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PELL’S EQUATION AND NEARLY EQUILATERAL TRIANGLES

by

Laurel Christensen

B.S., Mathematics, James Madison University, 2007

M.S., Mathematics, University of New Mexico, 2010

ABSTRACT

In this paper, we seek a family of triangles that have integer side lengths and inte-

ger area. We observe that it is impossible to have such triangles that are equilateral.

Then we study briefly the isosceles case. The majority of the paper concentrates on

constructing this family of scalene triangles that we name Nearly Equilateral Trian-

gles. These are triangles such that the side lengths are consecutive integers.

In the process of describing this family, we find a connection between Pell’s equa-

tion and Nearly Equilateral Triangles. There is a brief introduction into Pell’s Equa-

tion as well as a detailed description of their use in forming the family of triangles we

seek. Finally, we see an interesting connection between the Pell’s equation solutions

and Archimedes’ approximation of
√

3. We follow up this connection with another

interesting connection to his approximation.
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Introduction

In this paper, we seek to construct a family of triangles that have integer sides as

well as integer area. In the process of describing this family we will explore Heron’s

formula for the area of a triangle. This formula will lead to an in-depth use of Pell’s

equation in relation to the family of triangles. The study of Pell’s equation will also

lead to connections to Archimedes’ approximation for
√

3. First, we will use Heron’s

formula to restrict the type of triangles we will study.

The formula attributed to Heron of Alexandria (ca: 75 AD) for the area of

a triangle in terms of the lengths of its sides appears in Heron’s Metrica. It is

likely that the result was also known to Archimedes centuries earlier and possible

Archimedes had a proof of this formula. The formula can be found in Burton’s

The History of Mathematics. It states that a triangle with sides of length x, y, and

z has area A given by

A =
√
σ(σ − x)(σ − y)(σ − z)

where σ is the half perimeter:

σ =
x+ y + z

2

A derivation of the formula using elementary mathematics was given by Reuben Hersh

in his article in Focus. His derivation states that if there is a formula for the area of a
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triangle in terms of side lengths then it could be of several forms including a quadratic

or it could be of the form A = k
√
P (a, b, c) where k is a constant and P (a, b, c) is a

symmetric, homogenous polynomial of degree four in a, b, c which are the side lengths

of the triangle. Then we use the Factor Theorem and a degenerate triangle where

a + b = c or a + c = b or b + c = a and thus A = 0. Then if P is a polynomial in a,

it must have roots at b + c, b− c and c− b. Therefore, by the factor theorem it has

factors a− (b+ c), a− (b− c) and a− (c− b). Also, since P is a quartic polynomial, it

must have another factor and since it is symmetric, this factor must be k1(a+ b+ c)

where k1 is a constant. So thus far we have

A =
√
k1(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

and we will use a triangle with known area to calculate the constant. Consider the

triangle with lengths a = 3, b = 4, c = 5. This triangle is a right triangle so the area

is A =
1

2
(3)(4) = 6. Plugging these values into our polynomial we have

A =
√
k1(3 + 4 + 5)(−3 + 4 + 5)(3− 4 + 5)(3 + 4− 5) =

√
k1(576)

which leads to

6 =
√
k1(576) (1)

36 = k1(576) (2)

k1 =
1

16
(3)

Therefore, we have the polynomial that was sought after and

A =

√
1

16
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

2



Now, substituting a = x, b = y, c = z, and σ =
x+ y + z

2
gives Heron’s formula

A =
√
σ(σ − x)(σ − y)(σ − z).

This is only a derivation of the formula and not a proof. Possibly the first proof ever

discovered of this formula is given in Heron’s Diopatra, but a more modern proof

utilizing trigonometric identities is provided here derived from the proof provided on

“Heron’s Formula” as cited.

Proof. Let a, b, c be the sides of a triangle with opposite angles A,B,C respectively.

Then by the law of cosines

cos(C) =
a2 + b2 − c2

2ab

and since sin2(x) + cos2(x) = 1 we have

sin(C) =
√
a− cos2(C) (4)

=

√
1− a2 + b2 − c2

4a2b2
(5)

=

√
4a2b2 − (a2 + b2 − c2)

4a2b2
(6)

=

√
4a2b2 − (a2 + b2 − c2)

2ab
(7)

Now let A∆ be the area of the triangle. Also let σ be as defined in Heron’s formula.

By the law of sines, the altitude, h, of the triangle if the base is side a is given by

b sin(C), thus,
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A∆ =
1

2
bh (8)

=
1

2
absin(C) (9)

=
1

4

√
4a2b2 − (a2 + b2 − c2)2 (10)

=
1

4

√
(2ab− (a2 + b2 − c2)(2ab+ (a2 + b2 − c2) (11)

=
1

4

√
(c2 − (a− b)2)((a+ b)2 − c2) (12)

=
1

4

√
(c− (a− b))(c+ (a− b))(a+ b− c)(a+ b+ c) (13)

=

√(
a+ b+ c

2

)(
c+ b− a

2

)(
c+ a− b

2

)(
a+ b− c

2

)
(14)

=
√
σ(σ − a)(σ − b)(σ − c) (15)

It is important to note that a triangle with integer sides will have integer area if

the product σ(σ−x)(σ− y)(σ− z) is a perfect square. It is fairly simple to construct

examples of this type of triangle. For instance, if x = 17, y = 25, and z = 28,

the resulting area A is 210. However, the following theorem states one of the main

restrictions on finding other triangles with integer area.

Theorem 1. An equilateral triangle with integer sides cannot have integer area.

Proof. Let z be the length of the sides of the equilateral triangle. By Heron’s formula,

σ =
x+ y + z

2
(16)

=
3z

2
(17)
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and

A =
√
σ(σ − z)(σ − z)(σ − z) (18)

=
√
σ(σ − z)3 (19)

=

√
3z

2
(
3z

2
− z)3 (20)

=

√
3z4

16
(21)

=

√
3z2

4
(22)

So if z is any integer, the area A of the equilateral triangle will contain
√

3 and

is, therefore, not an integer.

On the other hand, there are many ways of constructing isosceles triangles with

integer sides and integer area. One could, for example, consider a triangle with

two sides of length z and choose z to be the hypotenuse of any right triangle. In

fact, if z is a prime of the form 4k + 1, the following theorem from Sierpinski’s

Elementary Theory of Numbers applies.

Theorem 2. Any prime number z of the form z = 4k + 1 for some integer k is

expressible uniquely as a sum of squares, z = x2 + y2.

Proof. Let p be a prime number of the form 4k + 1 and let a =

(
p− 1

2

)
!. Now

it can be shown that p of this form divides

[(
p− 1

2

)
!

]2

+ 1. So we have p|a2 + 1

with a being relatively prime to p. Now by Thue’s Theorem there exist two natural

numbers x and y each ≤ √p such that for a suitable choice of + or − the number

5



ax± y is divisible by p. Then it follows that the number a2x2− y2 = (ax− y)(ax+ y)

is divisible by p.

It is also the case that a2x2 + x2 = (a2 + 1)x2 is divisible by p since p|(a2 + 1).

Consequently the number x2 + y2 = a2x2 + x2 − (a2x2 − y2) is divisible by p. But,

since x and y are natural numbers ≤ √p they must be strictly <
√
p, because p being

a prime is not a square of a natural number. Thus x2 + y2 is a natural number > 1

and < 2p and it is divisible by p so it must be equal to p. Therefore p = x2 + y2 for

any prime number p of the form 4k + 1.

Now if we are considering an integer z that is the hypotenuse of a right triangle

then a few results concerning right triangles should be discussed first. Possibly one

of the most well-known equations in mathematics is from the Pythagorean Theorem

which states that if x and y are the lengths of the legs of a right triangle and z is the

length of the hypotenuse, then x2+y2 = z2. This equation is so commonly used that a

shorthand notation is introduced. If three natural numbers satisfy this condition, we

call it a Pythagorean triple and use the notation (x, y, z). A primitive Pythagorean

triple adds the property that the three numbers x, y, and z have no common divisor

other than 1. This leads directly to the fact that no two of the numbers x, y, and z

can have a common divisor greater than one. That is to say, they are all relatively

prime.

It can be easily shown that both x and y cannot be even. If they were, then x2 +y2

would also be even, which would mean that z is even and then x, y, and z have the

common factor 2 which contradicts the property of primitive triples. This leads to
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the following theorem as stated in Burton.

Theorem 3. If (x, y, z) is a primitive Pythagorean triple, then one of the integers x

and y is even and the other is odd.

Proof. It was already discussed that both x and y cannot both be even, so it must

now be shown that both cannot be odd.

Assume x and y are both odd. Then there exist integers n and m such that

x = 2n+ 1 and y = 2m+ 1

Then since x, y, and z must satisfy x2 + y2 = z2,

z2 = x2 + y2 = (2n+ 1)2 + (2m+ 1)2 (23)

= 4n2 + 4n+ 1 + 4m2 + 4m+ 1 (24)

= 4(n2 +m2 + n+m) + 2 (25)

= 4h+ 2 (26)

for some integer h.

Since z2 = 4h+ 2 = 2(2h+ 1), z2 must be an even number. Now, z must be even in

order for z2 to be even, but the square of any even number is divisible by 4. However,

z2 = 2(2h+ 1) cannot have a factor of 4. This situation is impossible since z must be

an integer. Therefore, one of x and y must be even and the other must be odd.

Now since in a primitive Pythagorean triple (x, y, z) exactly one of x and y must

be an odd integer, for convention we will write our triples such that x is even and y

is odd. This implies that z is odd as well because if not then gcd(x, z) ≥ 2 which
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violates the primitive condition. Then we have the following theorem adapted from

Redmond’s Number Theory; An Introduction.

Theorem 4. Given a primitive Pythagorean triangle with side lengths x, y, z where

x is even and y is odd, then there exist relatively prime integers a and b such that

x = 2ab (27)

y = a2 − b2 (28)

z = a2 + b2 (29)

where a > b > 0 and a and b are of opposite parity, i.e. one is even and the other

is odd.

Proof. Let (x, y, z) be any primitive Pythagorean triple. Take x even, and both y and

z odd. Then z − y and z + y are both even integers. Say z − y = 2u and z + y = 2v.

Now x2 + y2 = z2 can be rewritten as

x2 = z2 − y2 = (z − y)(z + y)

and dividing both sides by 4 leads to(x
2

)2

=

(
z − y

2

)(
z + y

2

)
= uv

Now u and v must be relatively prime integers because if gcd(u, v) = d > 1, then

d|(u−v) and d|(u+v) which means d|y and d|z, which violates the primitive condition.

We will use the fact that if the product of two relatively prime integers equals

the square of an integer, then each of them is also a perfect square. Then we can

conclude that u and v are perfect squares. So let

u = a2 and v = b2

8



where a and b are positive integers. Then substituting these values of u and v we

have

z = u+ v = a2 + b2 (30)

y = u− v = a2 − b2 (31)

x2 = 4uv = 4a2b2 (32)

x = 2ab (33)

Since any common divisor of a and b divides y and z, the relation gcd(y, z) = 1

forces the relation gcd(a, b) = 1. We must still show, however, that a and b have

opposite parity. Now if a and b were both even this would cause both y and z to be

even since the square of an even integer is even and the sum or difference of two even

integers is also even. This is impossible because then gcd(y, z) ≥ 2 which violates

the primitive condition. Similarly, if a and b were both odd, then their squares would

each be odd as well. Since the sum or difference of two odd numbers is even, then

again y and z would both be even which violates our condition that the triple be

primitive. Hence, a and b have opposite parity.

Now we must show that any triple (x, y, z) satisfying the conditions above is in

fact a Pythagorean triple. Take x = 2ab, y = a2 − b2, and z = a2 + b2 then the
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Pythagorean identity holds:

x2 + y2 = (2ab)2 + (a2 − b2)2 (34)

= 4a2b2 + a4 − 2a2b2 + b4 (35)

= a4 + 2a2b2 + b2 (36)

= (a2 + b2)2 (37)

= z2 (38)

Lastly, we must show that the triple (x, y, z) is primitive. Assume, seeking a

contradiction, that x, y, and z have a common divisor d > 1. Consider any prime

divisor p of d. Now since a and b have opposite parity, a2 +b2 = z must be odd. Then

we see that p 6= 2 since it must divide the odd integer z. Since p|y and p|z, then we

also have p|(z + y) and p|(z − y) which implies that p|2a2 and p|2b2. But then p|a

and p|b which is impossible since gcd(a, b) = 1. Therefore, d = 1 is the largest divisor

and (x, y, z) as given in terms of a and b is a primitive Pythagorean triple.

Now we will construct a set of isosceles triangles that have integer sides as well

as integer area. The two sides of the triangle that are equal we will call z. Using

the previously stated theorem, if we take z to be a prime number of the form 4k + 1

then we can write z = a2 + b2 where a and b are some particular integers. In order to

use the additional theorems above, we will construct this isosceles triangle by putting

two right triangles together with the hypotenuse that has length z outside. We will

call the base of each right triangle y so the base of the isosceles triangle is 2y. Then

we will call the other side of the right triangle x. Then x is the height of the isosceles
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triangle. So we can use the theorems above and let z = a2 + b2. Then we can set

y = a2 − b2 and x = 2ab. Since a and b are integers, it follows directly that x and

y are integers as well. Then we will use the traditional equation for area, A =
1

2
bh

where b represents the base of the triangle and h represents the height. So we have

A =
1

2
bh (39)

=
1

2
(2y)(x) (40)

=
1

2
(2(a2 − b2))(2ab) (41)

= 2ab(a2 − b2) (42)

= xy (43)

Since x and y must be integers, this shows that the area A of the isosceles triangle

with sides (2y, z, z) is also an integer. Similarly, for an isosceles triangle with sides

(2x, z, z) using the same identities for x and z above will have integer area. Therefore,

for each prime number of the form z = 4k+1 we can construct two isosceles triangles

that have integer area. It should be noted that it is not a trivial fact that there are

infinitely many primes of this form. The proof of this fact is in Redmond’s Number

Theory. Therefore, we have constructed an infinite set of isosceles triangles with

integer sides and integer area.

Thus far we have shown that an equilateral triangle with integer sides cannot have

integer area. We have also shown that isosceles triangles with integer side lengths and

integer area can be formed. From here we will move on to the last type of triangles.

We will study scalene triangles and see if there are any that can have integer area

and integer sides. Since there are several different ways to create a scalene triangle,

11



we will first define the particular type of scalene triangle that will be studied.

A nearly equilateral triangle or NET is a scalene triangle with consecutive

integer sides. We will consider a class of NETs whose sides are represented by the

consecutive integers x− 1,x, x+ 1 and explore the possibility of choosing an integer

x so that the area of the NET is also an integer. The most commonly studied

example is the (3,4,5) primitive Pythagorean triangle. This scalene triangle also falls

into the special category of right triangles so the area is very simply calculated to

be A =
1

2
(3)(4) = 6. So there is at least one NET that has integer area. A few

calculations will show that the (13,14,15) triangle is also a NET with integer area 84.

However, this NET is not a Pythagorean triangle. So it is a slightly more interesting

result that this NET has integer area since the area is not as simply calculated in this

case. The next step is to search for other NETs with integer area. We will show that

there is, in fact, an infinite collection of NETs with integer area, and that these can

be found by obtaining solutions to a particular version of Pell’s equation. Moreover,

for each NET with integer area, the radius of the inscribed circle is also a positive

integer; however, the radius of the circumscribed circle is never an integer. To get an

idea of the first few NETs, we have included a Matlab program in Appendix A. This

program calculates all the NETs up to an integer, n, which must be input by the user.

This method only helps in getting an initial set of data. Our task of proving that the

list of NETs is in fact infinite will require more complicated methods involving Pell’s

equation. First, we will explore some basic facts of Pell’s equation.

12



Pell’s Equation

The equation r2−Ns2 = 1 is usually called Pell’s equation. Here N is a parameter

and we seek integer solutions for r and s. This equation has an interesting history.

John Pell (1611-1685) was an English mathematician and clergyman. He made no

actual contributions to the history of this equation. The equation is a Diophantine

equation that was named Pell’s equation after a mistaken historical reference made

by Leonhard Euler. It is speculated that Euler actually meant to call the equation

Fermat’s equation. Fermat was the first to propose a challenge to the mathematicians

in Europe to find integer solutions for Pell’s equation with certain values for N .

Although mathematicians Wallis and Brouncker found methods of solutions, it is

believed that Fermat had the first solution. He undoubtedly knew there were infinitely

many integer solutions when he posed the problem. However, Lagrange first published

his solution to the problem in 1768. An algorithm that gives solutions to special

cases of this equation can also be linked back to Indian mathematicians Bhaskara

and Brahmagupta, ca. 600 AD, although they provided no proof of the efficiency or

sufficiency of their procedure.

In 1759, Euler devised a procedure for finding the smallest integer solution for

Pell’s equation. The publication by Lagrange mentioned previously contained the first

rigorous proof that the continued fraction expansion of N would provide all integer

13



solutions to r2−Ns2 = 1. These solutions (rn, sn) are given by the following formulas

as stated in Gelfond’s The Solution of Equations in Integers. For n = 1, 2, 3....

rn =
1

2
[(r1 + s1

√
N)n + (r1 − s1

√
N)n]

sn =
1

2
√
N

[(r1 + s1

√
N)n − (r1 − s1

√
N)n]

The pair (r1, s1) is a minimal solution in the sense that (r1 + s1

√
N) ≤ (ri + si

√
N)

for all other solutions (ri, si). It should be noted that there are solutions when r and

s are either both positive or both negative. We will, however, only consider the case

when both r and s are positive integers. There are also recursion relations for the

values of r and s that have the form

rn+2 = 2r1rn+1 − rn

sn+2 = 2r1sn+1 − sn

for n = 1, 2, 3, ....

Consider the Pell’s equation r2 − Ns2 = 1 where α =
√
N is an integer. In this

particular form, the equation can be written in the form

r2 − α2s2 = (r + αs)(r − αs) = 1

and since α is an integer and if r0 and s0 are integers satisfying the equation, the

equations can be separated into the equations

r0 + αs0 = 1, r0 − αs0 = 1

or the equations

r0 + αs0 = −1, r0 − αs0 = −1

14



since the product of two integers may be equal to 1 only when they are both separately

equal to 1 or both separately equal to −1. These two systems of two equations in

two unknowns r0 and s0 have only the trivial solutions

r0 = 1, s0 = 0 (44)

r0 = −1, s0 = 0 (45)

So the Pell’s equation with N equal to the square of an integer has only trivial

solutions. Thus more interesting results come when
√
N is irrational

In the next section we will show that one of the equations which we are interested

in obtaining solutions to is u2 − 12v2 = 144. One possible approach which we will

not use is to find all integer solutions to Pell’s equation r2 − 12s2 = 1. We will,

however, use this particular Pell’s equation simply as an example to complete this

section describing Pell’s equation.

Through systematic trial and error and using simple calculations, it can be shown

that the minimal solution in the case of r2−12s2 = 1 is r1 = 7 and s1 = 2. Therefore,

using the formulas given above for n = 1, 2, 3, ... we have

rn =
1

2
[(7 + 2

√
12)n + (7− 2

√
12)n]

sn =
1

2
√

12
[(6 + 2

√
12)n − (7− 2

√
12)n]

These formulas simplify to

rn =
1

2
[(7 + 4

√
3)n + (7− 4

√
3)n]

sn =
1

4
√

3
[(7 + 4

√
3)n − (7− 4

√
3)n]

15



We can also use the recursion relations for n = 1, 2, 3, ... given above in the case

r2 − 12s2 = 1 to obtain

rn+2 = 14rn+1 − rn

sn+2 = 14sn+1 − sn

So clearly, if the minimal solution for a Pell’s equation is an integer, all subsequent

solutions will also be integers. This fact will be important in the following sections

when applying Pell’s equation to the construction of NETs.

Thus, we can tabulate the first six positive solutions to the Pell’s equation

r2 − 12s2 = 1, which is similar to the equation r2 − 12s2 = 144 that we will explore

further in relation to NETs.

Table 1: Solutions to r2 − 12s2 = 1

n rn sn

1 7 2

2 97 28

3 1351 390

4 18817 5432

5 262087 75658

6 3650401 1053780
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Nearly Equilateral Triangles

If x − 1, x, x + 1 are consecutive integer sides of a triangle, then as defined in

the first section, σ =
3x

2
and using Heron’s formula for the area, A, of this triangle

produces the following formula for A.

A =
√
σ (σ − (x− 1)) (σ − x) (σ − (x+ 1)) (46)

=

√(
3x

2

)(
x+ 2

2

)(x
2

)(x− 2

2

)
(47)

=

√
3x2

16
(x2 − 4) (48)

=
x

4

√
3x2 − 12 (49)

Now, if we assume that 3x2 − 12 is a perfect square and let w2 = 3x2 − 12, then

3x2 − 12− w2 = 0 =⇒ x =
0±

√
0− 4(3)(−12w2)

6
(50)

=

√
144 + 12w2

6
(51)

and we can ignore the negative because x is a side length which has domain [0,∞).

We can also now write that A =
x · w

4
.

Now if 12w2 + 144 is a perfect square, say y2 = 12v2 + 144, then y2− 12w2 = 144.

This equation is the variant of Pell’s equation mentioned in the previous section.
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However, we showed formulas to construct all solutions to r2−Ns2 = 1. The recursion

relation for the solutions that was given is also for r2 − Ns2 = 1 which is not the

form of the Pell type equation y2− 12w2 = 144 that will produce NETs. So we must

evaluate this equation and see if there is an equation of the form r2 −Ns2 = 1 that

will give the same results. Then we can apply the formulas in section 2 and construct

NETS. We will now make another attempt to relate the length of the side of a triangle

to the area with a Pell equation that has the form r2 −Ns2 = 1, and we will find a

much more fruitful method.

Theorem 5. The Pell equation r2 − 3s2 = 1 relates the side length of an NET to its

area.

Proof. First, consider again that

A =
x

4

√
3x2 − 12

Then let

v2 = 3x2 − 12 = 3(x2 − 4)

and set

3u = v

Then

v2 = (3u)2 = 9u2 (52)

3x2 − 12 = 9u2 (53)

x2 − 4 = 3u2 (54)
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Now if u were odd, say u = 2h+ 1 then 3u2 = 3(2h+ 1)2 = 12h2 + 12h+ 3. This then

means that x2 − 4 = 12h2 + 12h+ 3 and so x2 = 12h2 + 12h+ 7 which is odd. Then

x must be odd since only the square of odd numbers is odd. However, if x is odd

then A =
x

4

√
3x2 − 12 would not be an integer. This is because

√
3x2 − 12 would be

odd (if it happens to be an integer) and then x
√

3x2 − 12 would be odd as well since

the product of two odd numbers is itself an odd number. But then A =
x

4

√
3x2 − 12

cannot be an integer since 4 cannot divide an odd number without remainder. Hence,

both u and x must be even and we can write u = 2t and x = 2s. Then we have

3u2 = x2 − 4 (55)

x2 − 3u2 = 4 (56)

(2s)2 − 3(2t)2 = 4 (57)

4s2 − 3(4t2) = 4 (58)

s2 − 3t2 = 1 (59)

Thus, we have the Pell equation s2 − 3t2 = 1 that relates one of the sides, x, of a

NET to its area.

Now, if positive integer solutions s and t can be obtained, then x = 2s will be a

positive integer. Then we have the following sides of the respective triangle:

(x− 1) = 2s− 1 (60)

x = 2s (61)

(x+ 1) = 2s+ 1 (62)
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Since σ =
x+ y + z

2
we have

σ =
(x− 1) + x+ (x+ 1)

2
(63)

=
(2s− 1) + 2s+ (2s+ 1)

2
(64)

=
6s

2
(65)

= 3s (66)

Then we obtain the following:

σ − (x− 1) = 3s− (2s− 1) = s+ 1 (67)

σ − x = 3s− 2s = s (68)

σ − (x+ 1) = 3s− (2s+ 1) = s− 1 (69)

Now since s2 − 3t2 = 1 we have

−3t2 = −s2 + 1 (70)

3t2 = s2 − 1 (71)

This leads to the equation for the area using Heron’s formula.

A =
√
σ (σ − (x− 1)) (σ − x) (σ − (x+ 1)) (72)

=
√

3s (s+ 1) (s) (s− 1) (73)

=
√

3s2(s+ 1)(s− 1) (74)

= s
√

3(s2 − 1) (75)

= s
√

3(3t2) (76)

= 3st (77)
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Hence the area, A, of the NET will be an integer provided s and t are integers.

However, since s and t are the solutions to the Pell equation s2−3t2 = 1, we are only

interested in integer solutions and thus we will have a set of NETs with integer sides

and integer area if we find solutions to the Pell equation in question. We will look at

these values in the next section.

Next, we will discuss the relationships between s and t given above to the radius

of the inscribed circle r and the radius of the circumscribed circle R of a NET. The

formulas for r and R can be found in Standard Mathematical Tables and Formulae;

30th Edition.

For a triangle with side lengths x, y, and z and for the semiperimeter σ as defined

previously, the radius of the inscribed circle is given by

r =

√
(σ − x)(σ − y)(σ − z)

σ
(78)

=

√
σ(σ − x)(σ − y)(σ − z)

σ2
(79)

=

(√
1

σ2

)√
σ(σ − x)(σ − y)(σ − z) (80)

=
A

σ
(81)

So for the triangle with side lengths x − 1, x, and x + 1 that we consider in this

section, r will be given as follows:

r =
A

σ
(82)

=
3st

3s
(83)

= t (84)

Therefore, the radius,r, of the inscribed circle of the NETs will also be an integer
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since we will only take t to be an integer in the construction.

Finally, we will consider the radius of the circumscribed circle of the NET. This

value is given by

R =
abc

4A

where x, y, and z are the side lengths and A is the area of the given triangle. So for

the NET in which the side lengths are x = x− 1, y = x and z = x− 1 and applying

x = 2s and A = 3st we have the following

R =
xyz

4A
(85)

=
(x− 1)(x)(x+ 1)

4A
(86)

=
(2s− 1)(2s)(2s+ 1)

12st
(87)

=
4s2 − 1

6t
(88)

A simple analysis of the relationships we have developed between s and t and the

NETs will show that the conditions for x, A, and r to be integers follow directly from

s and t being integers. However, it is also clear that in order for R to be an integer,

much more complicated divisibility conditions must be satisfied. In fact, R is never

an integer. Using the relationship s2 = 3t2 − 1 we have the following

R =
4s2 − 1

6t
(89)

=
4(3t2 − 1)− 1

6t
(90)

=
12t2 − 5

6t
(91)

= 2t− 5

6t
(92)
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Now, clearly 2t is an integer since we will require t to be an integer. However,
5

6t
will

never be an integer if t is any positive integer. Thus, it is impossible for R = 2t− 5

6t

to be an integer while also satisfying the conditions on t.

The previous section included an analysis of Pell equations in general. We will

use the formulas described in that section and apply them to find integer solutions

to the particular Pell equation s2 − 3t2 = 1. These integer solutions lead directly to

solutions for x, A, r, and R for NETs. In the next section, we construct NETs in

exactly this manner and tabulate the first several NETs.
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Construction of Nearly Equilateral Triangles

In this section, we now seek positive integer solutions to the equation s2 − 3t2 = 1.

Educated and systematic trial and error calculations will give the minimal solution

(s1, t1) = (2, 1). Now we can apply the formulas given in the Pell’s Equation section

to construct all solutions. For n = 1, 2, 3, . . . we have

sn =
1

2

[
(2 +

√
3)n + (2−

√
3)n)

]
tn =

1

2
√

3

[
(2 +

√
3)n − (2−

√
3)n
]

Recursion relations for (sn, tn) also exist. From the Pell’s Equation section we

have the following:

sn+2 = 4sn+1 − sn

tn+2 = 4tn+1 − tn

These formulas will give all positive integer solutions to s2 − 3t2 = 1 which gives

rise to all solutions to the set of NETs. In the previous section we found that if

we have positive integers sn and tn then xn, An and rn are also integers. Using the
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following formulas we can construct the NETs we have sought.

xn = 2sn (93)

An = 3sntn (94)

rn = tn (95)

However, as discussed in the previous section, the radius of the circumscribed circle,

R, cannot be said to be an integer in general even though sn and tn are since the

following formula does not directly calculate as an integer as the other formulas do.

Rn =
4s2

n − 1

6tn

This relationship between the integers sn and tn is much more complicated, and we

will see in the table that R is clearly not an integer in general.

The first eight positive solutions to s2−3t2 = 1 as well as the corresponding values

of x−1, x, x+1, σ, A, r and R appear in the table below. Only the values for R have

rounded decimal values. Although the values for R when n = 7 and n = 8 appear

to be integers, this is only due to a lack of decimal places. They are not, in fact,

integers.
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Table 2: Solutions to NETs

n sn tn xn − 1 xn xn + 1 σn An rn Rn

1 2 1 3 4 5 6 6 1 2.5

2 7 4 13 14 15 21 84 4 8.125

3 26 15 51 52 53 78 1170 15 30.033

4 97 56 193 194 195 291 16296 56 112.009

5 362 209 723 724 725 1086 226974 209 435.502

6 1351 780 2701 2702 2703 4053 3161340 780 1560.001

7 5042 2911 10083 10084 10085 15126 44031786 2911 5822.00

8 18817 10864 37633 37634 37635 56451 613283664 10864 21728.00

An interesting result should be noted from this table. The recursion relationships

for σn, xn, and rn are all the same as the recursion relations for un and vn. So

un = 4un−1 − un−2 (96)

vn = 4vn−1 − vn−2 (97)

σn = 4σn−1 − σn−2 (98)

xn = 4xn−1 − xn−2 (99)

rn = 4rn−1 − rn−2 (100)

There is also a recursion relation for An that can be seen in the table. It is as

follows:

An = 14An−1 − An−2
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We can use the recursion relation for xn to find an explicit formula that gives xn

for any n. We start by rewriting the relation as

yn − 4yn−1 + yn−2 = 0

Then define the following function

K = 1− 4x+ x2

Using the quadratic formula to find solutions of K we can write

K = [x− (2 +
√

3)][x− (2−
√

3)]

Now define the infinite sum

G = a+ bx+ y2x
2 + . . . + ynx

n + . . .

where y0 = a and y1 = b are the initial solutions for the recursion relation. The

first scalene triangle made up of three consecutive integers is the degenerate triangle

(1, 2, 3), we will leave this one out since its area is 0 and thus it is uninteresting. So

the first triangle we will actually consider and the first one that appears in the table

above is the (3, 4, 5) triangle. Since we have chosen xn to be the even integer in the

middle of the three consecutive ones, a = 4. The next NET is (13, 14, 15) and thus
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b = 14. Then,

KG = (1− 4x+ x2)(a+ bx+ y2x
2 + y3x

3 + . . . + ynx
n + . . . ) (101)

= a− (−4a+ b)x+ (a− 4b+ y2)x2 + (b− 4y2 + y3)x3. . . (102)

+ (yn − 4yn−1 + yn−2)xn + . . . (103)

= a+ [−4a+ b]x+ [a− 4b+ y2]x2 + (y1 − 4y2 + y3)x3. . . (104)

+ [yn − 4yn−1 + yn−2]xn + . . . (105)

= a+ [b− 4a]x+ [y2 − 4y1 + y0]x2 + (y3 − 4y2 + y1)x3. . . (106)

+ [yn − 4yn−1 + yn−2]xn + . . . (107)

Then since yn − 4yn−1 + yn−2 = 0,

KG = a+ [b− 4a]x+ 0x2 + 0x3 + . . . + 0xn + . . . = a+ [b− 4a]x

And then since K = [x− (2 +
√

3)][x− (2−
√

3)] we have

G =
a+ (b− 4a)x

[x− (2 +
√

3)][x− (2−
√

3)]

and since a = 4 and b = 14,

G =
4− 2x

[x− (2 +
√

3)][x− (2−
√

3)]

Now we will use partial fractions to write G as two separate fractions. We start with

G =
4− 2x

[x− (2 +
√

3)][x− (2−
√

3)]
=

A

[x− (2 +
√

3)]
+

B

[x− (2−
√

3)]

Then

4− 2x = A[x− (2−
√

3)] +B[x− (2 +
√

3)]
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so we have

−2 = A+B =⇒ A = −2−B

and

4 = −2A+
√

3A− 2B −
√

3B (108)

=⇒ 4 = −2(−2−B) +
√

3(−2−B)− 2B −
√

3B (109)

=⇒ 0 = −2
√

3− 2
√

3B (110)

=⇒ B = −1 (111)

=⇒ A = −1 (112)

Thus

G = − 1

[x− (2 +
√

3)]
− 1

[x− (2−
√

3)]

Now we will use geometric series to find the explicit formula for yn. The basic property

of a geometric series is for r ∈ R and |r| < 1 we have

∞∑
k=0

ark =
a

1− r

So we’ll start by writing

G = − 1

[x− (2 +
√

3)]
− 1

[x− (2−
√

3)]
= A+B
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and then rewrite A as follows

A = − 1

[x− (2 +
√

3)]
(113)

=
−1

(2 +
√

3)

[
x

2 +
√

3
− 1

] (114)

=
1

(2 +
√

3)

[
1− x

2 +
√

3

] (115)

=
1

2 +
√

3

[
1 +

x

2 +
√

3
+

x2

(2 +
√

3)2
+ . . . +

xn

(2 +
√

3)n
+ . . .

]
(116)

=
1

2 +
√

3
+

(
1

(2 +
√

3)2

)
x+

(
1

(2 +
√

3)3

)
x2 + . . . +

(
1

(2 +
√

3)n+1

)
xn + . . .

(117)

Similarly, we can write B as follows

B = − 1

[x− (2−
√

3)]
(118)

=
−1

(2−
√

3)

[
x

2−
√

3
− 1

] (119)

=
1

(2−
√

3)

[
1− x

2−
√

3

] (120)

=
1

2−
√

3

[
1 +

x

2−
√

3
+

x2

(2−
√

3)2
+ . . . +

xn

(2−
√

3)n
+ . . .

]
(121)

=
1

2−
√

3
+

(
1

(2−
√

3)2

)
x+

(
1

(2−
√

3)3

)
x2 + . . . +

(
1

(2−
√

3)n+1

)
xn + . . .

(122)

Notice that the geometric series property mentioned above is used to get equations
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116 and 121. Since A+B = G we have

G =

[
1

2 +
√

3
+

(
1

(2 +
√

3)2

)
x+

(
1

(2 +
√

3)3

)
x2 + . . . +

(
1

(2 +
√

3)n+1

)
xn + . . .

]
(123)

+

[
1

2−
√

3
+

(
1

(2−
√

3)2

)
x+

(
1

(2−
√

3)3

)
x2 + . . . +

(
1

(2−
√

3)n+1

)
xn + . . .

]
(124)

=

[
1

2 +
√

3
+

1

2−
√

3

]
+

[
1

(2 +
√

3)2
+

1

(2−
√

3)2

]
x (125)

+

[
1

(2 +
√

3)3
+

1

(2−
√

3)3

]
x2 + . . . +

[
1

(2 +
√

3)n+1
+

1

(2−
√

3)n+1

]
xn + . . .

(126)

Now recall that we defined the infinite sum

G = a+ bx+ y2x
2 + . . . + ynx

n + . . . = y0 + y1x+ y2x
2 + . . . + ynx

n + . . .

So it follows that

yn =
1

(2 +
√

3)n+1
+

1

(2−
√

3)n+1

and since

1

2 +
√

3

(
2−
√

3

2−
√

3

)
= 2−

√
3

and

1

2−
√

3

(
2 +
√

3

2 +
√

3

)
= 2 +

√
3

we have the simple explicit formula

yn = (2−
√

3)n+1 + (2 +
√

3)n+1

This formula will give xn, which is the even integer in the middle of the NET triple

(x− 1, x, x+ 1).
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Further Pell’s Equation Applications

In the previous section, we saw how solutions to Pell’s equation were useful in

finding an infinite set of triangles with integer sides and integer area. We will dis-

cuss two more applications of Pell’s equation here. The first involves Archimedes

famous approximations of
√

3 and the second is the determination of nearly isosceles

Pythagorean triangles.

Finding approximate values of
√
N where N is not a perfect square has been a task

that mathematicians have studied for centuries. One of Archimedes’ approximations

for
√

3 is one that shows up in most history of mathematics books. He estimated that

223

71
< π <

22

7

by inscribing and circumscribing regular polygons of sides 6, 12, 24, 48, and 96 in a

circle. He describes his process in his Measurement of a Circle. In his process, these

estimates of
√

3 were certainly necessary. However, his estimate of

265

153
<
√

3 <
1351

780

is much closer and yet he does not explain how he came to this estimate in any of

his writings. These are the bounds which we will be considering in relation to Pell’s

equations. Consider the following Pell equations

x2 − 3y2 = 1 and r2 − 3s2 = −2
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We will start by tabulating the first seven solutions to each equation.

Table 3: Solutions to x2 − 3y2 = 1 and r2 − 3s2 = −2

n xn yn rn sn

1 2 1 1 1

2 7 4 5 3

3 26 15 19 11

4 97 56 71 41

5 362 209 265 153

6 1352 780 989 571

7 5042 2911 3691 2131

Since x2 − 3y2 = 1 > 0 we can write

x2 − 3y2 > 0 (127)

x2 > 3y2 (128)

√
x2 >

√
3y2 (129)

xn >
√

3yn (130)

xn

yn

>
√

3 (131)

and so thus an upper bound for
√

3 comes from the ratio of the solutions to the Pell

equation. To get the bound that Archimedes had used, look at n = 6. This gives the

upper bound

xn

yn

=
1351

780
>
√

3
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Similarly, the Archimedean lower bound comes from a “Pell-like equation” r2 −

3s2 = −2. Since

r2 − 3s2 = −2 < 0 we can write

r2 − 3s2 < 0 (132)

r2 < 3s2 (133)

√
r2 <

√
3s2 (134)

rn <
√

3sn (135)

rn

sn

<
√

3 (136)

and so we have a lower bound on
√

3. If we take n = 5 we will have the bound that

Archimedes stated. Thus, using the Pell equation and the “Pell-like” equation we

have the following

265

153
=
rn

sn

<
√

3 <
xn

yn

=
1351

780

Now it seems as though it would make sense to further this argument and possibly

get more accurate lower bounds by looking at the “Pell-like” equation x2−3y2 = −1.

However, the following proof from Gelfond’s The Solution of Equations in Integers

shows why this is not possible.

Theorem 6. The equation x2 − 3y2 = −1 is not solvable in integers x and y.

Proof. Note that since any odd number a may be written in the form a = 2N + 1
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where N is an integer we have the following

a2 = (2N + 1)2 (137)

= 4N2 + 4N + 1 (138)

= 4N(N + 1) + 1 (139)

= 8M + 1 (140)

where M is an integer. This last line comes from the fact that either N or N + 1

must be even so there is a factor of 2 in the term 4N(N + 1) thus resulting in some

integer 8M . Thus note that the square of any odd integer under division by 8 always

results in a remainder of 1.

So if [x0, y0] is a solution of x2− 3y2 = −1, then x0 and y0 must not both be even

or both odd. If x0 and y0 were both even then x2
0 and y2

0 are also both even. So then

x2
0 − 3y2

0 must be even and cannot be equal to −1. Similarly, if x0 and y0 are both

odd then x2
0 and y2

0 are both odd but x2
0 − 3y2

0 again must be even and still cannot

be equal to −1. Thus, x0 and y0 cannot be of the same parity. The next option is to

consider x0 and y0 to have opposite parity.

First consider x0 to be odd and y0 to be even. Then x2
0 would give a remainder

of 1 upon division by 4, but −3y2
0 would be divisible by 4. Therefore, x2

0− 3y2
0 would

give a remainder of 1 upon division by 4. This is impossible since the right hand side

of the equation under division by 4 gives a remainder of −1 or 3 but not a remainder

of 1.

Finally, we will consider x0 to be even and y0 to be odd. Then x2
0 is divisible by
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4 and as shown above

−3y2 = −3(8M + 1) (141)

= −24M − 3 (142)

= 4(−6M − 1) + 1 (143)

and thus the left hand side of x2
0 − 3y2

0 = −1 will again have a remainder of 1 in

division by 4 and this is impossible as stated before. Therefore, there do not exist

integers x0 and y0 which satisfy x2
0 − 3y2

0 = −1 and thus this ”Pell-like” equation

cannot be used to calculate a better lower estimate for
√

3.

Although Pell’s equation was not named as such until much after Archimedes

made this claim on the bounds, we do not know whether Archimedes had ever studied

similar equations. Since Archimedes provided no proof there is no definitive way to

know how he came upon this bound. It is certainly possible he used some type of

”Pell-like” equation.

We will now use arithmetic manipulation to show another possibility as to how

Archimedes might have come upon these bounds. Consider first the upper bound of

1351

780
. We will start with 26− 1

52
and manipulate this quantity as follows.

26− 1

52
=

√
(26− 1

52
)2 (144)

=

√
262 − 2

(
26

52

)
+

(
1

52

)2

(145)

=

√
262 − 1 +

(
1

52

)2

(146)

>
√

262 − 1 (147)
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Then we have

1

15

(
26− 1

52

)
=

26

15
− 1

(15)(52)
=

1351

780

and from the previous inequality statement

1

15

(
26− 1

52

)
>

1

15

√
262 − 1

thus we have

1351

780
=

1

15

(
26− 1

52

)
>

1

15

√
262 − 1 =

√
262 − 1

152
=
√

3

which is the upper bound on
√

3 that we sought.

Now similarly, we will find the lower bound
265

153
by arithmetic manipulation using

26− 1

51
. The manipulation is as follows:

265

153
=

1

15

(
26− 1

51

)
(148)

=
1

15

√(
26− 1

51

)2

(149)

=
1

15

√
262 − 52

51
+

1

2601
(150)

=
1

15

√
262 − 1− 1

51
+

1

2601
(151)

=
1

15

√
262 − 1− 2550

132651
(152)

<
1

15

√
262 − 1 (153)

=
√

3 (154)

and thus we have secured a lower bound on
√

3 using only simple arithmetic. Again,

we do not know if this is the exact way that Archimedes came upon the bounds, but

this method would have been attainable using the mathematics of his day.
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The second application of Pell’s equation is the determination of nearly isosceles

Pythagorean triangles with integer sides (x, x + 1, x + k). The problem here is to

find integers x and k for which x2 + (x + 1)2 = (x + k)2. Using a similar method as

used in the previous sections, it can be shown that solutions for these triangles can

be obtained from the Pell equation u2 − 2v2 = 1. The first five solutions for these

triangles are tabulated here.

Table 4: Solutions to Nearly Isosceles Pythagorean Triangles

n un vn k x x+ 1 x+ k

1 3 2 2 3 4 5

2 17 12 9 20 21 29

3 99 70 50 119 120 169

4 577 408 289 696 697 985

5 3363 2378 1682 4059 4060 5741

It is possible to obtain generalizations of nearly isosceles triangles to higher dimen-

sions. For example, in dimension three we seek triangles of the forms (x, x, x+1, x+k)

and (x, x+ 1, x+ 1, x+ l). It can be shown that there are infinitely many triangles of

these types. Two examples of the first are 62+62+72 = 112 and 882+882+892 = 1532.

Two examples of the second are 12 +22 +22 = 32 and 232 +242 +242 = 412. These ex-

amples can be constructed in a manner similar to the one used in the previous sections

for two dimensions. The Pell equation that is relevant in this case is x2 − 3y2 = 4.

For any dimensions N > 3, the relevant Pell equation is x2 − Ny2 = (N − 1)2 but
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solutions can only be obtained for values of N not a perfect square. Note that a

minimum solution of x2 − Ny2 = (N − 1)2 is x = N + 1 and y = 2. These higher

dimension situations will not be discussed further here.
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Appendix A: Matlab Program

This is a screen shot of the function file for the program in Matlab that will output

the center side length for the first n NETs.
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The output for this program gives the first few solutions of NETs. In the previous

sections we verified the following output using Pell’s equation. The first few output

are as follows:

41



Works Cited

Burton, David M. The History of Mathematics. Dubuque: Wm. C Brown

Publishers, 1985.

Gelfond, A. O., and J. Roberts. The Solution of Equations in Integers. San

Francisco: W. H. Freeman and Company, 1961.

“Heron’s Formula.” Wikipedia. 10 May. 2009.

<http://en.wikipedia.org/wiki/Heron27s formula>

Hersh, Reuben “A Nifty Derivation of Heron’s Area Formula by 11th Grade Algebra.”

Focus 2002.

Redmond, Don. Number Theory; An Introduction. New York: Marcel Dekker, Inc.,

1996.

Sierpinski, W, and A. Schinzel. Elementary Theory of Numbers. Amsterdam: PWN-

Polish Scientific Publishers, 1988.

Standard Mathematical Tables and Formulae. Ed. Daniel Zwillinger. Boca Raton:

CRC Press, 1995.

42


	University of New Mexico
	UNM Digital Repository
	9-3-2010

	Pell's Equation and nearly equilateral triangles
	Laurel Christensen
	Recommended Citation


	LaurelChristensen
	THESIS
	thesis_title
	thesis_abstract
	MasterThesis


