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Abstract

Fan and Huang (2001) presented a goodness-of-fit test for linear models based on

Fourier transformations of the residuals of the fitted model. We present two more

theoretically appealing tests in which the Fourier transforms are incorporated into

a fitted model. We show that when suitably normalized, the new test statistics

have the same asymptotic distribution as Fan and Huang’s test. We propose

modifications to the asymptotic normalization constants to improve the small

sample sizes of our tests while retaining their asymptotic distributions. Small

sample sizes and powers are examined via simulations. Real data of short-leaf

pines from Bruce and Schumacher (1935) are used to illustrate the performance

of the proposed tests.
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Chapter 1

Introduction

1.1 The problem

In linear models, it is assumed that the data can be approximated by a model of

the form

Y = Xβ + ε, (1.1)

where Y is an N×1 vector of responses, X is an N×p matrix of known covariates,

β is a p×1 vector of unknown regression parameters, ε is an N×1 vector of random

errors and it is assumed that ε ∼ N(0, σ2I), I is an N × N identity matrix. If

there is lack-of-fit in model (1.1), it indicates that the mean structure of the

responses can not be well approximated by the vector Xβ, i.e. E(Y ) 6= Xβ. This

dissertation presents two statistical procedures for testing the lack-of-fit in linear

models.

1.2 Notation

For any matrix A, let C(A) be the column space of A; r(A) be the rank of A;

A− be the generalized inverse of A, and MA ≡ A(ATA)−AT be the perpendicular

1



projection operator (ppo) onto the column space C(A). All models will be in

numbered equations, so let SSE(n) and MSE(n) be the sum of squares error and

the mean squares error of model (n) respectively.

1.3 Quadratic forms and central χ2 distribution

Let M be a ppo. Y TMY is a random variable and is called a quadratic form.

Under model (1.1), Christensen (2002, Chapter 1) provides

Y TMY

σ2
∼ χ2

(
r(M),

βTXTMXβ

2σ2

)
,

where r(M) is the degrees of freedom of the χ2 distribution, and
βTXTMXβ

2σ2
is

a noncentrality parameter. If MX = 0, the noncentrality parameter is 0 and the

χ2 distribution is called a central χ2 distribution.

When
Y TMY

σ2
has a central χ2 distribution with degrees of freedom r(M),

E

(
Y TMY

r(M)

)
= σ2,

so under model (1.1), MX = 0 yields
Y TMY

r(M)
an unbiased estimate to σ2.

1.4 Central F distribution

Let M1 and M2 be any N ×N ppo’s. If M1M2 = 0, the quadratic forms Y TM1Y

and Y TM2Y are independent. Moreover under model (1.1) and M2X = 0, Chris-

tensen (2002, Appendix C) gives

Y TM1Y/r(M1)

Y TM2Y/r(M2)
∼ F

(
r(M1), r(M2),

βTXTM1Xβ

2σ2

)
,

where r(M1) and r(M2) are the degrees of freedom of the F distribution, and

βTXTM1Xβ

2σ2
is a noncentrality parameter of the F distribution. If M1X = 0,

the noncentrality parameter becomes 0 and thus
Y TM1Y/r(M1)

Y TM2Y/r(M2)
has a central F

distribution.

2



1.5 Outline of the dissertation

In Chapter two, brief reviews are given of two classical approaches of lack-of-fit

tests in the literature.

In Chapter three, Fan and Huang’s (2001) test is placed into the context of

linear models. Two new lack-of-fit tests are developed. The asymptotic results of

the new tests are also provided in this chapter.

Chapter four provides several estimates of the variance and introduces the ad-

justments to the normalizing constants used in the proposed tests. The adjust-

ments improve the power of the tests in small samples.

Chapter five presents simulation results. Testing lack-of-fit in simple regressions

and multiple regressions are discussed. Comparisons among the proposed tests

and Fan and Huang’s test are provided.

In Chapter six, we apply the proposed tests on a data set from Bruce and

Schumacher (1935). The data contain 70 observations of short-leaf pine on their

volume in cubic feet, their girth in inches, and their height in feet. Several models

are used for illustrations.

Chapter seven gives a summary on the thesis. Further research directions are

also provided.

3



Chapter 2

Review of two classical

approaches of lack-of-fit testing

There are two classical approaches in the study of lack-of-fit testing in linear re-

gressions. First, Fisher (1922) provided what has become an exact F -test based

on clustering the data into groups in which the covariates are exact replications.

Generalizing Fisher’s test to clusters of near-replicates, Green (1971), Shillington

(1979), Neill and Johnson (1985), Christensen (1989, 1991), Joglekar, Schuen-

emeyer, and LaRiccia (1989), and Su and Yang (2006) all proposed lack-of-fit

tests. Neyman (1937) provided a classical approach to testing the goodness-of-fit

of a distribution, his smooth test. This procedure has been adapted to testing

lack-of-fit in regression using ideas related to nonparametric regression and model

selection. Eubank and Hart (1992), Aerts, Claeskens, and Hart (2000), and Fan

and Huang (2001) all proposed tests following from Neyman’s approach. Brief

reviews of Fisher’s test and Neyman’s smooth test are provided in this chapter.

Review on Fan and Huang’s test is given in Chapter 3. Reviews of all other

approaches are provided in Appendices B and C.

4



2.1 Clustering: Fisher’s Test

Slutsky (1913) and Pearson (1916) applied the contingency table chi-squared

goodness-of-fit test, to test regression curves. However, Fisher pointed out that

Pearson’s formula for the degrees of freedom was incorrect. Fisher (1922) proposed

to test the goodness-of-fit of regression lines using his test for the goodness-of-fit

of frequencies. In his article, the proposed test statistic was first claimed to have

a χ2 distribution. Later, it was shown that the χ2 distribution supplies only an

approximation. Eventually, the test proposed by Fisher took the form of an exact

F -test.

Fisher investigated goodness-of-fit of simple linear regression on the basis of

covariate replications. WithN pairs of observations x and y, we suppose that there

are k distinct values in x, i.e. k clusters of x’s, and the number of observations

for which x = xi is ni, i = 1, . . . , k. Then
k∑
i=1

ni = N . The model is

yij = β0 + β1xi + εij, (2.1)

where j = 1, . . . , ni. Within each cluster, let

Yi =


yi1
...

yini

 , Xi =


1 xi
...

...

1 xi

 , Jni
=


1

...

1

 , and εi =


εi1
...

εini

 , (2.2)

where Yi, Jni
, and εi are ni × 1 vectors, Xi is an ni × 2 matrix. Let

Y =


Y1

...

Yk

 , X =


X1

...

Xk

 , and ε =


ε1
...

εk

 , (2.3)

where ε ∼ N(0, σ2I) and I is an N × N identity matrix. Model (2.1) is written

in matrix notation as

Y = Xβ + ε, (2.4)

with regression parameters βT = [β0, β1]. We start with a discussion of the original

idea of Fisher’s test and then the modern convention of interpreting Fisher’s test.
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Fisher starts the problem with the assumption of known group means of the

responses µi and a known common variance σ2 for all clusters. If simple regression

models are fitted within each cluster, say

Yi = Xiγi + εi, (2.5)

where γTi = (γ0i, γ1i), for i = 1, . . . , k, since C(Xi) = C(Jni
), model (2.5) is

equivalent to

Yi = Jni
µi + εi, (2.6)

where µi is the group mean in the i-th cluster. The least squares predictors of yij

from model (2.6) are the group sample means ȳi. Then, with E(ȳi) = µi, Fisher

standardizes the group means to zi =
√
ni(ȳi − µi), so the zi’s are i.i.d. N(0, σ2)

random variables. The sum of z2
i for all clusters is

k∑
i=1

ni(ȳi − µi)2 and

χ2 =

∑k
i=1 ni(ȳi − µi)2

σ2

is χ2 distributed as the test statistic of the goodness-of-fit test in contingency

tables.

We want to test the lack-of-fit of model (2.4). A natural sum of squares for

lack-of-fit is estimating the group mean µi from model (2.1), say µ̂i = β̂0 + β̂1xi,

Fisher suggests that the MSE of fitting model (2.6) for all clusters simultaneously

can be used as σ̂2. Hence, the test statistic is

χ2 =

∑k
i=1 ni(ȳi − µ̂i)2∑k

i=1

∑ni

j=1(yij − ȳi)2/(N − k)
,

which has an asymptotic χ2 distribution with k−1 degrees of freedom. In modern

statistics, the degrees of freedom k−1 is further corrected to k−2 and incorporated

into the test statistic

F =

∑k
i=1 ni(ȳi − µ̂i)2/(k − 2)∑k

i=1

∑ni

j=1(yij − ȳi)2/(N − k)
. (2.7)

The test statistic has an F distribution with degrees of freedom (k − 2, N − k).
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Let

Z =



Jn1 0 0 0 0

0 Jn2 0 0 0

0 0
. . . 0 0

0 0 0 Jnk−1
0

0 0 0 0 Jnk


. (2.8)

Z is a block diagonal matrix used in ANOVA models. The ppo MZ is also a block

diagonal matrix, i.e.

MZ =



1
n1
Jn1
n1

0 0 0 0

0 1
n2
Jn2
n2

0 0 0

0 0
. . . 0 0

0 0 0 1
nk−1

J
nk−1
nk−1 0

0 0 0 0 1
nk
Jnk
nk


,

where Jni
ni

is an ni × ni matrix of ones. Obviously

(I −MZ)Y =



y11 − ȳ1

...

y1n1 − ȳ1

...

yk1 − ȳk
...

yknk
− ȳk


.

The sum of squares in the denominator in (2.7) can be written as Y T (I −MZ)Y .

Hence the denomiator in (2.7) is equivalent to the MSE of fitting the model

Y = Zγ + ε, (2.9)

i.e. MSE(2.9) = Y T (I −MZ)Y/(N − k). Moreover since MXY = Xβ̂ and

[Xβ̂]T = [(β̂0 + β̂1x1)JTn1
, (β̂0 + β̂1x2)JTn2

, . . . , (β̂0 + β̂1xk)J
T
nk

],
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we have

MZY =


ȳ1Jn1

ȳ2Jn2

...

ȳkJnk


and MXY =


µ̂1Jn1

µ̂2Jn2

...

µ̂kJnk


.

These yield

[(MZ −MX)Y ]T [(MZ −MX)Y ]

=
[
(ȳ1 − µ̂1)JTn1

, (ȳ2 − µ̂2)JTn2
, · · · , (ȳk − µ̂k)JTnk

]


(ȳ1 − µ̂1)Jn1

(ȳ2 − µ̂2)Jn2

...

(ȳk − µ̂k)Jnk


=

k∑
i=1

ni(ȳi − µ̂i)2.

Since C(X) ⊂ C(Z), MZ −MX is a ppo and [(MZ −MX)Y ]T [(MZ −MX)Y ] =

Y T (MZ−MX)Y . The numerator in (2.7) can be expressed as Y T (MZ−MX)Y/(k−

2). Hence, (2.7) can be written as

F =
Y T (MZ −MX)Y/(k − 2)

Y T (I −MZ)Y/(N − k)
, (2.10)

which is the classical F statistic used in lack-of-fit test when replicates are avail-

able.

A recent interpretation of the exact F -test is provided in Christensen (2002,

Chapter 6). Since the rows in X are replicated with k clusters, C(X) ≤ k. The

design matrix Z of model (2.9) has the same row structure as X and achieves the

largest possible rank of C(X), i.e. C(X) ⊂ C(Z) and C(Z) = k. Therefore, model

(2.9) is regarded as the most general model with the same pattern of equal means

that can be generated from model (2.4). If there exists a lack-of-fit in model (2.4)

but the means remain constant within clusters, model (2.9) should give a better

fit to the data. SSE(2.9) = Y T (I −MZ)Y is called the sum of squares for pure

error. The difference

SSE(2.4)− SSE(2.9) = Y T (I −MX)Y − Y T (I −MZ)Y

8



= Y T (MZ −MX)Y

is called the sum of squares for lack-of-fit. Fisher’s exact F -test can be used in

multiple regressions with k clusters of exact replicates by replacing k − 2 with

k − r(X).

2.2 Smooth test: Neyman’s Smooth Test

The use of the smooth test for goodness-of-fit was proposed by Neyman (1937).

Neyman’s smooth test was not designed for testing lack-of-fit in linear regres-

sion, but his idea applies. As mentioned earlier, when replicates are available, a

most general model can be generated for testing lack-of-fit. If replicates are not

available, no most general model exists. The smooth test proposes an alternative

model that is more general than (2.4). Define

Y =


y1

y2

...

yn


, X =


1 x1

1 x2

...
...

1 xn


, ε =


ε1

ε2
...

εn


and H =


h(x1)

h(x2)

...

h(xn)


, (2.11)

where ε ∼ N(0, σ2I) and h : R → R is an unknown smooth function. Smooth

functions are functions that can be differentiated infinitely many times. For testing

lack-of-fit in the simple linear regression

Y = Xβ + ε, (2.12)

a more general model with a smooth function is

Y = Xβ +H + ε. (2.13)

The function h(x) is an arbitrary smooth function in x. h(x) can be described

by a series expansion, i.e.

h(x) =
∞∑
t=0

θtϕt(x), (2.14)
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where θt are unknown coefficients and the functions ϕt(x) are known, fixed, and

referred to as basis functions. Efromovich (1999, Chapter 2) gives some choices for

ϕt(x). In the series expansion of h(x), infinite numbers of coefficients are involved.

It is impossible to deal with infinite coefficients in practice. Therefore, a partial

sum is used to approximate h(x), i.e.

hk(x) =
k∑
t=0

θtϕt(x), (2.15)

for some integer k. Define

Hk =


ϕ0(x1) ϕ1(x1) · · · ϕk(x1)

ϕ0(x2) ϕ1(x2) · · · ϕk(x2)

...
...

...
...

ϕ0(xn) ϕ1(xn) · · · ϕk(xn)


and γk =


θ0

θ1

...

θk


. (2.16)

Model (2.13) can be approximated by

Y = Xβ +Hkγk + ε. (2.17)

Using model (2.17), we extend Neyman’s smooth test to testing lack-of-fit in

linear regression. As C(X) ⊂ C(X,Hk), we propose a natural F -statistic for

testing lack-of-fit of model (2.12), i.e.

Fk =
Y T (MH′k

)Y/r(H ′k)

Y T (I −MX −MH′k
)Y/(n− r(X)− r(H ′k))

, (2.18)

where H ′k ≡ (I − MX)Hk and Fk has a central F distribution with degrees of

freedom (r(H ′k), n− r(X)− r(H ′k)) when (2.12) is true. Neyman suggests that in

the smooth test, one fixed k should be used. If k is chosen depending on the data,

for example we could choose the k that gives the smallest p-value among several

k’s, a new critical region must be introduced rather than using the critical region

from the F distribution with degrees of freedom appropriate to the chosen k.

Eubank and Hart (1992), Aerts, Claeskens, and Hart (2000), and Fan and

Huang (2001) all proposed tests by extending Neyman’s smooth test to linear

regression. Although they did not mention in their articles, all of their tests can
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be interpreted by comparing models (2.12) and (2.17), with different criteria for

choosing k, and hence different critical regions.
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Chapter 3

Two new approaches to testing

Lack-of-Fit

In this chapter, we place Fan and Huang’s test into a linear model theory context

that suggests two potential improvements. Section 3.1 provides a brief introduc-

tion to Fan and Huang’s test. In Section 3.3 and 3.4, we apply the Darling-Erdős

(1956) theorem to obtain the asymptotic distribution of our proposed test statis-

tics.

3.1 Fan and Huang’s Test:

Fan and Huang, henceforth referred to as FH, proposed a lack-of-fit test based on

Fourier transforms. The null linear model is

yi = xTi β + εi,

i = 1, . . . , n, where yi is the dependent variable, xi is a p × 1 vector of known

covariates, β is a p× 1 vector of fixed unknown regression parameters, and the εi

are independent εi ∼ N(0, σ2). FH compare this to a more general model

yi = xTi β + h(xij) + εi,
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where xij is the jth component of xi and h(·) is an arbitrary unknown smooth

function.

Let

Y ≡


y1

...

yn

 X ≡


xT1
...

xTn

 ≡ [X1 · · ·Xp ] .

In matrix form the models are

Y = Xβ + ε (3.1)

and

Y = Xβ +H(Xj) + ε, (3.2)

respectively, with H(Xj) ≡ [h(x1j), . . . , h(xnj)]
T and ε ∼ N(0, σ2In).

FH use Fourier transforms. Define an n × 1 vector ψ1 = [1, . . . , 1]T . For any

positive integer q, let

ψ2q =

[
cos

(
2πq

1

n

)
, . . . , cos

(
2πq

n

n

)]T
and

ψ2q+1 =

[
sin

(
2πq

1

n

)
, . . . , sin

(
2πq

n

n

)]T
.

Define Ψ = [ψ1, . . . , ψn]. Let Γ be the n × n orthogonal matrix generated by

normalizing the columns of Ψ to have length one. The matrix Γ defines the

discrete Fourier transformation, that is, for any vector w the Fourier transform is

w∗ ≡ ΓTw.

We will have occasion to use submatrices of Γ. For an even number m, let

Ψm = [ψ2, . . . , ψm+1]

and normalize the columns to give the corresponding submatrix of Γ, say, Γm.

The vector ψ1 is eliminated because it is just a vector of 1s and, for models with
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an intercept, its use will be redundant. Γm will contain m/2 pairs of sine and

cosine terms. Note that ΓTmΓm = Im and define

Mm ≡ ΓmΓTm = MΓm .

For any vector w define a component vector of the Fourier transform

w∗m = ΓTmw.

FH propose a test for lack of fit based on the Fourier transform of the model

(3.1) residuals ε̂ ≡ Y −Xβ̂ = (I −MX)Y , that is,

ε̂∗ = ΓT ε̂ ≡


v∗1

v∗2
...

v∗n

 .
Letting σ̂2 be a consistent estimate of σ2 with σ̂2 = σ2 +Op(n

−1/2), FH define the

test statistic

TFH = max
1≤m≤ñ

1√
2mσ̂2

m∑
i=1

(v∗2i − σ̂2).

FH use ñ ≡ n to define their test but need to redefine ñ to obtain asymptotic

results. Note that with an intercept in the model, v∗1 = 0. The test statistic TFH

is normalized to

WFH = añTFH − bñ,

where añ =
√

2 log log ñ and bñ = a2
ñ + log añ− log (2

√
2π). Fan and Huang show

that under model (3.1),

P (WFH < x)→ exp(− exp(−x)) as n→∞. (3.3)

3.2 Linear models and the FH test

FH’s test is based on ΓT (Y −Xβ̂). In particular, it is based on finding the sum

of squares for regression in

Y −Xβ̂ = Γmγm + e. (3.4)
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To see this note that the total sum of squares for model (3.4) is SSE(3.1) and

SSE(3.4) = ε̂T (I −Mm)ε̂

= ε̂T ε̂− ε̂TMmε̂

= SSE(3.1)−
[
ΓTmε̂

]T [
ΓTmε̂

]
= SSE(3.1)− [ε̂∗m]T [ε̂∗m] ,

so [ε̂∗m]T [ε̂∗m] is the sum of squares for regression in model (3.4).

To see that FH use [ε̂∗m]T [ε̂∗m] to test the adequacy of model (3.1), rewrite

TFH = max
1≤m≤ñ

1√
2mσ̂2

m∑
i=1

(v∗2i − σ̂2)

= max
1≤m≤ñ

1√
2m

∑m
i=1 v

∗2
i −mσ̂2

σ̂2

= max
1≤m≤ñ

√
m

2

∑m
i=1 v

∗2
i /m− σ̂2

σ̂2

= max
1≤m≤ñ

√
m

2

[ε̂∗m]T [ε̂∗m] /m− σ̂2

σ̂2
.

3.3 Approach one: Model comparison

Fitting model (3.4) involves using a two-stage fitting procedure to fit

Y −Xβ = Γmγm + ε, (3.5)

wherein β is first estimated from model (3.1) and then γm is fitted to model (3.4).

However, model (3.5) can be fitted directly. Clearly, model (3.5) is equivalent to

Y = Xβ + Γmγm + ε (3.6)

and using results from analysis of covariance, for example Christensen (2002,

Chapter 9), rewrite model (3.6) as

Y = Xβ0 + (I −MX)Γmγ + ε, (3.7)
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where β0 ≡ β + (XTX)−XTΓmγ. The sum of squares error of models (3.6) and

(3.7) are

SSE(3.6) ≡ Y T (I −MX −M(I−MX)Γm)Y

= Y T (I −MX)Y − Y TM(I−MX)ΓmY

= SSE(3.1)− Y TM(I−MX)ΓmY.

When testing lack-of-fit by testing model (3.1) versus model (3.6), the sum of

squares lack of fit is Y TM(I−MX)ΓmY , so our first proposal is to replace [ε̂∗m]T [ε̂∗m]

in FH’s test by Y TM(I−MX)ΓmY . Our first test statistic is

T̂1, ñ = max
1≤m≤ñ

{√
rm
2

Y TM(I−MX)ΓmY/rm − σ̂2

σ̂2

}
,

where rm ≡ r [(I −MX)Γm] and σ̂2 = σ2 +Op(n
−1/2).

FH define their test statistic with m ranging from 1 to n but in their proof of the

asymptotic null distribution of TFH , they use m ranging from 1 to ñ =
n

(log log n)4
.

FH claim that the reduction on the range ofm has little impact on the performance

of their test statistic. We define our tests to agree with our asymptotic results

which use

ñ ≡
⌈

n

(log log n)1+δ

⌉
(3.8)

for δ > 0.

As with FH, we appeal to the Darling-Erdős Theorem (Darling and Erdős,

1956) to show that the normalized test statistic converges to an extreme value

distribution. We normalize our first test statistic as

Ŵ1, ñ = arñT̂1, ñ − brñ ,

where arñ =
√

2 log log rñ and brñ = a2
rñ

+ log arñ − log (2
√

2π).

Theorem 1. If
σ̂2

σ2
− 1 = Op

(
n−1/2

)
, then

Pr(Ŵ1, ñ < x)→ exp(− exp(−x)) as n→∞.

The proof is given in the Appendix A at the end of the thesis.

16



3.4 Approach two: Direct estimation of ε∗m ≡ ΓTmε

FH estimated ΓTm(Y −Xβ) ≡ ΓTmε using the least squares β̂, to obtain ε̂∗m ≡ ΓTmε̂ =

ΓTm(Y −Xβ̂). We propose an alternative method of direct estimation.

The goal is estimating ε∗m ≡ ΓTmε. Multiplying model (3.1) on the left by ΓTm

gives

ΓTmY = ΓTmXβ + ΓTmε. (3.9)

We can estimate ΓTmε directly by using the least-square residuals from model (3.9),

i.e.,

ε̃∗m ≡ (Im −MΓT
mX

)ΓTmY.

Tests are based on the sum of squares,

[ε̃∗m]T [ε̃∗m] =
[
(Im −MΓT

mX
)ΓTmY

]T [
(Im −MΓT

mX
)ΓTmY

]
= Y TΓm(Im −MΓT

mX
)ΓTmY

= Y T (Mm −MMmX)Y. (3.10)

For m = 1, 2, . . . , ñ, let r̃m denote the rank of C(Mm − MMmX). Our second

proposed test statistic is

T̃2,ñ = max
1≤m≤ñ

{√
r̃m
2

Y T (Mm −MMmX)Y/r̃m − σ̂2

σ̂2

}
.

This procedure has connections to Shillington’s (1979) and Christensen’s (1991)

tests. The sum of squares Y T (Mm −MMmX)Y is the difference between the sum

of squares errors in the models:

Y = MmXβ + ε,

Y = Γmγm + ε.

We normalize the test statistic as

W̃2,ñ = ar̃ñT̃2,ñ − br̃ñ ,

where ar̃ñ =
√

2 log log(r̃ñ) and br̃ñ = a2
r̃ñ

+ log ar̃ñ − log (2
√

2π).

17



Theorem 2. If
σ̂2

σ2
− 1 = Op

(
n−1/2

)
, then

Pr(W̃2,ñ < x)→ exp(− exp(−x)) as n→∞.

The proof is in the Appendix A.
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Chapter 4

Estimating σ2 and Adjustments

In Section 4.1, we discuss choices of σ̂2 for our proposed test statistics. In Sec-

tion 4.2, we examine adjustments to the normalizing constants of the Darling-

Erdős theorem to improve small sample behavior.

4.1 Estimating σ2

We have not specified σ̂ in any of the test statistics although the asymptotics

require that σ̂2 satisfy σ̂2 = σ2 +Op(n
−1/2). FH suggest using the sample variance

of {ε̂∗i , i = K + 1, . . . , n}, that is, they use

σ̂2
0 =

1

n−K

n∑
i=K+1

ε̂∗2ni −

{
1

n−K

n∑
i=K+1

ε̂∗ni

}2

,

where ε̂∗ni is the i-th entry of ε̂∗n ≡ ΓTn ε̂, and K ≡ K(n) is a constant that depends

on n. FH use K = [n/4] in their simulations. We use ñ from (3.8) instead of n

in computing FH’s test statistic, so we use K = [ñ/4]. From simulation we found

that FH’s test works better when computed using ñ rather than n.

A natural estimate of σ2 for use with T̂1,ñ would be SSE(3.6) with m = ñ.

However, in small samples this may not provide enough degrees of freedom. An-

other natural estimate is using the MSE of an intermediate model between model
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(3.1) and model (3.6) with m = ñ, say,

Y = Xβ + ΓKγK + ε, (4.1)

for 0 ≤ K ≤ ñ. Define

σ̂2
1 ≡MSE(4.1) =

Y T (I −MX,ΓK
)Y

n− r(X)− rK
.

A natural variance estimate for T̂2,ñ follows by analogy to Christensen (1991).

Note that a one-way analysis of variance model yij = µi + εij can be written in

matrix notation as

Y = Zµ+ ε, (4.2)

where Z, as defined in (2.8), is a design matrix providing a specific clustering to

the responses. Christensen (1989) used the model

Y = Xβ + Zµ+ ε (4.3)

as the full model in order to construct an F -statistic for testing lack-of-fit. Chris-

tensen (1991) used the ideas of within-clusters orthogonal lack-of-fit and between-

clusters orthogonal lack-of-fit to define and derive optimal tests. The orthogonal

lack-of-fit space was characterized by writing the perpendicular projection opera-

tor onto C(X)⊥ as the sum of mutually orthogonal projection operators involving

the between-cluster C(X)⊥ ∩ C(Z) and within-cluster C(X)⊥ ∩ C(Z)⊥ spaces.

The sum of squares lack-of-fit in the Christensen (1991) test has ppo MZ−MMZX

onto the column space C(X)⊥ ∩C(Z) and the optimal variance estimate uses the

ppo (I −MX)− (MZ −MMZX).

A similar characterization of the orthogonal lack-of-fit space can be applied by

replacing Z with ΓK . The sum of squares for lack-of-fit in our second test is given

in (3.10), which has the same structure as the Christensen (1991) test. With

m = K, the corresponding estimate of σ2 for our second test is

σ̂2
2 ≡

Y T [(I −MX)− (MK −MMKX)]Y

n− r(X)− r̃K
,
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The most natural choice of K seems to be K = ñ but that may not be a good

choice, especially for small samples. Although picking K = ñ in model (4.1) in

large samples should give the best approximation to the true model and the best

estimate of σ2, for smaller samples it may over fit the data. For small samples ñ

is close to n so it may provide insufficient degrees of freedom for estimating σ2.

From Lemma 3 below, any K between 0 and ñ suffices to give the asymptotic null

distribution on which the tests are based. Moreover, the intuition that suggests

picking K = ñ is based on having σ̂2 independent of the constructs W1,ñ and W2,ñ

used in the large sample proof, but independence is not a particularly relevant

consideration after using σ̂2 to construct Ŵ1,ñ and W̃2,ñ.

The asymptotic distributions require σ̂2 = σ2 +Op(n
−1/2).

Lemma 3. If
K

n
→ c as n→∞, where 0 ≤ c < 1, then σ̂2

i = σ2 +Op(n
−1/2) for

i = 1, 2 under model (3.1).

The proof is in the Appendix A.

4.2 Adjustments to the test statistics

This section presents an adjustment to the test statistics that maintains their

asymptotic distribution while improving sizes of the tests in small samples. In

T̂1,ñ = max
1≤m≤ñ

{√
rm
2

Y TM(I−MX)ΓmY/rm − σ̂2

σ̂2

}
.

we select the maximum from ñ objects. With rñ < ñ, there may be repetitions in

these ñ objects. Moreover, forcing the sin(·) and cos(·) terms to appear in pairs

reduces the number of terms computed by half. Both considerations seem to harm

the rate of convergence to the asymptotic distribution of the test statistic. Our

simulation results indicate slightly inflated test sizes in small samples relative to

the asymptotic distribution.
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The normalizing constants used in the Darling-Erdős theorem come from Lemma

3.10 in Darling and Erdős (1956). The lemma provides that if 2µ(T )y = log n,

where y > 0 and µ(T ) =
(2π)1/2 exp{α2/2}

α
, then for n→∞

T = (2 log log n)1/2 +
log log log n

2(2 log log n)1/2
− log((4π)1/2y)

(2 log log n)1/2
+ o

(
(log log n)−1/2

)
.

T is the asymptotic solution to the equation 2µ(T )y = log n. T also plays the

role of our test statistics before standardization. We express the asymptotic result

of the Darling-Erdős theorem in a different way, so we replace log((4π)1/2y) by

−W + log 2
√
π where W is the value our test statistics take after standardization.

Thus

T = (2 log log n)1/2 +
log log log n

2(2 log log n)1/2
− log 2

√
π −W

(2 log log n)1/2
+ o

(
(log log n)−1/2

)
.

After some manipulation

W =
√

2 log log nT −
(

2 log log n+
log log log n

2
− log(2

√
π)

)
+ o(1)

≡ anT − bn + o(1).

The simulated results indicate that if we keep this an, a larger bn should be used

in small samples. Furthermore, the adjustment should be larger as n is increased.

The normalizing constant bn involves the term log log log n. We implement the

adjustment on bn by raising the power of n in log log log n to c log log n, where c is

a constant and depends on the choice of K in estimating σ̂2. This defines a new

constant b̄n = 2 log log n+
log log log(nc log log n)

2
− log(2

√
π). Since

lim
n→∞

{
log log log

(
nc log logn

)
− log log log n

}
= lim

n→∞
log

{
log ((c log log n)(log n))

log log n

}
= lim

n→∞
log

{
log c+ log log log n+ log log n

log log n

}
= 0,

bn − b̄n → 0 as n → ∞, and the asymptotic distribution of W is unaffected by

this adjustment. In applications to Theorems 1 and 2, n is replaced by rñ and r̃ñ,

respectively.
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It is worth noting that FH expressed the sum of squares lack-of-fit as the sum

of ñ asymptotically independent one degree of freedom χ2 random variables. Our

tests expressed the sum of squares lack-of-fit as the sum of exact small sample in-

dependent one degree of freedom χ2 random variables. This difference constitutes,

in small samples, a hidden adjustment implemented in FH’s test statistics.
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Chapter 5

Simulations

In this chapter, simulations are used to examine the empirical sizes and powers

of our proposed tests, along with FH’s test. The empirical powers of an exact

F -test based on models (3.1) and (3.6) with m =
ñ

2
as the full model are also

given for comparison. The simulations are based on models from FH or slight

modifications. The results are based on 20000 simulations and the significance

level is taken to be 5%. The sample size is n = 64 and the samples are ordered

by a covariate. As mentioned earlier, the matrix ΓTm contains rows of cos(·)’s and

sin(·)’s with identical arguments that appear in pairs.

Simulations not reported here compared all three test statistics as computed

with all three estimates of σ2, and a variety of sample sizes. Although there are

natural relationships between the variance estimates and test statistics, we report

the results of our proposed tests using σ̂2
1 as the estimate of σ2. For FH, σ̂2

0 is used.

It is worth noting that FH with σ̂2
0 provides better empirical powers than with σ̂2

1.

Figures obtained from these simulations with the test statistics computed based

on the true σ2 are also provided as reference. In this case, the F -test is replaced

by a χ2-test.

We found that for these tests σ̂2
1 is a better estimator of σ2 than σ̂2

2 when K is

chosen to be [ñ/4], especially in small samples. When the fitted model is simple
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linear regression, σ̂2
1 and σ̂2

2 provide similar empirical sizes and powers in all tests.

The difference becomes substantial in multiple regression, wherein the tests with

σ̂2
2 provide relatively low powers.

FH’s σ̂2
0 is computed from the sample variance of transformed residuals and their

test statistic is built on the transformed residuals, so σ̂2
0 is a convenient choice of σ̂2

for them. Our test statistics are not constructed directly from residuals. Although

the sum of squares lack-of-fit can be decomposed into residuals, this is not the

genesis of our test statistics. Our simulated results indicate that, in multiple

regression, the size of FH’s test is far below 5% when the true σ2 is used. But

the problem of undersizing is ameliorated by the use of their estimate σ̂2
0. Thus

σ̂2
0 may not be a good estimator for σ2 but is a good choice for FH’s test. When

the true σ2 is used, undersizing in our tests is not as serious as that in FH’s test.

Therefore, σ̂2
0 is not recommended for our proposed tests, it would make our tests

oversized.

FH use ñ =
n

(log log n)4
in the proof of the asymptotic distribution of their test

statistic but ñ = n in their simulations. Not only does ñ = n violate the theory

but we found that it gave relatively poor simulated results. Since ñ =
n

(log log n)4

induces a relatively large reduction on the sample size, we used ñ =
n

(log log n)2
.

All examples use this ñ.

As mentioned earlier, the c in our proposed adjustment b̄n depends on the choice

of K. Moreover, the c’s used in our first and second proposed tests are different.

Define

Ω(x) =


0 if x ≤ 35

exp

{
− 1

(x− 35)0.1

}
if x > 35

.

We suggest K = [ñ/10] with c = 2.1 for our first proposed test and K = [ñ/4]

with

c =
11

log(r − 0.9)

(
1− Ω

(
r̃ñ
r

))
,
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where r ≡ r(X) and r̃m is the rank of C(Mm−MMmX), Mm ≡MΓm , for our second

proposed test. We use this c for Test 2 because when r̃ñ is much larger than r,

the adjustment
11

log(r − 0.9)
becomes too large for the test statistic. The constant

35 is obtained from extensive computer experiments. K = [ñ/4] is used in FH’s

test. Since our proposed adjustment depends on the sample size n, we provide the

empirical sizes of the tests based on 5000 simulations and various sample sizes,

n = 48, 64, 80, 96, 128, 160, 192, 224, 256, to illustrate the little impact from the

sample size on the sizes of our proposed tests under the adjustment.

For simplicity, we call our first proposed test “Test 1” our second proposed test

“Test 2”; FH’s test “FH”; and the exact F -test with m = ñ/2 “F”.

5.1 Simple regression model

5.1.1 Brief outline

We start with eight examples that test lack-of-fit when fitting linear models with

an intercept and one predictor, i.e. yi = β0 + x1iβ1 + εi. The εi are i.i.d. N(0, σ2)

random variables. The true model changes in each example. In the simulations,

we choose σ = 2 instead of σ = 1 as in Fan and Huang because the larger variation

amplifies the differences between the empirical powers among tests.

In Examples 1 and 2, the response variables are drawn from two models, re-

spectively, such that the inverse of E(Y ) is linear in the parameter. The empirical

powers for all four tests show different patterns in these examples but share the

same property that a critical point is shown at the regression parameter θ = 1.

Examples 3 and 4 present simulations when the response variables are drawn

from even-order polynomials of x1: a quadratic polynomial and a forth-order

polynomial, respectively. The effect of raising the highest order term in the even-

order polynomial on the empirical powers of the tests will be discussed.
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The setup of the simulations in Examples 5 and 6 is similar to Examples 3

and 4 but the response variables are drawn from odd-order polynomials of x1:

a cubic polynomial and a fifth-order polynomial, respectively. The difference in

the empirical powers of the tests between odd-order polynomial models and even-

order polynomial models will be discussed via a comparison between Examples 3

and 6.

In Example 7, the response variable is drawn from a simple regression but

we put a cosine transformation on the predictor. A comparison between testing

lack-of-fit when fitting a simple linear regression and when fitting the polynomial

regression, i.e. yi = β0 + β1x1i + β2x
2
1i + β3x

3
1i + εi, is provided.

In Example 8, a model which is not linear in the parameter is used to simulate

the response variable. In addition to testing lack-of-fit when fitting a simple

linear regression, we also consider fitting a model in which C(X) contains the low

frequency terms in Γm ≡ [G1, G2, . . . , Gm], i.e.

yi = β0 + β1x1i + β2g1i + β3g2i + β4g3i + β5g4i + εi, (5.1)

where gji is the i-th entry in Gj, is used in the comparison.

The larger models included in Examples 7 and 8 illustrate the price that FH

pays for not adjusting Γm for the fitted X when C(X) is adept at picking up low

frequency terms in Γm.

5.1.2 Examples

Example 1. In this example, the predictor variable x1 is sampled from a N(0, 1).

The response variable y is drawn from the model

y =
10

1 + θ exp(−2x1)
+ ε, ε ∼ N(0, 22). (5.2)

The true model has a logistic structure when the regression parameter θ 6= 0.

Figure 5.1 provides empirical powers for all four tests based on n = 64 and the
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Figure 5.1: Powers for Example 1. n = 64 and estimated variances are used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.2: Powers for Example 1. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.3: Powers for Example 1. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.4: Empirical sizes for Example 1 under various sample sizes.

estimated variances σ̂2
i are used. Test 1 far outperforms all other tests. It shows

a far stabler and relatively high empirical power. FH works far poorer than Test

1 but still much better than the F statistic. Test 2 performs well when θ is close

to 0 but drops dramatically when θ gets close to 1.

In Figure 5.2, using the true variance, the empirical powers of all tests are

similar to those in Figure 5.1 except the F -test lost power when it is reduced to

a χ2-test.

Comparing Figures 5.1 and 5.3, when the sample size is doubled from n = 64

to n = 128, the sizes of our proposed tests remain 0.05 level and the empirical

powers show similar patterns. Figure 5.4 shows the empirical sizes of all tests

under various sample sizes. When the sample size is too small as n = 48, Test

1 is sightly undersized. All tests achieve the 0.05 significance level in all other

samples.

Example 2. The predictor variable x1 is sampled from a N(0, 1). The response

variable y is drawn from the model

y =
1

1 + θ cos(x1)
+ ε, ε ∼ N(0, 22). (5.3)
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Figure 5.5: Powers for Example 2. n = 64 and estimated variances are used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.6: Powers for Example 2. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.7: Powers for Example 2. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.8: Empirical sizes for Example 2 under various sample sizes.

The results are presented in Figures 5.5 to 5.7. Note that although the powers in

Figure 5.1 and Figure 5.5 show very different patterns, they have a similar nature,

i.e. θ at around 1 to 1.1 gives a point of changing curvatures. When θ is close

to 0, the tests with Neyman adaptive structure perform better than the F -test.

FH and Test 2 lose power dramatically when θ is beyond 1 and thus, perform

worse than F -test. Test 1 provides the best power with the θ in the range that

we investigated. The improvement of Test 1 is more substantial when the size of

the sample is doubled from 64 to 128. Figure 5.7 shows that the F -test lost power

dramatically relative to other tests over the interval θ > 1 when a larger sample

is used.

Comparing Figures 5.5 and 5.6, the powers of all tests show very different

patterns at θ > 1. The simulations based on estimated variances show all tests

keep losing power when θ gets beyond 1. When the true variance is used, all tests

give slightly increasing powers when θ becomes larger. This suggests that the

variance σ2 cannot be well estimated by the estimators we used in this example.

To investigate the empirical sizes under various sample sizes, we use model (5.3)
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Figure 5.9: Powers for Example 3. n = 64 and estimated variances are used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.10: Powers for Example 3. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.11: Powers for Example 3. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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with θ = 0 to simulated the observations. Model (5.3) is reduced to

y = 1 + ε. (5.4)

From Figure 5.8, the pattern of the sizes are similar to Figure 5.4. Test 1 is slightly

undersized when n = 48.

Model (5.5) in Example 3 and model (5.11) in Example 7 for testing lack-of-fit

in simple linear regressions are the same as model (5.4) when θ = 0. Therefore,

illustrations of empirical sizes for Examples 3 and 7 are omitted.

Example 3. In this example, we simulate y from a quadratic model

y = 1 + θx2
1 + ε, ε ∼ N(0, 22), (5.5)

for various values of θ and x1 is sampled from a uniform (−2, 2).

The results are given in Figures 5.9 to 5.11. Test 1 and FH perform close to

each other in these figures. Test 2 makes a conspicuous advance over the other

tests. In Figure 5.9, when θ is between 0.4 and 0.5, the empirical power of Test

2 is roughly 10% better than Test 1 and FH. All the tests outperform the exact

F -test.

FH also include an exact F -test as a basis for comparison in their simulations

based on model (5.5) but they test the simple linear regression against a quadratic

regression. The full model in their exact F -test is

yi = β0 + β1x1i + β2x
2
1i + εi. (5.6)

Based on their simulated results, as should be expected, the F -test works slightly

better than FH. Fan and Huang suggest that their test pays a large price to be

more omnibus in nature, but our simulations suggest that the price may be very

little. We found that our second test works as well as the F -test for a quadratic

regression.

Example 4. The response variable y is drawn from a forth-order polynomial

y = 1 + 2x1 + θx4
1 + ε, ε ∼ N(0, 22). (5.7)
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Figure 5.12: Powers for Example 4. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.13: Powers for Example 4. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.14: Powers for Example 4. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.15: Empirical sizes for Example 4 under various sample sizes.

with x1 sampled from a N(0, 1).

The empirical powers of all tests are shown in Figures 5.14 to 5.13. The tests

with Neyman adaptive structure perform as well as each other. Comparing Fig-

ures 5.9 and 5.14, when the highest-order term in the model is raised from 2 to 4,

Test 1, Test 2 and FH are still more powerful than F -test, but the difference is

not as substantial as before. Test 2 has an obvious loss of power relative to Test

1 and FH.

When θ = 0, model (5.7) is reduced to

y = 1 + 2x1 + ε. (5.8)

The same model is obtained from model (5.9) in Example 5 and model (5.10)

in Example 6 when θ = 0. The fitted model in Examples 4 to 6 are the same.

Therefore, the graphs on the empirical sizes under various sample sizes in Exam-

ples 5 and 6 are omitted. From Figure 5.15, when n = 48, all adaptive tests are

undersized. This indicates that the asymptotic distribution of the test statistics

can not be achieved when the sample size is 48.

Example 5. The model used in this example is similar to those in Examples 3

and 4 such that the response variable yi is simulated from a polynomial in x1i.
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Figure 5.16: Powers for Example 5. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.17: Powers for Example 5. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.18: Powers for Example 5. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Instead of the even-order polynomials in Examples 3 and 4, an odd-order polyno-

mial is used. The covariate x1 is sampled from a N(0, 1) and the response variable

is drawn from a cubic polynomial

y = 1 + 2x1 + θx3
1 + ε, ε ∼ N(0, 22). (5.9)

The patterns of the empirical powers are quite different from those in Exam-

ples 3 and 4. Figures 5.16 to 5.18 depict the results. In Figure 5.16, between

θ = 0.3 and θ = 0.5, Test 1 is at least 25% more powerful than FH’s test. FH is

even less powerful than F -test. Test 2 performs worst among all four tests.

Similar to Example 1, when the estimated variances are replaced by the true

variance, the χ2-test has a dramatical loss in power relative to the F -test. As

shown in Figure 5.17, FH is more powerful than the χ2-test. Test 2 still performs

worst when the true variance is used.

Example 6. In this example, the response variable yi is simulated from a

fifth-order polynomial in x1i

y = 1 + 2x1 + θx5
1 + ε, ε ∼ N(0, 22), (5.10)

with the predictor x1 sampled from a N(0, 1).

The results are shown in Figures 5.19 to 5.21. The patterns of the empirical

powers are similar to those in Example 5. Test 1 shows a substantial advance over

all other tests. Test 2 performs the worst among the tests. Comparing the figures

with the figures in Example 5, the rise in the order of an odd-order polynomial

has little impact on the performance of any tests except the power of the F -test

is enhanced.

We want to investigate the difference on how the odd-order and even-order poly-

nomials affect the performance of the tests. Figure 5.22 provides two scatterplots

illustrating the data from Examples 3 and 6 with corresponding regression lines

from the fitted model. The data from a quadratic polynomial do not provide an
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Figure 5.19: Powers for Example 6. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.20: Powers for Example 6. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.21: Powers for Example 6. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.22: Left: Data from Example 2, model (5.5); Right: Data from Example

3, model (5.10).

obvious quadratic pattern. Recall that in this case, Test 2 is the most powerful

among all tests; Test 1 and FH have similar powers. When the data show an

obvious pattern, as those from the fifth-order polynomial, Test 1 outperforms all

tests; Test 2 and FH have substantial loss of power. Figures 5.9 to 5.19 show sim-

ilar results for both polynomials with an even order and also for both odd-order

polynomials. The figures also indicate that the empirical power of the F -test ap-

proaches the power of Test 1 when the highest-order term in the polynomial is

raised, no matter the highest-order term is an even-order term or an odd-order

term.

Example 7. The covariate x1 is sampled from a N(0, 1), and the response is

drawn from

y = 1 + θ cos(x1) + ε, ε ∼ N(0, 22). (5.11)

Example 7 is similar to Example 3 in that both have yi = 1 + f(x1i)θ + εi
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Figure 5.23: Powers for Example 7. n = 64 and estimated variances are used.

Testing lack-of-fit for a simple linear model. Key: Circle, Test 1; Square, Test 2;

Diamond, FH; Triangle, F -test.
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Figure 5.24: Powers for Example 7. n = 64 and the true variance is used. Testing

lack-of-fit for a simple linear model. Key: Circle, Test 1; Square, Test 2; Diamond,

FH; Triangle, F -test.
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Figure 5.25: Powers for Example 7. n = 128 and estimated variances are used.

Testing lack-of-fit for a simple linear model. Key: Circle, Test 1; Square, Test 2;

Diamond, FH; Triangle, F -test.
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Figure 5.26: Powers for Example 7. n = 64 and estimated variances are used.

Testing lack-of-fit for a cubic model. Key: Circle, Test 1; Square, Test 2; Diamond,

FH; Triangle, F -test.
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Figure 5.27: Powers for Example 7. n = 64 and the true variance is used. Testing

lack-of-fit for a cubic model. Key: Circle, Test 1; Square, Test 2; Diamond, FH;

Triangle, F -test.
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Figure 5.28: Powers for Example 7. n = 128 and estimated variances are used.

Testing lack-of-fit for a cubic model. Key: Circle, Test 1; Square, Test 2; Diamond,

FH; Triangle, F -test.
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Figure 5.29: Empirical sizes for Example 7, testing lack-of-fit for a cubic model,

under various sample sizes.

for some f(·). Example 7 replaces the quadratic structure of model (5.5) by a

periodic structure. In this example, the lack-of-fit from fitting both a simple linear

regression and a cubic model will be examined. In the case with a simple linear

regression, the patterns of the empirical powers are similar to those in Figure 5.9.

Figure 5.23 depicts the results. For simple linear regression, our second test is

clearly superior.

When the lack-of-fit of a cubic model is tested, our Test 1 far outperforms

all other tests. Figure 5.26 shows that at θ = 10, Test 1 is 15%, 30%, and

20% more powerful than Test 2, FH, and the F -test respectively. Test 2 is more

powerful than the F -test but FH works far poorer than the F -test. The increasing

complexity of the tested model determines a matrixX such that the C(X) is pretty

adept at picking up low frequency terms in Γm. This makes the low frequency

terms in Γm largely redundant. The FH statistic keeps these redundant terms in

the test but gets little contribution from them making the test statistic relatively

small. This forces down both the size and power of the test so that FH pays a

large price for not adjusting Γm for the fitted X. Part of that price takes the form

of a poor asymptotic approximation to the small sample null distribution. With
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our small samples n = 64, the critical point from the asymptotic distribution of

FH’s test gives a size of 0.0211, which is far below the Test 1 size of 0.0493. Even

when the sample size is doubled to n = 128, FH’s test gives a size of 0.0230,

which is still far below the Test 1 size of 0.0484. Figure 5.29 shows that Test

2 is slightly oversized and FH is far undersized. The oversize in Test 2 can be

improved when the sample gets large. But FH does not seem to be improved

by raising the sample size. Our proposed tests largely eliminate the overlap from

our test statistics, thus our proposed tests maintain their size and relatively high

powers in testing lack-of-fit for a polynomial model.

An even more extreme case arises if X contains low frequency sine and cosine

terms. This will be illustrated in the next example.

Example 8. The covariate x1 is sampled from a N(0, 1), and the response

variable is drawn from

y = 1 + exp(θx1) + ε, ε ∼ N(0, 22). (5.12)

Two models are tested for lack-of-fit: a simple linear regression on x1 and model

(5.1). The empirical powers of all tests are shown in Figures 5.30 to 5.35. When

a simple linear model is fitted, the tests with adaptive Neyman structure perform

equally well and they are more powerful than the F -test.

When the low frequency sine and cosine terms are contained in the design matrix

X of the tested model, FH has a substantial loss of power and the size of the test

tends to be 0. Test 1, Test 2, and the F -test outperform FH. This is because

the low frequency terms in Γm are completely redundant and the FH statistic

adds zero for each redundant term, forcing the test statistic to be relatively small.

Our tests correct for the low frequency terms being in the fitted model. Thus a

good small sample approximation of the asymptotic null distribution is retained

in our tests. In Figures 5.33, the empirical size of Test 1 and Test 2 are 0.0493 and

0.0500 respectively. As shown in Figures 5.35, when the sample size is doubled

to n = 128, the improvement of our proposed tests becomes substantial. Our
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Figure 5.30: Powers for Example 8. n = 64 and estimated variances are used.

Testing lack-of-fit for a simple linear model. Key: Circle, Test 1; Square, Test 2;

Diamond, FH; Triangle, F -test.
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Figure 5.31: Powers for Example 8. n = 64 and the true variance is used. Testing

lack-of-fit for a simple linear model. Key: Circle, Test 1; Square, Test 2; Diamond,

FH; Triangle, F -test.
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Figure 5.32: Powers for Example 8. n = 128 and estimated variances are used.

Testing lack-of-fit for a simple linear model. Key: Circle, Test 1; Square, Test 2;

Diamond, FH; Triangle, F -test.
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Figure 5.33: Powers for Example 8. n = 64 and estimated variances are used.

Testing lack-of-fit for model (5.1). Key: Circle, Test 1; Square, Test 2; Diamond,

FH; Triangle, F -test.
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Figure 5.34: Powers for Example 8. n = 64 and the true variance is used. Testing

lack-of-fit for model (5.1). Key: Circle, Test 1; Square, Test 2; Diamond, FH;

Triangle, F -test.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

pro
po

rtio
n o

f re
jec

tio
n

Empirical power with estimated variances, n=128

Figure 5.35: Powers for Example 8. n = 128 and estimated variances are used.

Testing lack-of-fit for model (5.1). Key: Circle, Test 1; Square, Test 2; Diamond,

FH; Triangle, F -test.
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Figure 5.36: Empirical sizes for Example 8, testing lack-of-fit for a simple linear

model, under various sample sizes.
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Figure 5.37: Empirical sizes for Example 8, testing lack-of-fit for model (5.1),

under various sample sizes.
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proposed tests work best among all four tests.

Figures 5.36 and 5.37 shows that the empirical sizes of FH drop dramatically

when some of the low frequency terms in Γm are completely redundant. Comparing

Figures 5.36 and 5.29, obviously the performance of FH for testing lack-of-fit in

model (5.1) is much poorer than testing lack-of-fit in a cubic model.

5.1.3 Summary

Summarizing the results above, the F -test is very sensitive to the highest order

term in the true model. As we mentioned earlier, the F -test approaches Test 1

when the order of the polynomial in the true model is raised. Our first proposed

test outperforms all other tests when we are testing lack-of-fit in a model with one

predictor in most situations. When the fitted model has a complicated structure

such as the cubic polynomial in Example 7 and model (5.1) in Example 8, FH

failed to achieve the asymptotic distribution in small samples. Test 2 outperforms

Test 1 only in some situations that the data do not provides clear patterns of the

underlying true model.

5.2 Multiple regression

5.2.1 Brief outline

We examine testing lack-of-fit in multiple regressions using seven examples.

In Examples 9 to 14, the fitted model has four predictors, x1, x2, x3 and x4.

The covariates x1, x2, x3 are standard normal with correlation 0.5 and x4 is a

Bernoulli with probability 0.4. x4 is independent of x1, x2, and x3. Following FH,

the model being fitted in these examples is

yi = β0 + β1x1i + β2x2i + β3x3i + β4xi4 + εi. (5.13)
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We assume that the lack-of-fit is known to come from x2, so we order the obser-

vations according to x2, and the true model has the form

yi = β0 + β1x1i + h(x2i) + β3x3i + β4xi4 + εi. (5.14)

In Example 9, function h(·) in model (5.14) is chosen to be a periodic function

with the parameter θ dominating the period. The performance of the tests at

different rates of oscillation are compared and discussed.

The true models involved in Examples 10 to 14 are multiple regression versions

of the models in Section 5.1. In Example 10, we examine the tests by using a true

model that is not linear in the parameter θ. Examples 11 to 14 use models that

are linear in θ. The tests give similar power patterns in these examples except in

Examples 13 and 14, in which an odd-order polynomial in x2 is used. Moreover

the performance of Test 1, FH, and the F -test in Examples 10 to 14 are consistent

to their performance in the corresponding simple linear regressions in Section 5.1.

The increasing number of predictors only makes a huge impact on our second

proposed test.

In Example 15, the four covariates x1 to x4 defined above are involved in the

model and we further add another four covariates, x5, x6, x7, and x8 into the

model. These four covariates are i.i.d. standard normal random variables and

they are independent of other covariates. The fitted model is

yi = β0 + β1x1i + β2x2i + β3x3i + β4xi4 + β5xi5 + β6xi6 + β7xi7 + β8xi8 + εi.

This example further illustrates the fact that the effect of the number of predictors

on the performance of the tests is negligible.

5.2.2 Examples

Example 9. In this example, the response variable y is drawn from

y = x1 + cos(θx2π) + 2x4 + ε, ε ∼ N(0, 22). (5.15)
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Figure 5.38: Powers for Example 9, for 0 ≤ θ ≤ 1. n = 64 and estimated variances

are used. Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.39: Powers for Example 9, for 0 ≤ θ ≤ 1. n = 64 and the true variance

is used. Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.40: Powers for Example 9, for 0 ≤ θ ≤ 1. n = 128 and estimated

variances are used. Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle,

F -test.
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Figure 5.41: Powers for Example 9, for θ ≥ 1. n = 64 and estimated variances

are used. Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

pr
op

or
tio

n o
f r

eje
cti

on

Empirical power with true variances

Figure 5.42: Powers for Example 9, for θ ≥ 1. n = 64 and the true variance is

used. Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.43: Powers for Example 9, for θ ≥ 1. n = 128 and estimated variances

are used. Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.44: Empirical sizes for Example 9 under various sample sizes.

Figures 5.38 to 5.40 and Figures 5.41 to 5.43 depict the results for 0 ≤ θ ≤ 1

and 1 ≤ θ ≤ 10 respectively. For θ between 0 and 1, when the estimated variances

are used, we cannot see any substantial difference among the empirical powers of

Test 1 and FH and both of them outperform the other two tests. When the true

σ2 is used, Test 1 slightly outperforms FH. In both cases, Test 2 is more powerful

than the F -test.

These results occur only if the true model is relatively smooth, i.e. θ ≤ 2.

The empirical power of the tests drops dramatically when θ gets large so that

oscillations are rapid. From Figures 5.41 to 5.43, we found that when θ is larger

than 3, the F -test outperforms all the other tests. Figure 5.41 shows that Test 1

has a substantial loss of power relative to Test 2 and FH when θ is greater than 1.

The differences among the tests are more substantial in a larger sample as shown

in Figure 5.43. FH argue that the loss of power in adaptive tests is because when

θ is large, it is difficult to estimate σ2 well. It is worth noting that when σ2 is

known, FH works worst and Test 1 works best among the tests with adaptive

Neyman structure for θ ≥ 2. The ranking on the performance of these tests are

reversed when the estimated variances are used. Similar results were obtained

from a similar simulation using a only x2 in the fitted and true models.
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Figure 5.45: Powers for Example 10. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.46: Powers for Example 10. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.47: Powers for Example 10. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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To investigate the empirical sizes of the tests, we use θ = 0 and model (5.15) is

reduced to

y = 1 + x1 + 2x4 + ε. (5.16)

The model is equivalent to model (5.17) in Example 10 with θ = 0. Therefore,

investigation on the empirical sizes of the tests under various sample sizes is

omitted in Example 10. In Figure 5.44, all tests provide stable empirical sizes

around 0.05 in various sample sizes. The asymptotic distribution of the test

statistics is achieved in small samples.

Example 10. The response variable y is simulated from model

y = x1 + exp(θx2) + 2x4 + ε, ε ∼ N(0, 22). (5.17)

This is a multiple regression version of model (5.12) in Example 8.

Comparing the results of Figure 5.45 with Figure 5.30, the patterns of the

empirical test powers look similar except for the power of our second proposed test.

It is obvious that the power of Test 2 is reduced dramatically when there are more

covariates involved in the model. In Example 8 with a simple linear regression as

fitted model, Test 1, Test 2, and FH work equally well. With more covariates,

Test 2 becomes the worst among the adaptive tests but still outperforms the

F -test. The loss of power of Test 2 is more conspicuous in Examples 11 and 12.

Example 11. In this example, the response variable y is drawn from

y = x1 + θ cos(x2) + 2x4 + ε, ε ∼ N(0, 22), (5.18)

which is a multiple regression version of model (5.11) in Example 7.

As shown in Figures 5.23 to 5.25, in Example 7 with a simple linear regression

as fitted model, Test 2 was the most powerful of the tests. When more covariates

are involved in th model, Test 2 becomes the worst among the adaptive tests.

Comparing Figure 5.48 with Figure 5.23, for model with one predictor, Test 2 is

roughly 5% more powerful than Test 1 and FH at θ around 1.2. When three more
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Figure 5.48: Powers for Example 11. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.49: Powers for Example 11. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.50: Powers for Example 11. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.51: Empirical sizes for Example 11 under various sample sizes.

covariates are involved in the model, Test 2 becomes 20% less powerful than the

other two tests for the same θ.

When θ = 0, model (5.18) is reduced to

y = x1 + 2x4 + ε. (5.19)

The same model is obtained from model (5.20) in Example 12 and model (5.21)

in Example 13 when θ = 0. The plots of the empirical sizes of the tests under

various sample sizes in Examples 12 and 13 are omitted. In Figure 5.51, all tests

provide empirical sizes around 0.05, which is similar to those in Figure 5.44.

Example 12. The response variable y is drawn from model

y = x1 + θx2
2 + 2x4 + ε, ε ∼ N(0, 22), (5.20)

which is a multiple regression version of model (5.5) in Example 3.

Comparing Figure 5.52 with Figure 5.9, similar characteristics as in Example 11

can be found. Together with the comparison between Figure 5.45 and Figure 5.30,

we conclude that increasing the number of predictor variables in the model has a

deleterious effect on the power of Test 2. Nevertheless, Test 2 still outperforms

the F -test. The performance of Test 1 and FH do not depend on the number
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Figure 5.52: Powers for Example 12. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.53: Powers for Example 12. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.54: Powers for Example 12. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.55: Powers for Example 13. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.56: Powers for Example 13. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.57: Powers for Example 13. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.58: Powers for Example 14. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.59: Powers for Example 14. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.60: Powers for Example 14. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.61: Empirical sizes for Example 14 under various sample sizes.

of predictors in the fitted model at all. The powers of Test 1 and FH’s show no

substantial difference.

Example 13. The responses are simulated from model

y = x1 + θx3
2 + 2x4 + ε, ε ∼ N(0, 22). (5.21)

This model is an extension of model (5.9) in Example 5.

Figures 5.55 to 5.57 depict the results. Comparing Figure 5.55 and 5.16, there

is little difference between the relative powers of the tests when fitting a simple

linear regression and the corresponding multiple regression.

Example 14. In this example, the response variable is drawn from model

y = 1 + 2x2 + θx5
2 + 3x4 + ε, ε ∼ N(0, 22), (5.22)

which is a multiple regression version of model (5.10) in Example 6.

The results are shown in Figures 5.58 to 5.60. Similar to Example 13, the

comparison between Figure 5.58 and 5.19 indicates little difference between the

relative powers of the tests when fitting a simple linear regression and the cor-

responding multiple regression. The relative powers of all tests seem unaffected
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Figure 5.62: Powers for Example 15. n = 64 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.63: Powers for Example 15. n = 64 and the true variance is used. Key:

Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.64: Powers for Example 15. n = 128 and estimated variances are used.

Key: Circle, Test 1; Square, Test 2; Diamond, FH; Triangle, F -test.
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Figure 5.65: Empirical sizes for Example 15 under various sample sizes.

by the increasing number of regression parameters when data are drawn from a

model with an odd-order polynomial. Figure 5.61 depicts the empirical sizes of

the tests in various sample sizes.

Example 15. In this example, the response is drawn from

y = x1 + θx3
2 + 2x4 + 3x8 + ε, ε ∼ N(0, 22) (5.23)

which extends model (5.21) in Example 13.

Figure 5.62 shows a pattern similar to that in Figures 5.16 and 5.55. This

example further illustrates the relative powers of all tests are not affected by the

increasing number of regression parameters. Test 2 and FH still perform far worse

than Test 1 and the F -test with Test 2 performing worst among all four tests.

Figure 5.65 provides the plots of the empirical sizes of the tests against various

sample sizes. Test 1 and Test 2 are slightly undersized in a small sample as n = 48

but perform well in other samples.
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5.2.3 Summary

Summarizing all simulations in this section, the difference between Test 1 and

FH is due more to the change of the highest order term in the polynomial in the

true model than to the increasing number of regression parameters in the tested

model. Test 2 is relatively less resistant to the increasing number of regression

parameters in the tested model. It has a loss of power in many cases that we

have investigated when the number of regression parameters in the tested model

is increased. Since similar results on the empirical sizes of the tests are obtained

in all examples in this section, the adjustment we make on our proposed tests

performs well in various sample sizes.
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Chapter 6

Application to Real Data

Table 6.1 contains 70 observations from Bruce and Schumacher (1935) on the

volume, in cubic feet, of usable timber from short-leaf pine, together with two

predictor variables x1, the girth of each tree (the diameter at breast height), in

inches and x2, the height of the tree in feet. The aim is to find a formula for

predicting volume from the girth and height. Figure 6.1 shows two scatterplots of

the volume against the girth and height of the tree, respectively.
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Figure 6.1: Scatterplots plotting y against x1 and x2 respectively.
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Table 6.1: Short-leaf pine. The response y is the volume of the tree, x1 is the

girth and x2 is the height.

Obs. x1 x2 y Obs. x1 x2 y Obs. x1 x2 y

1 4.6 33 2.2 26 9.8 71 23.9 51 13.8 77 43.3

2 4.4 38 2.0 27 9.9 72 22.0 52 14.3 64 41.3

3 5.0 40 3.0 28 9.9 79 23.1 53 14.3 77 58.9

4 5.1 49 4.3 29 9.9 69 22.6 54 14.6 91 65.6

5 5.1 37 3.0 30 10.1 71 22.0 55 14.8 90 59.3

6 5.2 41 2.9 31 10.2 80 27.0 56 14.9 68 41.4

7 5.2 41 3.5 32 10.2 82 27.0 57 15.1 96 61.5

8 5.5 39 3.4 33 10.3 81 27.4 58 15.2 91 66.7

9 5.5 50 5.0 34 10.4 75 25.2 59 15.2 97 68.2

10 5.6 69 7.2 35 10.6 75 25.5 60 15.3 95 73.2

11 5.9 58 6.4 36 11.0 71 25.8 61 15.4 89 65.9

12 5.9 50 5.6 37 11.1 81 32.8 62 15.7 73 55.5

13 7.5 45 7.7 38 11.2 91 35.4 63 15.9 99 73.6

14 7.6 51 10.3 39 11.5 66 26.0 64 16.0 90 65.9

15 7.6 49 8.0 40 11.7 65 29.0 65 16.8 90 71.4

16 7.8 59 12.1 41 12.0 72 30.2 66 17.8 91 80.2

17 8.0 56 11.1 42 12.2 66 28.2 67 18.3 96 93.8

18 8.1 86 16.8 43 12.2 72 32.4 68 18.3 100 97.9

19 8.4 59 13.6 44 12.5 90 41.3 69 19.4 94 107.0

20 8.6 78 16.6 45 12.9 88 45.2 70 23.4 104 163.5

21 8.9 93 20.2 46 13.0 63 31.5

22 9.1 65 17.0 47 13.1 69 37.8

23 9.2 67 17.7 48 13.1 65 31.6

24 9.3 76 19.4 49 13.4 73 43.1

25 9.3 64 17.1 50 13.8 69 36.5
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Figure 6.1 shows the the volume of the tree has nonlinear marginal associations

with the girth and height of the tree. We examine six models and test lack-of-fit

in each of them. The models are:

(1) yi = β00 + β10xi1 + β20x
2
i1 + εi,

(2) yi = β00 + β01xi2 + β02x
2
i2 + εi,

(3) log(yi) = β00 + β01 log(xi1) + β02 log(xi2) + εi,

(4) yi = β00 + β10xi1 + β20x
2
i1 + β01xi2 + β11xi1xi2 + εi,

(5) yi = β00 + β10xi1 + β01xi2 + β02x
2
i2 + β11xi1xi2 + εi,

(6) yi = β00 + β10xi1 + β20x
2
i1 + β01xi2 + β02x

2
i2 + β11xi1xi2 + εi.

The lack-of-fit test statistics depend on ordering the observations. A good

ordering should make the sequence {εi} as smooth as possible so that the large

Fourier coefficients are concentrated on low frequencies. For the models with one

covariate, the observations are ordered according to the covariate. For the models

with both xi1 and xi2, we considered four ordering methods. Let S be the sample

covariance matrix of the covariates x1 and x2. Denote the ordered eigenvalues of

S and their corresponding eigenvectors as λ1 and λ2, and ζ1 and ζ2 respectively.

FH suggest using the sample score of variation of the observations to order the

data. The sample score of variation of the i-th observation is given by

s1i = λ1(ζT1 xi)
2 + λ2(ζT2 xi)

2 = xTi Sxi,

where xTi = [xi1, xi2]. We suggest an alternative to s1i,

s2i =
1

λ1

(ζT1 xi)
2 +

1

λ2

(ζT2 xi)
2 = xTi S

−1xi.

We also provide the results based on the ordering by the first principal component

s3i ≡ ζT1 xi,and the second principal component s4i ≡ ζT2 xi. For the original data,

s1i is completely dominated by λ1. Ordering by s3i gives the same results as those

by s1i. Using log(x1) and log(x2) provides a covariance matter different from the

original predictors, and hence completely different eigenvalues and eigenvectors.
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Table 6.2: Test statistics and p-values of the tests to testing the lack-of-fit in

model (1).

Test 1 Test 2 FH F

Test statistic 1.8547 3.0603 2.3342 1.3490

P-value 0.1449 0.0458 0.0923 0.2056

Table 6.3: Test statistics and p-values of the tests to testing the lack-of-fit in

model (2).

Test 1 Test 2 FH F

Test statistic 10.6970 2.8110 1.9009 1.6627

P-value 0.0000 0.0584 0.1388 0.0859

Ordering by s3i is no longer be equivalent to that by s1i when the model is fitted

to the log data. Therefore the results from ordering by s3i are presented only

for model (3). We use the four tests in Chapter 5 to evaluate lack-of-fit in the

models. Since the F statistic has a distribution different from the other three test

statistics. It is presented but not discussed in the comparisons among the test

statistics. The p-value of the F statistic is used as a reference.

Intuitively, volumn of timber should depend on both x1 and x2. Models (1) and

(2) only use one of the variables. The tests are presented in Tables 6.2 and 6.3.

Test 2 is the only test to suggest lack-of-fit in model (1). Test 2 also suggests lack-

of-fit in model (2) but Test 1 clearly detects lack-of-fit in model (2). Recall that in

Chapter 5, the simulated results show that FH’s test lost power dramatically when

the tested model is a polynomial regression with order higher than 1. Presumably

because low order polynomials mimic low order frequencies. The right panel of

Figure 6.1 show a weaker quadratic association between the volume and the height

of a tree relative to that between the volume and the girth of a tree.

In Tables 6.2 and 6.3, Test 1 and the F -test share similar characteristics. In

Table 6.2, both tests give larger p-values relative to FH. The situation is opposite

in Table 6.3, both tests give smaller p-values relative to FH. We suspect that

66



Table 6.4: Test statistics and p-values of the tests to testing the lack-of-fit in

model (3).

Ordering Test 1 Test 2 FH F

s1i Test statistic 0.2583 1.6084 0.4529 1.5252

P-value 0.5381 0.1814 0.4705 0.1272

s2i Test statistic 4.4603 1.8694 2.7399 1.5308

P-value 0.0115 0.1429 0.0629 0.1252

s3i Test statistic −0.0669 1.1933 0.5009 1.4322

P-value 0.6567 0.2399 0.4545 0.1645

s4i Test statistic 2.8169 1.0917 3.3001 2.2642

P-value 0.0580 0.2851 0.0362 0.0140

these may due to the relative smoothness of the unknown true error of the models

and the residuals of the models. Suppose the true model is

Y = Xβ +H(X) + ε.

Test 1 and the F -test are derived based on model

Y −Xβ = H(X) + ε,

and then approximate the vector of lack-of-fit, H(X), by Fourier series. FH derive

their test based on model

Y −Xβ̂ = H(X) + e,

where β̂ is a least squares estimate from fitting the tested model, and then ap-

proximate the residuals by Fourier series. Therefore under the true model, Test 1

and the F -test only need the function H(X) to be a smooth function. But FH

requires (I−MX)H(X) to be smooth. So the performance of these tests may rely

on the ordered errors or fitted residuals being a relatively smooth function.

Models (3), (4), (5) and (6) illustrate testing of lack-of-fit with two distinct

predictors. A natural approximation to the volume of a tree is the volume of a
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Table 6.5: Test statistics and p-values of the tests to testing the lack-of-fit in

model (4).

Ordering Test 1 Test 2 FH F

s1i Test statistic −0.2009 −1.8063 −2.2599 0.8196

P-value 0.7055 0.9977 0.9999 0.6579

s2i Test statistic −0.0661 0.4140 −0.0390 1.4392

P-value 0.6564 0.4837 0.6465 0.1632

s4i Test statistic 1.2465 −0.1598 −0.4728 1.5295

P-value 0.2499 0.6907 0.7990 0.1274

Table 6.6: Test statistics and p-values of the tests to testing the lack-of-fit in

model (5).

Ordering Test 1 Test 2 FH F

s1i Test statistic 0.3740 −1.0365 −0.9355 1.5736

P-value 0.4974 0.9404 0.9218 0.1126

s2i Test statistic 3.9133 3.5791 1.9568 2.5217

P-value 0.0198 0.0275 0.1318 0.0067

s4i Test statistic 4.8753 7.3913 6.4275 2.5184

P-value 0.0076 0.0006 0.0016 0.0068

Table 6.7: Test statistics and p-values of the tests to testing the lack-of-fit in

model (6).

Ordering Test 1 Test 2 FH F

s1i Test statistic −0.5043 0.1161 −0.6918 1.2051

P-value 0.8091 0.5895 0.8643 0.2987

s2i Test statistic −0.4370 0.6321 −0.2049 1.2318

P-value 0.7873 0.4123 0.7069 0.2799

s4i Test statistic −2.4813 −1.7624 −2.8969 0.5842

P-value 1.0000 0.9971 1.0000 0.8802
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cylinder, which is proportional to the product of the squared radius and the height.

Atkinson and Riani (2000) suggest that model (3) is an adequate model for the

data. Table 6.4 summarizes the results from lack-of-fit testing. When the data are

ordered by the sample score of variation or the first principal component, all tests

agree with Atkinson and Riani’s analysis and identify no lack-of-fit. However,

Test 1 and FH give small p-values with the other two orderings. Both Test 1 and

FH suggest that model (3) may not be an adequate model for the data, that is,

the volume of a tree may not be well approximated by the volume of a cylinder.

Models (4) and (5) are sub-models of model (6). The multiple regressions

contain the girth, the height, and the interaction between these two predictors.

The squared girth, the squared height, and both squared girth and squared height

are included in models (4), (5), and (6) respectively. Tables 6.5, 6.6, and 6.7

present the results. None of the tests find evidence for lack-of-fit in models (4)

or (6). However, when the data are ordered in s2i, all tests except FH identify

lack-of-fit in model (5), which is the only model of the three without squared girth.

Both Test 1 and Test 2 are good at picking up the need for the squared girth.

The ordering criterion suggested by FH may not be suitable for this study. The

ordering criterion we suggested, s2i, provides relatively small p-values. Moreover

ordering by s4i provides uniformly small p-values.
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Chapter 7

Summary and Conclusion

We have proposed two new lack of fit tests, found their asymptotic distributions,

modified their standardization constants to improve small sample test sizes, and

studied their powers. Our first proposed test typically has good power and often

has the best power. Our second proposed test has the best power only when

testing the lack-of-fit for some simple linear regressions.

Any smooth function can be approximated by its Fourier transform, so all of

the proposed tests adapt to a large class of models for lack-of-fit. Moreover, the

theory extends beyond Fourier transforms. The matrix Ψ defining the Fourier

transform in Section 3.1 can be generalized. The properties of Ψm required in

the proofs are the orthogonality and the hierarchical structure of Ψm for m =

1, . . . , n. Orthogonality can be achieved by applying Gram-Schmidt. For example,

in simple regression, we can extend Green’s (1971) test with the technique used

here by redefining Ψm based on polynomials rather than sines and cosines. The

polynomials would have to be orthogonalized. Wavelets could also be used.

Moreover, the procedures can be applied to “near replicate” clusters of covari-

ates. Suppose the indicator matrix Z in model (4.2) is redefined to Zm such that

m is the number of clusters. When the clustering has a hierarchical structure, our

proposed test can be applied.
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Further investigation on the ordering of the observations in multiple regressions

will be done. From Chapter 6, we found that the ordering of the observations

can have a huge impact on the performance of the smooth tests. Finding spe-

cific ordering procedures for each of our proposed tests could further enhance the

performance these tests.
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Appendix A: Proofs

The ideas and techniques used in the proofs of Theorems 1 and 2 are quite different

from those in FH.

A.1 Proof of Theorem 1

To prove Theorems 1 and 2, we need two lemmas.

Lemma 4. For any rn ≥ 1, define

Tn = max
1≤k≤rn

{∑k
i=1[(oTi Y )2 − σ2]√

2kσ2

}
and T̂n = max

1≤k≤rn

{∑k
i=1[(oTi Y )2 − σ̂2]√

2kσ̂2

}
.

We then have

Tn =
σ̂2

σ2
T̂n +Qn,

where min
1≤k≤rn

{(
σ̂2

σ2
− 1

)√
k

2

}
≤ Qn ≤ max

1≤k≤rn

{(
σ̂2

σ2
− 1

)√
k

2

}
.

Proof of Lemma 4

From the expression for Tn,

Tn = max
1≤k≤rn

{∑k
i=1[(oTi Y )2 − σ2]√

2kσ2

}

=
σ̂2

σ2
max

1≤k≤rn

{∑k
i=1[(oTi Y )2 − σ̂2]√

2kσ̂2
+

(
1− σ2

σ̂2

)√
k

2

}
.
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Then,

Tn ≤
σ̂2

σ2
max

1≤k≤rn

{∑k
i=1[(oTi Y )2 − σ̂2]√

2kσ̂2

}
+
σ̂2

σ2
max

1≤k≤rn

{(
1− σ2

σ̂2

)√
k

2

}

=
σ̂2

σ2
T̂n + max

1≤k≤rn

{(
σ̂2

σ2
− 1

)√
k

2

}
;

and

Tn ≥
σ̂2

σ2
max

1≤k≤rn

{∑k
i=1[(oTi Y )2 − σ̂2]√

2kσ̂2

}
+
σ̂2

σ2
min

1≤k≤rn

{(
1− σ2

σ̂2

)√
k

2

}

=
σ̂2

σ2
T̂n + min

1≤k≤rn

{(
σ̂2

σ2
− 1

)√
k

2

}
.

Lemma 4 follows.

Lemma 5. For any δ > 0 and 1 ≤ rn ≤
n

(log log n)1+δ
, if

σ̂2

σ2
− 1 = Op(n

−1/2),

then

arn sup
1≤k≤rn

∣∣∣∣∣
√
k

2

∣∣∣∣∣
∣∣∣∣( σ̂2

σ2
− 1

)∣∣∣∣ P→ 0 and brn

(
σ̂2

σ2
− 1

)
P→ 0 as n→∞.

Proof of Lemma 5

Obviously, brn = O(log log rn). As
σ̂2

σ2
− 1 = Op(n

−1/2), brn

(
σ̂2

σ2
− 1

)
p→ 0 as

n→∞. 1 ≤ rn ≤
n

(log log n)1+δ
and

σ̂2

σ2
− 1 = Op(n

−1/2) yield,

arn sup
1≤k≤rn

∣∣∣∣∣
√
k

2

(
σ̂2

σ2
− 1

)∣∣∣∣∣ = arn

√
rn
2

∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ = Op

(
(log log n)−δ/2

)
.

Thus, arn sup
1≤k≤rn

∣∣∣∣∣
√
k

2

(
σ̂2

σ2
− 1

)∣∣∣∣∣ p→ 0 as n→∞ and Lemma 5 follows.

Proof of Theorem 1

We begin by showing the result for known σ2. With Y ∼ N(Xβ, σ2I),

Y TM(I−MX)ΓmY

σ2
∼ χ2(rm),

Obviously, C[(I −MX)Γm] ⊆ C[(I −MX)Γm+1] for m = 1, . . . , ñ − 1. Use the

Gram-Schmidt algorithm to orthonormalize the columns of (I −MX)Γñ and let
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Om be the matrix whose columns form an orthonormal basis for C[(I −MX)Γm].

Write

Om = [o1, o2, . . . , orm ],

for m = 1, . . . , ñ. Since M(I−MX)Γm = OmO
T
m =

∑rm
i=1 oio

T
i ,

Y TM(I−MX)ΓmY

σ2
=

rm∑
i=1

(oTi Y )2

σ2
.

Define νi = (oTi Y )2/σ2 so that under model (3.1), for i = 1, . . . , rñ, the νi’s are

i.i.d. χ2(1). The usual standardization gives

Ui =
νi − 1√

2
.

Define Sk =
k∑
i=1

Ui and

T1,ñ = max
1≤k≤rñ

Sk√
k

= max
1≤k≤rñ

{∑k
i=1[(oTi Y )2 − σ2]√

2kσ2

}
.

Define a standardized version of T1,ñ,

W1,ñ = arñT1,ñ − brñ

with arñ and brñ defined earlier. Since rñ → ∞ as n → ∞, and E|νi|3 < ∞, the

Darling-Erdős theorem applies with the replacement of n by rñ, so that

Pr(W1,ñ < x)→ exp(− exp(−x)) as n→∞.

Incorporating the estimate of σ2, define ν̂i = (oTi Y )2/σ̂2, Ûi = (ν̂i− 1)/
√

2, and

Ŝk = Û1 + Û2 + · · ·+ Ûk. Thus our test statistic T̂1,ñ can be expressed as

T̂1,ñ = max
1≤k≤rñ

Ŝk√
k
.

By Lemma 4,

W1,ñ = arñT1,ñ − brñ

= arñ

(
σ̂2

σ2
T̂1,ñ +Qñ

)
− brñ

=
σ̂2

σ2
Ŵ1,ñ + arñQñ + brñ

(
σ̂2

σ2
− 1

)
.
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Recall that we have assumed
σ̂2

σ2
− 1 = Op(n

−1/2). (This assumption is equivalent

to the Fan and Huang’s assumption A2.) This assumption provides
σ̂2

σ2

p→ 1

as n → ∞. Furthermore, rñ ≤ ñ =
n

(log log n)1+δ
. By Lemma 5, arñQñ

p→ 0

and brñ

(
σ̂2

σ2
− 1

)
p→ 0. These imply Ŵ1,ñ and W1,ñ have the same asymptotic

distribution. Thus,

Pr(Ŵ1,ñ < x)→ exp(− exp(−x)) as n→∞.

A.2 Proof of Theorem 2

Before we prove Theorem 2, we need the following Lemma.

Lemma 6. For m = 1, 2, . . . , ñ− 1,

C(Mm −MMmX) ⊆ C(Mm+1 −MMm+1X).

Proof of Lemma 6

Recall that Γñ = [G1, G2, . . . , Gñ]. Let m̂ be the smallest integer such that

r(Mm̂X) = r(X). For any m ≥ m̂, C(MmX) = C(Mm+1X). Thus, MMmX =

MMm+1X and the Lemma holds. For any m ≤ m̂, we consider the followings. Note

that

Mm+1 = Γm+1ΓTm+1

= [Γm, Gm+1] [Γm, Gm+1]T

= ΓmΓTm +Gm+1G
T
m+1

= Mm +MGm+1 ,

where MGm+1 is the perpendicular projection operator onto C(Gm+1). Further-

more, Mm+1X =
(
Mm +MGm+1

)
X = MmX + MGm+1X. Since C(MmX) and

C(MGm+1X) are orthogonal, this yields

MMm+1X = MMmX +MMGm+1
X .
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Then,

Mm+1 −MMm+1X = Mm +MGm+1 − (MMmX +MMGm+1
X)

= (Mm −MMmX) + (MGm+1 −MMGm+1
X).

Obviously, C(MGm+1X) ⊆ C(Gm+1). Since Gm+1 is a non-zero column vector,

r(Gm+1) = 1. This implies r(MGm+1X) can only be 0 or 1. If r(MGm+1X) = 0,

we have MMGm+1
X = 0. Thus,

C(Mm+1 −MMm+1X) = C(Mm −MMmX ,MGm+1)

⊃ C(Mm −MMmX);

If r(MGm+1X) = 1, we have MMGm+1
X = MGm+1 . And thus,

C(Mm+1 −MMm+1X) = C(Mm −MMmX).

Lemma 6 follows.

Using Lemma 6, the proof of Theorem 2 is similar to the proof of Theorem 1.

Proof of Theorem 2

Define O∗m = [o∗1, o
∗
2, . . . , o

∗
r̃m

] be the matrix who’s columns form an orthonormal

basis of the column space C(Mm−MMmX). From the proof of Lemma 6, we have

Y T (Mm+1 −MMm+1X)Y

=

 Y T (Mm −MMmX)Y if r̃m+1 = r̃m

Y T (Mm −MMmX +MGm+1)Y if r̃m+1 = r̃m + 1

=

 Y T (O∗mO
∗T
m )Y if r̃m+1 = r̃m

Y T (O∗mO
∗T
m )Y + Y TGm+1G

T
m+1Y if r̃m+1 = r̃m + 1

=


r̃m∑
i=1

(o∗Ti Y )2 if r̃m+1 = r̃m

r̃m+1∑
i=1

(o∗Ti Y )2 if r̃m+1 = r̃m + 1

,

for m = 1, 2, . . . , ñ − 1, and define or̃m+1 ≡ Gm+1 if r̃m+1 = r̃m + 1. Denote

ν2,i = (o∗Ti Y )2/σ2 and ν2,i’s are i.i.d. random variables following central χ2-

distributions with one degree of freedom for i = 1, . . . , r̃ñ under model (3.1). What
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followings will be similar to our earlier proof. Since E(ν2,i) = 1, and V ar(ν2,i) = 2;

we can normalize ν2,i as

U2,i =
ν2,i − 1√

2
.

Let S2,k =
k∑
i=1

U2,i and T2,ñ = max
1≤k≤r̃ñ

S2,k√
k

= max
1≤k≤r̃ñ

{∑k
i=1[(o∗Ti Y )2 − σ2]√

2kσ2

}
. We

define ν̃2,i = (o∗Ti Y )2/σ̂2, Ũ2,i = (ν̃2,i − 1)/
√

2, and S̃2,k = Ũ2,1 + Ũ2,2 + · · ·+ Ũ2,k.

The test statistic we proposed, T̃2,ñ, can be written as

T̃2,ñ = max
1≤m≤ñ

{√
r̃m
2

Y T (Mm −MMmX)Y/r̃m − σ̂2

σ̂2

}

= max
m∈K

{√
r̃m
2

Y T (Mm −MMmX)Y/r̃m − σ̂2

σ̂2

}

= max
1≤k≤r̃ñ

{√
k

2

∑k
i=1(o∗Ti Y )2/k − σ̂2

σ̂2

}

= max
1≤k≤r̃ñ

{∑k
i=1[(o∗Ti Y )2 − σ̂2]√

2kσ̂2

}

= max
1≤k≤r̃ñ

S̃2,k√
k
.

The asymptotic distribution of T̃2,ñ can be obtained by considering the asymp-

totic distribution of T2,ñ. Since r̃ñ ≥ ñ− p, we have r̃ñ →∞ as n→∞. Further-

more, E|ν2,i|3 <∞, the Darling-Erdős theorem applies with the replacement of n

by r̃ñ. Define

W2,ñ = ar̃ñT2,ñ − br̃ñ ,

where ar̃ñ and br̃ñ as defined earlier. We have

Pr(W2,ñ < x)→ exp(− exp(−x)) as n→∞.

Similar to the proof of Theorem 1, by Lemma 4, we have

W2,ñ =
σ̂2

σ2
W̃2,ñ + ar̃ñQñ + br̃ñ

(
σ̂2

σ2
− 1

)
.

As r̃ñ ≤ ñ =
n

(log log n)1+δ
, Lemma 5 gives ar̃ñQñ

p→ 0 and br̃ñ

(
σ̂2

σ2
− 1

)
p→ 0.

Together with the assumption that
σ̂2

σ2

p→ 1 as n → ∞, W̃2,ñ and W2,ñ have the
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same asymptotic distribution. Thus,

Pr(W̃2,ñ < x)→ exp(− exp(−x)) as n→∞.

A.3 Proof of Lemma 3

Proof of Lemma 3

That σ̂2
i = σ2 + Op(n

−1/2) is equivalent to
√
n(σ̂2

i − σ2) = Op(1). Both estimates

take the form Y T (I − MA)Y/(n − r(A)) for a ppo MA. It follows that under

model (1) Y T (I −MA)Y/σ2 ∼ χ2(n − r(A)). The lemma is a direct application

of Chebyshev’s inequality using the variance of a χ2. It is not completely obvious

that MX +MK −MMKX is a ppo.

Let us prove Lemma 3 holds for σ̂2
i . By Chebyshev’s inequality, for any ε > 0,

we have

Pr(
√
n|σ̂2

i − σ2| > ε) ≤ n

ε2
E(σ̂2

i − σ2)2

=
n

ε2
E

(
Y T (I −MA)Y

n− r(A)
− σ2

)2

=
nσ4

ε2(n− r(A))2
E

(
Y T (I −MA)Y

σ2
− (n− r(A))

)2

.

Under model (3.1),
Y T (I −MA)Y

σ2
∼ χ2(n− r(A)). This and r(A) ≤ K + p yield

Pr(
√
n|σ̂2

i − σ2| > ε) ≤ nσ4

ε2(n− r(A))2
V ar

(
Y T (I −MA)Y

σ2

)
=

2nσ4

ε2(n− r(A))

≤ 2σ4

ε2(1− (K + p)/n)

→ 2σ4

ε2(1− c)
as n→∞

→ 0 as ε→∞.
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Lemma 3 holds for σ̂2
1. To complete the proof for σ̂2

2 it suffices to show (I −

MX) − (MK − MMKX) is a ppo. Since (XTMKX)− is a generalized inverse of

(MKX)T (MKX), we have

MKX(XTMKX)−XTMKX = MKX.

This and its transpose yields

MX(MK −MMKX) = MXMK −X(XTX)−XTMKX(XTMKX)−XTMK

= MXMK −X(XTX)−XTMK

= MXMK −MXMK

= 0.

Therefore C(MK −MMKX) ⊆ C(I −MX) and thus (I −MX)− (MK −MMKX) is

a perpendicular projection operator. Similarly, under model (3.1),

Y T [(I −MX)− (MK −MMKX)]Y

σ2
∼ χ2(n− r3).

With this and the fact that r3 ≤ K + p, Lemma 3 holds for σ̂2
2.
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Appendix B: Review of

Clustering Tests

B.1 Green’s Test:

With one covariate x, Green investigates testing lack-of-fit for linear models

yi = f(xi)
Tβ + εi, (B.1)

where f(xi) is a p× 1 vector of known functions of xi, β is a vector of regression

parameters, and εi are i.i.d. N(0, σ2) random variables for i = 1, . . . , N . When

replicates are available, as we mentioned at the end of last section, a most general

model can be generated from the tested model and the exact F -test applies.

If replicates are not available, a most general model version of the tested model

does not exist. Green proposed a test based on the idea of near-replicates. Near-

replicates are cases grouped together to form clusters based on any specific cri-

terion applied the covariates. After grouping the units into k clusters, index the

units as ij, i = 1, . . . , k, j = 1, . . . , ni and use the notation defined in (2.3) but

re-defining

XT
i = [xi1, xi2, . . . , xini

], and XT = [XT
1 , X

T
2 , . . . , X

T
k ].

Let f(Xi)
T = [f(xi1)T , f(xi2)T , . . . , f(xini

)T ]. Assume the true mean response is

known from prior information, i.e. E(Y ). Let X̃ ≡ f(X). Model (B.1) is written
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in matrices as

Y = X̃β + ε.

If β is known, the difference between E(Y ) and X̃β can be used to group obser-

vations. Green suggests the clustering follows a criterion that E(Y )− X̃β will be

well approximated by a qth-order polynomial in x within each cluster. In practice,

E(Y ) is not known. We can use the residual plot to make decisions on clustering.

The residuals from fitting a model may show some patterns in the residual plot.

These patterns may be more conspicuous when they are broken up into several

sub-patterns. Green’s idea is breaking up these patterns into several sub-patterns

in which each of the sub-patterns can be well approximated by a qth-order poly-

nomial in x. Hence, the observations corresponding to each of the sub-patterns

form a cluster. Other clustering criteria are proposed in Utts (1982), and Miller,

Neill, and Sherfey (1998).

Although a most general version of the tested model does not exist, a more

general model than model (B.1) can be constructed using Green’s clustering cri-

terion. Define p(xij)
T = [1, xij, x

2
ij, . . . , x

q
ij]. The mean structure of model (B.1)

can differ from the true mean by a qth-order polynomial in x within each cluster.

Thus, more general model version of model (B.1) can be written as

yij = f(xij)
Tβ + p(xij)

Tγi + εij, (B.2)

where γi is a (q+1)×1 vector of regression parameters and p(xij)γi is a qth-order

polynomial in xij. Denote P T
i ≡ [p(xi1)T , . . . , p(xini

)T ], and define

P =



P1 0 0 0 0

0 P2 0 0 0

0 0
. . . 0 0

0 0 0 Pk−1 0

0 0 0 0 Pk


. (B.3)

Then models (B.1) and (B.2) can be written in matrix notation as

Y = X̃β + ε, (B.4)
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and

Y = X̃β + Pγ + ε, (B.5)

respectively. In model (B.5), γ is a k(q + 1) × 1 vector of regression parameters,

i.e. γT = [γT1 , . . . , γ
T
k ]. Following Christensen (2002, Chapter 9), rewrite model

(B.5) as

Y = (I −MP )X̃β + Pγ′ + ε

≡ X ′β + Pγ′ + ε, (B.6)

where X ′ ≡ (I −MP )X̃ so that C(P ) and C(X ′) are orthogonal. The sum of

squares error of model (B.6) is

SSE(B.6) = Y T (I −MP −MX′)Y.

Obviously, C(X̃) ⊂ C(X ′, P ) = C(X̃, P ). An exact F -test can be applied to

testing model (B.4) against the more general model (B.6). The sum of squares

for pure error is chosen to be SSE(B.6). The sum of squares for lack-of-fit is

SSE(B.4)− SSE(B.6) = Y T (I −MX̃)Y − Y T (I −MP −MX′)Y

= Y T (MP +MX′ −MX̃)Y.

The test statistic proposed by Green is

F =
Y T (MP +MX′ −MX̃)Y/(k(q + 1) + r(X ′)− r(X̃))

Y T (I −MP −MX′)Y/(N − k(q + 1)− r(X ′))
. (B.7)

The tested model is rejected at level α if F exceeds the critical value

Fα, k(q+1)+r(X′)−r(X̃), N−k(q+1)−r(X′).

It is worth noting that if f(xi)
T = [1, xi, . . . , x

ι
i], ι = 1, . . . , q, then C(X̃) ⊆ C(P ).

This yields C(X ′) a zero vector. (B.7) becomes

F =
Y T (MP −MX̃)Y/(k(q + 1)− r(X̃))

Y T (I −MP )Y/(N − k(q + 1))
.

Green points out that the strength of the test depends on the quality of clustering,

that is, the approximation to E(Y ) − X̃β by a qth-order polynomial of x. For a
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good approximation to E(Y )− X̃β, the number of clusters k and the order of the

polynomial q should be large enough. But large k and q also reduce the power of

the test due to the loss in degrees of freedom. Therefore prior investigations on

the choices of k and q are necessary before applying the test. Green also mentions

that since the true mean E(Y ) is not known in practice, the x’s in each cluster

must be chosen in a narrow interval to retain the power of the test.

B.2 Shillington’s Test:

Shillington proposed a test for lack-of-fit of a regression model by extending

Fisher’s exact F -test on multiple regressions to near-replicates setting. Suppose

observations have been grouped into k clusters by any specific clustering proce-

dure. There are p− 1 covariates. We use the same notation defined in (2.2) and

(2.3) but Xi is re-defined to a multivariate version as

Xi =


1 xi11 xi12 · · · xi1,p−1

1 xi21 xi22 · · · xi2,p−1

...
...

...
...

1 xini1 xini2 · · · xini,p−1


, (B.8)

for i = 1, . . . , k. The tested model is

Y = Xβ + ε, (B.9)

where β is a p× 1 vector of regression parameters.

When replicates are available, Fisher’s proposed test statistic for lack-of-fit of

a multiple regression model is

F =

∑k
i=1 ni(ȳi − µ̂i)2/(k − r(X))∑k
i=1

∑ni

j=1(yij − ȳi)2/(N − k)
, (B.10)

where µ̂i = β̂0 + β̂1xi1 + · · · + β̂p−1xi,p−1, β̂j’s are the least sqaures estimates

from fitting model (B.9), and ȳi is the i-th group mean. Shillington classifies the
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sum of squares in (B.10) as the sum of squares between clusters and the sum

of squares within clusters. The sum of squares in the numerator, measures the

variations between the observed cluster mean and the cluster mean predicted by

the fitted model (B.9) for each cluster, and is called the sum of squares between

clusters. The sum of squares in the denominator, measures the variations between

the observed response and the observed mean of its corresponding cluster, and is

called the sum of squares within clusters.

When replicate is not available, let ȳi be the mean response, x̄i be a p×1 vector

of mean covariates, and ε̄i be the mean error of the i-th cluster. Define

Ȳ =


ȳ1

ȳ2

...

ȳk


, X̄ =


x̄T1

x̄T2
...

x̄Tk


, ε̄ =


ε̄1

ε̄2
...

ε̄k


.

Let V be a k × k matrix such that

V =



1
n1

0 0 0 0

0 1
n2

0 0 0

0 0
. . . 0 0

0 0 0 1
nk−1

0

0 0 0 0 1
nk


.

Shillington considers the model

Ȳ = X̄β + ε̄, (B.11)

where ε̄ ∼ N(0, σ2V ), and computes the sum of squares between clusters by

SSEB =
k∑
i=1

ni(ȳi − x̄Ti β̂)2,

where β̂ is the weighted least squares estimate of β in model (B.11).

It is not easy to notice but Shillington’s idea is similar to projecting model (B.9)

onto C(Z) where Z is defined as in (2.8), i.e.

MZY = MZXβ +MZε, (B.12)
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and uses SSE(B.12) as the sum of squares between clusters. Note that MZε ∼

N(0, σ2MZ) where MZ is a singular matrix. As C(MZX) ⊂ C(MZ), Christensen

(2002, Chapter 10) provides a least squares estimate of MZXβ in model (B.12)

i.e.

MZXβ̂ = MZX(XTMZX)−XTMZY = MMZXY.

Hence SSE(B.12) = [MZY −MMZXY ]T [MZY −MMZXY ] = Y T (MZ −MMZX)Y .

Similar to the arguments in Fisher’s test, we have

MZY =


ȳ1Jn1

ȳ2Jn2

...

ȳkJnk


and MZX =


x̄T1 Jn1

x̄T2 Jn2

...

x̄Tk Jnk


.

These yield

[MZY −MZXβ̂]T [MZY −MZXβ̂]

=
[
(ȳ1 − x̄T1 β̂)JTn1

, (ȳ2 − x̄T2 β̂)JTn2
, · · · , (ȳk − x̄Tk β̂)JTnk

]


(ȳ1 − x̄T1 β̂)Jn1

(ȳ2 − x̄T2 β̂)Jn2

...

(ȳk − x̄Tk β̂)Jnk


=

k∑
i=1

ni(ȳi − x̄Ti β̂)2.

Therefore, SSEB = [MZY −MZXβ̂]T [MZY −MZXβ̂].

Let A be a k ×N block diagonal matrix such that

A =



1
n1
JT1 0 0 0 0

0 1
n2
JT2 0 0 0

0 0
. . . 0 0

0 0 0 1
nk
JTk−1 0

0 0 0 0 1
nk
JTk


.

Model (B.11) is equivalent to

AY = AXβ + Aε.
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Since V is nonsingular. Following Christensen (2002, Section 2.7) we have

AXβ̂ = AX(XTATV −1AX)−XTATV −1AY.

The fact MZ = ATV −1A yields

MZXβ̂ = ATV −1AXβ̂

= ATV −1AX(XTATV −1AX)−XTATV −1AY

= MZX(XTMZX)−XTMZY

= MMZXY.

Thus SSEB = [MZY −MZXβ̂]T [MZY −MZXβ̂] = [MZY −MMZXY ]T [MZY −

MMZXY ] = SSE(B.12).

The sum of squares between clusters is the SSE of the model created by pro-

jecting model (B.9) onto C(Z). Shillington uses the SSE of the model created by

projecting model (B.9) onto C(Z)⊥, i.e.

(I −MZ)Y = (I −MZ)Xβ + (I −MZ)ε, (B.13)

as the sum of squares within clusters. The computation of SSE(B.13) is similar to

SSE(B.12). Since (I−MZ)ε ∼ N(0, σ2(I−MZ)) and C((I−MZ)X) ⊂ C(I−MZ),

a best linear unbiased estimate of (I −MZ)Xβ in model (B.13) is

(I −MZ)Xβ̂ = (I −MZ)X(XT (I −MZ)X)−XT (I −MZ)Y

= M(I−MZ)XY.

Hence

SSE(B.13) = [(I −MZ)Y −M(I−MZ)XY ]T [(I −MZ)Y −M(I−MZ)XY ]

= Y T (I −MZ −M(I−MZ)X)Y

≡ SSEW .

It is obvious that SSEB and SSEW are independent. Under the assumption that

model (B.9) is true, the test statistic,

F =
Y T (MZ −MMZX)Y/(k − r(MZX))

Y T (I −MZ −M(I−MZ)X)Y/(N − k − r((I −MZ)X))
,
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proposed by Shillington has a central F distribution with degrees of freedom

(k − r(MZX), N − k − r((I −MZ)X)).

When replicates are available, C(X) ⊂ C(Z). Then MZX = X and (I −

MZ)X = 0. Hence the test statistic becomes

F =
Y T (MZ −MX)Y/(k − r(X))

Y T (I −MZ)Y/(N − k)
, (B.14)

which matches with Fisher’s exact F -test.

B.3 Neill and Johnson’s Test:

To regulate a near-replicates setting to an exact-replicates setting, Shillington

projects the tested model (B.9) onto C(Z). Neill and Johnson deal with this issue

in a different direction. Suppose the observations are grouped into k clusters and

the covariates are close to each other within each cluster. Neill and Johnson treat

the vector of covariates of each observation in the same cluster as a deviation from

a known vector. Then the exact-replicates environment can be created as follows.

Let µi = [µi0, µi1, . . . , µi,p−1] be a 1×p vector of known constants for i = 1, . . . , k.

Define µT = [µT1 , µ
T
2 , . . . , µ

T
k ] and model (B.9) is equivalent to

Y = Xβ − Zµβ + Zµβ + ε

= (X − Zµ)β + Zµβ + ε. (B.15)

Let Y ′ = Y − (X − Zµ)β. Model (B.15) can be written as

Y ′ = Zµβ + ε. (B.16)

Assume Y ′ is observable. Obviously C(Zµ) ⊂ C(Z). Following the same idea as

discussed at the end of section 2.1, the most general model generated from model

(B.16) is

Y ′ = Zγ + ε.
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The exact F -test applies. The test statistic has the same form as (B.14) but Y

and X are replaced by Y ′ and Zµ respectively, i.e.

F ′ =
Y ′T (MZ −MZµ)Y ′/(k − r(Zµ))

Y ′T (I −MZ)Y ′/(N − k)
. (B.17)

The distribution of F ′ is an F -distribution with degrees of freedom (k−r(Zµ), N−

k).

In practice, Y ′ can not be observed. Define Ŷ ′ ≡ Y − (X − Zµ)β̂ be the

estimate of Y ′ where β̂ is the least-squares estimate of β from the tested model

(B.9). Neill and Johnson suggest that if Y ′ − Ŷ ′ converges to 0 with probability

one as N →∞, Ŷ ′ can be used to compute the test statistic, i.e.

F̂ ′ =
Ŷ ′T (MZ −MZµ)Ŷ ′/(k − r(Zµ))

Ŷ ′T (I −MZ)Ŷ ′/(N − k)
, (B.18)

where F̂ ′ converges to F ′ in distribution as N →∞. Neill and Johnson show that

if the constants µi0 are chosen to be 1, and µij are chosen to be the cluster mean

of the j-th covariate in the i-th cluster for i = 1, . . . , k and j = 1, . . . , p − 1, i.e.

Zµ = MZX, then Y ′ − Ŷ ′ converges to 0 with probability one as N → ∞. The

choice Zµ = MZX and the fact MZ −MMZX = (I −MMZX)MZ yield

(MZ −MMZX)Ŷ ′ = (MZ −MMZX)(Y − (X −MZX)β̂)

= (MZ −MMZX)Y − (MZ −MMZX)(I −MZ)Xβ̂

= (MZ −MMZX)Y − (I −MMZX)MZ(I −MZ)Xβ̂

= (MZ −MMZX)Y.

Hence Ŷ ′T (MZ −MMZX)Ŷ ′ = Y T (MZ −MMZX)Y . In fact, it is not necessary to

estimate β to compute the sum of squares for lack-of-fit in Neill and Johnson’s test.

It is worth noting that Christensen later derives a test from Neill and Johnson’s

test to testing lack-of-fit for linear regressions along this way.

Similarly, we can find

(I −MZ)Ŷ ′ = (I −MZ)(Y − (X −MZX)β̂)

= (I −MZ)(Y −Xβ̂). (B.19)
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Note that the difference between Shillington’s test, and Neill and Johnson’s test

is on the construction of the sum of squares for pure error. Shillington projects

model (B.9) onto C(I −MZ) and uses the sum of squares error of the projected

model as the sum of squares for pure error. (B.19) explains that Neill and Johnson

project the residuals of model (B.9) onto C(I−MZ) and then compute the sum of

squares for pure error by the sum of squares of the projected residuals. Expanding

(B.19) gives (I −MZ)Ŷ ′ = (I −MZ)(I −MX)Y . The sum of squares for pure

error can be written as

Ŷ ′T (I −MZ)Ŷ ′ = Y T (I −MX)(I −MZ)(I −MX)Y.

With the use of Zµ = MZX, the test statistic is

F =
Y T (MZ −MMZX)Y/(k − r(MZX))

Y T (I −MX)(I −MZ)(I −MX)Y/(N − k)
.

Under the assumption that model (B.9), which is equivalent to model (B.16), is

true, the denominator in (B.17) is an unbiased estimator of the σ2. This can be

shown by

E

(
Y ′T (I −MZ)Y ′

N − k

)
= σ2 +

βTµTZT (I −MZ)Zµβ

N − k
= σ2. (B.20)

Since Y ′T (I −MZ)Y ′/(N − k) is a nonnegative random variable. (B.20) implies

Y ′T (I −MZ)Y ′

N − k
→ σ2 in probability as N →∞. (B.21)

Under the same model assumption, Neill and Johnson further show

Ŷ ′T (I −MZ)Ŷ ′

N − k
→ σ2 in probability as N →∞ (B.22)

when Y ′ − Ŷ ′ converges to 0 with probability one as N → ∞. As F ≡ F̂ ′ under

the choice of Zµ = MZX, (B.21) and (B.22) yield

F ′

F
→ 1 in probability as N →∞.

The asymptotic distribution of F is a central F -distribution with degrees of free-

dom (k − r(MZX), N − k).

89



B.4 Christensen’s Test (1989):

Recall that the tested model, model (B.9), can be written as model (B.16). With

the choice of Zµ = MZX, model (B.16) becomes

Y ′ = MZXβ + ε, (B.23)

where Y ′ = Y − (I −MZ)Xβ. Model

Y ′ = Zγ + ε (B.24)

is the most general model that can be generated from model (B.23). Since Y ′ is

unobservable. Neill and Johnson suggest using the estimate Ŷ ′ = Y −(I−MZ)Xβ̂,

where β̂ is a vector of least-squares estimates of the regression parameters of

model (B.9), instead of Y ′ to compute the test statistic. As shown in (B.18),

SSE(B.23) can be computed without estimating Y ′. Christensen shows that the

sum of squares for pure error can be found without knowing Y ′ by manipulating

model (B.24).

Define Y ′′ ≡ Y −Xβ. Model (B.24) becomes

Y ′′ = Zγ −MZXβ + ε. (B.25)

Since C(Z,MZX) = C(Z). Model (B.25) is equivalent to

Y ′′ = Zθ + ε,

where θ ≡ (Ikγ − (ZTZ)−ZTXβ), and Ik is a k × k identity matrix. After the

above manipulations, model (B.24) is re-written as

Y = Xβ + Zθ + ε. (B.26)

Hence the sum of squares for pure error is SSE(B.26). Following Christensen

(2002, Chapter 9), C(X,Z) = C(X, (I −MX)Z) = C((I −MZ)X,Z) yields

SSE(B.26) = Y T (I −MX −M(I−MX)Z)Y, (B.27)

90



or

SSE(B.26) = Y T (I −MZ −M(I−MZ)X)Y.

It is worth noting that SSE(B.26) = SSE(B.13), which is the sum of squares

within clusters. By (B.27), the sum of squares for lack-of-fit is

SSE(B.9)− SSE(B.26) = Y T (I −MX)Y − Y T (I −MX −M(I−MX)Z)Y

= Y T (M(I−MX)Z)Y.

The test statistic proposed by Christensen is

F =
Y T (M(I−MX)Z)Y/r((I −MX)Z)

Y T (I −MZ −M(I−MZ)X)Y/(N − k − r((I −MZ)X))
,

which has a central F distribution with degrees of freedom (r((I −MX)Z), N −

k − r((I −MZ)X)).

Recall that the sum of squares for lack-of-fit is the difference between SSE(B.9)

and SSE(B.26), which are the sum of squares error of the tested model and the

sum of squares within clusters defined in Section B.2 respectively. The residual

vector from fitting model (B.9) is (I −MX)Y . The error space is C(I −MX).

Since

I −MX = (I −MX −M(I−MX)Z) +M(I−MX)Z . (B.28)

Christensen partitions the error space into two orthogonal spaces C(I −MX −

M(I−MX)Z) = C(I − MZ − M(I−MZ)X) and C(M(I−MX)Z), where C(I − MX −

M(I−MX)Z) is the space for the orthogonal lack of fit within clusters, and the

remaining C(M(I−MX)Z) is the space for lack-of-fit. If the tested model is rejected

only for small F values, Christensen shows that his test is a uniformly most

powerful invariant (UMPI) test against the alternative that the orthogonal lack-

of-fit lies within clusters.
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B.5 Joglekar, Schuenemeyer, and LaRiccia’s Test:

As mentioned in Section B.2, Shillington chooses the sum of squares within clus-

ters, SSE(B.13), as the sum of squares for pure error. When testing model (B.9)

against the alternative that the lack-of-fit lies between clusters, Joglekar (1985)

argues that MSE(B.13) as an estimate of σ2 has a large bias and hence the

test statistic proposed by Shillington behaves unpredictably. We use the notation

defined in and (2.3) but X is an N × p matrix of covariates. Let

A =


X1 0 0 0

0 X2 0 0

0 0
. . . 0

0 0 0 Xk


.

Joglekar, Schuenemeyer, and LaRiccia modify Shillington’s test by replacing

MSE(B.13) with the MSE of model

Y = Aτ + ε, (B.29)

where τ is an (N × p)× 1 vector of regression parameters.

Referring to the discussion in Section B.4, SSE(B.13) is the sum of squares

error of model (B.26), i.e. Y = Xβ +Zθ+ ε. It is obvious that C(X,Z) ⊂ C(A).

This implies model (B.29) is more general than model (B.26), and (I−MA)(MZ−

MMZX) = 0. Hence the sum of squares for pure error SSE(B.29) = Y T (I −

MA)Y and the sum of squares for lack-of-fit SSE(B.26) = Y T (MZ −MMZX)Y

are independent. The exact F -test applies and the test statistic is

F =
Y T (MZ −MMZX)Y/(k − r(MZX))

Y T (I −MA)Y/(N − r(A))
.

F has a central F distribution with degrees of freedom (k − r(MZX), N − r(A)).

Note that Joglekar, Schuenemeyer, and LaRiccia’s test shows the same problem

as in Green’s test. Large k and p would reduce the power of the test due to the

loss in degrees of freedom.
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B.6 Christensen’s Test (1991):

When testing model (B.9) against the alternative that the lack-of-fit lies between

clusters, Joglekar finds that the mean squares for pure error, MSE(B.13), used

in Shillington’s test does not perform well. Joglekar, Schuenemeyer, and LaRic-

cia modified Shillington’s test along this way and proposed a test. Christensen

also proposed a test to testing the lack-of-fit lies between clusters by modifying

Shillington’s test with a different choice in the sum of squares for pure error.

Shillington projects the tested model onto C(Z) and use the sum of squares

error of the projected model as the sum of squares for lack-of-fit; projects the

tested model onto C(Z)⊥ and use the sum of squares error of the projected model

as the sum of squares for pure error. Christensen states that the error space of

the tested model is not complete by these projections. Recall that the residual

vector from fitting model (B.9) is (I −MX)Y and the error space is C(I −MX).

Similar to (B.28),

I −MX = (I −MZ −M(I−MZ)X) + (MZ −MMZX)

+(MZ +M(I−MZ)X −MX −MZ −MMZX)

= (I −MZ −M(I−MZ)X) + (MZ −MMZX)

+(M(I−MZ)X +MMZX −MX).

Obviously C(X) ⊆ C(MZX, (I −MZ)X). Let ρ ∈ C(MZX, (I −MZ)X). ρ can

be written as MZXa+ (I −MZ)Xb for any p× 1 vectors a, b. Then

ρ = MZXa+ (I −MZ)Xb = Xb+MZX(a− b) ∈ C(X,MZX).

Unless C(X) ⊆ C(Z)∪C(Z)⊥, M(I−MZ)X +MMZX −MX is not 0. With the fact

MZ −M(I−MZ)X = MX −M(I−MX)Z , it can be observed that

(I −MZ −M(I−MZ)X)(MZ −MMZX) = 0,

and

(I −MZ −M(I−MZ)X)(M(I−MZ)X +MMZX −MX) = 0.
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We further show

(MZ −MMZX)(M(I−MZ)X +MMZX −MX) = −(MZ −MMZX)MX

= −(I −MMZX)MZX(XTX)−XT

= 0.

Hence the error space can be partitioned into three orthogonal spaces, i.e. C(I −

MZ−M(I−MZ)X), C(MZ−MMZX), and C(M(I−MZ)X +MMZX−MX), where they

are the spaces for the orthogonal lack of fit within clusters, the orthogonal lack of

fit between clusters, and the remaining of the error space respectively.

The partitioning of the error space indicates that Shillington’s use of Y T (MZ −

MMZX)Y and Y T (I −MZ −M(I−MZ)X)Y in the test statistic cannot cover the

entire error space of the tested model. When the sum of squares for lack-of-fit

is chosen to be the orthogonal lack of fit between clusters Y T (MZ −MMZX)Y , a

natural choice in the sum of squares for pure error is the sum of squares from the

other two spaces, i.e.

Y T (I −MZ −M(I−MZ)X +M(I−MZ)X +MMZX −MX)Y

= Y T (I −MX)Y − Y T (MZ −MMZX)Y

= SSE(B.9)− SSE(B.12).

The test statistic proposed by Christensen is

F =
Y T (MZ −MMZX)Y/(k − r(MZX))

Y T (I −MX −MZ +MMZX)Y/(N − r(X)− k + r(MZX))
,

where F has a central F distribution with degrees of freedom (k − r(MZX), N −

r(X)−(k−r(MZX))). Christensen shows that this test is UMPI for the alternative

that the orthogonal lack-of-fit lies between clusters.

B.7 Su and Yang’s Test:

Su and Yang proposed three lack-of-fit tests in multiple regression. These tests

are classified as the overall lack-of-fit test, the between clusters lack-of-fit test, and
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the within clusters lack-of-fit test respectively. Su and Yang discuss the problems

in the usual setting of multiple regressions, i.e. model (B.9) is the tested model.

But their tests would better be treated as the generalizations of Green’s test.

Therefore the tested model used in the following discussion is the multivariate

version of model (B.4). Use X̃i defined in (B.8) and let

f(X̃i) =


f1(xi11) f2(xi12) · · · fp−1(xi1,p−1)

f1(xi21) f2(xi22) · · · fp−1(xi2,p−1)

...
...

...
...

f1(xini1) f2(xini2) · · · fp−1(xini,p−1)


,

for i = 1, . . . , k, where fj(x) is a function of x such that fj : R → R for j =

1, . . . , p− 1. Define X̂i ≡ [Jni
, f(X̃i)] and re-define X̂T ≡ [X̂T

1 , X̂
T
2 , . . . , X̂

T
k ]. The

tested model is

Y = X̂β + ε. (B.30)

Let Pj(x)γj be a qj-th order polynomial of x for j = 1, . . . , p− 1, and

Pi =


P1(xi11)γi1 P2(xi12)γi2 · · · Pp−1(xi1,p−1)γi,p−1

P1(xi21)γi1 P2(xi22)γi2 · · · Pp−1(xi2,p−1)γi,p−1

...
...

...
...

P1(xini1)γi1 P2(xini2)γi2 · · · Pp−1(xini,p−1)γi,p−1


for i = 1, . . . , k. We further define a matrix P as in (B.3). Following Green’s

arguments, a more general model can be generated from model (B.30) as

Y = X̂β + Pγ + ε. (B.31)

Since C(Z) ⊆ C(P ). It is worth noting that if model (B.9) is the test model, i.e.

X̂ = X, model (B.31) can be simplified as follows. When all qj’s are 0, model

(B.31) is equivalent to Y = Xβ + Zγ′ + ε; when all qj ≥ 1, model (B.31) is

equivalent to Y = Pγ′ + ε. Let X ′ = (I −MP )X̂. Following Christensen (2002,

Chapter 9), model (B.31) is re-written as

Y = (I −MP )X̂β + Pγ′ + ε

= X ′β + Pγ′ + ε.
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Denote M0 = MX̂ . The exact F test applied and the test statistic is

F0 =
Y T (MP +MX′ −M0)Y/(r(P ) + r(X ′)− r(X̂))

Y T (I −MP −MX′)Y/(N − r(P )− r(X ′))
.

This is an extension of Green’s test and Su and Yang call this test the overall

lack-of-fit test. F0 has a central F distribution with degrees of freedom (r(P ) +

r(X ′)− r(X̂), N − r(P )− r(X ′)).

The sum of squares for lack-of-fit in F0 is SSE(B.31) = Y T (I −MP −MX′)Y .

We can interpret SSE(B.31) with the idea of model projection. If the tested

model (B.30) is projected onto C(I −MP ), the projected model is

(I −MP )Y = (I −MP )X̂β + (I −MP )ε, (B.32)

where (I −MP )ε ∼ N(0, σ2(I −MP )). C((I −MP )X̂) ⊂ C(I −MP ), Christensen

(2002, Chapter 10) provides the best linear unbiased estimate of (I −MP )X̂β as

(I −MP )X̂β̂ = (I −MP )X̂(X̂T (I −MP )X̂)−X̂T (I −MP )Y

= M(I−MP )X̂Y

= MX′Y

The sum of squares error of model (B.32) is

SSE(B.32) = Y T (I −MP −MX′)Y = SSE(B.31).

Su and Yang’s overall lack-of-fit test and Christensen’s (1989) test have the same

moral but Su and Yang extend Z to P .

Following the same idea, Shillington’s test can generalized if the sum of squares

for lack-of-fit is replaced by the sum of squares errors of the model

MPY = MP X̃ +MP ε,

where (MP )ε ∼ N(0, σ2(MP )). Christensen’s (1991) test can also be generalized

along this way.
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Unlike Christensen’s idea on partitioning the error space of the tested model,

Su and Yang only split the lack-of-fit space regarding to the overall lack-of-fit test,

C(MP +MX′ −M0) = C(M(I−M0)P ), into two. Since

M(I−M0)P = (M(I−M0)P −M(I−M0)Z) +M(I−M0)Z .

C((I−M0)Z) ⊂ C((I−M0)P ) gives M(I−M0)P −M(I−M0)Z and M(I−M0)Z are two

ppo’s onto two orthogonal spaces, C(M(I−M0)P − M(I−M0)Z) and C(M(I−M0)Z),

respectively. The sum of squares Y T (M(I−M0)Z)Y measures the lack-of-fit con-

tributed by the common intercept. Su and Yang use Y T (M(I−M0)Z)Y and propose

the second test statistic

F1 =
Y T (M(I−M0)Z)Y/(r(M(I−M0)Z))

Y T (I −MP −MX′)Y/(N − r(P )− r(X ′))
.

Su and Yang call this test between clusters lack-of-fit test, but this “between

clusters lack-of-fit” is different from that proposed by Christensen in moral. F1 has

a central F distribution with degrees of freedom (r(M(I−M0)Z), N−r(P )−r(X ′)).

The sum of squares Y T (M(I−M0)P −M(I−M0)Z)Y measures the lack-of-fit con-

tributed by the common regression parameters for covariates in the tested model.

The third test statistic proposed by Su and Yang is

F2 =
Y T (M(I−M0)P −M(I−M0)Z)Y/(r(M(I−M0)P )− r(M(I−M0)Z))

Y T (I −MP −MX′)Y/(N − r(P )− r(X ′))
.

Su and Yang name this test within clusters lack-of-fit test. Once again, this

“within clusters lack-of-fit” is also different with that Christensen proposed. The

test statistic F2 has a central F distribution with degrees of freedom (r(M(I−M0)P )

−r(M(I−M0)Z), N − r(P )− r(X ′)).
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Appendix C: Review of Smooth

Tests

C.1 Eubank and Hart’s Test:

Eubank and Hart investigate the lack-of-fit of univariate regression models. We

use the notation defined in (2.11) and re-define

X =


f0(x1) f1(x1) · · · fp−1(x1)

f0(x2) f1(x2) · · · fp−1(x2)

...
...

...
...

f0(xn) f1(xn) · · · fp−1(xn)


, (C.1)

where ∀ xi ∈ [0, 1] for i = 1, . . . , n and fj(x) are functions in x for j = 0, 1, . . . , p−

1. The tested model is

Y = Xβ + ε, (C.2)

where β is a p × 1 vector of regression parameters. With the newly defined X,

model (2.13) is an arbitrary alternative model. Note that C(X) ⊂ C(X,H) and

hence model (2.13) is more general then the tested model. As mentioned in Section

(2.2), model (2.17) is a series approximation to model (2.13) that we can actually

handle. Eubank and Hart proposed a test based on the alternative model

Y = Xβ +Hkγk + ε, (C.3)

where Hk is defined in (2.16).
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Eubank and Hart assume that X is of full rank, i.e. r(X) = p, and the functions

in the matrix Hk satisfy the orthogonal conditions

HT
k Hk = nIk and HT

k X = 0.

Note that
1√
n
Hk is an orthonormal matrix. Christensen (2002, Appendix B) gives

the ppo onto C(Hk) as
1

n
HkH

T
k . From the above assumptions, C(X,Hk) is of full

rank. The ppo onto C(X,Hk) is MX +MHk
= MX +

HkH
T
k

n
. The sum of squares

error of model (C.3) is

SSE(C.3) = Y T

(
I −MX −

HkH
T
k

n

)
Y

= Y T (I −MX)Y − Y THkH
T
k Y

n

≡ SSE(C.2)− nγ̂Tk γ̂k,

where γ̂k ≡
1

n
HT
k Y .

A risk function is defined as

R(k) = E

[
1

n

n∑
j=1

(h(xj)− ĥk(xj))2

]
,

where ĥk(xj) is the estimate of hk(xj), and h(xj) and hk(xj) are defined in (2.14)

and (2.15) respectively. Recall that the true function h(x) is approximated by

the partial sum hk(x). Obviously, the risk function measures the errors from the

partial sum approximation. Eubank and Hart derive a lack-of-fit test statistic by

minimizing the risk function.

If σ2 is known, Rice (1984) shows that the unbiased estimate of the risk function

is

R̂(k) =
1

n
SSE(C.3)− σ2 +

2σ2r(X,Hk)

n

=
Y T (I −MX)Y

n
− γ̂Tk γ̂k − σ2 +

2(p+ k)σ2

n

=
Y T (I −MX)Y

n
− (n− 2p)σ2

n
−
[
γ̂Tk γ̂k −

2kσ2

n

]
. (C.4)

The estimated risk function R̂ is minimized by maximizing

γ̂Tk γ̂k −
2kσ2

n
. (C.5)
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Eubank and Hart suggest that the maximizer k̃ of (C.5) can be used to test

the lack-of-fit in model (C.2). Since σ2 cannot be known in practice and the

asymptotic distribution of k̃ does not give an explicit rejection region for any

specific size α. The test statistic proposed by Eubank and Hart is k̂ where k̂ is

the maximizer of

g(k) =

 0, k = 0,

γ̃Tk γ̃k − cαkσ̂2/n, k = 1, . . . , n− p,
(C.6)

in which σ̂2 is any consistent estimator of σ2 and cα is chosen so that P (k̂ = 0) =

1− α under the tested model. Model (C.2) is rejected if k̂ ≥ 1.

Define Zj be a random variable having χ2 distribution with degrees of freedom

j. Eubank and Hart provide an approximation to cα in (C.6) by solving the

equation

1− α = exp

{
−
∞∑
j=1

P (Zj > jcα)

j

}
. (C.7)

Let p0 = 1 and ps =
∑

(θ1,..., θs)∈ Cs

{
s∏
j=1

1

θr!

[
P (Zj > jcα

j

]θr
}

for s = 1, . . . , n − p,

where Cs is the set of all s-tuples (θ1, . . . , θs) of integers such that θ1 + 2θ2 +

· · ·+ sθs = s. Eubank and Hart also prove the asymptotic distribution of the test

statistic k̂. Under the assumptions that σ̂2 → σ2 in probability, cα is the solution

of (C.7), and max
1≤j≤n−p

sup
x
|ϕj(x)| ≤ C for some constant C that is independent of

n, then

P (k̂ = s)→ ps(1− α) as n→∞ for s = 0, 1, . . . .

C.2 Aerts, Claeskens, and Hart’s Test:

Use the notation defined in (2.11) and X as defined in (C.1) without the restriction

on the range of xi’s. Aerts, Claeskens, and Hart, henceforth referred to as ACH,

consider lack-of-fit in model (C.2). Model (C.3) is referred to as an approximation
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to the more general model of model (C.2). Eubank and Hart use k that minimizes

the risk function as a test statistic for lack-of-fit in model (C.2). ACH build up

test statistics by the score function.

ACH assume X is of full rank, and the functions in X and Hk satisfy the

orthogonal condition

HT
k Hk = nIk and HT

k X = 0.

Define γ̂k =
1

n
HT
k Y . The score statistic is given by

Sk =
SSE(C.2)− SSE(C.3)

SSE(C.2)

=
Y TMHk

Y

Y T (I −MX)Y

=
Y TMHk

Y/n

Y T (I −MX)Y/n

=
γ̂Tk γ̂k
σ̂2

,

where σ̂2 =
Y T (I −MX)Y

n
is the maximum likelihood estimate of σ2 under model

(C.2). ACH introduce the penalized score criterion,

SIC(k, Cn) = Sk − Cnk, (C.8)

where S0 is defined to be 0 and Cn is a constant greater than 1. SIC(k, Cn)

is used to choose k̂ where k̂ maximizes SIC(k, Cn). Note that SIC(k, 2) and

SIC(k, log n) are the AIC and BIC used in model selection in regressions re-

spectively.

Let Zj be iid χ2 random variables with degrees of freedom 1 for j = 1, . . . , n−p.

Define V0 = 0 and Vk =
∑k

j=1 Zj for k = 1, . . . , n−p, k̃ be the maximizer of Vk−2k,

k̂1 be the maximizer of SIC(k, 2), and k̂2 be the maximizer of SIC(k, log n).

ACH proposed five test statistics. Each test statistic has a specific asymptotic

distribution. The test statistics are:

T1 = Sk̂1 , T2 = Sk̂2 , T3 =
Sk̂1 − k̂1

max(1, k̂
1/2
1 )

,

T4 = max
1≤k≤n−p

Sk
k
, and T5 = SIC(k̂1, 2).
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ACH show that, under the assumption that model (C.2) is true,

T1 → Vk̃, T2 → V1, T3 →
Vk̃ − k̃

max(1, k̃1/2)
,

T4 → max
1≤k≤n−p

Vk
k
, and T5 → Vk̃ − 2k̃,

in distribution as n → ∞. Note that the test statistic T2 has an asymptotic

χ2-distribution with one degree of freedom. There is no tractable distribution for

any other test statistics.

If σ2 is known, (C.8) can be written as

SIC(k, Cn) =
γ̂Tk γ̂k
σ2
− Cnk

=
1

σ2

(
γ̂Tk γ̂k − Cnkσ2

)
.

It is worth noting that maximizing SIC(k, Cn) is equivalent to maximizing γ̂Tk γ̂k−

Cnkσ
2. Then the maximizer of SIC(k, 2/n) is identical to the maximizer of the

risk function in (C.4). ACH’s test is consistent to Eubank and Hart’s testing

procedures when σ2 is known. Since the MLE σ̂2 is a consistent estimate of σ2,

the result in ACH’s test is also consistent to Eubank and Hart’s test when σ̂2 is

used.
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