w0. We have

w0 +w1 +w2 +w3 +w4 +w5 ≥ d1 + d2 + d3 ≥ (w0 +w3) + (w1 +w4) + (w2 +w5)
so ∣w∣ = ∣d∣ Now suppose further that w5 > d1. Then, since d1 ≥ w3 + w0, w5 > d1.

From (1) of Corollary 24, we have that w5 ∣ d2 or w5 ∣ d3. Either way d3 ≥ 2w5 which

would imply

w0 +w1 +w2 +w3 +w4 +w5 = d1 + d2 + d3

≥ (w0 +w3) + (w1 +w4) + 2w5

> (w0 +w3) + (w1 +w4) + (w2 +w5)

which is a contradiction. ◻

Example 39 X2,2,2 ⊂ P(1,1,1,1,1,1) is quasismooth and has ∣w∣ = ∣d∣.

Example 40 X2,2,6 ⊂ P(1,1,1,1,1,3) is quasismooth and has both w5 > d2 and ∣w∣ <
∣d∣.

Example 41 X2,6,6 ⊂ P(1,1,1,1,1,3) is quasismooth and has both d2 > w5 > d1 and

∣w∣ < ∣d∣.

Proposition 42 1. Let Xd1,...,dn−1 ⊂ P(w0, . . . ,wn) be a weighted complete intersec-

tion curve.

(a) If ∣w∣ > ∣d∣ then n = 2.
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(b) If ∣w∣ = ∣d∣ then n = 2 or n = 3.

2. Let Xd1,...,dn−2 ⊂ P(w0, . . . ,wn) be a weighted complete intersection surface.

(a) If ∣w∣ > ∣d∣ then n = 3 or n = 4.

(b) If ∣w∣ = ∣d∣ then n = 3, n = 4, or n = 5.

Proof : These are implied by Lemmas 31, 34, 37, and 38 above. ◻

3.2.3 General Codimension

Lemma 43 Let Xd1,...,dc ⊂ P(w0, . . . ,wn) be a codimension c weighted complete in-

tersection. Suppose Xd1,...,dc is quasismooth and is not the intersection of a linear

cone with a codimension c − 1 subvariety. Assume w0 ≤ ⋯ ≤ wn and d1 ≤ ⋯ ≤ dc.

Then dc ≥ wn +wc−1,. . . , d1 ≥ wn−c+1 +w0.

Proof : Apply Theorem 27 here as Theorem 12 and Theorem 20 were used in the

proofs of Lemma 30 and Lemma 36 respectively. ◻

Proposition 44 Assume w0 ≤ ⋯ ≤ wn and d1 ≤ ⋯ ≤ dc. Let p = n − c. 1. If a

weighted complete intersection p-fold Xd1,...,dn−p ⊂ P(w0, . . . ,wn) has ∣w∣ > ∣d∣ then
p + 1 ≤ n < 2p + 1.

2. If a weighted complete intersection p-fold Xd1,...,dn−p ⊂ P(w0, . . . ,wn) has ∣w∣ = ∣d∣
then p + 1 ≤ n < 2p + 2.

[Note: Chen, Chen, and Chen prove a stronger result with a slightly different ap-

proach in [7, Theorem 1.3]]

Proof : By Lemma 43 we have dn−p ≥ wn +wn−p−1,. . . ,d1 ≥ wp+1 +w0 so

d1 +⋯+ dn−p ≥ (wn +wn−p−1) +⋯ + (wp+1 +w0).
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Then p + 1 ≤ n − p − 1⇒ ∣w∣ < ∣d∣ and p < n − p − 1⇒ ∣w∣ ≤ ∣d∣ ◻

3.3 Enumeration of 5-dimensional links of codi-

mension 2 complete intersection singularities

3-dimensional positive links of hypersurface singularities were enumerated in [26]

(with corrections in [2]). From Proposition 42 above, there are no positive 3-

dimensional links of higher codimension. 5-dimensional positive links of hypersurface

singularities were enumerated in [29, 30].

Based on the conditions in Corollary 16 and Lemma 34, along with positivity, we

have the following result:

Lemma 45 If w = (w0,w1,w2,w3,w4) with w0 ≤ w1 ≤ w2 ≤ w3 ≤ w4 and d = (d1, d2)
with d1 ≤ d2, then if Xd ⊂ P(w) is quasismooth and ∣w∣ > ∣d∣, Xd belongs to one of 41

classes when categorized by how condition (1) of Corollary 16 is satisfied with respect

to I = {3} and I = {4} and how condition (2) is satisfied with respect to I = {3,4}.
These classes are listed in Appendix D.

Proof : Details are worked out in Appendix D. ◻

Based on these classes, a program was written in Mathematica 9 (see documen-

tation at [1]) to implement the conditions of Corollary 16.

Theorem 46 Let w = (w0,w1,w2,w3,w4) and d = (d1, d2) with d1 ≤ d2 ≤ 600. If

Xd ⊂ P(w) is quasismooth and ∣w∣ > ∣d∣, then (w,d)
(i) belongs to one of the one parameter families in Table B.1 of the Appendix,

(ii) belongs to one of the three parameter families in Table B.2, or

(iii) is one of the sporadic cases in Table B.3. ◻
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Proposition 42 implies that positive quasismooth weighted projective surfaces

(which yield 5 dimensional links) must be either codimension 1 or 2. Therefore,

if this list were completed in the codimension 2 case, all 5 dimensional Sasakian

algebraic links would be known.

Appendix C lists all the well-formed types amongst the list above.
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Topology of Links

4.1 Hypersurface singularities

In the hypersurface case, we have [24]:

Theorem 47 (Milnor fibration theorem for hypersurface singularities) Let z0 ∈ Vf ,

a hypersurface in Cn+1. Then, for ε > 0 sufficiently small, the map

φ∶S2n+1
ε (z0) ∖Lf → S1

defined by

φ(z) = f(z)
∣f(z)∣

is the projection map of a smooth fiber bundle, with smooth parallizable fiber. If

z0 is an isolated singular point of f , then each fiber F has the homotopy type of

a bouquet of n-spheres: Sn ∨ ⋯ ∨ Sn. F is a compact manifold with boundary Lf .

Furthermore, Lf is a smooth (n− 2)-connected manifold of dimension 2n− 1, and F

is a (n − 1)-connected manifold of dimension 2n. ◻
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The number of Sn is µ = µf , the Milnor number of the singularity. It is strictly

positive and can be computed in general as the degree of the Gauss map

z ↦
df(z)
∥df(z)∥ .

Alternately,

µf = dimC C[z0, . . . , zn]( ∂f

∂z0
,⋯, ∂f

∂zn
) .

Hn(F,Z) is free abelian of rank µ.

For a weighted homogeneous polynomial with an isolated critical point at the

origin,

µ = (q0 − 1)⋯(qn − 1)
where {q0, . . . , qi} are the rational weights qi = d/wi. µ must be an integer, even

though the qi may not be. This puts a constraint on the qi, which is satisfied by the

conditions for quasismoothness.

Consider the covering homotopy:

F0 × [0,2π] ht
→ S2n+1

ε ∖Lf .

h0 is the identity on F0 and h = h2π ∶ F0 → F2π ≅ F0 is the characteristic homeomor-

phism or monodromy map of the fiber. This induces an exact sequence:

0→ Hn(Lf ,Z)→ Hn(F,Z) 1−h∗→ Hn(F,Z) → Hn−1(Lf ,Z)→ 0.

Thus, Hn(Lf ,Z) = ker(1−h∗) is free abelian. Hn−1(Lf ,Z) = coker(1− h∗) may have

torsion, but the free part is Hn−1(Lf ,Z) ⊗ Q = Hn(Lf ,Z) by duality. Since Lf is

(n − 2)-connected, the only non-trivial homology is in dimensions 0, n − 1, n, and

2n − 1. Let

∆(t) = det(t1∗ − h∗).
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∆(t) is the characteristic polynomial of the monodromy map or Alexander polynomial

of the link. ∆(1) ≠ 0 implies 1∗ − h∗ is nonsingular so Hn(Lf ,Z) = 0 and Lf is a

rational homology sphere. If ∣∆(1)∣ = 1 then Lf is a homology sphere. More generally,

∆(1) ≠ 0⇒ ∣∆(1)∣ = ∣Hn−1(Lf ,Z)∣.
Let

Λn = div(tn − 1) = ⟨1⟩ + ⟨ζn⟩ +⋯+ ⟨ζn−1n ⟩
where ζn is a primitive nth root of unity. Rewrite qi = d/wi = ui/vi with gcd(ui, vi) = 1.
Then

div∆ =∏
i

(Λui

vi
− 1)

and bn(Lf) = bn−1(Lf) equals the number of factors of t−1 in ∆(t), that is, the order
of vanishing of ∆(t) at t = 1.

This can be calculated explicitly [25]:

Corollary 48 Given the above situation:

bn(Lf) =∑(−1)n+1−s ui1⋯uis

vi1⋯vislcm(ui1 , . . . , uis)
where the sum is taken over all the 2n+1 subsets {i1, . . . , is} of {0, . . . , n}. ◻

4.2 Higher codimension singularities

In higher codimension, we have [22]:

Theorem 49 (Generalized Milnor Fibration Theorem) Let f = (f1, . . . , fc), Vf =

{z ∈ Cn+1∣f1(z) = ⋯ = fc(z) = 0}. Suppose Vf has an isolated singularity at the origin
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and let Lf = Vf ∩ S2n+1
ε for ε > 0 sufficiently small that S2n+1

ε only encloses the one

singularity. Consider f as a map f ∶ Cn+1 → Cc. Then the map

φ∶S2n+1
ε ∖Lf → S2c−1

defined by

φj(z) = fj(z)∣f(z)∣
is the projection map of a smooth fiber bundle, with smooth parallizable fiber. The

general fiber F has the homotopy type of a bouquet of (n + 1 − c)-spheres. F is a

compact manifold with boundary Lf . Furthermore, Lf is a smooth (n−c−1)-connected
(2(n − c) + 1) manifold, and F is a (n − c)-connected (2(n + 1 − c))-manifold. ◻

Again, the number of Sn+1−c is µ = µf , the Milnor number of the singularity. The

Milnor number can be calculated as follows [21, Corollary 3.7.2]:

Theorem 50 If for 1 ≤ j ≤ c the equations f1 = 0, . . . , fj = 0 define a complete

intersection with isolated singularity at 0 (that is, Xd1,...,dj ⊂ Pn is quasismooth),

then

µ(Ld1,...,dc) = c∑
j=1

(−1)c−j dimCAj

where

Aj = OCn+1,0/({ ∂(f1, . . . , fj)
∂(zν1 , . . . , zνj) ∶ 1 ≤ ν1 ≤ ⋯ ≤ νj ≤ n + 1}, f1, . . . , fj−1)OCn+1,0. ◻

In particular, we have [27, Theorem 1]:

Corollary 51 If deg f1 = ⋯ = deg fc then qi = dj/wi is independent of j. Let

p(t) = n+1∏
i=1

(qit + (qi − 1)) = βn+1t
n+1 +⋯+ β1t + β0.

Then

µ(Vf) = βc−1 − βc−2 +⋯+ (−1)c−1β0. ◻
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Again, since Lf is (n − c − 1)-connected, the only non-trivial homology is in

dimensions 0, n − c, n + 1 − c, and (2(n − c) + 1).
The Alexander polynomial also generalizes easily [27, Theorem 2] if deg f1 =

⋯ = deg fc so qi = dj/wi is independent of j. Again, rewrite qi = d/wi = ui/vi with
gcd(ui, vi) = 1, and let Λui

be as above. Then

div∆(t) = c−1∑
r=0
∑
Ir

(−1)r−c+1Λuσ0

vσ1

⋯
Λuσr−1

vσr−1

(Λuσr

vσr

− 1)⋯(Λuσn

vσn

− 1)
where Ir runs over partitions of {0, . . . , n} into sets {σ0, . . . , σr−1} and {σr, . . . , σn}.

Dimca [9] provides another approach to finding the middle Betti numbers of links.

Let fa = (f1, . . . , fp, f) be an ordered set of weighted homogeneous polynomials of

the same weights w = (w0, . . . ,wn), and degrees d = (d1, . . . , dp, d), and suppose

f0 = (f1, . . . , fp). Suppose Vf0 and Vfa have isolated singularities at the origin. If

f is considered as a map f ∶ Vf0 → C, then Vfa = f−1(0). Let Lf0 = Vf0 ∩ S
2n+1

and Lfa = Vfa ∩ S
2n+1 and let Xf0 and Xfa be the projective quasi-smooth weighted

complete intersections defined by f0 = (f1, . . . , fp) and fa = (f1, . . . , fp, f). Let On+1

be the C-algebra of germs of holomorphic functions at the origin of Cn+1, IX the ideal

generated by f1, . . . , fp in On+1. Let Ωk be the On+1-module of germs of holomorphic

k-forms at the origin of Cn+1. If a = (a0, . . . , an), let xa = xa0
0
⋯xan

n . The weights w

induce a filtration on Ωk such that a monomial form φ ∈ Ωk,

φ = xadxi1 ∧ . . . ∧ dxik

has degree

deg(φ) = deg(xa) +wi1 +⋯+wik ,

where

deg(xa) = a0w0 +⋯ + anwn.
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In turn, this induces a filtration on the stalk at the origin of the sheaf of holomorphic

k-forms relative to f ,

Ωk
f = Ω

k/IX ⋅Ωk + df1 ∧Ωk−1 +⋯ + dfp ∧Ωk−1 + df ∧Ωk−1.

Then Ωn−p
f /dΩn−p−1

f is a free O1-module of rank µ = µ(Xfa), the Milnor number of

Xfa at the origin. Let

A ∶= Ωn−p
f /dΩn−p−1

f + (f)Ωn−p
f = Ωn−p

Xfa
/dΩn−p−1

Xfa

Then A is a µ-dimensional vector space over C with a natural grading A =⊕k≥0Ak

coming from the above filtration. Let

P (s) =∑
k≥0

(dimAk)sk

be the Poincaré series of A. Then

P (s) = rest=0 t−n−1+p
1 + t [

n+1∏
i=1

1 + tswi

1 − swi

p+1∏
j=1

1 − sdj
1 + tsdj ]

where dp+1 = d.

Theorem 52 ([9, Theorem 1]) The complex monodromy operator h is diagonalizable

and its eigenvalues are d-roots of unity. The multiplicity of the root e−2πki/d is

∑
j≡k mod d

dimAj = d
−1 ∑

sd=1

P (s)s−k.
◻

Then the following proposition [9, Proposition 6] allows computation of the Betti

numbers of Lf , Xf , Lf0 , and Xf0 .

Proposition 53 Given the notation above,

(i) bk(Xf) = bk(Pn) for k ≠ n and bn(Xf) = bn(Pn) + bn(Lf), where Pn is the
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usual projective n-space.

(ii) For n ≥ 2,

bn(Lf) + bn−1(Lf0) = dimker(h − 1)
◻

Remark 54 As a special case, for fa = (f1) (p = 0), bn−1(Lf0) = dimker(h − 1),
where h is the complex monodromy operator associated with the map f1 ∶ Cn+1 → C.
Proposition 55 ([9, Proposition 3]) If f , f ′ both have same type (w,d), then Lf

and Lf ′ are homeomorphic. ◻

4.3 Topology of Sasakian Structures in Dimension

5

Smale [28] classified all closed simply connected 5-manifolds admitting spin struc-

tures. Any such manifold M has the form

M = kM∞#Mm1
#⋯#Mmn

where M∞ = S2 × S3, kM∞ is the k-fold connected sum of M∞,k ∈ N, {mi} are

positive integers with 1 ≤ m1 ∣ ⋯ ∣ mn and Mm is a rational homology sphere with

H2(Mm,Z) = Z/m ⊗ Z/m if m > 1, and M1 = S5. For convenience, let 0M∞ = S5.

In other words, closed simply-connected 5-manifolds with vanishing second Stiefel-

Whitney class are characterized completely by their homology.

If Xd1,d2 ⊂ P(w0,w1,w2,w3,w4) and Xd1 ⊂ P(w0,w1,w2,w3,w4) are both quasi-

smooth, the Milnor number of Lf1,f2 can be computed by applying Theorem 50:

µ(Lf1,f2) + µ(Lf1) = dimCOC5,0/({ ∂(f1, f2)
∂(zi, , zj) ∶ 0 ≤ i ≤ j ≤ 4}, f1)OC5,0.
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In particular, from Corollary 51, if d1 = d2 = d, we have:

µ(Lf1,f2) = (−1 + 4∑
j=0

d

d −wj

)( 4∏
i=0

d −wi

wi

) .

The Dimca technique [9] may be applied in two different ways to compute the

Betti numbers of 5-dimensional links of codimension 2 complete intersection singu-

larities in P4, say Xd1,d2 ⊂ P(w0,w1,w2,w3,w4). Let f1, f2 be sufficiently general

weighted homogeneous polynomials of degrees d1, d2 respectively. First, suppose

Xd1 ⊂ P(w0,w1,w2,w3,w4) is quasismooth, and h1, h2 the complex monodromy op-

erators associated with the maps f1 ∶ C5 → C, f2 ∶Xd1 → C, respectively. Then
b2(Lf1,f2) = dimker(h2 − 1) − b3(Lf1) = dimker(h2 − 1) − dimker(h1 − 1)

Example 56 Consider w = (1,1,2,2,2), d = (3,4). Xw,d is quasismooth. X(w,3)

is not quasismooth ((3) of Corollary 9 is not satisfied for i = 0, j = 1). X(w,4) is

quasismooth, however. Let d/wi = ui/vi with gcd(ui, vi) = 1. Then u0 = u1 = 4,

u2 = u3 = u4 = 2, and v0 = v1 = v2 = v3 = v4 = 1. b3(L(w,4)) = the order of vanishing of

∆(t) at t = 1. From Corollary 48:

b3 = (−1)5(1)
+ (−1)4 (2(4

4
) + 3(2

2
))

+ (−1)3 (4 ⋅ 4
4
+ 6(4 ⋅ 2

4
) + 3(2 ⋅ 2

2
))

+ (−1)2 (3(4 ⋅ 4 ⋅ 2
4
) + 6(4 ⋅ 2 ⋅ 2

4
) + 2 ⋅ 2 ⋅ 2

2
)

+ (−1)(3(4 ⋅ 4 ⋅ 2 ⋅ 2
4

) + 2(4 ⋅ 2 ⋅ 2 ⋅ 2
4

))
+ 4 ⋅ 4 ⋅ 2 ⋅ 2 ⋅ 2

4

= 2
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P (s) = rest=0
t−4

1 + t [
1 + ts
1 − s

2 ⋅ 1 + ts2
1 − s2

3 ⋅ 1 − s3
1 + ts3 ⋅

1 − s4
1 + ts4 ]

= 3s6 + 5s7 + 7s8 + 6s9 + 3s10 + s11

Then dimker(h − 1) = ∑j≡0( mod (3)) aj = 3 + 6 = 9.
Therefore, b2(Lw,d) = 9 − 2 = 7.

Another technique is necessary if neither Xd1 ⊂ P(w) or Xd2 ⊂ P(w) is quasi-

smooth. If Xd1,d2,d3 ⊂ P(w) is quasismooth for some f ∶ Xd1,d2 → C, f of degree d3,

then in fact, Xd1,d2,d3 is a smooth curve and

b1(Lf1,f2,f3) = b1(Xd1,d2,d3) = 2pg(Xd1,d2,d3)
where pg(Y ) is the geometric genus. Then

b2(Lf1,f2) + 2pg(Xd1,d2,d3) = dimker(h − 1)
A general formula for the genus pg(Y ) in terms of (w,d) is given below in Corol-

lary 60.

Such an f always exists, as, in particular, d3 = 2 ⋅ lcm(w0,w1,w2,w3,w4) will

work (d3 = lcm(w0,w1,w2,w3,w4) if lcm(w0,w1,w2,w3,w4) > w4). That is, if Xd1,d2 ⊂P(w0,w1,w2,w3,w4) is quasismooth, then Xd1,d2,d3 ⊂ P(w0,w1,w2,w3,w4) is as well.

Example 57 Consider w = (2,3,3,4,4), d = (6,8). Xw,d is quasismooth. On the

other hand, X(w,6) is not quasismooth (Corollary 9 is not satisfied for {x3, x4}) and

X(w,8) is not quasismooth (Corollary 9 is not satisfied for {x1, x2}). X(w,(6,8,7)) is

quasismooth as well, with ∣d∣ − ∣w∣ = 5.
P (s) = rest=0 t3

1 + t [
1 + ts2
1 − s2

1 + ts3
1 − s3

1 + ts3
1 − s3

1 + ts4
1 − s4

1 + ts4
1 − s4

1 − s6
1 + ts6

1 − s8
1 + ts8

1 − s7
1 + ts7 ]

P (s) = s8+4s9+4s10+6s11+7s12+9s13+8s14+9s15+6s16+6s17+4s18+3s19+s20+s21
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Then dimker(h − 1) = 8 + 1 = 9. Then (see Corollary 60 below): pg(X6,7,8) = a∣d∣−∣w∣
in the series

∞∑
i=0

ait
i =

(1 − t6)(1 − t7)(1 − t8)
(1 − t2)(1 − t3)(1 − t3)(1 − t4)(1 − t4) = 1 + t2 + 2s3 + 3s4 + 2s5 +O(s6)

b2(Lw,d) = 9 − 2(2) = 5.

Kollár has shown in [19] that if a Smale manifold M admits a Sasakian structure,

then

H2(M,Z) = Zk ⊕∑
i

(Zmi
)2g(Di)

where g(Di) is the genus, and mi the ramification index, of the branch divisor Di.

Here k is the second Betti number of M which we showed earlier how to calculate.

2g(D) ≠ 0 precisely when D is non-rational.

Kollár has also shown in [19]:

Theorem 58 If M is a 5-dimensional simply connected positive Sasakian manifold,

then the torsion subgroup of H2(M,Z) is one of the following: (Zm)2 for any m ∈ Z+,
(Z5)4, (Z4)4, (Z3)4, (Z3)6, (Z3)8, or (Z2)2n for any n ∈ Z+ (where Z1 denotes trivial

torsion).◻.
The genus of the branch divisor can be computed by a method given by Dolgachev

in [10]: For X a quasismooth weighted complete intersection, define the Poincaré

series of X by

PX(t) = ∞∑
m=0

amt
m =

∞∑
m=0

(dimCH0(X,OX(m)))tm.

Theorem 59 If X is a quasismooth weighted complete intersection with weights

w = (w0, . . . ,wn) and multidegree d = (d1, . . . , dc), then
PX(t) = ∏c

i=1(1 − tdi)∏n
j=0(1 − twj) . ◻
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Corollary 60 The genus, pg(X) = dimCHdimX(X,OX), is given by

pg(X) = a∣d∣−∣w∣ ◻

Example 61 1. The formula of Corollary 60 reduces to the standard formula in the

case of a curve Xd in the standard P2:

PXd
(t) = (1 − td)(1 − t)3 = (1 − td)

∞∑
m=0

⎛⎜⎝
m + 2
2

⎞⎟⎠ t
m

and ∣d∣ − ∣w∣ = d − 3. So the coefficient of td−3 in PXd
(t) is

⎛⎜⎝
d − 1
2

⎞⎟⎠ =
(d − 1)(d − 2)

2

2. The formula of Corollary 60 also reduces to the standard formula in the case

of a curve Xd1,d2 in the standard P3:

PXd1,d2
(t) = (1 − td1)(1 − td2)(1 − t)4 = (1 − td1 − td2 + td1+d2) ∞∑

m=0

⎛⎜⎝
m + 3
3

⎞⎟⎠ t
m

and ∣d∣ − ∣w∣ = d1 + d2 − 4. So the coefficient of td1+d2−4 in PXd1,d2
(t) is

ad1+d2−4 =
⎛⎜⎝
d1 + d2 − 1

3

⎞⎟⎠ −
⎛⎜⎝
d2 − 1
3

⎞⎟⎠ −
⎛⎜⎝
d1 − 1
3

⎞⎟⎠
ad1+d2−4 =

d1d2(d1 + d2 − 4)
2

+ 1
3. Consider (w,d) = ((3,4,4,6,6), (10,12)). Since gcd(w1,w2,w3,w4) = 2, there

is a branch divisor D0 of ramification index 2. D0 ≅X((2,2,3,3),(5,6)). The genus of D0

is the coefficient of t1 in

(1 − t5)(1 − t6)
(1 − t2)(1 − t2)(1 − t3)(1 − t3) = 1 + 2t2 + 2t3 +O(t4).

Thus gp(D0) = 0 and thus D0 does not contribute to torsion.

48



Chapter 4. Topology of Links

4. Consider (w,d) = ((6,8,8,10,15), (16,30)). Since gcd(w0,w1,w2,w3) = 2,

there is a branch divisor D4 of ramification index 2. We must compute the genus of

the complete intersection X((3,4,4,5),(8,15)) which is the coefficient of t7 in

(1 − t8)(1 − t15)
(1 − t3)(1 − t4)(1 − t4)(1 − t5) = 1 + t3 + 2t4 + t5 + t6 + 2t7 +O(t8).

Then the torsion component of H2(L,Z) is Z4

2
.

Programs in Mathematica 9 (see documentation at [1]) were written to compute

H2(L,Z) based on the above techniques for each of the entries of Tables B.1 and B.3

and selected entries in Table B.2 in the Appendix, and are listed in Tables B.1, B.2.1,

and B.3 of the Appendix. This shows:

Corollary 62 There exist positive Sasakian structures on links of weighted complete

intersection singularities of the following topological types:

(i) k#(S2 × S3), for all k ≥ 0,

(ii) kM2, for all k ≥ 1,

(iii) M3, 2M3,

(iv) M4,

(v) M∞#M2k+1, for all k ≥ 1,

(vi) 5M∞#Mk, for all k ≥ 2,

(vii) M∞#kM2, for all k ≥ 1,

(viii) 2M∞#M2, 2M∞#3M2,

(ix) M∞#M3, 2M∞#M3, M∞#2M3,

(x) M∞#M4,

(xi) M∞#M5

Furthermore, there exist countably many (w,d) types on:

(i) k#(S2 × S3), for all k ≥ 0,

(ii) M∞#kM2, for all k ≥ 1,

(iii) M∞#M3, 2M∞#M2, 5M∞#M2. ◻
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Structures on all of these topologies were previously exhibited in the hypersurface

singularity case, for example, in [3] and [5].
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Sasaki-Einstein Structures on

Links

5.1 Einstein metrics

Recall, a Riemannian metric g is called an Einstein metric if there is a constant λ

such that Ricg = λg. If S = (ξ, η,Φ, g) is a Sasakian structure and g is Einstein, then

S is Sasaki-Einstein.

If S is a quasi-regular Sasaki manifold, then [3, Theorem 7.1.3] then the space of

leaves M/Fξ is an almost Kähler orbifold (Z , h). Then [3, Theorem 11.1.3, Corollary

11.1.4]:

Theorem 63 Let M be a compact manifold of dimension 2n+1 with a quasi-regular

K-contact structure (ξ, η,Φ, g). Then g is Sasaki-Einstein if and only if h is Kähler-

Einstein with scalar curvature 4n(n + 1). In this case, g has Einstein constant 2n.

◻
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5.2 Existence Results

Demailly and Kollár [8], give sufficient conditions for a log del Pezzo surface to possess

a Kähler-Einstein metric. The link of the singularity at the origin of the affine cone

over a log del Pezzo surface has a positive Sasakian structure, which is Einstein if the

log del Pezzo surface has a Kähler-Einstein orbifold metric. Johnson and Kollár [16]

obtain a sufficient bound on weights and degrees of weighted projective hypersurfaces

to guarantee the existence of Kähler-Einstein metrics. This bound was extended to

the existence of Sasaki-Einstein metrics on 5-manifolds given as links of hypersurface

singularities by Boyer, Galicki, and Nakamaye [4].

Definition 64 Let Z be a log del Pezzo surface and D a Q-divisor on Z. Then the

pair (Z ,D) is klt or Kawamata log-terminal if for each local uniformizing neigh-

borhood Ũ there exists a log resolution of singularities µ ∶ X → Ũ and a Q-divisor
DX = ∑aiEi on X such that

KX ≡n µ∗(Korb

Ũ
+D) +DX

with ai > −1 for all i.

Then [8]:

Theorem 65 Let X be an n dimensional Fano variety (possibly with quotient sin-

gularities). Assume there is an ǫ > 0 such that

(X,
n + ǫ
n + 1D)

is klt for every effective Q-divisor D ≡ −KX . Then X has a Kähler-Einstein metric.

◻
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Johnson and Kollár give sufficient conditions for (X,D) to be klt given a surface

X and a Q-divisor D on X . Let X be a surface with quotient singularities Pi ∈ X ,

and write these locally analytically as

pi ∶ (C2,Qi)→ (C2/Gi, Pi) ≅ (X,Pi),
where Gi ⊂ GL(2,C) is a finite subgroup (see [18] and [20]). Let D be an effectiveQ-divisor on X . Then (X,D) is klt if the following three conditions hold:

(i) D does not contain an irreducible component with coefficient ≥ 1.

(ii) multPD ≤ 1 at every smooth point P ∈X .

(iii) multQi
Di ≤ 1 for every i where Di ∶= p∗iD.

They give the following estimate for multiplicity of points [16, Proposition 11]:

Proposition 66 Let X ⊂ P(w0, . . . ,wn) be a d-dimensional subvariety of weighted

projective space. Assume that X is not contained in the singular locus and w0 ≤ ⋯ ≤
wn. Let Xi ⊂ Cn denote the preimage of X in the orbifold chartCn → Cn/Z ≅ P(w0, . . . ,wn) ∖ (xi = 0).
Then for every i and every p ∈Xi,

multpXi ≤ (wn⋯wn−d)(X ⋅ O(1)d).
Moreover, if Z ≠ (z0 = ⋯zn−d−1 = 0) then a stronger inequality holds:

multpXi ≤ (wn⋯wn−d+1wn−d−1)(X ⋅ O(1)d). ◻

The following is the Sasakian equivalent of [16, Corollary 13] (see also [5, Lemma

2.3]).

Lemma 67 Let L(w, d) be a link of a weighted homogeneous hypersurface with

weight vector w = (w0,w1,w2,w3) ordered as w0 ≤ w1 ≤ w2 ≤ w3. Let Zw denote
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the corresponding projective algebraic orbifold. Furthermore, let I = ∣w∣ − d denote

the Fano index. Then

(1) The 5-manifold L(w, d) admits a Sasaki-Einstein metric if 2Id < 3w0w1.

(2) If the line z0 = z1 = 0 does not lie in Zw and the weaker condition 2Id < 3w0w2

holds, then L(w, d) admits a Sasaki-Einstein metric.

Proof: Let D ≡ −2+ǫ
3
KX be Q-effective. (1) Then we have, from Proposition 66,

multPDi ≤ (w3w2)(D ⋅ O(1)) ≤ (w3w2)dI( 2 + ǫ
3w0w1w2w3

)
so multPDi ≤ 1 if 2dI

3w0w1
< 1

(2) If the line {z0 = z1 = 0} does not lie in Zw, then {z0 = z1 = 0} does not lie in

D either, and from Proposition 66,

multPDi ≤ (w3w1)(D ⋅ O(1)) ≤ (w3w1)dI( 2 + ǫ
3w0w1w2w3

)
so multPDi ≤ 1 if 2dI

3w0w2
< 1.

◻
This easily extends to the codimension 2 case since we can still use Proposition 66.

Lemma 68 Let L(w,d) be a link of a weighted complete intersection with weight

vector w = (w0,w1,w2,w3,w4) ordered as w0 ≤ w1 ≤ w2 ≤ w3 ≤ w4 and multidegree d =

(d1, d2). Let Zw denote the corresponding projective algebraic orbifold. Furthermore,

let I = ∣w∣ − ∣d∣ denote the Fano index. Then

(1) The 5-manifold L(w,d) admits a Sasaki-Einstein metric if 2Id1d2 < 3w0w1w2.

(2) If the line z0 = z1 = z2 = 0 does not lie in Zw and the weaker condition

2Id1d2 < 3w0w1w3 holds, then L(w,d) admits a Sasaki-Einstein metric.

Proof: Let D ≡ −2+ǫ
3
KX be Q-effective. (1) Then we have, from Proposition 66,

multPDi ≤ (w4w3)(D ⋅ O(1)) ≤ (w4w3)d1d2I( 2 + ǫ
3w0w1w2w3w4

)
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so multPDi ≤ 1 if 2d1d2I
3w0w1w2

< 1

(2) If {z0 = z1 = z2 = 0} does not lie in Zw, then {z0 = z1 = z2 = 0} does not lie in

D either, and from Proposition 66,

multPDi ≤ (w4w2)(D ⋅ O(1)) ≤ (w4w2)d1d2I( 2 + ǫ
3w0w1w2w3w4

)
so multPDi ≤ 1 if 2d1d2I

3w0w1w3
< 1.

◻
This is consistent with Lemma 67 above. If w0 = 1, and d2 = 1, and Zw = Z ′w∩Z0

where Z0 is the hyperplane z0 = 0 and Z ′w has a defining equation not containing

z0, then the conjecture applied to Zw reduces to Lemma 67 applied to Z ′w.
The third result in [5, Lemma 2.3] requires a slightly different argument (but see

the proof of Proposition 66 in [16, Proposition 11]). It also can be extended to the

complete intersection case.

Lemma 69 (1) In the hypersurface case, if the point (0,0,0,1) does not lie in Zw

and the weaker condition 2Id < 3w0w3 holds, then L(w, d) admits a Sasaki-Einstein

metric.

(2) In the codimension 2 case, if the point (0,0,0,0,1) does not lie in Zw and the

weaker condition 2Id1d2 < 3w0w1w4 holds, then L(w,d) admits a Sasaki-Einstein

metric.

Proof: (1) Again, let D ≡ −2+ǫ
3
KX be Q-effective, and let P ∈ D. Let C(P ) ⊂ C4 be

the cone over P with vertex 0. Let Di = D ∩ {zi = 1}. mult0C(P ) = multPD ≤ w3.

Q = (0,0,0,1) is the only point in Zw with multQZw = w3, all other points having

multiplicity ≤ w2, so in fact, mult0C(P ) =multPD ≤ w2. Let Di =∑ajVj where each

Vj is irreducible. Now, (0,0,0,1) /∈Di and (0,0,0,1) ∈ {z0 = z1 = 0} so {z0 = z1 = 0} /⊂
Di. Then for each j, either {z0 = 0} meets Vj properly or {z1 = 0} meets Vj properly,

and in either case, with multiplicity wj ≤ w1 at any point.
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Therefore,

mult0C(Di) = ∑
j

mult0C(Vj)
≤ ∑

j

wjVj

≤ w1mult0C(Zw)
≤ w2w1(D ⋅ O(1))
≤ (w2w1)dI( 2 + ǫ

3w0w1w2w3

)
so multPDi ≤ 1 if 2dI

3w0w3
< 1.

(2) Again, let D ≡ −2+ǫ
3
KX be Q-effective, and let P ∈ D. Let C(P ) ⊂ C5 be

the cone over P with vertex 0. mult0C(P ) = multPD ≤ w4. Q = (0,0,0,0,1) is the

only point with multQZw = w4, all other points having multiplicity ≤ w3, so in fact,

mult0C(P ) = multPD ≤ w3. Let D = ∑ajVj where each Vj is irreducible. Now,

(0,0,0,0,1) /∈ D and (0,0,0,0,1) ∈ {z0 = z1 = z2 = 0} so {z0 = z1 = z2 = 0} /⊂ D. Then

for each j, at least one of {z0 = 0}, {z1 = 0}, or {z2 = 0} meets Vj properly, and in

any case, with multiplicity ≤ w2 at any point. Therefore,

mult0C(Di) = ∑
j

mult0C(Vj)
≤ ∑

j

wjVj

≤ w2mult0C(Zw)
≤ w3w2(D ⋅ O(1))
≤ (w3w2)d1d2I( 2 + ǫ

3w0w1w2w3w4

)
so multPDi ≤ 1 if 2d1d2I

3w0w1w4
< 1. ◻

Table A lists the 154 cases which meet the bounds of Lemmas 68 or 69 with

d1 ≤ d2 ≤ 600, along with their Smale type. 36 families are structures on S5. 71

are structures on S2 × S3. 20 are structures on 2#(S2 × S3). 21 are structures on
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3#(S2 × S3). There is one family on the rational homology sphere M2 and two on

M3. There are 2 families on the connected sum M∞#M2 and one on M∞#2M2.

Sasaki-Einstein structures on all of these topologies were previously exhibited in the

hypersurface singularity case (see [3] and [5]).

5.3 An obstruction

One important obstruction to the existence of a Sasaki-Einstein metric is the Lich-

nerowicz obstruction, [3, Corollary 11.3.11ff.]:

Theorem 70 Let M2n−1 be a compact manifold with a Sasaki-Einstein structure

S = (ξ, η,Φ, g). Then the first non-zero eigenvalue λ1 of the Laplace operator ∆g is

bounded: λ1 ≥ 2n − 1 and λ1 = 2n − 1 if and only if S is the standard Sasaki-Einstein

structure on S2n−1. ◻
Let Y = C(M) be the associated cone with the induced Kähler structure. Let f

be a holomorphic function on Y with Lξf = cif where c > 0 is a real constant called

the charge of f with respect to ξ. We have ∆Y f = 0, so at r = 1,

∆Y =
1

r2
∆M − 1

r2n−1
∂

∂r
(r2n−1 ∂

∂r
)

so ∆M f̃ = λf̃ , where λ = c[c + (2n − 2)] and f = rcf̃ . Then, if (M,gM) is Sasaki-

Einstein, by Theorem 70 λ1 ≥ 2n − 1, so c ≥ 1.

The following is from [11]. Now consider a link L(w, d) of a hypersurface in

weighted projective space with isolated singularity, defined by a weighted homoge-

neous polynomial F of weights w = (w0, . . . ,wn), with w0 ≤ ⋯ ≤ wn . Let X be the

affine cone X = C(L). Let {Uj} be a cover of X given by Uj = {z ∈X ∣ ∂F∂zj ≠ 0}. Then
on each Uj we can define a nowhere zero holomorphic (n,0)-form

Ω =
dz0 ∧⋯∧ d̂zj ∧⋯ ∧ dzn

∂F /∂zj
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If ζ is the holomorphic vector field on X ∖{0} with Lζzj = wjizj for each j = 0, . . . , n,

then LζΩ = (∣w∣−d)iΩ. If there is a Ricci-flat Kähler metric on X then ζ normalizes

to ξ = n
∣w∣−dζ .

Proposition 71 If L(w, d) is a smooth link, then if the index I = ∣w∣ − d > nw0,

L(w, d) cannot admit any Sasaki-Einstein structure.

Proof : In fact, z0 has charge c = nw0

∣w∣−d with respect to ξ. ◻

Corollary 72 In particular, in the 5-dimensional link case, n = 3, so L(w, d) cannot
admit any Sasaki-Einstein structure if I > 3w0. ◻

This generalizes to the codimension 2 complete intersection case in the following

way. Let w = (w0, . . . ,wn+1). Suppose Xd1,d2 ⊂ P(w) is quasismooth, X = C(Xd1,d2)
and suppose (f1, f2) generate IX . Then the sets {Uj,k} cover X ∖ {0} where Uj,k =

{z ∈ X ∣ ∂fl
∂zj

∂f2
∂zk
− ∂fl

∂zk

∂f2
∂zj
≠ 0}. Then on {Uj,k}

Ω =
dz0 ∧⋯∧ d̂zj ∧⋯ ∧ d̂zk ∧⋯∧ dzn+1

∂fl
∂zj

∂f2
∂zk
− ∂fl

∂zk

∂f2
∂zj

defines a nowhere zero (n,0)-form on X . Again, as above, if ζ is the holomorphic

vector field on X ∖ {0} with Lζzj = wjizj for each j = 0, . . . , n + 1, then LζΩ =
(∣w∣−∣d∣)iΩ. If there is a Ricci-flat Kähler metric onX then ζ normalizes to ξ = n

∣w∣−∣d∣ζ .

Then we have:

Proposition 73 If L(w,d) is a smooth link, then if the index I = ∣w∣ − ∣d∣ > nw0,

L(w,d) cannot admit any Sasaki-Einstein structure.

Proof : In fact, z0 has charge c = nw0

∣w∣−∣d∣ with respect to ξ. ◻
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Corollary 74 Again, in the 5-dimensional link case, n = 3, so L(w, d) cannot admit

any Sasaki-Einstein structure if I > 3w0. ◻

A similar argument will generalize this to any codimension complete intersection

link.

Tables B.1, B.2, and B.3 of the Appendix indicate when this obstruction occurs

in the 23438 types with d1 ≤ d2 ≤ 600.
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Appendix A

Types satisfying the bounds of

Lemmas 68 or 69

w d I Smale type

(5,16,24,28,32) (48,56) 1 2M∞

(6,6,10,10,15) (16,30) 1 M∞

(6,7,9,11,14) (18,28) 1 3M∞

(6,8,8,10,15) (16,30) 1 M∞#2M2

(6,8,9,11,13) (22,24) 1 2M∞

(6,9,10,13,18) (19,36) 1 3M∞

(6,9,14,14,22) (28,36) 1 3M∞

(6,10,10,15,15) (25,30) 1 M∞

(6,10,10,15,20) (30,30) 1 M1

(6,10,14,18,23) (24,46) 1 M∞#M2

(6,10,15,15,15) (30,30) 1 M1

(6,10,15,20,20) (30,40) 1 M∞

(6,12,14,17,22) (34,36) 1 2M∞

(6,12,16,21,27) (33,48) 1 M∞

(6,12,22,27,33) (33,66) 1 M1

(6,14,18,19,23) (37,42) 1 3M∞
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w d I Smale type

(6,14,18,23,28) (42,46) 1 2M∞

(6,14,19,24,29) (43,48) 1 3M∞

(6,20,25,30,35) (55,60) 1 2M∞

(6,20,30,35,40) (60,70) 1 M∞

(7,12,18,18,24) (36,42) 1 M∞

(7,12,18,24,30) (42,48) 1 M∞

(8,10,16,17,23) (33,40) 1 3M∞

(8,10,16,23,30) (40,46) 1 2M∞

(8,10,17,24,31) (41,48) 1 3M∞

(8,12,18,19,29) (37,48) 1 3M∞

(8,13,20,20,32) (40,52) 1 M∞

(8,14,21,28,35) (49,56) 1 M∞

(8,14,26,32,39) (40,78) 1 M∞#M2

(8,14,28,35,42) (56,70) 1 M1

(8,18,24,31,41) (49,72) 1 3M∞

(8,20,23,26,30) (46,60) 1 M∞

(8,20,27,34,46) (54,80) 1 M∞

(8,26,32,39,46) (72,78) 1 2M∞

(8,26,32,39,70) (78,96) 1 2M∞

(8,34,48,55,62) (96,110) 1 M∞

(8,42,56,63,70) (112,126) 1 M∞

(9,10,12,15,21) (30,36) 1 M3

(9,12,13,16,24) (25,48) 1 2M∞

(9,13,15,18,21) (36,39) 1 M∞

(9,14,21,29,34) (43,63) 1 3M∞

(9,15,22,30,36) (45,66) 1 M∞

(9,15,22,30,51) (60,66) 1 M∞

(9,15,23,23,31) (46,54) 1 3M∞

(9,15,23,23,37) (46,60) 1 3M∞

(9,21,28,28,35) (56,63) 2 M∞
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w d I Smale type

(9,23,30,38,67) (76,90) 1 M∞

(9,24,32,32,40) (64,72) 1 M∞

(10,12,20,29, 31) (41,60) 1 3M∞

(10,12,21,30, 39) (51,60) 1 2M∞

(10,12,30,39, 48) (60,78) 1 M∞

(10,16,25,40, 55) (65,80) 1 M∞

(10,16,40,55, 70) (80,110) 1 M1

(10,17,25,26, 34) (51,60) 1 3M∞

(10,17,25,34, 41) (51,75) 1 3M∞

(10,17,25,34, 43) (60,68) 1 3M∞

(10,17,25,34, 58) (68,75) 1 3M∞

(10,22,40,49, 58) (80,98) 1 M∞

(10,24,32,55, 86) (96,110) 1 M2

(10,27,36,45, 54) (81,90) 1 M∞

(10,27,45,54, 63) (90,108) 1 M∞

(11,18,27,28, 44) (55,72) 1 3M∞

(11,18,27,37, 44) (55,81) 1 3M∞

(11,18,27,44, 61) (72,88) 1 3M∞

(11,18,27,44, 70) (81,88) 1 3M∞

(11,25,32,34, 41) (66,75) 2 M∞

(11,25,34,43, 52) (77,86) 2 M∞

(11,25,34,43, 57) (68,100) 2 M∞

(11,27,36,62, 97) (108,124) 1 M∞

(11,29,38,39, 48) (77,87) 1 M∞

(11,29,38,48, 85) (96,114) 1 M∞

(11,29,39,49, 59) (88,98) 1 M∞

(11,29,39,49, 67) (78,116) 1 M∞

(11,36,45,54, 63) (99,108) 2 M1

(11,40,50,60, 70) (110,120) 1 M1

(12,14,15,18, 21) (36,42) 2 M3
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w d I Smale type

(12,14,24,35, 46) (60,70) 1 2M∞

(12,14,24,35, 58) (70,72) 1 2M∞

(12,15,20,26, 34) (46,60) 1 2M∞

(12,15,25,25, 35) (50,60) 2 M∞

(12,18,22,27, 33) (45,66) 1 M∞

(12,21,32,32, 52) (64,84) 1 M∞

(12,30,40,51, 69) (81,120) 1 M∞

(12,32,42,43, 53) (85,96) 1 2M∞

(12,32,43,54, 65) (97,108) 1 2M∞

(12,42,52,63, 114) (126,156) 1 M1

(12,44,55,66, 77) (121,132) 1 M∞

(13,20,29,31, 47) (60,78) 2 M∞

(13,20,31,42, 49) (62,91) 2 M∞

(13,22,55,76, 97) (110,152) 1 M∞

(13,23,34,35, 56) (69,91) 1 M∞

(13,23,34,56, 89) (102,112) 1 M∞

(13,23,35,47, 57) (70,104) 1 M∞

(13,23,35,57, 79) (92,114) 1 M∞

(14,16,42,55, 68) (84,110) 1 M∞

(14,17,27,29, 39) (56,68) 2 M∞

(14,17,29,41, 44) (58,85) 2 M∞

(14,19,25,32, 43) (57,75) 1 M∞

(14,19,25,32, 45) (64,70) 1 M∞

(15,24,35,48, 57) (72,105) 2 M∞

(15,26,40,65, 90) (105,130) 1 M∞

(15,26,65,90, 115) (130,180) 1 M∞

(15,27,40,54, 66) (81,120) 1 M∞

(15,27,40,54, 93) (108,120) 1 M∞

(15,33,44,57, 75) (90,132) 2 M∞

(15,39,52,66, 90) (105,156) 1 M∞
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w d I Smale type

(15,39,52,90,141) (156,180) 1 M∞

(15,48,59,72,129) (144,177) 2 M1

(15,54,67,81,147) (162,201) 1 M1

(16,18,48,63, 78) (96,126) 1 M∞

(16,21,28,36, 48) (64,84) 1 M∞

(16,21,28,48, 68) (84,96) 1 M∞

(16,28,42,43, 69) (85,112) 1 2M∞

(16,28,43,70, 97) (113,140) 1 2M∞

(16,29,44,72,100) (116,144) 1 M1

(16,42,56,71, 97) (113,168) 1 2M∞

(16,44,59,74,102) (118,176) 1 M1

(16,46,56,69, 82) (128,138) 3 M∞

(16,58,72,87,102) (160,174) 1 M∞

(16,58,72,87,158) (174,216) 1 M∞

(16,62,88,101, 114) (176,202) 3 M1

(16,74,104,119, 134) (208,238) 1 M1

(16,78,104,117, 130) (208,234) 3 M1

(16,90,120,135, 150) (240,270) 1 M1

(17,20,35,50, 65) (85,100) 2 M1

(18,21,35,51, 54) (72,105) 2 M∞

(18,22,27,33, 39) (66,72) 1 M∞

(18,22,27,33, 48) (66,81) 1 M∞

(18,23,30,39, 51) (69,90) 2 M1

(18,24,32,41, 55) (73,96) 1 2M∞

(18,24,40,63,102) (120,126) 1 M1

(18,32,48,65, 79) (97,144) 1 2M∞

(18,33,49,81,129) (147,162) 1 M1

(18,42,50,59, 76) (118,126) 1 M1

(18,50,66,83,148) (166,198) 1 M1

(20,28,47,66, 74) (94,140) 1 M1
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w d I Smale type

(20,36,55,90,125) (145,180) 1 M∞

(21,24,29,36, 51) (72,87) 2 M1

(21,24,41,60, 99) (120,123) 2 M1

(22,40,60,99,138) (160,198) 1 M∞

(22,40,60,99,158) (180,198) 1 M∞

(22,60,80,139, 218) (240,278) 1 M1

(24,30,38,53, 82) (106,120) 1 M1

(24,34,40,63, 86) (120,126) 1 M1

(24,34,56,79,134) (158,168) 1 M1

(24,38,84,107, 130) (168,214) 1 M1

(24,66,88,111, 153) (177,264) 1 M∞

(24,90,112,135, 246) (270,336) 1 M1

(26,36,48,83,118) (144,166) 1 M1

(26,36,60,95,154) (180,190) 1 M1

(26,48,120,167, 214) (240,334) 1 M1

(30,42,70,99,111) (141,210) 1 M∞

(30,56,140,195, 250) (280,390) 1 M1

(30,84,112,195, 306) (336,390) 1 M1
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Appendix B

Lists of types

B.1 One parameter families of types

w t constraint Smale type

d I Lichnerowicz obstruction

(1,1,1, t, t) 1 ≤ t (2t + 3)M∞

(t + 1, t + 1) 1 none

(1,1, t, t, t) 1 ≤ t (2t + 3)M∞

(1 + t,2t) 1 none

(1,1, t + 1, t + 1,2t + 1) 0 ≤ t (2t + 5)M∞

(2t + 2,2t + 2) 1 none

(1,2, t + 2, t + 2,2t + 3) 0 ≤ t (t + 7)M∞

(2t + 4,2t + 5) 1 none

(1, t, t, t, t) 1 ≤ t 5M∞#Mt

(2t,2t) 1 none

(1, t + 1,2t + 1,2t + 1,3t + 1) 0 ≤ t 5M∞

(3t + 2,4t + 2) t + 1 t > 2

(1,2t + 1,2t + 1,3t + 1,4t + 1) 0 ≤ t 5M∞

(4t + 2,6t + 2) t + 1 t > 2
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w t constraint Smale type

d I Lichnerowicz obstruction

(1,3t + 2,4t + 2,6t + 3,9t + 4) 0 ≤ t 7M∞

(9t + 5,12t + 6) t + 1 t > 2

(1,4t + 2,6t + 3,9t + 4,12t + 5) 0 ≤ t 7M∞

(12t + 6,18t + 8) t + 1 t > 2

(2,2,2t + 1,2t + 1,2t + 1) 1 ≤ t (2t + 2)M∞

(2t + 3,4t + 2) 2 none

(2,2,2t + 1,2t + 1,4t) 1 ≤ t (2t + 2)M∞

(4t + 2,4t + 2) 2 none

(2,3, t + 1, t + 2, t + 2) 1 ≤ t, t ≠ 0 mod 3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( t−1
3
+ 4)M∞ if t = 1 mod 3

( t−2
3
+ 5)M∞ if t = 2 mod 3

(t + 4,2t + 4) 2 none

(2,3, t + 1, t + 2,2t + 1) 1 ≤ t, t ≠ 2 mod 3

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

( t
3
+ 3)M∞ if t = 0 mod 3

( t−1
3
+ 4)M∞ if t = 1 mod 3

(2t + 3,2t + 4) 2 none

(2,4, t + 1, t + 2, t + 3) 1 ≤ t, t ≠ 1 mod 4

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

3M∞ if t = 2 mod 4

M∞#M2 if t = 3 mod 4

2M∞ if t = 0 mod 4

(t + 5,2t + 4) 3 none

(2,4,2t + 3,2t + 3,4t + 4) 0 ≤ t (t + 5)M∞

(4t + 6,4t + 8) 2 none

(2, t + 1, t + 1, t + 2,2t + 1) 0 ≤ t
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

7M∞ if t = 0 mod 2

5M∞ if t = 1 mod 2

(2t + 3,3t + 3) 1 none

(2, t + 1, t + 1,2t + 1,3t + 1) 1 ≤ t
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

6M∞ if t = 0 mod 2

2M∞#3M2 if t = 1 mod 2

(3t + 3,4t + 2) 1 none

(2, t + 1, t + 2,2t + 2,3t + 2) 0 ≤ t
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5M∞#M2 if t = 0 mod 2

5M∞ if t = 1 mod 2

(3t + 4,4t + 4) 1 none
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w t constraint Smale type

d I Lichnerowicz obstruction

(2, t + 1,2t + 2,3t + 2,4t + 2) 0 ≤ t
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5M∞#M2 if t = 0 mod 2

M∞#4M2 if t = 1 mod 2

(4t + 4,6t + 4) 1 none

(2,2t + 1,2t + 1,2t + 1,2t + 1) 1 ≤ t M∞#M2t+1

(4t + 2,4t + 2) 2 none

(2,2t + 3,4t + 4,4t + 4,6t + 5) 0 ≤ t 3M∞

(6t + 7,8t + 8) 2t + 3 t > 1

(2,4t + 4,4t + 4,6t + 5,8t + 6) 0 ≤ t M∞#M2

(8t + 8,12t + 10) 2t + 3 t > 1

(2,6t + 7,8t + 8,12t + 12,18t + 17) 0 ≤ t 3M∞

(18t + 19,24t + 24)) 2t + 3 t > 1

(2,8t + 8,12t + 12,18t + 17,24t + 22) 0 ≤ t 3M2

(24t + 24,36t + 34) 2t + 3 t > 1

(3, t + 1, t + 2, t + 2,2t + 1) 1 ≤ t

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

3M∞ if t = 0 mod 3

M∞#M3 if t = 1 mod 3

5M∞ if t = 2 mod 3

(2t + 4,3t + 3) 2 none

(3, t + 1, t + 2,2t + 1,3t) 1 ≤ t, t ≠ 2 mod 3

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

3M∞ if t = 0 mod 3

M∞#M3 if t = 1 mod 3

(3t + 3,4t + 2) 2 none

(3, t + 2,2t + 1,2t + 1,3t) 1 ≤ t, t ≠ 1 mod 3 3M∞

(3t + 3,4t + 2) t + 2 t > 7

(3,2t + 5,2t + 5,3t + 6,4t + 7) 0 ≤ t, t ≠ 2 mod 3 3M∞

(4t + 10,6t + 12) 3t + 4 t > 1

(3,3t,3t + 1,3t + 1,3t + 2) 1 ≤ t 5M∞

(6t + 2,6t + 3) 2 none

(3,3t + 3,4t + 2,6t + 3,9t + 3) 0 ≤ t, t ≠ 1 mod 3 M∞#M3

(9t + 6,12t + 6) t + 2 t > 7
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w t constraint Smale type

d I Lichnerowicz obstruction

(3,4t + 2,6t + 3,9t + 3,12t + 3) 0 ≤ t, t ≠ 1 mod 3 M∞#M3

(12t + 6,18t + 6) t + 2 t > 7

(4,6,2t + 1,2t + 3,2t + 3) 1 ≤ t, t ≠ 2 mod 3

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

( t
3
+ 2)M∞ if t = 0 mod 3

( t−1
3
+ 3)M∞ if t = 1 mod 3

(2t + 7,4t + 6) 4 none

(4,6,2t + 1,2t + 3,4t) 1 ≤ t, t ≠ 1 mod 3

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

( t
3
+ 2)M∞ if t = 0 mod 3

( t−2
3
+ 2)M∞ if t = 2 mod 3

(4t + 4,4t + 6) 4 none

(4, t + 1, t + 2, t + 3, t + 3) 1 ≤ t, t = 0,3 mod 4 2M∞

(2t + 4,2t + 6) 3 none

(4, t + 1, t + 2, t + 3,2t) 1 ≤ t, t = 0,3 mod 4 2M∞

(2t + 4,3t + 3) 3 none

(4,2t + 2,2t + 3,2t + 4,2t + 5) 0 ≤ t 3M∞

(4t + 7,4t + 8) 3 none

(4,2t + 1,2t + 1,2t + 3,4t) 1 ≤ t 5M∞

(4t + 4,6t + 3) 2 none

(4,2t + 1,2t + 3,4t + 2,6t + 1) 1 ≤ t 4M∞

(6t + 5,8t + 4) 2 none

(4,2t + 3,2t + 3,4t + 4,6t + 5) 0 ≤ t 5M∞

(6t + 9,8t + 8) 2 none

(4,2t + 3,4t + 2,4t + 2,6t + 1) 1 ≤ t 2M∞

(6t + 5,8t + 4) 2t + 3 t > 4

(4,2t + 1,4t + 2,6t + 1,8t) 1 ≤ t 4M∞

(8t + 4,12t + 2) 2 none

(4,4t + 2,4t + 2,6t + 1,8t) 1 ≤ t M∞

(8t + 4,12t + 2) 2t + 3 t > 4

(4,6t + 5,8t + 4,12t + 6,18t + 7) 0 ≤ t 3M∞

(18t + 11,24t + 12) 2t + 3 t > 4
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w t constraint Smale type

d I Lichnerowicz obstruction

(6, t + 1, t + 4,2t + 2,3t) 1 ≤ t, t ≠ 2 mod 3 3M∞

(3t + 6,4t + 4) 3 none

(6, t + 2,2t + 4,3t + 3,4t + 2) 1 ≤ t, t ≠ 1 mod 3

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

M∞#M2 if t = 0,2 mod 6

3M∞ if t = 3,5 mod 6

(4t + 8,6t + 6) 3 none

(6,2t + 1,2t + 3,2t + 3,4t) 1 ≤ t, t ≠ 2 mod 3

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

M∞ if t = 0 mod 3

3M∞ if t = 1 mod 3

(4t + 6,6t + 2) 4 none

(6,2t + 2,2t + 2,2t + 5,4t + 1) 1 ≤ t, t ≠ 2 mod 3 3M∞

(4t + 7,6t + 6) 3 none

(6,2t + 2,2t + 2,4t + 1,6t) 1 ≤ t, t ≠ 2 mod 3 2M∞

(6t + 6,8t + 2) 3 none

(6,3t + 1,3t + 3,3t + 4,3t + 5) 1 ≤ t M∞

(6t + 6,6t + 8) 5 none

(6,4t + 4,4t + 4,6t + 3,8t + 2) 1 ≤ t, t ≠ 2 mod 3 M∞

(8t + 8,12t + 6) 2t + 5 t > 1

(6,6t + 3,6t + 5,6t + 5,6t + 7) 0 ≤ t 3M∞

(12t + 10,12t + 12) 4 none

(6,6t + 7,6t + 9,12t + 12,18t + 15) 0 ≤ t M∞

(18t + 21,24t + 24) 4 none

(6,6t + 9,8t + 8,12t + 12,18t + 15) 0 ≤ t, t ≠ 2 mod 3 M∞

(18t + 21,24t + 24) 2t + 5 t > 1

(6,8t + 8,12t + 12,18t + 15,24t + 18) 0 ≤ t, t ≠ 2 mod 3 M1

(24t + 24,36t + 30)) 2t + 5 t > 6

74



Appendix B. Lists of types

w t constraint Smale type

d I Lichnerowicz obstruction

(7,4t + 6,6t + 9,9t + 10,12t + 11) 0 ≤ t, t ≠ 2 mod 7 M∞

(12t + 18,18t + 20) t + 5 t > 16

(8,4t + 1,4t + 3,4t + 5,4t + 7) 1 ≤ t M∞

(8t + 8,8t + 10) 6 none

(8,4t + 5,4t + 7,4t + 9,8t + 6) 0 ≤ t M∞

(8t + 14,12t + 15) 6 none

(8,6t + 7,8t + 4,12t + 6,18t + 5) 0 ≤ t M∞

(18t + 13,24t + 12) 2t + 5 t > 14

(9,3t + 2,3t + 5,3t + 8,6t + 1) 1 ≤ t M∞

(6t + 10,9t + 9) 6 none

(9,3t + 5,3t + 8,6t + 7,9t + 6) 0 ≤ t M∞

(9t + 15,12t + 14) 6 none

(9,3t + 6,4t + 2,6t + 3,9t) 1 ≤ t, t ≠ 1 mod 3 M∞

(9t + 9,12t + 6) t + 5 t > 22

(9,4t + 6,6t + 9,9t + 9,12t + 9) 0 ≤ t, t ≠ 0 mod 3 M∞

(12t + 18,18t + 18) t + 6 t > 21

(10,2t + 4,4t + 8,6t + 7,8t + 6) 0 ≤ t, t ≠ 3 mod 5 M∞

(8t + 16,12t + 14) 5 none

(12,4t + 4,4t + 7,4t + 10,8t + 2) 1 ≤ t, t ≠ 2 mod 3 M1

(8t + 14,12t + 12) 9 none

(12,6t + 5,6t + 9,12t + 6,18t + 3) 1 ≤ t M1

(18t + 15,24t + 12) 8 none

(12,6t + 9,8t + 4,12t + 6,18t + 3) 1 ≤ t, t ≠ 1 mod 3 M∞

(18t + 15,24t + 12) 2t + 7 t > 21

(14,8t + 8,12t + 12,18t + 11,24t + 10) 0 ≤ t, t ≠ 6 mod 7 M1

(24t + 24,36t + 22) 9 none

(18,8t + 8,12t + 12,18t + 9,24t + 6) 1 ≤ t, t ≠ 2 mod 3 M1

(24t + 24,36t + 18) 2t + 11 t > 21
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B.2 Three parameter families of types

1. w = (u,u + 2s, t(u + 2s), t(u + 2s) + s,2t(u + 2s) − u)

d = (2t(u + 2s),2t(u + 2s) + 2s)

I = u + s

Lichnerowicz obstruction when s > 2u

u ≥ 1,

s ≥ 1,

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

gcd(s,u) = 1 if u = 2v + 1

gcd(2s,u) = 2 if u = 4v

gcd(s,2v + 1) = 1 if u = 4v + 2

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

t ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = v,2v mod (2v + 1) if u = 2v + 1

2t = (2v − 1), (4v − 2), (4v − 1) mod (4v) if u = 4v
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2t = (2v − 1), (2v) mod (2v + 1) if s = 1 mod (2)

2t = (4v + 1) mod (4v + 2) if s = 0 mod (2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

if u = 4v + 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(t can be half integer)

2. w = (u,u + 2s, t(u + 2s) + s, t(u + 2s) + 2s,2t(u + 2s) + 2s − u)

d = (2t(u + 2s) + 2s,2t(u + 2s) + 4s)

I = u + s

Lichnerowicz obstruction when s > 2u

u ≥ 1

s ≥ 1, gcd(s,u) = 1

t ≥ 1, t =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(v − 1),2v mod (2v + 1) if u = 2v + 1

2v mod (2v + 1) if u = 4v + 2

(v − 1), (2v − 1) mod (2v) if u = 4v
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3. w = (u,u + 2s, t(u + 2s), t(u + 2s) + s, t(u + 2s) + 2s)

d = (t(u + 2s) + u + 2s,2t(u + 2s) + 2s)

I = u + s

Lichnerowicz obstruction when s > 2u

u ≥ 1,

s ≥ 1, gcd(s,u) = 1,

t ≥ 1, t =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v,2v mod (2v + 1) if u = 2v + 1 or u = 4v + 2

(2v − 1) mod (2v) if u = 4v

4. w = (u,u + 2s, t(u + 2s) − s, t(u + 2s), t(u + 2s) + s)

d = (t(u + 2s) + s + u,2t(u + 2s))

I = u + s

Lichnerowicz obstruction when s > 2u

u ≥ 1,

s ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gcd(s,u) = 1 if u = 2v + 1

gcd(s,u) = 1 if u = 4v

any s ≥ 1 if u = 2

gcd(s,2v + 1) = 1 if u = 4v + 2, v ≥ 1

2t ≥ 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0, v mod (2v + 1) if u = 2v + 1

2t = 0, (2v − 1),2v mod (4v) if u = 4v

2t =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r(2v + 1) if s = 1 mod (2)

(2q + 1)(2v + 1) if s = 0 mod (2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

if u = 4v + 2

(t can be half integer)
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5. w = (u,u + s,u + 2s, t(u + 2s) − u − s, t(u + 2s) − u)

d = (t(u + 2s), t(u + 2s) + s)

I = u + s

Lichnerowicz obstruction when s > 2u

u ≥ 1

s ≥ 1, gcd(s,u) = 1

t ≥ 2, t =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, v mod (2v + 1) if u = 2v + 1

rv if u = 2v

6. w = (u,u + s,u + 2s, (t − 1)(u + 2s), (t − 1)(u + 2s) + s)

d = (t(u + 2s) − s, t(u + 2s))

I = u + s

Lichnerowicz obstruction when s > 2u

u ≥ 1

s ≥ 1, gcd(s,u) = 1

t ≥ 2, t =
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

0, (v + 1) mod (2v + 1) if u = 2v + 1

rv if u = 2v
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B.2.1 Selected topology

type (w,d) Smale type

1 ((1,3,3t,3t + 1,6t − 1), (6t,6t + 2)) (2t + 3)M∞

1 ((1,5,5t,5t + 2,10t − 1), (10t,10t + 4)) (2t + 3)M∞

1 ((1,7,7t,7t + 3,14t − 1), (14t,14t + 6)) (2t + 3)M∞

1 ((2,4,4t,4t + 1,8t − 2), (8t,8t + 2)) M∞#tM2

1 ((2,4,4t + 2,4t + 3,8t + 2), (8t + 4,8t + 6)) (t + 1)M2

1 ((2,6,6t + 3,6t + 5,12t + 4), (12t + 6,12t + 10)) (2t + 2)M∞

1 ((2,8,8t,8t + 3,16t − 2), (16t,16t + 6)) M∞#tM2

1 ((2,8,8t + 4,8t + 7,16t + 6), (16t + 8,16t + 14)) (t + 1)M2

1 ((2,10,10t + 5,10t + 9,20t + 8), (20t + 10,20t + 18)) (2t + 2)M∞

1 ((3,5,5t,5t + 1,10t − 3), (10t,10t + 2)), t = 1 mod 3 (2( t−1
3
) + 3)M∞

1 ((3,5,5t,5t + 1,10t − 3), (10t,10t + 2)), t = 2 mod 3 (2( t−2
3
) + 3)M∞

1 ((3,7,7t,7t + 2,14t − 3), (14t,14t + 4)), t = 1 mod 3 (2( t−1
3
) + 3)M∞

1 ((3,7,7t,7t + 2,14t − 3), (14t,14t + 4)), t = 2 mod 3 (2( t−2
3
) + 3)M∞

2 ((1,3,3t + 1,3t + 2,6t + 1), (6t + 2,6t + 4)) (2t + 3)M∞

2 ((1,5,5t + 2,3t + 4,6t + 3), (6t + 4,6t + 8)) (2t + 3)M∞

2 ((1,7,7t + 3,3t + 6,6t + 5), (6t + 6,6t + 12)) (2t + 3)M∞

2 ((2,4,4t + 1,4t + 2,8t), (8t + 2,8t + 4)) M∞#tM2

2 ((2,8,8t + 3,8t + 6,16t + 4), (16t + 6,16t + 12)) M∞#tM2

2 ((2,12,12t + 5,12t + 10,24t + 8), (24t + 10,24t + 20)) M∞#tM2

2 ((3,5,5t + 1,5t + 2,10t − 1), (10t + 2,10t + 4)), t = 2 mod 3 ( t−2
3
+ 3)M∞

2 ((3,5,5t + 1,5t + 2,10t − 1), (10t + 2,10t + 4)), t = 0 mod 3 ( t
3
+ 2)M∞

2 ((3,7,7t + 2,7t + 4,14t + 1), (14t + 4,14t + 8)), t = 2 mod 3 ( t−2
3
+ 3)M∞

2 ((3,7,7t + 2,7t + 4,14t + 1), (14t + 4,14t + 8)), t = 0 mod 3 ( t
3
+ 2)M∞
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type (w,d) Smale type

3 ((1,3,3t,3t + 1,3t + 2), (3t + 3,6t + 2)) (2t + 3)M∞

3 ((1,5,5t,5t + 2,5t + 4), (5t + 5,10t + 4)) (2t + 3)M∞

3 ((1,7,7t,7t + 3,7t + 6), (7t + 7,14t + 6)) (2t + 3)M∞

3 ((2,4,4t,4t + 1,4t + 2), (4t + 4,8t + 2)) M∞#tM2

3 ((2,8,8t,8t + 3,8t + 6), (8t + 8,16t + 6)) M∞#tM2

3 ((2,12,12t,12t + 5,12t + 10), (12t + 12,24t + 10)) M∞#tM2

3 ((3,5,5t,5t + 1,5t + 2), (5t + 5,10t + 2)), t = 1 mod 3 (2( t−1
3
) + 3)M∞

3 ((3,5,5t,5t + 1,5t + 2), (5t + 5,10t + 2)), t = 2 mod 3 (2( t−2
3
) + 3)M∞

3 ((3,7,7t,7t + 2,7t + 4), (7t + 7,14t + 4)), t = 1 mod 3 (2( t−1
3
) + 3)M∞

3 ((3,7,7t,7t + 2,7t + 4), (7t + 7,14t + 4)), t = 2 mod 3 (2( t−2
3
) + 3)M∞

4 ((1,3,3t − 1,3t,3t + 1), (3t + 2,6t)) (2t + 3)M∞

4 ((1,5,5t − 2,5t,5t + 2), (5t + 3,10t)) (2t + 3)M∞

4 ((1,7,7t − 3,7t,7t + 3), (7t + 4,14t)) (2t + 3)M∞

4 ((2,4,4t + 1,4t + 2,4t + 3), (4t + 5,8t + 4)) 2M∞

4 ((2,4,4t + 3,4t + 4,4t + 5), (4t + 7,8t + 8)) 3M∞

4 ((2,6,6t + 1,6t + 3,6t + 5), (6t + 7,12t + 6)) (2t + 2)M∞

4 ((2,8,8t + 1,8t + 4,8t + 7), (8t + 9,16t + 8)) 2M∞

4 ((2,8,8t + 5,8t + 8,8t + 11), (8t + 13,16t + 16)) 3M∞

4 ((2,10,10t + 1,10t + 5,10t + 9), (10t + 11,20t + 10)) (2t + 2)M∞

4 ((3,5,5t − 1,5t,5t + 1), (5t + 4,10t)), t = 0 mod 3 (2( t
3
) + 5)M∞

4 ((3,5,5t − 1,5t,5t + 1), (5t + 4,10t)), t = 1 mod 3 (2( t−1
3
) + 5)M∞

4 ((3,7,7t − 2,7t,7t + 2), (7t + 4,14t)), t = 0 mod 3 (2( t
3
) + 5)M∞

4 ((3,7,7t − 2,7t,7t + 2), (7t + 4,14t)), t = 1 mod 3 (2( t−1
3
) + 5)M∞
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type (w,d) Smale type

5 ((1,2,3,3t − 2,3t − 1), (3t,3t + 1)) (2t + 1)M∞

5 ((1,3,5,5t − 3,5t − 1), (5t,5t + 2)) (2t + 1)M∞

5 ((1,4,7,7t − 4,7t − 1), (7t,7t + 3)) (2t + 1)M∞

5 ((2,3,4,4t − 3,4t − 2), (4t,4t + 1)) (t + 1)M∞

5 ((2,5,8,8t − 5,8t − 2), (8t,8t + 3)) (t + 1)M∞

6 ((1,2,3,3t,3t + 1), (3t + 2,3t + 3)) (2t + 3)M∞

6 ((1,3,5,5t,5t + 2), (5t + 3,5t + 5)) (2t + 3)M∞

6 ((1,4,7,7t,7t + 3), (7t + 4,7t + 7)) (2t + 3)M∞

6 ((2,3,4,4t,4t + 1), (4t + 3,4t + 4)) (t + 2)M∞

6 ((2,5,8,8t,8t + 3), (8t + 5,8t + 8)) (t + 2)M∞

6 ((3,4,5,5t,5t + 1), (5t + 4,5t + 5)), t = 1 mod 3 (2( t−1
3
) + 3)M∞

6 ((3,4,5,5t,5t + 1), (5t + 4,5t + 5)), t = 2 mod 3 (2( t−2
3
) + 3)M∞

6 ((3,5,7,7t,7t + 2), (7t + 5,7t + 7)), t = 1 mod 3 (2( t−1
3
) + 3)M∞

6 ((3,5,7,7t,7t + 2), (7t,5,7t + 7)), t = 2 mod 3 (2( t−2
3
) + 3)M∞

6 ((4,5,6,6t,6t + 1), (6t + 5,6t + 6)), t = 1 mod 2 tM∞
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B.3 Sporadic types

None of these instances meet the Lichnerowicz obstruction.

w d I Smale type

(1,2,2,3,3) (4,6) 1 7M∞

(1,3,3,4,6) (7,9) 1 8M∞

(1,3,3,5,5) (6,10) 1 9M∞

(1,3,4,6,6) (7,12) 1 8M∞

(1,3,4,6,8) (9,12) 1 8M∞

(1,3,4,6,9) (10,12) 1 8M∞

(1,4,5,7,11) (12,15) 1 8M∞

(1,4,5,8,8) (9,16) 1 9M∞

(1,4,5,8,12) (13,16) 1 9M∞

(1,4,6,8,11) (12,17) 1 9M∞

(1,4,7,10,13) (14,20) 1 8M∞

(1,5,6,9,14) (15,19) 1 9M∞

(1,5,7,10,14) (15,21) 1 10M∞

(1,5,8,12,19) (20,24) 1 8M∞

(1,5,9,13,17) (18,26) 1 9M∞

(1,6,10,15,15) (16,30) 1 9M∞

(1,6,10,15,20) (21,30) 1 9M∞

(1,6,10,15,24) (25,30) 1 9M∞

(1,7,11,17,27) (28,34) 1 9M∞

(1,7,12,17,23) (24,35) 1 9M∞

(1,7,12,18,18) (19,36) 1 10M∞

(1,7,12,18,24) (25,36) 1 10M∞

(1,8,13,19,31) (32,39) 1 9M∞

(1,8,13,20,20) (21,40) 1 10M∞

(1,8,13,20,32) (33,40) 1 10M∞
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w d I Smale type

(1,8,14,20,27) (28,41) 1 10M∞

(1,9,15,22,30) (31,45) 1 10M∞

(1,9,15,22,36) (37,45) 1 10M∞

(1,9,15,23,23) (24,46) 1 11M∞

(1,10,16,24,39) (40,49) 1 10M∞

(1,10,17,25,34) (35,51) 1 11M∞

(1,11,18,27,44) (45,55) 1 11M∞

(2,2,2,2,3) (4,6) 1 M∞#4M2

(2,2,3,3,3) (6,6) 1 6M∞

(2,2,3,3,4) (6,7) 1 6M∞

(2,2,3,4,4) (6,8) 1 3M∞#2M2

(2,3,4,4,5) (8,9) 1 5M∞

(2,3,4,5,5) (8,10) 1 5M∞

(2,3,4,5,6) (9,10) 1 5M∞

(2,3,4,6,8) (10,12) 1 5M∞#M2

(2,3,5,6,7) (10,12) 1 5M∞

(2,4,5,6,6) (10,12) 1 2M∞#2M2

(2,4,5,6,7) (11,12) 1 4M∞

(2,4,6,7,8) (12,14) 1 M∞#3M2

(2,4,6,9,14) (16,18)) 1 M∞#4M2

(2,4,8,11,14) (16,22)) 1 M∞#4M2

(2,5,6,9,13) (15,18) 2 4M∞

(2,5,6,10,14) (16,20) 1 5M∞#M2

(2,5,8,11,14) (16,22) 2 5M∞

(2,6,8,9,10) (16,18) 1 M∞#3M2

(2,7,8,13,19) (21,26) 1 5M∞

(2,7,10,13,18) (20,28) 2 5M∞

(2,7,10,15,15) (17,30) 2 6M∞

(2,7,10,15,20) (22,30) 2 6M∞

(2,9,12,17,24) (26,36) 2 6M∞
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w d I Smale type

(2,9,12,17,27) (29,36) 2 6M∞

(2,9,12,19,19) (21,38) 2 7M∞

(2,11,14,21,33) (35,44) 2 7M∞

(3,3,4,4,6) (7,12) 1 4M∞

(3,3,4,6,6) (9,12) 1 M∞#2M3

(3,3,4,6,9) (12,12) 1 M∞#2M3

(3,3,5,5,7) (10,12) 1 7M∞

(3,4,4,6,6) (10,12) 1 4M∞

(3,4,4,6,8) (12,12) 1 4M∞

(3,4,4,6,9) (12,13) 1 5M∞

(3,4,5,6,7) (10,12) 1 2M∞

(3,4,5,6,8) (9,16) 1 5M∞

(3,4,5,7,9) (12,14) 2 3M∞

(3,4,6,6,6) (12,12) 1 M∞#M3

(3,4,6,6,9) (12,15) 1 2M∞#M3

(3,4,6,8,8) (12,16) 1 5M∞

(3,4,6,9,9) (12,18) 1 2M∞#M3

(3,5,6,7,8) (13,15) 1 5M∞

(3,5,6,8,10) (15,16) 1 5M∞

(3,5,6,8,13) (16,18) 1 5M∞

(3,5,6,9,12) (15,18) 2 M∞#M3

(3,5,7,9,11) (14,18) 3 3M∞

(3,5,7,9,11) (16,18) 1 5M∞

(3,6,7,9,15) (18,21) 1 2M3

(3,6,8,8,10) (16,18) 1 5M∞

(3,7,8,9,13) (16,21) 3 3M∞

(3,7,8,12,12) (15,24) 3 4M∞

(3,7,8,12,16) (19,24) 3 4M∞

(3,8,9,15,21) (24,30) 2 M∞

(3,8,10,12,14) (22,24) 1 4M∞
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w d I Smale type

(3,8,10,12,17) (20,27) 3 4M∞

(3,8,12,14,16) (24,28) 1 4M∞

(3,10,11,15,22) (25,33) 3 5M∞

(4,4,6,7,9) (13,16) 1 5M∞

(4,4,7,10,10) (14,20) 1 4M∞

(4,4,7,10,13) (17,20) 1 5M∞

(4,5,7,10,11) (15,21) 1 4M∞

(4,5,7,10,13) (18,20) 1 4M∞

(4,5,7,10,16) (20,21) 1 4M∞

(4,5,8,8,12) (16,20) 1 M∞#M4

(4,5,8,12,16) (20,24) 1 M∞#M4

(4,6,6,6,9) (12,18) 1 M2

(4,6,6,7,9) (13,18) 1 3M∞

(4,6,6,8,11) (12,22) 1 M∞#2M2

(4,6,7,9,9) (16,18) 1 3M∞

(4,6,7,9,14) (18,21) 1 3M∞

(4,6,8,11,13) (17,24) 1 3M∞

(4,6,8,11,14) (20,22) 1 2M∞#M2

(4,6,8,11,18) (22,24) 1 2M∞#M2

(4,6,9,12,15) (21,24) 1 3M∞

(4,6,9,14,14) (18,28) 1 2M∞#M2

(4,6,10,12,15) (16,30) 1 M∞#2M2

(4,6,12,15,18) (24,30) 1 M∞#M2

(4,7,8,10,13) (20,21) 1 3M∞

(4,8,10,11,13) (21,24) 1 4M∞

(4,8,11,14,14) (22,28) 1 3M∞

(4,8,11,14,17) (25,28) 1 4M∞

(4,8,11,14,18) (22,32) 1 3M∞

(4,9,15,18,21) (30,36) 1 2M∞

(4,10,12,15,18) (28,30) 1 2M∞#M2
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w d I Smale type

(4,10,12,15,26) (30,36) 1 2M∞#M2

(4,12,15,18,18) (30,36) 1 2M∞

(4,12,15,18,21) (33,36) 1 3M∞

(4,14,20,23,26) (40,46) 1 M∞#M2

(4,18,24,27,30) (48,54) 1 M∞#M2

(5,6,6,9,9) (15,18) 2 2M∞

(5,6,8,10,12) (18,20) 3 3M∞

(5,6,8,12,19) (24,25) 1 3M∞

(5,6,9,13,13) (18,26) 2 3M∞

(5,6,10,12,14) (20,24) 3 3M∞

(5,6,10,15,20) (25,30) 1 M∞#M5

(5,6,14,18,22) (28,36) 1 3M∞

(5,6,15,20,25) (30,40) 1 M∞#M5

(5,7,8,11,14) (21,22) 2 3M∞

(5,7,10,11,14) (21,25) 1 5M∞

(5,7,10,14,16) (21,30) 1 5M∞

(5,7,10,14,18) (25,28) 1 5M∞

(5,7,10,14,23) (28,30) 1 5M∞

(5,8,8,12,12) (20,24) 1 2M∞

(5,8,9,12,19) (24,27) 2 2M∞

(5,8,12,14,16) (24,28) 3 2M∞

(5,9,12,15,18) (27,30) 2 3M∞

(5,9,12,16,20) (25,36) 1 3M∞

(5,9,12,20,31) (36,40) 1 3M∞

(5,9,15,18,21) (30,36) 2 3M∞

(5,11,14,18,22) (33,36) 1 3M∞

(5,12,16,20,24) (36,40) 1 3M∞

(5,12,18,21,24) (36,42) 2 2M∞

(5,12,20,24,28) (40,48) 1 3M∞

(5,14,17,21,37) (42,51) 1 2M∞
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w d I Smale type

(5,16,24,28,32) (48,56) 1 2M∞

(6,6,8,11,13) (19,24) 1 4M∞

(6,6,8,11,16) (22,24) 1 3M∞

(6,6,10,10,15) (16,30) 1 M∞

(6,6,10,15,15) (21,30) 1 M∞

(6,6,10,15,24) (30,30) 1 M1

(6,7,9,11,14) (18,28) 1 3M∞

(6,7,9,12,15) (21,24) 4 1M∞

(6,8,8,10,15) (16,30) 1 M∞#2M2

(6,8,9,9,12) (18,24) 2 M∞#M3

(6,8,9,11,13) (22,24) 1 2M∞

(6,8,12,17,19) (25,36) 1 4M∞

(6,8,18,23,28) (36,46) 1 M∞#M2

(6,8,20,27,34) (40,54) 1 2M2

(6,9,10,13,18) (19,36) 1 3M∞

(6,9,13,21,33) (39,42) 1 M3

(6,9,14,14,22) (28,36) 1 3M∞

(6,10,10,15,15) (25,30) 1 M∞

(6,10,10,15,20) (30,30) 1 M1

(6,10,12,15,24) (30,36) 1 M∞

(6,10,14,18,23) (24,46) 1 M∞#M2

(6,10,15,15,15) (30,30) 1 M1

(6,10,15,20,20) (30,40) 1 M∞

(6,12,14,17,22) (34,36) 1 2M∞

(6,12,16,21,27) (33,48) 1 M∞

(6,12,16,27,42) (48,54) 1 M1

(6,14,18,19,23) (37,42) 1 3M∞

(6,14,18,23,28) (42,46) 1 2M∞

(6,14,18,23,40) (46,54) 1 2M∞

(6,14,19,24,29) (43,48) 1 3M∞
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w d I Smale type

(6,18,22,27,48) (54,66) 1 M1

(6,20,25,30,35) (55,60) 1 2M∞

(6,20,30,35,40) (60,70) 1 M∞

(7,8,12,12,16) (24,28) 3 M∞

(7,8,12,16,20) (28,32) 3 M∞

(7,9,15,21,27) (36,42) 1 3M∞

(7,9,21,27,33) (42,54) 1 3M∞

(7,10,15,15,20) (30,35) 2 M∞

(7,10,15,20,25) (35,40) 2 M∞

(7,12,18,18,24) (36,42) 1 M∞

(7,12,18,24,30) (42,48) 1 M∞

(8,8,10,15,22) (30,32) 1 3M∞

(8,9,9,12,15) (24,27) 2 2M∞

(8,9,12,20,28) (36,40) 1 M4

(8,10,15,20,25) (35,40) 3 M∞

(8,10,16,17,23) (33,40) 1 3M∞

(8,10,16,19,22) (32,38) 5 M∞

(8,10,16,23,30) (40,46) 1 2M∞

(8,10,16,23,38) (46,48) 1 2M∞

(8,10,17,24,31) (41,48) 1 3M∞

(8,10,20,25,30) (40,50) 3 M1

(8,12,13,14,18) (26,36) 3 M∞

(8,12,13,18,23) (31,36) 7 2M∞

(8,12,17,22,26) (34,48) 3 M∞

(8,12,18,19,29) (37,48) 1 3M∞

(8,12,19,30,41) (49,60) 1 3M∞

(8,13,20,20,32) (40,52) 1 M∞

(8,13,20,32,44) (52,64) 1 M∞

(8,14,16,21,26) (40,42) 3 2M∞

(8,14,16,21,34) (42,48) 3 2M∞
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w d I Smale type

(8,14,21,28, 35) (49,56) 1 M∞

(8,14,26,32, 39) (40,78) 1 M∞#M2

(8,14,28,35, 42) (56,70) 1 M1

(8,18,24,27, 30) (48,54) 5 M∞

(8,18,24,31, 41) (49,72) 1 3M∞

(8,20,23,26, 30) (46,60) 1 M∞

(8,20,27,34, 46) (54,80) 1 M∞

(8,22,32,37, 42) (64,74) 3 M∞

(8,26,32,39, 46) (72,78) 1 2M∞

(8,26,32,39, 70) (78,96) 1 2M∞

(8,30,40,45, 50) (80,90) 3 M∞

(8,34,48,55, 62) (96,110) 1 M∞

(8,42,56,63, 70) (112,126) 1 M∞

(9,10,12,15, 18) (27,30) 7 M∞

(9,10,12,15, 21) (30,36) 1 M3

(9,10,15,22, 23) (32,45) 2 3M∞

(9,11,12,17, 25) (34,36) 4 M∞

(9,12,13,16, 24) (25,48) 1 2M∞

(9,12,16,16, 20) (32,36) 5 M∞

(9,12,17,24, 27) (36,51) 2 M∞

(9,12,17,24, 39) (48,51) 2 M∞

(9,12,17,27, 42) (51,54) 2 M∞

(9,12,19,19, 26) (38,45) 2 3M∞

(9,12,19,19, 29) (38,48) 2 3M∞

(9,13,15,18, 21) (36,39) 1 M∞

(9,14,15,21, 27) (36,42) 8 M∞

(9,14,21,29, 34) (43,63) 1 3M∞

(9,15,20,20, 25) (40,45) 4 M∞

(9,15,22,30, 36) (45,66) 1 M∞

(9,15,22,30, 51) (60,66) 1 M∞
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(9,15,22,36,57) (66,72) 1 M∞

(9,15,23,23,31) (46,54) 1 3M∞

(9,15,23,23,37) (46,60) 1 3M∞

(9,19,24,31,53) (62,72) 2 M∞

(9,21,28,28,35) (56,63) 2 M∞

(9,23,30,38,67) (76,90) 1 M∞

(9,24,32,32,40) (64,72) 1 M∞

(10,11,15,18,22) (33,40) 3 3M∞

(10,11,15,22,23) (33,45) 3 3M∞

(10,11,15,22,29) (40,44) 3 3M∞

(10,11,15,22,34) (44,45) 3 3M∞

(10,12,16,25,38) (48,50) 3 M2

(10,12,20,29,31) (41,60) 1 3M∞

(10,12,21,30,39) (51,60) 1 2M∞

(10,12,30,39,48) (60,78) 1 M∞

(10,13,25,31,37) (50,62) 4 M∞

(10,16,25,40,55) (65,80) 1 M∞

(10,16,30,37,44) (60,74) 3 M∞

(10,16,40,55,70) (80,110) 1 M1

(10,17,25,26,34) (51,60) 1 3M∞

(10,17,25,34,41) (51,75) 1 3M∞

(10,17,25,34,43) (60,68) 1 3M∞

(10,17,25,34,58) (68,75) 1 3M∞

(10,19,35,43,51) (70,86) 2 M∞

(10,21,28,35,42) (63,70) 3 M∞

(10,21,35,42,49) (70,84) 3 M∞

(10,22,40,49,58) (80,98) 1 M∞

(10,24,32,55,86) (96,110) 1 M2

(10,27,36,45,54) (81,90) 1 M∞

(10,27,45,54,63) (90,108) 1 M∞
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(11,12,15,18,21) (33,36) 8 M1

(11,13,14,19,20) (33,39) 5 M∞

(11,13,14,20,29) (40,42) 5 M∞

(11,13,19,25,27) (38,52) 5 M∞

(11,13,19,25,31) (44,50) 5 M∞

(11,14,21,23,33) (44,56) 2 3M∞

(11,14,21,30,33) (44,63) 2 3M∞

(11,14,21,33,45) (56,66) 2 3M∞

(11,14,21,33,52) (63,66) 2 3M∞

(11,15,20,32,49) (60,64) 3 M∞

(11,16,20,24,28) (44,48) 7 M1

(11,17,20,24,27) (44,51) 4 M∞

(11,17,20,27,43) (54,60) 4 M∞

(11,17,24,31,37) (48,68) 4 M∞

(11,17,24,31,38) (55,62) 4 M∞

(11,18,27,28,44) (55,72) 1 3M∞

(11,18,27,37,44) (55,81) 1 3M∞

(11,18,27,44,61) (72,88) 1 3M∞

(11,18,27,44,70) (81,88) 1 3M∞

(11,20,25,30,35) (55,60) 6 M1

(11,21,26,29,34) (55,63) 3 M∞

(11,21,26,34,57) (68,78) 3 M∞

(11,21,28,47,73) (84,94) 2 M∞

(11,21,29,37,45) (66,74) 3 M∞

(11,21,29,37,47) (58,84) 3 M∞

(11,24,30,36,42) (66,72) 5 M1

(11,25,32,34,41) (66,75) 2 M∞

(11,25,32,41,71) (82,96) 2 M∞

(11,25,34,43,52) (77,86) 2 M∞

(11,25,34,43,57) (68,100) 2 M∞
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(11,27,36,62, 97) (108,124) 1 M∞

(11,28,35,42, 49) (77,84) 4 M1

(11,29,38,39, 48) (77,87) 1 M∞

(11,29,38,48, 85) (96,114) 1 M∞

(11,29,39,49, 59) (88,98) 1 M∞

(11,29,39,49, 67) (78,116) 1 M∞

(11,32,40,48, 56) (88,96) 3 M1

(11,36,45,54, 63) (99,108) 2 M1

(11,40,50,60, 70) (110,120) 1 M1

(12,14,15,18, 21) (36,42) 2 M3

(12,14,18,20, 27) (32,54) 5 M∞

(12,14,24,35, 46) (60,70) 1 2M∞

(12,14,24,35, 58) (70,72) 1 2M∞

(12,15,20,26, 34) (46,60) 1 2M∞

(12,15,25,25, 35) (50,60) 2 1M∞

(12,16,18,23, 25) (41,48) 5 2M∞

(12,16,23,30, 37) (53,60) 5 2M∞

(12,18,20,27, 42) (54,60) 5 M1

(12,18,22,27, 33) (45,66) 1 M∞

(12,20,21,30, 39) (51,60) 11 M∞

(12,20,25,30, 35) (55,60) 7 M∞

(12,21,32,32, 52) (64,84) 1 M∞

(12,28,35,42, 49) (77,84) 5 M∞

(12,30,40,51, 69) (81,120) 1 M∞

(12,32,42,43, 53) (85,96) 1 2M∞

(12,32,43,54, 65) (97,108) 1 2M∞

(12,42,52,63, 114) (126,156) 1 M1

(12,44,55,66, 77) (121,132) 1 M∞

(13,14,19,23, 29) (42,52) 4 M∞

(13,14,19,29, 44) (57,58) 4 M∞
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(13,14,23,32,33) (46,65) 4 M∞

(13,14,35,46,57) (70,92) 3 M∞

(13,17,24,27,38) (51,65) 3 M∞

(13,17,24,38,59) (72,76) 3 M∞

(13,17,27,37,41) (54,78) 3 M∞

(13,18,45,61,77) (90,122) 2 M∞

(14,15,19,26,31) (45,57) 3 M∞

(14,15,19,26,37) (52,56) 3 M∞

(14,15,25,35,45) (60,70) 4 M∞

(14,15,35,45,55) (70,90) 4 M∞

(14,16,42,55,68) (84,110) 1 M∞

(14,17,27,29,39) (56,68) 2 M∞

(14,17,27,39,64) (78,81) 2 M∞

(14,17,29,41,44) (58,85) 2 M∞

(14,17,29,41,53) (70,82) 2 M∞

(14,19,25,32,43) (57,75) 1 M∞

(14,19,25,32,45) (64,70) 1 M∞

(15,16,20,28,32) (48,60) 3 M∞

(15,16,20,32,44) (60,64) 3 M∞

(15,18,19,27,39) (54,57) 7 M1

(15,18,25,36,39) (54,75) 4 M∞

(15,18,25,36,57) (72,75) 4 M∞

(15,21,28,39,45) (60,84) 4 M∞

(15,21,28,45,69) (84,90) 4 M∞

(15,22,55,75,95) (110,150) 2 M∞

(15,24,35,48,57) (72,105) 2 M∞

(15,24,35,48,81) (96,105) 2 M∞

(15,26,65,90, 115) (130,180) 1 M∞

(15,27,40,54,66) (81,120) 1 M∞

(15,27,40,54,93) (108,120) 1 M∞
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(15,33,44,57, 75) (90,132) 2 M∞

(15,33,44,75, 117) (132,150) 2 M∞

(15,36,43,54, 93) (108,129) 4 M1

(15,39,52,66, 90) (105,156) 1 M∞

(15,39,52,90, 141) (156,180) 1 M∞

(15,48,59,72, 129) (144,177) 2 M1

(15,54,67,81, 147) (162,201) 1 M1

(16,18,24,27, 30) (48,54) 13 M1

(16,18,24,35, 37) (53,72) 5 2M∞

(16,18,48,63, 78) (96,126) 1 M∞

(16,20,29,38, 42) (58,80) 7 M1

(16,20,30,33, 47) (63,80) 3 2M∞

(16,21,28,36, 48) (64,84) 1 M∞

(16,21,28,48, 68) (84,96) 1 M∞

(16,22,24,33, 42) (64,66) 7 M∞

(16,22,24,33, 50) (66,72) 7 M∞

(16,26,40,47, 54) (80,94) 9 M1

(16,28,39,50, 62) (78,112) 5 M1

(16,28,42,43, 69) (85,112) 1 2M∞

(16,30,40,45, 50) (80,90) 11 M1

(16,30,40,53, 67) (83,120) 3 2M∞

(16,34,40,51, 62) (96,102) 5 M∞

(16,34,40,51, 86) (102,120) 5 M∞

(16,36,49,62, 82) (98,144) 3 M∞

(16,38,56,65, 74) (112,130) 7 M∞

(16,42,56,63, 70) (112,126) 9 M1

(16,42,56,71, 97) (113,168) 1 2M∞

(16,44,59,74, 102) (118,176) 1 M1

(16,46,56,69, 82) (128,138) 3 M∞

(16,46,56,69, 122) (138,168) 3 M∞
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(16,50,72,83,94) (144,166) 5 M1

(16,54,72,81,90) (144,162) 7 M1

(16,58,72,87, 102) (160,174) 1 M∞

(16,58,72,87, 158) (174,216) 1 M∞

(16,62,88,101,114) (176,202) 3 M1

(16,66,88,99, 110) (176,198) 5 M1

(16,74,104,119,134) (208,238) 1 M1

(16,78,104,117,130) (208,234) 3 M1

(16,90,120,135,150) (240,270) 1 M1

(17,20,35,50,65) (85,100) 2 M1

(18,19,24,33,39) (57,72) 4 M1

(18,20,21,27,33) (54,60) 5 M1

(18,21,29,45,69) (87,90) 5 M1

(18,21,35,51,54) (72,105) 2 M∞

(18,21,35,54,87) (105,108) 2 M∞

(18,22,27,33,39) (66,72) 1 M∞

(18,22,27,33,48) (66,81) 1 M∞

(18,23,30,39,51) (69,90) 2 M1

(18,24,26,35,46) (70,72) 7 M1

(18,24,32,41,55) (73,96) 1 2M∞

(18,24,40,63, 102) (120,126) 1 M1

(18,26,30,41,64) (82,90) 7 M1

(18,30,34,43,56) (86,90) 5 M1

(18,32,48,65,79) (97,144) 1 2M∞

(18,33,49,81, 129) (147,162) 1 M1

(18,34,42,55,92) (110,126) 5 M1

(18,42,50,59,76) (118,126) 1 M1

(18,50,66,83, 148) (166,198) 1 M1

(19,20,24,36,52) (72,76) 3 M1

(20,24,41,58,62) (82,120) 3 M1
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(20,28,47,66, 74) (94,140) 1 M1

(21,24,29,36, 51) (72,87) 2 M1

(21,24,41,60, 99) (120,123) 2 M1

(22,24,32,49, 74) (96,98) 7 M1

(22,24,36,55, 74) (96,110) 5 M∞

(22,24,36,55, 86) (108,110) 5 M∞

(22,32,48,77, 106) (128,154) 3 M∞

(22,32,48,77, 122) (144,154) 3 M∞

(22,36,48,79, 122) (144,158) 5 M1

(22,40,60,99, 138) (160,198) 1 M∞

(22,40,60,99, 158) (180,198) 1 M∞

(22,48,64,109, 170) (192,218) 3 M1

(22,60,80,139, 218) (240,278) 1 M1

(24,26,32,51, 70) (96,102) 5 M1

(24,26,40,59, 94) (118,120) 5 M1

(24,26,60,77, 94) (120,154) 7 M1

(24,30,32,45, 66) (90,96) 11 M1

(24,30,38,53, 82) (106,120) 1 M1

(24,30,40,57, 63) (87,120) 7 M∞

(24,34,40,63, 86) (120,126) 1 M1

(24,34,56,79, 134) (158,168) 1 M1

(24,38,84,107, 130) (168,214) 1 M1

(24,42,56,75, 93) (117,168) 5 M∞

(24,54,64,81, 138) (162,192) 7 M1

(24,66,80,99, 174) (198,240) 5 M1

(24,66,88,111, 153) (177,264) 1 M∞

(24,90,112,135,246) (270,336) 1 M1

(26,30,40,67, 94) (120,134) 3 M1

(26,30,50,77, 124) (150,154) 3 M1

(26,32,80,107, 134) (160,214) 5 M1
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(26,36,48,83, 118) (144,166) 1 M1

(26,36,60,95, 154) (180,190) 1 M1

(26,40,100,137,174) (200,274) 3 M1

(26,48,120,167,214) (240,334) 1 M1

(30,32,80,105,130) (160,210) 7 M1

(30,42,70,99, 111) (141,210) 1 M∞

(30,48,64,105,162) (192,210) 7 M1

(30,56,140,195,250) (280,390) 1 M1

(30,84,112,195,306) (336,390) 1 M1
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C.1 One parameter families of well-formed types

w d I

(1,1, t + 1, t + 1,2t + 1), 0 ≤ t (2t + 2,2t + 2) 1

(1,2, t + 2, t + 2,2t + 3), 0 ≤ t, t odd (2t + 4,2t + 5) 1

(2, t + 1, t + 1,2t + 1,3t + 1), 1 ≤ t, t even (3t + 3,4t + 2) 1

(2,2,2t + 1,2t + 1,4t), 1 ≤ t (4t + 2,4t + 2) 2

(2,3, t + 1, t + 2, t + 2), 1 ≤ t, t = 2 mod 3 (t + 4,2t + 4) 2

(2,3, t + 1, t + 2,2t + 1), 1 ≤ t, t = 0 mod 3 (2t + 3,2t + 4) 2

(2,4,2t + 3,2t + 3,4t + 4), 0 ≤ t (4t + 6,4t + 8) 2

(3, t + 1, t + 2, t + 2,2t + 1), t ≠ 1 mod 3 (2t + 4,3t + 3) 2

(3,3t,3t + 1,3t + 1,3t + 2), 1 ≤ t (6t + 2,6t + 3) 2

(3,3t + 1,3t + 2,6t + 1,6t + 3), 1 ≤ t (9t + 3,12t + 2) 2

(4,2t + 1,2t + 1,2t + 3,4t),1 ≤ t (4t + 4,6t + 3) 2

(4,2t + 3,2t + 3,4t + 4,6t + 5), 0 ≤ t (6t + 9,8t + 8) 2

(4,2t + 1,2t + 3,4t + 2,6t + 1), 1 ≤ t (6t + 5,8t + 4) 2

(4,2t + 1,4t + 2,6t + 1,8t), 1 ≤ t (8t + 4,12t + 2) 2

(4,4t + 1,4t + 2,4t + 3,4t + 3), 1 ≤ t (8t + 4,8t + 6)) 3

(4,6,6t + 3,6t + 5,6t + 5), 1 ≤ t (6t + 9,12t + 10) 4

(4,6,6t + 5,6t + 7,12t + 8), 1 ≤ t (12t + 12,12t + 14) 4

(6,6t + 3,6t + 5,6t + 5,6t + 7), 0 ≤ t (12t + 10,12t + 12) 4

(6,6t + 3,6t + 5,6t + 5,12t + 4), 1 ≤ t (12t + 10,18t + 9) 4

(6,6t + 1,6t + 3,6t + 4,6t + 5), 1 ≤ t (12t + 6,12t + 8) 5

(8,4t + 1,4t + 3,4t + 5,4t + 7), 1 ≤ t (8t + 8,8t + 10) 6

(8,4t + 5,4t + 7,4t + 9,8t + 6), 0 ≤ t (8t + 14,12t + 15) 6

(9,3t + 2,3t + 5,3t + 8,6t + 1), 1 ≤ t (6t + 10,9t + 9) 6

(9,3t + 5,3t + 8,6t + 7,9t + 6), 0 ≤ t (9t + 15,12t + 14) 6

(1,4t − 2,6t − 3,9t − 5,12t − 7) (12t − 6,18t − 10) t

(1,3t − 1,4t − 2,6t − 3,9t − 5), t even (9t − 4,12t − 6) t

(7,4t + 6,6t + 9,9t + 10,12t + 11) (12t + 18,18t + 20) t + 5

0 ≤ t, t ≠ 2 mod 7
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C.2 Three parameter families of well-formed types

1. For index I ≥ 2:

w = (u,2I − u, t(2I − u), t(2I − u) + I − u,2t(2I − u) − u)
d = (2t(2I − u),2t(2I − u) + 2I − 2u)
Either:

a. 1 ≤ u < I, u odd, gcd(u, I) = 1
t ≥ 1, t = u−1

2
, u − 1 mod (u)

or

b. u = 4v + 2 I − u even, gcd(I − u,2v + 1) = 1
2t = (4v + 1) mod (4v + 2)

2. For index I ≥ 2:

w = (u,2I − u, t(2I − u) + I − u, t(2I − u) + 2I − 2u,2t(2I − u) + 2I − 3u)
d = (2t(2I − u) + 2I − 2u,2t(2I − u) + 4I − 4u)
1 ≤ u < I, gcd(u,2) = 1 gcd(u, I) = 1
t ≥ 1, t = u−3

2
, u − 1 mod (u)
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3. For index I ≥ 2:

w = (u,2I − u, t(2I − u), t(2I − u) + I − u, t(2I − u) + 2I − 2u)
d = (t(2I − u) + 2I − u,2t(2I − u) + 2I − 2u)
1 ≤ u < I, gcd(u,2) = 1 gcd(u, I) = 1
t ≥ 1, t = u−1

2
, u − 1 mod (u)

4. For index I ≥ 2:

w = (u,2I − u, t(2I − u) + u − I, t(2I − u), t(2I − u) + I − u)
d = (t(2I − u) + I,2t(2I − u))
Either:

a. 1 ≤ u < I, u odd, gcd(u, I) = 1
t ≥ 1, t = 0, u−1

2
mod (u)

or

b. u = 4v + 2 I − u even, gcd(I − u,2v + 1) = 1
2t = (2q + 1)(2v + 1) for some q ≥ 1, gcd(2t, I − u) = 1 t can be half integer.
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5. For index I ≥ 2:

w = (u, I,2I − u, t(2I − u) − I, t(2I − u) − u)
d = (t(2I − u), t(2I − u) + I − u)
u ≡ 1 mod 2, gcd(u, I) = 1
t ≥ 2, t ≡ 0, u−1

2
mod (u) gcd(I − u, t − 1) = 1

6. For index I ≥ 2:

w = (u, I,2I − u, (t − 1)(2I − u), (t − 1)(2I − u) + I − u)
d = (t(2I − u) + u − I, t(2I − u))
u ≡ 1 mod 2, gcd(u, I) = 1
t ≥ 2, t ≡ 0, u+1

2
mod (u) gcd(I − u, t − 1) = 1

102



Appendix C. Well-formed types

C.3 Sporadic well-formed types

w d I KE

(1,2,2,3,3) (4,6) 1 ?

(1,3,3,5,5) (6,10) 1 ?

(1,4,5,7,11) (12,15) 1 ?

(1,4,7,10,13) (14,20) 1 ?

(1,5,8,12,19) (20,24) 1 ?

(1,5,9,13,17) (18,26) 1 ?

(1,7,11,17,27) (28,34) 1 ?

(1,7,12,17,23) (24,35) 1 ?

(1,8,13,19,31) (32,39) 1 ?

(1,9,15,23,23) (24,46) 1 ?

(2,2,3,3,3) (6,6) 1 ?

(2,3,4,5,5) (8,10) 1 ?

(2,3,5,6,7) (10,12) 1 ?

(3,3,5,5,7) (10,12) 1 ?

(3,5,6,8,13) (16,18) 1 ?

(3,5,7,9,11) (16,18) 1 ?

(4,5,7,10,13) (18,20) 1 ?

(5,7,10,14,23) (28,30) 1 ?

(5,9,12,20,31) (36,40) 1 ?

(5,14,17,21,37) (42,51) 1 ?

(6,7,9,11,14) (18,28) 1 Y

(6,8,9,11,13) (22,24) 1 Y

(9,15,23,23,31) (46,54) 1 Y

(9,15,23,23,37) (46,60) 1 Y

(9,23,30,38,67) (76,90) 1 Y
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w d I KE

(10,17,25,34,43) (60,68) 1 Y

(11,18,27,44,61) (72,88) 1 Y

(11,27,36,62,97) (108,124) 1 Y

(11,29,38,48,85) (96,114) 1 Y

(11,29,39,49,59) (88,98) 1 Y

(11,29,39,49,67) (78,116) 1 Y

(13,22,55,76,97) (110,152) 1 Y

(13,23,34,56,89) (102,112) 1 Y

(13,23,35,47,57) (70,104) 1 Y

(13,23,35,57,79) (92,114) 1 Y

(14,19,25,32,45) (64,70) 1 Y

(2,5,6,9,13) (15,18) 2 ?

(2,5,8,11,14) (16,22) 2 ?

(2,7,8,13,19) (21,26) 2 ?

(2,7,10,13,18) (20,28) 2 ?

(2,9,12,19,19) (21,38) 2 ?

(3,4,5,6,7) (11,12) 2 ?

(3,4,6,7,8) (12,14) 2 ?

(5,6,9,13,13) (18,26) 2 ?

(5,7,8,11,14) (21,22) 2 ?

(5,8,9,12,19) (24,27) 2 ?

(9,10,15,22,23) (32,45) 2 ?

(9,12,19,19,26) (38,45) 2 ?

(9,12,19,19,29) (38,48) 2 ?

(9,19,24,31,53) (62,72) 2 ?

(10,19,35,43,51) (70,86) 2 ?

(11,14,21,33,52) (63,66) 2 ?

(11,21,28,47,73) (84,94) 2 ?
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w d I KE

(11,25,32,34,41) (66,75) 2 Y

(11,25,32,41,71) (82,96) 2 ?

(11,25,34,43,52) (77,86) 2 Y

(11,25,34,43,57) (68,100) 2 Y

(13,18,45,61,77) (90,122) 2 ?

(13,20,29,31,47) (60,78) 2 Y

(13,20,29,47,74) (87,94) 2 ?

(13,20,31,42,49) (62,91) 2 Y

(13,20,31,49,67) (80,98) 2 ?

(14,17,27,39,64) (78,81) 2 ?

(14,17,29,41,44) (58,85) 2 Y

(14,17,29,41,53) (70,82) 2 ?

(3,4,5,6,7) (10,12) 3 ?

(3,5,7,9,11) (14,18) 3 ?

(3,7,8,9,13) (16,21) 3 ?

(1,10,15,22,29) (30,44) 3 ?

(10,11,15,22,29) (40,44) 3 ?

(11,15,20,32,49) (60,64) 3 ?

(11,21,26,34,57) (68,78) 3 ?

(11,21,29,37,45) (66,74) 3 ?

(11,21,29,37,47) (58,84) 3 ?

(13,14,35,46,57) (70,92) 3 ?

(13,17,24,38,59) (72,76) 3 ?

(13,17,27,37,41) (54,78) 3 ?

(13,17,27,41,55) (68,82) 3 ?

(14,15,19,26,37) (52,56) 3 ?
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w d I KE

(4,5,6,7,8) (12,14) 4 ?

(9,11,12,17,25) (34,36) 4 ?

(10,13,25,31,37) (50,62) 4 ?

(11,17,20,24,27) (44,51) 4 ?

(11,17,20,27,43) (54,60) 4 ?

(11,17,24,31,37) (48,68) 4 ?

(11,17,24,31,38) (55,62) 4 ?

(13,14,19,23,29) (42,52) 4 ?

(13,14,19,29,44) (57,58) 4 ?

(13,14,23,32,33) (46,65) 4 ?

(13,14,23,33,43) (56,66) 4 ?

(11,13,14,20,29) (40,42) 5 ?

(11,13,19,25,27) (38,52) 5 ?

(11,13,19,25,31) (44,50) 5 ?
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Cases broken down by highest two

weights

D.1 General requirements

Suppose, as usual, that w0 ≤ w1 ≤ w2 ≤ w3 ≤ w4 < d1 ≤ d2 and w0 +w1 +w2 +w3 +w4 >

d1 + d2. We have d1 ≥ w3 +w0, d1 ≥ w4, and d2 ≥ w4 +w1 from Lemmas 30 and 34.

D.1.1 Possibilities for w3

From Corollary 16 applied to {3}, we need one of the following: (i) d1 = m1w3, (ii)

d2 =m2w3, or (iii) d1 =m3w3 +wi and d2 =m4w3 +wj with i, j ∈ {0,1,2,4} and i ≠ j.

(i) 2 ≤m1 < 3 else d1 + d2 ≥ 3w3 +w1 +w4 ≥ w0 +w1 +w2 +w3 +w4 > d1 + d2 which is a

contradiction. (ii) 2 ≤m2 < 4 else d1 + d2 ≥ w4 + 4w3 ≥ w0 +w1 +w2 +w3 +w4 > d1 + d2
which is a contradiction. (iii) d1 < 2w3 + w0 else d1 + d2 ≥ 2w3 + w0 + w1 + w4 ≥

w0 + w1 + w2 + w3 + w4 > d1 + d2 which is a contradiction. Therefore d1 = w3 + w0,

d1 = w3 +w1, d1 = w3 + w2, or d1 = w3 + w4 in this case. d2 < 3w3 + w0 else d1 + d2 >
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w4 + 3w3 +w0 ≥ w0 +w1 +w2 + w3 +w4 > d1 + d2 which is a contradiction. Therefore

d2 = w3 + w0, d2 = w3 +w1, d2 = w3 +w2, d2 = w3 + w4, d2 = 2w3 + w0, d2 = 2w3 +w1,

or d2 = 2w3 +w2. Without loss of generality we can assume that if d1 = w3 +wi and

d2 = w3 +wj then i < j, since, if not, then d1 ≤ d2 would imply wj = wi.

Tabling these possibilities:

d1 d2

2w3

2w3

3w3

w0 +w3 w1 +w3

w0 +w3 w2 +w3

w0 +w3 w3 +w4

w0 +w3 2w3 +w1

w0 +w3 2w3 +w2

w1 +w3 w2 +w3

w1 +w3 w3 +w4

w1 +w3 2w3 +w0

w1 +w3 2w3 +w2

w2 +w3 w3 +w4

w2 +w3 2w3 +w0

w2 +w3 2w3 +w1

w3 +w4 2w3 +w0 too great

w3 +w4 2w3 +w1 too great

w3 +w4 2w3 +w2 too great
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D.1.2 Possibilities for w4

From the Corollary applied to {4}, we need one of the following: (i) d1 = n1w4, (ii)

d2 = n2w4, or (iii) d1 = n3w4 + wi and d2 = n4w4 +wj with i, j ∈ {0,1,2,4} and i ≠ j.

(i) 2 ≤ n1 < 3 else d1 + d2 ≥ w0 +w3 + 3w4 ≥ w0 +w1 +w2 +w3 +w4 > d1 + d2 which is a

contradiction. (ii) 2 ≤ n2 < 3 else d1+d2 ≥ 3w4+w3+w0 ≥ w0+w1+w2+w3+w4 > d1+d2
which is a contradiction. (iii) d1 < 2w4 + w0 else d1 + d2 ≥ 2w4 + w0 + w1 + w4 ≥

w0 + w1 + w2 + w3 + w4 > d1 + d2 which is a contradiction. Therefore d1 = w4 + w0,

d1 = w4 +w1, d1 = w4 + w2, or d1 = w4 + w3 in this case. d2 < 2w4 + w1 else d1 + d2 >
w4 + 3w3 +w0 ≥ w0 +w1 +w2 + w3 +w4 > d1 + d2 which is a contradiction. Therefore

d2 = w4 +w0, d2 = w4 +w1, d2 = w4 +w2, d2 = w4 +w3, or d2 = 2w4 +w0. Without loss

of generality we can assume that if d1 = w4 +wi and d2 = w4 +wj then i < j, since, if

not, then d1 ≤ d2 would imply wj = wi.

Tabling these possibilities:

d1 d2

2w4

2w4

w0 +w4 w1 +w4

w0 +w4 w2 +w4

w0 +w4 w3 +w4

w1 +w4 w2 +w4

w1 +w4 w3 +w4

w1 +w4 2w4 +w0 too great

w2 +w4 w3 +w4

w3 +w4 2w4 +w0 too great
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D.1.3 Possible pairs for w3 and w4

Combining the previous conditions and noting those ruled out those by immediately

violating positivity:

d1 d2

2w3 = 2w4 see below

2w3 2w4

2w3 = w0 +w4 w1 +w4

2w3 = w0 +w4 w2 +w4

2w3 = w0 +w4 w3 +w4

2w3 = w1 +w4 w2 +w4

2w3 = w1 +w4 w3 +w4

2w3 = w2 +w4 w3 +w4

2w4 2w3

2w3 = 2w4 see below

w0 +w4 2w3 = w1 +w4

w0 +w4 2w3 = w2 +w4

w0 +w4 2w3 = w3 +w4

w1 +w4 2w3 = w2 +w4

w1 +w4 2w3 = w3 +w4

w2 +w4 2w3 = w3 +w4
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2w4 3w3 too great

3w3 = 2w4 see below

w0 +w4 3w3 = w1 +w4 too great

w0 +w4 3w3 = w2 +w4 too great

w0 +w4 3w3 = w3 +w4 too great

w1 +w4 3w3 = w2 +w4 too great

w1 +w4 3w3 = w3 +w4 too great

w2 +w4 3w3 = w3 +w4 too great

d1 d2

w0 +w3 = 2w4 w1 +w3

w0 +w3 w1 +w3 = 2w4

w0 +w3 = w0 +w4 w1 +w3 = w1 +w4 see below

w0 +w3 = w0 +w4 w1 +w3 = w2 +w4 see below

w0 +w3 = w0 +w4 w1 +w3 = w3 +w4

w0 +w3 = w1 +w4 w1 +w3 = w2 +w4

w0 +w3 = w1 +w4 w1 +w3 = w3 +w4

w0 +w3 = w2 +w4 w1 +w3 = w3 +w4

w0 +w3 = 2w4 w2 +w3

w0 +w3 w2 +w3 = 2w4

w0 +w3 = w0 +w4 w2 +w3 = w1 +w4 see below

w0 +w3 = w0 +w4 w2 +w3 = w2 +w4 see below

w0 +w3 = w0 +w4 w2 +w3 = w3 +w4

w0 +w3 = w1 +w4 w2 +w3 = w2 +w4 see below

w0 +w3 = w1 +w4 w2 +w3 = w3 +w4

w0 +w3 = w2 +w4 w2 +w3 = w3 +w4
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w0 +w3 = 2w4 w3 +w4

w0 +w3 w3 +w4 = 2w4

w0 +w3 = w0 +w4 w3 +w4 = w1 +w4

w0 +w3 = w0 +w4 w3 +w4 = w2 +w4

w0 +w3 = w0 +w4 w3 +w4 = w3 +w4

w0 +w3 = w1 +w4 w3 +w4 = w2 +w4

w0 +w3 = w1 +w4 w3 +w4 = w3 +w4

w0 +w3 = w2 +w4 w3 +w4 = w3 +w4

w0 +w3 = 2w4 w1 + 2w3 too great

w0 +w3 w1 + 2w3 = 2w4

w0 +w3 = w0 +w4 w1 + 2w3 = w1 +w4 too great

w0 +w3 = w0 +w4 w1 + 2w3 = w2 +w4 too great

w0 +w3 = w0 +w4 w1 + 2w3 = w3 +w4 too great

w0 +w3 = w1 +w4 w1 + 2w3 = w2 +w4 too great

w0 +w3 = w1 +w4 w1 + 2w3 = w3 +w4 too great

w0 +w3 = w2 +w4 w1 + 2w3 = w3 +w4 too great

w0 +w3 = 2w4 w2 + 2w3 too great

w0 +w3 w2 + 2w3 = 2w4

w0 +w3 = w0 +w4 w2 + 2w3 = w1 +w4 too great

w0 +w3 = w0 +w4 w2 + 2w3 = w2 +w4 too great

w0 +w3 = w0 +w4 w2 + 2w3 = w3 +w4 too great

w0 +w3 = w1 +w4 w2 + 2w3 = w2 +w4 too great

w0 +w3 = w1 +w4 w2 + 2w3 = w3 +w4 too great

w0 +w3 = w2 +w4 w2 + 2w3 = w3 +w4 too great
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d1 d2

w1 +w3 = 2w4 w2 +w3

w1 +w3 w2 +w3 = 2w4

w1 +w3 = w0 +w4 w2 +w3 = w1 +w4

w1 +w3 = w0 +w4 w2 +w3 = w2 +w4 see below

w1 +w3 = w0 +w4 w2 +w3 = w3 +w4

w1 +w3 = w1 +w4 w2 +w3 = w2 +w4 see below

w1 +w3 = w1 +w4 w2 +w3 = w3 +w4

w1 +w3 = w2 +w4 w2 +w3 = w3 +w4

w1 +w3 = 2w4 w3 +w4

w1 +w3 w3 +w4 = 2w4

w1 +w3 = w0 +w4 w3 +w4 = w1 +w4

w1 +w3 = w0 +w4 w3 +w4 = w2 +w4

w1 +w3 = w0 +w4 w3 +w4 = w3 +w4

w1 +w3 = w1 +w4 w3 +w4 = w2 +w4

w1 +w3 = w1 +w4 w3 +w4 = w3 +w4

w1 +w3 = w2 +w4 w3 +w4 = w3 +w4

w1 +w3 = 2w4 w0 + 2w3 too great

w1 +w3 w0 + 2w3 = 2w4

w1 +w3 = w0 +w4 w0 + 2w3 = w1 +w4 see below

w1 +w3 = w0 +w4 w0 + 2w3 = w2 +w4

w1 +w3 = w0 +w4 w0 + 2w3 = w3 +w4

w1 +w3 = w1 +w4 w0 + 2w3 = w2 +w4 too great

w1 +w3 = w1 +w4 w0 + 2w3 = w3 +w4 too great

w1 +w3 = w2 +w4 w0 + 2w3 = w3 +w4 too great
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w1 +w3 = 2w4 w2 + 2w3 too great

w1 +w3 w2 + 2w3 = 2w4

w1 +w3 = w0 +w4 w2 + 2w3 = w1 +w4 too great

w1 +w3 = w0 +w4 w2 + 2w3 = w2 +w4 too great

w1 +w3 = w0 +w4 w2 + 2w3 = w3 +w4 too great

w1 +w3 = w1 +w4 w2 + 2w3 = w2 +w4 too great

w1 +w3 = w1 +w4 w2 + 2w3 = w3 +w4 too great

w1 +w3 = w2 +w4 w2 + 2w3 = w3 +w4 too great

w2 +w3 = 2w4 w3 +w4

w2 +w3 w3 +w4 = 2w4

w2 +w3 = w0 +w4 w3 +w4 = w1 +w4

w2 +w3 = w0 +w4 w3 +w4 = w2 +w4

w2 +w3 = w0 +w4 w3 +w4 = w3 +w4

w2 +w3 = w1 +w4 w3 +w4 = w2 +w4

w2 +w3 = w1 +w4 w3 +w4 = w3 +w4

w2 +w3 = w2 +w4 w3 +w4 = w3 +w4

w2 +w3 = 2w4 w0 + 2w3 too great

w2 +w3 w0 + 2w3 = 2w4

w2 +w3 = w0 +w4 w0 + 2w3 = w1 +w4

w2 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 see below

w2 +w3 = w0 +w4 w0 + 2w3 = w3 +w4

w2 +w3 = w1 +w4 w0 + 2w3 = w2 +w4 too great

w2 +w3 = w1 +w4 w0 + 2w3 = w3 +w4 too great

w2 +w3 = w2 +w4 w0 + 2w3 = w3 +w4 too great

114



Appendix D. Cases broken down by highest two weights

d1 d2

w2 +w3 = 2w4 w1 + 2w3 too great

w2 +w3 w1 + 2w3 = 2w4

w2 +w3 = w0 +w4 w1 + 2w3 = w1 +w4 too great

w2 +w3 = w0 +w4 w1 + 2w3 = w2 +w4 too great

w2 +w3 = w0 +w4 w1 + 2w3 = w3 +w4 too great

w2 +w3 = w1 +w4 w1 + 2w3 = w2 +w4 too great

w2 +w3 = w1 +w4 w1 + 2w3 = w3 +w4 too great

w2 +w3 = w2 +w4 w1 + 2w3 = w3 +w4 too great

D.1.4 Restrictions because of {3, 4}
We also need to consider Corollary 16 applied to {3,4}. All of the above satisfy it

immediately except the following:

d1 d2

2w3 = 2w4

2w3 = 2w4

3w3 = 2w4

w0 +w3 = w0 +w4 w1 +w3 = w1 +w4

w0 +w3 = w0 +w4 w1 +w3 = w2 +w4

w0 +w3 = w0 +w4 w2 +w3 = w1 +w4

w0 +w3 = w0 +w4 w2 +w3 = w2 +w4

w0 +w3 = w1 +w4 w2 +w3 = w2 +w4

w1 +w3 = w0 +w4 w2 +w3 = w2 +w4

w1 +w3 = w1 +w4 w2 +w3 = w2 +w4

w1 +w3 = w0 +w4 w0 + 2w3 = w1 +w4

w2 +w3 = w0 +w4 w0 + 2w3 = w2 +w4

115



Appendix D. Cases broken down by highest two weights

Take each of these in turn. If d1 = 2w3 = 2w4, positivity requires d1 + d2 <
w0 + w1 + w2 + w3 + w4 ≤ w0 + 4w4, so d2 < w0 + 2w4 = w0 + 2w3. But Corollary 14

applied to {3,4} implies that d2 must involve at least one of w3 or w4, so d2 = 2w3,

d2 = w3+w0, d2 = w3+w1, or d2 = w3+w2. In any case, Therefore 2w3 ≥ d2 ≥ d1 = 2w3.

If d2 = 2w3 = 2w4, Corollary 14 applied to {3,4} implies that d1 = 2w3 or d1 =

w3 +wi for some i = 0,1,2.

If d2 = 3w3 = 2w4, Corollary 14 applied to {3,4} gives nine possibilities for d1: 2w4,

2w3, w0+w3, w0+w4, w1+w3, w1+w4, w2+w3, w2+w4, w3+w4. Positivity eliminates

all of these that contain w4 since d2 = 3w3. This leaves d1 = 2w3, d1 = w0 + w3,

d1 = w1 +w3, d1 = w2 +w3.

If d1 = w0 + w3 = w0 + w4 and d2 = w1 + w3 = w1 + w4 then w3 = w4. Consider

Corollary 14 applied to {3,4}. We need either (i) d1 = 2w3, (ii) d2 = 2w3, (iii)

d1 = w2 +w3 and d2 = w0 +w3, (iv) d1 = w1 +w3 and d2 = w2 +w3, or (v) d1 = w2 +w3

and d2 = w2 + w3. (i) implies w0 = w3, hence w0 = w4, (ii) implies w1 = w3, hence

w1 = w4, and (iii),(iv), or (v) imply w0 = w2.

If either d1 = w0+w3 = w0+w4 and d2 = w1+w3 = w2+w4, or d1 = w0+w3 = w0+w4

and d2 = w2 + w3 = w1 + w4, then w1 = w2 and w3 = w4. Consider Corollary 14

applied to {3,4}. We need either (i) d1 = 2w3, (ii) d2 = 2w3, (iii) d1 = w1 +w3, or (iv)

d1 = w2 +w3. (i) implies w0 = w3, hence w0 = w4, (ii) implies w1 = w3, hence w1 = w4,

and (iii) or (iv) imply w0 = w2.

If d1 = w0 + w3 = w0 + w4 and d2 = w2 + w3 = w2 + w4 then w3 = w4. Consider

Corollary 14 applied to {3,4}. We need either (i) d1 = 2w3, (ii) d2 = 2w3, (iii)

d1 = w1 +w3 and d2 = w0 +w3, (iv) d1 = w2 +w3 and d2 = w1 +w3, or (v) d1 = w1 +w3

and d2 = w1 + w3. (i) implies w0 = w3, hence w0 = w4, (ii) implies w2 = w3, hence

w2 = w4, and (iii),(iv), or (v) imply w0 = w2.

If either d1 = w0+w3 = w1+w4 and d2 = w2+w3 = w2+w4, or d1 = w1+w3 = w0+w4
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and d2 = w2 + w3 = w2 + w4, then w0 = w1 and w3 = w4. Consider Corollary 14

applied to {3,4}. We need either (i) d1 = 2w3, (ii) d2 = 2w3, (iii) d2 = w0 +w3, or (iv)

d2 = w1 +w3. (i) implies w0 = w3, hence w0 = w4, (ii) implies w2 = w3, hence w2 = w4,

and (iii) or (iv) imply w0 = w2.

If d1 = w1 + w3 = w1 + w4 and d2 = w2 + w3 = w2 + w4 then w3 = w4. Consider

Corollary 14 applied to {3,4}. We need either (i) d1 = 2w3, (ii) d2 = 2w3, (iii)

d1 = w0 +w3 and d2 = w0 +w3, (iv) d1 = w0 +w3 and d2 = w1 +w3, or (v) d1 = w2 +w3

and d2 = w0 + w3. (i) implies w1 = w3, hence w1 = w4, (ii) implies w2 = w3, hence

w2 = w4, and (iii),(iv), or (v) imply w0 = w2.

If d1 = w1 + w3 = w0 + w4 and d2 = w0 + 2w3 = w1 + w4, then w0 < w1, w3 < w4,

and d1 < d2. Consider Corollary 14 applied to {3,4}. We need either (i) d1 = 2w3,

(ii) d1 = w3 + w4, (iii) d1 = 2w4, (iv) d2 = 2w3, (v) d2 = w3 + w4, (vi) d2 = 2w4, (vii)

d1 = w2+w3, (viii) d1 = w2+w4, (ix) d2 = w2+w3, (x) d2 = w2+2w3, or (xi) d2 = w2+w4.

(i) or (v) imply w1 = w3, (ii) implies w0 = w3 which is a contradiction, (iii) implies

w0 = w4 which is a contradiction, (iv) is impossible, (vi) implies w1 = w4 which is

a contradiction, (vii) or (xi) imply w1 = w2, (viii) or (x) imply w0 = w2 which is a

contradiction, and (ix) is impossible.

If d1 = w2 + w3 = w0 + w4 and d2 = w0 + 2w3 = w2 + w4, then w0 < w1, w3 < w4,

and d1 < d2. Consider Corollary 14 applied to {3,4}. We need either (i) d1 = 2w3,

(ii) d1 = w3 + w4, (iii) d1 = 2w4, (iv) d2 = 2w3, (v) d2 = w3 + w4, (vi) d2 = 2w4, (vii)

d1 = w1+w3, (viii) d1 = w1+w4, (ix) d2 = w1+w3, (x) d2 = w1+2w3, or (xi) d2 = w1+w4.

(i) or (v) imply w2 = w3, (ii) implies w0 = w3 which is a contradiction, (iii) implies

w0 = w4 which is a contradiction, (iv) is impossible, (vi) implies w2 = w4 which is a

contradiction, (vii) or (xi) imply w1 = w2, (viii) or (x) imply w0 = w1 and is hence

too great, and (ix) is impossible.

In sum, replace the above twelve cases with the following:
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d1 d2

2w3 = 2w4 2w3 = 2w4

w0 +w3 = w0 +w4 2w3 = 2w4

w1 +w3 = w1 +w4 2w3 = 2w4

w2 +w3 = w2 +w4 2w3 = 2w4

2w3 3w3 = 2w4

w0 +w3 3w3 = 2w4

w1 +w3 3w3 = 2w4

w2 +w3 3w3 = 2w4

2w0 = 2w4 2w0 = 2w4

w0 +w3 = w0 +w4 2w1 = 2w4

w0 +w3 = w2 +w4 w0 +w3 = w2 +w4

w0 +w3 = w0 +w4 2w2 = 2w4

2w1 = 2w4 2w1 = 2w4

w1 +w3 = w1 +w4 2w2 = 2w4

w1 +w3 = 2w3 = w0 +w4 w0 + 2w3 = w1 +w4 = w3 +w4

w1 +w3 = w2 +w3 = w0 +w4 w0 + 2w3 = w1 +w4 = w2 +w4

w2 +w3 = 2w3 = w0 +w4 w0 + 2w3 = w2 +w4 = w3 +w4
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D.1.5 Order constraints

Next, we note any additional constraints put on the weights by the relations.

d1 d2 constraints

2w3 = 2w4 2w3 = 2w4 w3 = w4, d1 = d2

2w3 2w4

2w3 = w0 +w4 w1 +w4

2w3 = w0 +w4 w2 +w4

2w3 = w0 +w4 w3 +w4

2w3 = w1 +w4 w2 +w4

2w3 = w1 +w4 w3 +w4

2w3 = w2 +w4 w3 +w4

2w4 2w3 w3 = w4, d1 = d2

w0 +w3 = w0 +w4 2w3 = 2w4 w3 = w4

w1 +w3 = w1 +w4 2w3 = 2w4 w3 = w4

w2 +w3 = w2 +w4 2w3 = 2w4 w3 = w4

w0 +w4 2w3 = w1 +w4

w0 +w4 2w3 = w2 +w4

w0 +w4 2w3 = w3 +w4 w3 = w4

w1 +w4 2w3 = w2 +w4

w1 +w4 2w3 = w3 +w4 w3 = w4

w2 +w4 2w3 = w3 +w4 w3 = w4

2w3 3w3 = 2w4 w3 < w4, w3 even

w0 +w3 3w3 = 2w4 w3 < w4, w3 even

w1 +w3 3w3 = 2w4 w3 < w4, w3 even

w2 +w3 3w3 = 2w4 w3 < w4, w3 even

w0 +w3 = 2w4 w1 +w3 w0 = w1 = w2 = w3 = w4

w0 +w3 w1 +w3 = 2w4 w1 = w2 = w3 = w4
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d1 d2 constraints

2w0 = 2w4 2w0 = 2w4 w0 = w1 = w2 = w3 = w4

d1 = d2

w0 +w3 = w0 +w4 2w1 = 2w4 w1 = w2 = w3 = w4

w0 +w3 = w2 +w4 w0 +w3 = w2 +w4 w0 = w1 = w2, w3 = w4

d1 = d2

w0 +w3 = w0 +w4 w1 +w3 = w3 +w4 w1 = w2 = w3 = w4

w0 +w3 = w1 +w4 w1 +w3 = w2 +w4 w0 = w1 = w2, w3 = w4

d1 = d2

w0 +w3 = w1 +w4 w1 +w3 = w3 +w4 w0 = w1 = w2 = w3 = w4

d1 = d2

w0 +w3 = w2 +w4 w1 +w3 = w3 +w4 w0 = w1 = w2 = w3 = w4

d1 = d2

w0 +w3 = 2w4 w2 +w3 w0 = w1 = w2 = w3 = w4

d1 = d2

w0 +w3 w2 +w3 = 2w4 w2 = w3 = w4

w0 +w3 = w0 +w4 2w2 = 2w4 w2 = w3 = w4

w0 +w3 = w0 +w4 w2 +w3 = w3 +w4 w2 = w3 = w4

w0 +w3 = w1 +w4 w2 +w3 = w3 +w4 w0 = w1, w2 = w3 = w4

w0 +w3 = w2 +w4 w2 +w3 = w3 +w4 w0 = w1 = w2 = w3 = w4

d1 = d2

w0 +w3 = 2w4 w3 +w4 w0 = w1 = w2 = w3 = w4

d1 = d2

w0 +w3 w3 +w4 = 2w4 w3 = w4

w0 +w3 = w0 +w4 w3 +w4 = w1 +w4 w1 = w2 = w3 = w4

w0 +w3 = w0 +w4 w3 +w4 = w2 +w4 w2 = w3 = w4

w0 +w3 = w0 +w4 w3 +w4 w3 = w4

w0 +w3 = w1 +w4 w3 +w4 = w2 +w4 w0 = w1, w2 = w3 = w4

w0 +w3 = w1 +w4 w3 +w4 w0 = w1, w3 = w4

w0 +w3 = w2 +w4 w3 +w4 w0 = w1 = w2, w3 = w4
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d1 d2 constraints

w0 +w3 w1 + 2w3 = 2w4 w3 < w4, w1 even

d1 < d2

w0 +w3 w2 + 2w3 = 2w4 w3 < w4, w2 even

d1 < d2

w1 +w3 = 2w4 w2 +w3 w1 = w2 = w3 = w4

d1 = d2

w1 +w3 w2 +w3 = 2w4 w2 = w3 = w4

w1 +w3 = w0 +w4 w2 +w3 = w1 +w4

w1 +w3 = w0 +w4 w2 +w3 = w3 +w4 w0 = w1, w2 = w3 = w4

2w1 = 2w4 2w1 = 2w4

w1 +w3 = w1 +w4 2w2 = 2w4

w1 +w3 = w1 +w4 w2 +w3 = w3 +w4 w3 = w4

w1 +w3 = w2 +w4 w2 +w3 = w3 +w4 w3 = w4

d1 = d2

w1 +w3 = 2w4 w3 +w4 w1 = w2 = w3 = w4

d1 = d2

w1 +w3 w3 +w4 = 2w4 w3 = w4

w1 +w3 = w0 +w4 w3 +w4 = w1 +w4 w1 = w2 = w3

w1 +w3 = w0 +w4 w3 +w4 = w2 +w4 w2 = w3

w1 +w3 = w0 +w4 w3 +w4

w1 +w3 = w1 +w4 w3 +w4 = w2 +w4 w2 = w3 = w4

w1 +w3 = w1 +w4 w3 +w4 w3 = w4

w1 +w3 = w2 +w4 w3 +w4 w1 = w2, w3 = w4

w1 +w3 w0 + 2w3 = 2w4 w3 < w4, w0 even

d1 < d2

2w3 = w0 +w4 w0 + 2w3 = w3 +w4 w0 < w1 = w2 = w3 < w4

w1 +w3 w1 +w4 d1 < d2

w2 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1 = w2, w3 < w4

w1 +w3 w1 +w4 d1 < d2
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d1 d2 constraints

w1 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1, w3 < w4

d1 < d2

w1 +w3 = w0 +w4 w0 + 2w3 = w3 +w4 w0 < w1, w3 < w4

d1 < d2

w1 +w3 w2 + 2w3 = 2w4 w3 < w4, w2 even

d1 < d2

w2 +w3 = 2w4 w3 +w4 w2 = w3 = w4

d1 = d2

w2 +w3 w3 +w4 = 2w4 w3 = w4

w2 +w3 = w0 +w4 w3 +w4 = w1 +w4 w1 = w2 = w3

w2 +w3 = w0 +w4 w3 +w4 = w2 +w4 w2 = w3

w2 +w3 = w0 +w4 w3 +w4

w2 +w3 = w1 +w4 w3 +w4 = w2 +w4 w2 = w3

w2 +w3 = w1 +w4 w3 +w4

w2 +w3 = w2 +w4 w3 +w4 w3 = w4

w2 +w3 w0 + 2w3 = 2w4 w3 < w4, w0 even

d1 < d2

w2 +w3 = w0 +w4 w0 + 2w3 = w1 +w4 w0 < w1, w3 < w4

d1 < d2

= 2w3 = w0 +w4 w0 + 2w3 = w3 +w4 w0 < w1, w2 = w3 < w4

w2 +w3 w2 +w4 d1 < d2

w2 +w3 = w0 +w4 w0 + 2w3 = w3 +w4 w0 < w1, w3 < w4

d1 < d2

w2 +w3 w1 + 2w3 = 2w4 w3 < w4, w1 even

d1 < d2
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D.2 Cases by constraints

Now regroup the above by constraints.

D.2.1 Cases with at most 3 distinct weights

1.

d1 d2 constraints

w0 +w3 = 2w4 w1 +w3 w0 = w1 = w2 = w3 = w4, d1 = d2

w0 +w3 = w1 +w4 w1 +w3 = w3 +w4 w0 = w1 = w2 = w3 = w4, d1 = d2

w0 +w3 = w2 +w4 w1 +w3 = w3 +w4 w0 = w1 = w2 = w3 = w4, d1 = d2

w0 +w3 = 2w4 w2 +w3 w0 = w1 = w2 = w3 = w4, d1 = d2

w0 +w3 = w2 +w4 w2 +w3 = w3 +w4 w0 = w1 = w2 = w3 = w4, d1 = d2

w0 +w3 = 2w4 w3 +w4 w0 = w1 = w2 = w3 = w4, d1 = d2

2w0 = 2w4 2w0 = 2w4 w0 = w1 = w2 = w3 = w4, d1 = d2

Given the constraint, these are all identical.

2.

d1 d2 constraints

w1 +w3 = 2w4 w2 +w3 w1 = w2 = w3 = w4, d1 = d2

w1 +w3 = 2w4 w3 +w4 w1 = w2 = w3 = w4, d1 = d2

w1 +w3 = w2 +w4 w2 +w3 = w3 +w4 w1 = w2 = w3 = w4, d1 = d2

2w1 = 2w4 2w1 = 2w4 w1 = w2 = w3 = w4, d1 = d2

Given the constraint, these are identical. Assume that w0 < w1 else this reduces

to case 1.

3.

d1 d2 constraint

w0 +w3 w1 +w3 = 2w4 w1 = w2 = w3 = w4

w0 +w3 = w0 +w4 w1 +w3 = w3 +w4 w1 = w2 = w3 = w4

w0 +w3 = w0 +w4 w3 +w4 = w1 +w4 w1 = w2 = w3 = w4

w0 +w3 = w0 +w4 2w1 = 2w4 w1 = w2 = w3 = w4
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Given the constraint, these are identical. Assume that w0 < w1 (and hence also

d1 < d2) else this reduces to case 1.

We must have gcd(w0,w1) = 1. Thus this form is w = (r, s, s, s, s), d = (r + s,2s),
with gcd(r, s) = 1 and r < s. The Corollary for {0} requires either r ∣ 2s, or r ∣ (r+s),
or r ∣ (2s−s) and r ∣ (r+s−s). In any case, r ∣ 2s, so r = 1,2. Consider the Corollary

for {2,3,4}. Since s ∤ (r + s) unless r = s, this rules out cases (a) and (b), leaving

case (c). This requires s ∣ (r + s) −wi for two different weights wi, but r = w0 is the

only weight satisfying the relation, so case (c) cannot be satisfied either. Therefore,

there are no possibilities.

4.

d1 d2 constraints

w0 +w3 = w1 +w4 w2 +w3 = w3 +w4 w0 = w1, w2 = w3 = w4

w0 +w3 = w1 +w4 w3 +w4 = w2 +w4 w0 = w1, w2 = w3 = w4

w1 +w3 = w0 +w4 w2 +w3 = w3 +w4 w0 = w1, w2 = w3 = w4

Given the constraints, these are identical. Assume w1 < w2 else this reduces to

case 1.

5.

d1 d2 constraints

w0 +w3 = w1 +w4 w1 +w3 = w2 +w4 w0 = w1 = w2, w3 = w4, d1 = d2

w0 +w3 = w2 +w4 w0 +w3 = w2 +w4 w0 = w1 = w2, w3 = w4, d1 = d2

Given the constraints, these are identical. Assume w2 < w3 else this reduces to

case 1.

6.
d1 d2 constraints

w0 +w3 = w2 +w4 w3 +w4 w0 = w1 = w2, w3 = w4

Assume w2 < w3 else this reduces to case 1.

7.
d1 d2 constraints

w2 +w3 = 2w4 w3 +w4 w2 = w3 = w4, d1 = d2

Assume w1 < w2 else this reduces to case 2. This case can be split up into two:
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case d1 d2 constraints

7a w2 +w3 = 2w4 w3 +w4 w0 = w1 < w2 = w3 = w4, d1 = d2

7b w2 +w3 = 2w4 w3 +w4 w0 < w1 < w2 = w3 = w4, d1 = d2

8.

d1 d2 constraints

w0 +w3 w2 +w3 = 2w4 w2 = w3 = w4

w0 +w3 = w0 +w4 w2 +w3 = w3 +w4 w2 = w3 = w4

w0 +w3 = w0 +w4 w3 +w4 = w2 +w4 w2 = w3 = w4

w0 +w3 = w0 +w4 2w2 = 2w4 w2 = w3 = w4

Given the constraint, these are identical. Assume w0 < w1 else this reduces to

case 4. Assume w1 < w2 else this reduces to case 3.

There are no instances. We must have gcd(w0,w1,w2) = 1. Thus this form is

w = (r, s, t, t, t), d = (r + t,2t), with gcd(r, s, t) = 1 and r < s < t.

Consider the Corollary for {2,3,4}. Then since d1 = r+ t < 2t, (a) and (b) cannot

hold. (c) requires r + t = d1 =mt + r and r + t = d1 = nt + s. The first is satisfied with

m = 1. The second requires r + t = nt+ s so r = (n− 1)t+ s > (n − 1)r + s > (n− 1)r so

n − 1 ≤ 0. On the other hand s + t > r + t so this is a contradiction.

9.

d1 d2 constraints

w1 +w3 w2 +w3 = 2w4 w2 = w3 = w4

w1 +w3 = w1 +w4 w2 +w3 = w3 +w4 w2 = w3 = w4

w1 +w3 = w1 +w4 w3 +w4 = w2 +w4 w2 = w3 = w4

w1 +w3 = w1 +w4 2w2 = 2w4 w2 = w3 = w4

Given the constraint, these are identical. Assume w0 < w1 else this reduces to

case 4. Assume w1 < w2 else this reduces to case 2.

There are no instances. We must have gcd(w0,w1,w2) = 1. This form is w =

(r, s, t, t, t), d = (s + t,2t), with gcd(r, s, t) = 1 and r < s < t.
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Consider the Corollary for {2,3,4}. Then since d1 = s+ t < 2t, (a) and (b) cannot

hold. (c) requires s + t = d1 = mt + r and s + t = d1 = nt + s. The second is satisfied

with n = 1. The first requires s+ t =mt+r so s = (m−1)t+r > (m−1)s+r > (m−1)s
so m − 1 ≤ 0. On the other hand s + t > r + t so this is a contradiction.

10.
d1 d2 constraints

w1 +w3 = w2 +w4 w3 +w4 w1 = w2, w3 = w4

Assume w0 < w1 else this reduces to case 6. Assume w2 < w3 else this reduces to

case 2.

11.
d1 d2 constraints

w0 +w3 = w1 +w4 w3 +w4 w0 = w1, w3 = w4

Assume w1 < w2 else this reduces to case 6. Assume w2 < w3 else this reduces to

case 4.

12.

d1 d2 constraints

w1 +w3 = w0 +w4 w3 +w4 = w1 +w4 w1 = w2 = w3

w2 +w3 = w0 +w4 w3 +w4 = w1 +w4 w1 = w2 = w3

Given the constraint, these are identical. Assume w0 < w1 and w3 < w4 else this

reduces to case 1.

D.2.2 Cases with d2 = 2w3 = 2w4 cases

13.

d1 d2 constraint

2w3 = 2w4 2w3 = 2w4 w3 = w4, d1 = d2

2w4 2w3 w3 = w4, d1 = d2

Given the constraint, these are identical.

If w0 = w1 = w2 = w3 this reduces to case 1. If w0 < w1 = w2 = w3 this reduces to

case 2. If w0 = w1 < w2 = w3 this reduces to case 7a. If w0 < w1 < w2 = w3 this reduces
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to case 7b. So, assume w2 < w3. Positivity requires w0 +w1 +w2 +w3 +w4 > d1 + d2 =
3w3 +w4, so w0 +w1 +w2 > 2w3 and w3 < (w0 +w1 +w2)/2

Consider the corollary for {2}. Then we must have either (i) mw2 = 2w4 for some

m > 1, or (ii) n1w2 +wi = 2w4 and n2w2 +wj = 2w4 for some i ≠ j and some n1, n2 > 0.

(i) mw2 = 2w4 < w0 +w1 +w2 ≤ 3w2 so m = 2. But then 2w2 = d1 = 2w3 > 2w2 which is

a contradiction. This leaves: (ii) n1w2+wi = 2w4 < w0+w1+w2 ≤ w0+2w2 ≤ w1+2w2 <

2w2+w3 = 2w2+w4. Thus at most, n1 = 1. Then w2+wi = d1 = 2w4 > w2+w4 ≥ w2+wj

for any j = 0,1,3,4, which is a contradiction. Therefore, there are no instances.

14.

d1 d2 constraint

w0 +w4 2w3 = w3 +w4 w3 = w4

w0 +w3 = w0 +w4 w3 +w4 w3 = w4

w0 +w3 w3 +w4 = 2w4 w3 = w4

w0 +w3 = w0 +w4 2w3 = 2w4 w3 = w4

Given the constraint, these are identical. If w0 = w1 = w2 = w3 this reduces to

case 1. If w0 < w1 = w2 = w3 this reduces to case 3. If w0 = w1 < w2 = w3 this reduces

to case 4. If w0 < w1 < w2 = w3 this reduces to case 8. So, assume w2 < w3. If

w0 = w1 = w2 this reduces to case 6. If w0 = w1 < w2 this reduces to case 11. So,

assume w0 < w1 and split up as follows:

case d1 d2 constraints

14a w0 +w3 = w0 +w4 2w3 = 2w4 w0 < w1 = w2 < w3 = w4

14b w0 +w3 = w0 +w4 2w3 = 2w4 w0 < w1 < w2 < w3 = w4

15.

d1 d2 constraint

w1 +w4 2w3 = w3 +w4 w3 = w4

w1 +w3 w3 +w4 = 2w4 w3 = w4

w1 +w3 = w1 +w4 w3 +w4 w3 = w4

w1 +w3 = w1 +w4 2w3 = 2w4 w3 = w4
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Given the constraint, these are identical. If w0 = w1 = w2 = w3 this reduces to

case 1. If w0 < w1 = w2 = w3 this reduces to case 2. If w0 = w1 < w2 = w3 this

reduces to case 4. If w0 < w1 < w2 = w3 this reduces to case 9. So, assume w2 < w3.

If w0 = w1 = w2 this reduces to case 6. If w0 < w1 = w2 this reduces to case 10. If

w0 = w1 < w2 this reduces to case 11. So we can assume w0 < w1 < w2 < w3.

16.

d1 d2 constraint

w2 +w4 2w3 = w3 +w4 w3 = w4

w2 +w3 w3 +w4 = 2w4 w3 = w4

w2 +w3 = w2 +w4 w3 +w4 w3 = w4

w2 +w3 = w2 +w4 2w3 = 2w4 w3 = w4

Given the constraint, these are identical. If w0 = w1 = w2 = w3 this reduces to

case 1. If w0 < w1 = w2 = w3 this reduces to case 2. If w0 = w1 < w2 = w3 this reduces

to case 7a. If w0 < w1 < w2 = w3 this reduces to case 7b. So, assume w2 < w3. If

w0 = w1 = w2 this reduces to case 6. If w0 < w1 = w2 this reduces to case 10. So

assume w1 < w2 and split up as follows:

case d1 d2 constraints

16a w2 +w3 = w2 +w4 2w3 = 2w4 w0 = w1 < w2 < w3 = w4

16b w2 +w3 = w2 +w4 2w3 = 2w4 w0 < w1 < w2 < w3 = w4

D.2.3 Cases with w2 = w3 < w4

17.
d1 d2 constraint

w1 +w3 = w0 +w4 w3 +w4 = w2 +w4 w2 = w3

Assume w3 < w4 else w0 = w1 and this reduces to case 4. Assume w0 < w1 else

w3 = w4 and this reduces to case 4. Assume w1 < w2 else this reduces to case 12.

18.
d1 d2 constraint

w2 +w3 = w0 +w4 w3 +w4 = w2 +w4 w2 = w3
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Assume w3 < w4 else w0 = w1 = w2 and this reduces to case 1. Assume w1 < w2

else this reduces to case 12. Split up as follows:

case d1 d2 constraints

18a w2 +w3 = w0 +w4 w3 +w4 = w2 +w4 w0 = w1 < w2 = w3 < w4

18b w2 +w3 = w0 +w4 w3 +w4 = w2 +w4 w0 < w1 < w2 = w3 < w4

19.
d1 d2 constraint

w2 +w3 = w1 +w4 w3 +w4 = w2 +w4 w2 = w3

Assume w3 < w4 else w1 = w2 and this reduces to case 2. Assume w1 < w2 else

w3 = w4 and this reduces to case 2. Assume w0 < w1 else this reduces to case 18a.

D.2.4 Cases with d1 = 2w3 < 2w4 = d2

20.
d1 d2

2w3 2w4

We can assume w3 < w4 else this reduces to Case 13. Split up as follows:

case d1 d2 constraint

20a 2w3 2w4 w0 = w1 = w2 = w3 < w4, d1 < d2

20b 2w3 2w4 w0 < w1 = w2 = w3 < w4, d1 < d2

20c 2w3 2w4 w0 = w1 < w2 = w3 < w4, d1 < d2

20d 2w3 2w4 w0 < w1 < w2 = w3 < w4, d1 < d2

20e 2w3 2w4 w0 = w1 = w2 < w3 < w4, d1 < d2

20f 2w3 2w4 w0 < w1 = w2 < w3 < w4, d1 < d2

20g 2w3 2w4 w0 = w1 < w2 < w3 < w4, d1 < d2

20h 2w3 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2
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D.2.5 Cases with d1 = 2w3 = wi +w4

21.
d1 d2

2w3 = w0 +w4 w1 +w4

Assume w3 < w4 else this reduces to case 1. Assume w0 < w3 else this reduces to

case 1. If w1 = w2 = w3 then this reduces to case 12. Split up as follows:

case d1 d2 constraint

21a 2w3 = w0 +w4 w1 +w4 w0 = w1 < w2 = w3 < w4

21b 2w3 = w0 +w4 w1 +w4 w0 < w1 < w2 = w3 < w4

21c 2w3 = w0 +w4 w1 +w4 w0 = w1 = w2 < w3 < w4

21d 2w3 = w0 +w4 w1 +w4 w0 < w1 = w2 < w3 < w4

21e 2w3 = w0 +w4 w1 +w4 w0 = w1 < w2 < w3 < w4

21f 2w3 = w0 +w4 w1 +w4 w0 < w1 < w2 < w3 < w4

22.
d1 d2

2w3 = w0 +w4 w2 +w4

Assume w3 < w4 else this reduces to case 1. Assume w2 < w3 else this reduces to

case 18. Assume w1 < w2 else this reduces to case 21. Split up as follows:

case d1 d2 constraint

22a 2w3 = w0 +w4 w2 +w4 w0 = w1 < w2 < w3 < w4

22b 2w3 = w0 +w4 w2 +w4 w0 < w1 < w2 < w3 < w4

23.
d1 d2

2w3 = w0 +w4 w3 +w4

Assume w3 < w4 else this reduces to case 1. Assume w2 < w3 else this reduces to

case 18. Split up as follows:
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case d1 d2 constraint

23a 2w3 = w0 +w4 w3 +w4 w0 = w1 = w2 < w3 < w4

23b 2w3 = w0 +w4 w3 +w4 w0 < w1 = w2 < w3 < w4

23c 2w3 = w0 +w4 w3 +w4 w0 = w1 < w2 < w3 < w4

23d 2w3 = w0 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

24.
d1 d2

2w3 = w1 +w4 w2 +w4

Assume w3 < w4 else this reduces to case 2. Assume w2 < w3 else this reduces to

case 19. If w0 = w1 = w2 this reduces to case 21c. If w0 = w1 < w2 this reduces to case

22a. Assume w0 < w1 and split up as follows:

case d1 d2 constraint

24a 2w3 = w1 +w4 w2 +w4 w0 < w1 = w2 < w3 < w4

24b 2w3 = w1 +w4 w2 +w4 w0 < w1 < w2 < w3 < w4

25.
d1 d2

2w3 = w1 +w4 w3 +w4

Assume w3 < w4 else this reduces to case 2. Assume w2 < w3 else this reduces to

case 19. If w0 = w1 = w2 this reduces to case 23a. If w0 = w1 < w2 this reduces to case

23c. Assume w0 < w1 and split up as follows:

case d1 d2 constraint

25a 2w3 = w1 +w4 w3 +w4 w0 < w1 = w2 < w3 < w4

25b 2w3 = w1 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

26.
d1 d2

2w3 = w2 +w4 w3 +w4

Assume w3 < w4 else this reduces to case 7. Assume w2 < w3 else this reduces to

case 7. If w0 = w1 = w2 this reduces to case 23a. If w0 < w1 = w2 this reduces to case
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25a. Assume w1 < w2 and split up as follows:

case d1 d2 constraint

26a 2w3 = w2 +w4 w3 +w4 w0 = w1 < w2 < w3 < w4

26b 2w3 = w2 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

D.2.6 Cases with d2 = 2w3 = wi +w4

27.
d1 d2

w0 +w4 2w3 = w1 +w4

Assume w3 < w4 else w1 = w3 and this reduces to case 3. Assume w1 < w3 else

w3 = w4 and this reduces to case 3. Assume w0 < w1 else d1 = d2 and this reduces to

case 21. Split up as follows:

case d1 d2 constraint

27a w0 +w4 2w3 = w1 +w4 w0 < w1 = w2 < w3 < w4, d1 < d2

27b w0 +w4 2w3 = w1 +w4 w0 < w1 < w2 = w3 < w4, d1 < d2

27c w0 +w4 2w3 = w1 +w4 w0 < w1 < w2 < w3 < w4, d1 < d2

28.
d1 d2

w0 +w4 2w3 = w2 +w4

Assume w3 < w4 else w2 = w3 and this reduces to case 8. Assume w2 < w3 else

w3 = w4 and this reduces to case 8. Assume w1 < w2 else this reduces to case 27a.

Split up as follows:

case d1 d2 constraint

28a w0 +w4 2w3 = w2 +w4 w0 = w1 < w2 < w3 < w4, d1 < d2

28b w0 +w4 2w3 = w2 +w4 w0 < w1 < w2 < w3 < w4, d1 < d2

29.
d1 d2

w1 +w4 2w3 = w2 +w4
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Assume w3 < w4 else w2 = w3 and this reduces to case 9. Assume w2 < w3 else

w3 = w4 and this reduces to case 9. Assume w1 < w2 else d1 = d2 and this reduces to

case 24a. Assume w0 < w1 else this reduces to case 28a.

D.2.7 A case involving all five weights

30.
d1 d2

w1 +w3 = w0 +w4 w2 +w3 = w1 +w4

Assume w3 < w4 else w0 = w1 = w2 and this reduces to case 5. Assume w0 < w1

else w3 = w4 and this reduces to case 5. Assume w1 < w2 else w3 = w4 and this reduces

to case 5. Assume w2 < w3 else this reduces to case 27b.

D.2.8 d1 = wj +w3 = wi +w4, w2 < w3

31.
d1 d2

w1 +w3 = w0 +w4 w3 +w4

Assume w3 < w4 else w0 = w1 and this reduces to case 11. Assume w2 < w3 else

this reduces to case 17. Assume w0 < w1 else w3 = w4 and this reduces to case 11.

Split up as follows:

case d1 d2

31a w1 +w3 = w0 +w4 w3 +w4 w0 < w1 = w2 < w3 < w4

31b w1 +w3 = w0 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

32.
d1 d2

w2 +w3 = w0 +w4 w3 +w4

Assume w3 < w4 else w0 = w1 = w2 and this reduces to case 6. Assume w2 < w3

else this reduces to case 18. Assume w1 < w2 else this reduces to case 31a. Split up

as follows:
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case d1 d2

32a w2 +w3 = w0 +w4 w3 +w4 w0 = w1 < w2 < w3 < w4

32b w2 +w3 = w0 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

33.
d1 d2

w2 +w3 = w1 +w4 w3 +w4

Assume w3 < w4 else w1 = w2 and this reduces to case 10. Assume w2 < w3 else

this reduces to Case 19. Assume w1 < w2 else w3 = w4 and this reduces to case 10.

Assume w0 < w1 else this reduces to case 32a.

D.2.9 d2 = 2w3 +wi

34.
d1 d2 constraints

2w3 3w3 = 2w4 w3 < w4, d1 < d2, w3 even

This is a special case of case 20.

35.
d1 d2

w0 +w3 3w3 = 2w4 w3 < w4, d1 < d2, w3 even

Assume w0 < w3 else this is a special case of 20.

case d1 d2

35a w0 +w3 3w3 = 2w4 w0 < w1 = w2 = w3 < w4, d1 < d2, w3 even

35b w0 +w3 3w3 = 2w4 w0 = w1 < w2 = w3 < w4, d1 < d2, w3 even

35c w0 +w3 3w3 = 2w4 w0 < w1 < w2 = w3 < w4, d1 < d2, w3 even

35d w0 +w3 3w3 = 2w4 w0 = w1 = w2 < w3 < w4, d1 < d2, w3 even

35e w0 +w3 3w3 = 2w4 w0 < w1 = w2 < w3 < w4, d1 < d2, w3 even

35f w0 +w3 3w3 = 2w4 w0 = w1 < w2 < w3 < w4, d1 < d2, w3 even

35g w0 +w3 3w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w3 even
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36.
d1 d2

w1 +w3 3w3 = 2w4 w3 < w4, d1 < d2, w3 even

Assume w1 < w3 else this reduces to a special case of 20. Assume w0 < w1 else

this reduces to 35.

case d1 d2

36a w1 +w3 3w3 = 2w4 w0 < w1 < w2 = w3 < w4, d1 < d2, w3 even

36b w1 +w3 3w3 = 2w4 w0 < w1 = w2 < w3 < w4, d1 < d2, w3 even

36c w1 +w3 3w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w3 even

37.
d1 d2

w2 +w3 3w3 = 2w4 w3 < w4, d1 < d2, w3 even

Assume w2 < w3 else this reduces to a special case of 20. Assume w1 < w2 else

this reduces to 36. Split up as follows:

case d1 d2

37a w2 +w3 3w3 = 2w4 w0 = w1 < w2 < w3 < w4, d1 < d2, w3 even

37b w2 +w3 3w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w3 even

38.
d1 d2

w0 +w3 w1 + 2w3 = 2w4 w3 < w4, d1 < d2, w1 even

Assume w1 < w3 else this is a special case of case 35. Split up as follows:

case d1 d2

38a w0 +w3 w1 + 2w3 = 2w4 w0 = w1 < w2 = w3 < w4, d1 < d2, w1 even

38b w0 +w3 w1 + 2w3 = 2w4 w0 < w1 < w2 = w3 < w4, d1 < d2, w1 even

38c w0 +w3 w1 + 2w3 = 2w4 w0 = w1 = w2 < w3 < w4, d1 < d2, w1 even

38d w0 +w3 w1 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4, d1 < d2, w1 even

38e w0 +w3 w1 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4, d1 < d2, w1 even

38f w0 +w3 w1 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w1 even
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39.
d1 d2

w0 +w3 w2 + 2w3 = 2w4 w3 < w4, d1 < d2, w2 even

Assume w2 < w3 else this is a special case of case 35. Assume w1 < w2 else this is

reduces to case 38c or 38d. Split up as follows:

case d1 d2

39a w0 +w3 w2 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4, d1 < d2, w2 even

39b w0 +w3 w2 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w2 even

40.
d1 d2

w1 +w3 w0 + 2w3 = 2w4 w3 < w4, d1 < d2, w0 even

Assume w0 < w3 else this is a special case of case 36. Assume w0 < w1 else this

reduces to case 38.

case d1 d2

40a w1 +w3 w0 + 2w3 = 2w4 w0 < w1 = w2 = w3 < w4, d1 < d2, w0 even

40b w1 +w3 w0 + 2w3 = 2w4 w0 < w1 < w2 = w3 < w4, d1 < d2, w0 even

40c w1 +w3 w0 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4, d1 < d2, w0 even

40d w1 +w3 w0 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w0 even

41.

d1 d2

2w3 = w0 +w4 w0 + 2w3 = w3 +w4 w0 < w1 = w2 = w3 < w4

w1 +w3 w1 +w4 d1 < d2

This is a special case of 12.

42.

d1 d2

w2 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1 = w2, w3 < w4

w1 +w3 w1 +w4 d1 < d2

Assume w2 < w3 else this reduces to 41.
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43.
d1 d2

w1 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w3 < w4, d1 < d2, w0 < w1

Assume w1 < w2 else this reduces to case 41 or 42. Split up as follows:

case d1 d2

43a w1 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1 < w2 = w3 < w4, d1 < d2

43b w1 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1 < w2 < w3 < w4, d1 < d2

44.
d1 d2

w1 +w3 = w0 +w4 w0 + 2w3 = w3 +w4 w3 < w4, d1 < d2, w0 < w1

This is a special case of 31.

45.
d1 d2

w1 +w3 w2 + 2w3 = 2w4 w3 < w4, d1 < d2, w2 even

Assume w2 < w3 else this is a special case of case 36. Split up as follows:

case d1 d2

45a w1 +w3 w2 + 2w3 = 2w4 w0 = w1 = w2 < w3 < w4, d1 < d2, w2 even

45b w1 +w3 w2 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4, d1 < d2, w2 even

45c w1 +w3 w2 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4, d1 < d2, w2 even

45d w1 +w3 w2 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w2 even

46.
d1 d2

w2 +w3 w0 + 2w3 = 2w4 w3 < w4, d1 < d2, w0 even

Assume w0 < w2 else this is reduces to case 45. Assume w2 < w3 else this is a

special case of 20. Split up as follows:

case d1 d2

46a w2 +w3 w0 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4, d1 < d2, w0 even

46b w2 +w3 w0 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4, d1 < d2, w0 even

46c w2 +w3 w0 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4, d1 < d2, w0 even
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47.
d1 d2

w2 +w3 = w0 +w4 w0 + 2w3 = w1 +w4 w3 < w4, d1 < d2, w0 < w1

Assume w1 < w2 else this is a special case of 42. Assume w2 < w3 else this is a

special case of 21.

48.

d1 d2 constraints

2w3 = w0 +w4 w0 + 2w3 = w3 +w4 w0 < w1, w2 = w3 < w4

w2 +w3 w2 +w4 d1 < d2

Assume w1 < w2 else this is a special case of case 47. This is a special case of 18.

49.
d1 d2 constraints

w2 +w3 = w0 +w4 w0 + 2w3 = w3 +w4 w3 < w4, d1 < d2, w0 < w2

This is a special case of 32.

50.
d1 d2 constraints

w2 +w3 w1 + 2w3 = 2w4 w3 < w4, d1 < d2, w1 even

Assume w1 < w2 else this reduces to case 45. Assume w2 < w3 else this is a special

case of 20. Assume w0 < w1 else this is a special case of case 49.

Positivity requires w0 + w1 + w2 + w3 + w4 > d1 + d2 = w2 + w3 + 2w4 so w0 + w1 >

w4 = w3 +w1/2 > w2 +w1/2 > 3w1/2, thus w1 < 2w0 and w2 < w3 < w0 +w1/2.
Consider the Corollary applied to {1}. At least one of the following must hold:

(i) w1 ∣ d1, (ii) w1 ∣ d2, (iii) w1 ∣ (d1 −w0), (iv) w1 ∣ (d1 −w2), (v) w1 ∣ (d1 −w3), or (vi)
w1 ∣ (d1 −w4),

(i) d1 = kw1. But 2w1 < 2w2 < 2w0 +w1 < 3w1 so no such k exists.

(ii) d2 = kw1. But 3w1 < 2w3 +w1 < 2w0 + 2w1 < 4w1 so no such k exists.

(iii) d1 = kw1 +w0. kw1 = d1 −w0 = w2 +w3 −w0 < 2w0 +w1 −w0 = w0 +w1 < 2w1 so

k = 1 and d1 = w0 +w1 < w2 +w3 which is a contradiction.

138



Appendix D. Cases broken down by highest two weights

(iv) d1 = kw1 +w2. kw1 = d1 −w2 = w3, so w1 < w3 < w0 +w1/2 < 2w1 so no such k

exists.

(v) d1 = kw1 +w3. kw1 = d1 −w3 = w2, so w1 < w2 < w0 +w1/2 < 2w1 so no such k

exists.

(vi) d1 = kw1+w4. kw1 = d1−w4 = w2+w3−w4 = w2+w3−(w3 +w1/2) = w2−w1/2.
kw0 + w1/2 < kw1 + w1/2 = w2 < w0 + w1/2 so k < 1 which is impossible. Therefore,

there are no instances.
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D.3 Summary

case d1 d2 constraints

1 2w0 = 2w4 2w0 = 2w4 w0 = w1 = w2 = w3 = w4

d1 = d2

2 2w1 = 2w4 2w1 = 2w4 w0 < w1 = w2 = w3 = w4

d1 = d2

4 w0 +w2 = w1 +w4 2w2 = 2w4 w0 = w1 < w2 = w3 = w4

d1 < d2

5 w0 +w3 = w2 +w4 w0 +w3 = w2 +w4 w0 = w1 = w2 < w3 = w4

d1 = d2

6 w0 +w3 = w2 +w4 2w3 = 2w4 w0 = w1 = w2 < w3 = w4

d1 < d2

7a 2w2 = 2w4 2w2 = 2w4 w0 = w1 < w2 = w3 = w4

d1 = d2

7b 2w2 = 2w4 2w2 = 2w4 w0 < w1 < w2 = w3 = w4

d1 = d2

10 w1 +w3 = w2 +w4 2w3 = 2w4 w0 < w1 = w2 < w3 = w4

d1 < d2

11 w0 +w3 = w1 +w4 2w3 = 2w4 w0 = w1 < w2 < w3 = w4

d1 < d2

12 w1 +w3 = 2w3 = w0 +w4 w1 +w4 = w3 +w4 w0 < w1 = w2 = w3 < w4

d1 < d2

14a w0 +w3 = w0 +w4 2w3 = 2w4 w0 < w1 = w2 < w3 = w4

d1 < d2

14b w0 +w3 = w0 +w4 2w3 = 2w4 w0 < w1 < w2 < w3 = w4

d1 < d2

15 w1 +w3 = w1 +w4 2w3 = 2w4 w0 < w1 < w2 < w3 = w4

d1 < d2
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case d1 d2 constraints

16a w2 +w3 = w2 +w4 2w3 = 2w4 w0 = w1 < w2 < w3 = w4

d1 < d2

16b w2 +w3 = w2 +w4 2w3 = 2w4 w0 < w1 < w2 < w3 = w4

d1 < d2

17 w1 +w3 = w0 +w4 w2 +w4 = w3 +w4 w0 < w1 < w2 = w3 < w4

d1 < d2

18a 2w2 = 2w3 = w0 +w4 w2 +w4 = w3 +w4 w0 = w1 < w2 = w3 < w4

d1 < d2

18b 2w2 = 2w3 = w0 +w4 w2 +w4 = w3 +w4 w0 < w1 < w2 = w3 < w4

d1 < d2

19 2w2 = 2w3 = w1 +w4 w2 +w4 = w3 +w4 w0 < w1 < w2 = w3 < w4

d1 < d2

20a 2w3 2w4 w0 = w1 = w2 = w3 < w4

d1 < d2

20b 2w3 2w4 w0 < w1 = w2 = w3 < w4

d1 < d2

20c 2w3 2w4 w0 = w1 < w2 = w3 < w4

d1 < d2

20d 2w3 2w4 w0 < w1 < w2 = w3 < w4

d1 < d2

20e 2w3 2w4 w0 = w1 = w2 < w3 < w4

d1 < d2

20f 2w3 2w4 w0 < w1 = w2 < w3 < w4

d1 < d2

20g 2w3 2w4 w0 = w1 < w2 < w3 < w4

d1 < d2

20h 2w3 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2

141



Appendix D. Cases broken down by highest two weights

case d1 d2 constraints

21a 2w3 = w0 +w4 w1 +w4 w0 = w1 < w2 = w3 < w4

d1 = d2

21b 2w3 = w0 +w4 w1 +w4 w0 < w1 < w2 = w3 < w4

d1 < d2

21c 2w3 = w0 +w4 w1 +w4 w0 = w1 = w2 < w3 < w4

d1 = d2

21d 2w3 = w0 +w4 w1 +w4 w0 < w1 = w2 < w3 < w4

d1 < d2

21e 2w3 = w0 +w4 w1 +w4 w0 = w1 < w2 < w3 < w4

d1 = d2

21f 2w3 = w0 +w4 w1 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

22a 2w3 = w0 +w4 w2 +w4 w0 = w1 < w2 < w3 < w4

d1 < d2

22b 2w3 = w0 +w4 w2 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

23a 2w3 = w0 +w4 w3 +w4 w0 = w1 = w2 < w3 < w4

d1 < d2

23b 2w3 = w0 +w4 w3 +w4 w0 < w1 = w2 < w3 < w4

d1 < d2

23c 2w3 = w0 +w4 w3 +w4 w0 = w1 < w2 < w3 < w4

d1 < d2

23d 2w3 = w0 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

24a 2w3 = w1 +w4 w2 +w4 w0 < w1 = w2 < w3 < w4

d1 = d2

24b 2w3 = w1 +w4 w2 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2
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case d1 d2 constraints

25a 2w3 = w1 +w4 w3 +w4 w0 < w1 = w2 < w3 < w4

d1 < d2

25b 2w3 = w1 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

26a 2w3 = w2 +w4 w3 +w4 w0 = w1 < w2 < w3 < w4

d1 < d2

26b 2w3 = w2 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

27a w0 +w4 2w3 = w1 +w4 w0 < w1 = w2 < w3 < w4

d1 < d2

27b w0 +w4 2w3 = w1 +w4 w0 < w1 < w2 = w3 < w4

d1 < d2

27c w0 +w4 2w3 = w1 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

28a w0 +w4 2w3 = w2 +w4 w0 = w1 < w2 < w3 < w4

d1 < d2

28b w0 +w4 2w3 = w2 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

29 w1 +w4 2w3 = w2 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

30 w1 +w3 = w0 +w4 w2 +w3 = w1 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

31a w1 +w3 = w0 +w4 w3 +w4 w0 < w1 = w2 < w3 < w4

d1 < d2

31b w1 +w3 = w0 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2
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case d1 d2 constraints

32a w2 +w3 = w0 +w4 w3 +w4 w0 = w1 < w2 < w3 < w4

d1 < d2

32b w2 +w3 = w0 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

33 w2 +w3 = w1 +w4 w3 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

35a w0 +w3 3w3 = 2w4 w0 < w1 = w2 = w3 < w4

d1 < d2, w3 even

35b w0 +w3 3w3 = 2w4 w0 = w1 < w2 = w3 < w4

d1 < d2, w3 even

35c w0 +w3 3w3 = 2w4 w0 < w1 < w2 = w3 < w4

d1 < d2, w3 even

35d w0 +w3 3w3 = 2w4 w0 = w1 = w2 < w3 < w4

d1 < d2, w3 even

35e w0 +w3 3w3 = 2w4 w0 < w1 = w2 < w3 < w4

d1 < d2, w3 even

35f w0 +w3 3w3 = 2w4 w0 = w1 < w2 < w3 < w4

d1 < d2, w3 even

35g w0 +w3 3w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w3 even

36a w1 +w3 3w3 = 2w4 w0 < w1 < w2 = w3 < w4

d1 < d2, w3 even

36b w1 +w3 3w3 = 2w4 w0 < w1 = w2 < w3 < w4

d1 < d2, w3 even

36c w1 +w3 3w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w3 even
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case d1 d2 constraints

37a w2 +w3 3w3 = 2w4 w0 = w1 < w2 < w3 < w4

d1 < d2, w3 even

37b w2 +w3 3w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w3 even

38a w0 +w3 w1 + 2w3 = 2w4 w0 = w1 < w2 = w3 < w4

d1 < d2, w1 even

38b w0 +w3 w1 + 2w3 = 2w4 w0 < w1 < w2 = w3 < w4

d1 < d2, w1 even

38c w0 +w3 w1 + 2w3 = 2w4 w0 = w1 = w2 < w3 < w4

d1 < d2, w1 even

38d w0 +w3 w1 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4

d1 < d2, w1 even

38e w0 +w3 w1 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4

d1 < d2, w1 even

38f w0 +w3 w1 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w1 even

39a w0 +w3 w2 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4

d1 < d2, w2 even

39b w0 +w3 w2 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w2 even

40a w1 +w3 w0 + 2w3 = 2w4 w0 < w1 = w2 = w3 < w4

d1 < d2, w0 even

40b w1 +w3 w0 + 2w3 = 2w4 w0 < w1 < w2 = w3 < w4

d1 < d2, w0 even

40c w1 +w3 w0 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4

d1 < d2, w0 even

40d w1 +w3 w0 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w0 even
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case d1 d2 constraints

41 2w3 = w0 +w4 w0 + 2w3 = w3 +w4 w0 < w1 = w2 = w3 < w4

w1 +w3 w1 +w4 d1 < d2

42 w2 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1 = w2, w3 < w4

w1 +w3 w1 +w4 d1 < d2

43a w1 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1 < w2 = w3 < w4

d1 < d2

43b w1 +w3 = w0 +w4 w0 + 2w3 = w2 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2

45a w1 +w3 w2 + 2w3 = 2w4 w0 = w1 = w2 < w3 < w4

d1 < d2, w2 even

45b w1 +w3 w2 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4

d1 < d2, w2 even

45c w1 +w3 w2 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4

d1 < d2, w2 even

45d w1 +w3 w2 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w2 even

46a w2 +w3 w0 + 2w3 = 2w4 w0 = w1 < w2 < w3 < w4

d1 < d2, w0 even

46b w2 +w3 w0 + 2w3 = 2w4 w0 < w1 = w2 < w3 < w4

d1 < d2, w0 even

46c w2 +w3 w0 + 2w3 = 2w4 w0 < w1 < w2 < w3 < w4

d1 < d2, w0 even

47 w2 +w3 = w0 +w4 w0 + 2w3 = w1 +w4 w0 < w1 < w2 < w3 < w4

d1 < d2
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D.4 Details of cases

1. Given that gcd(w0,w1,w2,w3,w4) = 1, these reduce to the single instance w =

(1,1,1,1,1). By positivity, the only choice for degree is d1 = d2 = 2. Thus, the only

instance is

w = (1,1,1,1,1), d = (2,2).
2. We must have gcd(w0,w1) = 1. Thus this form is w = (r, s, s, s, s), d = (2s,2s),

with gcd(r, s) = 1 and r < s. The Corollary for {0} requires either r ∣ 2s, or r ∣ (2s−s).
Thus r = 1,2. Possibilities are:

w = (1, s, s, s, s), d = (2s,2s), 2 ≤ s and

w = (2,2t + 1,2t + 1,2t + 1,2t + 1), d = (4t + 2,4t + 2), 1 ≤ t.
For s = 1, the first is case 1.

4. We must have gcd(w0,w2) = 1. Thus this form isw = (r, r, s, s, s), d = (r+s,2s),
with gcd(r, s) = 1 and r < s. The Corollary for {0} requires either r ∣ 2s, or r ∣ (r+s),
or r ∣ (2s − s) and r ∣ (r + s − s), or r ∣ (2s − r) and r ∣ (r + s − s), or r ∣ (2s − s) and
r ∣ (r + s − r). In any case, r ∣ 2s, so r = 1,2. This leaves

w = (1,1, s, s, s), d = (1 + s,2s) 2 ≤ s and

w = (2,2,2t + 1,2t + 1,2t + 1), d = (2t + 3,4t + 2), 1 ≤ t.
For t = 1 this is the same as 17b for t = 1.

For s = 1, the first is case 1.

5. We must have gcd(w0,w3) = 1. Thus this form is w = (r, r, r, s, s), d =

(r + s, r + s), with gcd(r, s) = 1 and r < s. Consider the Corollary for {0,1}. If (a),

(b), or (c) hold, then r ∣ (r + s)⇒ r ∣ s⇒ r = 1. If (d) holds, then r ∣ (r + s − s) and
r ∣ (r + s − r). The latter implies r ∣ s, so again r = 1. Thus the only case is
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w = (1,1,1, s, s), d = (s + 1, s + 1), 2 ≤ s.
For s = 1, this is case 1.

6. We must have gcd(w0,w3) = 1. Thus this form isw = (r, r, r, s, s), d = (r+s,2s),
with gcd(r, s) = 1 and r < s. Consider the Corollary for {0}. Then either r ∣ (r + s),
or r ∣ 2s, or r ∣ (r+s−s) and r ∣ (2s−s), or r ∣ (r+s−s) and r ∣ (2s−r), or r ∣ (r+s−r)
and r ∣ (2s − s), or r ∣ (r + s − r) and r ∣ (2s − r). In any case, r ∣ s or r ∣ 2s, so
r = 1,2. If r = 1, then for positivity, we need 3 + 2s > 3s + 1, so 1 < s < 2, which is a

contradiction. If r = 2, then for positivity, we need 6 + 2s > 3s + 2, so 2 < s < 4. The

only instance is:

w = (2,2,2,3,3), d = (5,6).
7a.

We must have gcd(w0,w2) = 1. Thus this form is w = (r, r, s, s, s), d = (2s,2s),
with gcd(r, s) = 1 and r < s. Positivity implies 2r + 3s > 4s⇒ 2r > s. The Corollary

for {0} implies r ∣ 2s, or r ∣ (2s−s) = s, or r ∣ (2s−r) and r ∣ (2s−s) = s. In any case,

r ∣ 2s, so r = 1,2. r = 1⇒ 2 > s > 1 which is a contradiction. r = 2⇒ 4 > s > 2⇒ s = 3.

The only case is:

(w = (2,2,3,3,3),d = (6,6)).
7b. Computer search located the following:

(w,d) = ((3,4,6,6,6), (12,12))
(w,d) = ((6,10,15,15,15), (30,30))
10. Computer search located the following:

(w,d) = ((3,4,4,6,6), (10,12))
(w,d) = ((5,6,6,9,9), (15,18))
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(w,d) = ((5,8,8,12,12), (20,24))
(w,d) = ((6,10,10,15,15), (25,30))
11. Computer search located the following:

(w,d) = ((2,2,3,4,4), (6,8))
(w,d) = ((3,3,4,6,6), (9,12))
(w,d) = ((4,4,5,6,6), (10,12))
(w,d) = ((4,4,7,10,10), (14,20))
(w,d) = ((6,6,10,15,15), (21,30))
12. Computer search located the following:

(w,d) = ((1,2,2,2,3), (4,5))
14a. Computer search located the following:

(w,d) = ((1,2,2,3,3), (4,6))
(w,d) = ((1,3,3,5,5), (6,10))
(w,d) = ((2,3,3,4,4), (6,8))
14b.

(w,d) = ((2,3,3t + 2,3t + 3,3t + 3), (3t + 5,6t + 6)), 0 ≤ t
(w,d) = ((2,3,3t + 3,3t + 4,3t + 4), (3t + 6,6t + 8)), 0 ≤ t
or (w,d) = ((2,3, t + 1, t + 2, t + 2), (t + 4,2t + 4)), 1 ≤ t, t ≠ 0 mod (3)
(w,d) = ((4,6,6t + 1,6t + 3,6t + 3), (6t + 7,12t + 6)), 1 ≤ t
(w,d) = ((4,6,6t + 3,6t + 5,6t + 5), (6t + 9,12t + 10)), 0 ≤ t

149



Appendix D. Cases broken down by highest two weights

or (w,d) = ((4,6,2t + 1,2t + 3,2t + 3), (2t + 7,4t + 6)), 1 ≤ t, t ≠ 2 mod (3)
Computer search located the following:

(w,d) = ((1,3,4,6,6), (7,12))
(w,d) = ((1,4,5,8,8), (9,16))
(w,d) = ((1,6,10,15,15), (16,30))
(w,d) = ((1,7,12,18,18), (19,36))
(w,d) = ((1,8,13,20,20), (21,40))
(w,d) = ((1,9,15,23,23), (24,46))
(w,d) = ((2,7,10,15,15), (17,30))
(w,d) = ((2,9,12,19,19), (21,38))
(w,d) = ((3,4,6,9,9), (12,18))
(w,d) = ((3,7,8,12,12), (15,24))
(w,d) = ((4,6,9,14,14), (18,28))
(w,d) = ((5,6,9,13,13), (18,26))
15.

(w,d) = ((4,4t + 1,4t + 2,4t + 3,4t + 3), (8t + 4,8t + 6)), 1 ≤ t
(w,d) = ((4,4t + 4,4t + 5,4t + 6,4t + 6), (8t + 10,8t + 12)), 1 ≤ t
or (w,d) = ((4, t + 1, t + 2, t + 3, t + 3), (2t + 4,2t + 6)), 1 ≤ t, t = 0,3 mod (4)
Computer search located the following:

(w,d) = ((2,3,4,5,5), (8,10))
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(w,d) = ((2,4,5,6,6), (10,12))
(w,d) = ((3,4,6,8,8), (12,16))
(w,d) = ((4,8,11,14,14), (22,28))
(w,d) = ((4,12,15,18,18), (30,36))
(w,d) = ((6,10,15,20,20), (30,40))
16a. There are no instances. We have w0 = w1 < w2 < w3 = w4, d1 = w2 + w4,

d2 = 2w3 = 2w4.

w0 +w1 +w2 +w3 +w4 > d1 + d2 = w2 + 2w3 +w4⇒ w0 +w1 > w3

Consider the corollary for {0,1,2}. We must have at least one of (i) m1w0+n1w1+
p1w2 = w2 +w4 for some m1 + n1 + p1 ≥ 2, or (ii) m2w0 + n2w1 + p2w2 = 2w3 for some

m2 + n2 + p2 ≥ 2. (i) (m1 + n1)w0 + (p1 − 1)w2 = w4 = w3 < w0 + w1 = 2w0 < w0 + w2.

This is only satisfied by m1 +n1 = 2 and p1 = 0, m1 +n1 = 1 and p1 = 1, or m1 +n1 = 0

and p1 = 2. At most, then d1 = 2w2 < w2 +w4 = d1 which is a contradiction.

(ii) (m2 + n2)w0 + p2w2 = 2w4 < 2w0 + 2w1 = 4w0 < 4w2. This is only satisfied if

m2 + n2 + p2 < 4. Since (i) does not hold, in addition we require d1 = m3w0 + n3w1 +
p3w2 +w4 with m3 +n3 + p3 ≥ 1. Then 0 = (m4 +n4)w0 + (p4 − 1)w2. This can only be

true if p4 = 0, in which case it would be (m4 + n4)w0 = w2 < w3 < w0 +w1 = 2w0, and

so m4 + n4 = 1. This would imply w0 = w2 which is a contradiction.

16b. Computer search located the following:

(w,d) = ((4,6,7,9,9), (16,18))
17. No instances were found by computer search.

18a. Computer search located the following:

(w,d) = ((2,2,3,3,4), (6,7))
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(w,d) = ((3,3,4,4,5), (8,9))
(w,d) = ((3,3,5,5,7), (10,12))
18b.

(w,d) = ((3, t + 1, t + 2, t + 2,2t + 1), (2t + 4,3t + 3)), 1 ≤ t
(w,d) = ((6,6t + 1,6t + 3,6t + 3,12t), (12t + 6,18t + 3)), 1 ≤ t
(w,d) = ((6,6t + 3,6t + 5,6t + 5,12t + 4), (12t + 10,18t + 9)), 1 ≤ t
or (w,d) = ((6,2t + 1,2t + 3,2t + 3,4t), (4t + 6,6t + 2)), 1 ≤ t, t ≠ 2 mod (3)
Computer search located the following:

(w,d) = ((3,4,6,6,9), (12,15))
(w,d) = ((4,5,8,8,12), (16,20))
(w,d) = ((6,9,14,14,22), (28,36))
(w,d) = ((8,13,20,20,32), (40,52))
(w,d) = ((9,12,19,19,29), (38,48))
(w,d) = ((9,15,23,23,37), (46,60))
(w,d) = ((12,21,32,32,52), (64,84))
19.

(3,3t,3t + 1,3t + 1,3t + 2), (6t + 2,6t + 3), 1 ≤ t
(6,6t + 3,6t + 5,6t + 5,6t + 7), (12t + 10,12t + 12), 0 ≤ t
Computer search located the following:

(w,d) = ((2,3,4,4,5), (8,9))
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(w,d) = ((3,6,8,8,10), (16,18))
(w,d) = ((7,8,12,12,16), (24,28))
(w,d) = ((7,10,15,15,20), (30,35))
(w,d) = ((7,12,18,18,24), (36,42))
(w,d) = ((9,12,16,16,20), (32,36))
(w,d) = ((9,12,19,19,26), (38,45))
(w,d) = ((9,15,20,20,25), (40,45))
(w,d) = ((9,15,23,23,31), (46,54))
(w,d) = ((9,21,28,28,35), (56,63))
(w,d) = ((9,24,32,32,40), (64,72))
(w,d) = ((12,15,25,25,35), (50,60))
20a. Computer search located the following:

(w,d) = ((2,2,2,2,3), (4,6))
20b. Computer search located the following:

(w,d) = ((4,6,6,6,9), (12,18))
20c. No instances were found by computer search.

20d. Computer search located the following:

(w,d) = ((6,8,9,9,12), (18,24))
20efg. No instances were found by computer search.

20h. Computer search located the following:
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(w,d) = ((12,14,15,18,21), (36,42))
21a.

(w,d) = ((1,1, t + 1, t + 1,2t + 1), (2t + 2,2t + 2)), 0 ≤ t
(w,d) = ((2,2,2t + 1,2t + 1,4t), (4t + 2,4t + 2)), 1 ≤ t
Computer search located no sporadic cases.

21b.

(w,d) = ((1,2, t + 2, t + 2,2t + 3), (2t + 4,2t + 5)), 0 ≤ t
(w,d) = ((2,4,2t + 3,2t + 3,4t + 4), (4t + 6,4t + 8)), 0 ≤ t
Computer search located no sporadic cases.

21c. Computer search located the following:

(w,d) = ((2,2,2,3,4), (6,6))
21d. Computer search located the following:

(w,d) = ((3,4,4,6,9), (12,13))
21e. Computer search located the following:

(w,d) = ((3,3,4,6,9), (12,12))
(w,d) = ((6,6,10,15,24), (30,30))
21f.Computer search located the following:

(w,d) = ((3,5,6,8,13), (16,18))
(w,d) = ((3,6,7,9,15), (18,21))
(w,d) = ((4,5,7,10,16), (20,21))
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(w,d) = ((4,6,8,11,18), (22,24))
(w,d) = ((4,10,12,15,26), (30,36))
(w,d) = ((5,6,8,12,19), (24,25))
(w,d) = ((5,7,10,14,23), (28,30))
(w,d) = ((5,8,9,12,19), (24,27))
(w,d) = ((5,14,17,21,37), (42,51))
(w,d) = ((6,14,18,23,40), (46,54))
(w,d) = ((6,18,22,27,48), (54,66))
(w,d) = ((8,10,16,23,38), (46,48))
(w,d) = ((8,14,16,21,34), (42,48))
(w,d) = ((8,26,32,39,70), (78,96))
(w,d) = ((9,11,12,17,25), (34,36))
(w,d) = ((9,12,17,24,39), (48,51))
(w,d) = ((9,15,22,30,51), (60,66))
(w,d) = ((9,19,24,31,53), (62,72))
(w,d) = ((9,23,30,38,67), (76,90))
(w,d) = ((10,11,15,22,34), (44,45))
(w,d) = ((10,17,25,34,58), (68,75))
(w,d) = ((11,13,14,20,29), (40,42))
(w,d) = ((11,17,20,27,43), (54,60))
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(w,d) = ((11,21,26,34,57), (68,78))
(w,d) = ((11,25,32,41,71), (82,96))
(w,d) = ((11,29,38,48,85), (96,114))
(w,d) = ((12,14,24,35,58), (70,72))
(w,d) = ((12,18,20,27,42), (54,60))
(w,d) = ((12,42,52,63,114), (126,156))
(w,d) = ((14,17,27,39,64), (78,81))
(w,d) = ((15,18,19,27,39), (54,57))
(w,d) = ((15,18,25,36,57), (72,75))
(w,d) = ((15,24,35,48,81), (96,105))
(w,d) = ((15,27,40,54,93), (108,120))
(w,d) = ((15,36,43,54,93), (108,129))
(w,d) = ((15,48,59,72,129), (144,177))
(w,d) = ((15,54,67,81,147), (162,201))
(w,d) = ((16,22,24,33,50), (66,72))
(w,d) = ((16,34,40,51,86), (102,120))
(w,d) = ((16,46,56,69,122), (138,168))
(w,d) = ((16,58,72,87,158), (174,216))
(w,d) = ((18,26,30,41,64), (82,90))
(w,d) = ((18,34,42,55,92), (110,126))
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(w,d) = ((18,50,66,83,148), (166,198))
(w,d) = ((21,24,41,60,99), (120,123))
(w,d) = ((24,26,40,59,94), (118,120))
(w,d) = ((24,30,32,45,66), (90,96))
(w,d) = ((24,34,56,79,134), (158,168))
(w,d) = ((24,54,64,81,138), (162,192))
(w,d) = ((24,66,80,99,174), (198,240))
(w,d) = ((24,90,112,135,246), (270,336))
22a. Computer search located the following:

(w,d) = ((6,6,8,11,16), (22,24))
(w,d) = ((8,8,10,15,22), (30,32))
22b. Computer search located the following:

(w,d) = ((4,6,7,9,14), (18,21))
(w,d) = ((6,10,12,15,24), (30,36))
(w,d) = ((24,30,38,53,82), (106,120))
23abc. No instances were found by computer search.

23d. Computer search located the following:

(w,d) = ((9,10,12,15,21), (30,36))
(w,d) = ((18,22,27,33,48), (66,81))
(w,d) = ((21,24,29,36,51), (72,87))
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24a. Computer search located the following:

(w,d) = ((3,4,4,6,8), (12,12))
(w,d) = ((6,10,10,15,20), (30,30))
24b. Computer search located the following:

(w,d) = ((4,7,8,10,13), (20,21))
(w,d) = ((6,12,14,17,22), (34,36))
(w,d) = ((14,15,19,26,37), (52,56))
(w,d) = ((14,19,25,32,45), (64,70))
(w,d) = ((18,24,26,35,46), (70,72))
(w,d) = ((18,30,34,43,56), (86,90))
(w,d) = ((18,42,50,59,76), (118,126))
(w,d) = ((19,20,24,36,52), (72,76))
25a. Computer search located the following:

(w,d) = ((8,9,9,12,15), (24,27))
25b. No instances were found by computer search.

26a. No instances were found by computer search.

26b. Computer search located the following:

(w,d) = ((6,8,9,11,13), (22,24))
(w,d) = ((9,13,15,18,21), (36,39))
(w,d) = ((18,20,21,27,33), (54,60))
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(w,d) = ((18,22,27,33,39), (66,72))
27a.

(w,d) = ((1,2t + 1,2t + 1,3t + 1,4t + 1), (4t + 2,6t + 2)), 1 ≤ t
(w,d) = ((2, t + 1, t + 1,2t + 1,3t + 1), (3t + 3,4t + 2)), 1 ≤ t
(w,d) = ((2,4t + 4,4t + 4,6t + 5,8t + 6), (8t + 8,12t + 10)), 0 ≤ t
(w,d) = ((3,6t + 5,6t + 5,9t + 6,12t + 7), (12t + 10,18t + 12)), 0 ≤ t
(w,d) = ((3,6t + 7,6t + 7,9t + 9,12t + 11), (12t + 14,18t + 18)), 0 ≤ t
or (w,d) = ((3,2t + 5,2t + 5,3t + 6,4t + 7), (4t + 10,6t + 12)), 0 ≤ t, t ≠ 2 mod 3

(w,d) = ((4,2t + 3,2t + 3,4t + 4,6t + 5), (6t + 9,8t + 8)), 0 ≤ t
(w,d) = ((4,4t + 2,4t + 2,6t + 1,8t), (8t + 4,12t + 2)), 1 ≤ t
(w,d) = ((6,6t + 2,6t + 2,12t + 1,18t), (18t + 6,24t + 2)), 1 ≤ t
(w,d) = ((6,6t + 4,6t + 4,12t + 5,18t + 6), (18t + 12,24t + 10)), 0 ≤ t
or (w,d) = ((6,2t + 2,2t + 2,4t + 1,6t), (6t + 6,8t + 2)), 1 ≤ t, t ≠ 2 mod 3

(w,d) = ((6,12t + 4,12t + 4,18t + 3,24t + 2), (24t + 8,36t + 6)), 1 ≤ t
(w,d) = ((6,12t + 8,12t + 8,18t + 9,24t + 10), (24t + 16,36t + 18)), 0 ≤ t
or (w,d) = ((6,4t + 4,4t + 4,6t + 3,8t + 2), (8t + 8,12t + 6)), 1 ≤ t, t ≠ 2 mod 3

Computer search located the following:

(w,d) = ((1,2,2,3,4), (5,6))
27b.

(w,d) = ((1, t + 1,2t + 1,2t + 1,3t + 1), (3t + 2,4t + 2)), 0 ≤ t
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(w,d) = ((2,2t + 3,4t + 4,4t + 4,6t + 5), (6t + 7,8t + 8)), 0 ≤ t
(w,d) = ((3,3t + 2,6t + 1,6t + 1,9t), (9t + 3,12t + 2)), 1 ≤ t
(w,d) = ((3,3t + 4,6t + 5,6t + 5,9t + 6), (9t + 9,12t + 10)), 0 ≤ t
or (w,d) = ((3, t + 2,2t + 1,2t + 1,3t), (3t + 3,4t + 2)), 1 ≤ t, t ≠ 1 mod 3

(w,d) = ((4,2t + 3,4t + 2,4t + 2,6t + 1), (6t + 5,8t + 4)), 1 ≤ t
Computer search located no sporadic cases.

27c.

(w,d) = ((u,u+2s, t(u+2s), t(u+2s)+s,2t(u+2s)−u), (2t(u+2s),2t(u+2s)+2s))
u ≥ 1

s ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

gcd(s, u) = 1 if u = 2v + 1
gcd(2s, u) = 2 if u = 4v

gcd(s,2v + 1) = 1 if u = 4v + 2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

t ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = v,2v mod (2v + 1) if u = 2v + 1
2t = (2v − 1), (4v − 2), (4v − 1) mod (4v) if u = 4v⎧⎪⎪⎪⎨⎪⎪⎪⎩

2t = (2v − 1), (2v) mod (2v + 1) if s = 1 mod (2)
2t = (4v + 1) mod (4v + 2) if s = 0 mod (2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
if u = 4v + 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(t can be half integer)

(w,d) = ((u,u + 2s, t(u + 2s) + s, t(u + 2s) + 2s,2t(u + 2s) + 2s − u), (2t(u + 2s) +
2s,2t(u + 2s) + 4s))

u ≥ 1

s ≥ 1, gcd(s, u) = 1
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t ≥ 1, t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(v − 1),2v mod (2v + 1) if u = 2v + 1
2v mod (2v + 1) if u = 4v + 2
(v − 1), (2v − 1) mod (2v) if u = 4v

(w,d) = ((2,3,3t + 1,3t + 2,6t + 1), (6t + 3,6t + 4)), 1 ≤ t
(w,d) = ((2,3,3t + 2,3t + 3,6t + 3), (6t + 5,6t + 6)), 0 ≤ t
or (w,d) = ((2,3, t + 1, t + 2,2t + 1), (2t + 3,2t + 4)), 1 ≤ t, t ≠ 2 mod 3

(w,d) = ((4,6,6t + 1,6t + 3,12t), (12t + 4,12t + 6)), 1 ≤ t
(w,d) = ((4,6,6t + 5,6t + 7,12t + 8), (12t + 12,12t + 14)), 0 ≤ t
or (w,d) = ((4,6,2t + 1,2t + 3,4t), (4t + 4,4t + 6)), 1 ≤ t, t ≠ 1 mod 3

(w,d) = ((1,3t + 2,4t + 2,6t + 3,9t + 4), (9t + 5,12t + 6)), 0 ≤ t
(w,d) = ((2,6t + 7,8t + 8,12t + 12,18t + 17), (18t + 19,24t + 24)), 0 ≤ t
(w,d) = ((3,9t + 3,12t + 2,18t + 3,27t + 3), (27t + 6,36t + 6)), 0 ≤ t
(w,d) = ((3,9t + 9,12t + 10,18t + 15,27t + 21), (27t + 24,36t + 30)), 0 ≤ t
or (w,d) = ((3,3t + 3,4t + 2,6t + 3,9t + 3), (9t + 6,12t + 6)), 0 ≤ t, t ≠ 1 mod 3

(w,d) = ((4,6t + 5,8t + 4,12t + 6,18t + 7), (18t + 11,24t + 12)), 0 ≤ t
(w,d) = ((6,18t + 9,24t + 8,36t + 12,54t + 15), (54t + 21,72t + 24)), 0 ≤ t
(w,d) = ((6,18t + 15,24t + 16,36t + 24,54t + 33), (54t + 39,72t + 48)), 0 ≤ t
or (w,d) = ((6,6t + 9,8t + 8,12t + 12,18t + 15), (18t + 21,24t + 24)), 0 ≤ t, t ≠ 2

mod 3

(w,d) = ((8,6t + 7,8t + 4,12t + 6,18t + 5), (18t + 13,24t + 12)), 0 ≤ t
(w,d) = ((9,9t + 6,12t + 2,18t + 3,27t), (27t + 9,36t + 6)), 1 ≤ t
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(w,d) = ((9,9t + 12,12t + 10,18t + 15,27t + 18), (27t + 27,36t + 30)), 0 ≤ t
or (w,d) = ((9,3t + 6,4t + 2,6t + 3,9t), (9t + 9,12t + 6)), 1 ≤ t, t ≠ 1 mod 3

(w,d) = ((12,18t + 9,24t + 4,36t + 6,54t + 3), (54t + 15,72t + 12)), 1 ≤ t
(w,d) = ((12,18t + 21,24t + 20,36t + 30,54t + 39), (54t + 51,72t + 60)), 0 ≤ t
or (w,d) = ((12,6t + 9,8t + 4,12t + 6,18t + 3), (18t + 15,24t + 12)), 1 ≤ t, t ≠ 1

mod 3

Computer search located the following:

(w,d) = ((1,3,4,6,9), (10,12))
(w,d) = ((1,4,5,8,12), (13,16))
(w,d) = ((1,5,8,12,19), (20,24))
(w,d) = ((1,6,10,15,24), (25,30))
(w,d) = ((1,7,11,17,27), (28,34))
(w,d) = ((1,8,13,20,32), (33,40))
(w,d) = ((2,4,6,9,14), (16,18))
(w,d) = ((2,5,6,9,13), (15,18))
(w,d) = ((2,7,8,13,19), (21,26))
(w,d) = ((5,9,12,20,31), (36,40))
(w,d) = ((6,9,13,21,33), (39,42))
(w,d) = ((6,12,16,27,42), (48,54))
(w,d) = ((9,12,17,27,42), (51,54))
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(w,d) = ((9,15,22,36,57), (66,72))
(w,d) = ((10,12,16,25,38), (48,50))
(w,d) = ((10,24,32,55,86), (96,110))
(w,d) = ((11,14,21,33,52), (63,66))
(w,d) = ((11,15,20,32,49), (60,64))
(w,d) = ((11,18,27,44,70), (81,88))
(w,d) = ((11,21,28,47,73), (84,94))
(w,d) = ((11,27,36,62,97), (108,124))
(w,d) = ((13,14,19,29,44), (57,58))
(w,d) = ((13,17,24,38,59), (72,76))
(w,d) = ((13,20,29,47,74), (87,94))
(w,d) = ((13,23,34,56,89), (102,112))
(w,d) = ((15,21,28,45,69), (84,90))
(w,d) = ((15,33,44,75,117), (132,150))
(w,d) = ((15,39,52,90,141), (156,180))
(w,d) = ((18,21,29,45,69), (87,90))
(w,d) = ((18,21,35,54,87), (105,108))
(w,d) = ((18,24,40,63,102), (120,126))
(w,d) = ((18,33,49,81,129), (147,162))
(w,d) = ((22,24,32,49,74), (96,98))
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(w,d) = ((22,24,36,55,86), (108,110))
(w,d) = ((22,32,48,77,122), (144,154))
(w,d) = ((22,36,48,79,122), (144,158))
(w,d) = ((22,40,60,99,158), (180,198))
(w,d) = ((22,48,64,109,170), (192,218))
(w,d) = ((22,60,80,139,218), (240,278))
(w,d) = ((26,30,50,77,124), (150,154))
(w,d) = ((26,36,60,95,154), (180,190))
(w,d) = ((30,48,64,105,162), (192,210))
(w,d) = ((30,84,112,195,306), (336,390))
28a.

Computer search located the following:

(w,d) = ((2,2,3,4,5), (7,8))
(w,d) = ((2,2,4,5,6), (8,10))
(w,d) = ((4,4,5,6,7), (11,12))
(w,d) = ((4,4,7,10,13), (17,20))
28b.

(w,d) = ((u,2s+u, t(2s+u), t(2s+u)+s, t(2s+u)+2s), (t(2s+u)+2s+u,2t(2s+
u) + 2s))

u ≥ 1,
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s ≥ 1, gcd(s, u) = 1,
t ≥ 1, t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v,2v mod (2v + 1) if u = 2v + 1 or u = 4v + 2
(2v − 1) mod (2v) if u = 4v

(w,d) = ((u,2s+u, t(2s+u)−s, t(2s+u), t(2s+u)+s), (t(2s+u)+s+u,2t(2s+u)))
u ≥ 1,

s ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gcd(s, u) = 1 if u = 2v + 1
gcd(s, u) = 1 if u = 4v

any s ≥ 1 if u = 2

s ≠ 0 mod (2v + 1) if u = 4v + 2, v ≥ 1

2t ≥ 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0, v mod (2v + 1) if u = 2v + 1
2t = 0, (2v − 1),2v mod (4v) if u = 4v

2t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r(2v + 1) if s = 1 mod (2)
(2q + 1)(2v + 1) if s = 0 mod (2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
if u = 4v + 2

(t can be half integer)

(w,d) = ((1,4t + 2,6t + 3,9t + 4,12t + 5), (12t + 6,18t + 8)), 0 ≤ t
(w,d) = ((2, t + 1,2t + 2,3t + 2,4t + 2), (4t + 4,6t + 4)), 0 ≤ t
(w,d) = ((2,8t + 8,12t + 12,18t + 17,24t + 22), (24t + 24,36t + 34)), 0 ≤ t
(w,d) = ((3,4t + 2,6t + 3,9t + 3,12t + 3), (12t + 6,18t + 6)), 0 ≤ t, t ≠ 1 mod 3

(w,d) = ((4,2t + 1,4t + 2,6t + 1,8t), (8t + 4,12t + 2)), 1 ≤ t
(w,d) = ((6, t + 2,2t + 4,3t + 3,4t + 2), (4t + 8,6t + 6)), 1 ≤ t, t ≠ 1 mod 3

(w,d) = ((6,8t + 8,12t + 12,18t + 15,24t + 18), (24t + 24,36t + 30)), 0 ≤ t, t ≠ 2

mod 3

(w,d) = ((7,4t+ 6,6t+ 9,9t+ 10,12t+ 11), (12t+ 18,18t+ 20)), 0 ≤ t, t ≠ 2 mod 7
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(w,d) = ((9,4t + 6,6t + 9,9t + 9,12t + 9), (12t + 18,18t + 18)), 0 ≤ t, t ≠ 0 mod 3

(w,d) = ((10,2t + 4,4t + 8,6t + 7,8t + 6), (8t + 16,12t + 14)), 0 ≤ t, t ≠ 3 mod 5

(w,d) = ((14,8t + 8,12t + 12,18t + 11,24t + 10), (24t + 24,36t + 22)), 0 ≤ t, t ≠ 6
mod 7

(w,d) = ((18,8t+8,12t+12,18t+9,24t+6), (24t+24,36t+18)), 1 ≤ t, t ≠ 2 mod 3

(w,d) = ((2,4, t, t + 1, t + 2), (t + 4,2t + 2)), 1 ≤ t, t ≠ 2 mod 4

(w,d) = ((2, t + 1, t + 2,2t + 2,3t + 2), (3t + 4,4t + 4)), 0 ≤ t
(w,d) = ((3, t + 1, t + 2,2t + 1,3t), (3t + 3,4t + 2)), 1 ≤ t, t ≠ 2 mod 3

(w,d) = ((4,2t + 1,2t + 3,4t + 2,6t + 1), (6t + 5,8t + 4)), 1 ≤ t
(w,d) = ((6,6t + 7,6t + 9,12t + 12,18t + 15), (18t + 21,24t + 24)), 0 ≤ t
(w,d) = ((6, t + 1, t + 4,2t + 2,3t), (3t + 6,4t + 4)), 1 ≤ t, t ≠ 2 mod 3

(w,d) = ((9,3t + 5,3t + 8,6t + 7,9t + 6), (9t + 15,12t + 14)), 0 ≤ t
(w,d) = ((12,6t + 5,6t + 9,12t + 6,18t + 3), (18t + 15,24t + 12)), 1 ≤ t
Computer search located the following:

(w,d) = ((1,3,4,6,8), (9,12))
(w,d) = ((1,4,7,10,13), (14,20))
(w,d) = ((1,5,9,13,17), (18,26))
(w,d) = ((1,6,10,15,20), (21,30))
(w,d) = ((1,7,12,18,24), (25,36))
(w,d) = ((2,4,8,11,14), (16,22))
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(w,d) = ((2,5,8,11,14), (16,22))
(w,d) = ((2,7,10,15,20), (22,30))
(w,d) = ((3,4,5,6,7), (10,12))
(w,d) = ((3,4,5,7,9), (12,14))
(w,d) = ((3,5,7,9,11), (14,18))
(w,d) = ((3,7,8,12,16), (19,24))
(w,d) = ((4,5,6,7,8), (12,14))
(w,d) = ((4,5,8,12,16), (20,24))
(w,d) = ((5,6,10,15,20), (25,30))
(w,d) = ((5,6,15,20,25), (30,40))
(w,d) = ((6,7,9,12,15), (21,24))
(w,d) = ((6,8,9,12,15), (21,24))
(w,d) = ((6,8,20,27,34), (40,54))
(w,d) = ((8,9,12,20,28), (36,40))
(w,d) = ((8,12,13,18,23), (31,36))
(w,d) = ((8,12,19,30,41), (49,60))
(w,d) = ((8,13,20,32,44), (52,64))
(w,d) = ((9,10,12,15,18), (27,30))
(w,d) = ((9,14,15,21,27), (36,42))
(w,d) = ((10,16,25,40,55), (65,80))
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(w,d) = ((10,16,40,55,70), (80,110))
(w,d) = ((12,20,21,30,39), (51,60))
(w,d) = ((11,14,21,33,45), (56,66))
(w,d) = ((11,18,27,44,61), (72,88))
(w,d) = ((13,14,35,46,57), (70,92))
(w,d) = ((13,18,45,61,77), (90,122))
(w,d) = ((13,22,55,76,97), (110,152))
(w,d) = ((15,22,55,75,95), (110,150))
(w,d) = ((15,26,65,90,115), (130,180))
(w,d) = ((16,21,28,48,68), (84,96))
(w,d) = ((22,24,36,55,74), (96,110))
(w,d) = ((22,32,48,77,106), (128,154))
(w,d) = ((22,40,60,99,138), (160,198))
(w,d) = ((26,30,40,67,94), (120,134))
(w,d) = ((26,32,80,107,134), (160,214))
(w,d) = ((26,36,48,83,118), (144,166))
(w,d) = ((26,40,100,137,174), (200,274))
(w,d) = ((26,48,120,167,214), (240,334))
(w,d) = ((30,32,80,105,130), (160,210))
(w,d) = ((30,56,140,195,250), (280,390))
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29.

(w,d) = ((4,2t + 2,2t + 3,2t + 4,2t + 5), (4t + 7,4t + 8)), 0 ≤ t
(w,d) = ((6,3t + 1,3t + 3,3t + 4,3t + 5), (6t + 6,6t + 8)), 1 ≤ t
(w,d) = ((8,4t + 1,4t + 3,4t + 5,4t + 7), (8t + 8,8t + 10)), 1 ≤ t
Computer search located the following:

(w,d) = ((2,3,4,5,6), (9,10))
(w,d) = ((2,3,5,6,7), (10,12))
(w,d) = ((2,4,5,6,7), (11,12))
(w,d) = ((2,4,6,7,8), (12,14))
(w,d) = ((2,6,8,9,10), (16,18))
(w,d) = ((3,4,5,6,7), (11,12))
(w,d) = ((3,4,6,7,8), (12,14))
(w,d) = ((3,5,6,8,10), (15,16))
(w,d) = ((3,5,7,9,11), (16,18))
(w,d) = ((3,8,10,12,14), (22,24))
(w,d) = ((3,8,12,14,16), (24,28))
(w,d) = ((4,5,7,10,13), (18,20))
(w,d) = ((4,6,8,9,10), (16,18))
(w,d) = ((4,6,8,11,14), (20,22))
(w,d) = ((4,6,9,12,15), (21,24))
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(w,d) = ((4,6,12,15,18), (24,30))
(w,d) = ((4,8,11,14,17), (25,28))
(w,d) = ((4,9,15,18,21), (30,36))
(w,d) = ((4,10,12,15,18), (28,30))
(w,d) = ((4,12,15,18,21), (33,36))
(w,d) = ((4,14,20,23,26), (40,46))
(w,d) = ((4,18,24,27,30), (48,54))
(w,d) = ((5,6,8,10,12), (18,20))
(w,d) = ((5,6,10,12,14), (20,24))
(w,d) = ((5,6,14,18,22), (28,36))
(w,d) = ((5,7,8,11,14), (21,22))
(w,d) = ((5,7,10,14,18), (25,28))
(w,d) = ((5,8,12,14,16), (24,28))
(w,d) = ((5,9,12,15,18), (27,30))
(w,d) = ((5,9,15,18,21), (30,36))
(w,d) = ((5,11,14,18,22), (33,36))
(w,d) = ((5,12,16,20,24), (36,40))
(w,d) = ((5,12,18,21,24), (36,42))
(w,d) = ((5,12,20,24,28), (40,48))
(w,d) = ((5,16,24,28,32), (48,56))
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(w,d) = ((6,8,18,23,28), (36,46))
(w,d) = ((6,14,18,23,28), (42,46))
(w,d) = ((6,14,19,24,29), (43,48))
(w,d) = ((6,20,25,30,35), (55,60))
(w,d) = ((6,20,30,35,40), (60,70))
(w,d) = ((7,8,12,16,20), (28,32))
(w,d) = ((7,9,15,21,27), (36,42))
(w,d) = ((7,9,21,27,33), (42,54))
(w,d) = ((7,10,15,20,25), (35,40))
(w,d) = ((7,12,18,24,30), (42,48))
(w,d) = ((8,10,15,20,25), (35,40))
(w,d) = ((8,10,16,19,22), (32,38))
(w,d) = ((8,10,16,23,30), (40,46))
(w,d) = ((8,10,17,24,31), (41,48))
(w,d) = ((8,10,20,25,30), (40,50))
(w,d) = ((8,14,16,21,26), (40,42))
(w,d) = ((8,14,21,28,35), (49,56))
(w,d) = ((8,14,28,35,42), (56,70))
(w,d) = ((8,18,24,27,30), (48,54))
(w,d) = ((8,22,32,37,42), (64,74))

171



Appendix D. Cases broken down by highest two weights

(w,d) = ((8,26,32,39,46), (72,78))
(w,d) = ((8,30,40,45,50), (80,90))
(w,d) = ((8,34,48,55,62), (96,110))
(w,d) = ((8,42,56,63,70), (112,126))
(w,d) = ((10,11,15,22,29), (40,44))
(w,d) = ((10,12,21,30,39), (51,60))
(w,d) = ((10,12,30,39,48), (60,78))
(w,d) = ((10,13,25,31,37), (50,62))
(w,d) = ((10,16,30,37,44), (60,74))
(w,d) = ((10,17,25,34,43), (60,68))
(w,d) = ((10,19,35,43,51), (70,86))
(w,d) = ((10,21,28,35,42), (63,70))
(w,d) = ((10,21,35,42,49), (70,84))
(w,d) = ((10,22,40,49,58), (80,98))
(w,d) = ((10,27,36,45,54), (81,90))
(w,d) = ((10,27,45,54,63), (90,108))
(w,d) = ((11,12,15,18,21), (33,36))
(w,d) = ((11,13,19,25,31), (44,50))
(w,d) = ((11,16,20,24,28), (44,48))
(w,d) = ((11,17,24,31,38), (55,62))
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(w,d) = ((11,20,25,30,35), (55,60))
(w,d) = ((11,21,29,37,45), (66,74))
(w,d) = ((11,24,30,36,42), (66,72))
(w,d) = ((11,25,34,43,52), (77,86))
(w,d) = ((11,28,35,42,49), (77,84))
(w,d) = ((11,29,39,49,59), (88,98))
(w,d) = ((11,32,40,48,56), (88,96))
(w,d) = ((11,36,45,54,63), (99,108))
(w,d) = ((11,40,50,60,70), (110,120))
(w,d) = ((12,14,24,35,46), (60,70))
(w,d) = ((12,16,23,30,37), (53,60))
(w,d) = ((12,20,25,30,35), (55,60))
(w,d) = ((12,28,35,42,49), (77,84))
(w,d) = ((12,32,43,54,65), (97,108))
(w,d) = ((12,44,55,66,77), (121,132))
(w,d) = ((14,15,25,35,45), (60,70))
(w,d) = ((14,15,35,45,55), (70,90))
(w,d) = ((14,16,42,55,68), (84,110))
(w,d) = ((14,17,29,41,53), (70,82))
(w,d) = ((15,16,20,32,44), (60,64))
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(w,d) = ((16,18,24,27,30), (48,54))
(w,d) = ((16,18,48,63,78), (96,126))
(w,d) = ((16,22,24,33,42), (64,66))
(w,d) = ((16,26,40,47,54), (80,94))
(w,d) = ((16,30,40,45,50), (80,90))
(w,d) = ((16,34,40,51,62), (96,102))
(w,d) = ((16,38,56,65,74), (112,130))
(w,d) = ((16,42,56,63,70), (112,126))
(w,d) = ((16,46,56,69,82), (128,138))
(w,d) = ((16,50,72,83,94), (144,166))
(w,d) = ((16,54,72,81,90), (144,162))
(w,d) = ((16,58,72,87,102), (160,174))
(w,d) = ((16,62,88,101,114), (176,202))
(w,d) = ((16,66,88,99,110), (176,198))
(w,d) = ((16,74,104,119,134), (208,238))
(w,d) = ((16,78,104,117,130), (208,234))
(w,d) = ((16,90,120,135,150), (240,270))
(w,d) = ((17,20,35,50,65), (85,100))
(w,d) = ((24,26,32,51,70), (96,102))
(w,d) = ((24,26,60,77,94), (120,154))
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(w,d) = ((24,34,40,63,86), (120,126))
(w,d) = ((24,38,84,107,130), (168,214))
30.

w = (u,u + s, u + 2s, t(u + 2s) − u − s, t(2s + u) − u)
d = (t(u + 2s),2t(u + 2s))
u ≥ 1

s ≥ 1

t ≥ 2 t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, v mod (2v + 1) if u = 2v + 1
rv if u = 2v

w = (u,u + s, u + 2s, (t − 1)(u + 2s), (t − 1)(2s + u) + s)
d = (t(u + 2s) − s, t(u + 2s))
u ≥ 1

s ≥ 1

t ≥ 2 t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, (v + 1) mod (2v + 1) if u = 2v + 1
rv if u = 2v

Computer search located no sporadic cases.

31a.

(w,d) = ((2, t + 1, t + 1, t + 2,2t + 1), (2t + 3,3t + 3)), 0 ≤ t
(w,d) = ((4,2t + 1,2t + 1,2t + 3,4t), (4t + 4,6t + 3)), 1 ≤ t
(w,d) = ((6,6t + 2,6t + 2,6t + 5,12t + 1), (12t + 7,18t + 6)), 1 ≤ t
(w,d) = ((6,6t + 4,6t + 4,6t + 7,12t + 5), (12t + 11,18t + 12)), 0 ≤ t
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or (w,d) = ((6,2t + 2,2t + 2,2t + 5,4t + 1), (4t + 7,6t + 6)), 1 ≤ t, t ≠ 2 mod 3

Computer search located no sporadic cases.

31b.

(w,d) = ((4,4t + 1,4t + 2,4t + 3,8t), (8t + 4,12t + 3)), 1 ≤ t
(w,d) = ((4,4t + 4,4t + 5,4t + 6,8t + 6), (8t + 10,12t + 12)), 0 ≤ t
or (w,d) = ((4, t + 1, t + 2, t + 3,2t), (2t + 4,3t + 3)), 1 ≤ t, t = 0,3 mod 4

(w,d) = ((8,4t + 5,4t + 7,4t + 9,8t + 6), (8t + 14,12t + 15)), 0 ≤ t
(w,d) = ((9,3t + 2,3t + 5,3t + 8,6t + 1), (6t + 10,9t + 9)), 1 ≤ t
(w,d) = ((12,12t + 4,12t + 7,12t + 10,24t + 2), (24t + 14,36t + 12)), 1 ≤ t
(w,d) = ((12,12t + 8,12t + 11,12t + 14,24t + 10), (24t + 22,36t + 24)), 0 ≤ t
or (w,d) = ((12,4t+4,4t+7,4t+10,8t+2), (8t+14,12t+12)), 1 ≤ t, t ≠ 2 mod 3

Computer search located the following:

(w,d) = ((4,5,7,10,11), (15,21))
(w,d) = ((4,6,8,11,13), (17,24))
(w,d) = ((4,8,11,14,18), (22,32))
(w,d) = ((5,7,10,14,16), (21,30))
(w,d) = ((5,9,12,16,20), (25,36))
(w,d) = ((6,8,12,17,19), (25,36))
(w,d) = ((6,12,16,21,27), (33,48))
(w,d) = ((8,12,17,22,26), (34,48))
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(w,d) = ((8,18,24,31,41), (49,72))
(w,d) = ((8,20,27,34,46), (54,80))
(w,d) = ((9,10,15,22,23), (32,45))
(w,d) = ((9,12,17,24,27), (36,51))
(w,d) = ((9,14,21,29,34), (43,63))
(w,d) = ((9,15,22,30,36), (45,66))
(w,d) = ((10,11,15,22,23), (33,45))
(w,d) = ((10,12,20,29,31), (41,60))
(w,d) = ((10,17,25,34,41), (51,75))
(w,d) = ((11,13,19,25,27), (38,52))
(w,d) = ((11,14,21,30,33), (44,63))
(w,d) = ((11,17,24,31,37), (48,68))
(w,d) = ((11,18,27,37,44), (55,81))
(w,d) = ((11,21,29,37,47), (58,84))
(w,d) = ((11,25,34,43,57), (68,100))
(w,d) = ((11,29,39,49,67), (78,116))
(w,d) = ((12,30,40,51,69), (81,120))
(w,d) = ((13,14,23,32,33), (46,65))
(w,d) = ((13,17,27,37,41), (54,78))
(w,d) = ((13,20,31,42,49), (62,91))
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(w,d) = ((13,23,35,47,57), (70,104))
(w,d) = ((14,17,29,41,44), (58,85))
(w,d) = ((15,18,25,36,39), (54,75))
(w,d) = ((15,21,28,39,45), (60,84))
(w,d) = ((15,24,35,48,57), (72,105))
(w,d) = ((15,27,40,54,66), (81,120))
(w,d) = ((15,33,44,57,75), (90,132))
(w,d) = ((15,39,52,66,90), (105,156))
(w,d) = ((16,18,24,35,37), (53,72))
(w,d) = ((16,20,29,38,42), (58,80))
(w,d) = ((16,28,39,50,62), (78,112))
(w,d) = ((16,30,40,53,67), (83,120))
(w,d) = ((16,36,49,62,82), (98,144))
(w,d) = ((16,42,56,71,97), (113,168))
(w,d) = ((16,44,59,74,102), (118,176))
(w,d) = ((18,21,35,51,54), (72,105))
(w,d) = ((18,32,48,65,79), (97,144))
(w,d) = ((20,24,41,58,62), (82,120))
(w,d) = ((20,28,47,66,74), (94,140))
(w,d) = ((24,30,40,57,63), (87,120))
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(w,d) = ((24,42,56,75,93), (117,168))
(w,d) = ((24,66,88,111,153), (177,264))
(w,d) = ((30,42,70,99,111), (141,210))
32a. Computer search located the following:

(w,d) = ((4,4,6,7,9), (13,16))
(w,d) = ((6,6,8,11,13), (19,24))
32b. Computer search located the following:

(w,d) = ((8,12,18,19,29), (37,48))
(w,d) = ((11,14,21,23,33), (44,56))
(w,d) = ((11,18,27,28,44), (55,72))
(w,d) = ((12,15,20,26,34), (46,60))
(w,d) = ((13,14,19,23,29), (42,52))
(w,d) = ((13,17,24,27,38), (51,65))
(w,d) = ((13,20,29,31,47), (60,78))
(w,d) = ((13,23,34,35,56), (69,91))
(w,d) = ((14,15,19,26,31), (45,57))
(w,d) = ((14,19,25,32,43), (57,75))
(w,d) = ((16,20,30,33,47), (63,80))
(w,d) = ((16,21,28,36,48), (64,84))
(w,d) = ((16,28,42,43,69), (85,112))
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(w,d) = ((18,19,24,33,39), (57,72))
(w,d) = ((18,23,30,39,51), (69,90))
(w,d) = ((18,24,32,41,55), (73,96))
33. Computer search located the following:

(w,d) = ((3,5,6,7,8), (13,15))
(w,d) = ((4,8,10,11,13), (21,24))
(w,d) = ((5,7,10,11,14), (21,25))
(w,d) = ((6,14,18,19,23), (37,42))
(w,d) = ((8,10,16,17,23), (33,40))
(w,d) = ((10,11,15,18,22), (33,40))
(w,d) = ((10,17,25,26,34), (51,60))
(w,d) = ((11,13,14,19,20), (33,39))
(w,d) = ((11,17,20,24,27), (44,51))
(w,d) = ((11,21,26,29,34), (55,63))
(w,d) = ((11,25,32,34,41), (66,75))
(w,d) = ((11,29,38,39,48), (77,87))
(w,d) = ((12,16,18,23,25), (41,48))
(w,d) = ((12,32,42,43,53), (85,96))
(w,d) = ((14,17,27,29,39), (56,68))
(w,d) = ((15,16,20,28,32), (48,60))
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35a. No instances were found by computer search.

35b. Computer search located the following:

(w,d) = ((3,3,4,4,6), (7,12))
(w,d) = ((6,6,10,10,15), (16,30))
35cd. No instances were found by computer search.

35e. Computer search located the following:

(w,d) = ((6,8,8,10,15), (16,30))
35f. No instances were found by computer search.

35g. Computer search located the following:

(w,d) = ((9,12,13,16,24), (25,48))
36abc. No instances were found by computer search.

37ab. No instances were found by computer search.

38abc. No instances were found by computer search.

38d. Computer search located the following:

(w,d) = ((4,6,6,8,11), (12,22))
38e. No instances were found by computer search.

38f. Computer search located the following:

(w,d) = ((3,4,5,6,8), (9,16))
(w,d) = ((4,6,10,12,15), (16,30))
(w,d) = ((6,10,14,18,23), (24,46))
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(w,d) = ((8,14,26,32,39), (40,78))
(w,d) = ((12,14,18,20,27), (32,54))
39a. No instances were found by computer search.

39b. Computer search located the following:

(w,d) = ((6,9,10,13,18), (19,36))
40ab. No instances were found by computer search.

40c. Computer search located the following:

(w,d) = ((4,6,6,7,9), (13,18))
40d. Computer search located the following:

(w,d) = ((6,7,9,11,14), (18,28))
(w,d) = ((8,12,13,14,18), (26,36))
(w,d) = ((8,20,23,26,30), (46,60))
(w,d) = ((12,18,22,27,33), (45,66))
41. No instances were found by computer search.

42. Computer search located the following:

(w,d) = ((1,3,3,4,6), (7,9))
43a. No instances were found by computer search.

43b. Computer search located the following:

(w,d) = ((1,4,6,8,11), (12,17))
(w,d) = ((1,5,7,10,14), (15,21))
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(w,d) = ((1,7,12,17,23), (24,35))
(w,d) = ((1,8,14,20,27), (28,41))
(w,d) = ((1,9,15,22,30), (31,45))
(w,d) = ((1,10,17,25,34), (35,51))
(w,d) = ((2,7,10,13,18), (20,28))
(w,d) = ((2,9,12,17,24), (26,36))
(w,d) = ((3,7,8,9,13), (16,21))
(w,d) = ((3,8,10,12,17), (20,27))
(w,d) = ((3,10,11,15,22), (25,33))
45abcd. No instances were found by computer search.

46abc. No instances were found by computer search.

47 Computer search located the following:

(w,d) = ((1,4,5,7,11), (12,15))
(w,d) = ((1,5,6,9,14), (15,19))
(w,d) = ((1,8,13,19,31), (32,39))
(w,d) = ((1,9,15,22,36), (37,45))
(w,d) = ((1,10,16,24,39), (40,49))
(w,d) = ((1,11,18,27,44), (45,55))
(w,d) = ((2,9,12,17,27), (29,36))
(w,d) = ((2,11,14,21,33), (35,44))
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