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ABSTRACT 

 

Cognitive control is critical in adaptively guiding cognition, shaping an optimal balance 

between acting efficiently with existing rules, and remaining flexible enough to respond 

to new information.  Proactive cognitive control utilizes context information to bias 

processing (in a top-down manner) and prepare for an upcoming event, presumably 

through dynamic use of highly related executive processes, including working memory 

maintenance, attention, and goal switching.  Counter to the frequent investigation of 

proactive control as a unitary construct, we hypothesize that proactive control varies with 

the temporal delay over which goals need to be held in mind, and can be at least partly 

dissociated into separable neural processes.  In the present experiment, we contrasted 

processing of cue context rules during short and long anticipated cue-probe delays.  We 

hypothesize that rapid cue-probe delays would rely more on task-switching (rapid goal 

updating) processes, whereas longer cue-probe delays would rely more on active working 
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memory maintenance of cued goal information.  EEG was used to dissociate the neural 

processes of post-cue task-switching and working memory maintenance utilized for each 

delay type.  Integrating neural and behavioral data, we aim to provide a more nuanced 

account of proactive control, clarifying the distinct proactive control processes 

instantiated for different temporal delays.   

Methods: Healthy undergraduate students (n=35) completed a variant of the AX-

Continuous Performance Task (AX-CPT), assessing context processing in cognitive 

control, with short and long cue-probe delays.  EEG data was recorded and ERP and 

time-frequency methods were used to analyze processing of cue information over short 

and long delays.  Results: Accuracy was selectively impaired for rare probes following 

common cues (“AY”) during short delay blocks.  RT did not vary across cue/probe pairs, 

but as expected, showed a positive correlation with delay length.  Cue-locked N1, N2, P2, 

and P3 ERP components revealed interactions between cue type and delay length.  P1, 

N1, N2, and P2 components revealed interactions between delay length and task-switch 

vs. task-repeat trials.  Mid-frontal theta phase consistency was positively correlated with 

proactive/reactive ratio for Short delay, suggesting elevated task-switching proactive 

control  (TSPC).  Conversely, delta power over the time-course of the P3 was 

dynamically elevated for cues preceding a long delay; delta power correlated with 

proactive/reactive ratio for only this Long delay condition, indicating use of WM-

maintenance proactive control (WMMPC), and thereby revealing a double-dissociation 

between type of control and delay length.  Conclusions: The present study demonstrates 

a double-dissociation in proactive control processes invoked by known short and long 

delays, with distinct cue-locked ERP and oscillatory components revealing context 
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updating and maintenance differences between delay conditions.  These findings prompt 

consideration that AX-CPT delay length biases different use of task switching, working 

memory, and thereby proactive control type, and should no longer be conceived as a 

unitary task across timing parameters.  
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GENERAL INTRODUCTION 

 
Cognitive control is a critical process in adaptively guiding cognition, 

continuously shaping an optimal balance between acting on existing rules, thereby 

promoting cognitive efficiency, and remaining flexible enough to respond appropriately 

to new information.  Proactive cognitive control utilizes context information to bias 

processing (in a top-down manner) and prepare for an upcoming event, presumably 

through dynamic use of highly related executive processes, including working memory 

maintenance and goal switching.  Counter to the frequent investigation of proactive 

cognitive control as a unitary construct, we hypothesize that proactive control varies 

systematically with the temporal delay over which goals need to be held in mind, and can 

be at least partly dissociated into separable neural processes.  

In a world with a near-constant deluge of sensory inputs and ever-changing goals, 

use of context information to guide behavior is essential.  However, as cognitive control 

uses substantial neural resources (for review, see (Shenhav, Botvinick, & Cohen, 2013), 

it is not efficient to apply proactive control in the same manner for temporally immediate 

events as to events more temporally distant.  For instance, when given a temporally 

immediate rule, ie: “I am about to pitch you a [curve vs. straight] ball at 100 mph: swing 

if it is in the strike zone”, it would be optimal to rapidly switch into “curve ball” mode 

(TSPC), so that you have sufficient time to prepare and react.  In contrast, when given a 

promise from the pitcher that your next pitch, after a 10-minute 7th inning stretch, will be 

a curve ball, it would be best to instantiate a form of proactive control more reliant on 

working memory maintenance (WMMPC), in which the curve ball rule is held in 

working memory until it becomes behaviorally relevant. 



Temporal	  Delay	  and	  Cognitive	  Control	  Instantiation	   2	  
	  	  

Despite the intuitive understanding that different proactive control processes 

should be invoked based on the length of temporal delay before control must be applied, 

differences in invocation of proactive control based on anticipated delay length have not 

been systematically investigated.  Further, although several recent studies have explored 

how greater rarity of a rule to be enacted (ie: a common straight ball vs. a rare curve ball) 

is associated with up-regulation of control processes, it is unknown how rule rarity 

interacts with expected delay, to modulate the type and timing of proactive control. 

To address these questions of how anticipated timing modulates proactive 

cognitive control, we manipulate duration of cue-probe delay in a cognitive control task 

with rare and common cued context rules.  EEG allows us to resolve with excellent 

temporal precision the constituent processes of proactive control, namely task switching 

and working memory, as they are invoked.  Integrating neural and behavioral activity 

during each delay length, we can begin to dissociate different types of proactive control, 

dominated by either task-switching (TSPC) or working memory maintenance 

(WMMPC). 

 

Dual Mechanisms of Control Framework, AX-CPT Paradigm, and Context Processing 

The recent dual mechanisms of control (DMC) framework divides control into 

two distinct modes: proactive and reactive control, each important in enacting certain 

goal-directed behaviors.  Proactive control involves sustained maintenance of goal-

relevant information and enables the advance preparation of an optimal response.  

Reactive control, in contrast, favors a transient, stimulus-evoked re-activation of task 

goals, and results in slower, more variable responses (T. S. Braver, Paxton, Locke, & 
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Barch, 2009; T. S. Braver, 2012).  These two processes are largely reciprocal; when 

proactive control to the contextual cue is lower, reactive control to the probe is greater, 

and vice versa.  As preparatory control instantiation during the cue-probe delay is the 

focus of the present investigation, and reactive control, in contrast, is only observed after 

appearance of the probe stimulus, analyses and discussion in this work will be directed 

toward distinctions in proactive control.  Re-integration of a non-unitary proactive 

control, as presented in this manuscript, into the DMC framework (ie: in relation with 

reactive control) will be addressed in the discussion.  

To better understand how proactive control works, we can attempt to unravel 

distinctions in its underlying executive processes, task-switching and working memory, 

in situations demanding different types of preparatory control.  The AX-Continuous 

Performance Task (AX-CPT) (Carter et al., 1998; J D Cohen, Barch, Carter, & Servan-

Schreiber, 1999; J.D. Cohen et al., 1997) is a standard cue-probe cognitive task in which 

variance in cue and probe expectancy are used to assess the impact of (cue-derived) 

context on proactive and reactive cognitive control.   AX-CPT is typically composed of 

70% ‘A-X’ cue-probe ‘target’ pairs, and 10% each of ‘A-Y’, ‘B-X’, and ‘B-Y’ cue-probe 

‘non-target’ pairs, generating a strong expectancy to respond according to the ‘A-X’ rule 

(Servan-Schreiber et al., 1996).  ‘A’ and ‘B’ cues each introduce a different context, with 

distinct rules to follow for the common ‘X’ and ‘Y’ probe stimuli. AX-CPT is useful in 

investigating several related components of context-processing, including context 

activation/updating, context maintenance, and context sensitivity.  Whereas context 

activation/updating involves dynamically instantiating and switching between contexts, 

context maintenance involves the active preservation of some context information over 
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time.  Context sensitivity reflects how intensely context information biases a common 

probe stimulus.  Manipulation of the delay between cue and probe (Cue-Probe Delay: 

CPD) has previously been used to assess context maintenance in cognitive control (for 

summary, please see (Barch et al., 2009)).  In addition to the effect of CPD on context 

maintenance, this study addresses how CPD may also alter context activation and context 

sensitivity.  

 

Cue-Probe Delay in AX-CPT 

Cue-probe delays used in AX-CPT studies have varied widely (Figure S1), from 0 

ms (Brambilla et al., 2007) to 9,500 ms (T Braver & Cohen, 2001), on average 3,162 +/- 

2,444 (SD) ms, with this parameter given scarce discussion in most AX manuscripts.  

Germane to any use of AX-CPT to assess context processing, variation in CPD length 

across studies correlates with a significant difference in behavioral measures of context  

activation/updating (n=46 studies, r^2=.189).  Importantly, this variance in task 

parameters is not equally distributed across studies: AX-CPT delay lengths differ 

between imaging modalities, such that fMRI AX studies use significantly longer cue-

probe delays (n=15, mean= 4.56 s) than do non-fMRI (EEG and behavioral) studies 

(n=31, mean = 1.40 s) (p=0.0012**).  Although delay length differences are incidental to 

the need for a longer delay time in fMRI and practical benefits to shortened trial length, 

these systematic differences in delay length render comparison across AX-CPT studies 

problematic.  

Several recent AX-CPT studies have compared CPD lengths within-subjects 

(Barch et al., 1997; Beste, Domschke, Radenz, Falkenstein, & Konrad, 2011; T Braver & 
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Cohen, 2001; Ts Braver, Barch, & Cohen, 1999; Chung, Mathews, & Barch, 2011; Javitt, 

Shelley, Silipo, & Lieberman, 2000; Leary, Turner, & Andreasen, 2003; Lorsbach & 

Reimer, 2010; Lucenet & Blaye, 2014; Morales, Yudes, Gómez-Ariza, & Bajo, 2014; 

Paxton, Barch, Racine, & Braver, 2008; Paxton, Barch, Storandt, & Braver, 2006; Redick 

& Engle, 2011; Richard, Carter, Cohen, & Cho, 2013).  Of note, most studies varied CPD 

in a block-wise manner, whereas a few studies interspersed long and short delays within 

experimental blocks (D’Ardenne & Eshel, 2012; Javitt et al., 2000; Redick & Engle, 

2011).  In addition, in much of the work comparing CPDs, total trial length was balanced 

between CPD conditions by adjusting the Inter-Trial Interval (ITI) (ie: short CPDs were 

paired with long ITIs) (Barch et al., 1997; T. S. Braver, Satpute, Rush, Racine, & Barch, 

2005; Paxton et al., 2008; Redick & Engle, 2011).  Manipulating both CPD and ITI, 

while equating total trial time and block length, can not specifically address the impact of 

CPD on proactive cognitive control, as it is difficult to disentangle the impact of CPD and 

ITI on task-updating processes involved in switch trials. In the present study, to 

specifically interrogate the effects of anticipated CPD length on preparatory proactive 

control, CPD was kept the same within each set of delay blocks, and ITI was held 

constant across CPD lengths. 

 

Neural Mechanisms of Cognitive Control 

Neuroimaging offers a valuable mechanistic perspective on how cognitive control 

is initiated, especially during the CPD, during which no behavior is observed.  A growing 

body of literature has investigated the behavioral correlates and neural mechanisms of 
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cue-based task instantiation and switching (for reviews, see (Karayanidis et al., 2010; 

Kiesel et al., 2010)).  

The fMRI literature has localized with excellent spatial precision the brain regions 

involved in instantiating and enacting control.  In general, anterior cingulate cortex’s 

(ACC) alarm, signaling detection of conflict and the need for control (Kerns et al., 2004), 

activates DLPFC to resolve interference (Botvinick, Braver, Barch, Carter, & Cohen, 

2001), and DLPFC biases posterior-parietal areas to enact context-appropriate behavior.  

After an informative cue, activation of ACC during the CPD (which may be sustained 

throughout even a long CPD), is correlated with faster task performance (Sohn, Albert, 

Jung, Carter, & Anderson, 2007), suggesting that this early CPD ACC activity facilitates 

conflict processing.   

In other AX-CPT fMRI studies, the timing of lateral PFC (lPFC) activity has 

differentiated the use of proactive vs. reactive control, with proactive control 

characterized by sustained and/or anticipatory lPFC activity during the CPD (T. S. Braver 

et al., 2009; Paxton et al., 2008).  Importantly, differences in the temporal delay over 

which control needs to be maintained have been reflected in differential CPD activation 

within the lPFC.   Per the information cascade hypothesis, the anterior lateral PFC 

(DLPFC) is activated to task cues temporally remote from action selection, whereas 

posterior lateral PFC (VLPFC) is activated for cues in close temporal proximity to action 

selection (Reynolds, O’Reilly, Cohen, & Braver, 2012).   Alternatively, the adaptive 

context maintenance hypothesis posits that both anterior (BA 9/44/46; DLPFC) and 

posterior (BA 6; VLPFC) lPFC activation is flexible according to task demands, with 

temporal dynamics of activation (of both regions) modulated by current demands for 
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maintenance duration (Reynolds et al., 2012).  The differential activation of VLPFC and 

DLPFC to short and long CPDs may be related to their differential involvement in task-

switching vs. working memory.  VLPFC is strongly implicated in cue-based task-

switching (Brass & von Cramon, 2002; M F S Rushworth, Hadland, Paus, & Sipila, 

2002).  Anterior to VLPFC, DLPFC (BA 46/9) has been found as a locus for the 

maintenance component of WM (Cohen et al., 1997; Courtney et al., 1997; Fiez et al., 

1996), in some cases specifically for control-demanding trials ( a W. MacDonald, Cohen, 

Stenger, & Carter, 2000).  In fMRI studies varying CPD between blocks, longer CPD 

(8000 ms) was found to evoke more activation in left DLPFC (BA 46/9) relative to short 

CPD (1000 ms) (Barch et al., 1997; T Braver & Cohen, 2001), suggesting delay-mediated 

differences of WMM processes. 

 Although a substantial body of fMRI literature has detailed the involvement of 

ACC, VLPFC, and DLPFC in various aspects of cognitive control during CPD, the lack 

of temporal specificity in fMRI leaves many questions unanswered regarding the timing 

of this activity, especially during short CPDs in which extraneous (non-CPD) activity is 

necessarily captured during the longer MR sequence.  The current EEG study offers the 

excellent temporal resolution to better resolve how (in particular, when) anticipated CPD 

information is used to bias context processing. 

 

Cue-Locked EEG:   

Several event-related potential (ERP) components have been implicated in cue 

processing, hypothesized to consist of sensory, evaluative, and preparatory components 

(Meiran, Chorev, & Sapir, 2000).  To understand how and when anticipated CPD 
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modulates instantiation of proactive control, we evaluate ERP and oscillatory 

components at each stage of cue processing.  We seek to resolve which early sensory, 

evaluative, and/or later preparatory cue-processing modulations underlie differences in 

TSPC and WMMPC?  

Sensory 

 Early cue “sensory” processing has been reported from 0-200 ms post-cue onset, 

to include visual ERP components P1 and N1 (Di Russo et al., 2002, 2003), and has been 

computed at parietal-occipital PO3 and PO4 (Bickel, Dias, Epstein, & Javitt, 2012).  A 

slightly later, anterior component, referred to as the Early Anterior Positivity (EAP), with 

similarities to the Frontal Selection Positivity (FSP) and P2a (Potts et al., 2004; Potts & 

Tucker 2001) is maximal at Fz around 150-200 ms post-cue (Duncan E Astle, Jackson, & 

Swainson, 2008; Lavric, Mizon, & Monsell, 2008), and seems to be an early evaluator of 

stimulus relevance.   

Evaluative 

 A cue-evaluation window from 200-500 ms post-cue includes alpha event-related 

desynchronization (ERD) in parietal-occipital areas (Bickel et al., 2012), associated with 

attention and memory (Klimesch et al., 2003; Schack et al., 2005) and a gradual release 

of inhibition (Klimesch, Sauseng, & Hanslmayr, 2007).  In other work, ERD was seen in 

the superior frontal gyrus (BA 6), corresponding to an increase in alpha power (Crespo-

Garcia et al., 2013).  ERD onset is negatively associated with P3 amplitude and positively 

associated with P3 latency (Yordanova et al., 2001).   

Overlapping the cue-evaluation window, P3b, observed at central-parietal sites 

(Pz) from 240-640 ms post-cue (Beste et al., 2011; Dias, Foxe, & Javitt, 2003; Javitt et 
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al., 2000; Schmitt, Wolff, Ferdinand, & Kray, 2014; Tekok-Kilic, Shucard, & Shucard, 

2001; van Wouwe, Band, & Ridderinkhof, 2011), is associated with context maintenance 

and WM updating (Hartikainen and Knight 2003, Kok 2001, Polich 2003, Polich 2007; 

Knight 1996).  For rare cues, P3b peaks later and has greater amplitude (Morales et al., 

2014; van Wouwe et al., 2011), especially during a short CPD (Morales et al., 2014).  P3 

is composed of phase-locked delta and theta (Basar-Eroglu 1992; Kolev 1997; da Silva 

1999; Pfurtscheller 1996; Yordanova & Kolev 1998), and of which delta is the strongest 

contributor (Demiralp, Ademoglu, Schürmann, Başar-Eroglu, & Başar, 1999).  

The differential switch positivity (D-pos), and the late parietal positivity (LPP) 

(Duncan E Astle et al., 2008; M F S Rushworth et al., 2002; Matthew F S Rushworth & 

Behrens, 2008) are similar components observed during the CPD in cases of a change in 

intended performance (D. E. Astle, Jackson, & Swainson, 2006).  D-pos peaks between 

200-600 ms at central-parietal sites (Karayanidis, Coltheart, Michie, & Murphy, 2003), 

and larger amplitude is related to shorter decision and non-decision times on switch-to 

trials (Karayanidis et al., 2009).  D-pos amplitude varies between CPDs (Nicholson, 

Karayanidis, Poboka, Heathcote, & Michie, 2005); this has been explained by the 

reduced time pressure in long CPD condition, which enables preparatory activity to vary 

more widely across participants (and trials), and results in the smaller amplitude, broader 

D-pos component (Nicholson et al., 2005).   For task-switch trials, a sustained central and 

posterior positivity has also been reported, between 520-1080 ms after cue presentation 

(M F S Rushworth et al., 2002; M. F. S. Rushworth, Passingham, & Nobre, 2005).  

Comparing neural activity during cue evaluation is important in resolving how cue 

content (common or rare task) and context (preceding a known short or long delay) 
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informs subsequent preparation for task-switching and working memory maintenance 

processes. 

 

Preparation 

The contingent negative variation (CNV) component derives in part from the pre-

SMA and surrounding VLPFC areas (Gomez 2003, Rektor 2004), is correlated with beta 

power (Bickel et al., 2012), and is primarily observed at fronto-central sites ((Beste et al., 

2011; Bickel et al., 2012; Dias et al., 2003; Hämmerer, Li, Müller, & Lindenberger, 

2010) during the CPD (Dias et al., 2003).  CNV is hypothesized to reflect preparatory 

activity, and is correlated with RT (Bickel et al., 2012).  Intriguingly, CNV amplitude 

varies with CPD, with higher amplitudes during shorter delays (1200 vs. 2400 ms) 

(McAdam, Knott, & Rebert, 1969).    

In addition to the aforementioned activity at particular sensory, evaluative, and 

preparatory phases of cue processing, certain oscillatory activity is sustained throughout 

delay duration.   Sustained theta activation has been observed for WM maintenance 

throughout a delay period (Raghavachari et al., 2001), though this effect may be selective 

for sequential WM tasks.  Gamma oscillations appear to more generally correspond to 

WM maintenance ((Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002); for review: 

(Roux & Uhlhaas, 2014)).   

Each EEG signature of cue processing, including task-switching and working 

memory components, builds toward an understanding of how cues are dynamically used 

to inform context adaptation and maintenance across the CPD.  By comparing EEG 

activity during known short and long CPDs and for cues requiring different types of 
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proactive control, we can use EEG signatures indicative of TS and WM to dissociate how 

cognitive control instantiation processes differ based on the delay over which context is 

to be maintained. 

 

Goals and Hypotheses 

The present study investigates behavioral and neural differences in control 

instantiation ahead of known short and long temporal delays.  We hypothesize that the 

type of proactive control used (TSPC vs. WMMPC) will vary between short and long 

delay lengths, and that EEG activity at cue sensory, evaluation, and preparation phases 

will dissociate the early task switching and working memory mechanisms of instantiating 

these distinct control networks.  In particular, we predict that EEG during short CPD will 

be characterized by a rapid task-updating (TSPC) type of proactive control, and long 

CPD by a prolonged working memory maintenance (WMMPC) type of proactive control.  
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METHODS 

Participants: 

Thirty-five undergraduate students at the University of New Mexico (26 women, 

ages 18-42 years, mean 19.8 +/- SD 3.4 years) participated in this experiment.  

Demographic information is displayed in Table 1.  Participants reported no current use of 

psychiatric or neurological medication, no history of head injury or epilepsy, and normal 

or corrected-to-normal vision.  All participants were right handed (Hand Usage 

Questionnaire mean=37.9, min=34 (max possible score = 39)).  Data from two 

participants were excluded from EEG analyses: one due to technical problems with the 

EEG equipment, and one due to excessive noise in the EEG data.  The University of New 

Mexico Institutional Review Board approved this experiment.  Participants provided 

written informed consent and received course credit for their participation. 

 
Table 1. Mean (SD) of sample demographic information. N=35. 

Age (years) 19.83 (3.40) 

Education (years) 13.40 (1.27) 

Gender 26 F, 9 M 

Handedness 35 R  

Delay First Short = 18; Long = 17 
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Cognitive/Behavioral Task: 

 The AX-Continuous Performance Task (AX-CPT) (Carter et al., 1998; J D Cohen 

et al., 1999; J.D. Cohen et al., 1997) is a standard cue-probe cognitive task in which 

variance in cue and probe expectancy are used to assess the impact of (cue-derived) 

context on cognitive control.   The task flow and parameters are depicted in Figure S2.  In 

this task, a probe stimulus (‘X’ or ‘Y’) was presented following a paired cue stimulus 

(‘A’ or ‘B’) in ‘target’ and ‘non-target’ combinations.  In a two-alternative-forced choice 

manner (2AFC), participants were instructed to respond to both cue and probe stimuli 

with left or right trigger buttons on a joystick.  In the target ‘AX’ sequence, ‘X’ probes 

following ‘A’ cues demanded a ‘right’ trigger press; all other cues and probes were to be 

responded to with the ‘left’ trigger.  Because 70% of trials were composed of ‘A-X’ cue-

probe ‘target’ pairs, entailing a ‘left-right’ cue-probe response sequence, and ‘A-Y’, ‘B-

X’, and ‘B-Y’ cue-probe ‘non-target’ pairs were much more rare (10% trials of each), a 

strong expectancy was generated to respond according to the ‘A-X’ rule (Servan-

Schreiber et al., 1996).  Error feedback (“ERROR!”) followed any Cue error or non-

response.  Feedback in the form of a green (correct) or red (incorrect or too late) 

crosshairs immediately followed each probe response (or time-out after non-response), 

for 500 ms.  Trials were separated by a jittered inter-trial interval of 750-1000 ms.  

 A key feature of this variant of the AX-CPT paradigm is the block-wise 

comparison of short and long delays between cue (‘A’ or ‘B’) and probe (‘X’ or ‘Y’) 

stimuli.  In the short delay condition, a static 750 ms delay separated the cue and probe 

stimulus.  In the long delay condition, the probe was presented ~3000 ms after the cue 

(randomly jittered between 2500-3500 ms, interval of 50 ms).  All participants completed 
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both short and long delay conditions, with delay order randomly assigned and 

counterbalanced between participants.  

After being instructed in AX-CPT task rules by the experimenter, participants 

completed a practice session of 25 (short delay) trials.  Participants were then given 

delay-specific instructions for the first delay condition (‘Delay 1’), and completed five 

blocks of 50 trials (total 250 trials) of ‘Delay 1’ with short breaks offered between each 

block.  Instructions for the second delay condition (‘Delay 2’) were then presented, 

followed by five blocks of 50 trials (total 250 trials) of ‘Delay 2’, with short breaks 

offered between each block.  Total task duration was 41.7 minutes (+/- 3.4 mins).  Our 

task was written in Matlab, using the Psychophysics Toolbox extensions (Brainard, 1997; 

Pelli, 1997; Kleiner et al, 2007). 

 

Cue-Based Analyses:  

 Two sets of cue-based comparisons were performed on this data: 1) A vs. B cues, 

to distinguish instantiation of common vs. rare rule sets between CPD lengths, and 2) 

processing of repeat (A-post-A) vs. switch trials (A-post-B), to identify how CPD 

differences mediate switch processing.  Trials were divided into four conditions for each 

set of comparisons: “Short A (or A-postA)”, “Short B (or A-postB)”, “Long A (or A-

postA)”, and “Long B (or A-postB)”.  Two-way repeated measures ANOVAs were used 

to calculate statistical main effects of cue type and delay length, and cue-delay 

interactions.  Correlations between neural and behavioral variables were computed with 

Pearson’s R.  To assess statistical differences in correlations between Short and Long 

delay lengths, within-sample rho-to-z tests (Lee & Preacher, 2013; Steiger, 1980) were 
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conducted; these tests incorporate a variable describing how the two tests are themselves 

correlated, and are preferred for non-independent correlations. 

 

  



Temporal	  Delay	  and	  Cognitive	  Control	  Instantiation	   16	  
	  

Behavioral Analyses: 

Context activation/updating was quantified with the Behavioral Shift Index (BSI) 

(T. S. Braver et al., 2009) (used in (Chiew & Braver, 2013; Edwards, Barch, & Braver, 

2010; Lamm et al., 2013; Lucenet & Blaye, 2014; Morales et al., 2014; Schmitt et al., 

2015)), which indexes the proportional use of proactive versus reactive control based on 

task error rate or reaction time to “AY” relative to “BX” cue-probe pairs.  The following 

formula generates a single proactive/reactive Behavioral Shift Index value:  

  aY – bX / (aY + bX)  

Higher BSI scores are associated with a greater use of Proactive Control, whereas 

lower BSI scores are associated with a greater use of Reactive Control.  Prior literature 

suggests that proactive control in AX-CPT should be characterized by activation of the 

cued context (“A” or “B”), and preparation during the CPD to respond according to the 

cued rule.  If context activation/updating abilities are intact, proactive control should bias 

responses based on context (Ts Braver et al., 1999) and manifest in impaired performance 

on ‘AY’ trials (T. S. Braver et al., 2005), during which a robust pre-potent response must 

be inhibited.   

Signal Detection Metrics, quantified by sensitivity d-prime (d’) scores, response 

bias ‘B’ scores, and criterion location ‘C’ scores, were used to contrast how response 

criteria differ between probe types aY and bX, presumably requiring different variants of 

cognitive control (inhibit pre-potent cued response to adapt to a rare probe, versus 

maintaining a rare cue to respond to a common probe, respectively). Critically, we 

investigated how this might vary based on the length of the cue-probe delay.   To 

evaluate whether signal detection criteria are modulated by CPD, we compared 
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sensitivity, response bias, and criterion location scores across delay conditions, and 

sought to find if neural activity during the CPD could predict context sensitivity in either 

delay condition. 

 

EEG Data Acquisition: 

 EEG data were acquired with a BrainVision 64-channel amp, with standard 10-20 

configuration, and recorded with PyCorder software.  Data were recorded continuously 

across 0.1-100 Hz and sampled at 500 Hz.  VEOG was recorded above and below the 

right eye.  FPz was utilized as online ground, and CPz served as a secondary online 

reference.   

 

EEG Data Pre-Processing: 

Epochs were created surrounding cue onset (-2000 : 7000 ms), from which 

associated cue and probe responses, as well as cue-probe delay activity, were isolated.  

After data were re-referenced to average reference, CPz was re-created.  Several channels 

(FT9, FT10, TP9, TP10) were removed, due to their unreliability and location above or 

behind the ear, from which neural activity is difficult to infer.  Additional bad channels 

were identified using a combination of FASTER (Nolan, Whelan, & Reilly, 2010) and 

eeglab’s pop_rejchan (Delorme & Makeig, 2004), and interpolated.  Data were again re-

referenced and average and bad epochs, as identified by FASTER, were then rejected.  

ICA (runica) was run to identify bad components; VEOG activity and a Gaussian 

template around frontopolar channels was compared with ICs to identify and reject blink 

activity.   
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A wavelet transform was applied to the data, enabling precise temporal resolution 

of the frequency information, and directly revealing the oscillatory amplitude and phase 

(Herrmann, Grigutsch, & Busch, 1999).   

 

ERP & Time-Frequency Analyses 

Event-related potentials (ERPs) were created to assess with temporal precision the 

early post-cue activity involved in instantiating proactive control. Cue-locked activity for 

each condition (see above) was calculated as an average of all trials with correct 

responses to both cue and probe, ensuring attention to the task and successful context 

processing.  Trial count was equalized between conditions, to account for the far greater 

number of A vs. B trials.  Epochs were created from -2000:2000 ms peri-cue, and activity 

was baseline-corrected to -200:0 ms pre-cue.  The ERP components chosen for analysis 

were selected based on prior literature suggesting their involvement in task-switching or 

working memory processes.  ERP components were evaluated at a priori regions of 

interest, and group-mean maximal values across conditions were used to derive common 

windows of interest for further analysis.  For P1, N1, P2, and N2 components, windows 

were taken for 20 ms around the across-condition peak.  For the more temporal diverse 

P3 components, windows were established at 40 ms surrounding the across-condition 

peak.  For each component of interest at each electrode of interest, individual peaks were 

identified from the across-condition time windows.  

 For all ERP and time-frequency analyses, we derived estimates of the Current 

Source Density (CSD) by computing the Surface Laplacian of the spherical-spline 

interpolated scalp topography (laplacian_perrinX.m) (Perrin, Pernier, Bertrand, & 
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Echallier, 1989).  As a high-pass spatial filter, the Surface Laplacian filters out spatially 

broad features, thereby minimizing effects of volume-conduction, and highlights local 

topographical features.  The Surface Laplacian is reference-free, and as such avoids 

confounds with the choice of reference electrode (M. X. Cohen, 2014a; Kayser & Tenke, 

2006, 2015).  After Laplacian spatial transform, wavelet transforms were applied to cue-

locked EEG data, to identify time-frequency oscillatory activity in the delta (1-4 Hz), 

theta (4-7 Hz), and alpha (8-13 Hz) frequency bands.  As temporal smoothing from time-

frequency decomposition may introduce temporal leakage of trial-related activity into the 

pretrial period (M. X. Cohen, 2014b), all time-frequency analyses were conducted with a 

baseline time period of -300 : -100 ms peri-cue.   
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Results: 
 
 
AX-CPT Behavior 
 

Behavioral metrics of interest: accuracy, reaction time, and reaction time 

variability (standard deviation) were computed for the 2AFC responses to Cue and Probe, 

and averaged across experimental blocks for each Delay Length.   

To evaluate the influence of Cue Type (A vs B), Delay Length (Short vs Long), 

and Cue x Delay Interaction on AX-CPT performance, two-way repeated measures 

ANOVAs were computed for each behavioral metric.  Group means and SDs of AX-CPT 

behavioral metrics for each Cue Type and Delay Length, as well as significance levels 

derived from p-values from two-way repeated measures ANOVAs (Cue Type x Delay 

Length) are displayed in Table 2. 

In addition, several AX-CPT summary measures were computed based on a 

combination of A-cued and B-cued probe behavior.  For each of these measures, the 

effect of Delay Length was evaluated with a one-way repeated measures ANOVA.  Mean 

values and standard deviations for each metric, and rm-ANOVA p significance values are 

enumerated on Table 3. 
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Table 2. AX-CPT Behavioral Measures with Mean (SD) and Two-way rm-ANOVA p 
significance levels 
 

AX-CPT Metric 
Short 
“A” 

Long 
“A” 

Short 
“B” 

Long 
“B” 

Main 
Effect 

Cue Type 

Main 
Effect 
Delay 

Cue-Delay 
Interaction 

Cue Accuracy .997 
(.004) 

.994 
(.007) 

.990 
(.020) 

.995 
(.014) 

n.s. n.s. * 

Cue SD of Acc .004 .007 .020 .014    
Cue RT (sec) .248 

(.043) 
.424 

(.097) 
.290 

(.067) 
.478 

(.112) 
*** *** n.s. 

 
Cue SD of RT (sec) .091 

(.023) 
.191 

(.100) 
.118 

(.022) 
.183 

(.095) 
n.s. *** 

 
*** 

Probe X Acc .953 
(.036) 

.878 
(.123) 

.958 
(.040) 

.874 
(.151) 

*** n.s. n.s. 

Probe X RT (sec) .310 
(.035) 

.468 
(.103) 

.287 
(.100) 

.472 
(.175) 

n.s. *** n.s. 

Probe X SD of RT 
(sec) 

.091 
(.025) 

.186 
(.102) 

.115 
(.038) 

.241 
(.152) 

*** *** n.s. 

Probe Y Acc .736 
(.164) 

.875 
(.114) 

.975 
(.055) 

.974 
(.044) 

*** *** *** 

Probe Y RT (sec) .381 
(.050) 

.557 
(.098) 

.277 
(.083) 

.453 
(.143) 

*** *** n.s. 

Probe Y SD of RT 
(sec) 

.114 
(.037) 

.163 
(.075) 

.098 
(.024) 

.189 
(.145) 

n.s. *** n.s. 

* = p-value <0.05; *** = p-value <0.0001. 
 
 
Table 3. Behavioral Summary Metrics: One-way rm-ANOVA Comparisons between 
Delay lengths 
 

Summary Metric Short Delay Long Delay 1-way rmANOVA 

Behavioral Shift Index (acc) 0.417 (.528) 0.147 (.711) n.s. # 

Behavioral Shift Index (RT) -0.067 (.063) -0.059 (.173) n.s. 

d’ (sensitivity) for aY 2.506 (.809) 3.503 (1.387) p<.0001; F=31.96 

B (response bias) for aY -1.261 (.548) -0.786 (2.415) n.s. 

C (criterion location) for aY -0.534 (.232) -0.273 (.489) p=.005; F=9.36 

d’ (sensitivity) for bX 3.533 (1.366) 3.842 (1.789) n.s. 

B (response bias) for bX 0.582 (2.660) 0.146 (2.568) n.s. 

C (criterion location) for bX -0.020 (.588) -0.104 (.552) n.s. 
# = p-value <0.07 
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Cue Behavior: 
 

Cue error rates and reaction times are displayed in Figure 1.  For accuracy in 

responding to Cue, no main effects of Cue Type (p=0.078; F=3.323) nor Delay Length 

(p=0.692; F=0.160), were observed, though there was a significant interaction between 

Cue and Delay (p=.0163; F=6.430).   However, because both Cue Type accuracies were 

nearly at ceiling (mean A=0.996; mean B=0.992), their statistical differentiation is not 

discussed further. 

Cue RT was significantly greater for Long (0.479 +/- 0.113 seconds) than Short 

(0.236 +/- 0.005) Delay (p<.0001; F=68.647).  A main effect of Cue Type (A=0.336 +/- 

0.116 seconds; B=0.384 +/- 0.132 seconds) (p<.0001; F=97.401) was also observed.  No 

interaction was found between Cue and Delay on Cue RT (p=0.112; F=2.673). 

For Cue RT-SD, a main effect of Delay Length was found (p=<.0001; F=31.941), 

with Long Delay (0.187 sec eliciting greater RT-SDs than Short Delay (0.105 sec.).  No 

main effect of Cue Type was observed on Cue RT-SD (p=0.073; F=3.442).  A Cue-Delay 

interaction was found for Cue RT-SD (p<.0001; F=13.21).   

 

Figure 1. Cue Error Rates and Reaction Times by Cue Type and Delay Length 
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Probe Behavior: 
 
 Probe error rates and reaction times are depicted in Figure 2.  Accuracy to X 

probe was significantly greater when X was preceded by the A cue (0.956 +/- 0.038) vs B 

cue (0.876 +/- 0.140), indicating a main effect of Cue Type (p<.0001; F=22.097).  No 

main effect of Delay Length on X accuracy was observed (Short = 0.915 +/- 0.102; Long 

= 0.916 +/- 0.118) (p=.969; F=.002).  No Interaction between Cue Type and Delay 

Length on X accuracy was observed (p=.749; F=.104). 

Accuracy to Y probe was significantly decreased when Y was preceded by A cue 

(0.805 +/- 0.156) vs B cue (0.975 +/- 0.050), indicating a main effect of Cue Type 

(p<.0001; F=76.272).  A main effect of Delay Length on Y accuracy was also observed 

(p<.0001; F=30.654), with decreased accuracy in Short (0.856 +/- 0.171) vs Long delay 

(0.924 +/- 0.099).  A significant interaction between Cue Type and Delay Length was 

observed (p=<.0001; F=28.939), with participants demonstrating selective impairment for 

Y probes following A cues, during Short Delay (0.736 +/- 0.164).   

Main effects of Delay Length were observed for both X (p<.0001; F=66.386) and 

Y (p<.0001; F=78.3355) probes, with Long Delay generating longer probe RTs (Long X= 

0.470 +/- 0.143; Long Y= 0.505 +/- .132) than Short Delay (Short X = 0.298 +/- 0.075; 

Short Y= 0.329 +/- 0.086).  A main effect of Cue Type on probe RT was found for Y (a-

Y = 0.469 +/- 0.118; b-Y = 0.365 +/- 0.146) (p<.0001; F=75.7921), but not X probes (a-

X= 0.389 +/- 0.110; b-X=0.379 +/- 0.169) (p=.503; F=.458 ). No significant Cue Type x 

Delay Length interactions were observed for X (p=.159; F=2.079) or Y (p=.972; 

F=.0013) RTs. 
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Figure 2.  Probe Error Rates and Reaction Times by Probe Type and Delay Length 
a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 
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Summary Behavioral Measures 
 

Behavioral Shift Index boxplots are displayed in Figure 3.  With a one-way rm-

ANOVA, no significant Delay Length differences were found for the Behavioral Shift 

Index (BSI) (T. S. Braver et al., 2009) (see Methods), although there was a trend for a 

higher error rate BSI (BSI-ER) (p=.089; F=3.085) in Short Delay, indicating a greater 

reliance on proactive control. Reaction time BSI (BSI-RT) did not differ between Short 

and Long delays (p=.779; F=.080).    

Signal detection measures (d prime, Beta, C) were computed at each delay length 

for probes demanding high levels of cognitive control: ‘a-Y’ and ‘b-X’.  Signal detection 

boxplots are displayed in Figure 4.  One-way repeated measures ANOVAs were 

calculated to compare each signal detection measure between delay lengths, and two-way 

repeated measures ANOVAs were used to determine if there was an interaction between 

probe type and delay length on each signal detection measure.   

d prime (d’), indicating response sensitivity, was computed by subtracting z score 

for false alarm rate from z score of hit rate:  

 

(Stanislaw & Todorov, 1999).  One-way rm-ANOVAs indicated a significant effect of 

delay length for on d’ for ‘aY’ probes (p<0.0001; F=31.955), whereas no significant 

effects were found for ‘bX’ probes (p=0.393; F=0.7488).  Two-way rm-ANOVA 

revealed a significant main effect of probe type (aY= 3.004 +/- 1.234; bX= 3.687 +/- 

1.587; p<0.0001; F=13.546), no main effect of Delay Length (p=0.0054; F= 8.9153), and 

a marginally significant interaction between probe type and delay length (p=0.0612; 

F=3.7637).   
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Beta (B), a measure of response bias, was calculated as:  

 

 (Stanislaw & Todorov, 1999).  Low beta reveals a tendency to over-respond 

(impulsively), whereas high beta reveals a (cautious) under-responding.  Beta did not 

differ between delay lengths for ‘aY’ (p=0.282; F=0.526) nor ‘bX’ probes (p=0.482; 

F=0.298).  Two-way rm-ANOVA reveals a significant effect of probe type (p<0.0001; 

F=12.666) on Beta, while there is no effect of delay length (p=0.953; F=0.036), and no 

probe type x delay length interaction (p=0.288; F=1.168).   

C is an indicator of decision criterion, and is calculated as the signed difference 

between the actual decision threshold and that of the ideal observer:  

  

A C of zero models an “ideal observer”, while a more negative C demonstrates a 

liberal over-responding, and a more positive C points to a conservative under-responding 

(Abdi, 1966; Stanislaw & Todorov, 1999).   In the present data, ‘aY’ probe C is 

significantly more negative in Short vs. Long Delay (p=0.005; F=9.360), indicating 

liberal over-responding specifically in Short Delay. ‘bX’ probe, in contrast, demonstrates 

no difference in decision criterion between delay lengths (p=0.541; F=0.381).  Two-way 

rm-ANOVA shows a marginally significant interaction between probe type and delay 

length for C (p=0.061; F=3.764). 
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Figure 3. Behavioral Shift Index derived from Error Rate (Panel A) and RT (Panel B) for 
Short and Long delays 
 
a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Signal Detection: False Alarm rate (FA), d’ (response sensitivity), Beta 
(response bias), and C (decision criterion) by Delay Length for aY and bX probes 
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EEG Results 
 

To compare neural activity during the cue-probe delay Cue Type and Delay 

Length, ERP peak amplitudes were contrasted using two-way rm-ANOVAs.  In addition, 

by contrasting A cues following B cues (task-switch: A-PostB) versus A cues following 

A cues (task-stay: A-PostA), we sought to determine whether task-switching properties 

were activated differently for short versus long delays. 

P100, an early marker of attention and perceptual processing, showed a selective 

increase in amplitude for Short cues at posterior-parietal electrodes PO3, PO7, and PO8, 

which was maximal at PO7 (Figure 5) (Delay Length main effect at PO7: p<.001; 

F=15.748).  A significant main effect of Cue Type, with greater amplitude for rare B 

cues, was also observed at PO7 and PO8, maximally at PO7 (p=0.001; F=12.711).  A 

marginal Cue Type x Delay Length interaction was found at PO8 (p=.076#; F=3.372).  

Evidence for behavioral relevance of the early attention P1 components was found for 

Long delay: P1 amplitude at PO7 significantly predicted d’ (sensitivity) for Long A cues 

(r2=.596) and Long B cues (r2=.345), but not Short A (r2=.157) or Short B cues (r2=.144).  

No main effect of task-switching or interaction of task-switching with delay length was 

observed.   

 N100, an early indicator of attention, was observed maximally at central posterior 

POz.  A marginally significant interaction between Cue Type and Delay Length revealed 

a greater (more negative) N100 deflection for Short, Rare Cues (p=.091#; F=4.382).  In 

addition, there was a significant interaction between task-switching (A-PostA vs. A-

PostB) trial type and Delay Length (p=.026; F=5.749), which closely matched the A vs. 

B cue findings: task-switching A-PostB cues in Short delay were processed with the 
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greatest (most negative) N100 deflection. The similarity between the Short B cue and 

Short A-PostB cue processing may suggest a similar task-switching signal for B and A-

PostB cues, specific to the Short Delay condition. 

Peak amplitudes of mid-frontal P200, involved in control instantiation and task-

switching, were assessed (Figure 7). P2 peak amplitude at FCz is greater for cues at Short 

vs. Long Delay (p=.002; F=10.972).  The significant main effect of Delay Length is 

repeated for task-switching P2 amplitude (p<.0001; F=21.001).  There was a marginal 

effect of task-switching (A-PostB > A-PostB) on P2 amplitude (p=0.053; F=4.045), and 

no interaction between task switching and Delay Length (p=.189; F=1.798).  

 N2 troughs, a marker of cognitive control, were found to be maximal (most 

negative) at anterior central AFz  (Figure 8).  Marginally significant main effects of Cue 

Type (p=0.084; F=3.181) and significant effects of Delay Length (p=.004; F=9.664) are 

found, such that B cues and Short Cues generate negative N2s.  A Cue Type x Delay 

Length interaction is also observed, with Short B cues evoking the most extreme N2s 

(p=0.019; F=6.105).  For task-switch A-PostB versus task-stay A-postA, N2 was 

marginally amplified (more negative) for task-switch A-PostB trials than A-PostA trials 

(p=.060; F=3.811).  A significant amplification of N2 was found for Short over Long 

Delay (p=.028; F=5.326).  Importantly, N2 trough correlated with d’ specifically for 

Short A-PostB cues, such that a more negative N2 deflection indicated higher response 

sensitivity in the subsequent probe response (r2=-.489).   

 Peak P3 amplitudes were measured at central-parietal electrode Pz (Kayser & 

Tenke, 2015).   No main effects of Cue Type or Delay Length, nor interactions between 

Cue Type and Delay Length were observed. 
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 As EEG activity is typically no longer phase locked after ~200 or 250 ms post-

stimulus, time-frequency analyses were conducted for late components.  Time-frequency 

results for delta, theta, and alpha are summarized in Table 5.  Critically, late delta power 

(400:700 ms) was increased during Long delay at electrode CPz, and this increased 

activation was positively correlated with summary behavioral metric BSI-ER, selectively 

for Long delay BSI (LA r=.375; LB r=.367) (Figure 9).  Further, theta power at left 

frontal FC3 (200:600 ms), a probable site for verbal working memory maintenance 

(Reuter-Lorenz et al., 2000) was selectively (positively) correlated with Long B d’ 

(r2=.307).  Mid-frontal theta at FCz, involved in signaling the need for cognitive control 

(Cavanagh & Frank, 2014), was selectively predictive of Short Delay d’ scores, with 

theta power (100:500 ms) positively correlated with Short B d’ (r2=.307) and theta phase 

consistency (100:500 ms) positively correlated with Short A d’ (r2=.499) and Short B d’ 

(r2=.499).  

  



Temporal	  Delay	  and	  Cognitive	  Control	  Instantiation	   31	  
	  

Table 4. ERP Components of Interest, Effects of Delay and Delay x Cue Interaction, and 
Peak Amplitude Correlations with Summary Behavioral Metrics 
 
  

Comp Eloc A vs B Delay Cue*Delay BSI:ER d’ Beta C 
         
P1 PO3 n.s. P=.008; 

F=8.125 
n.s. SA=.043; 

SB=.017; 
LA=-.228; 
LB=-.300; 

SA=.234; 
SB=.171; 
LA=.339; 
LB=.086; 

n.s. SA=.205; 
SB=.228; 
LA=.023; 
LB=-.308 

P1 PO4 n.s. n.s. n.s. SA=-.019; 
SB=-.017; 
LA=-.209; 
LB=-.320; 

n.s. n.s. n.s. 

P1 PO7 P=.001; 
F=12.711 

P<.001; 
F=15.748 

n.s. n.s. SA =.158; 
SB =.144; 
LA = .596;  
LB = .345; 

  

P1 PO8 P=.026; 
F=5.457 

P=.004; 
F=9.899 

P=.076 # 
F=3.372 

n.s. n.s. n.s. n.s. 

N1 POz n.s. n.s. P=.091; # 
F=3.040 

n.s. n.s. n.s. SA =-.141; 
SB =-.064 
LA =-.347; 
LB = .001; 
 

P2 FCz n.s. P=.002; 
F=11.066; 

n.s. n.s. n.s. n.s. n.s. 

N2 AFz P=.084; # 
F=3.181 

P=.004; 
F=9.664 

P=.019; 
F=6.105 

n.s. n.s. n.s. n.s. 

P3 Pz n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
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Figure 5. PO7 ERP and P100 Topoplot 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. POz ERP and N100 Topoplot 
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Table 5. Time-Frequency Frequencies of Interest, Effects of Delay and Delay x Cue 
Interaction, and Average Power Correlations with Summary Behavioral Metrics 
 

 
 
 
 
Figure 7.  P200 Topoplots 

  

Comp Eloc (time) Delay Cue * 
Delay 

BSI : ER d’ Beta C 

Delta 
Power 

AFz (250-
500 ms) 

P<.05; 
F=6.883 

n.s. SA: r=.366;  
SB: r=.330 

LA: r=.395 SA:r=-.492 n.s. 

Delta 
Power 

CPz 
(300:700) 

n.s. n.s. LA: r=.375; 
LB: r=.367 

n.s. n.s. n.s. 

Theta 
Power 

FC3 
(200:600) 

n.s. n.s. LB:r=.375 LB: r=.307 n.s. n.s. 

Theta 
Power 

FCz 
(100:500) 

n.s. n.s. n.s. SB: r=.437 SB: r=.542 n.s. 

Theta 
Phase 

FCz 
(100:500) 

n.s. n.s. SA:r=.499;  
SB: r=.413; 

n.s. n.s. n.s. 

Alpha 
Power 

AFz P<.05; 
F=4.092 

n.s. n.s. n.s. SA: r=-.327 n.s. 

Alpha 
Power 

FC4 n.s. n.s. n.s. LB: r=.478 SB: r=-.360 SB: r=-.328 
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Figure 8. N2 at AFz 
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Figure 9. Late Delta Power at CPz and Correlations with BSI-ER 
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DISCUSSION 
 
  
 The present study sought to investigate differences in the AX-CPT task across 

short and long cue-probe delay lengths, to determine whether distinct types of proactive 

control are utilized based on delay length.  In a within-subjects design, we experimentally 

manipulated the cue-probe delay duration between experimental blocks, igniting 

differences in control instantiation between known temporal delays.  Accuracy and 

behavioral metrics were utilized to compare decision dynamics on trials demanding 

different types of control.  EEG during the cue-probe delay was used to assess neural 

signatures of task switching and working memory, to parse activity underlying different 

instantiations of proactive control.  Three major findings emerged from this study.  First, 

accuracy to rare aY probes was selectively impaired during Short Delay, implicating 

specific short-delay difficulty in inhibiting a pre-potent aX response.   Signal detection 

metrics provided further support for a delay-specific difference in response selection, as 

response sensitivity (d’) was lower and decision criterion (C) was more liberal for aY 

probes in Short delay.  Second, we observed significant differences in ERP signatures of 

attention, task-switching, and cognitive control based on delay length and cue type.  

Further, P2 amplitude at FCz correlated with Behavioral Shift Index in Short, but not 

Long delay, indicating a dissociable neural element that may distinguish a “task-

switching” type of proactive control.  Finally, late activity in delta at CPz selectively 

predicted Behavioral Shift Index in Long, but not Short delay, further dissociating a 

different type of “working memory maintenance” proactive control.  This is the first 

study to attempt to dissociate different types of proactive control, and we find that 

different cue-probe delay lengths evoke neural signatures similar to “task switching” or 
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“working memory” that can be doubly dissociated to reveal distinct underlying proactive 

processes during the cue-probe delay. 

 Two sets of task-switching events took place in this experiment: rare “B” cues 

requiring a task-switch from the predominant “A” task set, and “A post-B” cues 

necessitating a switch back from the “B” rule trial to the “A” rule.  Specifically in Short 

delay blocks, both of these task-switching events demonstrated a pattern of neural 

activity distinguishable from task-maintenance “A” and “A post-A” trials.  Due to its 

specificity to task-switch trials and Short-delay context, this post-cue neural activity can 

be characterized as a delay-specific marker of task-switching (Cacioppo & Tassinary, 

1990).     

 

Behavioral differences by Delay Length 

 Accuracy was impaired specifically to rare aY probes in the Short CPD condition 

(Table 2 and Figure 2).  This finding not only indicates difficulty in inhibiting the aX 

response that is demanded on 80% of A trials, but highlights that this pre-potency is 

significantly stronger and/or more difficult to overcome with a Short CPD.   There was 

no interaction between Probe Type and Delay Length for Reaction Time, providing 

evidence that the aY accuracy differences by delay length were not due to a speed-

accuracy trade-off. 

 Signal detection d’, indicating response sensitivity, was decreased specifically to 

aY probes during Short delay.  Response criterion measure C, which indexes one’s 

tendency to respond more liberally (low C) or conservatively (high C) than the ideal 

response pattern, was significantly lower for aY probes in Short delay, revealing a more 
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liberal response criterion with rapid CPD.  In contrast, no delay-related changes in d’ or 

C were found for control-demanding bX probes.   

 This pattern of behavioral results seems to suggest that cue-probe delay changes 

specifically alter one’s accuracy to responding to a rare probe after a common cue (aY), 

with rapid cue-probe delay associated with impaired inhibition of the pre-potent response. 

 

 

 

Dissociating Proactive Control 

 For about the last decade, the Dual Mechanisms of Control framework has 

divided cognitive control into proactive and reactive cognitive control (T. S. Braver, 

2012), with proactive control instantiated to actively maintain relevant goal-relevant 

information ahead of cognitively demanding events (Miller & Cohen, 2001), and reactive 

control called upon as a ‘late correction’ mechanisms utilized as needed, and only after a 

high-interference event occurs (Jacoby et al., 1999).  Proactive control has been described 

and explored as a unitary construct, but this present work attempts to highlight how 

different types of proactive control are utilized based on known temporal differences as 

to when the cognitively demanding event will occur.   

  In the current study, EEG activity was analyzed during the cue-probe delay to 

reveal how cues were processed to proactively (ahead of the probe) instantiate cognitive 

control.  If there are dissociable neural processes underlying different types of control 

instantiation (“A” vs “B” rules) during different known delay durations, one can argue 
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that participants are using different “types” of proactive control according to temporal 

demands.  

 

Dissociating Proactive Control: “Task-Switching” Type 

  We expected Short Delay cues to evoke a rapid, task-switching type of cognitive 

control to “B” cues, for which control is needed to alter task goals.  Neural differences 

were observed for Short B vs. Long B cues in early sensory components (P100 and 

N100), evaluative components (P200), and later preparatory components (P300, delta).  

Critically, the Behavioral Shift Index (BSI-ER), widely used to differentiate between (a 

unitary) proactive and reactive control, was strongly correlated with mid-frontal P200 

neural activity only during Short Delay, indicating that Short Delay evokes neural 

markers of proactive control that are separable from those evoked during Long Delay.   

Similar dissociations in neural activity with BSI-ER were also found in antero-central 

AFz delta activation (250-500 ms), which carried significant predictive power for BSI 

ratio only in Short Delay. 

  

Dissociating Proactive Control: “Working Memory Maintenance” Type 

 Instantiation of proactive control during the Long Delay was uniquely 

characterized by an increase in late (400-1000 ms) centro-parietal (CPz) delta power, 

with delta power positively correlated with BSI-ER only in Long Delay.   Recent 

research suggests that sustained delta power increases may be important for maintaining 

internal representations, and limiting extraneous sensory input (Harmony, 2013).  Further 
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dissociation of Long delay performance, specific to rare “B” cues, is found in theta power 

at left fronto-parietal FC3.   

 

Limitations and Future Directions 

 The current study has several limitations, each of which invite questions to be 

addressed by future research.  First, this study used assessed two cue-probe delay lengths: 

1000 ms and 3000 +/- 500 ms. Although a 1000 ms CPD is commonly used in AX-CPT 

studies, the next most common CPD frequency is between 4500 and 6000 ms (Figure 

S1).  It is unclear whether delay-related differences in control instantiation would change 

significantly with an increase in CPD from ie: 3 to 5 seconds; future studies should 

explore the full range of AX delay lengths used (500 ms :10,000 ms).  In addition, this 

study’s Short CPD was fixed at 1000 ms, while the Long CPD was jittered between 2500 

and 3500 ms, introducing confounds of expectancy/surprise with delay duration.  These 

parameters were set in the present experiment in order to maximize the chance of 

generating a maximal pre-potent response in the Short delay, but future investigations 

should systematically match temporal jitters between delay lengths. 

 With the current set-up of this AX-CPT task, remembering “A” or “B” cue 

identity and rule involves a relatively low working memory load, especially for our 

sample of healthy college students.  It is unclear how proactive control instantiation 

might differ with greater WM demands, as in the AX derivative Dot Pattern Expectancy 

(DPX) (Henderson et al., 2012; A. W. MacDonald et al., 2005; Otto, Skatova, Madlon-

kay, & Daw, 2015) or 1-2-AX tasks (Hazy, Frank, & O’reilly, 2007).  To begin to resolve 
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these questions, we are currently running a follow-up study on the WM-intensive DPX 

task, again contrasting Short and Long cue-probe delays. 

 One other potential confound in using the AX-CPT task to study control 

instantiation is that “B” cues predict with 100% certainty that the upcoming probe 

response will be “Left”.  CPD cognitive control activity evoked by “B” may be difficult 

to fully disentangle from activity in preparing a motor response.   

 Finally, the present study revealed a wide range of behavioral performance trends, 

especially for control-demanding aY and bX cues.  With our limited number of 

participants (n=35), we were not sufficiently powered to analyze our data by between-

subject trait differences in ie: impulsivity or planning.  Future analyses should attempt to 

explore how individual differences modulate cognitive control instantiation over different 

temporal delays.   

 

CONCLUSIONS 

 Overall, we find that altering the cue-probe delay length in the AX-CPT evokes 

instantiation of dissociable behavioral and neural signatures of proactive control.  This 

double dissociation of two types of proactive control merits further critical discussion of 

the common conceptualization of proactive control as a unitary construct.    These results 

also highlight the importance of delay length parameters in this common cognitive 

control task, and seem to demand that AX-CPT no longer be considered a unitary task 

across timing parameters.  

 

  



Temporal	  Delay	  and	  Cognitive	  Control	  Instantiation	   42	  
	  

Figure S1. Frequency of AX-CPT Cue-Probe Delay Durations Utilized in the AX-CPT 

Literature 
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Figure S2. AX-CPT Task Design 
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