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Abstract

We study the Sasakian Geometry on Lens Space bundles over Riemann Surfaces,

denoted M5
l1;l2;w. We describe the quotient M

5
l1;l2;w=S

1(v); where S1(v) is a circle

action generated by the Reeb vector �eld ⇠
v

; as a complex �ber bundle over ⌃
g

whose

�ber is a weighted projective space. We compute the cohomology of M5
l1;l2;w and we

see the depence of that cohomology on l2:We show the existence of extremal Sasakian

metrics on M5
l1;l2;w with constant scalar curvature.
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Chapter 1

Introduction

1.1 Introduction

In this dissertation we study Sasakian metrics of certain lens space bundles over

a Riemann surface of genus g � 1. In the paper [BTF14a] Boyer and Tonnesen-

Friedman studied S3 bundles over a Riemann surface, they showed there that there are

two homotopy types of those; the trivial bundle and the non trivial one. Furthermore

they showed the existence of extremal Sasakian metrics on those manifolds. These

manifolds can be constructed using the join, so these manifolds are written

M5
l1;1;w =M3

g

⇤
l1;1 S

3
w

1



Chapter 1. Introduction

where l1; w1; w2 are certain integer parameters. In this dissertation we continue study-

ing these manifolds written as

M5
l1;l2;w =M3

g

⇤
l1;l2 S

3
w

with this notation Boyer and Tonnesen-Friedman did the case l2 = 1: We do the case

l2 > 1: The problem of �nding the \best" K�ahler metrics in a given K�ahler class

on a K�ahler manifold has a long and well developed history beginning with Calabi

[Cal82]. He introduced the notion of an extremal K�ahler metric as a critical point

of the L2-norm squared of the scalar curvature of a K�ahler metric, and showed that

extremal K�ahler metrics are precisely those such that the (1; 0)-gradient of the scalar

curvature is a holomorphic vector �eld. Particular cases are K�ahler-Einstein metrics

and more generally those of constant scalar curvature (CSC).

On the other hand in the case of the odd dimensional version, namely Sasakian

geometry, aside from the study of Sasaki-Einstein metrics, the study of extremal

Sasaki metrics is much more recent [BGS08]. It is well known that a Sasaki metric

has constant scalar curvature if and only if the transverse K�ahler metric has constant

scalar curvature. So for quasi-regular Sasaki metrics the existence of CSC Sasaki

metrics coincides with the existence of CSC K�ahler metrics on the quotient cyclic

orbifolds Z:

The main results of this dissertation are:

Proposition 1.1. Let v = (v1; v2) with v1; v2 2 Z+ and gcd(v1; v2) = 1, and let ⇠v be

2



Chapter 1. Introduction

a Reeb vector �eld in the Sasaki cone t

+
2 (w). Then the quotient of

M5
l1;l2;w =M3

g

⇤
l1;l2 S

3
w

with

S1 !M3
g

! ⌃
g

by the circle action S1(v) generated by ⇠v is a complex �ber bundle over ⌃
g

whose

�ber is the complex orbifold CP(v)=Z l2
s
:Where

s = gcd(jw2v1 � w1v2j; l2):

Proposition 1.2. The orbifold pseudo-Hirzebruch surface

B
l1;l2;v;w =M5

l1;l2;w=S
1(v)

can be realized as the orbifold log pair (S
n

;�v) where S
n

is a pseudo-Hirzebruch

surface of degree n = l1(w1v2�w2v1)
s

: Where

s = gcd(jw2v1 � w1v2j; l2)

and the branch divisor �v is given by

�v = (1�
1

v1
)E

n

+ (1� 1

v2
)E 0

n

(1.1)

where E 0
n

is the in�nity section and E
n

is the zero section.

3



Chapter 1. Introduction

We also have:

Proposition 1.3. The cohomology groups of M5
l1;l2;w are given by

Hr(M5
l1;l2;w;Z) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Z for r = 0; 5

Z2g for r = 1

Z for r = 2

Z� Z2g
l2

for r = 3

Z2g for r = 4

Moreover the cohomology ring is given by

Z[↵
i

; �
i

; x; y]=(J; x2; xy = �
g

; l2↵ix; l2�ix)

where J is an ideal described by: For the canonical homology basis of ⌃
g

H1(⌃g) = fa1; a2; � � � ; ag; b1; b2; � � � ; bgg

and

H1(⌃
g

) = f↵1; ↵2; � � �↵g; �1; �2; � � � ; �gg

the dual basis; then

↵
j

[ �
k

= ��
jk

x

for j; k = 1; 2; � � � ; g where deg x=2,deg y=3 and �
g

is the orientation class of M5
l1;l2;w:

For the homotopy groups we have:

4



Chapter 1. Introduction

Proposition 1.4.

⇡1(M
5
l1;l2;w) = ⇡1(M

3
g

)=(l2Z)

⇡2(M
5
l1;l2;w) = 0

⇡
i

(M5
l1;l2;w) = ⇡

i

(S3)

for i > 2:

For the existence of extremal Sasakian metrics we have :

Theorem 1.1. For any choice of genus g = 1; 2; :::; 19 the regular ray in the Sasaki

cone (M5
l1;l2;w; Jw) admits an extremal representative with non-constant scalar cur-

vature.

For any choice of genus g = 20; 21; ::: there exists a K
g

2 Z+ such that if

l1jwj � K
g

, then the regular ray in the Sasaki cone (M5
l1;l2;w; Jw) admits an ex-

tremal representative with non-constant scalar curvature.

For any choice of genus g = 20; 21; ::: there exist at least one choice of (l1; w1; w2)

such that the regular ray in the Sasaki cone (M5
l1;l2;w; Jw) admits no extremal repre-

sentative, despite the fact that the quasi-regular Sasaki structure

S
l1;l2;w = (⇠w; ⌘l1;l2;w;�w; gw)

is extremal.

We also have:

Theorem 1.2. Let

M5
l1;l2;w =M3

g

⇤
l1;l2 S

3
w:

5



Chapter 1. Introduction

Then for each vector w = (w1; w2) 2 Z+⇥Z+ with gcd(w1; w2) = 1 and w1 > w2 there

exists a ⇠
v

in the Sasaki cone on M5
l1;l2;w such that the corresponding ray of Sasakian

structures

S
a

= (a�1⇠
v

; a⌘
v

;�; g
a

)

has constant scalar curvature.

Most of these metrics are irregular.

6



Chapter 2

Basic Concepts

2.1 Spectral Sequences

2.1.1 Exact Couples

For the fundamentals of spectral sequences we refer to [BT82].

An Exact Couple is an exact sequence of Abelian groups of the form A
i! A

j!

B
k! A where i,j, k are group homomorphisms.De�ne d : B ! B by d = j � k:Then

d2 = j(k � j)k = 0 so the homology group H(B) = Kern d=Im d is de�ned. Out of

a given exact couple we can construct a new exact couple, called the derived couple:

A0 i0! A0 j0! B0 k0! A0

by making the following de�nitions:

7



Chapter 2. Basic Concepts

✏ A0 = i(A) , B0 = H(B):

✏ i0i(a) = i(i(a)):

✏ If a0 = ia 2 A0,a 2 A then j0a0 = [ja]: And j0is well de�ned.

✏ k0 is induced from k.Let [b] 2 H(B) then jkb = 0 so kb = ia for some a 2 A:

De�ne k0[b] = kb 2 i(A): With these de�nitions (1) is an exact couple.

2.2 The Spectral Sequence of a Filtered Complex

Let K be a di↵erential complex with di↵erential operator D, i. e. K is an Abelian

group and D : K ! K a group homomorphism such that D2 = 0: A subcomplex

K 0of K is a subgroup such that DK 0 ⇢ K 0: A sequence of subcomplexes K = K0 �

K1 � K2 � � � � is called a �ltration on K: This makes K into a �ltered complex with

associated graded complex: GK =
L

K
p

=K
p+1 Let A =

L
K
p

: A is a di↵erential

complex with operator D:De�ne i : K
p+1 ! K

p

the inclusion and B the quotient

0 ! A ! A ! B ! 0 then B is the associated graded complex GK of K:In the

previous short exact sequence each group is a complex with operator induced from

D: In the graded case we get from this short exact sequence a long exact sequence

of cohomology: � � � ! Hk(A) ! Hk(A) ! Hk(B) ! Hk+1(A) ! � � � which we may

write as

H(A)
i1! H(A)

j1! H(B)
k1! H(A)

this sequence we write as

A1
i! A1

j1! B1
k1! A1

8



Chapter 2. Basic Concepts

where the map i need no longer be an inclusion.Since this diagram is an exact couple,

it gives rise to a sequence of exact couples

A
r

i! A
r

jr! B
r

kr! A
r

each being the derived couple of its predecessor. The sequence of subcomplexes

K � K1 � K2 � � � � induces a sequence in cohomology � � �H(K)  H(K)  

H(K1) H(K2) � � �

Let F
p

be the image of F
p

in H(K): Then there is a sequence of inclusions

H(K) = F0 � F1 � F2 � � � �

making H(K) into a �ltered complex this; this �ltration is called the induced �ltra-

tion on H(K): A �ltration K
p

on the �ltered complex K is said to have length l if

K
l

6= 0 and K
p

= 0 for p > l.Whenever the �ltration on K has �nite length then

A
r

and B
r

are eventually stationary and the stationary value B1 is the associated

graded complex
L

F
p

=F
p+1 of the �ltered complex H(K) with �ltration given by (3).

It is customary to write E
r

for B
r

: Hence E1 = H(B) with di↵erential d1 = j1k1:

E2 = H(E1) with di↵erential d2 = j2k2 E3 = H(E2) etc. A sequence of di↵eren-

tial groups fE
r

; d
r

g in which each E
r

is the homology of its predecessor is called a

spectral sequence: If E
r

eventually becomes stationary, we denote the stationary

value by E1: If E1 is equal to the associated graded group of some �ltered group H;

then we say that the spectral sequence converges to H:

The proof of the following theorem is in [Spa66].

9



Chapter 2. Basic Concepts

Theorem 2.1. [Spa66] Given a �bration

p : E ! B

with �ber F there is a spectral sequence E
r

converging to H⇤(E) with

Ep;q

2 = Hp(U ;Hq)

with a good cover U of B; whereHq is the locally constant presheafHq(U) = Hq(⇡�1(U))

on U : If B is simply connected and Hq(F ) is �nite dimensional then

Ep;q

2 = Hp(M)⌦Hq(F )

2.3 Orbifolds

For the fundamentals of Orbifolds we refer to [BG08].

De�nition 2.1. Let X be a paracompact Hausdor↵ space. An orbifold chart or local

uniformizing system on X is a triple ( ~U;�; �), where ~U is connected, open subset of

Rn or Cn, � is a �nite group acting e↵ectively as of ~U and � : ~U ! U is a continuous

map onto an open set U ⇢ X such that � � � = � for all � 2 � and the induced

natural map of

~U=� �! U

is a homeomorphism. An embedding between two such charts ( ~U;�; �) and ( ~U 0;�0; �0)

10



Chapter 2. Basic Concepts

is a smooth ( or holomorphic) embedding

� : ~U �! ~U 0

such that �0�� = �. An orbifold atlas on X is a collection U = ( ~U
i

;�
i

; �
i

) of orbifolds

charts such that

✏ X =
S
�( ~U

i

)

✏ Given two charts ( ~U
i

;�
i

; �
i

) and ( ~U
j

;�
j

; �
j

) with U
i

= �( ~U
i

) and U
j

= �( ~U
j

)

and a point x 2 U
i

T
U
j

there exist an open neighborhood U
k

of x and a chart

( ~U
k

;�
k

; �
k

) such that there are injections

�
ik

: ( ~U
k

;�
k

; �
k

) �! ( ~U
i

;�
i

; �
i

)

and

�
jk

: ( ~U
k

;�
k

; �
k

) �! ( ~U
j

;�
j

; �
j

):

An atlas U is said to be a re�nement of an atlas V if there is an injection of every

chart of U into every chart of V : Two orbifolds atlases are said to be equivalent if they

have a common re�nement. A smooth orbifold is a paracompact Hausdor↵ space X

with an equivalence class of orbifold atlases. We denote the orbifold by X = (X;U): If

every �nite group � consists of orientation preserving di↵eomorphisms and there is an

atlas such that all the injections are orientation preserving the orbifold is orientable.

11



Chapter 2. Basic Concepts

2.4 The Join construction

For the Join Construction we refer to [BG08].

We denote by SO the set of compact quasiregular Sasakian orbifolds, by SM the

subset of SO that are smooth manifolds and by R ⇢ SM the subset of compact

regular Sasakian manifolds. For each pair of positive integers (k1; k2) we de�ne a

graded multiplication

⇤
k1;k2 : SO2n1+1 ⇥ SO2n2+1 ! SO2(n1+n2)+1

by: Let M1 and M2 2 SO of dimension 2n1 + 1 and 2n2 + 1 respectively. Since

each orbifold (M
i

; S
i

) has a quasiregular Sasakian structure S
i

; its Reeb vector �eld

generates a locally free circle action and the quotient space by this action has a natural

orbifold structure Z
i

: So there is a locally free action of the torus T 2 on M1 ⇥M2

and the quotient orbifold is the product of the orbifolds Z
i

. The Sasakian structure

on M
i

determines a K�ahler structure !
i

on the orbifold Z
i

but in order to obtain an

integral orbifold cohomology class [!
i

] 2 H2
orb

(Z
i

;Z) we need to assure that the period

of a generic orbit is 1.By a result of Wadsley the period function on a quasiregular

Sasakian orbifold is lower semicontinuos and constant on the dense open set of regular

orbits;because on Sasakian orbifolds all Reeb orbits are geodesics. By a transverse

homothety we can normalize the period function to be 1; on the dense open set of

regular orbits.In this case the K�ahler forms !
i

de�ne integer orbifold cohomology

classes [!
i

] 2 H2
orb

(Z
i

;Z): Each pair of positive integers k1, k2 give a K�ahler form

k1!1 + k2!2 on the product, and [k1!1 + k2!2] 2 H2
orb

(Z1 ⇥ Z2;Z) and so de�nes a

V-bundle over the orbifold Z1 ⇥ Z2 whose total space is an orbifold that we denote

12



Chapter 2. Basic Concepts

by M1 ⇤k1;k2 M2: This is called the (k1; k2) join of (M1; S1) and (M2; S2):

13



Chapter 3

K�ahler manifolds

3.1 K�ahler Manifolds

LetM be a real manifold of dimension 2n. An almost complex structure J is a smooth

section of End(TM), such that J2 = �I: We can extend J to act on TM ⌦R C

by C-linearity. Then J induces a splitting TM ⌦R C = T 1;0(M) � T 0;1(M) where

T 1;0(M); T 0;1(M) are eigenspaces with eigenvalues ⌃i respectively.

An almost complex structure is said to be integrable if M admits an atlas of

complex charts with holomorphic transition functions such that J corresponds to the

induced complex multiplication on TM ⌦R C.

Let (M;J) be an almost complex manifold and let g be a Riemannian metric on

M such that

g(JX; JY ) = g(X; Y ); X; Y 2 �(TM)

14



Chapter 3. K�ahler manifolds

then g is called an Hermitian metric and (M;J; g) is called an almost Hermitian

manifold. Given g a Hermitian metric we de�ne its fundamental 2-form !
g

of g by

!
g

(X; Y ) = g(X; JY ); X; Y 2 �(TM)

and (J; g; !
g

) is called an almost Hermitian structure on M .

An almost Hermitian structure with integrable J is called Hermitian. A hermitian

manifold (M;J; g; !
g

) is said to be K�ahler if !
g

is a closed 2-form. g is called a K�ahler

metric, !
g

its K�ahler form and (J; g; !
g

) a K�ahler structure on M .

3.2 K�ahler Orbifolds

It is straightforward to generalize the Geometry of K�ahler manifolds as seen above

to K�ahler Orbifolds. If X = (X;U) is a complex orbifold with an Hermitian metric g

and corresponding 2 form !
g

de�ned by

!
g

(X; Y ) = g(X; JY )

Then X is a K�ahler orbifold if !
g

is a closed 2 form. Here g,J and !
g

are sequences of

�
i

invariant Hermitian metrics, almost complex structures and 2 forms respectively,

on each local uniformizing neighborhood that are compatible with the injections.

De�nition 3.1. The branch divisor � of an orbifold X = (X;U) is a Q divisor on

X of the form

� =
X
(1� 1

m
↵

)D
↵

;

15



Chapter 3. K�ahler manifolds

where the sum is taken over all Weil divisors D
↵

that lie in the orbifold singular locus
P

orb(X ) and m
↵

is the gcd of the orders of the local uniformizing groups taken over

all points of D
↵

and is called the rami�cation index of D
↵

:

De�nition 3.2. A canonical divisor K
X

is any divisor on X such that its restriction

to X
reg

is associated to the canonical bundle ⇤n
Xreg

:

De�nition 3.3. A Baily divisor on an orbifold X is a Cartier divisor D ~
U

on each

local uniformizing system ( ~U;�; �) that satis�es:

i) for each x 2 X and � 2 �; and f 2 D
�x

implies f � � 2 D
x

:

ii) if

� : ( ~U;�; �)! ( ~U
0
;�

0
; �

0
)

is an injection and f 2 D0

�(x) then f � � 2 Dx

; where D is the divisor sheaf on ~U:

De�nition 3.4. The orbifold canonical divisor Korb

X is any Baily divisor associated

to the canonical orbibundle KX :

We have

Theorem 3.1. [BG08] The orbifold canonical divisor Korb

X and canonical divisor K
X

are related by

Korb

X = �⇤K
X

+
X
(1� 1

m
↵

)�⇤D
↵

where

�
i

: ~U
i

! U
i

are the local branch covers.

16



Chapter 3. K�ahler manifolds

We have also

Theorem 3.2. [BG08] For G = U(n). The orbifold Chern classes corb
i

(E) are de�ned

for any V-bundle E on the orbifold X with group G. Moreover, p⇤corb
i

(E) are integral

classes in H⇤
orb

(X ;Z); here p : BX ! X; is the Hae�iger classifying space [Hae84].
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Chapter 4

Contact Geometry

De�nition 4.1. A manifold M2n+1 is a (strict) contact manifold if there exists a

1-form ⌘, called a contact 1-form, on M such that

⌘ ^ (d⌘)n 6= 0

everywhere onM: A contact structure onM is an equivalence class of such 1-forms,

where ⌘0 ⇠ ⌘ if there is a nowhere vanishing function f on M such that ⌘0 = f⌘:

A contact structure gives rise to a codimension one subbundle of TM; denoted D

by D = ker ⌘, D is called the contact subbundle.

If the vector bundle D is oriented we say that the contact manifold M is co-

oriented.

Lemma 4.1. [BG08] On a strict contact manifold (M; ⌘) there is a unique vector

18



Chapter 4. Contact Geometry

�eld ⇠, called the Reeb vector �eld, satisfying

⇠c⌘ = 1; ⇠cd⌘ = 0:

The Reeb vector �eld uniquely determines a 1-dimensional foliation F
⇠

on (M; ⌘)

called the characteristic foliation. Let L
⇠

denote the trivial line bundle consisting of

tangent vectors that are tangent to the leaves of F
⇠

. This splits the tangent bundle

as TM = D
L

L
⇠

.

De�nition 4.2. The foliation F
⇠

of a strict contact structure is said to be quasi-

regular if there is a positive integer k such that each point has a foliated coordinate

chart (U ; x) such that each leaf of F
⇠

passes through U at most k times. If k = 1 the

foliation is called regular. If F
⇠

is not quasi-regular it is said to be irregular. We say

also that the Reeb vector �eld ⇠ is regular (quasi-regular, irregular).

We have:

Theorem 4.1. [BW58, BG00] Let (M; ⌘) be a regular compact strict manifold. Then

M is the total space of a principal circle bundle ⇡ :M �! Z; Z =M=F
⇠

, and Z

is a compact symplectic manifold with symplectic form ⌦, [⌦] 2 H2(Z;Z) and ⌘ is a

connection form on the bundle with curvature d⌘ = ⇡⇤⌦.

We are going to use this theorem in the orbifold version the proof of which is in

[BG00].

De�nition 4.3. A (strict) almost contact structure on a di↵erentiable manifolds

M is a triple (⇠; ⌘;�); where � is a tensor �eld of type (1; 1), ⇠ is a vector �eld, ⌘ is

19



Chapter 4. Contact Geometry

a 1-form satisfying

⌘(⇠) = 1 and � � � = �I+ ⇠ ⌦ ⌘;

. A smooth manifold with such a structure is called an almost contact manifold.

De�nition 4.4. Let M be a (strict) almost contact manifold. A Riemannian metric

g on M is said to be compatible with the almost contact structure if for any vector

�elds X; Y on M we have:

g(�(X);�(Y )) = g(X; Y )� ⌘(X)⌘(Y ):

An almost contact structure with a compatible metric is called an almost contact

metric structure.

Lemma 4.2. [BG08] Let (M; ⇠; ⌘;�) be an almost contact manifold. Then the fol-

lowing are equivalent:

(i) There exists a compatible Riemannian metric on M such that the orbits of ⇠ are

geodesics.

(ii) $
⇠

⌘ = 0:

(iii) ⇠cd⌘ = 0:

De�nition 4.5. An almost complex structure J in D = ker ⌘, ⌘ a 1-form, is said to

be compatible with the symplectic form d⌘ if d⌘(JX; JY ) = d⌘(X; Y ) for all vector

�elds X; Y , and d⌘(JX;X) > 0 for all X 6= 0 hold. We can extend the endomorphism

J to an endomorphism � on all of TM by setting �⇠ = 0: So we have the conditions

d⌘(�X;�Y ) = d⌘(X; Y ) for all X; Y ; d⌘(�X;X) > 0 for all X 6= 0; (4.1)
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Chapter 4. Contact Geometry

and (⇠; ⌘;�) de�nes an almost contact structure on M:

De�nition 4.6. Let (M; ⌘) be a contact manifold. Then an almost contact structure

(⇠; ⌘0;�) is said to be compatible with the contact structure if ⌘0 = ⌘; ⇠ is its Reeb

vector �eld and the endomorphism � satis�es the conditions 4.1. We denote by AC(⌘)

the set of compatible almost contact structures on (M; ⌘):

Every compatible almost contact structure is determined uniquely by the endo-

morphism � which in turn is determined uniquely by the almost complex structure

on D: So we can give the set AC(⌘) the subspace topology of the space of sections

�(End TM) with the C1 compact open topology. We have

Theorem 4.2. [BG08] Let (M; ⌘) be a strict contact manifold. Then there is a one to

one correspondence between compatible almost complex structures J on the symplectic

vector bundle (D; d⌘) and compatible almost contact structures (⇠; ⌘;�): Moreover,

the space AC(⌘) is contractible.

De�nition 4.7. A (strict) contact manifold (M; ⌘) with a compatible strict almost

contact metric structure (⇠; ⌘;�; g) such that g(X;�Y ) = d⌘(X; Y ) is called a con-

tact metric structure.

De�nition 4.8. A contact metric structure (⇠; ⌘;�; g) is called K-contact if ⇠ is a

Killing vector �eld of g; i.e. if $
⇠

g = 0: A manifold with such a structure is called a

K-contact manifold.

Theorem 4.3. [BG08] On a complete contact metric manifold (M; ⌘; g); the following

conditions are equivalent:

1. The characteristic foliation F
⇠

is a Riemannian foliation.
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2. g is bundle-like.

3. The Reeb �ow is an isometry.

4. The Reeb �ow is a CR transformation.

5. The Reeb �ow leaves the (1; 1) tensor �eld � invariant.

6. The contact metric structure (M; ⌘; g) is K-contact.

Let M be a smooth manifold, and consider the cone on M as C(M) = M ⇥ R+:

We identify M with M ⇥ f1g:

In this case the natural Riemannian structure on C(M) is not the product metric,

but the so-called warped product M ⇥
r

2 R+; where r denotes the coordinate on R+:

De�nition 4.9. For any Riemannian metric g
M

on M; the warped product metric

on C(M) = R+ ⇥M is the Riemannian metric de�ned by

g = dr2 + �2(r)g
M

; r 2 R+

and �(r) is a smooth function. If �(r) = r then (C(M); g) is called the metric cone

onM .

There is a one-to-one correspondence between Riemannian metrics onM and cone

metrics on C(M): The cone metric admits a group of homothety transformations

de�ned by (x; r) 7! (x; �r): The in�nitesimal generator of the homothety group is the

Liouville vector �eld de�ned by

 = r
@

@r
:
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The cone metric is homogeneous of degree 2 and satis�es

$ g = 2g:

Given an almost contact structure (⇠; ⌘;�) onM we de�ne a section I of End(TC(M))

by

IY = �Y + ⌘(Y ) 

and

I = � ⇠:

Then I de�nes an almost complex structure on C(M) that is homogeneous of

degree 0 in r: I is invariant under the �ow of  and $ I = 0.

Conversely, we can begin with an almost complex structure I on C(M) such that

1. I is invariant under  ;.

2. I is tangent to M:

From this one sees that ⇠ = I de�nes a nowhere vanishing vector �eld onM: Letting

L
⇠

denote the trivial line bundle generated by ⇠; we have an exact sequence

0��!L
⇠

��!TM��!Q��!0;

and there is a one-to-one correspondence between the splittings of this exact sequence

and 1-forms ⌘ onM that satisfy ⌘(⇠) = 1: This correspondence is given by ⌘ 7! ker ⌘:
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Chapter 4. Contact Geometry

We can de�ne an endomorphism � of TM by

� =

8
>><

>>:

I; on ker ⌘

0 on L
⇠

:

(4.2)

then �2 = �I+ ⇠ ⌦ ⌘; so (⇠; ⌘;�) de�nes an almost contact structure on M:

De�nition 4.10. A symplectic cone is a cone C(M) =M ⇥R+ with a symplectic

structure ! which has a one parameter group ⇢
t

of homotheties whose in�nitesimal

generator is a vector �eld on R+:

We have:

Proposition 4.1. [BG08] Let ⌘ be a 1-form on the manifold M: Then ⌘ de�nes a

strict contact structure on M if and only if the 2-form d(r2⌘) de�nes a symplectic

structure on C(M) =M ⇥ R+:

and

Proposition 4.2. [BG08] There is a one-to-one correspondence between the contact

metric structures (⇠; ⌘;�; g) on M and almost K�ahler structures (dr2+r2g; d(r2⌘); I).

and also

Proposition 4.3. [BG08] A contact metric structure (⇠; ⌘;�; g) is K-contact if and

only if  � i⇠ is pseudo-holomorphic with respect to the almost K�ahler structure

(dr2 + r2g; d(r2⌘); I) on C(M):

De�nition 4.11. An almost contact structure (⇠; ⌘;�) is said to be normal if the

corresponding almost complex structure I on C(M) is integrable.
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So we have

Proposition 4.4. [BG08] There is a one-to-one correspondence between the normal

almost contact structures (⇠; ⌘;�) on M and almost complex structures I on C(M)

that are integrable. Furthermore, if g is a Riemannian metric onM that is compatible

with the almost contact structure, then the cone metric h = dr2 + r2g is Hermitian

with respect to the complex structure I:

De�nition 4.12. A normal contact metric structure S = (⇠; ⌘;�; g) on M is called

a Sasakian structure. A pair (M;S) is called a Sasakian manifold.

De�nition 4.13. A contact metric manifold (M; ⇠; ⌘;�; g) is Sasakian if its metric

cone (C(M); dr2 + r2g; d(r2⌘); I) is K�ahler.
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K Contact and Sasakian Structures

De�nition 5.1. The order of a quasi-regular K-contact structure S is the least com-

mon multiple of the orders of the leaf holonomy groups of the characteristic foliation,

we denote the order of S by ⌫(S). A K-contact manifold with ⌫ <1 is said to be of

�nite order.

We have

Proposition 5.1. [BG08] Let (⇠; ⌘) be a quasi-regular strict contact structure on M

such that the leaves of the characteristic foliation F
⇠

are compact. Then the Reeb �ow

generates a locally free circle action on M: Furthermore, there exists a Riemannian

metric g such that the induced structure (⇠; ⌘; g) is K-contact.

We have:

Theorem 5.1. [BG08] Let (M; ⇠; ⌘;�; g) be a quasi-regular K-contact manifold with

compact leaves. Then
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1. The space of leaves M=F
⇠

is an almost K�ahler orbifold such that the canonical

projection ⇡ :M�!M=F
⇠

is an orbifold Riemannian submersion.

2. M is the total space of a principal S1-orbibundle over M=F
⇠

with connection

1-form ⌘ whose curvature d⌘ = ⇡⇤!, ! a symplectic form on M=F
⇠

:

3. ! de�nes a nontrivial integral orbifold cohomology class

[p⇤!] 2 H2
orb

(M=F
⇠

;Z)

where p is the natural projection.

4. The leaves of F
⇠

are all geodesics.

5. If the characteristic foliation F
⇠

is regular, then the circle action is free and

M is the total space of a principal S1-bundle over an almost K�ahler, hence,

symplectic manifold de�ning an integral class [!] 2 H2(M=F
⇠

;Z):

6. (M; ⇠; ⌘;�; g) is Sasakian if and only if (M=F
⇠

; !) is K�ahler.

We have also:

Theorem 5.2. [BG08] Let (Z; !; J) be an almost K�ahler orbifold with [p⇤!] 2

H2
orb

(Z;Z); and let M denote the total space of the circle V-bundle de�ned by the

class [!]: Then the orbifold M admits a K-contact structure (⇠; ⌘;�; g) such that

d⌘ = ⇡⇤!, where ⇡ : M�!Z is the natural orbifold projection map. Furthermore, if

all the local uniformizing groups of Z inject into the structure group S1, then M is a

smooth K-contact manifold.

We have:
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Proposition 5.2. [BG08] Let (M; ⇠; ⌘;�; g) be a compact K-contact manifold. Then

the leaf closures of the Reeb �ow are the orbits of a torus T lying in the center of

the Lie group A(M; ⇠; ⌘;�; g) of automorphisms of (⇠; ⌘;�; g) and the Reeb �ow is

conjugate to a linear �ow on T:

Basic Cohomology

Let F be a foliation of a smooth manifold M: A di↵erential r-form ! on M is said

to be basic if for all vector �elds V on M that are tangent to the leaves of F the

following conditions hold:

V c! = 0; $
V

! = 0: (5.1)

Let ⌦r

B

(F) denote sheaf of germs of basic r-forms on M; and ⌦r
B

(F) the set of its

global sections. We have ⌦
B

(F) = �
r

⌦r
B

(F) is closed under addition and exterior

multiplication and so is a subalgebra of the algebra of di↵erential forms on M: And

we have

$
V

d! = d$
V

! = 0; and V cd! = $
V

! � d(V c!) = 0: (5.2)

that is, exterior derivation takes basic forms to basic forms. So the subalgebra ⌦
B

(F)

forms a subcomplex of the de Rham complex and its cohomology ring H⇤
B

(F) =

H⇤
B

(F ; d
B

) is called the basic cohomology ring of F : Here d
B

denotes the restriction

of d to ⌦
B

(F):
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The closures of the leaves of the characteristic foliation F
⇠

is a torus

T ⇢ A(⇠; ⌘;�; g) ⇢ I(M; g):

Let ⌦(M)T denote the subalgebra of ⌦(M) consisting of T-invariant forms. Since the

orbit of ⇠ is dense in T any basic form is T-invariant, so ⌦
B

(F) ⇢ ⌦(M)T and

Proposition 5.3. [BG08] There is an exact sequence of complexes

0��!⌦⇤
B

(F
⇠

)��!⌦⇤(M)T
⇠c
��!⌦⇤�1

B

(F
⇠

)��!0:

and we have a long exact cohomology sequence

� � � ��!Hp

B

(F
⇠

)
◆⇤��!Hp(M;R)

jp��!Hp�1
B

(F
⇠

)
�

��!Hp+1
B

(F
⇠

)��!� � � (5.3)

where �[↵]
B

= [d⌘]
B

[ [↵]
B

; and j
p

is the composition of ⇠c with the isomorphism

Hr(⌦(M)T) ⇡ Hr(M;R). And we have

Proposition 5.4. [BG08] Let (M; ⇠; ⌘;�; g) be a quasi-regular K-contact manifold

with ⇡ : M�!M=F
⇠

an orbifold Riemannian submersion. Then ⇡ induces a ring

isomorphism

⇡⇤ : H⇤(M=F
⇠

;R)
⇡
�!H⇤

B

(F
⇠

):

We will use the following theorem in the next chapter.

Theorem 5.3. [BG08] Let (M2n+1; S) be a compact Sasakian manifold. Then the pth

Betti number b
p

(M) is even for p odd with 1  p  n; and for p even with n < p  2n:
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Sasakian Geometry on Lens space

bundles over Riemann Surfaces

6.1 Complex Structures on ⌃g ⇥ S2 and ⌃g ~⇥S2

By a ruled surface we mean what is called a geometrically ruled surface that is a

CP1 bundle over ⌃
g

. It is well known (cf. [MS98], pg. 203) that there are two

di↵eomorphism types of ruled surfaces of a �xed genus g. These are the trivial

bundle ⌃
g

⇥ S2 and non-trivial S2-bundles over ⌃
g

denoted by ⌃
g

~⇥S2, and they are

distinguished by their second Stiefel-Whitney class w2.

It is well known [Ati55, Ati57, BPVdV84] that all complex structures on ruled

surfaces arise by considering them as projectivizations of rank two holomorphic vector

bundles E over a Riemann surface ⌃
g

of genus g. Thus if (M;J) is a ruled surface

of genus g we can write it as (M;J) = P(E) ! ⌃
g

, where ⌃
g

is equipped with a
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complex structure J
⌧

where ⌧ 2M
g

, the moduli space of complex structures on ⌃
g

.

We will divide the vector bundles E into two types, the indecomposable bundles

and the ones that can be written as the sum of line bundles. In the latter case we

can by tensoring with a line bundle bring E to the form O � L where O denotes

the trivial line bundle and L is a line bundle of degree n 2 Z. Let us subdivide our

bundles as:

1. E is indecomposable

(a) E is stable

(b) E is non-stable

2. E = O�L, where L is a degree 0 holomorphic line bundle on ⌃
g

and O denotes

the trivial (holomorphic) line bundle on ⌃
g

.

3. E = O � L, where L is a holomorphic line bundle on ⌃
g

of non-zero degree n.

We will denote the complex manifolds occurring in case (2) and (3) by S
n

, where

n = degL, and call them pseudo-Hirzebruch surfaces.

Assume now that (M;J) is a pseudo-Hirzebruch surface S
n

with n � 0. Let E
n

denote the zero section, of M ! ⌃
g

. Then E
n

� E
n

= n (where n = 0 in case (2)). If

F denotes a �ber of the ruling M ! ⌃
g

, then F � F = 0, while F � E
n

= 1. Any real

cohomology class in the two dimensional space H2(M;R) may be written as a linear

combination of (the Poincare duals of) E
n

and F ,

m1PD(En) +m2PD(F ) :
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In particular, the K�ahler cone K corresponds to m1 > 0;m2 > 0 (see [Fuj92] or

Lemma 1 in [TF98]).

Consider the cohomology class ↵
k1;k2 2 H2(M;R) given by

↵
k1;k2 = k1h+ k2PD(F ); (6.1)

where h = PD(E0) = PD(E
n

)�mPD(F ) when n = 2m is even and h = PD(E1) =

PD(E
n

) �mPD(F ) when n = 2m + 1 is odd. Then it follows from the above that

↵
k1;k2 is a K�ahler class if and only if k1 > 0 and k2=k1 > m.

The cohomology class in (6.1) is of course de�ned even if J belongs to case (1)

and we have the following general Lemma which is essentially the rankE = 2 case of

Proposition 1 in [Fuj92].

Lemma 6.1. [Fuj92]

✏ For any (M;J) of case (1)(a) with deg(E) even, ↵
k1;k2 is a K�ahler class if and

only if k1; k2 > 0.

✏ For any (M;J) of case (1)(a) with deg(E) odd, ↵
k1;k2 is a K�ahler class if and

only if k1 > 0 and k2 +
k1
2 > 0.

✏ For any (M;J) of case (1)(b), let ~m equal the (non-negative and well-de�ned)

number max(E) � deg(E)=2, where max(E) denotes the maximal degree of a

sub line bundle of E.

{ If deg(E) is even, ↵
k1;k2 is a K�ahler class if and only if k1 > 0 and

k2
k1
> ~m.
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{ If deg(E) is odd, ↵
k1;k2 is a K�ahler class if and only if k1 > 0 and

k2
k1
+ 1
2 >

~m.

✏ For any (M;J) of case (2) with deg(E) even, ↵
k1;k2 is a K�ahler class if and

only if k1; k2 > 0.

✏ For any (M;J) of case (3) above with n = 2m or n = 2m + 1 and m 2 Z+,

↵
k1;k2 is a K�ahler class if and only if k1 > 0 and k2

k1
> m.

6.1.1 Extremal K�ahler Metrics

Let (M;J) be a compact complex manifold admitting at least one K�ahler metric. For

a particular K�ahler class ↵, let ↵+ denote the set of all K�ahler forms in ↵.

Calabi [Cal82] suggested that one should look for extrema of the following func-

tional � on ↵+:

� : ↵+ ! R

�(!) =

Z

M

s2d�;

where s is the scalar curvature and d� is the volume form of the K�ahler metric

corresponding to the K�ahler form !. Thus � is the square of the L2-norm of the

scalar curvature.

Proposition 6.1. [Cal82] The K�ahler form ! 2 ↵+ is an extremal point of � if

and only if the gradient vector �eld grad s is a holomorphic real vector �eld, that is

$
grad s

J = 0. When this happens the metric g corresponding to ! is called an extremal

K�ahler metric.
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Notice that if $
grad s

J = 0, then Jgrad s is a Hamiltonian Killing vector �eld

inducing Hamiltonian isometries.

6.1.2 Circle Bundles over Riemann Surfaces

Let M3
g

denote the total space of an S1 bundle over a Riemann surface ⌃
g

of genus

g � 1 and for simplicity we assume that this bundle arises from a generator in

H2(⌃
g

;Z).

There are many inequivalent Sasakian structures on M3
g

with constant scalar cur-

vature. These correspond to the inequivalent K�ahler structures on the base ⌃
g

arising

from the moduli spaceM
g

of complex structures on ⌃
g

. When writing M3
g

we often

assume that a transverse complex structure has been chosen without specifying which

one. Thus, we write the Sasakian structure with constant scalar curvature on M3
g

as

S1 = (⇠1; ⌘1;�1; g1) and call it the standard Sasakian structure. However, when we do

wish to specify the complex structure on ⌃
g

we shall denote it by ⌧ 2M

g

and denote

the induced endomorphism on the circle bundle by �
⌧

.

We denote the fundamental group of M3
g

by �3(g). Then from the long exact

homotopy sequence of the bundle S1�!M3
g

�!⌃
g

and the fact that ⇡2(⌃g) = 0 we

have

0��!Z��!�3(g)��!�2(g)��!1 (6.2)

where �2(g) is the fundamental group of ⌃g. So �3(g) is an extension of �2(g) by Z.

Furthermore, it does not split [Sco83].
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6.1.3 The Join Construction

Recall the de�nition of the lens spaces. Let ! = e
2⇡

p
�1

l2 and consider the action from

S3 7! S3 de�ned by (u; v) 7! (!w1u; !w2v). The quotient space of S3 by this action

is called the lens space and we are going to denote it L(l2;w1; w2).

We describe the join of M3
g

with the sphere S3w. Recall the weighted sphere as

presented in Example 7.1.12 of [BG08]. Let ⌘0 denote the standard contact form on

S3. It is the restriction to S3 of the 1-form
P2

i=1(yidxi�xidyi) in R4. Letw = (w1; w2)

be a weight vector with w
i

2 Z+. Then the weighted contact form is de�ned by

⌘w =
⌘0

⌘0(⇠w)
(6.3)

with Reeb vector �eld ⇠w =
P2

i=1wiHi

where H
i

is the vector �eld on S3 induced by

y
i

@
xi � xi@yi on R4.

We denote this weighted sphere by S3w and consider the manifold M
3
g

⇥ S3w with

contact forms ⌘1; ⌘w on each factor, respectively. There is a 3-dimensional torus T 3

acting onM3
g

⇥S3w generated by the Lie algebra t3 of vector �elds ⇠1; H1; H2 that leaves

both 1-forms ⌘1; ⌘w invariant. Now the join construction [BGO07, BG08] provides

us with a new contact manifold by quotienting M3
g

⇥ S3w with an appropriate circle

subgroup of T 3. Let (x; u) 2 M3
g

with x 2 ⌃
g

and u in the �ber, and (z1; z2) 2 S3w.

Consider the circle action on M3
g

⇥ S3w given by

(x; u; z1; z2) 7! (x; eil2✓u; e�iw1✓z1; e
�iw2✓z2) (6.4)

where the action u 7! eil2✓u is that generated by l2⇠1. We also assume, without loss
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of generality, that gcd(l2; w1; w2) = 1. The action (6.4) is generated by the vector

�eld l2⇠1 � ⇠w. It has period 1=l2 on the M3
g

part, and if l1 = gcd(w1; w2) it will

have period �1=l1 on the S3w part. With this in mind, when considering quotients we

shall always take the pair (w1; w2) to be relatively prime positive integers in which

case the in�nitesimal generator of the action is given by the vector �eld l2⇠1 � l1⇠w.

In order to construct the appropriate contact structure with 1-form l1⌘1 + l2⌘w, we

renormalize the vector �eld and consider

Lw =
1

2l1
⇠1 �

1

2l2
⇠w =

1

2l1
⇠1 �

1

2l2
(w1H1 + w2H2): (6.5)

This generates a free circle action on M3
g

⇥ S3w which we denote by S1(l1; l2;w).

De�nition 6.1. The quotient space of M3
g

⇥ S3w by the action S1(l1; l2;w) is called

the (l1; l2)-join of M3
g

and S3w , and is denoted by M3
g

?
l1;l2 S

3
w.

M3
g

?
l1;l2 S

3
w will be a smooth manifold if gcd(l2; �2l1) = 1 where �2 = w1w2.

Moreover, since the 1-form l1⌘1 + l2⌘w on M3
g

⇥ S3w is invariant under T 3, we get a

contact form on M3
g

?
l1;l2 S

3
w, denoted by ⌘l1;l2;w, which is invariant under the fac-

tor group T 2(l1; l2;w) = T 3=S1(l1; l2;w). The corresponding contact structure is

D
l1;l2;w=ker ⌘l1;l2;w, and the Reeb vector �eld Rl1;l2;w of ⌘

l1;l2;w is the restriction to

M3
g

?
l1;l2 S

3
w of the vector �eld

~R
l1;l2;w =

1

2l1
⇠1 +

1

2l2
⇠w (6.6)

on M3
g

⇥ S3w.
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The quotient of M3
g

⇥ S3w by the 2-torus generated by Lw and Rw splits giving

the complex orbifold ⌃
g

⇥CP(w) with the product complex structure and symplectic

form ! = l1!g + l2!w where !
g

; !w are the standard symplectic form on ⌃
g

and

CP(w), respectively. Then M3
g

?
l1;l2 S

3
w is the total space of the S

1 orbibundle

⇡ :M3
g

?
l1;l2 S

3
w��!⌃g ⇥ CP(w)

which satis�es ⇡⇤! = d⌘
l1;l2;w. This is the orbifold Boothby-Wang construction, the

orbifold M3
g

?
l1;l2 S

3
w not only inherits a quasi-regular contact structure, but also a

natural Sasakian structure Sw = (⇠w; ⌘l1;l2;w;�w; gw) from the product K�ahler struc-

ture on the base. In particular, the underlying CR structure which is inherited from

the product complex structure on ⌃
g

⇥CP(w) is (D
l1;l2;w; Jw) where Jw = �wjDl1;l2;w

.

It seems a complicated problem to determine the homotopy type of

M3
g

?
l1;l2 S

3
w

when l2 > 1: In [BTF14a] it is done the case when l2 = 1: There is shown that

M3
g

?
l1;1 S

3
w are S

3 bundles over ⌃
g

and that there are two di↵eomorphism types; the

trivial bundle and the nontrivial one. For the case l2 > 1, we compute the cohomology

groups and cohomology ring of M3
g

?
l1;l2 S

3
w:

It follows from Proposition 7.6.7 of [BG08] that

M3
g

?
l1;l2 S

3
w
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is a lens space bundle over ⌃
g

.

6.1.4 The Sasaki Cone and Deformed Sasakian Structures

Recall the (unreduced) Sasaki cone [BGS08]. Let S0 = (⇠0; ⌘0;�0; g0) be a Sasakian

structure and let Aut(S0) its group of automorphisms. We denote the Lie algebra of

in�nitesimal automorphisms of S0 by aut(S0). We let tk ⇢ aut(S0) denote the Lie

algebra of a maximal torus in Aut(S0), which is unique up to conjugacy. It has rank

k. The unreduced Sasaki cone is given by

t

+
k

= f⇠ 2 t

k

j ⌘0(⇠) > 0g:

Here we consider the Sasaki cone of our Sasakian structure

S
l1;l2;w = (⇠w; ⌘l1;l2;w;�w; gw)

Recall from Section 6.1.3 that on M3
g

⇥ S3w we have the Lie algebra t3 generated by

⇠1; H1; H2. Let t1(w) be the Lie algebra generated by the vector �eld Lw 2 t3 of

Equation (6.5). There is an exact sequence of Abelian Lie algebras

0��!t1(w)��!t3��!t2(w)��!0;
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and we view the quotient algebra t2(w) = t3=t1(w) as a Lie algebra on M5
l1;l2;w: Then

the unreduced Sasaki cone t+2 (w) of M
5
l1;l2;w is de�ned by

t

+
2 (w) = f⇠ 2 t2(w) j ⌘l1;l2;w(⇠) > 0g: (6.7)

We can take ⇠w; H1 as a basis for t2(w). Then for R 2 t

+
2 (w) writing R = a⇠w+bH1

we must have a > 0 and aw1 + b > 0: We can also write

R = a⇠w + bH1 = (aw1 + b)H1 + aw2H2 = v1H1 + v2H2 = ⇠v

which identi�es the Sasaki cone of M5
l1;l2;w with the Sasaki cone of S

3
w: All Sasakian

structures Sv = (⇠v; ⌘l1;l2;v;�v; gv) in the Sasaki cone t
+
2 (w) have the same underlying

CR structure, namely (D
l1;l2;w; Jw). We have

⌘
l1;l2;v =

⌘
l1;l2;w

⌘
l1;l2;w(⇠v)

; �vjDl1;l2;w
= �wjDl1;l2;w

= Jw: (6.8)

It is the reduced Sasaki cone (D; J) that can be thought of as the moduli space

of Sasakian structures associated to an underlying CR structure. It is simply the

quotient of the unreduced Sasaki cone by the Weyl group of the CR automorphism

group. This action amounts to ordering either the w
i

s or the v
i

: The proof of the

following lemma is in [BTF14a]

Lemma 6.2. Let M be a quasiregular Sasakian manifold with Sasakian structure

S = (⇠; ⌘;�; g)

and let ⇡ :M��!Z be the orbifold Boothby-Wang map to the K�ahler orbifold Z with
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K�ahler form !. Let X be a vector �eld on Z leaving both the K�ahler form ! and the

complex structure J invariant. Then X lifts to an in�nitesimal automorphism X of

the Sasakian structure S that is unique modulo the ideal I
⇠

generated by ⇠ if and only

if it is Hamiltonian. Furthermore, if X is Hamiltonian with Hamiltonian function H

satisfying Xc! = �dH, then X can be represented by Xh + ⇡⇤H⇠ where Xh denotes

the horizontal lift of X.

We �rst consider the smooth join, that is, w = (1; 1).

Lemma 6.3. Consider the Sasakian structure

S
l1;l2;(1;1) = (⇠l1;l2;(1;1); ⌘l1;l2;(1;1);�⌧ ; g)

on the 5-manifold M5
l1;l2;(1;1)

with

�
⌧

jDl1;l2;(1;1)
= J 2 J

Let X denote the in�nitesimal generator of the induced Hamiltonian circle action

on M5
l1;l2;(1;1)

: Meaning that X is the fundamental vector �eld of the action so X is

Hamiltonian. Then we have that the Sasaki cone has dimension two.

Proof. The proof of this lemma is similar to the corresponding lemma in [BTF14a].

For i = 1; 2 we let (⌘
i

; ⇠
i

) denote the contact 1-form and its Reeb vector �eld on

M3
g

and S3, respectively. We use the lemma above to lift the Hamiltonian circle

action: ~A(�)(w; [u; v]) = (w; [u; �v]) where � 2 C with j�j = 1. This action is clearly

holomorphic.
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The Reeb vector �eld together with the lift X = X̂h+⌘(X)⇠ span the Lie algebra

t2 of a maximal torus T2 2 Con(M5
l1;l2

; ⌘
l1;l2;w). So the Sasaki cone has dimension

two.

We now want to describe the K�ahler orbifold associated to the Sasakian structure

Sv when this structure is quasi-regular. For this purpose we can assume that v1 and

v2 are relatively prime positive integers.

Proposition 6.2. Let v = (v1; v2) with v1; v2 2 Z+ and gcd(v1; v2) = 1, and let ⇠v

be a Reeb vector �eld in the Sasaki cone t

+
2 (w). Then the quotient of M5

l1;l2;w by the

circle action S1(v) generated by ⇠v is a complex �ber bundle over ⌃
g

whose �ber is

the complex orbifold CP(v)=Z l2
s
: Where

s = gcd(jw2v1 � w1v2j; l2):

Proof. The computations here are similar to the corresponding ones in [BTF13].

We know that the quotient M5
l1;l2;w=S

1(v) is a projective algebraic orbifold with an

induced orbifold K�ahler structure. We denote this K�ahler orbifold by Bv;w, and

consider the 2-dimensional subalgebra t2(v;w) of t3 generated by the vector �elds Lw

and ⇠v on M3
g

⇥ S3w: The S1 action on the lens space is done as follows:

First

L(l2; l1w1; l1w2) = S3w=Zl2

then the S1 = S1
✓

=Z
l2 action given by

(x; u; z1; z2) 7! (x; ei✓; [e�i
l1w1✓

l2 z1; e
�i l1w2✓

l2 z2])
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where the brackets denote the equivalence class de�ned below.

Then the T 2 = S1
�

⇥ (S1
✓

=Z
l2) action on M

3
g

⇥ L(l2; l1w1; l1w2) is given by

(x; u; [z1; z2]) 7! (x; ei✓u; [ei(v1��
l1w1✓

l2
)
z1; e

i(v2�� l1w2✓
l2

)
z2]); (6.9)

where (x; u) 2 M3
g

with u in the �ber of the bundle ⇢ : M3
g

��!⌃
g

; and [z1; z2] 2

L(l2; l1w1; l1w2): The brackets in the action (6.9) denote the equivalence class de�ned

by (z01; z
0
2) ⇠ (z1; z2) if (z01; z02) = (�l1w1z1; �

l1w2z2) for �l2 = 1. By taking the quotient

�rst by the circle action generated by Lw gives the commutative diagram

M3
g

⇥ L(l2; l1w1; l1w2)

&
???y⇡B M5

l1;l2;w

.

Bv;w

(6.10)

where ⇡
B

is the quotient projection by the 2-torus generated by t2(v;w); the south-

east arrow is the quotient projection by the circle action generated by Lw; and the

southwest arrow is the quotient projection generated by S1(v): A point of Bv;w

is given by the equivalence class [x; u; z1; z2] de�ned by the T 2 action (6.9). We

claim that Bv;w is a bundle over ⌃
g

with �ber CP(v)=Z l2
s
: To see this consider

the projection ⇡ : M3
g

⇥ L(l2; l1w1; l1w2)��!⌃g de�ned by ⇡ = ⇢ � ⇡1 where ⇡1 :

M3
g

⇥ L(l2; l1w1; l1w2)��!M3
g

is projection onto the �rst factor. We have

⇡(x; ei✓u; [ei(v1��
lw1✓
l2
)
z1; e

i(v2�� lw2✓
l2
)
z2]) = ⇡(x; u; [z1; z2]) = x;
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so the torus acts in the �bers of ⇡: This gives a map ⌧ : Bv;w��!⌃g de�ned by

⌧([x; u; z1; z2]) = x; so ⇡ factors through Bv;w giving the commutative diagram

M3
g

⇥ L(l2; l1w1; l1w2)

& ⇡
B???y⇡ Bv;w

. ⌧

⌃
g

:

(6.11)

To see the �bers of ⌧ let us do the analysis of the T 2 action given by Equation

(6.9).We look for �xed points under a subgroup of the circle S1
�

. So, we set

(eiv1�z1; e
iv2�z2) = (e

�2⇡ l1w1
l2

ri

z1; e
�2⇡ l1w2

l2
ri

z2)

for some r = 0; : : : l2 � 1: If z1z2 6= 0 we have

v1� = 2⇡(�
l1w1
l2

r + k1); v2� = 2⇡(�
l1w2
l2

r + k2) (6.12)

for some integers k1; k2. We get

r =
l2
l1

k2v1 � k1v2
w2v1 � w1v2

(6.13)

which must be a nonnegative integer less than l2. We can solve equation (6.12) for

�; we get

� = 2⇡
k1w2 � k2w1
w2v1 � w1v2

: (6.14)
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Now we write (6.13) as

r =
l2

gcd(jw2v1 � w1v2j; l2)
k2v1 � k1v2

l1
w2v1�w1v2

gcd(jw2v1�w1v2j;l2)
(6.15)

Since v1 and v2 are relatively prime, we can choose k1 and k2 so that

k2v1 � k1v2
l1

w2v1�w1v2
gcd(jw2v1�w1v2j;l2)

= 1

This gives

r =
l2

gcd(jw2v1 � w1v2j; l2)
(6.16)

Next suppose that z2 = 0. Then we have eiv1� = e
�2⇡ l1w1

l2
ri for some r = 1; : : : l2.

We get

� = 2⇡(� l1w1r
v1l2

+
k

v1
): (6.17)

A similar calculation at z1 = 0 gives

� = 2⇡(� l1w2r
0

v2l2
+
k0

v2
): (6.18)

We want to �nd out when regularity can happen. For this we need the minimal angle

at the two endpoints to be equal. We get

� l1w2r
0

v2l2
+
k0

v2
= � l1w1r

v1l2
+
k

v1
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for some choice of integers k; k0 and nonnegative integers r; r0 < l2
l1
. We have

�l1w2r0 + k0l2
v2

=
�l1w1r + kl2

v1
: (6.19)

We assume that w 6= (1; 1): We want to �nd the periods of the orbits of the �ow

of the Reeb vector �eld de�ned by the weight vector v = (v1; v2): In particular, we

want to know when there is a regular Reeb vector �eld in the w-Sasaki cone.

Let us �nd the minimal angle, hence the generic period of the Reeb orbits, on the

dense open subset Z de�ned by z1z2 6= 0: Set

s = gcd(jw2v1 � w1v2j; l2)

Lemma 6.4. The minimal angle on Z is 2⇡
s

: Thus, S1
�

=Z
s

acts freely on the dense

open subset Z:

Proof. We choose k1; k2 in Equation (6.15) so that

k2v1 � k1v2
l1

w2v1�w1v2
gcd(jw2v1�w1v2j;l2)

= 1:

We get

l1
w2v1 � w1v2

s
= k2v1 � k1v2:

Rewriting this becomes

(sk2 � l1w2)v1 = (sk1 � l1w1)v2:
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Since v1 and v2 are relatively prime this equation implies ski = l1wi+mvi for i = 1; 2

and some integerm. Putting this into Equation (6.14) we get � = 2⇡m
s

; so the minimal

angle is 2⇡
s

:

We have for the endpoints de�ned by z2 = 0 and z1 = 0:

Proposition 6.3. The following hold:

1. The period on Z; namely 2⇡
s

; is an integral multiple of the periods at the end-

points. Hence, S1
�

=Z
s

acts e↵ectively on M
l1;l2;w:

2. The period at the endpoint z
j

= 0 is 2⇡ 1
vil2

where i ⌘ j + 1 mod 2: So the end

points have equal periods if and only if v = (1; 1):

3. The Sasaki cone contains a regular Reeb vector �eld if and only if v = (1; 1)

and l2 divides w1 � w2:

Proof. A Reeb vector �eld will be regular if and only if the period of its orbit is the

same at all points. We know that it is 2⇡
s

on Z: We need to determine the minimal

angle at the endpoints. From Equation (6.17) the angle at z2 = 0 is

� = 2⇡(
�l1w1r + kl2

v1l2
):

Now

gcd(l2; l1w1) = 1

so we can choose k and r such that �l1w1r + kl2 = 1: This gives period 2⇡ 1
v1l2
.

Similarly, at z1 = 0 we have the period 2⇡ 1
v2l2

: So the period is the same at the

46



Chapter 6. Sasakian Geometry on Lens space bundles over Riemann Surfaces

endpoints if and only if v1 = v2 which is equivalent to v = (1; 1) since v1 and v2 are

relatively prime which proves (2):

Moreover, the period is the same at all points if and only if

v = (1; 1); l2 = s = gcd(jw2v1 � w1v2j; l2): (6.20)

But the last equation holds if and only if l2 divides w1 � w2 proving (3):

(1) follows from the fact that for each i = 1; 2, vi
l2
is an integral multiple of

gcd(jw2v1 � w1v2j; l2) = s:

We have the action of the 2-torus S1
�

=Z
s

⇥ (S1
✓

=Z
l2) onM

3
g

⇥L(l2; l1w1; l1w2) given

by expression (6.9) whose quotient space is B
l1;l2;v;w. It follows from the action (6.9)

that B
l1;l2;v;w is a bundle over ⌃g with �ber a weighted projective space of complex

dimension one. By (1) of Proposition 6.3 the generic period is an integral multiple,

say m
i

, of the period at the divisor D
i

: Thus, for i = 1; 2 we have

m
i

= v
i

l2s = v
i

m: (6.21)

Observe that from its de�nition m = l2
s

, so m
i

is a positive integer. It is the rami�-

cation index of the branch divisor D
i

: We think of D1 as the zero section and D2 as

the in�nity section of the bundle B
l1;l2;v;w: Thus, Bl1;l2;v;w is a �ber bundle over ⌃g

with �ber

CP1[v1; v2]=Zm

The complex structure of B
l1;l2;v;w is the projection of the transverse complex struc-

ture on M
l1;l2;w which in turn is the lift of the product complex structure on ⌃g ⇥
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CP1[w]:

We call the K�ahler orbifold B
l1;l2;v;w an orbifold pseudo-Hirzebruch surface.

6.1.5 Regular Sasakian Structures

It follows from Proposition 6.2 that each Sasaki cone (M5
l1;l2;w; Jw) contains a unique

ray of regular Sasakian structures determined by setting v = (1; 1):We have the Reeb

vector �eld R = H1+H2 and B1;w is a pseudo-Hirzebruch surface with trivial orbifold

structure. By the Leray-Hirsch Theorem the cohomology groups are obtained from

the tensor product of the cohomology groups of the base and the �ber (see Section

1.3 of [ACGTF08]). Thus, the �rst Chern class satis�es

c1(B1;w) = (2PD(En) + (2� 2g � n)PD(F ) (6.22)

where the divisors E
n

and F satisfy E
n

� E
n

= n;E
n

� F = 1 and F � F = 0: Since

the second Stiefel-Whitney class is the mod 2 reduction of c1, we see that B1;w is

di↵eomorphic to ⌃
g

⇥S2 when n is even and di↵eomorphic to ⌃
g

~⇥S2 when n is odd.

When n = 2m is even, we have PD(F ) = [!
g

] and PD(E2m) = m[!
g

]+ [!0] where

the class [!
g

]([!0]) represents the area form of ⌃
g

(the �ber CP1), respectively. If

⇡ :M5
g;l;w�!B1;w denotes the S1 bundle map, we have

⇡⇤c1(B1;w) = c1(Dl1;l2;w): (6.23)
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Writing the symplectic class on B1;w as

[!] = k1[!0] + k2[!g] = k1PD(E2m) + (k2 �mk1)PD(F ) (6.24)

for some relatively prime positive integers k1; k2.

When n = 2m + 1 is odd, we have PD(F ) = [!
g

] and PD(E2m+1) = PD(E1) +

mPD(F ); so

[!] = k1h+ k2[!g] = k1PD(E2m+1) + (k2 �mk1)PD(F ) (6.25)

where h = PD(E1):

We have:

Lemma 6.5. The following relation holds:

n = l1jwj � 2l1w2 = l1(w1 � w2):

Proof. Let L
n

denote a line bundle on ⌃
g

of degree n: Then after de�ning � = �� l1w1✓

l2

the T 2 action (6.9) with v = (1; 1) becomes

(x; u; z1; z2) 7! (x; ei✓u; ei�z1; e
i(�+

(l1jwj�2l1w2)
l2

✓)
z2); (6.26)

So we can identify B1;w with P(E) where E = O�Ln where n is given by the equation

of the lemma.
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6.1.6 Quasi-regular Sasakian Structures

We now consider the general case v = (v1; v2) where v1; v2 2 Z+ and we assume

that gcd(v1; v2) = 1: The base space Bl1;l2;v;w is now an orbifold pseudo-Hirzebruch

surface as discussed in Section 6.1.4. As a complex manifold B
l1;l2;v;w is a smooth

pseudo-Hirzebruch surface S
n

for some n 2 Z; but there are branch divisors making

the orbifold structure essential. We want to prove:

Proposition 6.4. The orbifold pseudo-Hirzebruch surface B
l1;l2;v;w can be realized as

the orbifold log pair (S
n

;�v) where Sn is a pseudo-Hirzebruch surface of degree

n =
l1(w1v2 � w2v1)

s
:

Where

s = gcd(jw2v1 � w1v2j; l2):

and the branch divisor �v is given by Equation (6.30).

Proof. Here the computations are similar to the corresponding ones in [BTF13].

It is convenient to represent B
l1;l2;v;w as a log pair (B1;w0 ;�) for some weight vector

w0 and some branch divisor �: To do this we consider the map

~hv :M
3
g

⇥ L(l2; l1w1; l1w2)⇥ R��!M3
g

⇥ L(l2; l1w1; l1w2)⇥ R

de�ned by

~hv(x; u; [z1; z2]) = (x; u; [z
v2
1 ; z

v1
2 ]): (6.27)

It is a v1v2-fold covering map. Consider the S1 ⇥ C⇤ action Av;l;w(�; ⌧) on M3
g

⇥
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L(l2; l1w1; l1w2)⇥ R de�ned by

Av;l;w(�; ⌧)(x; u; [z1; z2]) = (x; �u; [⌧
v1�

�l1w1
l2 z1; ⌧

v2�
�l1w2

l2 z2]); (6.28)

where �; ⌧ 2 C⇤ with j�j = 1. Almost by de�nition we have

B
l1;l2;v;w =

�
M3

g

⇥ L(l2; l1w1; l1w2)⇥ R)=Av;l;w(�; ⌧):

A computation gives a commutative diagram:

M3
g

⇥ L(l2; l1w1; l1w2)⇥ R
Av;l;w(�;⌧)�����! M3

g

⇥ L(l2; l1w1; l1w2)⇥ R
????y
~
hv

????y
~
hv

M3
g

⇥ L(l2; l1w0
1; l1w

0
2)⇥ R

A1;l;w0 (�;⌧v1v2 )
��������! M3

g

⇥ L(l2; l1w0
1; l1w

0
2)⇥ R;

(6.29)

where w0 = (v2w1; v1w2). Now ~hv induces a �ber preserving biholomorphism

hv : Bl1;l2;v;w��!B1;w0

given by

h(x; [z1; z2]) = (x; [z
v2
1 ; z

v1
2 ]):

As ruled surfaces B1;w0 = S
n

where

n =
l1(w1v2 � w2v1)

s
:

and

s = gcd(jw2v1 � w1v2j; l2):
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We can thus write B
l1;l2;v;w as the log pair (Sn;�v) where �v is the branch divisor

�v = (1�
1

v1
)E

n

+ (1� 1

v2
)E 0

n

(6.30)

where E 0
n

is the in�nity section which satis�es E 0
n

� E 0
n

= �n:.

The T 2 action

A1;l;w0 :M ⇥ L(l2; l1w0
1; l1w

0
2)⇥ R�!M ⇥ L(l2; l1w0

1; l1w
0
2)⇥ R

is given by

(x; u; [z1; z2]) 7! (x; ei✓u; [ei(��
l1w

0
1

l2
✓)
z1; e

i(�� l1w
0
2

l2
✓)
z2]); (6.31)

De�ning � = �� l1w
0
1

l2
✓ gives

(x; u; [z1; z2]) 7! (x; ei✓u; [ei�z1; e
i(�+

l1
l2
(w0

1�w0
2)✓)z2]): (6.32)

as shown above this action is generally not free, but has branch divisors at the zero

(z2 = 0) and in�nity (z1 = 0) sections with rami�cation indices both equal to m:

Equation (6.32) tells us that the T 2-quotient space B1;w0 is the projectivization of

the holomorphic rank two vector bundle E = O � L
n

over ⌃
g

where O denotes the

trivial line bundle and L
n

is a line bundle of `degree'

n =
l1
s
(w1v2 � w2v1)

with

s = gcd(jw1v2 � w2v1j; l2):
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So S
n

= P(O � L
n

) is a smooth projective algebraic variety.

For the �rst Chern class of the contact bundle we have:

Lemma 6.6. Let D
l1;l2;w be the contact structure on M5

l1;l2;w: Then

c1(Dl1;l2;w) = ((2� 2g)l2 � l1jwj)� (6.33)

where � is a generator of

H2(M5
l1;l2;w;Z) ⇡ Z

and jwj = w1 + w2:

For the second Stiefel-Whitney class,w2(M5
l1;l2;w) we have

w2(M
5
l1;l2;w) = l1jwj�(mod2)

Proof. The orbifold canonical divisor of ⌃
g

⇥ CP(w) is

Korb = K⌃g⇥CP1 + (1� 1

w1
)E0 + (1�

1

w2
)E0

= �(2� 2g)F � 2E0 + (1�
1

w1
)E0 � (1 +

1

w2
)E0

= �(2� 2g)F � jwj
w1w2

E0: (6.34)

While the orbifold �rst Chern class corb1 of �Korb is a rational class in H2(⌃
g

⇥

CP(w);Q); it de�nes an integral class in the orbifold cohomologyH2
orb

(⌃
g

⇥CP(w);Z)

de�ned as the cohomology of the classifying space of the orbifold (see Section 4.3 of
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[BG08]). Namely, the orbifold �rst Chern class corb1 of ⌃
g

⇥ CP(w) satis�es

p⇤corb1 (⌃g ⇥ CP(w)) = 2(1� g)↵ + jwj� (6.35)

where p is the classifying map of the orbifold ⌃
g

⇥ CP(w) and ↵ is a generator in

H2(⌃
g

;Z) and � is a generator in H2
orb

(CP(w);Z): It follows from the de�nition of

the (l1; 12)-join that ↵ pulls back to l2 times a generator and � pulls back to l1 times

a generator. Thus, since ⇡⇤! = d⌘
l;w we have l1⇡⇤↵ + ⇡⇤l2� = 0: So we can take

⇡⇤↵ = l2� and ⇡⇤� = �l1�: This gives Equation (6.33) and proves the result.

Concerning the K�ahler class we are going to use the diagram:

M3
g

⇥ S3w???y⇡L

M
l1;l2;w

. ⇡w & ⇡v

⌃
g

⇥ CP1[w] (S
n

;�)

pw & . pv

⌃
g

(6.36)

where pw; pv are the obvious projections.

For the following lemma I follow the corresponding lemma in [BTF13].

Lemma 6.7. The induced K�ahler class on B
l1;l2;w = (Sn;�) takes the form

k1p
⇤
v

[!
g

] + k2PD(D1)
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Where D1 is the zero section.

Proof. From the commutative diagram (6.36) on degree 2 cohomology

ker⇡⇤
B

= (⇡
v

� ⇡
L

)⇤

has dimension 2. Let us see that p⇤
v

[!
g

] and PD(D1) span ker⇡⇤
B

. From the de�nition

of the join p⇤
v

[!
g

] is in ker⇡⇤
B

: Furthermore

(p
v

� ⇡
v

� ⇡
L

)⇤ : H2(⌃
g

;Z)! H2(M3
g

⇥ L(l2; l1w1; l1w2);Z)

has dimension one so it must be spanned by [!
g

]: Since p⇤
v

[!
g

] is in ker⇡⇤
B

and (p
v

�

⇡
v

)⇤[!
g

] = l2� we have that ⇡⇤
L

� = 0: So we get that PD(D1) is in the kernel of

⇡⇤
B

and since it is independent of p⇤
v

[!
g

] we must have that p⇤
v

[!
g

] and PD(D1) span

ker⇡⇤
B

: From the observation that the induced K�ahler class on

B
l1;l2;w = (Sn;�)

is in ker⇡⇤
B

the lemma follows.

Writing the induced K�ahler class [!
B

] on (S
n

;�) as

[!
B

] = k1p
⇤
v

[!
g

] + k2PD(D1)

We have

Lemma 6.8. The following is satis�ed:
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1. k2 = l2

2. k1 = m1l1w2

Proof. We know that ⇡⇤
v

[!
g

] is a trivial class in M
l1;l2;w and (pv � ⇡v)⇤[!g] = l2� and

⇡⇤
v

PD(D1) = �m1l1w2� we see that

k1l2 � k2m1l1w2 = 0

and since gcd(k1; k2) = m = l2=s we have that k2 = l2 and k1 = m1l1w2:

6.1.7 Extremal Sasakian Structures

Given a Sasakian structure S = (⇠; ⌘;�; g) on a compact manifold M2n+1 we deform

the contact 1-form by ⌘ 7! ⌘(t) = ⌘+ t⇣ where ⇣ is a basic 1-form with respect to the

characteristic foliation F
⇠

de�ned by the Reeb vector �eld ⇠: Here t lies in a suitable

interval containing 0 and such that ⌘(t) ^ d⌘(t) 6= 0. This gives rise to a family of

Sasakian structures S(t) = (⇠; ⌘(t);�(t); g(t)) that we denote by S(⇠; �J) where �J is

the induced complex structure on the normal bundle ⌫(F
⇠

) = TM=L
⇠

to the Reeb

foliation F
⇠

which satisfy the initial condition S(0) = S. On the space S(⇠; �J) we

consider the \energy functional" E : S(⇠; �J)�!R de�ned by

E(g) =

Z

M

s2
g

d�
g

; (6.37)

i.e. the L2-norm of the scalar curvature s
g

of the Sasaki metric g. Critical points

g of this functional are called extremal Sasakian metrics. Similar to the K�ahlerian
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case, the Euler-Lagrange equations for this functional says [BGS08] that g is critical

if and only if the gradient vector �eld Jgrad
g

s
g

is transversely holomorphic, so, in

particular, Sasakian metrics with constant scalar curvature are extremal. Since the

scalar curvature s
g

is related to the transverse scalar curvature sT
g

of the transverse

K�ahler metric by s
g

= sT
g

�2n, a Sasaki metric is extremal if and only if its transverse

K�ahler metric is extremal. Hence, in the regular (quasi-regular) case, an extremal

K�ahler metric lifts to an extremal Sasaki metric, and conversely an extremal Sasaki

metric projects to an extremal K�ahler metric.

6.1.8 Admissible metrics

This is the admissible construction for the smooth case, for the quasiregular case see

[BTF14b].

Assume (M;J) equals the total space of P(O � L
n

) ! ⌃
g

, where L
n

! ⌃
g

is a

holomorphic line bundle of degree n > 0:

Let us consider a ruled manifold of the form S
n

= P(O � L
n

) ! ⌃
g

; where L
n

is a holomorphic line bundle of degree n, where n 2 Z+ on ⌃ and O is the trivial

holomorphic line bundle. Let g⌃g be the K�ahler metric on ⌃g of constant scalar

curvature 2s⌃g ; with K�ahler form !⌃g ; such that c1(Ln) = [
!⌃g

2⇡ ]: That is, Sn is the

CP1 bundle over ⌃
g

associated to a principal S1 bundle over ⌃
g

with curvature !
g

:

Let K⌃g denote the canonical bundle of ⌃g. Since c1(K�1
⌃g
) = [⇢⌃g=2⇡]; where ⇢⌃g

denotes the Ricci form, we have the relation s⌃g = 2(1 � g)=n: For each smooth
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function ⇥(z); z 2 [�1; 1] satisfying

(i) ⇥(z) > 0; �1 < z < 1; (ii) ⇥(⌃1) = 0; (6.38)

(iii) ⇥0(�1) = 2; ⇥0(1) = �2

and each 0 < r < 1 we obtain admissible K�ahler metrics;

g =
1 + rz

r
g⌃g +

dz2

⇥(z)
+ ⇥(z)✓2; (6.39)

with K�ahler form

! =
1 + rz

r
!⌃g + dz ^ ✓ : (6.40)

as in [ACGTF08]

Notice that z : S
n

! [�1; 1] is a moment map of ! and the circle action ~A
n

(�)

(generated by the vector �eld K = Jgradz). Further ✓ is a 1-form such that ✓(K) = 1

and d✓ = ⇡⇤!⌃g :

As usual E
n

= P(O � 0) denotes the zero section and F denotes the �ber of the

bundle S
n

! ⌃
g

: Then E2
n

= n: Note that in the admissible set-up E
n

= z

�1(1):

The K�ahler class of this metric satis�es

PD([!]) = 4⇡E
n

+
2⇡(1� r)n

r
F:

Writing F (z) = ⇥(z)(1 + rz), we see from Proposition 1 in [ACGTF08] that the

corresponding metric is extremal exactly when F (z) is a polynomial of degree at most

4 and F 00(�1=r) = 2rs⌃g : This, as well as the endpoint conditions of (6.38), is satis�ed
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precisely when F (z) is given by

F (z) =
(1� z

2)h(z)

4(3� r2) ; (6.41)

where

h(z) = (12� 8r2 + 2r3s⌃g)

+ 4r(3� r2)z

+ 2r2(2� rs⌃g)z
2;

and �1 < z < 1:

When s⌃g � 0, i.e., g  1, we can then check that h(z) > 0 for �1 < z < 1 hence

⇥(z), as de�ned via F (z) above, satis�es all the conditions of (6.38). Thus in this

case, for all r 2 (0; 1) we have an extremal K�ahler metric. However, for g � 2, i.e.,

s⌃g < 0 the positivity of h(z); hence ⇥(z) for �1 < z < 1 holds only when 0 < r < 1

is su�ciently small.

The following theorem is a special case of theorem 5.1 in [BTF14a]

Theorem 6.1. For any choice of genus g = 1; 2; :::; 19 the regular ray in the Sasaki

cone (M5
l1;l2;w; Jw) admits an extremal representative with non-constant scalar cur-

vature.

For any choice of genus g = 20; 21; ::: there exists a K
g

2 Z+ such that if

l1jwj � K
g

, then the regular ray in the Sasaki cone (M5
l1;l2;w; Jw) admits an ex-

tremal representative with non-constant scalar curvature.

For any choice of genus g = 20; 21; ::: there exist at least one choice of (l1; w1; w2)
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such that the regular ray in the Sasaki cone (M5
l1;l2;w; Jw) admits no extremal repre-

sentative, despite the fact that the quasi-regular Sasaki structure

S
l1;l2;w = (⇠w; ⌘l1;l2;w;�w; gw)

is extremal.

The following theorem is a special case of theorem 1.1 in [BTF14b]

Theorem 6.2. Let

M5
l1;l2;w =M3

g

⇤
l1;l2 S

3
w:

Then for each vector w = (w1; w2) 2 Z+⇥Z+ with gcd(w1; w2) = 1 and w1 > w2 there

exists a ⇠
v

in the Sasaki cone on M5
l1;l2;w such that the corresponding ray of Sasakian

structures

S
a

= (a�1⇠
v

; a⌘
v

;�; g
a

)

has constant scalar curvature.

Most of these metrics are irregular.

6.2 The Cohomology of the Join

In this section we want to compute the cohomology groups of the join

M5
l1;l2;w =M3

g

⇤
l1;l2 S

3
w:
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The �bration ⇡
L

in Diagram (6.11) together with the torus bundle with total space

M3
g

⇥ S3w gives the commutative diagram of �brations

M3
g

⇥ S3w ���! M
l1;l2;w ���! BS1

???y=
???y

????y 

M3
g

⇥ S3w ���! ⌃
g

⇥ BCP1[w] ���! BS1 ⇥ BS1

(6.42)

where BG is the classifying space of a group G or Hae�iger's classifying space [Hae84]

of an orbifold if G is an orbifold. Note that the lower �bration is a product of

�brations. In particular, the �bration

S3w���!BCP1[w]���!BS1 (6.43)

is rationally equivalent to the Hopf �bration, so over Q the only non-vanishing di↵er-

entials in its Leray-Serre spectral sequence are d4(�) = s2 where � is the orientation

class of S3 and s is a basis in H2(BS1;Q) ⇡ Q and those induced from d4 by natu-

rality. However, we want the cohomology over Z: The proof of the following lemma

is in [BTF13].

Lemma 6.9. For w1 and w2 relatively prime positive integers we have

Hr

orb

(CP1[w];Z) = Hr(BCP1[w];Z) =

8
>>>>>><

>>>>>>:

Z for r = 0; 2,

Z
w1w2 for r > 2 even,

0 for r odd.

We can see that Lemma 6.9 implies
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Lemma 6.10. The only non-vanishing di↵erentials in the Leray-Serre spectral se-

quence of the �bration (6.43) are those induced naturally by d4(↵) = w1w2s
2 for

s 2 H2(BS1;Z) ⇡ Z[s] and ↵ the orientation class of S3:

Now the map  of Diagram (6.42) is that induced by the inclusion ei✓ 7! (eil2✓; e�il1✓):

So noting

H⇤(BS1 ⇥ BS1;Z) = Z[s1; s2]

we see that  ⇤s1 = l2s and  ⇤s2 = �l1s: This together with Lemma 6.10 gives

d4(↵) = w1w2l
2
1s
2 in the Leray-Serre spectral sequence of the top �bration in Diagram

(6.42). Here is the main result of this section

Proposition 6.5. The cohomology groups of M5
l1;l2;w are given by

Hr(M5
l1;l2;w;Z) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Z for r = 0; 5

Z2g for r = 1

Z for r = 2

Z� Z2g
l2

for r = 3

Z2g for r = 4

Moreover the cohomology ring of M5
l1;l2;w is given by

Z[↵
i

; �
i

; x; y; �]=(J; x2; xy = �; l2↵i [ x; l2�i [ x)

62



Chapter 6. Sasakian Geometry on Lens space bundles over Riemann Surfaces

where J is an ideal described by: For the canonical homology basis of ⌃
g

H1(⌃g) = fa1; a2; � � � ; ag; b1; b2; � � � ; bgg

and

H1(⌃
g

) = f↵1; ↵2; � � �↵g; �1; �2; � � � ; �gg

the dual basis; then

↵
j

[ �
k

= ��
jk

x

for j; k = 1; 2; � � � ; g where deg x=2,deg y=3 and � is the orientation class in

M5
l1;l2;w

Proof. From the Leray-Serre spectral sequence of the bundle

S1 !M3
g

! ⌃
g

but in the form:

M3
g

! ⌃
g

! BS1

we get the di↵erentials:

d2(↵i) = 0; i = 1; � � � ; 2g

where ↵
i

are classes in dimension 1.
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d2(�i) = ↵
i

⌦ s; i = 1; � � � ; 2g

where �
i

are classes in dimension 2 and

H2(BS1;Z) ⇡ Z[s]

d4(�g) = s2

where �
g

; is a class in dimension 3.

From here we can compute the cohomology of M3
g

namely :

Hr(M3
g

;Z) =

8
>><

>>:

Z for r = 0; 3,

Z2g for r = 1; 2

From the Leray-Serre spectral sequence of the �bration

M3
g

⇥ S3w !M5
l1;l2;w ! BS1

We get the di↵erentials

d2(↵i) = 0; i = 1; � � � ; 2g

where ↵
i

are classes in dimension 1.

d2(�i) = ↵
i

⌦ l2s;
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i = 1; � � � ; 2g where �
i

are classes in dimension 2.

d2(�0) = 0

d2(�g) = 0

where �
g

,�0 are classes in dimension 3.

d4(�0) = w1w2l
2
1s
2;

d4(�g) = l22s
2

since

d4(w1w2l
2
1�g � l22�0) = 0

and since gcd(l2; w1w2l1) = 1 there are a and b such that

al22 + bw1w2l
2
1 = 1

and

d4(a�g + b�0) = (al
2
2s
2 + bw1w2l

2
1s
2) = s2

and

d4(↵i ⌦ �0) = ↵
i

⌦ d4(�0) = ↵
i

⌦ w1w2l21s2;

where s2 2 Z
l2 that is in dimension four there is no torsion.

In dimension 1 the cohomology is generated by f↵
i

g, i = 1 � � � 2g from here follows
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that

H1(M5
l1;l2;w;Z) = Z2g

In dimension 2 the class s generates a Z and there is no torsion so

H2(M5
l1;l2;w;Z) = Z

in dimension 3 by Poincar◆e duality the free part of the cohomology in dimension 3 is

equal to the free part of the cohomology in dimension 2 which is Z and the torsion is

generated by d2(�i) = ↵
i

⌦ �s; for �s 2 Z
l2 for i = 1 � � � ; 2g so

H3(M5
l1;l2;w;Z) = Z� Z2g

l2

In dimension 4 by Poincar◆e duality the free part of the cohomology in dimension 4 is

equal to the cohomology in dimension 1 which is Z2g and there is no torsion so

H4(M5
l1;l2;w;Z) = Z2g

from here follows that the cohomology of M5
l1;l2;w is

Hr(M5
l1;l2;w;Z) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Z for r = 0; 5

Z2g for r = 1

Z for r = 2

Z� Z2g
l2

for r = 3

Z2g for r = 4
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For the proof of the cohomology ring notice that the ideal J is the cohomology ring

of the Riemann surface ⌃
g

and the relations de�ning J pass in the spectral sequence

from ⌃
g

toM5
l1;l2;w and x is a generator of H

2(M5
l1;l2;w;Z) = Z so x2 = 0: That xy = �

is clear because xy has degree 5 and there is only one class in degree 5 namely �:

Notice that ↵
i

[ l2x = 0 and �i [ l2x = 0 because they have degree 3 and the torsion

part of the cohomology in dimension 3 is generated by ↵
i

⌦ l2s and �i ⌦ l2s and in

the limit of the spectral sequence this becomes ↵
i

[ l2x and �i [ l2x:

We also have:

Proposition 6.6.

⇡1(M
5
l1;l2;w) = ⇡1(M

3
g

)=(l2Z)

⇡2(M
5
l1;l2;w) = 0

⇡
i

(M5
l1;l2;w) = ⇡

i

(S3)

for i > 2

Proof. First to prove ⇡2(M5
l1;l2;w) = 0 we represent M

5
l1;l2;w as a L(l2;w1; w2) bundle

over ⌃
g

that is

L(l2;w1; w2)��!M5
l1;l2;w��!⌃g

by taking the homotopy exact sequence we get that

� � � ��!⇡2(L(l2;w1; w2))��!⇡2(M5
l1;l2;w)��!⇡2(⌃g) � � �
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and from the well known facts ⇡2(L(l2;w1; w2)) = 0 and ⇡2(⌃g) = 0 we get

⇡2(M
5
l1;l2;w) = 0

To compute the ⇡1(M5
l1;l2;w) we represent M

5
l1;l2;w as

S1��!M3
g

⇥ S3w��!M5
l1;l2;w

by taking the homotopy exact sequence we get that

0��!Z
�

��!⇡1(M
3
g

⇥ S3w)��!⇡1(M5
l1;l2;w)��!1

and observe that the map � is multiplication by l2 so we have

⇡1(M
5
l1;l2;w) = ⇡1(M

3
g

)=(l2Z)

Now we want to calculate the homotopy groups of M5
l1;l2;w for this from

M3
g

! ⌃
g

! BS1

by taking the exact homotopy sequence we have

� � � ! ⇡
i+1(BS

1)! ⇡
i

(M3
g

)! ⇡
i

(⌃
g

)! ⇡
i

(BS1)! � � �

and by using ⇡
i+1(BS1) = ⇡

i

(S1) and ⇡
i

(S1) = 0 and ⇡
i

(⌃
g

) = 0 for i > 1 we have

0! ⇡
i

(M3
g

)! 0
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for i > 1 and so we get

⇡
i

(M3
g

) = 0

for i > 1 so we see that

M3
g

= K(�3
g

; 1)

is an Eilenberg Mc Lane space. Now from

S1 !M3
g

⇥ S3 !M5
l1;l2;w

by taking the exact homotopy sequence we have

� � � ! ⇡
i

(S1)! ⇡
i

(M3
g

⇥ S3)! ⇡
i

(M5
l1;l2;w)! ⇡

i�1(S
1)! � � �

for i > 2 we have

0! ⇡
i

(S3)! ⇡
i

(M5
l1;l2;w)! 0

so we see that

⇡
i

(M5
l1;l2;w) = ⇡

i

(S3)

for i > 2: Notice that

⇡
i

(S3)

for i > 2 are known for some i[Tod62]

69



Chapter 6. Sasakian Geometry on Lens space bundles over Riemann Surfaces

6.3 Minimal Models

In this section we want to compute the Minimal Model in the sense of Sullivan [Sul77]

of

M =M
l1;l2;w =M3

g

⇤
l1;l2 S

3
w:

De�nition 6.2. A di↵erential graded algebra is a graded algebra

A = �
k�0Ak

with a di↵erential d : A ! A of degree +1; such that

✏ A is graded commutative i.e.

x � y = (�1)ky � x;

x 2 Ak,y 2 Al:

✏ d is a derivation, i.e.

d(x � y) = dx � y + (�1)kx � dy;

for x 2 Ak:

✏

d2 = 0:

The cohomology H⇤(A) is an algebra, we shall always assume that it is �nite

dimensional in each degree. A is connected if H0(A) is the ground �eld and A is
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one connected if H1(A) = 0. A map between two di↵erential algebras A and B is an

algebra homomorphism

f : A ! B

preserving the grading and d, such a map induces an algebra map

f ⇤ : H⇤(A)! H⇤(B)

. If A0 is the ground �eld, we de�ne the augmentation ideal

A(A) = �
k>0Ak

and the graded space of indecomposables

I(A) = A(A)=(A(A) � A(A))

In such algebra the derivation d is decomposable if for each x 2 A dx 2 A � A. An

elementary extension of (A; dA) is any algebra B of the form

(B = A⌦ ⇤(V
k

); dB)

where dB restricted to A is dA, dB(Vk) ⇢ A and V
k

is a �nite dimensional vector

space. M is a minimal di↵erential algebra ifM ( ifM0 is the ground �eld )can be

written as

M0 ⇢M1 ⇢M2 ⇢ � � �

M =
[

i�0

M
i
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withM
i

⇢M
i+1 an elementary extension, d decomposable andM free as an algebra.

Such a collection of subalgebras is a series for M. Let M(i) denote the subalgebra

ofM generated by elements of degree  i. d being decomposable implies that these

are subalgebras ofM. IfM is a one connected minimal algebra thenM1 = 0 and

M(2) ⇢M(3) ⇢ � � �

is a series forM. Thus a one connected minimal algebra has a canonical series. For

any minimal di↵erential algebraM;M(1) also has a canonical series

0 ⇢M(1)
1 ⇢M

(1)
2 ⇢ � � �

M(1) =
[

i�0

M(1)
i

whereM(1)
i

= algebra generated by x 2M(1) such that dx 2M(1)
i�1.

Now if A is a di↵erential algebra then ⇢ :MA ! A is a k-stage minimal model

for A if

✏ MA is a minimal algebra generated in dimensions  k:

✏ ⇢ induces an isomorphism on cohomology in dimensions  k and an injection

in dimension k + 1. When k =1MA is a minimal model for A:

We have the following

Theorem 6.3. [DGMS75, GM78]

✏ Every one connected di↵erential algebra has a minimal model unique up to iso-
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morphism.

✏ Every connected di↵erential algebra has a 1- stage minimal model unique up to

isomorphism.

De�ne the de Rham homotopy groups of a one connected di↵erential algebra A;

⇡⇤(A) (with Whitehead product), to be those of any minimal model for A. De�ne the

de Rham fundamental group of a di↵erential algebra to be the de Rham fundamental

group of any minimal model for the algebra. LetM be a minimal di↵erential algebra

and H⇤(M) the cohomology viewed as a di↵erential algebra with d = 0:M is formal

if there is a map of di↵erential algebras

 :M! (H⇤(M); d = 0)

inducing an isomorphism on cohomology. The homotopy type of a di↵erential algebra

A is a formal consequence of its cohomology if its minimal model is formal.

We have the following

Theorem 6.4. [DGMS75, GM78] LetM be a di↵erential graded algebra. Let V
i

be a

vector space containing elements of degree i only and C
i

⇢ V
i

, containing only closed

elements.Let N
i

be a vector space. M is formal i↵

V
i

= C
i

�N
i

;

such that any closed form in the ideal I(�N
i

) is exact.

Aaron Tievsky proved in his thesis [Tie08] that
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If M is a Sasakian manifold the Minimal model of M is given by

HB(F⇠)⌦ ⇤(y)

Where

HB(F⇠)

is the basic cohomology of M and F
⇠

is the characteristic foliation of M and

dy = [d⌘]
B

is the K�ahler class. Moreover deg y= 1. We want to compute the Minimal Model of

M =M
l1;l2;w =M3

g

⇤
l1;l2 S

3
w:

Here is the main result of this section.

Proposition 6.7. The Minimal Model of M5
l1;l2w is given by

R[↵
i

; �
i

]=J ⌦ ⇤(�)⌦ ⇤(y)

where � is a 2 class and J is an ideal described by: For the canonical homology basis

of ⌃
g

;

H1(⌃g) = fa1; a2; � � � ; ag; b1; b2; � � � ; bgg

and

H1(⌃
g

) = f↵1; ↵2; � � �↵g; �1; �2; � � � ; �gg
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the dual basis; then

↵
j

[ �
k

= ��
jk

⌘⌃g

for j; k = 1; 2; � � � ; g where ⌘⌃g is the fundamental class of ⌃
g

:

Proof. If ⇡ :M5
l1;l2w�!B1;w denotes the S1 bundle map, we have by using the result

of Tievsky that the Minimal Model of M5
l1;l2w is given by

HB(F⇠)⌦ ⇤(y)

But by proposition 7.2.2 in [BG08] which says that

H
DR

(B1;w;R) ⇡ HB(F⇠)

as rings.

So we have that the Minimal Model of M5
l1;l2w is given by

H
DR

(B1;w;R)⌦ ⇤(y)

but we know that

B1;w = ⌃g ⇥ CP[w]

and the cohomology ring of ⌃
g

⇥ CP[w] is

R[↵
i

; �
i

]=J ⌦ ⇤(�)

with the ideal J given in the proposition, which is the cohomology ring of ⌃: So the
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minimal model of M5
l1;l2w is given by

R[↵
i

; �
i

]=J ⌦ ⇤(�)⌦ ⇤(y)

with the J given in the proposition.
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