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Abstract

Christensen and Lin (2014), henceforth C-L, suggested two lack-of-fit tests to

assess the adequacy of a linear model based on partial sums of residuals. In par-

ticular, their tests evaluated the adequacy of the mean function. Their tests relied

on asymptotic results without requiring small sample normality. We extend this re-

search by proposing additional tests based on partial sums of residuals. The asymp-

totic distribution for each test statistic is found so that the P value can be efficiently

approximated. To assess their strengths and weaknesses, the C-L tests and the new

tests are compared in different scenarios by simulation. We propose new tests based

on partial sums of absolute residuals. Previous partial sums of residuals test have

used signed residuals whose values when summed can cancel each other out. The

use of absolute residuals ,which requires small sample normality, allows detection of

lack of fit that was previously not possible with partial sums of residuals.
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Chapter 1

Introduction

1.1 The assumed model

Consider the linear model

Y n = Xnβ + en, E(en) = 0, Cov(en) = σ2In, (1.1)

where Y n is a n × 1 vector of observable random values, Xn is an n × p known

model matrix, β is a p × 1 vector of unknown parameters, In is an identity matrix

of size n, σ2 is some unknown parameter and en is an n × 1 vector of independent

and unobservable errors.

1.2 Outline of the dissertation

Christensen and Lin (2014), henceforth C-L, were interested in assessing the validity

of the mean function specification and proposed two lack-of-fit tests based on par-

tial sums of residuals. We present additional test statistics based on partial sums

1



Chapter 1. Introduction

of residuals and partial sums of absolute residuals. We derive their asymptotic dis-

tributions, explore their small sample behavior and evaluate their effectiveness. We

introduce an effective approximation to P values through simulations.

This dissertation is organized as follows. Chapter 2 reviews C-L’s work and

presents new test statistics. Chapter 3 gives the asymptotic distributions of these

statistics and assumptions required to achieve convergence in distribution. Chapter

4 introduces ordering methods and a consistent estimator of σ. Approximation of

P values for each test through Monte Carlo simulations is examined in Chapter

5. Several examples and various simulations with power comparisons along with

recommendations are given in Chapter 6. The proofs of the asymptotic results are

given in the appendix.
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Chapter 2

Lack of fit tests

2.1 C-L

C-L, were interested in assessing the validity of the mean function E(Yn) = Xnβ

and proposed two lack-of-fit tests based on partial sums of residuals. They examined

the following statistics

Tn =
1√
ñ

max
1≤m≤ñ

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n
σ̂n

∣∣∣∣∣
and

Qn = añ max
1≤m≤ñ

1√
m

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n
σ̂n

∣∣∣∣∣− bñ.
where yi and xTi are the ith rows of Yn and Xn, respectively, β̂n is the least square

estimate (LSE) of β, ñ = dn/(log log n)1+δe, añ =
√

2 log log ñ, bñ = (añ)2 + log añ −

log(
√

2π), and σ̂n is a consistent estimate of σ. As in Fan and Huang (2001) and

Christensen and Sun (2010), the range of maximization ñ is chosen for the asymptotic

results to work. In particular, Tn requires δ > 0 whereas Qn requires δ > 1. Only

3



Chapter 2. Lack of fit tests

ñ residuals out of n are used in the statistics. These ñ residuals must be ordered

and the ordering affects the tests ability to reveal the lack of fit. Note the slow

convergence of ñ to infinity compared to the sample size n. This restriction to ñ is

not needed if β and σ are known. C-L proved that Tn and Qn converge in distribution

to random variables T and Q respectively, where

Pr[T < t] =
4

π

∞∑
m=0

(−1)m

2m+ 1
exp(−(2m+ 1)2π2/8t2) for t > 0 (2.1)

and

Pr[Q < t] = exp [− exp(−t)] (2.2)

The limiting distribution of Qn is a standard Gumbel distribution.

Tn and Qn both examine the maximum of absolute values of partial sums of

residuals. Tn divides each partial sum by the square root of ñ whereas in Qn each

is divided by the square root of its number of terms. High observed test statistics

suggest lack of fit in model (1.1). C-L noticed that Qn is more sensitive than Tn

in detecting lack of fit that occurs in the first few residuals. Tn outperforms Qn if

the lack of fit occurs at relatively higher ordered observations. Of course, neither of

these tests will detect lack of fit if the ñ observations in the partial sums are fitted

well. Small partial sums lead to small test statistics. This shows the importance of

the ordering of the data.

2.2 C-H

Table 2.1 lists Tn and Qn along with four new test statistics. The tests depend on

one of two partial sum statistics,

Sm =
m∑
i=1

yi − xTi β̂n
σ̂n

4



Chapter 2. Lack of fit tests

and

Km =
m∑
i=1

∣∣∣∣∣yi − xTi β̂nσ̂n

∣∣∣∣∣
Table 2.1 also lists the normalization that leads to the asymptotic distribution of the

statistic, the 95th percentile of the asymptotic distribution and the equation number

where the asymptotic distribution is given. The asymptotic distributions for the new

statistics are introduced in Chapter 3.

Table 2.1: Test Statistics
Label Statistic 95% Asym.

Percentile Dist.

Tn
1√
ñ

max
1≤m≤ñ

|Sm| 2.241 (2.1)

Qn añ max
1≤m≤ñ

1√
m
|Sm| − bñ 2.970 (2.2)

Wn
1√
ñ3

ñ∑
m=1

|Sm| 1.139 (3.1)

Vn
1

ñ2

ñ∑
m=1

(Sm)2 1.656 (3.2)

Rn
1√
ñ

max
1≤m≤ñ

 Km√
1− 2

π

−m
√

2

π − 2

 1.959 (3.3)

Hn añ max
1≤m≤ñ

 Km√
m(1− 2

π
)
−
√

2m

π − 2

− bñ + log 2 2.970 (2.2)

5



Chapter 2. Lack of fit tests

Just as in Tn and Qn, the range of our partial sum statistics is limited by ñ. For

the asymptotic results to work, Tn, Wn, Vn and Rn require δ > 0 whereas δ > 1 for

Qn and Hn. Note that Qn and Hn have the same limiting distribution. The new lack

of fit test statistics can be classified into two groups:

• The first group includes statistics labeled Wn and Vn. These examine sums of

functions of Sm as opposed to taking maximums as in Tn and Qn. We found

that both Tn and Qn are less capable in detecting a lack of fit that happens

at middle or higher ordered observations or is not concentrated over series

of successive residuals but rather they are scattered among the observations.

When we would like to evaluate the collective effect of the residuals, Wn and

Vn are recommended. These new tests may detect lack of fit when it occurs

over a specific segment of data or in different locations.

• We also propose test statistics built upon the absolute residuals rather than

the signed residuals. Using the signed residuals in partial sum statistics can

reduce power. Residuals with similar magnitudes but different signs can can-

cel each other when taking the partial sums, which leads to large P values.

Using the absolute residuals considered in Rn and Hn examines the maximum

of partial sums of absolute residuals whereas Tn and Qn evaluate the maxi-

mum of absolute values of partial sums of residuals. Unlike the other tests,

the asymptotic distribution of Rn and Hn depends on an assumption of small

sample normality.

To execute any of these tests, the observations must be totally ordered according

to some criteria. This ordering, usually performed on the basis of some function of

the predictor variables, is crucial to the effectiveness of the statistics. Ordering is

discussed in Section 4.2. The asymptotic distributions for each of the test statistics

6



Chapter 2. Lack of fit tests

above are found under the null model (1.1). The rationale behind these tests are

the same. High values of test statistics indicate that the proposed linear model is

not adequate and should be revised. These test statistics tend to get large if the

standardized residuals are large in magnitude which is in turn a sign of lack of fit.

The P value for any test statistic, for example Wn, is defined as Pr[Wn ≥ xn]

where xn is the observed value of the test statistic. The test statistics suffer from

slow convergence leading to poor asymptotic approximation of the P values for small,

moderate, and even somewhat large samples. An effective Monte Carlo simulation

is introduced to approximate the P values. The simulation method is presented in

Chapter 5.

7



Chapter 3

Asymptotic distributions

To establish the asymptotic distributions of our test statistics we assume throughout

that:

(a) 1
n
XT

nXn converges (in probability) to A, where A is some positive definite

matrix.

(b) σ̂n = σ +Op(1/
√
n).

If known values of σ and β replace σ̂n and β̂n in our test statistics, the asymptotic

distributions are direct applications of results in Erdos and Kac (1945) or Darling and

Erdos (1956) with ñ = n . In practice, both σ and β are unknown. The assumptions

are used to establish that the asymptotic distributions hold when the parameters are

estimated. Assumption (a) implies that the least squares estimate β̂n converges in

probability to β. Complications arise in the asymptotics because unlike the errors

in model (1.1), the residuals are not independent. To deal with this dependency, we

need to restrict the range of the partial sums to ñ = dn/(log log n)1+δe. If n − ñ

residuals are excluded from the sums, it is important to include the residuals that

are most likely to display lack of fit. The ordering of the data plays an important

8



Chapter 3. Asymptotic distributions

role in detecting lack of fit although it does not affect the asymptotic distributions.

Ordering is discussed in Section 4.2.

3.1 Wn and Vn

Theorem 1. If assumptions (a) and (b) are satisfied,

Wn
L→ W

where W has a known distribution,

Pr[W ≤ w] =

∫ w

0

√
3

π
u−1

∞∑
j=1

Cj exp(−vj)v
2
3
j U(

1

6
,
4

3
, vj) du , w > 0 (3.1)

where

U(
1

6
,
4

3
, x) =

1

Γ(1
6
)

∫ ∞
0

exp(−tx)t
−5
6 (1 + t)

1
6 dt,

vj =
2(a′j)

3

27u2
,

Cj =
1 + 3

∫ a′j
0 Ai(−r) dr

3a′jAi(−a′j)
,

Ai(z) =
1

π

∫ ∞
0

cos

(
t3

3
+ tz

)
dt

U(1
6
, 4
3
, x) is a confluent hypergeometric function, Ai(z) is the Airy integral, z = −a′j

, j = 1, 2, · · · , are the zeros of Ai′(z), arranged so that 0 < a′1 < a′2 < . . . < a′j < . . .,

and Γ is the gamma function.

The proof is given in Appendix A. Essentially, the proof depends on using Erdos

and Kac (1945) part (4) who gave the Laplace transform formula of the distribution

function of W which is of course not useful for applications. That formula, not given

9



Chapter 3. Asymptotic distributions

here, is very complicated. Takács (1993) worked out the cumulative distribution

function (cdf) of W given in (3.1).

The cdf of W involves an infinite sum. For practical computations, using j = 7

as an upper limit for the sum gives reasonable approximations to the distribution

function.

Table 3.1 lists basic properties of W . Its cdf and pdf are produced in Figure 3.1.

Table 3.1: Basic Properties of W

2.5% 5% 25% 50% Mean Var 75% 95% 97.5%

0.169 0.192 0.303 0.451 0.532 0.092 0.688 1.139 1.300

0.0 0.5 1.0 1.5

0
.
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0
.
2

0
.
4

0
.
6

0
.
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.
0

x

F
(
x
)

0.25 0.75 1.25 1.75

(a) The cdf of W
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0
.
0

0
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1
.
0
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.
5

2
.
0

x

d
(
x
)
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0
.
2

5
0

.
7

5
1

.
2

5
1

.
7

5

(b) The pdf of W

Figure 3.1: The cdf and the pdf of W
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Chapter 3. Asymptotic distributions

Theorem 2. If assumptions (a) and (b) are satisfied,

Vn
L→ V

with

Pr[V < v] =
√

2
∞∑
j=0

(−1)jδj erfc

(
4j + 1

2
√

2v

)
, v > 0 (3.2)

where δj = Γ(j +
1

2
)/
√
πj!, Γ is the gamma function, and erfc is the complementary

error function defined by erfc(x) =
2√
π

∫ ∞
x

exp(−t2/2) dt .

The proof is given in Appendix A. The cdf is well approximated if the infinite sum is

taken from j = 0 to j = 7. This form of the cdf was given by Cameron and Martin

(1944) and much simpler than the form used by Erdos and Kac part (3) that states

Pr[V < v] =
π−3/2

4

∫ v/2

0

∫ π/2

0

u−3/2(cos t)−1/2θ′
(
t

2
, exp(−1

4
u)

)
dt du , v > 0

and

θ(z, q) = 2
∞∑
n=0

(−1)nq(2n+1)2/4 sin(2n+ 1)z, θ′ =
∂

∂z
θ

Table 3.2 lists basic properties of V . Its cdf and pdf are given in Figure 3.2.

Table 3.2: Basic Properties of V

2.5% 5% 25% 50% Mean Var 75% 95% 97.5%

0.044 0.057 0.137 0.290 0.500 0.333 0.638 1.656 2.135

11
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Figure 3.2: The cdf and the pdf of V

3.2 Absolute Residuals

The earlier lack of fit test statistics are based on the partial sums of ordinary residuals.

Those test statistics indicate the inadequacy of the model when the first residuals in

the ordering are dominated by a series of either relatively high positive residuals or

low negative residuals. Their ability to detect lack-of-fit is hurt by either an ordering

for the data that has the first observations being from a region where the model fits

well or the first residuals consist of both high and low residuals that cancel each other

out when taking the partial sums. In the latter case, we suggest using the absolute

value of the residuals rather than the signed residuals.

The next example shows the need to use absolute residuals rather than the signed

residuals in some cases. The example is only for illustrative purposes since the lack

12



Chapter 3. Asymptotic distributions

of fit is clear when the data are plotted and tests are not needed.

Example 3.1. Figure 3.3 shows simulated data along with the fitted regression

line. The lack of fit is clear and severe and yet none of the test statistics based

on the partial sums of the residuals came close to detecting it. The p-values are:

Tn, 0.68; Qn, 0.20; Vn, 0.40; and Wn, 0.78. The tests based on the partial sums of

the absolute residuals report P values close to 0. First notice that the covariate x

is distributed symmetrically around its center 7. The ordering method orders the

data starting from those farthest from the center, so both sides will be represented

almost equally in the first ñ observations. These two sides carry residuals that have

similar magnitudes but with different signs, so they cancel each other when taking the

partial sums. This leads to small test statistics and hence large P values explaining

the inability of the tests based on the partial sums of the residuals to detect the

lack of fit. For the tests based on the partial sums of the absolute residuals, each

absolute residual contributed positively to the partial sums producing - correctly - a

large statistic and hence small P values.

To normalize the absolute residuals in Rn and Hn, we assume normal errors.

Note that small sample normality was not required for any of the earlier tests. Note

also we need to assume a certain distribution, not necessarily normal, to standardize

the absolute residuals correctly. If a non-normal distribution is assumed such as a t

distribution, then they should be standardized accordingly yielding different statistics

from Rn and Hn.

The mean and the standard deviation of the absolute value of a standard normal

random variable, Z, are
√

2
π

and
√

1− 2
π
. It follows that, |Z|√

1− 2
π

−
√

2
π−2 has mean

0 and variance 1.

The next theorem introduces the statistics Rn and Hn that are based on absolute

residuals.
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Figure 3.3: Example 3.1; Simulated data with the fitted regression line

Theorem 3. If Yn ∼ N(Xnβ, σ
2In) and assumptions (a) and (b) are satisfied, and

Rn and Hn are defined in Table 2.1, then

Rn
L→ U

where U has the half-normal distribution

Pr[U < u] =

(
2

π

) 1
2
∫ u

0

exp(−x
2

2
) dx for u > 0 (3.3)

and

Hn
L→ Q

where añ and bñ are defined as for Qn, and Q has the distribution in equation (2.2)

which is a standard Gumbel distribution.
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Chapter 3. Asymptotic distributions

See Appendix A for the proof. The main difference between Rn and Hn can

be understood in light of the difference between Tn and Qn. Hn is more sensitive

than Rn in detecting lack of fit that occurs in the first few absolute residuals. Rn

outperforms Hn if the lack of fit occurs at relatively higher ordered observations.

As more terms are included in Rn and Hn, the partial sums of absolute residuals

are getting subtracted by a larger number, m
√

2
π−2 . Thus, when either positive or

negative residuals dominate the first residuals in the ordering, Rn and Hn may have

less power than the earlier tests.

Basic properties of U , Q and T are given in Tables 3.3, 3.4 and 3.5. The cdf and

the pdf of each distribution are produced in Figures 3.4, 3.5 and 3.6.
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Chapter 3. Asymptotic distributions

Table 3.3: Basic Properties of U

2.5% 5% 25% 50% Mean Var 75% 95% 97.5%

0.031 0.063 0.318 0.674 0.798 0.363 1.150 1.956 2.241
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(b) The pdf of U

Figure 3.4: The cdf and the pdf of U
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Table 3.4: Basic Properties of Q

2.5% 5% 25% 50% Mean Var 75% 95% 97.5%

−1.305 −1.097 −0.327 0.367 0.577 1.645 1.246 2.970 3.676
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(b) The pdf of Q

Figure 3.5: The cdf and the pdf of Q
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Table 3.5: Basic Properties of T

2.5% 5% 25% 50% Mean Var 75% 95% 97.5%

0.560 0.618 0.870 1.150 1.253 0.261 1.534 2.241 2.498
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(a) The cdf of T
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(b) The pdf of T

Figure 3.6: The cdf and the pdf of T
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3.3 Additional Statistics

If model (1.1) has the tendency to under-estimate or over-estimate the ñ observations

then it is possible to build more powerful tests than Tn and Qn by using the maximum

of the partial sums rather than the maximum of the absolute value of partial sums of

the residuals. For example, if the model produces mostly positive residuals that are

large in magnitude and negative residuals that are small in magnitude for the low

ordered observations then there is no need to take the absolute value of the partial

sums as most - if not all - of the high magnitude partial sums have positive signs.

Taking this information into account, tests statistics that are based on partial sums

rather than the absolute value of partial sums are recommended such as Zn and Gn

presented in Table 3.3. Note that the difference in abilities for detecting lack of fit

between Zn and Gn can be understood in the light of the differences between Qn and

Tn.

Limiting distributions for these statistics are given in Table 3.6. The proofs are given

in Appendix A.

Table 3.6: Other Test Statistics
Label Statistic 95% Percentile Asym. Dist.

Zn
1√
ñ

max
1≤m≤ñ

Sm 1.959 (3.3)

Mn
1√
ñ

∣∣∣∣ min
1≤m≤ñ

Sm

∣∣∣∣ 1.959 (3.3)

Gn añ max
1≤m≤ñ

1√
m̃
Sm − bñ + log 2 2.970 (2.2)

It is obvious that Tn = max(Zn,Mn). If the model suggests under-estimated

19



Chapter 3. Asymptotic distributions

predictions or high positive residuals for low ordered observations then Tn and Zn

will have the same observed value but the latter has much lower 95% percentile. It

is also noted the 97.5% percentile for Zn and Mn is 2.24 which is exactly Tn’s 95%

percentile.

Since their usefulness is restricted to special scenarios just described, these addi-

tional statistics are not included in power comparisons and not pursued further.
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Chapter 4

Estimating σ2 and Ordering

4.1 Estimating σ2

Any estimate of σ that satisfies assumption (b) can be used in all test statistics. In

particular, the mean squared error(MSE) of model (1.1) works. The problem is that

under an alternative the MSE often tends to get inflated. In turn, test statistics

get deflated leading to a power reduction. Instead, following Christensen and Sun

(2010), C-S, we use the MSE of a more general model that contains model (1.1).

After the data have been ordered let Γk =
[
v1 v2 . . . vk

]
where

v2q =
[
cos
(
2πq 1

n

)
cos
(
2πq 2

n

)
. . . cos

(
2πq n

n

)]T
,

v2q+1 =
[
sin
(
2πq 1

n

)
sin
(
2πq 2

n

)
. . . sin

(
2πq n

n

)]T
,

and v1 =
[
1 1 . . . 1

]T
. To avoid redundancy, v1 is dropped if model (1.1) contains

the intercept term. We estimate σ2 by the MSE of the extended model on the ordered
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Chapter 4. Estimating σ2 and Ordering

data

Y n = Xnβ + Γkγk + e

where γk is a k × 1 vector of unknown parameters. The estimate of σ2 is given by

σ̂2
n = Y T

n (In −MXn,Γk)Y n

/
[n− r(Xn,Γk)], (4.1)

where MXn,Γk represents the perpendicular projection operator onto the column

space of the matrix [Xn : Γk] and r(·) is the rank of a matrix. This estimate sat-

isfies assumption (b) if k
n

converges to c as n → ∞ where 0 ≤ c < 1 as shown

by C-S. In particular any k smaller than ñ is acceptable. C-S suggested using

k = dn/10(log log n)2e. This is the same estimator used by C-L who noted that

tests using this estimator often achieve higher power than when using the MSE of

model (1.1).

4.2 Ordering

Although the ordering of the data does not affect asymptotic distributions under the

null model (1.1), it plays a highly influential role in detecting lack of fit using partial

sum of residuals. If the data are poorly ordered, one may not be able to reject a

poor model. A good ordering increases power and a bad one decreases it. We would

like to use the ñ observations that are most likely to show lack of fit when it exists.

We follow C-L’s suggestion to order the observations according to a modified

version of Mahablanobis distance starting from the farthest points. Specifically, the

modified squared distance for the ith observation, xi, is di = (x̃i − η)TS−1(x̃i − η)

where xTi =
[
1 x̃Ti

]
and the vector η contains the midrange of each covariate, and

S−1 is the inverse of the covariance matrix of X̃. Whenever the lack of fit is expected

to come from a subset of covariates, the ordering of the data could be restricted to
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Chapter 4. Estimating σ2 and Ordering

them, with η and S defined as the midranges and the covariance matrix of only the

suspected covariates. C-L found this ordering method is preferable to Mahablanobis

distance when the data come from skewed or irregular distributions.

C-L did not suggest, nor do we, that the aforementioned ordering method is

perfect. The data can be ordered in any way, as long as it does not depend on

Y n. C-L found their method to be effective and so have we. One might need

to implement several ordering methods to reveal lack of fit. For example, C-L’s

method can be reversed so the data are ordered from points nearest to the center to

farthest. Mahablanobis distance, the standard Euclidean distance from the center of

the data or even choosing observations randomly might be adopted. This flexibility

in choosing the ordering method stems from the fact that the null model asymptotic

results do not depend on the particular ordering. In situations where the lack of

fit is suspected to come from one predictor only, one might merely order the data

according to that variable ascending or descending since occasionally the lack of fit

increases as the predictor increases or decreases.

There are no fool-proof methods for detecting lack of fit. There is no way to know

the structure of the lack of fit. And for any method of detecting lack of fit, one can

define a lack of fit that the method will miss. Even Fisher’s famous lack of fit test

based on exact replicates will miss any lack of fit that exists within the replicates

e.g. a time trend within the replicates.

In a nutshell, there is no perfect ordering method for all possible scenarios. What

works well in one situation might fail utterly in another. Again, the ordering method

must be chosen without reference to the fit of the model.
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Monte Carlo Simulations

A large value for one of the proposed statistics provides evidence for lack of fit.

The strength of the evidence is assessed by the P value. For example, the P value

associated with an observed value of Vn is P = Pr[Vn ≥ vn]. This quantity can be

approximated by Pr[V ≥ vn] where V is the limiting distribution of Vn. The quality

of this approximation depends greatly on the sample size n.

Unfortunately, partial sum statistics with estimated parameters converge very

slowly to their asymptotic distributions. In the case of small to moderate sample

sizes, the distributions of partial sum statistics do not much resemble their limiting

distributions which leads to imprecise approximation of the P value. We suggest

using Monte Carol simulations to approximate P values instead. We have found

that Monte Carlo simulations lead to more accurate approximations of P values.

For more details on Monte Carlo computation of P values see Hart (1997) and

MacKinnon (2002).

Assume the data in model (1.1) are ordered. To approximate the P value using

simulation, of say Tn, for the data in hand Yn and Xn:

24



Chapter 5. Monte Carlo Simulations

1. Fit model (1.1) to the ordered data. Calculate Tn and call it Tobs.

2. Simulate data

Y ∗ = Xnβ + e∗, e∗ ∼ N(0, σ2In)

where In is the identity matrix of size n. We refer to this as the assumed data

distribution. The choice of β and σ2 is irrelevant as explained below, therefore,

β and σ are chosen as the vector 0 and 1 respectively.

3. Regress Y ∗ on Xn. Find the residuals.

4. Using the residuals in 3, compute Tn and call it t1.

5. Repeat steps 2-4 B times to obtain: t1, t2 . . . tB. We now have an empirical

distribution of Tn. For accurate results, we take B = 19999. For practical

computations, B = 2999 works well.

6. The P-value is approximated as the proportion of times that tj is greater than

Tobs.

The procedure was described assuming the error vector follows a normal distri-

bution. While this is a standard assumption in linear model, the simulation only

requires that the components of the error vector en be iid with mean 0 and some

unknown scale parameter; MacKinnon (2002). Simulation from the normal is not

necessary except for test statistics that require normality. These tests are Rn and Hn

which are based on absolute residuals. Assuming a certain distribution is necessary

to standardize the absolute residuals correctly. If a non-normal distribution is as-

sumed such as t distribution, then they should be standardized accordingly yielding

different statistics from Rn and Hn. They may even fail to converge if the correct

standardization is not taken into the account. Alternatively, Hart and Mackinnon
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Chapter 5. Monte Carlo Simulations

recommend re-sampling (bootstrapping) from the residuals of the fitted model if one

is unwilling to make certain distributional assumptions about the error distribution.

To test the sensitivity of partial sum statistics to the normality assumption for

the data, two simulation studies are performed. The first study uses one predictor,

p = 2 with the intercept, and the second study uses five predictors, p = 6. For each

statistic three data distributions are used: the standard normal, a t distribution with

6 degrees of freedom (heavy tails) and Uniform[−1,1] (short tails). For each statistic,

comparisons are made on the 95% percentile of the three empirical distributions

across n. Little or no difference between the percentiles indicates robustness to

distributional assumptions. Results are also shown for Rn and Hn without changing

the standardization implied by the assumption of normality. The results are shown

in Figures 5.1 through 5.12 along with a horizontal line that indicates the percentile

of the asymptotic distribution.
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Figure 5.1: 95% Quantile Comparison for Tn; p = 2
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Figure 5.2: 95% Quantile Comparison for Tn; p = 6
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Figure 5.3: 95% Quantile Comparison for Qn; p = 2
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Figure 5.4: 95% Quantile Comparison for Qn; p = 6
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Figure 5.5: 95% Quantile Comparison for Wn; p = 2
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Figure 5.6: 95% Quantile Comparison for Wn; p = 6
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Figure 5.7: 95% Quantile Comparison for Vn; p = 2
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Figure 5.8: 95% Quantile Comparison for Vn; p = 6
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Figure 5.9: 95% Quantile Comparison for Rn; p = 2
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Figure 5.10: 95% Quantile Comparison for Rn; p = 6
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Figure 5.11: 95% Quantile Comparison for Hn; p = 2
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Figure 5.12: 95% Quantile Comparison for Hn; p = 6
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First, with few exceptions, and none involving normal data, when using the

asymptotic quantiles the tests are less likely to reject the null hypothesis. The sizes

are lower than the nominal level showing the need to adopt simulations for P value

computations rather than depending on the asymptotic percentiles.

It is worth noting the robustness of Tn, Wn and Vn. Their percentiles are little

affected by changing the distribution of the error vector. The differences between the

three percentiles are indistinguishable regardless of the sample size, n. Whereas Qn

is moderately affected if the distribution of the error vector is altered producing three

different percentiles although its asymptotic distribution does not require normality.

Figures 13 through 18 allow us to evaluate the difference in rejection regions that

assume normality when the correct distribution is not. Figures 13 and 14 display

that the size of the Qn-test does not much differ from the nominal level if normality

is assumed mistakenly. The sizes are constantly higher than 0.05 rising up to 0.068

if the parent distribution is t and constantly lower than 0.05 falling down to 0.033 if

the parent distribution is uniform. As expected, Rn and Hn are severely affected if

the distribution of the data is not normal. It is less affected if the distribution is t as

compared to uniform. We expect that they both - Rn and Hn - become less affected

as the degrees of freedom of t increases.
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Figure 5.13: Size comparison when rejecting based on 0.05 level from simulated
normals for Qn; p = 2
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Figure 5.14: Size comparison when rejecting based on 0.05 level from simulated
normals for Qn; p = 6
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Figure 5.15: Size comparison when rejecting based on 0.05 level from simulated
normals for Rn; p = 2

●
●

●

● ●

50 100 150 200 250

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

n

S
iz

e

Distributions

t

Uniform

Figure 5.16: Size comparison when rejecting based on 0.05 level from simulated
normals for Rn; p = 6
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Figure 5.17: Size comparison when rejecting based on 0.05 level from simulated
normals for Hn; p = 2
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Figure 5.18: Size comparison when rejecting based on 0.05 level from simulated
normals for Hn; p = 6
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To explain the irrelevancy of β and σ in the simulations, it is clear that the

test statistics depend solely on the residuals of the fitted model. The residuals are

(I −M)Yn = (I −M)en, where M is the perpendicular projection operator onto

the column space ofXn. It is obvious that the residuals entirely depend on the design

matrix Xn and the error vector en. Thus, we effectively only need to simulate e∗

so without loss of generality we can take β = 0. Also, σ is irrelevant as long as

the components of en follow a distribution with CDF F

(
e

φ

)
where φ is a scale

parameter and the statistic σ̂2
n is proportional to a quadratic form in en, eTnBen,

where B is a non-zero non-negative definite matrix. For the MSE of model (1.1),

B = (I −M). For the estimator in (4.1), B = I −MXn,Γk . φ and σ coincide if

the distribution is normal. In general, σ is proportional to φ if the second moment

exists. Then the components of rn =
en
φ

follow the distribution F (·) with scale

parameter equal to 1. The ith residual is êi = aTi en, where aTi is the ith row vector

of the matrix (I −M). Then the partial sum

m∑
i=1

êi
σ̂n

=
1

σ̂n

m∑
i=1

aTi en

=
cφ√
eTnBen

m∑
i=1

aTi rn

=
c√

rTnBrn

m∑
i=1

aTi rn

where c is a known proportionality constant. Clearly the partial sum depends only

on rn that has a parameter free distribution hence the choice of σ does not matter.

In all simulations, the convenient value σ = 1 was used.

Finally, the partial sums are built on ñ residuals rather than n so that the asymp-

totic results work. Recall that ñ = dn/(log log n)1+δe where δ > 1 for Qn and Hn and

greater than 0 for the rest of the statistics. As δ increases, ñ decreases. The choice
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of δ affects the convergence rate of the test statistics. The higher δ gets, the slower

is the convergence rate and finite sample test statistics less resemble their limiting

distributions. As δ gets lowered, ñ gets larger. Recall that Tn, Wn, Vn and Rn are

divided by an increasing function of ñ,
√
ñ. Whereas Qn and Hn are subtracted

by an increasing function of ñ, bñ. This leads to reduction in the test statistics if

ñ is excessively large hence affecting the power. Large values of δ might exclude

observations that may be needed to reveal lack of fit. We depend on simulations

results to decide on an appropriate value of δ. After extensive simulations among

δ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 4, 5} we found that δ = 2 seems a reasonable choice in terms

of power. This coincides with C-L’s suggestion for their test statistics Tn and Qn.
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Power Comparisons

In this chapter we consider power comparisons between the test statistics using sim-

ulations. In each example, the departure from the linearity assumption ranges from

none to severe. Type I error, or the size of the tests, is set equal to 0.05.

First, a set of covariates is generated once before forming a design matrix, Xn.

Then 95% quantiles of each test statistic are computed usingXn and B = 19, 999 and

assuming normality unless stated otherwise. 10,000 response vectors, y1 . . .y10,000,

are simulated according to some relationship with the covariates. Each yi is linearly

regressed on Xn before computing the test statistics. A lack of fit is declared and

the model is rejected according to a particular test statistic if its value exceeds its

previously computed empirical 95% quantile. The empirical power is defined as the

rejection rate. If the model is correctly specified, the empirical power for each test

must be close to 0.05 or to reject about 500 times out of 10,000. The power at the

null model should differ from 0.05 only by the sampling error in the two simulations.

We typically expect that the empirical power increases as the departure from the

model increases.
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Simple linear regression, SLR, is discussed first followed by multiple linear regres-

sion, MLR.

6.1 SLR

For SLR, the fitted relationship between the response variable y and x is

y = β0 + β1x+ ε

In examples below, a lack of fit takes the form of a nonlinear function of x, controlled

by a constant θ, added to this relationship. The constant θ characterizes the amount

of miss-specification in the model.

Example 6.1.1: The covariate x is sampled from N(0, 1) with n = 70, and the

response y is drawn independently from

y = 1 + 2x+ θx2 + ε, ε ∼ N(0, 2.52)

θ ranges between 0 and 1. It is assumed that E(y) = β0+β1x. The model is correctly

specified at θ = 0. Figure 6.1 displays the power performance for each test.

First note that the power at θ = 0 is about 0.05 corresponding to Type I error or

tests size. It is evident that the tests based on partial sums of residuals outperform

the tests based on absolute residuals (Rn and Hn). The power of Hn did not exceed

0.5 until θ = 1. Rn was only capable of 0.48. Whereas Wn and Vn exceeded power

0.5 at θ = 0.6 and achieved a maximum power of 0.94. The inferiority of Rn and Hn

is due to the fact that first ñ residuals are largely dominated by positive residuals.

Taking the absolute value of the residuals is not crucial here when forming the partial

sums. Wn is the most powerful test followed closely and almost indistinguishably by

Vn. We will continue seeing this behavior for most of the examples. At θ = 0.5, Wn

is 17%, 27%, 245% and 165% more powerful than Tn, Qn, Rn and Hn respectively.
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Power Comparison
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Figure 6.1: Power Comparison - Example 6.1.1; y = 1 + 2x+ θx2 + ε

In general, Wn and Vn seem to be more sensitive than Qn and Tn when the lack

fit is distributed randomly over the first ordered residuals. Qn is superior when the

lack of fit occurs in low ordered residuals whereas Tn works better when the lack of

fit takes place over relatively higher ordered residuals. The difference between Rn

and Hn can be understood in terms of the difference between Tn and Qn but for

absolute residuals.

Example 6.1.2: x is sampled from U(1, 4) with n = 70 and the response y follows

the relationship

y = 3x−θ + ε, ε ∼ N(0, 0.52)

θ ranges between 0 and 1.5. The results are shown in Figure 6.2.
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Power Comparison
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Figure 6.2: Power Comparison - Example 6.1.2; y = 3x−θ + ε

There are some similar patterns to the previous example. Tn has improved and Qn

has declined. The tests based on partial sums of residuals surpass absolute residuals

based tests. The maximum power of the latter tests is less than 0.5 as a result of

dominating positive residuals in the low ordered residuals. The performances of Wn,

Vn and Tn are almost identical. Wn is 33%, 200% and 250% more powerful than Qn,

Hn and Rn respectively when θ = 0.9.

Here the lack of fit is not concentrated in the first few ordered residuals explaining

the superiority of Wn over Qn.

Example 6.1.3: x is sampled from U(−1, 1) with n = 70 and the response y follows
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the relationship

y = 1 + 2x+ θx3 + ε, ε ∼ N(0, 0.12)

θ ranges between 0 and 3. The results are presented in Figure 6.3.
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Figure 6.3: Power Comparison - Example 6.1.3; y = 1 + 2x+ θx3 + ε

Notice the high quality power performance of Hn. It reaches power of 0.8 at

θ = 1. In contrast, the partial sums of residuals based tests suffer from low power

except perhaps Qn. They did not exceed 0.2. In fact, their power slightly decreases

as θ increases.

The superiority of Hn over Rn is due to the fact that the lack of fit exists in the

first few ordered residuals. For the same reason, Qn has relatively good performance

over Tn, Wn and Vn. The residuals have similar magnitudes but different signs. Thus,
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they cancel each other when taking the partial sum leading to small statistics for

tests based on signed residuals. It is noted that Qn has higher power than Rn for

θ ≤ 1. Hn is 400%, 116% and 47% more powerful than Wn, Qn and Rn respectively

at θ = 1.5.

The example is repeated assuming now ε ∼ U(−0.1
√

3, 0.1
√

3). The mean and the

variance of this distribution match those for N(0, 0.12). The B = 19, 999 simulations

draws are based on U(−1, 1). The tests based on absolute residuals are adjusted to

accommodate for the mean and the variance of the absolute value of U(−1, 1). The

results are shown in Figure 6.4.
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Figure 6.4: Power Comparison - Example 6.1.3; ε ∼ U(−0.1
√

3, 0.1
√

3)

Clearly, the pattern has not changed. Hn is still in the lead and Rn dominates
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Qn for θ > 1. As expected, the power of Tn, Wn and Vn has nearly stayed the

same. These statistics have shown in Chapter (5) robustness against distributional

assumption. Notice also the increase in power for the rest of statistics. For Hn the

power has risen from 0.60 to 0.79 at θ = 0.75. Similarly, the power of Rn and Qn

have increased about 0.17 at θ = 1.5.

Again, the example is repeated but now we assume that ε follows a t distribution

with 6 degrees of freedom and scale parameter equals 0.1

√
4

6
. The scale parameter

is chosen so that the errors have the same mean and variance for N(0, 0.12). The

B = 19, 999 simulations draws are based on t(6). The tests based on absolute

residuals are adjusted according to the mean and the variance of the absolute value

of t(6). The results are shown in Figure 6.5.

The pattern is not different but the distribution effect has become more apparent.

The power of Hn has decreased by 0.13 and 0.32 at θ = 0.75 when compared to

normal and uniform respectively. Similarly, the power of Rn has dropped by 0.15

and 0.31 at θ = 1.5 . The maximum power of Qn is 0.38. It achieved maximums of

0.60 and 0.77 when assuming normal and uniform, respectively. This illustrates the

importance of the distributional assumption to these statistics. However, Hn still

has showed powerful performance regardless the distribution of data. For the rest of

the statistics, the power practically has not changed.

6.2 MLR

For MLR, the fitted relationship between the response variable y and the covariates

x1 and x2 is

y = β0 + β1x1 + β2x2 + ε
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Figure 6.5: Power Comparison - Example 6.1.3; ε ∼ t(6, 0.1
√

4
6
)

Similar to SLR, a function of x1 and x2 controlled by a constant θ is added to this

relationship. The covariates x1 and x2 are simulated once. Then 95% quantiles of

each test statistic are computed using B = 19, 999. At each value of θ, y is simulated

10,000 times. The empirical power for each test statistic is calculated at each θ.

Example 6.2.1: The effect of excluding the interaction term between two covariates

is first assessed. x1 and x2 with n = 70 are sampled independently from N(0, 1) and

the response y is drawn from

y = 2 + x1 + x2 + θx1x2 + ε, ε ∼ N(0, 1.52)

θ ranges between 0 and 2. The fitted model assumes E(y) = β0 +β1x+β2x . It does

not include the interaction term. It assumes that the mean function is additive. The

46



Chapter 6. Power Comparisons

model is correctly specified when θ = 0. The ordering is imposed using x1 and x2.

The results are provided in Figure 6.6.
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Figure 6.6: Power Comparison - Example 6.2.1; y = 2 + x1 + x2 + θx1x2 + ε

The patterns are similar to Example 6.1.3 with a difference in performance of

Qn. Tests based on partial sums of residuals, except for Qn, produced low power.

Among this group, Wn is the best across θ with a maximum of 0.44. Whereas, tests

based on absolute residuals produced satisfactory performance. Hn has the highest

power across θ followed closely by Qn and almost indistinguishably for θ ≤ 0.8.

At θ = 2, Hn, Rn and Qn have reached power 1 while the power for the rest of

the tests is below 0.4. At θ = 1.4, Hn is 270% , 333% and 520% more powerful than

Wn, Vn and Tn respectively. For the same value of theta, Wn is 16% and 66% more
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powerful than Vn and Tn respectively.

Example 6.2.2: x1 and x2 are sampled from U(−2, 2) and χ2
1 respectively with

n = 70. The response y follows the relationship

y = 2 + 3x1 − x2 + θx21 + ε, ε ∼ N(0, 22)

θ ranges between 0 and 1. The fitted linear model does not include the quadratic

term x21. The data are ordered according to x1. The results are shown in Figure 6.7.
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Figure 6.7: Power Comparison - Example 6.2.2; y = 2 + 3x1 − x2 + θx21 + ε

The results are similar to those of Example 6.1.2. The Tn, Wn and Vn produced

almost identical powers. The difference between these tests and Qn is more obvious.
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None of the tests based on absolute residuals, Rn and Hn exceeded 0.5 with a slightly

better performance for the former for θ ≥ 0.6. Tn is 49% and 315% more powerful

than Qn and Rn respectively at θ = 0.6.

To assess the effect of the distribution of error vector, the example is repeated

twice. First, we assume ε ∼ U(−2
√

3, 2
√

3) and the simulations are drawn from

U(−1, 1). Then we alter the distribution to a t distribution with 6 d.f and scale

parameter 2

√
4

6
and the simulations are based on t with 6 d.f. Note that both

distributions have mean 0 and standard deviation 2 as N(0, 22). Similar to Example

6.1.3, Rn and Hn are adjusted according to the assumed distribution. The results

are shown in Figures 6.8 and 6.9.
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Figure 6.8: Power Comparison - Example 6.2.2; ε ∼ U(−2
√

3, 2
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Power Comparison
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Figure 6.9: Power Comparison - Example 6.2.2; ε ∼ t(6, 2
√

4
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Tn, Wn and Vn are the least affected by the changing the distribution. They

produced almost identical power across distributions. The power of Qn has increased

a little and decreased by almost the same amount when assuming uniform and t

correspondingly. The power of Hn has increased and exceeded Rn for every value of

θ when assuming uniform distribution. Whereas Rn has a slight advantage when the

distribution is t as in the normal case.

Generally, It can be observed that assuming uniform leads to a higher power for

Qn, Rn and Hn and lower power when assuming t with respect to normality. The

difference might be large as seen in Example (6.1.3) or small as in Example (6.2.2).

Tn, Wn and Vn are little affected by changing the distribution showing robustness

against distributional assumptions.
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Example 6.2.3: x1 and x2 are sampled from N(0, 1) and F (4, 10) respectively with

n = 70. The response y follows the relationship

y = 2 + 2x1 + 3xθ2 + ε, ε ∼ N(0, 22)

θ ranges between 1 and 2. The fitted model corresponds to θ = 1. The data are

ordered according to x2. The results are shown in Figure 6.10.
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Figure 6.10: Power Comparison - Example 6.2.3; y = 2 + 2x1 + 3xθ2 + ε

As θ increases the power of all tests increase. For all tests, a power of 1.00 has

been obtained when θ = 1.5. Tn, Wn and Vn reached a power of 1 faster than the rest

of the tests followed by Qn. Tn, Wn and Vn have achieved power of 0.9 at θ = 1.3.

For the same value of θ, Rn and Hn have attained a power around 0.4.
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Chapter 7

Summary

This dissertation introduced methods for testing the lack of fit in linear models.

More precisely, we proposed statistical procedures to investigate the validity of the

mean function specification, i.e. linearity assumption. C-L suggested two lack-of-fit

tests based on partial sums of residuals. Following C-L, we presented additional

test statistics based on partial sums of residuals. We gave assumptions required to

achieve convergence in distribution before deriving their asymptotic distributions.

Ordering methods and a consistent estimator of σ were introduced. We studied the

small sample behavior for each test statistic. It was clear that the test statistics suffer

from slow convergence leading to poor asymptotic approximation of the P values for

small, moderate, and even somewhat large samples. Thus, we presented an effective

approximation to P values through Monte Carlo simulations. We proposed new tests

based on partial sums of absolute residuals. The use of absolute residuals allowed

detection of lack of fit that was previously not possible with partial sums of residuals.

Finally, the C-L tests and the new tests were compared through several examples

and simulation studies in terms of their abilities in detecting an existing lack-of-fit.
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Appendix A

Asymptotic distributions

All of the asymptotic distributions are extensions of results by Darling and Erdös

(1956) and Erdös or Kac (1945) modified to deal with the necessity of estimating

β and σ in the linear model. In fact, for known β and σ the results follow directly

from Darling and Erdös (1956) or Erdös and Kac (1945). Assumptions (a) and (b) of

section 2 are needed to handle the estimation. The following three lemmas are proved

in Christensen and Lin (2012). Lemma (4) follows from Lemma (1) and Lemma (2).

Lemma 1.
√
n ‖ β̂n − β ‖ /an is bounded a.s, where an =

√
2 log log n and β̂n is

the least squares estimate of β.

Lemma 2. If assumption (a) is satisfied,

∣∣∣∣∣
m∑
i=1

xTi (β̂n − β)

σ
√
ñ

∣∣∣∣∣ and
m∑
i=1

∣∣∣∣∣xTi (β̂n − β)

σ
√
ñ

∣∣∣∣∣
converge in probability to 0 as ñ → ∞, for any integer m ∈ {1, 2..., ñ}, where

ñ = dn/(log log n)1+δe for δ > 0.

Lemma 3. If assumption (a) is satisfied, añ max
1≤m≤ñ

∣∣∣∣∣
m∑
i=1

xTi (β̂n − β)

σ
√
m

∣∣∣∣∣ and

añ

m∑
i=1

∣∣∣∣∣xTi (β̂n − β)

σ
√
m

∣∣∣∣∣ converge in probability to 0 as ñ → ∞, for any integer m ∈
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{1, 2..., ñ}, where ñ = dn/(log log n)1+δe for δ > 1 and añ =
√

2 log log ñ.

Lemma 4. It follows from Lemma (1) and Lemma (2),
1√
ñ

max
1≤m≤ñ

∣∣∣∣∣
m∑
i=1

xTi (β̂n − β)

σ

∣∣∣∣∣
and

1

ñ
max

1≤m≤ñ

m∑
i=1

(
xTi (β̂n − β)

σ

)2

converge in probability to 0 as n→∞.

A.1 Proof of Theorem 1

Proof of Theorem 1. If β and σ are known, then ei = yi−xTi β for i ∈ {1, ..., n}

are independently distributed with E(ei) = 0 and V ar(ei) = σ2. By Erdös and Kac

(1945) part(4), as ñ→∞,

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β
σ

∣∣∣∣∣ L→ W,

with the distribution of W indicated in Theorem 1. First consider,

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n
σ

∣∣∣∣∣
=

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β + xTi (β − β̂n)

σ

∣∣∣∣∣
=

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β
σ

+
m∑
i=1

xTi (β − β̂n)

σ

∣∣∣∣∣
≤ 1√

ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β
σ

∣∣∣∣∣+
1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

xTi (β − β̂n)

σ

∣∣∣∣∣
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Similarly,

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β
σ

∣∣∣∣∣
=

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n + xTi (β̂n − β)

σ

∣∣∣∣∣
=

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n
σ

+
m∑
i=1

xTi (β̂n − β)

σ

∣∣∣∣∣
≤ 1√

ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n
σ

∣∣∣∣∣+
1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

xTi (β − β̂n)

σ

∣∣∣∣∣

It suffices to show that 1√
ñ3

∑ñ
m=1

∣∣∣∑m
i=1

xTi (β−β̂n)
σ

∣∣∣ converges in probability to 0 to

prove that 1√
ñ3

∑ñ
m=1

∣∣∣∑m
i=1

yi−xTi β̂n
σ

∣∣∣ and 1√
ñ3

∑ñ
m=1

∣∣∣∑m
i=1

yi−xTi β
σ

∣∣∣ have the same lim-

iting distribution.

By Lemma (4),

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

xTi (β − β̂n)

σ

∣∣∣∣∣ =
1

ñ

ñ∑
m=1

1√
ñ

∣∣∣∣∣
m∑
i=1

xTi (β − β̂n)

σ

∣∣∣∣∣
≤ 1

ñ

ñ∑
m=1

max
1≤m≤ñ

1√
ñ

∣∣∣∣∣
m∑
i=1

xTi (β − β̂n)

σ

∣∣∣∣∣
= max

1≤m≤ñ

1√
ñ

∣∣∣∣∣
m∑
i=1

xTi (β − β̂n)

σ

∣∣∣∣∣ p→ 0.

Moreover,

Wn =
1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n
σ̂n

∣∣∣∣∣ =
σ

σ̂n

1√
ñ3

ñ∑
m=1

∣∣∣∣∣
m∑
i=1

yi − xTi β̂n
σ

∣∣∣∣∣ .
By condition (b), σ/σ̂n

p→ 1, hence Wn
L→ W . �
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A.2 Proof of Theorem 2

Proof of Theorem 2. If β and σ are known, then ei = yi − xTi β for i ∈

{1, ..., n} are independently distributed with E(ei) = 0 and V ar(ei) = σ2. It follows

immediately by Erdös and Kac (1945) part(3)

1

ñ2

ñ∑
m=1

(
m∑
i=1

yi − xTi β
σ

)2

L→ V,

with the distribution of V indicated in Theorem (1).

Let

am =
m∑
i=1

yi − xTi β
σ

and

bm =
m∑
i=1

xTi (β − β̂n)

σ

Then,

1

ñ2

ñ∑
m=1

(
m∑
i=1

yi − xTi β̂n
σ

)2

=
1

ñ2

ñ∑
m=1

(
m∑
i=1

(yi − xTi β̂n) + xTi (β − β̂n)

σ

)2

=
1

ñ2

ñ∑
m=1

(
m∑
i=1

yi − xTi β
σ

)2

+
1

ñ2

ñ∑
m=1

(
m∑
i=1

xTi (β − β̂n)

σ

)2

+
2

ñ2

ñ∑
m=1

(
m∑
i=1

yi − xTi β
σ

)(
m∑
i=1

xTi (β − β̂n)

σ

)

=
1

ñ2

ñ∑
m=1

a2m +
1

ñ2

ñ∑
m=1

b2m +
2

ñ2

ñ∑
m=1

ambm

We have already established that the first term 1
ñ2

∑ñ
m=1 a

2
m converges in distribution

to V . It suffices to show that the second term 1
ñ2

∑ñ
m=1 b

2
m and the third term
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2
ñ2

∑ñ
m=1 ambm converge in probability to 0.

By Lemma (4),

0 ≤ 1

ñ2

ñ∑
m=1

b2m ≤
1

ñ2

ñ∑
m=1

max
1≤m≤ñ

b2m = max
1≤m≤ñ

1

ñ
b2m

p→ 0

Therefore, 1
ñ2

∑ñ
m=1 b

2
m

p→ 0 as ñ→∞.

For the third term,∣∣∣∣∣ 2

ñ2

ñ∑
m=1

ambm

∣∣∣∣∣ ≤ 2

ñ2

ñ∑
m=1

|am||bm|

≤ 2

ñ2

ñ∑
m=1

|am| max
1≤m≤ñ

|bm|

≤ max
1≤m≤ñ

|bm|
2

ñ2

ñ∑
m=1

|am|

=
1√
ñ

max
1≤m≤ñ

|bm|
2

ñ
3
2

ñ∑
m=1

|am|

By Lemma (4), 1√
ñ

max1≤m≤ñ |bm|
p→ 0 and by Erdös and Kac (1945) part(4),

1

ñ
3
2

∑ñ
m=1 |am| converges in distribution.

So, by Slutsky’s theorem, 1√
ñ

max1≤m≤ñ |bm| 1

ñ
3
2

∑ñ
m=1 |am|

p→ 0.

Thus, ∣∣∣∣∣ 2

ñ2

ñ∑
m=1

ambm

∣∣∣∣∣ p→ 0

and
2

ñ2

ñ∑
m=1

ambm
p→ 0

as ñ→∞. This establishes that 1
ñ2

∑ñ
m=1

(∑m
i=1

yi−xTi β̂n
σ

)2
has limiting distribution

V .

Finally,

Vn =
1

ñ2

ñ∑
m=1

(
m∑
i=1

yi − xTi β̂n
σ̂n

)2

=
σ2

σ̂2
n

1

ñ2

ñ∑
m=1

(
m∑
i=1

yi − xTi β̂n
σ

)2

.
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By assumption (b), σ/σ̂n
p→ 1, hence Vn

L→ V . �

A.3 Proof of Theorem 3

Proof of Theorem 3. Suppose β is known, then ei = yi−xTi β for i ∈ {1, ..., n} are

independently distributed with E(ei) = 0 and V ar(ei) = σ2. With ei/σ ∼ N(0, 1),

hence |ei/σ| are independent identically distributed ( i.i.d. ) random variables with

expected value
√

2
π

and variance 1− 2
π
. Hence wi = |ei|

σ
√

1− 2
π

−
√

2
π−2 are i.i.d random

variables with expected value 0 and variance 1. By Erdös and Kac (1945) part(1) ,

as ñ→∞,

1√
ñ

max
1≤m≤ñ

m∑
i=1

wi =
1√
ñ

max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

|ei| −m
√

2

π − 2


=

1√
ñ

max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

∣∣yi − xTi β∣∣−m√ 2

π − 2

 L→ Z.

Let β̂n be the least square estimator of β and let k and q be numbers that satisfy

1

σ
√

1− 2
π

k∑
i=1

∣∣∣yi − xTi β̂n∣∣∣− k√ 2

π − 2

= max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

∣∣∣yi − xTi β̂n∣∣∣−m√ 2

π − 2


and

1

σ
√

1− 2
π

q∑
i=1

∣∣yi − xTi β∣∣− q√ 2

π − 2

= max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

∣∣yi − xTi β∣∣−m√ 2

π − 2
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Now,
1√
ñ

 1

σ
√

1− 2
π

k∑
i=1

∣∣∣yi − xTi β̂n∣∣∣− k√ 2

π − 2


=

1√
ñ

 1

σ
√

1− 2
π

k∑
i=1

∣∣∣yi − xTi β + xTi β − xTi β̂n
∣∣∣− k√ 2

π − 2


≤ 1√

ñ

 1

σ
√

1− 2
π

k∑
i=1

∣∣yi − xTi β∣∣− k√ 2

π − 2


+

1

σ
√
ñ(1− 2

π
)

k∑
i=1

∣∣∣xTi (β̂n − β)
∣∣∣

≤ 1√
ñ

max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

∣∣yi − xTi β∣∣−m√ 2

π − 2


+

1

σ
√
ñ(1− 2

π
)

k∑
i=1

∣∣∣xTi (β̂n − β)
∣∣∣

Also,

1√
ñ

 1

σ
√

1− 2
π

q∑
i=1

∣∣yi − xTi β∣∣− q√ 2

π − 2


=

1√
ñ

 1

σ
√

1− 2
π

q∑
i=1

∣∣∣yi − xTi β̂n + xTi β̂n − xTi β
∣∣∣− q√ 2

π − 2


≤ 1√

ñ

 1

σ
√

1− 2
π

q∑
i=1

∣∣∣yi − xTi β̂n∣∣∣− q√ 2

π − 2


+

1

σ
√
ñ(1− 2

π
)

q∑
i=1

∣∣∣xTi (β̂n − β)
∣∣∣

≤ 1√
ñ

max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

∣∣∣yi − xTi β̂n∣∣∣−m√ 2

π − 2


+

1

σ
√
ñ(1− 2

π
)

q∑
i=1

∣∣∣xTi (β̂n − β)
∣∣∣ .
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Thus A − B ≤ C ≤ A + B. By Lemma (2), both
∑q

i=1

∣∣∣xTi (β̂n − β)
∣∣∣ /σ√ñ and∑k

i=1

∣∣∣xTi (β̂n − β)
∣∣∣ /σ√ñ converge in probability to 0 as n→∞, therefore

R̃n =
1√
ñ

max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

∣∣∣yi − xTi β̂n∣∣∣−m√ 2

π − 2


has the same limiting distribution as

1√
ñ

max
1≤m≤ñ

 1

σ
√

1− 2
π

m∑
i=1

∣∣yi − xTi β∣∣−m√ 2

π − 2

 .
Hence R̃n

L→ Z. By assumption (b), σ/σ̂n
p→ 1. Thus

σ

σ̂n
R̃n

L→ Z. Rn is identical to

R̃n except that σ̂n replaces σ. Rn can be written as

1√
ñ

max
1≤m≤ñ

 1

σ̂n

√
1− 2

π

m∑
i=1

∣∣∣yi − xTi β̂n∣∣∣− σ

σ̂n
m

√
2

π − 2
+

σ

σ̂n
m

√
2

π − 2
−m

√
2

π − 2



Applying the following inequality that can be applied to any two sequences of real

numbers am and bm, max
m

am − max
m
|bm| ≤ max

m
(am + bm) ≤ max

m
am + max

m
bm, we

obtain

σ

σ̂n
Rn −

1√
ñ

max
1≤m≤ñ

∣∣∣∣∣m
√

2

π − 2

(
σ

σ̂n
− 1

)∣∣∣∣∣
≤ Rn ≤

σ

σ̂n
R̃n +

1√
ñ

max
1≤m≤ñ

[
m

√
2

π − 2

(
σ

σ̂n
− 1

)]

It suffices to show that
1√
ñ

max
1≤m≤ñ

[
m

√
2

π − 2

(
σ

σ̂n
− 1

)]
converges to 0 to es-
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tablish that Rn and
σ

σ̂n
R̃n have the same limiting distribution which is Z.

1√
ñ

max
1≤m≤ñ

[
m

√
2

π − 2

(
σ

σ̂n
− 1

)]
=

1√
ñ

√
2

π − 2

(
σ

σ̂n
− 1

)
max

1≤m≤ñ
m

=

√
2

π − 2

√
ñ

(
σ

σ̂n
− 1

)
=

√
2

π − 2

√
ñ√
n

√
n

(
σ

σ̂n
− 1

)
Using assumption (b) and the slow convergence of ñ to infinity, we get the convergence

to 0. By (b),
√
n

(
σ

σ̂n
− 1

)
is bounded in probability and

√
ñ√
n

converges to 0.

Then by slutsky’s theorem,
1√
ñ

max
1≤m≤ñ

[
m

√
2

π − 2

(
σ

σ̂n
− 1

)]
converges to 0. The

convergence of Hn follows similarly but Darling and Erdös (1955) Theorem 1 is used

instead of Erdös and Kac (1945) part(1) and Lemma 3 instead of Lemma 2. �

A.4 Additional test Statistics

A.4.1 Zn

Following C-L, if β and σ are known, then ei = yi − xTi β for i ∈ {1, ..., n} are

independently distributed with E(ei) = 0 and V ar(ei) = σ2. By Erdös and Kac

(1945) part(1) , as ñ→∞,

1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β
σ

L→ U,

where U has a half-normal distribution.

Let β̂n be the least square estimator of β and let k and q be numbers that satisfy

k∑
i=1

yi − xTi β̂n
σ

= max
1≤m≤ñ

m∑
i=1

yi − xTi β̂n
σ

,

61



Appendix A. Asymptotic distributions

and
q∑
i=1

yi − xTi β
σ

= max
1≤m≤ñ

m∑
i=1

yi − xTi β
σ

,

so that,

1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β̂n
σ

=
1√
ñ

k∑
i=1

yi − xTi β̂n
σ

=
1√
ñ

k∑
i=1

yi − xTi β
σ

+
1√
ñ

k∑
i=1

xTi (β − β̂n)

σ

≤ 1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β
σ

+
1√
ñ

∣∣∣∣ k∑
i=1

xTi (β̂n − β)

σ

∣∣∣∣.
Also,

1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β̂n
σ

≥ 1√
ñ

q∑
i=1

yi − xTi β̂n
σ

=
1√
ñ

q∑
i=1

yi − xTi β
σ

− 1√
ñ

q∑
i=1

xTi (β̂n − β)

σ

≥ 1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β
σ

− 1√
ñ

∣∣∣∣ q∑
i=1

xTi (β̂n − β)

σ

∣∣∣∣.
By Lemma (2), both

∣∣∣∑q
i=1 x

T
i (β̂n − β)

∣∣∣ /σ√ñ and
∣∣∣∑k

i=1 x
T
i (β̂n − β)

∣∣∣ /σ√ñ
converge in probability to 0 as n→∞, therefore

1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β̂n
σ

has the same limiting distribution as

1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β
σ

Now,

Zn =
1√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β̂n
σ̂n

=
σ

σ̂n
√
ñ

max
1≤m≤ñ

m∑
i=1

yi − xTi β̂n
σ

.

By assumption (b), σ/σ̂n
p→ 1, hence Zn

L→ U . �
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A.4.2 Mn

If β and σ are known, then −ei = xTi β − yi for i ∈ {1, ..., n} are independently

distributed with E(−ei) = 0 and V ar(−ei) = σ2. By Erdös and Kac (1945) part(1)

, as ñ→∞,
1√
ñ

max
1≤m≤ñ

m∑
i=1

xTi β − yi
σ

L→ U,

where U has a half-normal distribution.

Then, for u > 0,

Pr

[
1√
ñ

max
1≤m≤ñ

m∑
i=1

xTi β − yi
σ

< u

]
= Pr

[
1√
ñ

min
1≤m≤ñ

m∑
i=1

yi − xTi β
σ

> −u

]
.

Hence, Pr[ 1√
ñ

min1≤m≤ñ
∑m

i=1
yi−xTi β

σ
< −u] converges to

(
2
π

) 1
2
∫∞
u

exp(− r2

2
) dr

for r > 0. The rest of the proof is similar to the proof of Zn. �

A.4.3 Gn

It follows from Darling and Erdös (1955) Part(1) and Lemma (3). The rest of the

proof is similar to the proofs of Zn and Mn. �
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