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Abstract

A common process in ODE theory is to linearize an ODE system about an equilibrium

point to determine the local stability properties of its orbits. Less common are results

that quantify the domain of stability in the original system. We study a class of

ODE systems where the domain of nonlinear stability is significantly small given the

parameters of the problem. The aim of this paper is to attempt to quantify this

region of stability.
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Chapter 1

Introduction

When analyzing the behavior of a nonlinear system of ordinary differential equations

near an equilibrium point, the most common process is to approximate it with a

linear system. If the eigenvalues of the linearized system at this point have negative

real part, then the point is locally stable, and the discussion may end there. But

we want to further study this stability. How large is this region of stability? Does

it depend on the size of the eigenvalues, i.e., with greater negative real part comes

a larger region of stability? The investigation of these types of questions are less

common, so we will attempt to understand them. We begin by defining the class of

problems this paper will investigate and summarizing previous results.

1.1 Class of Problems

Consider the nonlinear autonomous ODE system:

x′ = Ax+Q(x), A ∈ Rn×n, x ∈ Rn, Q(x) ∈ Rn, (1.1)

1



Chapter 1. Introduction

where Q(x) is quadratic in x and vanishes quadratically at the origin. The eigenval-

ues of A lie in the left-half of the complex plane and the origin is a stable equilibrium

point.

Our aim is to quantify the region of stability around the origin in the euclidean

norm, which we will denote by | · |. We can mathematically pose this question by

determining the radius of the largest n-dimensional ball around the origin such that

any orbit with initial condition inside the ball will converge to the origin. If we

denote this radius by r∗, then the problem can be stated as finding:

r∗(A,Q) := sup{r : |x(0)| < r ⇒ lim
t→∞
|x(t)| = 0}. (1.2)

We will call r∗ the radius of stability.

In the case where A is a diagonal or normal matrix, the problem is solved. We

begin with the diagonal case.

Theorem 1. Consider the nonlinear ODE system x′ = Λx + Q(x), where Q(x) is

quadratic in x that vanishes at the origin, |Q(x)| ≤ |x|2, Λ = diag(λ1, λ2, . . . , λn), and

each λi < 0. Define α(Λ) := min1≤i≤n |λi|. If |x(0)| < α(Λ), then limt→∞ |x(t)| = 0,

i.e., r∗(Λ, Q) ≥ α(Λ).

2



Chapter 1. Introduction

Proof. Consider:

d

dt
|x(t)| = d

dt
[x21(t) + · · ·+ x2n(t)]1/2 =

2x1(t)x
′
1(t) + · · ·+ 2xn(t)x′n(t)

2[x21(t) + · · ·+ x2n(t)]1/2

=
〈x(t), x′(t)〉
|x(t)|

=
〈x(t),Λx+Q(x)〉

|x(t)|

=
〈x(t),Λx〉+ 〈x(t), Q(x)〉

|x(t)|

=
[λ1x

2
1(t) + · · ·+ λnx

2
n(t)] + 〈x(t), Q(x)〉

|x(t)|

≤ −α(Λ)|x(t)|2 + |x(t)|3

|x(t)|

= |x(t)|[|x(t)| − α(Λ)]

Evaluating this inequality at t = 0 gives:

d

dt
|x(0)| ≤ |x(0)|[|x(0)| − α(Λ)] < 0

Hence, |x(t)| is initially decreasing. We claim it is always decreasing. Otherwise,

there is an initial time T > 0 where x(T ) = α(Λ) and d
dt
|x(t)| < 0 on the interval

[0, T ]. However, if we consider:∫ T

0

d

dt
|x(s)|ds < 0⇒ |x(T )| − |x(0)| < 0⇒ |x(T )| < |x(0)| < α(Λ)

which is a contradiction. Finally, since |x(t)| is always decreasing and positive, it is

bounded. So let |x(t)| − α(Λ) ≤ −M . Then the earlier computation gives:

d

dt
|x(t)| ≤ |x(t)|[|x(t)| − α(Λ)] ≤ −M |x(t)|

Solving this differential inequality yields:

|x(t)| ≤ Ce−Mt

Therefore, limt→∞ |x(t)| = 0.

3



Chapter 1. Introduction

Note for the 1-dimensional case x′ = −δx+ x2, we require |x(0)| < δ for an orbit

to converge to the origin. And so it turns out that the radius of stability satisfies

r∗(δ, x2) = δ. So if one has no further information but |Q(x)| ≤ |x|2, then the lower

bound on α(Λ) is sharp.

This proof can be extended when the matrix of the nonlinear system is normal.

Theorem 2. Under the conditions of Theorem 1 with Λ replaced by a normal matrix

A, the same result holds.

Proof. Since A is normal, there exists a diagonal matrix Λ and a unitary matrix U

such that UA = ΛU . If we define the transformation y = Ux, then y′ = Ux′ =

UAx + UQ(x) = ΛUx + UQ(x) = Λy + UQ(U−1y) = Λy + Q̃(y). Theorem 1 now

applies to this transformed system.

So the question remains to study when A is not normal.

1.2 Previous Result

In [KL], it was proposed to study (1.1) with the assumptions Reλ ≤ −2δ < 0 for

all λ ∈ σ(A) and |Q(x)| ≤ 1
2
CQ|x|2 for all x ∈ Cn, where σ(A) denotes the set of

eigenvalues of A and CQ is some positive constant that depends on Q(x). Their aim

was to determine a realistic value for ε such that:

|x(0)| < ε⇒ lim
t→∞
|x(t)| = 0. (1.3)

In the paper, they showed the condition:

|x(0)| < 2δ2n−1

CQ
(1.4)

4



Chapter 1. Introduction

is sufficient for (1.3) and reasoned it was essentially necessary unless one makes more

specific assumptions on Q(x). When A is not normal, then the size of ε may become

extremely small. This can be illustrated by considering (1.1) with:

A =


−2δ 1 0

. . . . . .

−2δ 1

0 −2δ

 , 0 < δ ≤ 1, Q(x) =


0
...

0

x21

 . (1.5)

In this case where CQ = 2, δ = 0.01, and n = 5, we have the surprisingly restrictive

condition |x(0)| < 10−18.

An issue that is worth discussing at this point is the highly degenerate nature of

the eigenvalues of A. One may speculate that this may be a principle cause for this

restrictive result. However, we benefit from the fact that the nonlinear system is a

relatively straightforward system to inspect. Consider if we were to replace A with

the matrix:

A =


−2δ + ε1 1 0

. . . . . .

−2δ + εn−1 1

0 −2δ + εn

 ,

where each εi is a small and distinct perturbation, then all the eigenvalues of A be-

come distinct, but the dynamics of the perturbated system are virtually identical.

Due to this sufficient condition, we have a lower bound on the radius of stabil-

ity. So in the terms of our proposed problem (1.2), this result shows that for some

constant c:

cδ2n−1 ≤ r∗(A,Q).

5



Chapter 1. Introduction

It remains to investigate if the condition is actually necessary, which this paper will

attempt. In order to simplify our investigation of the class of problems (1.1), we will

now introduce rescalings of this problem that allow us to study a simpler subclass of

problems.

6



Chapter 2

Preliminaries

In this chapter we will review some basic definitions, results, and introduce the no-

tation that we will use. These definitions can be found in most standard texts such

as [Mey], [Wat], and [TP]. We summarize them here.

Given the multivariable function F : Rn → Rn, where

F (x1, x2, · · · , xn) =


f1(x1, x2, · · · , xn)

f2(x1, x2, · · · , xn)
...

fn(x1, x2, · · · , xn)

 ,

its Jacobian is the n× n matrix of partial derivatives:

JF (x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...

∂fn
∂x1

· · · ∂fn
∂xn

 .

A nonlinear autonomous n-th order system of first order differential equations

7



Chapter 2. Preliminaries

has the form x′ = F (x) or:

x′1 = f1(x1, x2, · · · , xn)

x′2 = f2(x1, x2, · · · , xn)

...

x′n = fn(x1, x2, · · · , xn)

.

Solutions to the system of differential equations are called trajectories or orbits. A

point a = (a1, a2, · · · , an) that satisfies fi(a) = 0 for i = 1, 2, · · · , n is called an

equilibrium point or fixed point of the system. The linearization of the system at an

equilibrium point a is x′ = Ax, where A = JF (a). Near an equilibrium point, the

dynamics of the nonlinear system are similar to the linearized system, provided no

eigenvalues of A have zero real part.

The matrix A defines three subspaces of Cn. The stable subspace is spanned by

the generalized eigenvectors corresponding to the eigenvalues λ with Re λ < 0. The

unstable subspace is spanned by the generalized eigenvectors corresponding to the

eigenvalues λ with Re λ > 0. The center subspace is spanned by the generalized

eigenvectors corresponding to the eigenvalues λ with Re λ = 0.

According to Schur’s Decomposition Theorem, given any square n × n matrix

A, there exists a unitary matrix U and an upper-triangular matrix R such that

A = URU∗, where the eigenvalues of A lie on the diagonal of R. If A is normal, then

A = UΛU∗, where Λ is a diagonal matrix consisting of the eigenvalues of A.

8



Chapter 3

Rescaling of the Problem Class

The class of problems (1.1) is quite large. Thus, we will attempt to narrow the pa-

rameters of the problem while maintaining generality. It turns out that the example

(1.5) proposed in [KL] is in fact a quintessential demonstration of the ideas of this

paper.

The rescaling of (1.1) is accomplished in three steps. Our first task is to use

Schur’s decomposition on the constant matrix to obtain A = URU∗ or R = U∗AU ,

where U is unitary andR is upper-triangular with the eigenvalues ofA on its diagonal.

If we let x = Uy, then the ODE is transformed to:

Uy′ = AUy +Q(Uy).

After left-multiplying by U∗, we obtain:

y′ = Ry + U∗Q(Uy).

If we call Q̃(y) = U∗Q(Uy), which is also quadratic in y, then we have:

y′ = Ry + Q̃(y).

9



Chapter 3. Rescaling of the Problem Class

Hence, our first transformation yields:

x′ = Ax+Q(x)⇒ y′ = Ry + Q̃(y).

So after this transformation, we may now consider the ODE system:

x′ = Rx+Q(x),

where R is upper triangular with its eigenvalues on the diagonal andQ(x) is quadratic

in x. Note that the transformation x = Uy by a unitary matrix does not change the

size of balls.

Our second task is a time rescaling accomplished by letting y(t) = x(αt). Then

the ODE becomes:

y′ = αx′(αt) = α[Rx(αt) +Q(x(αt))] = (αR)y + αQ(y).

Thus, we may choose α so that the eigenvalues of αR assume any value we choose.

Since a time rescaling does not affect the radius of stability, this computation shows

that the size of the eigenvalues alone cannot be the determining factor since the

eigenvalue bound can take on any arbitrary value without changing the radius of

stability! We now see that it is necessary to obtain a standardization before we

study this problem. So after this rescaling (after choosing α), we may now consider

the ODE system:

x′ = Rx+Q(x),

where R is upper triangular with the eigenvalues of A on its diagonal, Q(x) is

quadratic in x, and the standardization we choose is for R to satisfy:

max
i

n∑
j=i+1

|rij| = 1.

10



Chapter 3. Rescaling of the Problem Class

We may assume that R is not diagonal since that would make it a normal matrix.

Our last task is a vector rescaling accomplished by letting x = βy. Then x′ = βy′

and the ODE becomes:

βy′ = Rβy +Q(βy) = βRy + β2Q̂(y),

where Q̂(y) is also quadratic in y. Dividing both sides of this equation by β yields:

y′ = Ry + βQ̂(y).

Thus, β can be chosen so that the size of βQ̂(y) can be anything we choose. Since a

vector rescaling can arbitrarily affect the radius of stability, this computation shows

that the size of the nonlinear perturbation is arbitrary as well! It is once again

necessary to obtain a standardization. We choose β such that:

max
y 6=0

|βQ̂(y)|
|y|2

= 1.

The following example demonstrates the rescaling process on a 3 × 3 example.

Consider the nonlinear ODE system x′ = Ax+Q(x), where:

A =


−1 1 1

1 −1 0

−1 0 −1

 , Q(x) =


0

0

x21

 .
When we apply Schur’s decomposition to the constant matrix, it is factored as A =

URUT , where:

R =


−1

√
2 0

0 −1
√

2

0 0 −1

 , U =


0 1 0
√

2/2 0
√

2/2

−
√

2/2 0
√

2/2

 .

11



Chapter 3. Rescaling of the Problem Class

If we let x = Uy, substitute this into the ODE system, and use the fact that AU =

UR, we obtain:

Uy′ = AUy +Q(Uy)⇒ Uy′ = URy +Q(Uy).

Left-multiplying by UT yields:

y′ = Ry + UTQ(Uy)

We define Q̃(y) = UTQ(Uy). And so:

y′ = Ry + Q̃(y), Q̃(y) =


−
√
2
2
y22

0
√
2
2
y22


Now we do the time rescaling z = y(αt) with α = 1√

2
. Then z′ = αy′(αt) and the

ODE system is transformed to:

z′ = α[Ry(αt) + Q̃(y(αt))] = (αR)z + αQ̃(z).

This simplifies to z′ = R2z + Q̃2(z), where:

R2 =


−1/
√

2 1 0

0 −1/
√

2 1

0 0 −1/
√

2

 , Q̃2(z) =


−1

2
z22

0

1
2
z22

 .
Now we do the vector rescaling z = βw with β =

√
2. Then z′ = βw′, which we

substitute into the ODE system:

βw′ = βR2w + Q̃2(βw).

Note that:

Q̃2(βw) =


−1

2
β2w2

2

0

1
2
β2w2

2

 .

12



Chapter 3. Rescaling of the Problem Class

So then if we divide both sides of the ODE system by β, it becomes:

w′ = R2w +
1

β
Q̃2(βw).

Furthermore:

1

β
Q̃2(βw) =


−1

2
βw2

2

0

1
2
βw2

2

 =


− 1√

2
w2

2

0

1√
2
w2

2

 = Q̃(w).

So finally, the ODE system has become:

w′ = R2w + Q̃(w).

The ODE system has now been transformed into a problem within our class of study.

In summary, these rescalings introduce a normalization. It is only after the

rescaling process where it is meaningful to consider the size of:

max
j

Re λj = −δ < 0

and try to relate δ to the radius of stability. So this paper now considers the subclass

of problems:

x′ = Ax+Q(x), (3.1)

where A is upper triangular, Q(x) is quadratic in x that vanishes at the origin, A

satisfies:

max
i

n∑
j=i+1

|aij| = 1,

and Q(x) satisfies:

max
x 6=0

|Q(x)|
|x|2

= 1.

13



Chapter 4

Numerical Investigation

To begin our quest to find the radius of stability, we attempt to numerically test the

result (1.4) from [KL]. Is this bound for |x(0)| necessary to assure convergence or

too pessimistic? We use an ODE solver in MATLAB to simulate the paths of orbits

in a nonlinear ODE. We wrote our own routine to randomly generate points on the

surface of an n-dimensional sphere to provide the initial conditions to the solver.

We then manually adjusted the radius of the sphere until we found the maximum

radius for which all orbits converged to the origin. Confirmation of this was generally

accepted when at least 1,000 points met the convergence condition in the code. Full

documentation of the code and criteria used can be found in the appendix. Figure

4.1 provides a 3-dimensional demonstration of the routine’s function.

14



Chapter 4. Numerical Investigation

Figure 4.1: 3D Representation of our MATLAB Routine: Experimental Radius of
Stability of an ODE

15



Chapter 4. Numerical Investigation

δ2(2)−1 Rnum

0.125 1.391
0.0156 0.241
0.00463 0.0765
0.00195 0.0321
0.001 0.0159

0.000579 0.00891
0.000364 0.00547
0.000244 0.00362
0.000171 0.00255
0.000125 0.00188

Table 4.1: Theoretical vs. Experimental Radii of Stability for Dimension n = 2

Using the system (1.5), we will call the right-hand side of (1.4) the theoretical

radius of stability, which is δ2n−1. We will call the numerical radius found by the

MATLAB routine the experimental radius of stability, denoted Rnum. Table 4.1

summarizes our results when n = 2 using ten chosen values for δ.

Table 4.1 shows there is a wide discrepancy between the theoretical and exper-

imental radii, which could imply that (1.4) is indeed too pessimistic. However, an

important numerical result we notice is that the δ2n−1 scaling in (1.4) appears to

be valid in all ten cases. In mathematical terms, let us hypothesize that for some

constant C:

Rnum ∼ Cδ2n−1.

Taking the logarithm of this relationship will give:

log(Rnum) ∼ log(Cδ2n−1).

Rearranging the terms gives:

log(Rnum) ∼ (2n− 1) log(δ) + log(C).

16



Chapter 4. Numerical Investigation

Testing this hypothesis, we use the data in Table (4.1) to construct a log-log plot of

the experimental versus theoretical radii of stability for dimension n = 2 in the hopes

that we obtain a slope of approximately 2n− 1 = 3. Indeed, Figure (4.2) shows that

the linear regression of these points yields a slope of 2.92

17



Chapter 4. Numerical Investigation

Figure 4.2: Log-Log Plot of Rnum vs δ in Dimension n = 2

18
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δ2(3)−1 Rnum

0.000977 0.0898
0.000129 0.0127
0.0000305 0.00311
0.00001 0.00103

0.00000402 0.000418
0.00000186 0.000193

Table 4.2: Theoretical vs. Experimental Radii of Stability for Dimension n = 3

With this hypothesis in hand, we test it again by conducting a similar numerical

test in dimension n = 3. Table 4.2 summarizes our results when n = 3 using six

chosen values for δ. And again, we construct a similar log-log plot in order to obtain

slope of approximately 2n − 1 = 5. And once again, Figure (4.3) shows that the

linear regression of these points yields of slope 4.90.
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Figure 4.3: Log-Log Plot of Rnum vs δ in Dimension n = 3
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So while the theoretical and experimental results are not a match, it appears that

the δ2n−1 relationship is not coincidental. Earlier we mentioned that, in terms of our

posed problem, it has already been shown that there exists a constant c such that

the radius of stability satisfies:

cδ2n−1 ≤ r∗(A,Q).

The numerical work up to this point seems to suggest the worthwhile result that

there also exists a system and a constant Cn (depending on n, but not on δ > 0)

such that:

r∗(A,Q) ≤ Cnδ
2n−1. (4.1)

We will, indeed, prove this result, which will be the focus of the rest of this paper.

The next two chapters will demonstrate two methods of proof, the first method

having potential and the second method being successful. After these chapters, the

main result (4.1) will be formally stated in the conclusion.
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Linear Subspace Method of Proof

After the numerical investigation gave us a deeper understanding of the problem, our

first rigorous approach to prove (4.1) will be based on a familiar technique. As we

mentioned before, the most common process for understanding equilibrium points in

a nonlinear ODE system is to linearize it and study its Jacobian. So, we hypothe-

sized that it may be possible to use the information from the linearized system to

give us useful information about the nonlinear system. Specifically, would the stable

and unstable subspaces of the linearized system give us any information about the

radius of stability about the origin?

With this idea in mind, we now study an example motivated by the one proposed

in [KL]. Consider (3.1) with:

A =


−δ 1 0

. . . . . .

−δ 1

0 −δ

 , Q(x) =


0
...

0

x21

 . (5.1)

Since δ is normally a small quantity, we can use the transformation xj = δn+j−1yj
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for j = 1, 2, · · · , n to eliminate it. Written out, the transformation is:

x1 = δny1, x2 = δn+1y2, · · · , xn = δ2n−1yn.

Note that this transformation changes the size of balls in a simple way. Substituting

these equations into the ODE system gives:

δny′1 = −δn+1y1 + δn+1y2

δn−1y′2 = −δny2 + δny3

...

δ2n−1y′n = −δ2nyn + δ2ny21

.

Dividing each equation by the appropriate power of δ, the system is transformed to:

y′ = δ[By +Q(y)], B =


−1 1 0

. . . . . .

−1 1

0 −1

 .

We now do a second transformation using the time rescaling u(t) = y(t/δ). Then

δu′(t) = y′(t/δ). Substituting these two equations into the ODE system allows us to

cancel the δ factor and obtain:

u′ = Bu+Q(u) (5.2)

This simplified system will make studying this problem less numerically intractable.

Note that the transformation changes A in a clear way. But one only has to study

one system, namely (5.2). Once we have a result, we may reverse the transformation

and draw a conclusion.
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Figure 5.1: Finding the Critical Value of Stability on the un-axis Numerically

5.1 The Stable Linear Subspace

We now wish to find the values of ε that satisfies (1.3) for (5.2). To get an idea of

these values, we will numerically experiment with this system in the hopes that it will

lead us to a provable hypothesis. Note that xn(t) = δ2n−1yn(t) = δ2n−1un(δt), so we

will consider initial values of the form u(0) = (0, 0, . . . , c) since the last component

has the largest perturbation in the transformation back to x(t). Using a MATLAB

ODE solver, we numerically determine the values cn for which 0 ≤ c < cn implies

convergence to the origin and c > cn implies divergence. Figure 5.1 shows the

significance of cn on the un-axis.

After many numerical trials, the results for cn up through dimension n = 12

are summarized in Table 5.1. At first inspection, it appears cn ≈ n. To help better

understand this phenomenon, we continue our study of (5.2) by linearizing about the
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n cn
2 2.213
3 3.289
4 4.310
5 5.294
6 6.248
7 7.176
8 8.080
9 8.959
10 9.814
11 10.644
12 11.448

Table 5.1: Numerical Results for the Critical Value of Stability cn on the un-axis

unstable equilibrium point (1, 1, · · · , 1). The linearized system is u′ = ALu, with:

AL =


−1 1 0

0
. . . . . .

. . . −1 1

2 0 −1

 .

To find its eigenvalues, we must solve the characteristic equation |AL − λI| = 0,

which yields:

(−1− λ)n + 2(−1)n+1 = 0⇒ (1 + λ)n = 2.

Solving this equation yields:

λ = −1 + 21/n[cos(2πk/n) + i sin(2πk/n)], k = 0, 1, . . . , n− 1.

By direct computation, this equation reveals that the linearized system has exactly

one eigenvalue with a positive real part (unstable) up through dimension n = 28.

The unstable linear subspace spanned by its corresponding eigenvector will be one-

dimensional. Thus, the stable linear subspace will be (n−1)-dimensional and should
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intersect the un-axis, unless by some miracle this subspace turns out to be parallel

to the un-axis. We hypothesize that there is relationship between this intersection

point, which we will denote by sn, and the values cn we computed earlier.

To confirm this hypothesis, we next attempt to find the stable linear subspace

spanned by the eigenvectors with negative real part at (1, 1, . . . , 1) to determine

the point sn where it intersects the un-axis up through the 28th dimension. We

will numerically compute the eigenvalues, eigenvectors, and sn with MATLAB. Let

v1, v2, . . . , vn−1 ∈ Rn span the (n−1)-dimension stable linear subspace at (1, 1, . . . , 1).

The point sn where the space intersects the un-axis must satisfy the system:
1

1
...

1

+ c1v1 + c2v2 + . . .+ cn−1vn−1 =


0
...

0

sn


Taking the first n− 1 rows, we obtain the system:

c1v1 + c2v2 + . . .+ cn−1vn−1 =


−1

−1
...

−1


Solving the second system gives us the coefficients c1, c2, . . . , cn−1 that we insert into

the first system to compute sn. The numerical results for sn up through dimension

n = 7 is summarized in Table 5.2.

These numerical results lead the observer to hypothesize that the points sn where

the stable linear subspace intersects the un-axis is an upper bound to the points cn.

This provides us our first direction to attempt a rigorous proof.
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n sn
2 2.414
3 3.847
4 5.285
5 6.725
6 8.166
7 9.607

Table 5.2: Numerical Results for where the Stable Linear Subspace Intersects the
un-axis

5.2 The Stable Linear Subspace in the Plane

Before attempting a general proof, we start with a rigorous proof in the n = 2 case.

The stable linear subspace is the line y = −
√

2x + 1 +
√

2, which implies the value

where this space intersects the y-axis is s2 = 1 +
√

2. Figure 5.2 explicitly shows

that s2 is above the critical value of stability c2. To prove that any trajectory with

an initial value above this subspace diverges to infinity, it suffices to show that the

region in the first quadrant above the subspace is an invariant region.

Theorem 3. For the nonlinear ODE system:x′
y′

 =

−1 1

0 −1

x
y

+

 0

x2


the set {(x, y)|x ≥ 0, y ≥ 0, y ≥ −

√
2x+ 1 +

√
2} is an invariant region.

Proof. It suffices to show that all trajectories along the three borders of the set in the

first quadrant travel inward toward the region itself. Along the x-axis, this border is

described by y = 0 and x ≥ (1 +
√

2)/
√

2. So the ODE gives y′ = x2 > 0, and hence,

trajectories on this border will travel upward into the region. Along the y-axis, this

border is described by x = 0 and y ≥ 1 +
√

2. So the ODE gives x′ = y > 0, and

hence, trajectories on this border will travel rightward into the region. Along the
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Figure 5.2: The Stable Linear Subspace in the Plane

stable linear subspace (excluding the equilibrium point), this border is described by

y = −
√

2x+ 1 +
√

2. Since the slope of this line is −
√

2, showing that no trajectory

can travel below this line and achieve a lower slope is equivalent to showing that

|dy/dx| <
√

2. Indeed, we confirm this condition by considering:

∣∣∣∣dydx
∣∣∣∣ =

∣∣∣∣dy/dtdx/dt

∣∣∣∣ =

∣∣∣∣x2 − yy − x

∣∣∣∣ =
y − x2

y − x
<
√

2

⇒ y − x2 <
√

2y −
√

2x

⇒ −
√

2x+ 1 +
√

2− x2 < −2x+
√

2 + 2−
√

2x

⇒ x2 − 2x+ 1 = (x− 1)2 > 0.

Therefore, all trajectories along the three borders of the set in the first quadrant

travel inward toward the region itself and thus, it is invariant.

28



Chapter 5. Linear Subspace Method of Proof

Figure 5.3: The Stable Linear Subspace in 3-Space

5.3 The Stable Linear Subspace in 3-Space

We now consider the n = 3 case to discuss the similarities with the previous proof

and highlight the difficulties in generalizing this method of proof. Figure 5.3 visually

confirms that our hypothesis still holds. But it will soon become computationally

more difficult to prove.

Let us continue the process and find where the difficulties arise. The nonlinear

ODE system in this case is:
x′

y′

z′

 =


−1 1 0

0 −1 1

0 0 −1



x

y

z

+


0

0

x2


By direct calculation, the eigenvectors that span the plane corresponding to the
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stable linear subspace at the equilibrium point (1, 1, 1) are found to be:

v1 = (−25/3,−2−4/3, 1)T and v2 = (−2−5/3
√

3,−2−4/3
√

3, 0)T .

Thus, the plane of the stable linear subspace is described by:

{(1, 1, 1) + c1v1 + c2v2|c1, c2 ∈ R}.

Performing the cross v1 × v2 lets us obtain the plane’s (scaled) normal:

N = (25/3, 24/3
√

3, 1 +
√

3).

To proceed as before and prove that the region in the first octant above the plane is

an invariant region, we would again attempt to prove that all trajectories along the

borders travel inward toward this region. This can be accomplished by showing the

angle between the trajectories and normal are always positive. This leads us to the

condition:

〈(x′, y′, z′)T , N〉 = 25/3(−x+ y) + 24/3
√

3(−y + z) + (1 +
√

3)(−z + x2) > 0

One can now see that this method of proof has become computationally difficult. And

the difficulty will increase as the dimension increases. Further, even if this method

is successful, it would only be valid up through dimension n = 28. Although, this is

still interesting since one may obtain insight into the constant cn.
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Linear System Comparison

Method of Proof

With the previous method’s apparent intractability, we attempt another method to

prove (4.1), but no attempt is made to study how cn depends on n. The concept

for this proof is that if a trajectory begins with a high enough initial condition in

the n-dimensional space, it cannot reach the origin and will eventually diverge to

infinity. We accomplish this by comparing the nonlinear system with a similar linear

system.

Before beginning this proof, we give the linear system and establish some notation.

Considering (5.2), let us introduce:

J =


0 1 0

. . . . . .

0 1

0 0

 , P =


0 . . . 0 0
...

. . .
...

0 0 0

a 0 . . . 0

 ,
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where a > 1 is arbitrary, but fixed. So (5.2) can be expressed as:

u′ = (−I + J)u+Q(u), Q(u) =


0
...

0

u21

 . (6.1)

We will be comparing it with the linear ODE system:

w′ = (−I + J + P )w. (6.2)

Note that these two systems are identical except for the last component where the

nonlinear equation is u′n = −un + u21 and the linear equation is w′n = −wn + aw1.

6.1 Solution to the Linear System

We first show that the first component of the linear system will diverge to infinity.

We must essentially solve the linear system to accomplish this.

Theorem 4. Consider the linear system (6.2) with the initial condition:

w(0) = (0, · · · , 0,m), m > 0.

Then the first component of the solution satisfies w1(t)→∞ as t→∞.

Proof. The solution of the linear system (6.2) can be represented as:

w(t) = e(−I+J+P )tw(0) = e−te(J+P )tw(0)

To simplify this expression, we diagonalize J + P to exponentiate it. We compute

its eigenvalues by solving (J + P )v = λv. The components are:

v2 = λv1, v3 = λv2, · · · , vn = λvn−1, av1 = λvn
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A nontrivial solution to this system is:

v1 = 1, v2 = λ, v3 = λ2, · · · , vn = λn−1, a = λn

The last equation provides n eigenvalues of the matrix J + P , each being one of the

roots of a. Let those eigenvalues be denoted by:

λk = n
√
ae2πi(k−1)/n, k = 1, 2, · · · , n.

The matrix of eigenvectors will be denoted by V and the diagonal matrix of eigen-

values shall be denoted by D . Thus:

V =



1 1 · · · 1

λ1 λ2 · · · λn

λ21 λ22 · · · λ2n
...

...
...

λn−11 λn−12 · · · λn−1n


, D =


λ1 0

λ2
. . .

0 λn

 .

Note that V is a Vandermonde matrix. Let (V −1)ij denote the entry in the i-th row

and j-th column of the inverse of V . So J + P = V DV −1 and the solution to the

linear system w′ = (−I +J +P )w with initial condition w(0) = (0, · · · , 0,m) can be

written as:

w(t) = e−te(V DV
−1)tw(0) = e−tV eDtV −1w(0)

= e−tV


eλ1t

eλ2t

. . .

eλnt




m(V −1)1n

m(V −1)2n
...

m(V −1)nn



= me−tV


eλ1t(V −1)1n

eλ2t(V −1)2n
...

eλnt(V −1)nn


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From the inverse of the Vandermonde matrix (see Theorem 9 in appendix), we have

that:

(V −1)1n =
(−1)n+1

(λ2 − λ1)(λ3 − λ1) · · · (λn − λ1)
We claim that (V −1)1n > 0, that is:

(λ2 − λ1)(λ3 − λ1) · · · (λn − λ1)(−1)n+1 > 0. (6.3)

If we let z1 = 1, z2 = e2πi·1/n, z3 = e2πi·2/n, · · · , zn = e2πi·(n−1)/n be the n roots of

unity, then the left-side (6.3) is equal to:

( n
√
az2 − n

√
az1)(

n
√
az3 − n

√
az1) · · · ( n

√
azn − n

√
az1)(−1)n+1

Factoring the n
√
a terms, the left-side of (6.3) is now equal to:

(
n
√
an−1)(z2 − z1)(z3 − z1) · · · (zn − z1)(−1)n+1

From Theorem 10 in the appendix, we indeed have that (V −1)1n > 0. So now, the

first component of w(t) is:

w1(t) = me−t[e
n√at(V −1)1n + eλ2t(V −1)2n + · · ·+ eλnt(V −1)nn]

= m[e(
n√a−1)t(V −1)1n + e(λ2−1)t(V −1)2n + · · ·+ e(λn−1)t(V −1)nn]

Note that n
√
a > Re λk for k = 2, 3, · · · , n. So the term m(V −1)1ne

( n√a−1)t is the

dominant term in w1(t). Furthermore, n
√
a − 1 > 0 since a > 1. Since (V −1)1n > 0

and m > 0, we have that:

w1(t) ≈ m(V −1)1ne
( n√a−1)t →∞ as t→∞

It is worth noting that while the expression for w1(t) may contain complex values,

it is indeed real. The terms e(λ2−1)t(V −1)2n + · · ·+ e(λn−1)t(V −1)nn come in complex

conjugate pairs whose imaginary parts will vanish, if n is odd. Otherwise, it will

contain an additional pure real term if n is even. The argument would be similar to

Theorem 10 in the appendix.
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6.2 Comparison of the Nonlinear and Linear Sys-

tems

Recall Duhamel’s formula which states that if A ∈ Rn×n, F : Rn → Rn, and F ∈ C∞,

then the solution to the general inhomogeneous equation v′ = Av + F (v) satisfies:

v(t) = eAtv(0) +

∫ t

0

eA(t−s)F (v(s))ds

We next prove an inequality for the components of the nonlinear system (6.1).

Theorem 5. Consider the nonlinear ODE system (6.1) with initial condition:

u(0) = (0, · · · , 0,M), M > 0.

Each component of the solution u(t) of the system satisfies:

uk(t) ≥
Mtn−k

(n− k)!
e−t, k = 1, 2, · · · , n.

Proof. Consider the last component of the system with un(0) = M :

u′n = −un + u21 ⇒ u′n ≥ −un ⇒ un(t) ≥Me−t

We use Duhamel on the second-to-last component u′n−1 = −un−1 + un to obtain:

un−1(t) = e−tun−1(0)+

∫ t

0

e−(t−s)un(s)ds ≥
∫ t

0

e−t+sMe−sds = Me−t
∫ t

0

ds = Mte−t

Using Duhamel again on the third-to-last component u′n−2 = −un−2+un−1 to obtain:

un−2(t) = e−tun−2(0) +

∫ t

0

e−(t−s)un−1(s)ds ≥
∫ t

0

e−t+sMse−sds

= Me−t
∫ t

0

sds =
Mt2

2
e−t

Continuing in this manner on each component gives the desired result.
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We now have the ingredients necessary to prove that the nonlinear system will

diverge to infinity.

Theorem 6. For the nonlinear ODE system (6.1) with initial condition:

u(0) = (0, · · · , 0,M),

and the linear ODE system (6.2) with initial condition:

w(0) = (0, · · · , 0,m), m > 0,

we may pick M > 0 large enough so that there exists a time T such that u1(t) > w1(t)

for all t > T .

Proof. By Theorem 4, we know w1(t) → ∞. So there exists a time T such that

w1(t) > a for all t > T . From Theorem 5, we can pick M large enough so that

for each component in the nonlinear system, uk(T ) > wk(T ) for k = 1, 2, · · · , n.

In particular, u1(T ) > w1(T ) > a. We now claim that u1(t) > w1(t) for all t > T .

Seeking a contradiction, suppose there is a first time T ∗ > T where u1(T
∗) = w1(T

∗).

From Duhamel’s formula, the solution to the nonlinear system starting at T satisfies:

u(t) = e(J+P )(t−T )u(T ) +

∫ t

T

e(J+P )(t−s)


0
...

0

u21(s)

 ds

From Duhamel again, the solution to the linear system starting at T satisfies:

w(t) = e(J+P )(t−T )w(T ) +

∫ t

T

e(J+P )(t−s)


0
...

0

aw1(s)

 ds
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The difference of these two solutions is:

(u− w)(t) = e(J+P )(t−T )(u− w)(T ) +

∫ t

T

e(J+P )(t−s)


0
...

0

(u21 − aw1)(s)

 ds

Now we look at the first component of the difference and evaluate at T ∗:

(u1 − w1)(T
∗) =

(
e(J+P )(T ∗−T )(u− w)(T )

)
1

+

∫ T ∗

T

e
(J+P )(T ∗−s)


0
...

0

(u21 − aw1)(s)




1

ds

Note that all the exponentiated matrices above have only non-negative entries. The

vector (u − w)(T ) has only positive entries since uk(T ) > wk(T ) for k = 1, 2, · · · , n

by our choice of M . The matrix entry (u21− aw1)(s) in the integrand is also positive

on the interval T ≤ s ≤ T ∗ by assumption because (recall a > 1):

u1(s) > w1(s) > a⇒ u21(s) > au1(s) > aw1(s)

Thus, all the values in the first component are positive. Therefore, (u1−w1)(T
∗) > 0,

which is a contradiction, and the result is proved.

Connecting the last three theorems now gives the following corollary:

Theorem 7. For the nonlinear ODE system (6.1) with initial condition:

u(0) = (0, · · · , 0,M), M > 0,

there exists a value M = M(n) large enough such that |u(t)| → ∞ as t→∞.
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Chapter 6. Linear System Comparison Method of Proof

We now know that if a trajectory begins with a high enough initial condition in n-

dimensional space, it will indeed diverge to infinity. Once we take the rescalings of the

problem into consideration, we are now prepared to formally state the consequences

in terms of the radius of stability.
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Chapter 7

Conclusion

7.1 Main Result

Theorem 7 says that there exists Mn > 0 large enough such that (5.2) with initial

condition u(0) = (0, · · · , 0,Mn) implies that |u(t)| → ∞ as t→∞. Suppose we now

reverse the transformation xj(t) = δn+j−1yj(t) = δn+j−1uj(δt) of (5.2) back to (5.1).

Then we have x(0) = (0, · · · , 0,Mnδ
2n−1) implies that |x(t)| → ∞ as t→∞.

This result assures there is an upper bound on the radius of stability of the order

δ2n−1. Thus, while the δ2n−1 scaling from (1.4) at first appears too pessimistic, it

is indeed necessary, unless one makes more specific assumptions on Q(x). In terms

of our proposed problem (1.2), we have shown that there exists a constant Mn such

that:

r∗(A,Q) ≤Mnδ
2n−1.

Combining this with the result of [KL], we have:
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Chapter 7. Conclusion

Theorem 8. Suppose we have the nonlinear autonomous ODE system

x′ = Ax+Q(x), A ∈ Rn×n, x ∈ Rn, Q(x) ∈ Rn,

with a stable equilibrium point at the origin and Q(x) quadratic in x. Define:

r∗(A,Q) := sup{r : |x(0)| < r ⇒ lim
t→∞
|x(t)| = 0}.

If Q(x) ≤ |x|2 and Re λ ≤ −δ < 0 for all λ ∈ σ(A), then there exists a constant c

and a nonlinear system with constant Cn such that:

cδ2n−1 ≤ r∗(A,Q) ≤ Cnδ
2n−1.

This is all one can say unless one makes more specific assumptions on Q(x).

7.2 Future Research

In this chapter we will highlight potential areas of future research that were discov-

ered while investigating our problem.

The first question involves a pattern found during the numerical investigation of

the stable linear subspace of (5.2). Recall that we used an ODE solver to numerically

determine the initial values cn on the un-axis for which an orbit would converge to

the origin, as depicted in Figure 5.1. The results listed in Table 5.1 up through

dimension n = 12 lead one to hypothesize that cn ≈ n. If this could be proven, we

would have a more precise measurement for the upper bound on the radius of stability.

The next question involves our method of proof using the stable linear subspace.

Recall that we hypothesized that the intersection point of stable linear subspace and
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Chapter 7. Conclusion

the un-axis provided an upper bound for the radius of stability. We successfully

proved this in the n = 2 case. But the method became computationally intractable

in the n = 3 case. Furthermore, the method relied on the fact that the linearized

system had exactly one eigenvalue with positive real part up through dimension

n = 28. Is it possible to overcome the computational difficulty? Can this method be

generalized to all dimensions? Can it be shown that the stable linear subspace will

always intersect the un-axis?

The next question involves our class of problems. Recall that, after rescalings,

we require the nonlinear component Q(x) of the ODE system (3.1) to satisfy:

max
x 6=0

|Q(x)|
|x|2

= 1.

The natural extension of this is to loosen the criteria to the more general case of:

max
x 6=0

|Q(x)|
|x|k

= 1, k ≥ 2.

The last question also involves the class of problems. Recall that the matrix

A in (1.1) is assumed to be not normal, otherwise the problem is solved. Is it

possible to specify the non-normality of A and investigate its effect on the radius of

stability? One approach could be to say A is the perturbation of a normal matrix,

i.e., A = N + εB. Another approach could be to say A is the sum of a symmetric

and antisymmetric matrix, provided the sum is not normal.
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Appendix A

Inverse of a Vandermonde Matrix

The following proof is based on [Knu]. First recall that given the set of n points:

(x1, y1), (x2, y2), · · · , (xn, yn) ∈ R2

with distinct x1, x2, · · · , xn, the Lagrange polynomial that interpolates these points

is:

L(x) =
n∑
i=1

yili(x), li(x) =
∏

1≤m≤n
m 6=i

x− xm
xi − xm

Theorem 9. Let x1, x2, · · · , xn ∈ R be distinct. Consider the Vandermonde matrix:

V =



1 1 · · · 1

x1 x2 · · · xn

x21 x22 · · · x2n
...

...
...

xn−11 xn−12 · · · xn−1n


.

Define f(i, j) = 1 for j = n, and otherwise:

f(i, j) =
∑

1≤m1<···<mn−j≤n
m1,··· ,mn−j 6=i

xm1 · · ·xmn−j
, j < n.
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Then each entry of the inverse of the Vandermonde matrix is:

(V −1)ij =
(−1)j+1f(i, j)∏
1≤m≤n
m 6=i

(xm − xi)

Proof. We first consider the 4× 4 case, and then generalize it to the n×n case. The

4× 4 Vandermonde matrix is:

V =


1 1 1 1

x1 x2 x3 x4

x21 x22 x23 x24

x31 x32 x33 x34


Let B = V −1 so that BV = I or:

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




1 1 1 1

x1 x2 x3 x4

x21 x22 x23 x24

x31 x32 x33 x34

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


If we multiply B and V , we may interpret each entry of BV in the ij-th position as

a polynomial function with coefficients bi1, · · · , bi4, input xj, and whose outputs are

either 0 or 1. Thus, we observe the following polynomials and points they interpolate:

p1(x) =
4∑

k=1

b1kx
k−1 = b11 + b12x+ b13x

2 + b14x
3; (x1, 1), (x2, 0), (x3, 0), (x4, 0)

p2(x) =
4∑

k=1

b2kx
k−1 = b21 + b22x+ b23x

2 + b24x
3; (x1, 0), (x2, 1), (x3, 0), (x4, 0)

p3(x) =
4∑

k=1

b3kx
k−1 = b31 + b32x+ b33x

2 + b34x
3; (x1, 0), (x2, 0), (x3, 1), (x4, 0)

p4(x) =
4∑

k=1

b4kx
k−1 = b41 + b42x+ b43x

2 + b44x
3; (x1, 0), (x2, 0), (x3, 0), (x4, 1)
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Appendix A. Inverse of a Vandermonde Matrix

Another representation of these functions are their Lagrange polynomials:

p1(x) =
x− x2
x1 − x2

· x− x3
x1 − x3

· x− x4
x1 − x4

p2(x) =
x− x1
x2 − x1

· x− x3
x2 − x3

· x− x4
x2 − x4

p3(x) =
x− x1
x3 − x1

· x− x2
x3 − x2

· x− x4
x3 − x4

p4(x) =
x− x1
x4 − x1

· x− x2
x4 − x2

· x− x3
x4 − x3

Rewriting these expressions:

p1(x) =
x3 − (x2 + x3 + x4)x

2 + (x2x3 + x2x4 + x3x4)x− x2x3x4
(x1 − x2)(x1 − x3)(x1 − x4)

p2(x) =
x3 − (x1 + x3 + x4)x

2 + (x1x3 + x1x4 + x3x4)x− x1x3x4
(x2 − x1)(x2 − x3)(x2 − x4)

p3(x) =
x3 − (x1 + x2 + x4)x

2 + (x1x2 + x1x4 + x2x4)x− x1x2x4
(x3 − x1)(x3 − x2)(x3 − x4)

p4(x) =
x3 − (x1 + x2 + x3)x

2 + (x1x2 + x1x3 + x2x3)x− x1x2x3
(x4 − x1)(x4 − x2)(x4 − x3)

Matching the coefficients of the two representations for p1(x):

b11 =
−x2x3x4

(x1 − x2)(x1 − x3)(x1 − x4)
, b12 =

x2x3 + x2x4 + x3x4
(x1 − x2)(x1 − x3)(x1 − x4)

b13 =
−(x2 + x3 + x4)

(x1 − x2)(x1 − x3)(x1 − x4)
, b14 =

1

(x1 − x2)(x1 − x3)(x1 − x4)
Matching the coefficients of the two representations for p2(x):

b21 =
−x1x3x4

(x2 − x1)(x2 − x3)(x2 − x4)
, b22 =

x1x3 + x1x4 + x3x4
(x2 − x1)(x2 − x3)(x2 − x4)

b23 =
−(x1 + x3 + x4)

(x2 − x1)(x2 − x3)(x2 − x4)
, b24 =

1

(x2 − x1)(x2 − x3)(x2 − x4)
Matching the coefficients of the two representations for p3(x):

b31 =
−x1x2x4

(x3 − x1)(x3 − x2)(x3 − x4)
, b32 =

x1x2 + x1x4 + x2x4
(x3 − x1)(x3 − x2)(x3 − x4)
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Appendix A. Inverse of a Vandermonde Matrix

b33 =
−(x1 + x2 + x4)

(x3 − x1)(x3 − x2)(x3 − x4)
, b34 =

1

(x3 − x1)(x3 − x2)(x3 − x4)
Matching the coefficients of the two representations for p4(x):

b41 =
−x1x2x3

(x4 − x1)(x4 − x2)(x4 − x3)
, b42 =

x1x2 + x1x3 + x2x3
(x4 − x1)(x4 − x2)(x4 − x3)

b43 =
−(x1 + x2 + x3)

(x4 − x1)(x4 − x2)(x4 − x3)
, b44 =

1

(x4 − x1)(x4 − x2)(x4 − x3)

Now the pattern for deriving the coefficients is apparent. Their numerators are

the product of linear factors with alternating signs and their denominators are the

products of the differences of the Vandermonde entries x1, x2, x3, x4. So in the general

case, the n× n Vandermonde matrix is:

V =



1 1 · · · 1

x1 x2 · · · xn

x21 x22 · · · x2n
...

...
...

xn−11 xn−12 · · · xn−1n


Let B = [bij] be the inverse of V so that BV = I. Multiplying B and V , the entries

along the i-th row can be interpreted as the polynomial:

pi(x) =
n∑
k=1

bikx
k−1 = bi1 + bi2x+ bi3x

2 + · · ·+ binx
n−1,

that interpolates the following points:

(x1, 0), · · · , (xi−1, 0), (xi, 1), (xi+1, 0), · · · , (xn, 0).

Its Lagrange polynomial is:

pi(x) =
∏

1≤m≤n
m6=i

x− xm
xi − xm

=
x− x1
xi − x1

· · · x− xi−1
xi − xi−1

· x− xi+1

xi − xi+1

· · · x− xn
xi − xn
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Appendix A. Inverse of a Vandermonde Matrix

To match the coefficients of these two representations, we need an expression for

the numerator of each bij term, which is a product of linear factors and whose sign

depends alternately on its column. Define f(i, j) = 1 for j = n, and otherwise:

f(i, j) =
∑

1≤m1<···<mn−j≤n
m1,··· ,mn−j 6=i

xm1 · · ·xmn−j
, j < n

Then the inverse of the Vandermonde matrix is:

(V −1)ij =
(−1)j+1f(i, j)∏
1≤m≤n
m 6=i

(xm − xi)
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Product of Differences of the

Roots of Unity

Theorem 10. Let z1 = 1, z2 = e2πi·1/n, z3 = e2πi·2/n, · · · , zn = e2πi·(n−1)/n be the n

roots of unity. Then:

(z2 − z1)(z3 − z1) · · · (zn − z1)(−1)n+1 > 0.

Proof. Case 1: Suppose n is odd. Then (−1)n+1 = 1 > 0 and each term (zk − z1)

of the product has a complex conjugate pairing (z̄k − z1). Let zk = ck + dki, where

0 < ck, dk < 1 and c2k + d2k = 1. The product of each pairing will be:

(zk−z1)(z̄k−z1) = (ck+dki−1)(ck−dki−1) = c2k−2ck+d
2
k+1 = 2−2ck = 2(1−ck) > 0.

And so the result is proved.

Case 2: Suppose n is even. Then one root z(n
2
+1) = −1 and (−1)n+1 = −1. So

(z(n
2
+1)− z1)(−1)n+1 = 2 > 0. The rest of the terms of the product come in complex

conjugate pairings just as in Case 1, whose products are also positive. And so the

result is proved.
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Code

C.1 ode45.m

Code originates from [Com], so only (abbreviated) specifications provided:

function [tout,xout] = ode45(

FUN,tspan,x0,pair,ode_fcn_format,tol,trace,count)

%

% Copyright (C) 2001, 2000 Marc Compere

% ode45.m is free software; you can redistribute it and/or

% modify it under the terms of the GNU General Public License

% as published by the Free Software Foundation; either version

% 2, or (at your option) any later version.

%

% INPUT:

% FUN - String containing name of user-supplied problem

% description.

% Call: xprime = fun(t,x) where FUN = ’fun’.
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Appendix C. Code

% t - Time (scalar).

% x - Solution column-vector.

% xprime - Returned derivative COLUMN-vector;

% xprime(i) = dx(i)/dt.

% tspan - [ tstart, tfinal ]

% x0 - Initial value COLUMN-vector.

% pair - flag specifying which integrator coefficients to use:

% 0 --> use Dormand-Prince 4(5) pair (default)

% 1 --> use Fehlberg pair 4(5) pair

% ode_fcn_format - this specifies if the user-defined ode

% function is in

% the form: xprime = fun(t,x) (ode_fcn_format=0, default)

% or: xprime = fun(x,t) (ode_fcn_format=1)

% Matlab’s solvers comply with ode_fcn_format=0 while

% Octave’s lsode() and sdirk4() solvers comply with

% ode_fcn_format=1.

% tol - The desired accuracy. (optional, default:

% tol = 1.e-6).

% trace - If nonzero, each step is printed. (optional, default:

% trace = 0).

% count - if nonzero, variable ’rhs_counter’ is initalized,

% made global and counts the number of state-dot

% function evaluations ’rhs_counter’ is incremented

% in here, not in the state-dot file simply make

% ’rhs_counter’ global in the file that calls ode45

%

% OUTPUT:

% tout - Returned integration time points (column-vector).
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% xout - Returned solution, one solution column-vector per

% tout-value.

%

% The result can be displayed by: plot(tout, xout).

%

% Marc Compere

% CompereM@asme.org

% created : 06 October 1999

% modified: 17 January 2001

C.2 RandSphere.m

Code originates from [GH], so only (abbreviated) specifications provided:

function X=RandSphere(N,dim)

% RANDSPHERE

%

% RandSphere generates uniform random points on the surface of

% a unit radius N-dim sphere centered in the origin. This

% script uses different algorithms according to the dimensions

% of point:

%

% -2D: random generation of theta [0 2*pi]

% -3D: the "trig method".

% -nD: Gaussian distribution

%

% SYNOPSYS:

%
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% INPUT:

%

% N: integer number representing the number of points to

% be generated

% dim: dimension of points, if omitted 3D is assumed as

% default

%

% OUTPUT:

%

% X: Nxdim double matrix representing the coordinates of

% random points generated

%

% Authors: Luigi Giaccari, Ed Hoyle

C.3 odesphere.m

Full code:

function odesphere(odefun,r,p,n,tspan)

% function odesphere(odefun,r,p,n,tspan)

% Will generate random points on the surface of an n-dimesional

% sphere of a given radius to be used as the inital conditions for

% orbits of a given ODE system. The data will be run through the ODE

% solver ’ode45’ over a given time interval. odesphere will stop if

% (1) all points have been run through the solver, or (2) one point’s

% orbit diverges to infinity. If all points are run through the

% solverm the program will display the count of the number of orbits

% that converge to the orgin.
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%

% NOTE: Will call two library functions: ode45.m and RandSphere.m

%

% INPUT:

% odefun: The address of the m-file representing the ODE system

% (the format of the m-file is specified by the ’ode45.m’

% function)

% r: Radius of the n-dimensional sphere

% p: Number of points to be generated on the n-dimensional sphere

% n: Dimension of the sphere/ODE system

% tspan: 1x2 matrix specifying the time inteval for the ODE solver

% Generate p random points on the surface of n-dim sphere of radius r

X = r*RandSphere(p,n);

% Initialize counter for orbits that converge to the origin

conv = 0;

% For each point, run as the initial condition through the ODE solver

% Convergence condition: Final position has norm < 10^(-5)

% Divergence condition: Final position has norm > 10^(1)

% "Between" condition: Does not advance counter, but continues

% Loop immediately stops if a divergent orbit is encountered

for k=1:p

[T,Y] = ode45(odefun,tspan,X(k,:));

[mm,nn] = size(Y);

a = norm(Y(mm,:));

if (a < 0.00001)
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conv = conv+1;

elseif (a > 10)

disp([’Diverge at iteration #: ’,num2str(k)]);

return;

end

end

% Display counter of the orbits that converged

disp([’# Coverge: ’,num2str(conv)]);
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