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ABSTRACT 

The analysis of covariance (ANCOVA) is a statistical technique originally 

developed by Fisher (1932) to increase the precision of the estimate of a treatment effect 

in experimental data. It is used when researchers have both qualitative and quantitative 

predictors of a continuous outcome. ANCOVA’s most basic assumptions are similar to 

those of analysis of variance (ANOVA) and other related linear models, but also include 

an additional assumption regarding the regression line relating the outcome and the 

covariate. This assumption, referred to as homogeneity of regression, requires that the 

within-group regression slopes be the same for all groups. Typically, one also assumes 

that the covariate is a fixed effect, but some methodologists question this practice. 
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Consequences of either employing a model allowing for heterogeneity of regression (an 

ANCOHET model) or presuming that the covariate is random can be dealt with fairly 

easily if both do not occur simultaneously. However, a problem arises when one 

simultaneously encounters both a random covariate and heterogeneity of regression: the 

interaction between the random covariate and the fixed factor of treatment will affect the 

apparent evidence for the main effect of treatment.  The current study investigated the 

utility of different methods of testing for the main effect of treatment in the presence of 

heterogeneity of regression with a random covariate. Using a Monte Carlo simulation, a 

2x3x5x2x3 design manipulated the number of groups, sample size per group, extent of 

heterogeneity of regression, presence of a group effect, and test location to investigate 

this issue. For each combination of these factors, different types of tests of the group 

effect were conducted, as explained in the Method section. Two error terms, the mean 

square for the interaction and an average of the mean square error for an ANCOHET 

model and the interaction mean square, performed poorly across all simulations for all 

metrics. On the other hand, the ANCOHET and ANCOVA error terms produced Type I 

error rates, power, confidence interval coverage rates and widths, as well as average 

standard errors under low and medium levels of heterogeneity of regression that were 

acceptable. When heterogeneity of regression was high or extreme, the ANCOHET 

approach underestimated the true standard error, whereas the ANCOVA error term did 

not. Using an approach to increase the ANCOHET standard error based on Chen (2006) 

did not result in a large enough increase to make up for this underestimation. In 

conclusion, with the low and moderate levels of heterogeneity of regression typically 

reported in the literature the ANCOHET test of the group effect can be recommended 
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even with a random covariate. Under large or extreme levels of heterogeneity of 

regression, an error term from a standard ANCOVA should instead be used. 
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INTRODUCTION 

ANCOVA – An Overview 

The analysis of covariance (ANCOVA) is a statistical technique originally 

developed by Fisher (1932) to increase the precision of the estimate of a treatment effect 

in experimental data, and hence to increase the power of detecting such an effect. It can 

be used when researchers have both qualitative and quantitative predictors of a 

continuous outcome. In experimental data, where units are randomly assigned to different 

groups, the qualitative predictor is defined by two or more treatment conditions, with one 

or more groups often serving as a control for an active treatment. The quantitative 

predictor is often, though not necessarily, a pre-measure of the dependent variable, and is 

referred to as the concomitant variable or covariate.  

ANCOVA Assumptions 

The following is the basic ANCOVA model: 

𝑌 = 𝜇 + 𝛼 + 𝛽𝑋 + 𝜀  

where 𝑌  is the score of the ith individual in the jth group on the dependent variable, μ is 

a “grand mean” parameter (but should be conceived as an average of intercepts when the 

covariate is not centered at its mean), 𝛼  is the effect associated with group j, β is the 

population within-group regression coefficient characterizing the linear relationship 

between Y and X, 𝑋  is the score of the ith individual in the jth group on the covariate, 

and 𝜀  is the error term for the same subject.  The most basic assumptions involve the 
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error term, εij. That is, the errors are assumed to be independent and normally distributed 

with a mean of zero and a constant variance.  

There is an additional assumption regarding the regression line relating the 

outcome and the covariate, namely, that the within-group regression slope be the same 

for each group. This assumption can be seen in the model where the slope, β, does not 

have a subscript and takes on the same value regardless of an individual’s group 

membership. This assumption is referred to as homogeneity of regression.  Finally, one 

typically assumes that the effects of both the treatment and the covariate are fixed (cf. 

Maxwell, Delaney, & Kelley, 2018, Chapter 9). 

Regarding the Homogeneity of Regression Assumption 

The conventional ANCOVA model as specified does not allow for a distinct slope 

for each group. Thus, predictions for each individual are based on a single slope estimate 

that is computed as a weighted average of the slope estimates for each group considered 

separately.  

 In many situations, the within-group regression slopes will be similar, and can be 

reasonably represented by a single slope parameter. However, as these within-group 

slopes become more and more disparate, using a single parameter or weighted average of 

the separate slopes to represent the relationship between the covariate and the outcome in 

these groups will be misleading.  

Consequences of Violating the Homogeneity of Regression Assumption 

Far from being disastrous, the presence of heterogeneity of regression in 

ANCOVA is fairly easily dealt with analytically. How one should deal with 
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heterogeneity of regression in ANCOVA can be approached in a similar fashion to how 

one would proceed when a significant interaction is observed in a two-way ANOVA. In a 

two-way ANOVA, a significant interaction between the two factors means that the 

difference on the dependent variable across levels of one factor is not consistent across 

levels of the  other factor. In an ordinal interaction, the superiority of one group over the 

other is maintained across levels of the off factor. For a disordinal interaction, this 

superiority is not maintained. Whereas the presence of an interaction in factorial ANOVA 

can require a more nuanced interpretation of main effects, so too can the presence of 

unequal within-group regression slopes in ANCOVA. In other words, the presence of a 

significant main effect of treatment in the presence of heterogeneity of regression (which 

heterogeneity would be detected via a test of the interaction between the continuous 

covariate and the grouping variable) often cannot be adequately followed up by the 

comparison of adjusted, conditional means at the grand mean of the covariate, 

particularly in the case of a disordinal interaction. Because the within-group regression 

lines are not parallel, the difference in conditional means is not consistent across the 

values of X. As a result, the presence of a significant effect of treatment does not 

necessarily allow one to conclude that the means of the treatment conditions are 

significantly different at all values of X. Instead, it may be the case that the conditional 

means are significantly different at certain values of the covariate but not others. 

Heterogeneity of regression should signal to the researcher that a more thorough 

investigation of the relationship between the treatment effect and level of the covariate 

may be warranted.  
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In the presence of heterogeneity of regression, researchers may choose to use a 

different approach to interpret the significant effect of treatment. Two options, neither of 

which is recommended, would be to either ignore the covariate completely or to block on 

the covariate and then perform a factorial ANOVA (Glass, Peckham, & Sanders, 1972). 

Both options throw away important information by either ignoring the covariate all 

together, or by discretizing a continuous variable and decreasing the amount of error 

variance in the dependent variable that the otherwise continuous covariate would be able 

to account for (Maxwell, Delaney, & Dill, 1984).  

There are two notable approaches for assessing differences in treatment 

conditions in the presence of heterogeneous slopes:  the Johnson-Neyman technique (J-

N) (D’Alonzo, 2004; Johnson & Neyman, 1936; Preacher, Curran, & Bauer, 2006), and 

the simple slopes technique (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 2003; 

Preacher, Curran, & Bauer, 2006) which Rogosa referred to as a pick-a-point procedure 

(Rogosa, 1980, p. 313ff.). The J-N technique allows one to determine the range of values 

of X at which there are significant treatment differences, whereas the simple slopes or 

pick-a-point technique can test for between-group differences at certain selected values of 

X. When using the simple slopes approach, in lieu of a priori relevant values at which to 

test for group differences, a common practice is to test at the grand mean of the covariate 

and at one standard deviation on either side of this mean (Maxwell, Delaney, & Kelley, 

2018; Preacher et al., 2006; Preacher & Hayes, 2004).  

However, there are also legitimate reasons to be interested in the omnibus test for 

the effect of treatment even in the presence of heterogeneity of regression. One potential 

application of research findings involving heterogeneity of regression would involve 
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treatment assignment based on an individual’s measured level of the covariate of interest. 

Returning to a two-way ANOVA as an example,  consider a 2x2 ANOVA comparing two 

possible treatment conditions for subjects classified as one of two personality types (e.g. 

Type A or not Type A).  Although one might have hypothesized that one could achieve 

optimal results by assigning each personality type to the treatment matched to that type, it 

is possible that even if the treatment and personality type factors interacted, one might 

observe an ordinal interaction where the superiority of one group is maintained across the 

levels of the off factor. If treatment A is always better than treatment B, then there is no 

reason to ever assign an individual to treatment B. In ANCOVA, however, the off factor 

is continuous as opposed to discrete. Due to the fact that the regression lines are not 

parallel, unlike ANOVA, in theory there exists some point at which the lines will 

intersect.  However, this “cross over” point, or the point at which the direction of the 

treatment effect changes, may not be within the range of possible values of the covariate.  

Similarly, in certain real-world settings the collection of data on the covariate may 

be time-prohibitive and/or cost-prohibitive in practice (e.g., genetic testing, performing a 

full cognitive battery, etc.). In other real-world settings, assignment of individuals to 

different treatments may not be practical (e.g., because of the cost or staff required to 

administer different treatments) even if the score on the covariate were known. In either 

case, there are many situations where a treatment assignment based on the level of a 

covariate is not a realistic option. Instead, it may be sufficient to know the impact of the 

treatment for the “average” individual. Thus, even in the presence of heterogeneity of 

regression, conducting a test of between-group differences at the center of the distribution 

of the covariate can still be of substantive interest. 
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Type I Error Rates in the Presence of Heterogeneity of Regression 

 Whereas Type I error rates, the probability of incorrectly rejecting the null 

hypothesis of no group differences, are relevant in the case of homogeneity of regression, 

the issue is not as clear cut when the relationship between the covariate and the outcome 

differs across two or more groups. In lieu of theoretically relevant points along X at 

which to test for group differences, researchers will often begin by conducting the test at 

the sample grand mean of X, or 𝑋, and then one standard deviation above and below 𝑋, as 

previously mentioned.  The absence of a main effect for treatment in the presence of 

heterogeneity of regression could be represented graphically by a plot showing that the 

heterogeneous regression lines for two groups intersect at the population mean of X, or 

µX. In such a case, given the test of the main effect of group would typically be conducted 

at the sample grand mean of X, or 𝑋, it is only when 𝑋 and µX are equal that the expected 

difference between the predicted means on the dependent variable at the sample grand 

mean of X would be zero. However, when 𝑋 and µX are not the exact same, as will 

typically be the case since 𝑋 is an estimate of µX, the rejection of the null hypothesis is no 

longer an incorrect rejection, since the two groups are only the same on the dependent 

variable at µX. Since 𝑋 in a sample will rarely ever equal µX in the case where X is a 

random variable (more on this below), it is not necessarily correct to attribute rejection of 

the null hypothesis of no group main effect to a Type I error in the presence of 

heterogeneity of regression, because testing for group differences anywhere other than 

µX, that is, at the exact point of intersection between the two regression lines, will result 

in the test being conducted at a point where the true difference is non-zero.  
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Accuracy in Parameter Estimation 

 Along with the push for a decreased reliance on null hypothesis significance 

testing (NHST) (e.g., Cohen, 1994; Schmidt, 1996; Wasserstein & Lazar, 2016) has come 

the recommendation for the increased reporting of confidence intervals (e.g., Cumming & 

Finch, 2001; Thompson, 2007). Confidence intervals not only provide the same 

information as NHST (i.e., is the parameter significantly different than the null value 

hypothesized?), but they also provide the direction of the difference and a range of 

plausible values. As covered more extensively in sources devoted to the topic (see 

Kelley, Maxwell, & Rausch, 2003 and Lai & Kelley, 2012), just because a confidence 

interval excludes the value posited under the null hypothesis, does not mean that the 

range of possible values gives a researcher a high degree of certainty in the value they 

found. For instance, a study might find that the difference in means between two groups 

constitutes a medium effect according to benchmarks proposed by Cohen (1992). 

However, the confidence interval constructed around this standardized difference might 

include as plausible values effect sizes that range from small to large, even if the study 

were adequately powered based on conventional power analysis to detect a significant 

difference. As a result, even though the null hypothesis was rejected, the corresponding 

confidence interval might still be “embarrassingly large” (Cohen, 1994, p. 1002). 

Thus, it is not only important that a confidence interval contains the population 

parameter, but that it does so in a way that the range of plausible values is sufficiently 

narrow (Maxwell, Kelley, & Rausch, 2008). This is what is referred to as accuracy in 

parameter estimation (AIPE). In line with this, the current dissertation will report 

information on coverage and width of confidence intervals around estimated effects. 
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To Fix or To Presume Random? 

With the basic ANCOVA model shown above, researchers can make inferences to 

hypothetical replications that either involve the same X values observed in the original 

study, or involve different random samples from a population of X values.  As Henderson 

observed, “It is the fixed model that is almost always intended when covariance analysis 

is discussed in the statistical literature. It is mixed models, however, that usually best 

represent the real world from which most meaningful inferences are drawn” (Henderson, 

1982, p. 624). 

  Mixed models are models that contain a combination of both fixed and random 

effects. Fixed effects are variables whose specific values are of interest, and researchers 

are not intending to make inference beyond those values. Good examples of fixed effects 

are the classification or treatment variables in ANOVA or ANCOVA. When one is 

comparing the efficacy of two separate treatments, say Cognitive Behavioral Therapy 

(CBT) versus Motivational Interviewing, it is not typical to attempt to make inferences 

beyond the two treatments under examination, and therefore these two treatments are 

considered the levels of a fixed factor. Similarly, when the covariate is treated as a fixed 

factor, as Rogosa remarked,  “Inferences from these data are restricted to subpopulations 

having the same values or configuration of X because inferences from the linear model 

are conditional on the observed values of X” (Rogosa, 1980, p. 308).   

On the other hand, random effects are involved when researchers aim to draw 

conclusions regarding levels of a factor that were not included in the design of a study.   

When the levels of a discrete factor such as therapist are treated as random, this would 

mean that replications of a study would include different therapists than in the original 
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study. What would it mean for a covariate X to be presumed to be random? This would 

imply that the new sample of interest in any replication would have different individual 

values of the covariate and hence the groups in the new sample would also have different 

mean levels on the covariate than the original sample because of sampling variability.   

This assumption is regarded as more realistic by many methodologists.  For example, 

Huitema remarked “Because subjects are randomly sampled from the population, it is 

realistic to view the X-values in a given experiment as a random sample of X-values from 

a population of values… One reason, then, why future samples will generally have 

different values of X is because X is a random variable” (Huitema, 1980, p. 188).  

Consequences of Treating a Factor as Random 

 There are several major consequences of treating a factor as random. The first 

deals with the inferences that can be made. When treating a factor as fixed, researchers 

can make inferences to only the levels of the factor that were included in the original 

study. This might be fine in some situations, but it is often the case that one is interested 

in making inferences to a population that has levels not included in the original study. 

Just as one implicitly treats participants as a random sample from a population as a way 

of justifying inferences being made about the population from which the participants are 

selected, treating a factor as random allows making inferences to the population of 

possible levels of that factor, not just the levels included in the study. 

 The second consequence of presuming a factor is random has to do with how the 

tests of effects are to be carried out.  In a two-way ANOVA where factor A is fixed and 

factor B is random, it can be shown that any interaction between the two factors will 

intrude on the expected mean square of the fixed factor (Maxwell et al., 2018, Ch. 10).   
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This in turn implies that an appropriate test of factor A must use as a denominator error 

term a different effect than mean square within, which would be used in a conventional 

two-way ANOVA with two fixed factors.  In fact, the appropriate error term for the test 

of the fixed effect in the mixed two-way ANOVA can be shown to be the mean square 

for the A x B interaction. 

 Additionally, Crager (1987) presented work on the impact of a random covariate 

on the standard error of the difference in adjusted means for a standard ANCOVA. In 

particular, he asserts that the variance of the difference in predicted means would be: 

𝑉𝑎𝑟(�̂�) =  𝜎
2

𝑛
+

2𝑛 − 2

2𝑛 − 4

1

𝑛(𝑛 − 1)
 

where �̂� is the estimated difference in adjusted means (see Appendix A for further 

discussion). In an update to Crager, Chen (2006) extended this work to a random 

covariate in the presence of heterogeneity of regression. In particular, Chen suggested 

that the square of the standard error in adjusted means derived under the assumption of a 

fixed covariate will be too small by the following term: 

𝑉𝑎𝑟 𝐸 �̂�|�⃗� = (𝛽 − 𝛽 )
𝜎

(𝑛 + 𝑛 )
 

where β1 and β2 are the regression coefficients in the two groups, n1 and n2 are the sample 

sizes in the two groups, X


 designates the observed set of scores on the covariate, and 

2
X  is the variance of the population of the X covariate scores.    

 



11 
 

The Issue at Hand: Heterogeneity of Regression with a Random Covariate 

Consequences of individually violating either of the previous two assumptions, 

that is, homogeneity of regression and that all factors are fixed, are easily dealt with. 

However, a problem arises when one simultaneously encounters both a random covariate 

and heterogeneity of regression. This problem is illustrated in Figure 1.  

This figure represents three replications of an experiment. In each replication, the 

group means of both the control and experimental groups are constant (𝑌  and 𝑌 , 

respectively), as are the within-group slopes (𝛽 ). Thus, neither of these factors can 

contribute to the variability in adjusted means (i.e., the difference between 𝑌  and 𝑌 , 

represented by the braces “{“). The only difference between the three replications is that 

the group means of the covariate (𝑋 ) are varying. This variability in the covariate means 

produces estimates of the adjusted treatment effect that differ from replication to 

replication.  The principle illustrated by this simple diagram of the implications of 

variability in the covariate means for the estimated variability in the predicted means on 

the dependent variable (and also for difference in such estimated means across groups) is 

developed more rigorously in Appendix A. 
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METHOD 

The current study sought to investigate the appropriateness of different methods 

of testing for the main effect of treatment in the presence of heterogeneity of regression 

with a random covariate.  

How to Test for Treatment Main Effects 

Given the potential for the effect of a random factor to intrude upon the mean 

square for the treatment effect, the traditional ANOVA approach to a two-way design 

with a fixed factor and a random factor indicates that using the typical MS error as the 

denominator of the F test would not test exclusively for a consistent treatment main 

effect. Instead, it could be regarded as testing for the presence of a treatment main effect 

or the interaction between the treatment and the random factor. To test for the treatment 

main effect one must use as a denominator error term the interaction mean square.  This 

suggests a potentially more adequate test of treatment in an ANCOVA with a random 

covariate and heterogeneous regressions might utilize in the denominator an error term 

that takes into account the impact of the random covariate. This study considered the 

following as potential error terms to use in the test of a main effect of treatment: 

1. A procedure using as an error term that associated with a model allowing for 

heterogeneity of regression (an “ANCOHET” model). 

2. Using the interaction between the fixed factor of treatment and the random 

covariate, i.e. MSA x X, as the error term. 

3. An error term based on a standard ANCOVA or equivalently an average of 

the error terms in (1) and (2) where each is weighted by its degrees of 

freedom. 
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4. A pooled error term using an unweighted average of the MSresidual  for the 

ANCOHET model used in (1) and the interaction error term used in (2). 

Rogosa described a variation of method (1) as a “safer ANCOVA” (1980, p. 312) 

test of the treatment effect, because the estimate of mean square error used in the 

denominator of the test does not presume equality of regression slopes across groups.  

However, the numerator of the Rogosa test, which was implemented in the simulations of 

Harwell and Serlin (1988), is based on the adjusted means from a conventional 

ANCOVA (see Appendix B for more detailed discussion).  As such, theoretical as well as 

simulation results suggest that the method is inappropriately liberal.  Thus, the 

ANCOHET method used in the current dissertation employs a numerator that takes into 

account the fact that different slopes are being estimated in each group. 

What exact degree of departure from the nominal alpha level warrants a judgment 

that a test is either liberal or conservative is not entirely clear.  In one early paper, 

Cochran (1952) declared that a difference from a nominal .05 alpha level “is regarded as 

unimportant…if the exact P lies between .04 and .06” (p. 328).  Bradley (1978) suggested 

that a stringent criterion of robustness might be requiring the true alpha level to depart 

from the nominal alpha by no more than .1α, that is, in the case of a nominal .05 alpha 

level if the true alpha was between .045 and .055, whereas a liberal criterion might allow 

the true alpha to depart from the nominal alpha by .5α, that is, the true alpha could be 

acceptable if it were between .025 and .075. Serlin (2000) suggested one could test non-

specific null hypotheses that when rejected would allow the inference that the true alpha 

of a procedure was within pre-specified limits, and suggested appropriate limits of up to 

.25α, or from .0375 to .0625 in the case of a nominal alpha of .05 (see Serlin, 2000, Table 
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1, p. 237).  In numerous simulation studies, rejection rates are highlighted as liberal or 

conservative if they are outside the range specified by the sampling error given the 

number of simulations being run (see Appendix D, Equation D.1).  For example, in the 

Harwell and Serlin (1988) study where 2,000 simulations were run in each condition, the 

range of 1.96  standard errors below or above the nominal alpha was from .040 to .060.  

In the current research which used 10,000 simulations in each condition, the comparable 

range of 1.96 standard errors around the nominal .05 level yielded limits of .046 and .054, 

which is approximately equal to Bradley’s stringent criterion for robustness.   

 A further issue is that the exact pick-a-point test derived by Rogosa and others 

presumes that the values of the covariate would be fixed over replications, which was not 

the case in the current simulation study.  Because of that, an additional factor that needed 

to be considered was the exact point on the covariate where the difference across groups 

was to be assessed.  In most practical situations with a random covariate, the population 

mean will be unknown.  Thus, it is of interest to evaluate the impact of testing the 

treatment effect at other reasonable values of the covariate at which investigators might 

choose to test for a treatment effect.  In rare situations, the population mean on the 

covariate may be known and could be used as the point at which to conduct the test. 

Much more often, the population mean will be unknown but could be approximated by 

the sample grand mean on the covariate. A third reasonable alternative would be to test 

for the treatment effect at the point where the standard error of the difference is at its 

lowest value, a point known in the literature as the center of accuracy (see, e.g., Rogosa, 

1980). Each of these three points will be used as the test location in the current study, 

with the predicted difference in means in each case being estimated by using the 
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ANCOHET model. However, it should be noted that in the two-group case this predicted 

difference using heterogeneous regressions at the center of accuracy will exactly equal 

the difference in adjusted means computed in a standard ANCOVA with homogeneous 

slopes (Maxwell et al., 2018, p. 528; Rogosa, 1980, p. 310). As a result of the test being 

conducted at a point other than µX, the rejection rate is expected to be greater than the 

nominal .05 rate, at least when the ANCOHET error term is used as the denominator 

error term in the test. On the other hand, utilizing the mean square for the interaction 

between the treatment and covariate as the error term, while having what would be 

regarded as the appropriate mean square in a traditional ANOVA approach to 

determining error terms in a mixed design, may well result in a lack of power for testing 

the treatment main effect. If the treatment factor has two levels, using the interaction 

mean square as the denominator of the F test will only have one degree of freedom, since 

dfdenom = (a-1)(1) where a is the number of levels in the treatment factor. This will result 

in an Fcritical of 161. Consequently, it may be possible to construct and utilize a pooled 

error term that will allow empirical α levels to remain close to the nominal .05 level 

without a substantial loss in power. Two pooled error terms, as described in the next 

section, were constructed using (1) and (2) above with different weighting schemes.    

Additional Error Terms 

 Along with the mean square error for the ANCOHET model and the mean square 

for the interaction between the covariate and the grouping variable, two additional error 

terms were utilized in testing for the main effect of group: 

 ANCOVA. The first weighting scheme consisted of a weighted average of the 

mean square error from the ANCOHET model that allowed for heterogeneity of 
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regression and the mean square for the interaction, where the weights were the degrees of 

freedom associated with that mean square. This turned out to be equivalent to using the 

mean square error from an ANCOVA analysis, and will henceforth be referred to as the 

ANCOVA error term. 

 Equal Weights. The second weighting scheme (referred to as Unweighted or 

UNW henceforth) was calculated as an unweighted average of the mean square error 

from an ANCOHET model and the mean square for the interaction.  Given the 

ANCOHET error term was anticipated to potentially be an underestimate of error and 

thus lead to overly liberal tests and the interaction error term with its small degrees of 

freedom was anticipated to lead to overly conservative tests, this alternative was included 

to allow an investigation of a potential compromise between the ANCOHET and the 

interaction error term approaches. The denominator degrees of freedom used in tests with 

this error term also was simply the average of the degrees of freedom associated with the 

ANCOHET error mean square and with the interaction mean square. 

Simulation Design 

 The simulation study was conducted by manipulating the following factors 

displayed in Table 1. The design manipulated the number of groups (2 or 3), sample size 

per group (10, 30, or 100), extent of heterogeneity of regression (none, low, medium, 

high, extreme), presence or absence of a treatment effect, and location of test (at the 

population mean of the covariate µX, at the sample grand mean 𝑋, or at the center of 

accuracy Ca which is defined in Appendix A).  The 2x3x5x2x3 design created 180 

different conditions. To decrease the complexity of the study design and interpretation, 

data were generated from a normal distribution where the homogeneity of variance 
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assumption was met (see more on this below). Differing levels of heterogeneity of 

regression were defined based on the extent of difference in within-group correlations of 

the covariate and dependent variable (see below for a discussion of how these and other 

levels were chosen). Regarding the different levels of effect size (i.e., difference between 

the means of the control and treatment), a null effect size was used for estimates of Type 

I errors, and non-null conditions were designed, generally following the approach of 

Harwell and Serlin (1988, Table 2, p. 272), in order to achieve a power of 80% for a 

conventional ANCOVA test of the treatment effect (see section on Non-null conditions 

below).  For each condition, 10,000 samples were generated. Only equal-n cases were 

considered. 

Data Generation 

 Data were generated using the data processing and generation abilities of SAS 

9.4, commonly referred to as the “data step.” See Appendix C for examples of the SAS 

syntax used to generate and analyze the simulated data, including comments highlighting 

the goal of each step of the program. For the two-group null condition, data were 

generated according to the following model: 

𝑌 = 𝑏 𝑋 + 𝑒  

for individuals in the first group and 

𝑌 = 𝑏 𝑋 + 𝑒  

for individuals in the second group. In each of these equations, s indexes the simulation 

or sample number (ranging from 1 to 10,000) and b1 and b2 are respectively the raw or 
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unstandardized population regression coefficients for the first and second groups. Both Xi 

and ei were generated from a normal distribution with a mean of zero and a standard 

deviation and variance of one (i.e., X and e ~ N(0,1)). This data generation method results 

in population regression lines that intersect when µX = 0.  

 Following the data generation, the data step computed and saved the values at 

which the test of the grouping variable would occur. Then, the GLM Procedure (i.e., 

PROC GLM) was used to analyze each of the 10,000 simulated datasets per condition 

and the relevant p values and confidence intervals for the difference between the adjusted 

means were computed and saved. Type I error rates were calculated as the proportion of 

the total number of simulations where the p values were less than the nominal .05.   

Non-Null Conditions to Determine Power 

 After the null conditions were simulated to determine Type I error rates, an 

additional set of conditions was constructed to determine the power of the separate 

approaches. For these non-null cases, a constant value was added to specific groups 

during the data generation phase.  

 For each of the three sample size conditions, constants were added to a single 

group mean in the two-group condition. The constants were chosen so that the null 

hypothesis of no between-group difference in adjusted means would be rejected 80% of 

the time in a conventional ANCOVA if the slope were equal to the mean of the values in 

the heterogeneous slope conditions. For the three-group case, a constant was added to the 

simulated data points in only one of the three groups. Rather than powering according to 

an omnibus test of between group differences, powering based on a contrast was 
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employed instead. In particular, the nonzero group was compared to the average of the 

two groups whose means were set to be zero. In real world applications, this type of 

situation might be seen where researchers are comparing a single active condition to two 

distinct control conditions. 

 Table 2 contains a list of the constants used to produce a power of 80% for each 

combination of sample size and number of groups. Also included are two measures of 

effect size: Cohen’s d and f. For the smallest sample size condition (n = 10; N = 20 or 

30), the difference in means would constitute an effect size that is very large (i.e., 

exceeds the conventional cutoff for a large effect). For the middle sample size condition 

(n = 30; N = 60 or 90), the effect size would be considered medium to large, that is, 

between Cohen’s cutoffs for a medium and a large effect. For the largest sample size 

condition (n = 100; N = 200 or 300), the effect size would be classified as small to 

medium. 

Confidence Interval Construction and Accuracy Estimation 

Given rejection rates in testing the group factor that are somewhat above .05 when 

there is no main effect for treatment can be misleading in the presence of heterogeneity of 

regression – particularly when the covariate is random – confidence interval coverage 

was also evaluated. To accomplish this, we calculated the actual between-group 

difference that would be seen in the population when evaluated at a value other than the 

population mean of the covariate. Since the population values of the slopes are known, 

this exact value can be calculated as the difference between the expected means of the 

groups at the X value, say Xp, used as the point to conduct the test.  This would be 

calculated as: 
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𝑌 − 𝑌 = 𝑏 𝑋 − 𝑏 𝑋  

where b1 and b2 denote the known population raw regression coefficients.  Confidence 

interval coverage was then calculated as the proportion of individual confidence intervals 

that contain the actual difference in adjusted population means. In general, confidence 

intervals for the difference in adjusted means are calculated as: 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) 

In the three-group case, confidence intervals were constructed around the estimated value 

of a contrast, with the contrast comparing one estimated mean with the average of the two 

other estimated means.  The standard errors of the estimated difference in means 

corresponding to the four different error terms used in the tests of the treatment effect in 

the two-group case will be given next, followed by the standard errors of the contrast 

estimates of interest in the three-group case. 

Standard Errors for Two-group Case  

ANCOHET. In the case of ANCOHET, the estimated standard error of the 

difference in predictions at Xp , derived as shown in Appendix A under the assumption X 

is fixed, is: 

𝐴𝑁𝐶𝑂𝐻𝐸𝑇: 𝜎 =
𝐸

𝑑𝑓

1

𝑛
+

1

𝑛
+

𝑋 − 𝑋

∑ (𝑋 − 𝑋 )
+

𝑋 − 𝑋

∑ (𝑋 − 𝑋 )
 

This equation takes into account the sampling error of the Y group means along with the 

sampling error of the estimates of each group’s slope and how far Xp is from the group 

means on X. For the ANCOHET approach, the precision of the difference in group means 
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is inversely related to the distance Xp is from the group means.  The ratio  above is the 

mean square error for the ANCOHET model which allows for a different slope in each 

group:  

𝑌 = 𝜇 + 𝛼 + 𝛽 𝑋 + 𝜀  

 ANCOVA. In the conditions where the ANCOVA error term is used, the standard 

error of the difference between group means is calculated as follows: 

𝐴𝑁𝐶𝑂𝑉𝐴: 𝜎 =
𝐸

𝑑𝑓

1

𝑛
+

1

𝑛
+

(𝑋 − 𝑋 )

∑ ∑ 𝑋 − 𝑋
 

In this case,   refers to the mean square error for the traditional ANCOVA model 

assuming homogeneity of regression, i.e. 

𝑌 = 𝜇 + 𝛼 + 𝛽𝑋 + 𝜀  

Interaction. For the interaction error term the standard error is calculated as it 

would be calculated for testing a contrast in an ANOVA where the mean square for the 

interaction is used as the error term, i.e.  

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛: 𝜎 = 𝑀𝑆
1

𝑛
+

1

𝑛
 

Equal Weights.  As a final alternative, the standard error for the equal weights or 

unweighted case is calculated by using in place of the mean square for interaction an 

unweighted average of the mean square for interaction and the mean square error from 

the ANCOHET model, i.e.  
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𝑈𝑁𝑊: 𝜎 = 𝑀𝑆
1

𝑛
+

1

𝑛
 

where 𝑀𝑆 =  

Chen’s Increment to ANCOHET Standard Error. As previously mentioned, the 

impact of a random covariate in the presence of heterogeneity of regression may result in 

an estimated standard error that is too small when using the ANCOHET approach (Chen, 

2006; Crager, 1987). Chen (2006) concludes that the square of the standard error derived 

under the assumption of a fixed covariate will be too small by the following term: 

𝑉𝑎𝑟 𝐸 �̂�|�⃗� = (𝛽 − 𝛽 )
𝜎

(𝑛 + 𝑛 )
 

For estimates of confidence interval coverage and width, Chen’s increment was also 

evaluated. 

On the other hand, Chen’s increment to the ANCOHET standard error assumes 

that both the standardized regression slopes and covariate variability (i.e., βj and 𝜎 , 

respectively) are known, population values. Due to this assumption, Chen’s 

recommended increment in practice could also be an underestimation.  

Standard Errors for Three-group Case 

 In the three-group case, attention was focused on a contrast between the predicted 

mean in one group and the average of the predicted means in the other two groups.  That 

is, ψ was defined by the coefficients c1 = 1, c2 = -.5, and c3 = -.5.  Standard errors of the 

estimate of this contrast at point Xp were estimated as follows.  
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ANCOHET. In the case of ANCOHET, the estimated standard error of the 

contrast in predictions at Xp is: 

𝐴𝑁𝐶𝑂𝐻𝐸𝑇: 𝜎 =
𝐸

𝑑𝑓

𝑐

𝑛
+

𝑐 𝑋 − 𝑋

∑ 𝑋 − 𝑋
 

ANCOVA. In the conditions where the ANCOVA error term is used, the standard 

error of the contrast in the estimated group means is calculated as follows:  

𝐴𝑁𝐶𝑂𝑉𝐴: 𝜎 =
𝐸

𝑑𝑓

𝑐

𝑛
+

∑ 𝑐 𝑋

∑ ∑ 𝑋 − 𝑋
 

Interaction. For the interaction error term the standard error for the test of the 

contrast is calculated as:  

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛: 𝜎 = 𝑀𝑆
𝑐

𝑛
 

Equal Weights.  The standard error for the contrast in the equal weights or 

unweighted case is calculated as:  

𝑈𝑁𝑊: 𝜎 = 𝑀𝑆
𝑐

𝑛
 

Chen’s Increment to ANCOHET Standard Error.  The Chen increment to the 

square of the ANCOHET standard error of a contrast is: 
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𝑉𝑎𝑟 𝐸 �̂�|�⃗� = (𝑐 𝛽 + 𝑐 𝛽 + 𝑐 𝛽 )
𝜎

(𝑛 + 𝑛 + 𝑛 )
 

Along with sample size planning to ensure an a priori probability of rejecting the 

null hypothesis, it is also possible to plan a study that results in parameter estimates that 

are sufficiently accurate. While developing an AIPE framework in the context of 

ANCOHET is beyond the scope of this paper, accuracy of parameter estimates based on 

different error terms was incorporated. Specifically, confidence interval coverage and 

average confidence interval width are presented. In the case of unstandardized mean 

differences, which the current study dealt with, the width of the confidence interval does 

not depend on the mean difference (Maxwell et al., 2008). Thus, confidence interval 

coverage width will not be distinguished between the null and non-null conditions. 

Average Standard Error compared to the True Standard Deviation 

 In addition to carrying out tests and constructing confidence intervals for each 

simulated data set, the estimated difference in predicted means across groups was 

retained for further analysis.  Specifically, the standard deviation of the estimated 

differences in conditional means across the 10,000 replications for each cell in the 

simulation design was computed and interpreted as the “true standard deviation” of the 

sampling distribution of the estimated mean difference across groups which was being 

estimated by the various methods for computing the standard error of these differences 

(Muthén & Muthén, 2002). This permitted the average standard error corresponding to 

each of the denominator error terms to be compared to this true standard deviation, which 

would be the ideal value to use for testing the main effect of group as it accurately 

reflects the impact of both the random covariate and the heterogeneous regressions on the 
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distribution of the group differences across replications. Because the CI coverage rates 

and widths, which are also reported, are driven by the estimated standard error for a 

particular simulation and based on that simulation’s unique distribution of covariate 

scores, those values can be thought of as applying to hypothetical replications where the 

same distribution of X values were obtained. On the other hand, since the current study 

investigated the impact of a random covariate in the presence of heterogeneity of 

regression, the goal is to make inferences to a broader range of X values. Comparing the 

average standard errors associated with different error terms to the true standard deviation 

is helpful in determining which error term comes closest to what might be considered 

ideal for use in testing the main effect of group. 

Homogeneity of Variance Assumption 

The importance of the homogeneity of variance assumption for ANOVA has been 

researched extensively (Glass et al., 1972; Sawilowsky & Blair, 1992; Scheffé, 1999). 

This same assumption also applies to ANCOVA. In the case of ANCOVA, however, it is 

no longer the variability of the Y scores that is required to be homogeneous. Instead, it is 

assumed that the variability of the residuals is the same across groups. When the 

assumption of homogeneity of regression lines between groups holds, the variability of 

both the residuals and the Y scores will be homogeneous.    

When generating data according to the methods described above, it is only 

possible to ensure that either the variability of the outcome or the variability of the 

residuals will be homogeneous across groups – but it is impossible for both to be 

homogeneous. Preliminary work showed that when the variability of the original Y scores 

was homogeneous (and thus the variability of the residuals was heterogeneous), Type I 
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error rates were far greater than both the nominal .05 and the elevated rates reported in 

Harwell and Serlin (1988) when sample sizes were unequal between groups – as high as 

.19 (see Appendix D).  As a result of these findings, coupled with the suggestions of 

Rogosa (1980, see p. 317, first full paragraph),  data were generated in a way that 

produced homogeneous residuals, even though this resulted in heterogeneity of variance 

across groups on the original Y variable. 

Justification for Levels of Simulation Factors 

 The decision to use the levels of the factors as described in the preceding Table 1 

was based on two sources of information: previous simulation work in the area of 

analysis of covariance allowing for heterogeneous regressions (ANCOHET) and 

empirical findings involving ANCOHET, displayed in Tables 3 and 4, respectively. In 

order to assess the extent of empirical heterogeneity of regression, a reverse citation 

search was performed within several prominent psychological journals (Developmental 

Psychology, Health Psychology and Journal of Personality and Social Psychology) over 

the years 2015 – 2018 looking for articles that cited Aiken and West (1991). Although 

many of the 82 articles citing Aiken and West (1991) involved only interactions defined 

as the product of two continuous measures, thirteen articles, reporting on 16 different 

experiments involving a total of 19 analyses, were identified involving a categorical 

grouping variable and a covariate that presented evidence of heterogeneity of regression, 

and that provided enough information to allow a judgment about the magnitude of the 

heterogeneity of regression observed. Standardized regression coefficients for the 

covariate-dependent variable relationship within each group, or the standardized 

regression coefficient for the interaction between the covariate and the grouping variable, 
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were recorded for each experiment. These regression coefficients were then used to 

calculate Cohen’s q (more info on this measure of effect below), which allowed the 

categorization of the extent of heterogeneity of regression for each analysis.  These 

published results were combined with analyses from four other studies investigating 

heterogeneity of regression, for three of which complete data were available locally. This 

permitted the extent of heterogeneity of regression observed empirically in a total of 23 

analyses to be categorized in Table 4 as follows: Small: 0 - .2; Medium: .2 - .4; Large: .4 

- .6; and Extreme: > .6, with the lower limit of the interval being inclusive of the value. 

Table 4 also reports the number of groups and sample size for each study. 

 Number of Groups. Only one of the simulation studies (Klockars & Beretvas, 

2001) reported in Table 3 and none of the empirical studies reported in Table 4 employed 

study designs utilizing more than two or three groups. As a result, the current study will 

also use only these two levels.  

 The decision of which pattern of group differences to test in the two-group 

conditions was straight-forward: with only two means there is only one difference that 

can be investigated, and the omnibus test will suffice. With three groups, on the other 

hand, a significant omnibus tests allows one to conclude that at least one adjusted mean is 

not equal to the others. As a result, it is unlikely that a researcher would be interested in 

only an omnibus significance test. With three groups, three pairwise comparisons and 

numerous complex contrasts can be tested. To mimic real-world scenarios, and to aid in 

the construction of a single confidence interval per simulation condition, the decision was 

made to test a complex comparison.  As mentioned previously in the section on power, 
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this complex comparison and corresponding confidence interval compared the adjusted 

mean of a single group to the average of the remaining groups. 

 Sample Size per Group. Marszalek and colleagues (2011) found that the median 

group sample size for psychology studies published in 2006 ranged from 18 to 26 per 

group, depending on the area of psychological research (Abnormal  n = 26, Applied n = 

21, Developmental n = 25, Experimental n = 18). Sample sizes of 10 and 30 per group 

were clear favorites in the simulation studies reported. Given the overlap between the 

empirical and simulation studies, sample sizes of 10 and 30 were used in the current 

dissertation. However, given the “persistence of underpowered studies in psychological 

research” (see Cohen, 1962 and more recently Maxwell, 2004) a condition with group 

sizes of 100 was added to represent a sample size that would not result in a lack of power. 

Of the empirical articles examined, the smallest sample size examined was 32 per group, 

whereas the largest sample totaled over 2,500 participants. 

 Extent of Heterogeneity. The simulation studies reviewed employed numerous 

methods of depicting heterogeneity of regression in their research designs. Two studies 

used only one condition to represent heterogeneity of regression (Chen, 2006; Harwell & 

Serlin, 1988). One used a single mean correlation about which different levels of 

heterogeneity varied (Klockars & Beretvas, 2001). Finally, three studies used both 

different mean levels of correlation and amounts of heterogeneity (see Hamilton, 1977; 

Levy, 1980; Wu, 1984). Because varying both the mean correlation and extent of 

heterogeneity could quickly lead to an unnecessarily complicated simulation with 

potentially thousands of conditions, the current study used one level of mean correlation 

(r = .3), and heterogeneity was balanced around this value. The value of .3 was chosen 
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because this is roughly the average correlation between two variables in psychological 

research (Cohen, 1992). Based on examination of common differences between within-

group correlations from simulation studies and those found in empirical studies, low, 

medium, and high levels of heterogeneity of regression were represented by differences 

in the within-group correlations of .1, .3, and .5, respectively. These values for the 

difference in the within-group correlations also closely align with what is considered a 

small, medium and large effect according to the effect size measure Cohen’s q (Cohen, 

1992). Cohen’s q is calculated as the difference between two correlation coefficients after 

having performed Fisher’s r-to-z-transformation as: 

𝑧 =  
1

2
𝑙𝑜𝑔

1 + 𝑟

1 − 𝑟
 

Cohen’s q is then calculated as: 

𝑞 = 𝑧 − 𝑧 =  
1

2
𝑙𝑜𝑔

1 + 𝑟

1 − 𝑟
−  

1

2
𝑙𝑜𝑔

1 + 𝑟

1 − 𝑟
 

When correlations are centered around r = .3 and the differences in the two correlations 

are .1, .3 and .5, these translate to Cohen’s q values of .11, .33, and .57, which are nearly 

equal to the cutoffs for what Cohen (1992) established as small, medium and large 

differences, respectively. Tables 5 and 6 provide the raw coefficients used to achieve the 

standardized coefficients listed for two- and three-group designs, respectively. Also 

included are two effect sizes for the difference between the regression coefficients: 

Cohen’s q and f2. 

 Given that so few of the empirical studies reviewed found within-group 

correlations with opposite signs (see observed heterogeneity in Table 4 for Blaire et al., 
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2015; Lam et al., 2018; Rudolph, Davis, & Monti, 2017; Sturge-Apple et al., 2016), and 

often one of the opposite-signed regression coefficients was not significantly different 

from zero, it was decided that only one condition would include within-group 

correlations of opposite sign such as -.2 and +.8, and this would represent an extreme 

level of heterogeneity. A difference this large between two correlations would result in a 

Cohen’s q or 1.30, or nearly two times greater than the cutoff for a large effect. 
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RESULTS 

Rejection Rates for Two-Group, Null Conditions 

 The rejection rates for the omnibus test for the two-group designs where there was 

no difference between population means on the dependent variable at the grand mean on 

the covariate are presented in Table 7. The omnibus tests were performed at three 

separate locations (µx, 𝑋, and the center of accuracy (Ca)) for three equal-n conditions 

using four separate error terms (see above for detailed description). Furthermore, these 

three factors were crossed with five levels of heterogeneity of regression: none, low, 

medium, high, and extreme. Rejection rates were considered outside the range specified 

by sampling error if they deviated by more than .0043 on either side of .05 (i.e., outside 

the interval [.0457, .0543]).  Computation of the standard error of the rejection rate 

statistic is shown in Appendix D (Equation D.1). 

In what follows, the error rates shown in Table 7 will be described separately for 

each error term.  

 Error Term: ANCOHET Error. For none, low, and medium levels of 

heterogeneity of regression, using the error term associated with the ANCOHET model 

produced rejection rates within the sampling error range of .05 regardless of the point on 

X at which the test was conducted. Moreover, when the test was being conducted at the 

population grand mean (µX), rejection rates were always within sampling error even 

under high and extreme levels of heterogeneity of regression. On the other hand, higher 

rejection rates were observed under the high and extreme heterogeneity conditions when 

the test was conducted at the sample mean (𝑋) and the center of accuracy (Ca). Under 
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extreme levels of heterogeneity of regression, rejection rates were over twice the nominal 

.05.  However, as noted in the Introduction in the section on “Type I Error Rates in the 

Presence of Heterogeneity of Regression,” at points other than µX  there will be a true 

difference in expected conditional means across groups and so these should not be 

regarded as Type I errors but as detecting the small true treatment effect at those points. 

  Error Term: Interaction. When there was no heterogeneity of regression, using 

the mean square for interaction between the covariate and the grouping variable as an 

error term produced rejection rates within sampling error of the nominal level.  This 

would be expected in that the mean square for interaction in such cases reflected only 

residual error variance.  However, even beginning with low levels of heterogeneity, 

rejection rates began to drop significantly below .05. These rates approached zero as the 

level of heterogeneity of regression increased. This was also true for the effect of sample 

size within a single level of heterogeneity of regression: there was a negative relationship 

such that as sample size increased the rejection rates decreased. The same pattern of 

results was observed for tests conducted at all three locations. 

 Error Term: ANCOVA. The first alternative weighting scheme sought to combine 

the mean square error term from the ANCOHET model with the mean square for the 

interaction term – essentially a weighted average of the previous two error terms 

discussed. When testing the main effect of group at either 𝑋or Ca, this ANCOVA error 

term produced rejection rates within sampling error for all sample sizes and across all 

levels of heterogeneity of regression, with one exception. The one minor exception (i.e., n 

= 10, medium heterogeneity, tested at 𝑋) where the rejection rate was outside of the 

interval around .05 was only .0002 below the cutoff of .0457. Given that this occurred in 



33 
 

1/30 or 3.33% of the conditions (tested at either 𝑋 or Ca), it is possible that this result was 

due to chance. Changing the starting seed of the random number generator saw the 

rejection rate for this condition fall back within the range of sampling error at 5.03%, 

supporting the hypothesis that this aberrant finding was due to chance. 

However, when the test occurred at µX, this error term produced rejection rates 

that were always significantly below .05 for the medium, high, and extreme heterogeneity 

of regression conditions.  

 Error Term:  Unweighted. This error term very rarely produced rejection rates 

within sampling error of .05 for any of the conditions. In fact, of the 45 conditions where 

this error term was evaluated, only seven were neither liberal nor conservative. 

Rejection Rates for Three-Group, Null Conditions 

The rejection rates for the three-group conditions are presented in Table 8. As 

previously mentioned, rather than an omnibus test, the decision was made to test a 

contrast comparing the adjusted mean of one group to the average of the remaining two 

groups. Where heterogeneity of regression was present, the two adjusted means averaged 

together came from the groups with equal population regression slopes.  

The pattern of results observed for the three-group simulations mirrored that of 

the two-group simulations almost exactly. Due to this similarity, the specifics of the 

findings will not be discussed in detail.  

In summary, it was clear that using UNW as an error term would be ill-advised as 

it consistently produced rejection rates outside of the bounds of sampling error: it was 
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either too liberal for low and absent levels of heterogeneity of regression, or it was too 

conservative for moderate to extreme levels. Similarly, using the mean square for the 

interaction as an error term consistently produced rejection rates significantly below the 

nominal .05 even at the lowest levels of heterogeneity. On the other hand, the error terms 

based on an ANCOHET model (HET columns in Tables7 and 8) and an ANCOVA 

model (ANC columns in Tables 7 and 8) produced much more acceptable rejection rates 

across all samples sizes and when evaluated at both 𝑋 and the center of accuracy. As 

mentioned previously, and will be discussed further below, the fact that the ANCOHET 

error term produced rejection rates significantly greater than .05 for tests at these points 

other than µX for high and extreme levels of heterogeneity of regression is not necessarily 

a problem. On the other hand, the fact that ANCOVA produced rejection rates 

significantly below .05 when tests were conducted at µX could be regarded as 

problematic.  

Power Results for Two-Group Conditions 

 Power results for the two-group conditions are presented in Table 9. Deviating 

from the methods used in previous studies upon which the current research is based (i.e., 

Harwell & Serlin, 1988), power will be discussed even in cases where rejection rates 

were significantly greater than .05. 

 Error Term: ANCOHET Error. Regardless of sample size, extent of heterogeneity 

of regression, or the location at which the test was conducted, power based on analyses 

using the ANCOHET error term saw high levels of power. Despite the attempt to adjust 

effect size so that power would be approximately the same for each level of sample size, 

power increased slightly as sample size increased. Additionally, holding sample size 
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constant, for tests conducted at 𝑋 or at Ca, power decreased slightly as heterogeneity of 

regression increased, with the only substantial decrease occurring in the jump from high 

to extreme levels. However, these decreases only saw a loss in power of approximately 

4%. 

 Error Term: Interaction. As predicted, using the mean square from the interaction 

between the grouping variable and covariate produced extremely low levels of power. 

When there was no heterogeneity of regression, where power was the highest, none of the 

conditions had power levels over 20% (highest 18.21%). Interestingly, within each level 

of heterogeneity of regression, power decreased as sample size increased. Also, holding 

sample size constant, increasing heterogeneity was associated with substantial decreases 

in power. These results were consistent across all three locations at which the test was 

conducted.  

 Error Term: ANCOVA. When heterogeneity of regression was absent, low, 

medium or even high, using ANCOVA as an error term produced power levels that were 

high and similar to those seen in simulations using the ANCOHET error term. It was only 

for extreme levels of heterogeneity that power levels were lower (between 59-60%). 

Again, within each level of heterogeneity of regression, power increased as sample size 

increased.  

 Error Term:  Unweighted. When heterogeneity of regression was absent or low, 

using UNW as an error term produced power that was slightly less than the ANCOHET 

and ANCOVA error terms though still relatively high. However, power dropped off 

steeply when heterogeneity was medium, high and extreme. Within each level of 
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heterogeneity of regression, power decreased as sample size increased. Also, holding 

sample size constant, increasing heterogeneity was associated with substantial decreases 

in power. These results were consistent between all three locations at which the test was 

conducted. 

 In summary, using the error terms from both the ANCOHET model and the 

ANCOVA model (ANC) produced consistently high levels of power. The only notable 

exception was for the ANCOVA error term under extreme levels of heterogeneity of 

regression where there was lower power. These findings were consistent regardless of 

where the test was conducted. The other two error terms produced power results that 

were considerably lower.  

Power Results for Three-Group Conditions 

 As previously mentioned for the rejection rates, the pattern of results for the three-

group power scenarios was nearly identical to that of the two group conditions. Those 

results are presented in Table 10. The only notable differences between the two- and 

three-group cases occurred when the mean square for the interaction was used as an error 

term. For these cases, power for the three-group simulations was nearly twice what it was 

for the two-group condition. This is likely due to the change in error degrees of freedom. 

In the three group case, dferror doubled from one to two, explaining this increase in power 

as a result of doubling the degrees of freedom. However, power was still low, with a 

maximum of just below 35% when no heterogeneity of regression was present, and 

quickly declined as the extent of heterogeneity increased. 
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Confidence Interval Coverage 

Confidence interval coverage for the two- and three-group conditions is presented 

in Tables 11 and 12, respectively. Given the similarity in coverage rates, the results will 

be covered simultaneously. Across the board, the population parameter was captured 

within the confidence intervals a high proportion of the time (range: 88.0 - 100%), with a 

majority of the coverage rates falling above 93%.  The location at which the test of 

between group differences was conducted did not impact the coverage rates. Under high 

and extreme levels of heterogeneity of regression, using mean square interaction or UNW 

as an error term produced confidence intervals that often had 100% coverage rates. 

Even under high and extreme levels of heterogeneity of regression, the confidence 

interval coverage rates for the ANCOHET approach were between 94% and 96% for the 

two-group case and between 91% and 93% for the three-group case. This is in contrast to 

what might have been predicted based on Chen (2006)’s suggested increment to the 

ANCOHET standard error based on its purported under-estimation particularly at high 

levels of heterogeneity of regression. When this increment was implemented, as 

presented in Tables 13 and 14, coverage rates increased to 95% to 97% in the two-group 

scenario and between 91% to 95% in the three-group scenario. Thus, in the two-group 

case where the ANCOHET procedure was working very well, the Chen procedure 

inflated the coverage of 95%, and in the three-group case where the ANCOHET coverage 

was a little low, the only case in which the chen increment improved the coverage 

substantially was in the case of extreme heterogeneity of regression. 
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Confidence Interval Accuracy 

 Two Groups. Even though the confidence interval coverage rates were high across 

the board, it does not mean that each error term performs similarly in capturing the true 

population difference in adjusted means with equally narrow intervals. To evaluate this 

feature of the results, the average confidence interval width was also calculated, and the 

results are presented in Tables 15 and 16 for the two- and three-group cases, respectively. 

The impact of sample size within levels of heterogeneity was consistent and unsurprising. 

When group sizes increased, the accuracy of the confidence intervals increased. It was 

only under extreme levels of heterogeneity of regression and only when using mean 

square interaction as the error term that the impact of increasing sample size reversed: 

increasing sample sizes then was associated with wider confidence intervals. 

 Both the ANCOHET error term and ANCOVA produced similar confidence 

interval accuracy for all combinations of test location and of sample size, and for most 

levels of heterogeneity of regression. The only situation where the accuracy deviated 

slightly was for extreme heterogeneity, where ANCOVA produced confidence intervals 

that were 1.25 times as large. It makes sense that CI widths would be smaller for 

ANCOHET than ANCOVA at high levels of heterogeneity of regression since the mean 

square error from the ANCOHET approach is smaller than the mean square error based 

on ANCOVA as a result of allowing for heterogeneity of regression. Tables 17 and 18 

present additional CI widths for the two and three group conditions, respectively, where 

the Chen (2006) increment to the ANCOHET standard errors was employed. The Chen 

adjustment produced confidence interval widths that fell in between the widths based on 
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the ANCOHET and ANCOVA error terms under extreme levels of heterogeneity of 

regression. 

For conditions where heterogeneity of regression was either low or absent, 

confidence intervals based on the UNW error term had similar widths to both ANCOHET 

and ANCOVA. This changed for medium, high, and extreme levels of heterogeneity of 

regression where the intervals based on UNW were 1.1 to 7.7 times as large. 

 The largest widths were seen for confidence intervals constructed using the mean 

square interaction. As the level of heterogeneity of regression increased, confidence 

intervals became wider under this method. When heterogeneity of regression was absent, 

confidence intervals using the interaction resulted in widths that were 4.9 times as large 

as the ANCOHET and UNW methods when n = 10. This difference in accuracy reached 

its largest level under extreme heterogeneity of regression when n = 100, where the 

widths were 69.1 times as large. 

 Three Groups. The pattern of confidence interval accuracy was very similar for 

the two- and three-group cases. The main difference is that the three-group conditions 

were more accurate, due in large part to the addition of an extra group increasing the total 

sample size. The largest increase in accuracy was seen for confidence intervals 

constructed using the mean square interaction as an error term. These confidence interval 

widths were anywhere from 33% to 25% as large in the three-group compared to the two-

group condition.  However, they were still anywhere from 1.9 to 19.4 times as large as 

the confidence intervals constructed by either the ANCOHET or the ANCOVA methods.  
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 In summary, both the ANCOHET and ANCOVA error terms produced 

confidence intervals with the highest accuracy (i.e., smallest widths). This was consistent 

regardless of the location at which the test was conducted, sample size, and extent of 

heterogeneity of regression. While the UNW confidence intervals produced similar levels 

of accuracy to the other two methods under low levels of heterogeneity, they quickly 

became less accurate as heterogeneity of regression increased. By far, using the mean 

square interaction as an error term produced the least accurate confidence intervals.  

Average Standard Error Compared to True Standard Deviation 

 Two Groups. Tables 19, 20 and 21 present comparisons in the two-group 

scenarios of the average standard error for each denominator error term to the true 

standard deviation for tests conducted at 𝑋, Ca , and µX, respectively. As mentioned 

previously, the true standard deviation is the standard deviation of the difference in 

estimated conditional means across the 10,000 simulations. Though not presented in any 

tables, the average of these parameter estimates was essentially zero for all combinations 

of heterogeneity of regression and sample size. 

For tests conducted at either 𝑋, or Ca, the average standard errors for both 

ANCOHET and ANCOVA were nearly identical to the true standard deviation when the 

heterogeneity of regression was medium, low, or absent. Specifically, expressing the 

average standard error as a percentage of the true standard error, the mean percentage 

across conditions for tests at 𝑋 was 99.1% for ANCOHET and 99.5% for ANCOVA, and 

for tests at Ca the mean percentage was 98.5% for ANCOHET and 99.1% for ANCOVA.  

When heterogeneity was high or extreme, the average standard error from an ANCOVA 
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error term was a close estimate of the true standard deviation (mean percentages were 

99.3% at 𝑋 and 99.0% at Ca). On the other hand, the ANCOHET error term 

underestimated the true standard deviation by 4% to 6% when heterogeneity of regression 

was high, and this number increased to over 20% when heterogeneity was extreme. The 

Chen increment to the ANCOHET standard error was not enough of an adjustment to 

improve the average standard errors, as it underestimated the true standard error by 11% 

to 13% when heterogeneity of regression was extreme.  

 Alternatively, when the test was conducted at µX, as shown in Table 21, the 

average standard errors from the ANCOHET approach were close the true standard 

deviations, even at high levels of heterogeneity of regression.  Specifically, ANCOHET 

standard errors averaged 97.5% of true standard deviations for no, low and medium 

levels of heterogeneity, and averaged 97.2% of the true standard deviations for high and 

extreme levels of heterogeneity. Conversely, the ANCOVA standard error was an 

overestimation of the true standard deviation when heterogeneity was extreme, with the 

ANCOVA average standard error being 118% to 124% of the true standard deviations. 

 Neither the average standard errors based on using the interaction as an error term 

or using the UNW provided good estimates of the true standard deviation, regardless of 

where the test was conducted. When heterogeneity of regression was absent, the true 

standard deviation was underestimated regardless of sample size. When heterogeneity of 

regression was high or extreme, the average standard errors from both of these errors 

term overestimated the true standard deviation.  
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 Three Groups. Tables 22, 23 and 24 present the three-group comparisons of the 

average standard error for each denominator error term to the true standard deviation for 

tests conducted at 𝑋, Ca , and µX, respectively. These results largely mirror what was 

found for the two-group scenario.  That is, for tests conducted at either 𝑋, or Ca, the 

average standard errors for both ANCOHET and ANCOVA were again nearly identical  

to the true standard deviation (i.e., the average standard errors were 98% to 99% of the 

true standard deviation) when the heterogeneity of regression was medium, low, or 

absent.  But when the heterogeneity of regression was high or extreme, the average 

standard error from an ANCOVA error term was still a close estimate of the true standard 

deviation (98% to 99% of the true value) whereas the ANCOHET underestimated the 

true standard deviation particularly when heterogeneity was extreme.  For tests at µX  , as 

had been seen in the two-group case, the ANCOHET average standard error was again 

very accurate for all levels of heterogeneity, whereas the ANCOVA average standard 

error badly overestimated error when heterogeneity was extreme. 
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DISCUSSION 

As mentioned in the introduction, ANCOVA was first introduced by Ronald 

Fisher in the early 20th century in the field of agriculture as a method of controlling for 

variables that were not part of the experimental design, but were nonetheless expected to 

be related to the outcome of interest (Eden & Fisher, 1927; Fisher, 1932). One of this 

method’s main benefits is to increase the precision of the treatment effect estimate, also 

increasing power to detect such an effect, by accounting for these individual differences. 

In the area of psychological research, where individual differences often account 

substantially more of the variability in outcomes than between treatment differences, 

ANCOVA provides an often needed boost to power and precision and has been widely 

adopted.  

Early on, some researchers stressed the importance of assuming that between-

group regression slopes were homogenous, with some going so far as referring to it as 

“this key assumption” (Kirk, 1995, p. 724). Others have gone so far as to imply that 

ANCOVA should be abandoned when heterogeneity of regression exists (Keppel, 1973, 

p. 484, 499). Fortunately, approaches accommodating heterogeneous slopes were 

developed. The Johnson-Neyman technique (D’Alonzo, 2004; Johnson & Neyman, 1936) 

provided researchers with guidance on how to determine “regions of significance” 

specifying where on the X continuum there were significant differences between groups, 

but this procedure is computationally tedious and not widely implemented in standard 

statistical software. Rogosa’s work in the area of ANCOHET, particularly his 

development of the “pick-a-point” procedure, made the problems previously inherent to 

heterogeneity of regression seem more approachable, particularly with more recent 
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guidance on where to conduct the test in lieu of a priori meaningful values (Aiken & 

West, 1991). Due to the increasing acknowledgement of its importance in research across 

disciplines, multiple online utilities have been developed to implement the Johnson-

Neyman technique and the pick-a-point procedure (e.g., Hayes & Matthes, 2009; 

Preacher et al., 2006). 

Of direct relevance to the current dissertation, Rogosa (1980) noted that previous 

simulation studies investigating heterogeneity of regression in the context of ANCOVA 

were flawed. In particular, he noted that some of the simulations violated the assumption 

of equal residual variances. In the context of a randomized study, where 𝑠  will be equal 

in the long run between groups, whenever the interaction term is nonzero, if the 

variability of the Y scores is homogeneous, then heterogeneity of regression will mean the 

residual variances will necessarily be unequal between groups. Additionally, he 

highlighted the need for an explicit definition of a treatment effect. 

Whereas the work of Harwell and Serlin (1988) made improvements over prior 

simulation studies, their work had several drawbacks that the current study sought to 

ameliorate. As covered more extensively in Appendix D, they stated in their Method 

section that standardized regression coefficients were employed when simulating data. 

However, based on preliminary work for the current study, it appears as if they actually 

used unstandardized coefficients, because using standardized coefficients with 

heterogeneity of regression as extreme as they reportedly used (β1 = 0.2, β2 = 0.9, β3 = 

0.9) would have resulted in significantly higher rejection rates. This point is important, 

because using standardized regression coefficients allows other researchers to compare 

the heterogeneity of regression they are experiencing in a way that does not depend on 
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the scale of the variables they are investigating. The current study uses standardized 

regression coefficients in denoting the different conditions of heterogeneity of regression 

and makes the contribution of characterizing the magnitude of heterogeneity of 

regression using multiple effect sizes measure commonly used (e.g., Cohen’s q, f2; see 

Table 5).  

Additionally, previous simulation work in the area had a limited view of Type I 

error rates in the presence of heterogeneity of regression. In null conditions where 

rejection rates were above the bounds of sampling error, Harwell and Serlin (1988) did 

not report power levels stating that “liberal Type I error rates render the interpretation of 

power values problematic” (p. 277). Chen (2006) took the same approach, as evident in 

his Table 1 Scenario II. However, it can be argued that these are not actually Type I error 

rates in that, given the presence of heterogeneity of regression, there is some true effect at 

every point along the X scale except where the lines cross, which in the current 

simulations was at µX. Because tests are typically conducted at a central tendency value 

based on the sample, and this value rarely will be exactly the population value, one would 

expect higher rejections rates than the nominal .05 due to the presence of a quite small 

but true effect. To address this issue, in addition to reporting power for non-null 

conditions regardless or rejection rates for the null conditions, the current study focused 

on confidence interval coverage rates and widths as a way of comparing error terms. 

The main impetus motivating the current study is the limited understanding of the 

impact of a random covariate in the context of ANCOVA with heterogeneity of 

regression. The main idea is exemplified by Figure 1, where the difference in adjusted 

means in a thrice replicated study is impacted by the obtained sample mean on the 
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covariate. Crager (1987) addressed this in the context of a standard ANCOVA, and 

concluded that a random covariate will have little impact. On the other hand, other 

authors based on their simulations recommended different approaches than using the 

ANCOHET model to test for the treatment effect (Chen, 2006; Harwell & Serlin, 1988). 

As argued in Appendix B, theory suggests Rogosa’s “safer ANCOVA” should be liberal, 

as confirmed by Harwell and Serlin’s results, when dealing with heterogeneity of 

regression and a random covariate, yet it is still unclear how the standard ANCOVA and 

ANCOHET would fare with varying degrees of heterogeneity of regression, setting the 

stage for the current dissertation. 

The current study makes the contribution of examining the impact of two separate 

factors. The first was to clarify how the decision of where to conduct the test impacts 

rejection rates and power. For the location of the test, the options were: µx, which is 

typically unknown; 𝑋, the value most likely to be used; and Ca, where the distance 

between regression lines is the same for ANCOVA and ANCOHET. The second 

contribution involved determining the optimal error term to use. The first error term was 

from an ANCOHET model where heterogeneous regression slopes were allowed. The 

second error term was from a standard ANCOVA model that restricted the interaction to 

be zero. The third error term took the traditional mixed models ANOVA approach and 

used the interaction between the covariate and the grouping variable. Finally, the fourth 

error term averaged the mean square from the ANCOHET model and the interaction. 

This fourth error term was included because it involved a term that was thought to be too 

liberal (ANCOHET) with one that was thought to be too conservative (interaction). 
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Study Findings 

The goal of this project was to examine the performance of several different error 

terms in assessing between-group differences in ANCOVA models where heterogeneity 

of regression was present. The first error term, derived from a model allowing for 

heterogeneity of regression, performed quite well across all levels of the factors of the 

simulation. The rejection rates for the null conditions were as expected for no, low, and 

medium levels of heterogeneity of regression, and only exceeded the nominal .05 in cases 

of high and extreme heterogeneity of regression when tests were conducted at 𝑋  or at Ca. 

Using the ANCOHET error term also saw high power and confidence interval coverage 

rates even in the presence of extreme heterogeneity of regression. Regarding the accuracy 

of how well the parameter of interest was estimated (i.e., mean difference), the 

ANCOHET error term resulted in the narrowest confidence intervals under extreme 

heterogeneity of regression, and was similar to the ANCOVA error term under the other 

levels. When heterogeneity of regression was absent, low, or medium, the average of the 

ANCOHET standard errors was 99% of the true standard deviation based on the standard 

deviation of estimated conditional means across the 10,000 replications. When 

heterogeneity of regression as high or extreme, however, the ANCOHET standard error 

was only 87% of the true standard deviation, and this value dropped below 80% when 

heterogeneity was extreme, implying that the small confidence interval widths are too 

small. While these results validated to some extent Chen’s (2006) claim that the 

conventional ANCOHET error term would underestimate the impact of the random 

covariate, Chen’s suggested increment to the ANCOHET standard error made little 

difference under lower levels of heterogeneity of regression, and did not bring the 
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average standard error close enough to the true standard deviation when heterogeneity of 

regression was extreme.  Even though the confidence interval coverage rate was high and 

the interval widths were narrow, comparing the average standard error to the true 

standard deviation suggests that the standard error based on the ANCOHET approach is 

an underestimation of the variability over replications in the estimated treatment effect at 

either 𝑋, or Ca , particularly when heterogeneity of regression is extreme. 

The second error term, involving the interaction between the grouping variable 

and the covariate saw rejection rates within sampling error of the nominal .05 only in 

cases of no heterogeneity of regression (the only situation where errors are true Type I 

errors), and became very conservative when any level of heterogeneity of regression was 

present and increasingly so as sample size increased making it more likely this error term 

would be inflated over residual error by the presence of the interaction in the population. 

Power was low when this error term was used, which was unsurprising given the degrees 

of freedom for the error term was either one or two depending on the number of groups 

involved in the analysis. Confidence interval coverage rates of the true population 

difference were high, but this was mainly due to the fact that the width of the confidence 

intervals was so large. 

The third error term, derived from a standard ANCOVA model, performed 

similarly to the ANCOHET error term. Its use resulted in rejection rates within sampling 

error of .05 regardless of the extent of heterogeneity of regression under the conditions of 

no group difference when tests were conducted  at 𝑋  or at Ca.  In these cases the 

overestimation of residual error was offset by the difference in predicted means not being 

exactly zero.  However, when the test was conducted at µx the ANCOVA procedure 
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resulted in rejection rates that were significantly below the desired .05 level for all cases 

where there was any heterogeneity of regression, except in the case of low heterogeneity 

of regression combined with the smallest sample size. Using this error term resulted in 

high levels of power, declining only when heterogeneity of regression was extreme.  This 

decline is to be expected inasmuch as using a single common slope will necessarily 

produce an overestimate of residual error when extreme heterogeneity of regression is 

present. Additionally, high confidence interval coverage rates were coupled with high 

accuracy (i.e., narrow confidence interval widths) generally, with widths noticeably 

exceeding those of the ANCOHET only in the case of extreme heterogeneity where 

ANCOHET underestimates the true standard deviation. Use of the ANCOVA error term 

resulted in average standard errors that were 99% of the true standard deviation even at 

extreme levels of heterogeneity of regression. 

The final error term, computed as an average of the mean square error from the 

ANCOHET model and the mean square due to the interaction, performed poorly in nearly 

all conditions. It was either too liberal or too conservative depending on the extent of 

heterogeneity of regression, and it produced low power for even medium levels of 

heterogeneity. While confidence interval coverage rates were high, the accuracy of the 

parameter estimates was low  

Recommendations for Dealing with Heterogeneity of Regression 

Typically, when analyzing data using a two-way ANOVA, even if the interaction 

between factors is non-significant, it is often left in the model regardless. One potential 

argument for this analytic method is that just because the interaction is non-significant in 

the sample does not mean that it is null in the population. Additionally, power analyses 
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typically focus on main effects, and interaction tests are generally underpowered. The 

same argument could be made for analyzing ANCOVA data, regardless of whether the 

interaction term is significant. When testing for an interaction in the context of 

ANCOVA, one suggestion is to use a larger value of α than one typically uses (e.g., α= 

.10 or .25) in order to avoid a Type II error (Kirk, 1995). This makes sense given a 

typical study’s propensity to be underpowered when testing such effects. 

While incorporating this interaction into an analysis has the impact of removing 

degrees of freedom from the error term, its impact is likely to be negligible. Since a 

continuous covariate only accounts for one degree of freedom, its interaction with a 

grouping variable will only remove from the error term the total number of groups minus 

one (i.e., a – 1 where a is the number of groups). Even in the current student’s smallest 

sample, where a = 2 and n = 10, the difference in Fcritical between the ANCOVA and 

ANCOHET models is 0.04. The impact of this loss of a degree of freedom on power will 

only diminish as a study’s sample size increases. 

However, the literature review of empirical studies suggested that the vast 

majority of studies finding heterogeneity of regression report either a small or medium 

level of heterogeneity of regression.  In such cases, the current dissertation indicates 

that using an ANCOHET model that allows for heterogeneity of regression to conduct a 

test of the treatment effect near the center of the distribution of covariate scores could be 

used.  At these levels of heterogeneity of regression, with nominal 95% confidence 

intervals, the ANCOHET approach achieves coverage of approximately 95% in the two-

group case and between 91% to 93% in the three-group case. Additionally, the average 

standard errors are 99% of the true standard deviation of the estimated difference in 
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conditional means across replications. On the other hand, when heterogeneity of 

regression is large or extreme, using an error term based on ANCOVA would be the 

recommended approach. In these cases, the degree of overestimation of residual error 

associated with using a single slope approximately matched the additional variability 

induced by the random covariate and consequently resulted in average standard errors 

that were quite close to the true standard deviation. Although differences between the 

ANCOHET and ANCOVA methods for assessing treatment effects for an "average" 

individual might be regarded for some practical purposes as inconsequential, the 

ANCOHET procedure is recommended for general use based on levels of heterogeneity 

of regression that are most likely to be encountered in practice, that is, where the extent 

of heterogeneity of regression corresponds to a medium effect size or less.  In such cases, 

ANCOHET’s standard error approximates well the true standard deviation of estimated 

differences, and in addition achieved greater power and narrower confidence intervals 

than ANCOVA in general. In the rare case of high or extreme heterogeneity of 

regression, using ANCOVA to test for the main effect of treatment is recommended as its 

overestimation of residual error was in the current simulations demonstrated to be 

approximately the correct adjustment needed to match the increased true standard 

deviation in treatment effects over replications resulting from the presence of a random 

covariate. 
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Figure 1. Reproduces Fig 3.1 from Maxwell et al. (1993). This figure illustrates the 
impact of having a random covariate in the presence of heterogeneity of regression across 
three replications (indicated by the number in parentheses). Each replication has identical 
slopes for the experimental condition, the control condition, and also unadjusted group 
means on Y. It is therefore the variability in the group means on X that results in different 
estimates of the adjusted treatment effect. 
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Table 1. 
Simulation Design 

 

Factors Levels 

Number of groups 2, 3 

Sample Size Per Group 10, 30, 100 

Extent of Heterogeneity of Regression - None 
- Low (r = 25, .35)  
- Medium (r = .15, .45)  
- High (r = .05, .55)  
- Extreme (r = -.20, .80) 

Effect Size Null, Non-Nulla  

Type of Test for Group Main Effect - At Population Grand Mean 
- At Sample Grand Mean 
- At Center of Accuracy 
 

a See section regarding power for non-null simulation conditions 
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Table 2. 
Effect Sizes and Non-Zero Means Used in Non-Null Simulation Conditions 

Two-Group Case 
  

Three-Group Case 

  
Effect Size 

  
Effect Size 

n Mean f d n Mean f d 
10 1.33473 0.66736 1.27324 10 1.12725 0.53139 1.07532 
30 0.73607 0.36804 0.70216 30 0.63356 0.29866 0.60437 

100 0.39816 0.19908 0.37982 100 0.34424 0.16228 0.32838 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

Table 3.  
Simulation Studies Investigating ANOVA Models with Heterogeneity of Regression 

Article Heterogeneity Homogeneity Groups Sample Size 
Unequal 

n Outcome 

Harwell and Serlin 
(1988) .2, .9 Yes 3 10, 30 Yes 

Power, 
Type I 
Error 

Levy (1980) .3, .7; .1, .7; .0, .8; -.1, .9; -.3, .9 Yes 2 10, 20, 30 Yes 

Power, 
Type I 
Error 

Hamilton (1977) Mean Slope: .3 (.2, .4; .1, .5; .0, .6; -.1, .7; -.2, .8; -.3, .9) Yes 2 10, 20, 30 Yes 

Power, 
Type I 
Error 

Mean Slope: .4 (.3, .5; .2, .6; .1, .7; .0, .8; -.1, .9) 

Mean Slope: .5 (.4, .6; .3, .7; .2, .8; .1, .9) 

Mean Slope: .6 (.5, .7; .4, .8; .3, .9) 

Mean Slope: .7 (.6, .8; .5, .9) 

Klockars and Beretvas 
(2001) 

Amount of heterogeneity manipulated so that the 
difference in slopes would be detected by the ANCOVA 
tests of slopes 20, 50 or 75% of the time. Mean slope was 
always 1. Yes 3, 5 12, 36 No 

Power, 
Type I 
Error 

Ex. .04, 1, 1.96; -.65, 1, 2.65; -1.25, 1, 3.25 

Wu (1984) 
.2, .6; .0, .8; .3, .7; .1, .9; .4, .6; .3, .9; .5, .9; .3, .5; .5, .7; 
.6, .8 Yes 2 10, 20, 30 Yes 

Power, 
Type I 
Error 

Chen (2006) .2, .8 Yes 2 
Equal n: 
10,20, 50 Yes 

Power, 
Type I 
Error 

Unequal n: 
20, 10; 50, 
25; 50, 40 
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Table 4.  
Empirical Findings of Heterogeneity of Regression 

Study 
Group

s Sample Size 

Observed 
Heterogeneity 

 rj or βj 
Interaction 

βj 
Cohen’s 

q 

Heterogeneity of 
Regression Effect 

Size Category 

Winkins et al. (2007) 3 
210, 215, 

220 
0.77, 0.68, 0.51  0.36 Medium 

Blaire et al. (2015) 2 963 0.21, -0.06  0.27 Medium 
Cheval et al. (2015) 2 41, 41  -0.156 0.17 Small 
Hostinar, Johnson and Gunnar (2015) 2 41, 41 -0.17, -0.07  0.10 Small 
Friesen et al. (2015) Study 1 2 103  0.12 0.13 Small 
Friesen et al. (2015) Study 2 2 179  0.24 0.27 Medium 
Song, Over and Carpenter (2015) 2 32, 32 0.33, 0.09  0.25 Medium 

Stock et al. (2015) Study 1 2 85, 88  
-0.28; 
0.26 

0.31; 
0.29 

Medium; 
Medium 

Stock et al. (2015) Study 2 2 111, 111  
-0.21; 
0.30 

0.23; 
0.33 

Medium; 
Medium 

Trautwein et al. (2015) Study 1 2 2,557  -0.22 0.24 Medium 
Trautwein et al. (2015) Study 2 2 415  -0.20 0.22 Medium 
Crotwell (2016) 2 79, 89 0.557, 0.424  0.18 Small 
Ho, Kteily and Chen (2017) 2 424  0.28 0.31 Medium 
Matos et al. (2017) 2 170  -0.101 0.11 Small 
Rudolph, Davis and Monti (2017) 3 338 0.12, -0.02, -0.14  0.20 Medium 

Lam et al. (2018) 2 172 
0.26, -0.08; 
0.11, -0.19 

 
0.35; 
0.30 

Medium; 
Medium 

Simulation of Sturge-Apple et al. 
(2016) by Maxwell et al. (2018) 

2 69, 71 0.255, -0.235  0.50 Large 

Rosenthal's Pygmalion data re-
analyzed by Maxwell et al. (2018) 

2 64, 246 0.781, 0.750  0.08 Small 
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Reid et al. (2018) 2 372 0.43, 0.07  0.39 Medium 
Simons et al. (2018) 2 409 0.137, 0.027  0.11 Small 
       
Note. Extent of heterogeneity of regression based on Cohen’s q was defined as follows: Small: 0 - .2; Medium: .2 - .4; Large: .4 - 
.6; Extreme: > .6, with the lower limit of the intervals being inclusive of the value. 
Studies with multiple groups but only one sample size did not involve randomization to treatments, but created groups based on 
either median splits or evaluating at the mean and/or the mean ± 1 standard deviation. 
Multiple examples of heterogeneity of regression and the corresponding effect size measure within one study are separated by a 
semicolon.  If an article included multiple experiments, each is presented on a separate row of the table. 
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Table 5.  
Two-Group Simulation Standardized and Raw Regression 
Coefficients and Associated Effect Sizes 

Standardized 
Coefficients Raw Coefficients q  f 2 
β1 β2 b1 b2 

0.250 0.350 0.258 0.374 0.110 0.003 
0.150 0.450 0.152 0.504 0.334 0.031 
0.050 0.550 0.050 0.659 0.568 0.093 
-0.200 0.800 -0.204 1.333 1.301 0.642 

 

 

 

Table 6.  
Three-Group Simulation Standardized and Raw Regression Coefficients and 
Associated Effect Sizes 

Standardized Coefficients  Raw Coefficients  q f 2 

β1 β2 β3 b1 b2 b3 
0.250 0.350 0.350 0.258 0.374 0.374 0.110 0.003 
0.150 0.450 0.450 0.152 0.504 0.504 0.334 0.028 
0.050 0.550 0.550 0.050 0.659 0.659 0.568 0.082 
-0.200 0.800 0.800 -0.204 1.333 1.333 1.301 0.525 

 



 

Table 7. 
Rejection Rates for Two-Group, Null Conditions 

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 .0483 .0502 .0471 .0542  .0475 .0520 .0478 .0589*  .0471 .0523 .0480 .0585* 

 
30 .0481 .0492 .0483 .0802*  .0491 .0495 .0491 .0814*  .0491 .0495 .0493 .0810* 

 
100 .0514 .0512 .0516 .0852*  .0510 .0511 .0509 .0850*  .0510 .0512 .0507 .0848* 

  
              

Low 10 .0483 .0459 .0475 .0542  .0471 .0468 .0475 .0580*  .0465 .0469 .0477 .0583* 

 
30 .0481 .0452† .0480 .0754*  .0489 .0454† .0487 .0759*  .0494 .0454† .0490 .0754* 

 
100 .0514 .0386† .0508 .0689*  .0519 .0387† .0516 .0697*  .0518 .0387† .0515 .0700* 

  
              

Medium 10 .0483 .0381† .0449† .0483  .0487 .0398† .0455† .0515  .0478 .0398† .0458 .0512 

 
30 .0481 .0205† .0451† .0438†  .0518 .0211† .0489 .0460  .0529 .0212† .0493 .0460 

 
100 .0514 .0021† .0481 .0103†  .0533 .0021† .0510 .0111†  .0535 .0021† .0504 .0113† 

  
              

High 10 .0483 .0226† .0395† .0342†  .0538 .0234† .0470 .0391†  .0544* .0235† .0473 .0400† 

 
30 .0481 .0043† .0394† .0126†  .0590* .0043† .0483 .0151†  .0594* .0043† .0488 .0150† 

 
100 .0514 .0000† .0418† .0006†  .0602* .0000† .0500 .0006†  .0603* .0000† .0504 .0007† 

  
              

Extreme 10 .0483 .0009† .0185† .0048†  .1027* .0010† .0466 .0078†  .1094* .0011† .0506 .0085† 

 
30 .0481 .0000† .0135† .0000†  .1139* .0000† .0472 .0000†  .1153* .0000† .0488 .0000† 

 
100 .0514 .0000† .0140† .0000†  .1195* .0000† .0515 .0000†  .1195* .0000† .0521 .0000† 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of 
rejections across 10,000 simulations. 
* signifies value significantly above sampling error 
† signifies value significantly below sampling error 
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Table 8. 
Rejection Rates for Three-Group, Null Conditions  

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 .0489 .0486 .0488 .0540  .0470 .0491 .0472 .0544  .0473 .0496 .0473 .0548* 
30 .0463 .0476 .0463 .0684*  .0465 .0484 .0468 .0688  .0466 .0484 .0470 .0689* 
100 .0479 .0483 .0476 .0716*  .0477 .0486 .0477 .0718  .0477 .0486 .0475 .0719* 

              
Low 10 .0489 .0459 .0486 .0524  .0473 .0465 .0476 .0536  .0475 .0464 .0485 .0536 

30 .0463 .0400† .0453† .0630*  .0475 .0403† .0474 .0623*  .0476 .0404† .0474 .0624* 
100 .0479 .0289† .0472 .0525  .0484 .0291† .0479 .0523  .0483 .0291† .0475 .0524 

              
Medium 10 .0489 .0357† .0461 .0436†  .0501 .0372† .0476 .0460  .0510 .0373† .0478 .0461 

30 .0463 .0186† .0436† .0364†  .0501 .0186† .0475 .0387†  .0507 .0186† .0475 .0385† 
100 .0479 .0010† .0445† .0072†  .0523 .0010† .0491 .0074†  .0524 .0010† .0491 .0074† 

              
High 10 .0489 .0191† .0412† .0288†  .0564* .0200† .0484 .0350†  .0572* .0201† .0496 .0352† 

30 .0463 .0034† .0381† .0099†  .0567* .0035† .0488 .0125†  .0564* .0035† .0487 .0125† 
100 .0479 .0000† .0393† .0002†  .0589* .0000† .0483 .0002†  .0594* .0000† .0485 .0002† 

              
Extreme 10 .0489 .0014† .0187† .0032†  .1016* .0017† .0490 .0076†  .1016* .0018† .0501 .0081† 

30 .0463 .0000† .0149† .0000†  .1078* .0000† .0493 .0000†  .1085* .0000† .0490 .0000† 
100 .0479 .0000† .0150† .0000†  .1083* .0000† .0499 .0000†  .1089* .0000† .0501 .0000† 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of 
rejections across 10,000 simulations. 
* signifies value significantly above sampling error 
† signifies value significantly below sampling error 
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Table 9. 
Power for Two-Group Conditions 

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 .7500 .1772 .7523 .7103  .7752 .1814 .7769 .7318  .7780 .1821 .7796 .7336 
30 .7844 .1737 .7843 .7742  .7925 .1753 .7933 .7796  .7939 .1753 .7940 .7797 
100 .7994 .1725 .7992 .7952  .8023 .1733 .8026 .7977  .8025 .1733 .8027 .7973 

              
Low 10 .7500 .1692 .7510 .7065  .7727 .1730 .7754 .7236  .7770 .1740 .7782 .7251 

30 .7844 .1573 .7831 .7474  .7952 .1580 .7943 .7530  .7958 .1581 .7948 .7525 
100 .7994 .1304 .7985 .7197  .8020 .1305 .8017 .7205  .8015 .1305 .8013 .7206 

              
Medium 10 .7500 .1341 .7424 .6486  .7706 .1392 .7633 .6636  .7745 .1397 .7668 .6683 

30 .7844 .0785 .7746 .5749  .7917 .0789 .7829 .5794  .7910 .0790 .7834 .5801 
100 .7994 .0093 .7904 .2709  .7977 .0093 .7894 .2732  .7972 .0093 .7884 .2730 

              
High 10 .7500 .0844 .7235 .5259  .7635 .0866 .7422 .5463  .7677 .0875 .7478 .5489 

30 .7844 .0146 .7578 .3118  .7835 .0146 .7587 .3173  .7855 .0146 .7610 .3179 
100 .7994 .0000 .7739 .0257  .7906 .0000 .7640 .0293  .7906 .0000 .7650 .0292 

              
Extreme 10 .7500 .0043 .5781 .1076  .7266 .0047 .5881 .1338  .7315 .0049 .5895 .1376 

30 .7844 .0000 .6090 .0010  .7427 .0000 .5931 .0028  .7426 .0000 .5946 .0028 
100 .7994 .0000 .6255 .0000  .7486 .0000 .5995 .0000  .7475 .0000 .5991 .0000 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Table entries give the proportion of rejections 
across 10,000 simulations. 
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Table 10. 
Power for Three-Group Conditions 

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 .7481 .3334 .7504 .7232  .7633 .3444 .7653 .7368  .7640 .3446 .7674 .7371 
30 .7852 .3411 .7847 .7718  .7872 .3454 .7873 .7745  .7874 .3454 .7876 .7747 
100 .7950 .3569 .7955 .7855  .7975 .3582 .7974 .7873  .7973 .3585 .7974 .7872 

              
Low 10 .7481 .3242 .7505 .7177  .7634 .3347 .7653 .7286  .7647 .3345 .7669 .7307 

30 .7852 .3149 .7837 .7552  .7893 .3181 .7872 .7569  .7891 .3180 .7872 .7568 
100 .7950 .2506 .7941 .7270  .7975 .2509 .7964 .7273  .7974 .2511 .7965 .7273 

              
Medium 10 .7481 .2563 .7430 .6708  .7591 .2639 .7548 .6797  .7599 .2647 .7563 .6803 

30 .7852 .1531 .7772 .6160  .7839 .1550 .7754 .6220  .7832 .1550 .7756 .6214 
100 .7950 .0159 .7862 .3397  .7931 .0161 .7851 .3430  .7929 .0161 .7848 .3431 

              
High 10 .7481 .1528 .7259 .5723  .7553 .1601 .7351 .5824  .7561 .1611 .7360 .5832 

30 .7852 .0315 .7620 .3775  .7785 .0322 .7557 .3830  .7781 .0322 .7577 .3831 
100 .7950 .0001 .7724 .0399  .7852 .0001 .7619 .0421  .7859 .0001 .7629 .0421 

              
Extreme 10 .7481 .0080 .5938 .1366  .7258 .0010 .5883 .1684  .7249 .0101 .5898 .1709 

30 .7852 .0000 .6312 .0033  .7399 .0000 .6068 .0069  .7404 .0000 .6092 .0069 
100 .7950 .0000 .6373 .0000  .7478 .0000 .6111 .0000  .7493 .0000 .6122 .0000 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Table entries give the proportion of rejections 
across 10,000 simulations. 
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Table 11. 
Confidence Interval Coverage for Two-Group Conditions 

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 .9478 .9477 .9402 .9233  .9525 .9462 .9519 .9345  .9505 .9497 .9502 .9337 

30 .9506 .9483 .9487 .9143  .9519 .9482 .9524 .9142  .9493 .9476 .9497 .9175 

100 .9459 .9519 .9450 .9060  .9529 .9526 .9533 .9189  .9492 .9492 .9489 .9162 
              

Low 10 .9506 .9503 .9448 .9304  .9532 .9494 .9534 .9368  .9491 .9494 .9501 .9320 

30 .9449 .9531 .9427 .9185  .9479 .9519 .9478 .9187  .9517 .9498 .9519 .9180 

100 .9494 .9665 .9496 .9288  .9497 .9644 .9497 .9285  .9520 .9635 .9520 .9317 
              

Medium 10 .9511 .9590 .9473 .9417  .9523 .9615 .9534 .9452  .9504 .9591 .9541 .9428 

30 .9524 .9769 .9529 .9518  .9505 .9767 .9529 .9571  .9484 .9809 .9518 .9507 

100 .9520 .9978 .9537 .9888  .9518 .9983 .9550 .9900  .9474 .9979 .9513 .9882 
              

High 10 .9498 .9770 .9516 .9570  .9456 .9720 .9542 .9583  .9501 .9748 .9585 .9612 

30 .9485 .9937 .9570 .9836  .9536 .9950 .9625 .9868  .9501 .9953 .9579 .9872 

100 .9487 1 .9572 .9998  .9498 1 .9594 .9998  .9550 1 .9632 .9998 
              

Extreme 10 .9522 .9986 .9796 .9936  .9498 .9985 .9807 .9958  .9511 .9985 .9825 .9974 

30 .9480 1 .9841 1  .9513 1 .9858 1  .9520 1 .9871 1 

100 .9468 1 .9838 1   .9507 1 .9858 1   .9508 1 .9858 1 
Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of times 
the confidence interval contained the population value across 10,000 simulations. 
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Table 12. 
Confidence Interval Coverage for Three-Group Conditions 

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 .9213 .9481 .9081 .9011  .9193 .9514 .9130 .9101  .9169 .9490 .9105 .9035 
30 .9218 .9552 .9183 .8971  .9174 .9484 .9152 .8941  .9173 .9499 .9159 .8880 
100 .9142 .9494 .9128 .8923  .9162 .9541 .9156 .8897  .9204 .9508 .9196 .8928 

              
Low 10 .9238 .9517 .9135 .9077  .9215 .9530 .9177 .9137  .9225 .9529 .9155 .9093 

30 .9231 .9561 .9203 .9039  .9118 .9572 .9097 .8957  .9198 .9532 .9192 .9003 
100 .9157 .9673 .9146 .9066  .9210 .9680 .9210 .9150  .9176 .9692 .9174 .9152 

              
Medium 10 .9194 .9588 .9109 .9199  .9242 .9613 .9218 .9206  .9212 .9624 .9198 .9262 

30 .9163 .9815 .9164 .9393  .9165 .9838 .9184 .9380  .9165 .9836 .9189 .9436 
100 .9173 .9990 .9210 .9830  .9172 .9992 .9214 .9842  .9179 .9986 .9215 .9868 

              
High 10 .9215 .9770 .9187 .9397  .9168 .9775 .9219 .9406  .9228 .9808 .9280 .9476 

30 .9229 .9973 .9305 .9807  .9191 .9973 .9289 .9780  .9184 .9974 .9270 .9807 
100 .9191 1 .9285 .9995  .9231 1 .9349 .9994  .9169 1 .9291 .9993 

              
Extreme 10 .9243 .9986 .9600 .9923  .9255 .9989 .9648 .9925  .9210 .9996 .9634 .9931 

30 .9226 1 .9674 1  .9205 1 .9685 1  .9239 1 .9676 1 
100 .9164 1 .9671 1  .9170 1 .9684 1  .9191 1 .9675 1 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the proportion of times 
the confidence interval contained the population value across 10,000 simulations. 
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Table 13. 
Confidence Interval Coverage for Two-Group Conditions, Including Chen’s Increment to ANCOHET Standard Error 

      Location of Test    

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term   

Denominator 
Error Term   

Denominator  
Error Term 

n HET ANC Chen  HET ANC Chen HET ANC Chen 
      

None 10 .9478 .9402 .9539  .9525 .9519 .9587  .9505 .9502 .9559 
30 .9506 .9487 .9524  .9519 .9524 .9536  .9493 .9497 .9518 
100 .9459 .9450 .9468  .9529 .9533 .9538  .9492 .9489 .9497 

           
Low 10 .9506 .9448 .9571  .9532 .9534 .9591  .9491 .9501 .9550 

30 .9449 .9427 .9465  .9479 .9478 .9506  .9517 .9519 .9533 
100 .9494 .9496 .9502  .9497 .9497 .9505  .9520 .9520 .9529 

           
Medium 10 .9511 .9473 .9579  .9523 .9534 .9590  .9504 .9541 .9589 

30 .9524 .9529 .9560  .9505 .9529 .9543  .9484 .9518 .9532 
100 .9520 .9537 .9542  .9518 .9550 .9546  .9474 .9513 .9506 

           
High 10 .9498 .9516 .9613  .9456 .9542 .9585  .9501 .9585 .9609 

30 .9485 .9570 .9560  .9536 .9625 .9618  .9501 .9579 .9578 
100 .9487 .9572 .9554  .9498 .9594 .9567  .9550 .9632 .9612 

           
Extreme 10 .9522 .9796 .9733  .9498 .9807 .9706  .9511 .9825 .9740 

30 .9480 .9841 .9716  .9513 .9858 .9725  .9520 .9871 .9736 
100 .9468 .9838 .9688  .9507 .9858 .9716  .9508 .9858 .9714 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error; Ca = Center of Accuracy. Refer to text for more information regarding 
error terms used. Numbers in table represent the proportion of times the confidence interval contained the population 
value across 10,000 simulations. 
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Table 14. 
Confidence Interval Coverage for Three-Group Conditions, Including Chen’s Increment to ANCOHET Standard Error 

     Location of Test  

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term   

Denominator 
Error Term   

Denominator 
Error Term 

n HET ANC Chen HET ANC Chen HET ANC Chen 
      

None 10 .9213 .9081 .9259  .9193 .9130 .9251  .9169 .9105 .9221 
30 .9218 .9183 .9227  .9174 .9152 .9186  .9173 .9159 .9197 
100 .9142 .9128 .9146  .9162 .9156 .9167  .9204 .9196 .9208 

 
           

Low 10 .9238 .9135 .9282  .9215 .9177 .9336  .9225 .9155 .9265 
30 .9231 .9203 .9252  .9118 .9097 .9137  .9198 .9192 .9223 
100 .9157 .9146 .9163  .9210 .9210 .9213  .9176 .9174 .9183 

 
           

Medium 10 .9194 .9109 .9260  .9242 .9218 .9312  .9212 .9198 .9296 
30 .9163 .9164 .9211  .9165 .9184 .9253  .9165 .9189 .9208 
100 .9173 .9210 .9213  .9172 .9214 .9211  .9179 .9215 .9210 

 
           

High 10 .9215 .9187 .9321  .9168 .9219 .9287  .9228 .9280 .9356 
30 .9229 .9305 .9309  .9191 .9289 .9292  .9184 .9270 .9266 
100 .9191 .9285 .9261  .9231 .9349 .9317  .9169 .9291 .9253 

 
           

Extreme 10 .9243 .9600 .9495  .9255 .9648 .9518  .9210 .9634 .9494 
30 .9226 .9674 .9481  .9205 .9685 .9472  .9239 .9676 .9487 
100 .9164 .9671 .9448  .9170 .9684 .9452  .9191 .9675 .9451 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error; Ca = Center of Accuracy. Refer to text for more information regarding 
error terms used. Numbers in table represent the proportion of times the confidence interval contained the population 
value across 10,000 simulations. 
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Table 15. 
Average Confidence Interval Width for Two-Group, Null Conditions 

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 1.99 9.01 1.92 1.95  1.93 9.06 1.92 1.94  1.92 9.05 1.91 1.94 

30 1.05 5.24 1.04 1.01  1.04 5.28 1.04 1.01  1.04 5.19 1.04 1.01 

100 0.56 2.91 0.56 0.54  0.56 2.89 0.56 0.54  0.56 2.86 0.56 0.54 
              

Low 10 1.99 9.33 1.92 1.97  1.93 9.25 1.92 1.96  1.92 9.33 1.92 1.97 

30 1.05 5.69 1.04 1.05  1.04 5.65 1.04 1.04  1.04 5.70 1.04 1.05 

100 0.56 3.77 0.56 0.61  0.56 3.78 0.56 0.61  0.56 3.77 0.56 0.61 
              

Medium 10 1.99 11.20 1.94 2.14  1.94 11.19 1.95 2.14  1.92 11.33 1.94 2.15 

30 1.05 9.22 1.06 1.35  1.04 9.19 1.05 0.35  1.04 9.30 1.05 1.36 

100 0.56 8.89 0.57 1.07  0.56 8.85 0.57 1.07  0.56 8.82 0.57 1.07 
              

High 10 1.99 15.01 2.00 2.51  1.93 15.00 2.00 2.51  1.93 15.14 2.00 2.52 

30 1.05 14.97 1.09 1.90  1.04 14.90 1.08 1.89  1.04 14.95 1.08 1.89 

100 0.56 15.26 0.58 1.73  0.56 15.29 0.58 1.74  0.56 15.36 0.58 1.74 
              

Extreme 10 1.98 34.40 2.38 4.64  1.94 34.72 2.40 4.68  1.92 34.66 2.39 4.67 
30 1.05 37.71 1.31 4.36  1.04 37.60 1.31 4.35  1.04 37.53 1.31 4.34 

100 0.56 38.67 0.70 4.29  0.56 38.63 0.70 4.28  0.56 38.64 0.70 4.29 
Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the average width of 
the confidence intervals over 10,000 simulations. 
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Table 16. 
Average Confidence Interval Width for Three-Group, Null Conditions 

       Location of Test      

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term    

Denominator 
Error Term    

Denominator  
Error Term  

n HET Inter ANC UNW HET Inter ANC UNW HET Inter ANC UNW 

None 10 1.51 2.98 1.44 1.46  1.48 2.98 1.44 1.47  1.48 2.99 1.44 1.47 

30 0.80 1.72 0.79 0.78  0.80 1.74 0.79 0.78  0.79 1.72 0.79 0.78 

100 0.43 0.95 0.43 0.42  0.43 0.95 0.43 0.42  0.43 0.94 0.43 0.43 
              

Low 10 1.50 3.04 1.44 1.48  1.48 3.05 1.44 1.48  1.48 3.05 1.44 1.48 

30 0.80 1.84 0.79 0.80  0.79 1.82 0.79 0.80  0.80 1.83 0.79 0.80 

100 0.43 1.14 0.43 0.46  0.43 1.14 0.43 0.46  0.43 1.14 0.43 0.46 
              

Medium 10 1.51 3.50 1.46 1.58  1.48 3.48 1.46 1.58  0.48 3.49 1.46 1.58 

30 0.80 2.61 0.80 0.97  0.79 2.61 0.80 0.97  0.79 2.59 0.80 0.97 

100 0.43 2.29 0.43 0.72  0.43 2.30 0.43 0.72  0.43 2.29 0.43 0.72 
              

High 10 1.51 4.35 1.49 1.80  1.48 4.34 1.49 1.78  1.48 4.36 1.50 1.79 

30 0.80 3.90 0.82 1.28  0.80 3.89 0.82 1.28  0.79 3.92 0.82 1.29 

100 0.43 3.80 0.44 1.12  0.43 3.80 0.44 1.12  0.43 3.80 0.44 1.12 
              

Extreme 10 1.51 8.84 1.76 3.01  1.47 8.87 1.76 3.02  1.47 8.90 1.76 3.03 

30 0.80 9.29 0.98 2.76  0.80 9.30 0.98 2.77  0.80 9.26 0.97 2.75 

100 0.43 9.41 0.53 2.69  0.43 9.42 0.53 2.69  0.43 9.42 0.53 2.69 
Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA Error; UNW = Unweighted average of MSresidual from ANCOHET and 
MSA x X; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers in table represent the average width of 
the confidence intervals over 10,000 simulations. 
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Table 17. 
Average Confidence Interval Width for Two-Group, Null Conditions, Including Chen’s Increment to ANCOHET Standard Error 

     Location of Test    

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term   

Denominator 
Error Term   

Denominator  
Error Term 

n HET ANC Chen HET ANC Chen HET ANC Chen 
      

None 10 1.99 1.92 2.04  1.93 1.92 1.98  1.92 1.91 1.97 

30 1.05 1.04 1.06  1.04 1.04 1.05  1.04 1.04 1.05 

100 0.56 0.56 0.56  0.56 0.56 0.56  0.56 0.56 0.56 
           

Low 10 1.99 1.92 2.04  1.93 1.92 1.98  1.92 1.92 1.97 

30 1.05 1.04 1.06  1.04 1.04 1.05  1.04 1.04 1.05 

100 0.56 0.56 0.56  0.56 0.56 0.56  0.56 0.56 0.56 
           

Medium 10 1.99 1.94 2.05  1.94 1.95 2.00  1.92 1.94 1.98 

30 1.05 1.06 1.07  1.04 1.05 1.06  1.04 1.05 1.06 

100 0.56 0.57 0.57  0.56 0.57 0.57  0.56 0.57 0.57 
           

High 10 1.99 2.00 2.09  1.93 2.00 2.03  1.93 2.00 2.02 

30 1.05 1.09 1.09  1.04 1.08 1.08  1.04 1.08 1.08 

100 0.56 0.58 0.58  0.56 0.58 0.58  0.56 0.58 0.58 
           

Extreme 10 1.98 2.38 2.23  1.94 2.40 2.18  1.92 2.39 2.17 

30 1.05 1.31 1.17  1.04 1.31 1.17  1.04 1.31 1.17 

100 0.56 0.70 0.63  0.56 0.70 0.63  0.56 0.70 0.62 
Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; Chen = Chen (2006)’s suggested increment to 
the ANCOHET standard error; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers 
in table represent the average width of the confidence intervals over 10,000 simulations. 
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Table 18. 
Average Confidence Interval Width for Three-Group, Null Conditions, Including Chen’s Increment to ANCOHET Standard 
Error 

     Location of Test    

 µX 𝑋 Ca 
Extent of 
Heterogeneity 
of Regression 

  
Denominator 
Error Term   

Denominator 
Error Term   

Denominator  
Error Term 

n HET ANC Chen HET ANC Chen HET ANC Chen 
      

None 10 1.51 1.44 1.53  1.48 1.44 1.50  1.48 1.44 1.50 
30 0.80 0.79 0.80  0.80 0.79 0.80  0.79 0.79 0.80 
100 0.43 0.43 0.43  0.43 0.43 0.43  0.43 0.43 0.43 

           
Low 10 1.50 1.44 1.53  1.48 1.44 1.50  1.48 1.44 1.50 

30 0.80 0.79 0.80  0.79 0.79 0.80  0.80 0.79 0.80 
100 0.43 0.43 0.43  0.43 0.43 0.43  0.43 0.43 0.43 

           
Medium 10 1.51 1.46 1.55  1.48 1.46 1.51  0.48 1.46 1.51 

30 0.80 0.80 0.80  0.79 0.80 0.81  0.79 0.80 0.81 
100 0.43 0.43 0.43  0.43 0.43 0.43  0.43 0.43 0.43 

           
High 10 1.51 1.49 1.56  1.48 1.49 1.53  1.48 1.50 1.54 

30 0.80 0.82 0.82  0.80 0.82 0.82  0.79 0.82 0.82 
100 0.43 0.44 0.44  0.43 0.44 0.44  0.43 0.44 0.44 

           
Extreme 10 1.51 1.76 1.67  1.47 1.76 1.63  1.47 1.76 1.63 

30 0.80 0.98 0.89  0.80 0.98 0.88  0.80 0.97 0.88 
100 0.43 0.53 0.47  0.43 0.53 0.47  0.43 0.53 0.47 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA Error; Chen = Chen (2006)’s suggested increment to 
the ANCOHET standard error; Ca = Center of Accuracy. Refer to text for more information regarding error terms used. Numbers 
in table represent the average width of the confidence intervals over 10,000 simulations. 
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Table 19. 
True Standard Deviation and Average Standard Errors for Tests Conducted at 𝑋, Two-Group 
Scenario 

  𝑌 − 𝑌       

Extent of 
Heterogeneity 
of Regression 

 Estimate  Average Standard Error  

n 
Standard 
Deviation 

 
HET Inter ANC UNW Chen 

  
None 10 .4595  .4556 .3589 .4544 .4271 .4664 

30 .2620  .2596 .2049 .2595 .2465 .2614 
100 .1392  .1416 .1136 .1416 .1358 .1419 

       
Low 10 .4591  .4559 .3651 .4552 .4305 .4671 

30 .2627  .2592 .2229 .2595 .2554 .2613 
100 .1416  .1415 .1475 .1418 .1530 .1420 

       
Medium 10 .4668  .4549 .4391 .4599 .4674 .4699 

30 .2650  .2596 .3595 .2634 .3282 .2642 
100 .1437  .1415 .3479 .1437 .2692 .1434 

       
High 10 .4844  .4562 .5937 .4745 .5517 .4790 

30 .2698  .2597 .5873 .2712 .4623 .2692 
100 .1482  .1416 .6026 .1480 .4385 .1462 

       
Extreme 10 .5811  .4552 1.3569 .5661 1.0188 .5130 

30 .3269  .2597 1.4837 .3266 1.0657 .2913 
100 .1779  .1416 1.5202 .1784 1.0797 .1584 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = 
Unweighted average of MSresideual from ANCOHET and MSA x X; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error 
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Table 20. 
True Standard Deviation and Average Standard Errors for Tests Conducted at the Center of 
Accuracy, Two-Group Scenario 

  𝑌 − 𝑌       

Extent of 
Heterogeneity 
of Regression 

 Estimate  Average Standard Error  

n 
Standard 
Deviation 

 
HET Inter ANC UNW Chen 

  
None 10 .4608  .4530 .3568 .4534 .4252 .4638 

30 .2611  .2589 .2082 .2589 .2477 .2608 
100 .1410  .1416 .1115 .1415 .1347 .1418 

       
Low 10 .4618  .4549 .3673 .4560 .4318 .4662 

30 .2625  .2593 .2232 .2598 .2556 .2615 
100 .1419  .1414 .1484 .1417 .1537 .1419 

       
Medium 10 .4694  .4542 .4405 .4611 .4692 .4694 

30 .2660  .2591 .3640 .2631 .3304 .2639 
100 .1451  .1415 .3508 .1437 .2711 .1434 

       
High 10 .4838  .4541 .5961 .4744 .5527 .4775 

30 .2721  .2596 .5894 .2713 .4633 .2693 
100 .1469  .1414 .6024 .1478 .4383 .1461 

       
Extreme 10 .5808  .4532 1.3538 .5658 1.0172 .5113 

30 .3310  .2593 1.4772 .3258 1.0610 .2906 
100 .1793  .1416 1.5223 .1786 1.0811 .1585 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = 
Unweighted average of MSresideual from ANCOHET and MSA x X; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error 
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Table 21. 
True Standard Deviation and Average Standard Errors for Tests Conducted at µx, Two-
Group Scenario 

  𝑌 − 𝑌       

Extent of 
Heterogeneity 
of Regression 

 Estimate  Average Standard Error  

n 
Standard 
Deviation 

 
HET Inter ANC UNW Chen 

  
None 10 .4800  .4705 .3563 .4545 .4258 .4809 

30 .2632  .2620 .2052 .2597 .2468 .2639 
100 .1432  .1419 .1129 .1415 .1353 .1422 

       
Low 10 .4816  .4697 .3636 .4547 .4293 .4806 

30 .2674  .2621 .2284 .2602 .2583 .2643 
100 .1411  .1419 .1475 .1418 .1529 .1424 

       
Medium 10 .4753  .4676 .4481 .4595 .4718 .4827 

30 .2621  .2626 .3596 .2631 .3280 .2662 
100 .1419  .1420 .3489 .1438 .2698 .1438 

       
High 10 .4774  .4687 .5950 .4726 .5512 .4912 

30 .2647  .2620 .5842 .2710 .4602 .2714 
100 .1435  .1420 .6013 .1480 .4376 .1466 

       
Extreme 10 .4761  .4686 1.3503 .5642 1.0142 .5253 

30 .2648  .2619 1.4780 .3261 1.0616 .2930 
100 .1440  .1420 1.5191 .1784 1.0789 .1588 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = 
Unweighted average of MSresideual from ANCOHET and MSA x X; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error 
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Table 22. 
True Standard Deviation and Average Standard Errors for Tests Conducted at 𝑋, Three-Group 
Scenario 

  𝑌 − 𝑌       

Extent of 
Heterogeneity 
of Regression 

 Estimate  Average Standard Error  

n 
Standard 
Deviation 

 
HET Inter ANC UNW Chen 

  
None 10 .4050  .4007 .3423 .3910 .3758 .4068 

30 .2278  .2257 .1994 .2244 .2183 .2269 
100 .1239  .1227 .1094 .1225 .1197 .1229 

       
Low 10 .4063  .4004 .3504 .3914 .3796 .4070 

30 .2298  .2253 .2086 .2242 .2229 .2266 
100 .1219  .1228 .1309 .1228 .1308 .1231 

       
Medium 10 .4123  .4008 .3996 .3964 .4051 .4104 

30 .2309  .2255 .2997 .2271 .2709 .2287 
100 .1251  .1229 .2635 .1243 .2072 .1243 

       
High 10 .4265  .3999 .4982 .4054 .4573 .4157 

30 .2368  .2258 .4465 .2332 .3572 .2328 
100 .1265  .1228 .4357 .1275 .3205 .1263 

       
Extreme 10 .4931  .3997 1.0170 .4784 .7740 .4429 

30 .2772  .2260 1.0665 .2769 .7711 .2501 
100 .1522  .1228 1.0801 .1513 .7687 .1358 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = 
Unweighted average of MSresideual from ANCOHET and MSA x X; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error 
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Table 23. 
True Standard Deviation and Average Standard Errors for Tests Conducted at the Center of 
Accuracy, Three-Group Scenario 

  𝑌 − 𝑌       

Extent of 
Heterogeneity 
of Regression 

 Estimate  Average Standard Error  

n 
Standard 
Deviation 

 
HET Inter ANC UNW Chen 

  
None 10 .4078  .4000 .3432 .3911 .3759 .4061 

30 .2274  .2256 .1977 .2242 .2176 .2266 
100 .1217  .1228 .1076 .1226 .1190 .1230 

       
Low 10 .4016  .4005 .3499 .3923 .3799 .4070 

30 .2267  .2256 .2099 .2246 .2237 .2270 
100 .1232  .1229 .1313 .1228 .1309 .1232 

       
Medium 10 .4089  .4007 .4000 .3970 .4055 .4105 

30 .2281  .2252 .2977 .2269 .2697 .2285 
100 .1237  .1228 .2624 .1242 .2066 .1241 

       
High 10 .4181  .4006 .5005 .4072 .4593 .4165 

30 .2373  .2255 .4499 .2331 .3591 .2326 
100 .1276  .1228 .4355 .1275 .3203 .1263 

       
Extreme 10 .4903  .3991 1.0210 .4795 .7769 .4428 

30 .2761  .2258 1.0616 .2763 .7677 .2497 
100 .1518  .1227 1.0800 .1512 .7686 .1357 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = 
Unweighted average of MSresideual from ANCOHET and MSA x X; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error 
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Table 24. 
True Standard Deviation and Average Standard Errors for Tests Conducted at µX, Three-Group 
Scenario 

  𝑌 − 𝑌       

Extent of 
Heterogeneity 
of Regression 

 Estimate  Average Standard Error  

n 
Standard 
Deviation 

 
HET Inter ANC UNW Chen 

  
None 10 .4154  .4081 .3415 .3905 .3754 .4141 

30 .2257  .2266 .1969 .2239 .2170 .2277 
100 .1236  .1230 .1086 .1226 .1194 .1232 

       
Low 10 .4129  .4078 .3484 .3904 .3781 .4143 

30 .2246  .2268 .2116 .2244 .2245 .2281 
100 .1237  .1230 .1312 .1228 .1309 .1233 

       
Medium 10 .4180  .4094 .4013 .3968 .4062 .4191 

30 .2286  .2269 .2989 .2272 .2706 .2301 
100 .1236  .1230 .2623 .1243 .2066 .1244 

       
High 10 .4164  .4081 .4987 .4059 .4576 .4237 

30 .2248  .2270 .4474 .2332 .3577 .2341 
100 .1226  .1230 .4365 .1275 .3210 .1265 

       
Extreme 10 .4123  .4096 1.0138 .4792 .7724 .4515 

30 .2256  .2273 1.0657 .2767 .7705 .2513 
100 .1235  .1229 1.0800 .1512 .7686 .1359 

Note. HET = ANCOHET; Inter = Interaction; ANC = Standard ANCOVA error; UNW = 
Unweighted average of MSresideual from ANCOHET and MSA x X; Chen = Chen (2006)’s suggested 
increment to the ANCOHET standard error 
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Appendix A 

 
Derivation of the Standard Error of the Difference across Groups in Predicted Scores in 

Analysis of Covariance: Implications of Heterogeneity of Regression and a Random 

Covariate 

Heterogeneity of regression in analysis of covariance (ANCOVA) can be assessed by 

comparing a model that allows for a different slope in each of the j = 1, 2, … a groups 

with one that assumes a common within-group slope: 

 
       Full :                                

Restricted:                        
ij j j ij ij

ij j ij ij

Y X

Y X

   
   

   
   

  

Rogosa (1980) has shown that, if there is heterogeneity of regression in the population, 

the typical ANCOVA test of treatment effects is not distributed appropriately. An 

alternative procedure in the presence of mild to moderate heterogeneity suggested by 

Rogosa (1980) is to compute the adjusted treatment sum of squares as in a typical 

ANCOVA but use as an error term the error associated with the ANCOHET model, just 

as would be done in ANOVA when the interaction was nonsignificant. This provides a 

test of the hypothesis that there are no treatment effects in the case of a covariate whose 

values are assumed to be fixed, and achieves an unbiased estimate of residual variance 

that does not assume homogeneity of regression at the cost of only a – 1 degrees of 

freedom for error (see Appendix B for further discussion of Rogosa’s “safer ANCOVA”). 

To characterize the treatment effect more completely, it is desirable with moderate to 

pronounced heterogeneity to assess the treatment effect as a function of the value of the 

covariate. If the traditional ANCOVA model were exactly right the vertical distance 
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between the population regression lines would be a constant for all values of X. When 

there is reason to believe this is not the case, one would like to estimate the magnitude of 

the treatment effect as a function of X and have a way of assessing its significance. A test 

of the treatment effect at a given X value may be arrived at by developing an estimate of 

the treatment effect somewhat like is done in a standard ANCOVA test of the difference 

between adjusted means—that is, the difference between the predicted scores for 

different conditions at a given value of X—and then deriving the variability of this 

estimated difference. A ratio of the square of the estimated effect to its variance estimate 

can then be used as a statistical test. 

The basic problem involves the estimation of the vertical distance between regression 

lines. Because this is difficult to envision, let us begin our consideration of this problem 

by referring to the simple regression situation involving a single group with one predictor 

and one dependent variable. Besides deriving estimates of the dependent variable in this 

case using a simple regression equation, we can also relatively easily derive estimates of 

the variability of our predictions.  The model for this situation is typically written in 

standard regression texts (e.g. Neter, Wasserman, & Kutner, 1983, p. 60) as 

 0 1i i iY X       

where the intercept 0  and slope 1  parameters are to be estimated by least squares, the 

iX  values are assumed to be fixed constants, and the errors of prediction i  are assumed 

to be normally distributed with mean of 0 and variance 2  . 

We will begin our derivation by considering a deviation form of the regression 

equation using the least squares estimates of the parameters 
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1

1 0
2

1

ˆ ˆ and 
( )

n

i i
i

n

i
i

X X Y Y
b Y bX

X X
 



 
   






. Let Xp be the particular X value at which 

we wish to estimate Y, and let the corresponding predicted value ˆ
pY  be the estimated 

mean of the conditional probability distribution. Then, in this simple (i.e., two-variable) 

regression situation, we can write 

ˆ ( – )p pY Y b X X       

 (A.1) 

Under the assumption that the X values are fixed and that the errors are normally 

distributed in the population, the variability of ˆ
pY  can be shown1 to be decomposable into 

the following two components: 

2 2 2 2
ˆ ( ) (A.2)p bYYp

X X      

The first component, the variability of Y  is 2 2 /
Y

n  . However, we now have the 

magnitude of the estimate of error depending on the X value as well as the variability in 

Y. That is, because β is not known but is estimated by a statistic, we expect our slope 

estimates to vary somewhat from sample to sample. How much difference the error in b 

makes gets larger and larger as Xp moves farther away from X .  

The variance of our slope statistic itself can be derived fairly easily once we rewrite 

the definitional formula for the slope in a convenient form, namely 

(A.3)i ib k Y  
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where the ki are simple functions2 of the X values: 

2
(A.4)

( )
i

i
i

X X
k

X X





 

Now, because the variance of a linear combination of independent random variables is 

simply the sum of the original variances, each weighted by the square of the original 

weight, we immediately have the following expression for 2
b , the variance of the slope 

estimate b: 

 2 2Var ( ) =Var Var( ) (A.5)b i i i ib k Y k Y     

where Var is to be read as “the variance of” the expression that follows within 

parentheses. Making use of the fact that the variances of Yi are constant and equal to σ2, 

then substituting for ki we obtain 

2

2 2 2 2
2

2
2 2

2 22

=
( )

(A.6)
( ) 1

( )( )

i
b i

i

i

ii

X X
k

X X

X X

X XX X

  

 

 
  

  


 
  

  




 

We are now ready to substitute our results into Equation A.2 to obtain the final form 

of the variability of our estimated conditional mean ˆ
pY : 

2 2
2 2
ˆ 2

2
2

2

( )
( )

(A.7)
( )1

( )

pY
i

p

i

p
X X

n X X

X X

n X X
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Thus, we have now derived the variance of the estimated mean Y score for a particular X 

score Xp in simple regression, and we have shown that it is more variable than the sample 

mean Y score, and increasingly so as Xp departs more from X . 

 Neter, Wasserman, and Kutner (1983, pp. 83-84) assert that, if X is random, 

estimation and testing can proceed in simple regression just as if X were fixed, as long as 

the following two conditions are met: 

1.  The conditional distributions of Y given Xi are normal. 

2.  The Xi  are independent random variables whose distribution does not depend 

on the intercept or slope parameters, or on the variance of the errors, 2  .     

Assuming these conditions obtain, we can write the expected variance of a prediction 

shown in Equation A.7 in terms of the population variance of the X scores, 2
X .  Given 

the denominator of the term shown on the right in brackets above is the numerator of the 

sample variance, 2
Xs , and  

    2

2 2

1
i

X X

X X
s

n


 
  

 
 


E E   

In the case of random X, our model would have two sources of random variability, X and 

error, so we now explicitly denote the sigma in Equation A.7 as referring to the error 

variability, i.e. 2
  .  Thus, in the case of random X we could write the variance of the 

predicted scores as:
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2
2 2
ˆ 2

( )1
(A.8)1

p

Y
X

p

X X

n n 


 
  

  

 

A similar but somewhat different result obtains in ANCOVA. The similarity concerns 

the variance of the estimated mean Y score for a particular X score in a particular group. 

For X = Xp and group j, with the assumption of homogeneity of regression, the slope 

would be estimated by the pooled within-group slope, W
ˆ b  , and the intercepts would 

be estimated as Wˆˆ j j jY b X    .  Hence, the predicted scores at pX  could be written: 

        W W W
ˆˆ ˆˆ               ( )p j p j j p j p jY X Y b X b X Y b X X                          

(A.9)  

Thus, as in the simple-regression situation, the variance of our estimated conditional 

mean Y score increases as Xp departs from jX : 

2
2 2
ˆ W W

2
2

2

Var( ) + Var[ ( )] = ( ) Var( )

(A.10)
( )1

( )

j p j p jY
j

p j

j ij j
j i

p j
Y b X X X X b

n

X X

n X X





   

 
     



 

 

(The intermediate steps of the derivation follow along the same lines as those for 

Equation A.7.) However, in ANCOVA, interest centers on the predicted scores at the 

grand mean on X (i.e., the adjusted Y means) and in the vertical distance between them. 
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Letting Xp = X  in Equation A.9 results in the standard equation for the adjusted mean in 

group j: 

W W
ˆ ( ) ( )j j j j jY Y b X X Y b X X            

Thus, the square of the standard error of this adjusted mean, following Equation A.10, is 

2
2 2
ˆ 2

( )1
(A.11)

( )j

j

Y
j ij j

j i

X X

n X X
 

 
     


 

In one-way designs, the contrasts that are most often of interest are pairwise 

comparisons between groups. Because interpretation of a treatment effect is considerably 

more complicated in the case of heterogeneous regressions, where the magnitude of the 

difference between groups changes continuously as a function of the covariate, it is even 

more likely that contrasts would focus on only two groups at a time. Thus, for these 

reasons and for simplicity of development in what immediately follows, we consider only 

the two-group case. In the two-group case, under the assumption of homogeneous slopes, 

we would be most interested in the difference between the two adjusted means: 

1 2 1 W 1 2 W 2

1 2 W 1 2

ˆ ˆ ( ) [ ( )]

( ) ( )

Y Y Y b X X Y b X X

Y Y b X X

      

   
      (A.12) 

Notice that, although the comparison is a comparison of the estimated Y means at X , X  

does not appear in the final form of Equation A.12. Furthermore, this would be true 

regardless of the particular value Xp at which we might compute the difference between 

our estimates of the conditional Y means. Thus, it perhaps should not be surprising that, 
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although it is unlike the simple regression situation, the standard error of this estimated 

treatment effect does not depend on the value of X at which we estimate it. That is, when 

homogeneous slopes are assumed, the precision of our estimate of the treatment effect is 

“maintained for all values of X” (Rogosa, 1980, p. 311), with the variance of our estimate 

in Equation A.12 being 

2
2 2 1 2
ˆ ˆ 2

1 2
1 2

( )1 1
(A.13)

( )Y Y
ij j

j i

X X

n n X X
 



 
      


 

This variance expression is like those for the conditional mean (in Equation A.7) and for 

the adjusted mean (in Equation A.11) in that there is a component for the variability of 

the mean estimates and another component for the variability of the slope estimate. For 

the component reflecting the mean estimates, because we now are concerned with the 

difference between two independent group means (see Equation A.12), the variance of 

their difference is the sum of the variances of each mean separately. For the component 

reflecting the slope estimate, the variance of the slope is simply multiplied, as in 

Equations A.7 and A11, by the square of the relevant coefficient, which here is 

 1 2X X as shown in Equation A.12. We can estimate the variance of the difference in 

adjusted means by replacing σ2 in Equation A.13 by the mean square error associated 

with the traditional ANCOVA full model. Denote this mean square error s2. Thus,  (N – 

3)s2 would be equal to the residual sum of squares associated with the model using a 

common, pooled estimate of the slope in this two-group case. 
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In the case where the covariate is considered to be a random variable, and the 

distribution of the dependent variable and the covariate is bivariate normal, the consistent 

conclusion of statisticians (e.g., Scheffé, 1959, pp. 195-197) and behavioral science 

methodologists (e.g. Huitema, 1980, p. 111) is that, with the conventional assumption of 

homogeneity of regression, tests of the treatment effect in ANCOVA and the regression 

of the dependent variable on the covariate can be conducted in exactly the same fashion 

as when the covariate was considered to be fixed.  As Winer,  Brown and Michels (1991) 

affirmed, “the analysis of covariance need not be restricted to the case in which X is a 

fixed variable” (1991, p. 770).   Crager (1987) reached a similar conclusion asserting that 

with a random covariate, the usual “ANCOVA estimates of the slope parameter and 

treatment effect contrasts are unbiased” and “the usual ANCOVA treatment effect 

contrast t-tests are valid significance tests for treatment effects” (1987, p. 895).   In his 

derivations, Crager (1987, p. 901) suggests relating one part of the formula for the 

variance of the difference in adjusted means shown in Equation A.13 to Student’s t 

distribution.  In the case of a two-group, equal-n design, Crager states that the variance of 

this difference could be expressed, in the case of a random covariate, as follows:   

2
2 2 2 1 2
ˆ ˆ 2 2

1 1 2 2
1 2

( )2
(A.14)

( ) ( )Y Y
i i

i i

X X

n X X X X
  



 
             

 
E

 

Note that the last term within brackets above can be seen to be directly related to a 

conventional two-group t test comparing the means on the X variable, which in the case 

of equal-n could be written as 
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1 2

2 2
1 1 2 2

 (A.15)
( ) ( )

2

2 1

i i
i i

X X
t

X X X X

n n




  
 
   

 

  

Squaring this t statistic and re-arranging terms, we could write this as 

 

   2

1 22
2 2

1 1 2 2

1 (A.16)
( ) ( )i i

i i

X X
t n n

X X X X


 

   
 

Thus, we see that  1n n  times the term within brackets on the right in Equation A.14 is 

distributed as a 2t   variable with  2 1n  degrees of freedom, or equivalently as an F  

with 1 and  2 1n degrees of freedom.  Given the expected value of an F random 

variable with denomdf  denominator degrees of freedom is  denom denom/ 2df df  , we can 

write the expected value of the term within brackets on the right in Equation A.14 as 

 

 
 
     

2
1 2
2 2

1 1 2 2

2 1( ) 2 2 1 1 1

( ) ( ) 2 4 1 2 2 1 2i i
i i

nX X n

X X X X n n n n n n n n

                                    
 

E

  

Thus, the variance of the difference in adjusted means in ANCOVA with a random 

covariate shown in Equation A.14 could be written as 

 

 
2 2
ˆ ˆ
1 2

2 1
(A.17)

2Y Y n n n
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To understand the differing impacts of the various contributions to this variance, it is 

worth noting that even with a random covariate, the variability contributed by the two 

group means indicated by the 2/n term in Equation A.17 will be 2(n – 2) times as large as 

the variability due to the sampling error in the slope estimate and the sampling error in 

the group means of the random covariate.  For example, with n = 10, 2/n would be 16 

times as large as 1/n(n -2), and with n = 50, 2/n would be 96 times as large as 1/n(n -2). 

We are now finally ready to return to the problem of estimating the vertical distance 

between two nonparallel regression lines and determining the variability of that estimate.  

We begin by returning to the case of X being fixed where the results are well understood. 

These results build on those we have presented previously for the simple regression 

situation and for ANCOVA with homogeneous slopes. The prediction equation for the 

ANCOHET model can be written: 

 

ˆ  (A.18)ij j j ijY a b X 

 

Thus, if we substitute for Xij some particular value of the covariate—for example, Xp—

the difference in estimated conditional means for the two groups would be 

     1 2 1 1 2 2 1 2 1 2
ˆ ˆ                 –    –        –  –                             A.19p p p p pY Y a b X a b X a a b b X    

  

An alternative way of writing this estimated difference, in which we substitute the 

expressions for our estimated values of the intercepts, makes it easier to understand the 



97 
 

variance estimate. That is, we can write the vertical distance between the two regression 

lines: 

1p̂Y  – 2
ˆ

pY  = ( 1Y  – b1 1X ) – ( 2Y  – b2 2X ) + (b1 – b2)Xp 

                                = 1Y  – 2Y  + b1(Xp – 1X ) – b2(Xp – 2X )                       

(A.20)  

To determine the variability of this estimate, we must consider not only the sampling 

error of the Y group means, but also both the variance of our estimate of b1, which equals 

σ2/Σi(Xi1 – 1X )2, and the variance of our estimate of b2, σ2/Σi(Xi2 – 2X )2. Thus, similar to 

Equation A.13, but now allowing for heterogeneous slopes, the variability of our estimate 

of the vertical distance between the lines with X being regarded as fixed can be written: 

2

2 2
1 22 2

ˆ ˆ 2 2
1 2 1 1 2 2

1

( ) ( )1 1
(A.21)

( ) ( )p

p p

Y Y
i i

i i

p

X X X X

n n X X X X
 



 
       

  
 

 

A comparison with the variance of the estimate of a single mean in regression (Equation 

A.7) or ANCOVA (Equation A.10) shows that the variance of the distance between two 

regression lines is simply the sum of the variances of conditional means estimated by 

each. We can estimate this variance, and thereby move toward carrying out a test of the 

significance of the difference between the regression lines at any arbitrary value of X, by 

simply replacing σ2 in Equation A.21 by the mean square error associated with the model 

allowing for heterogeneous slopes, which we denote 2
hets . In the two-group situation in 

which we estimate a slope and an intercept for each group, our model would have N – 4 
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degrees of freedom. Thus, a test of the significance of the difference between the two 

lines—that is, of the treatment effect at an X value Xp—would be carried out as a simple t 

test with N – 4 degrees of freedom. That is, 
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where the denominator is 
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with shet being the square root of 2
hets , which, as we suggested previously, is the sum of 

squares error EF divided by N – 4 for the ANCOHET Full model: 

 

Full :     (A.24)ij j j ij ijY X      
  

As can be seen in this expression for the estimated standard error (Equation A.23), the 

precision of our estimate of the treatment effect decreases the farther the particular point 

Xp at which we are evaluating it is from the group means of the covariate. This is similar 

to what we saw in the simple regression situation (Equation A.7). Thus, if Xp is chosen 

near the center of the distribution of X scores, the accuracy of our estimation of the 

treatment effect increases. In fact, it turns out that the accuracy is greatest at a point 

corresponding to a weighted average of the group means on the covariate (with the 
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weight for each mean being the sum of squares on the covariate in the other group). This 

point is referred to in the literature as the center of accuracy, denoted Ca, and so we have: 
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 Surprisingly, the vertical distance between the two nonparallel regression lines at the 

center of accuracy corresponds exactly to the estimate of the difference between adjusted 

means in a typical ANCOVA assuming a common slope. Thus, one can interpret the 

difference between adjusted means in ANCOVA as the treatment effect for an “average” 

individual—that is, an individual whose X score is roughly at the center of the 

distribution of X scores—regardless of whether the regressions are parallel. The 

difference between the ANCOHET and the ANCOVA tests of this difference is in the 

error term. The ANCOVA test is perfectly valid only if the assumption of parallelism is 

exactly met. The ANCOHET test is actually more like the tests commonly used in 

factorial ANOVA in that it is valid regardless of whether there is an interaction in the 

population (nonparallelism). The form of the error term for the ANCOHET test of the 

treatment effect at the center of accuracy reduces to 
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 If X is a random variable and the slopes are heterogeneous, the implications for 

the variability of the difference in predicted means in the two groups are not well 

understood.  Chen (2006) considered this situation and argued when tests are conducted, 

as is often the case, at the observed grand mean on the covariate, that is, letting pX X , 

that the standard error shown in Equation A.23 would be too small because it ignores the 

sampling error that causes X  to depart from X .  He suggested that an expression for the 

variance of a contrast in means like that shown in Equation A.21, which was derived 

under the assumption of a fixed covariate, would need to be increased when the covariate 

was random by an amount dependent on the sampling variability in X and on the 

difference in the slopes in the two groups; Chen specifically indicated (2006, p. 4163) the 

needed increment was  

 

     
2

2
2 2

1 2 1 2
1
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n n

     


  

Although Chen simply said about this result “it can be shown” rather than presenting a 

proof, it appeared he was presuming the population slopes could be treated as known, 

fixed constants rather than themselves being subject to sampling variability.  Thus, it 

seems plausible that the needed increment might be even greater if the sampling 

variability in the slopes was also considered. 

This conjecture was leant some indirect support by recent work on a different but 

related issue. Instead of the situation considered by Chen (2006) that is the focus of the 

current dissertation where the treatment factor is a fixed factor and only the covariate is 
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treated as random, a recent article by Liu, West, Levy, and Aiken (2017) considered the 

situation where one is interested in two random predictors, X and Z, and their interaction.  

What is analogous to the difference in adjusted means in that situation is what Liu et al. 

(2017), following Cohen, Cohen, West and Aiken (2003), term the simple slope of the 

outcome Y on the predictor X at the sample mean of Z.  Their mathematical derivations 

indicate that the variability in the estimate of this simple slope is extremely complex, 

involving the sum of more than 10 different terms, with the final result depending not 

only on the sampling variability in the estimated Z mean and sampling variability in the 

slope estimates but also the covariances of various terms such as the intercept and slope, 

the intercept and mean, and the slope and mean.  Because of this complexity, Liu et al. 

(2017) proposed comparing an estimated effect in their situation to a distribution 

generated for each empirical data set collected by use of bootstrapping methods applied 

to that data set.   

It is hoped that in the simpler situation of a fixed treatment factor considered in 

the current dissertation that the variability in the estimate of the treatment effect in the 

case of heterogeneous regressions on a random covariate might be adequately 

approximated by some simpler method.  Toward that end, multiple estimates of 

denominator error terms are considered and evaluated in terms of the tests and confidence 

intervals that result from using such error terms.  

1 The proof makes use of the fact that both Y  and b can be expressed as linear 
combinations of the Yi and that the covariance of Y  and b can be shown to be zero. 
2 This is a legitimate rewriting of the definitional formula for the slope because

    i i i iX X Y Y X X Y      . This in turn is true because 

       ,i i i i iX X Y Y X X Y X X Y          but     0i iX X Y Y X X       

because the sum of the deviations from the mean must equal zero. Thus, we have 



102 
 

2

( )

( )

ii

i

X X Y
b

X X









 

which may be rewritten 
 

2

( )

( )

i

i

i

X X
b Y

X X










 

  



103 
 

References 

Chen, X.  (2006).  The adjustment of random baseline measurements in treatment effect 

estimation.  Journal of Statistical Planning and Inference, 136, 4161-4175. 

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003).  Applied multiple 

regression/correlation analysis for the behavioral science (3rd ed.).  New York:  

Routledge. 

Crager, M. R. (1987).  Analysis of covariance in parallel-group clinical trials with 

pretreatment baselines.  Biometrics, 43, 891-901. 

Huitema, B. E.  (1980).  The analysis of covariance and alternatives.  New York:  John 

Wiley & Sons. 

Liu, Y., West, S. G., Levy, R., & Aiken, L. S. (2017).  Tests of simple slopes in multiple 

regression models with an interaction:  Comparison of four approaches.  

Multivariate Behavioral Research, 52, 445-464. 

Neter, J., Wasserman, W., & Kutner, M. H. (1983).  Applied linear regression models.  

Homewood, IL:  Irwin. 

Rogosa, D. (1980).  Comparing nonparallel regression lines.  Psychological Bulletin, 88, 

307-321. 

Scheffé, H.  (1959).  The analysis of variance.  New York:  John Wiley & Sons. 

Winer, B. J., Brown, D. R., & Michels, K. M.  (1991).  Statistical principles in 

experimental design.  (3rd ed.).  New York:  McGraw-Hill. 



104 
 

Appendix B 

On the Rogosa “Safer” Test of the Group Effect 

 

 As noted by Maxwell, Delaney, and Kelley (2018, p. 528), one of the more 

surprising results of ANCOVA analyses with heterogeneous slopes (or “ANCOHET”) is 

that in the two-group case, as shown by Rogosa (1980, Equation 7), the difference in 

predicted values in the two groups at the center of accuracy is exactly equal to the 

difference in adjusted means in a conventional ANCOVA.  The distribution of the error 

term used in a conventional ANCOVA, as also noted by Rogosa (1980, p. 311), is exactly 

correct only if the within-group slopes are perfectly homogeneous.  Because of this 

Rogosa proposed what he termed a “safer ANCOVA” (1980, p. 312), where the 

numerator is like that in a conventional ANCOVA but the denominator is computed 

using a model allowing for heterogeneous regressions.  It was this procedure that was, 

reasonably enough, used by Harwell and Serlin (1988) in conducting what they denoted 

as a Rogosa F test (e.g., in their Table 8, p. 275). 

 Thus, it is important to understand how the Rogosa “safer” F test of the group 

effect compares to the test of the group effect at a given value of the covariate (e.g., as 

developed in Appendix A). One challenge in relating Rogosa’s (1980) formulas to a 

traditional ANOVA or ANCOVA formulation of an F test of a group effect is that he 

describes tests only for the two-group situation and approaches these as one might if one 

were doing a two-group t test in which the numerator only has the difference between 

adjusted means, rather than being a mean square for an effect that is to be compared to a 

mean square error as in a conventional ANCOVA F test. 
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 To think of how the numerator of the ANCOVA F compares to the numerator of 

an ANCOHET F, it is helpful to think of the multiplier of the error estimate in the 

denominator of the Rogosa approach as a term that could be shifted to the numerator 

when one wants to approximate the numerator used in a conventional ANCOVA.  The 

basic idea is seen clearly if one reverts back to a simple two-group t test and relates this 

to the F that would be used if an ANOVA were performed instead. 

 A conventional two-group, independent t test might be written: 
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Y Y
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       (B.1) 

Rogosa’s tests are expressed in a fashion analogous to the square of such a form of the t 

test, but keeping the multiplier of the variance estimate in the denominator, i.e. 

 2

1 22

2

1 2

1 1

Y Y
t

s
n n
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If one were doing an ANOVA of these data, the term involving sample sizes would in 

essence be shifted to the numerator of the test statistic, which if one first expressed the 

reciprocals of the sample sizes using a common denominator before moving to the 

numerator would result in the following form of the test statistic: 

     2
1 2

2 2 1 2
1 2 1 2 1 22

2
2 2 2 1

1 2 1 2

1 1

n n
Y Y

Y Y Y Y n n
F t

sn n
s s

n n n n

 
       

   
   

      (B.3) 



106 
 

Now in the equal-n case, the multiplier of the difference in group means would be just 

half of sample size in each group.  This results in a simple form that is clearly equal to the 

conventional ANOVA F given the difference in group means would be just twice the 

absolute value of the difference between either group mean and the grand mean: 
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(B.4) 

 Rogosa (1980) writes the F statistic used in a conventional ANCOVA in the first 

part of his Equation 11 in a form analogous to the square of a two-group t where the 

multiplier indicating the sample sizes is in the denominator rather than the numerator: 
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       (B.5)      

Now a conventional ANCOVA F would compute a numerator of MS for the group effect 

by shifting the multiplier to the numerator.  In the equal n  case this could be expressed as 

follows: 
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The multiplier of the squared difference in adjusted means will of course be less than 2

n

 

to the extent that the other term (i.e., the squared difference between group means on the 

covariate over that sum of squares within on the covariate) is nonzero.  The reason that 

using the ANCOVA numerator, as Harwell and Serlin apparently did in their Rogosa F, 

produces more Type I errors than the pick-a-point tests that one might carry out instead is 

that the multiplier shown in the numerator above will be larger than the one that would be 

used in a pick-a-point test.  That test could be expressed as (see Equations 19 and 20 of 

Appendix A):  
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  (B.7) 

The sum of the last two terms in the multiplier in the denominator will be larger than the 

last term in the ANCOVA denominator shown in Equation B.5 whenever the test is 

conducted at a point other than the true center of accuracy, as almost certainly would be 

the case in realistic situations with a random covariate.   Because the difference in 

adjusted mean in ANCOVA would be expected to be the same as that in the ANCOHET 

test, the difference in the adjusted numerator mean squares in the ANCOVA as opposed 

to the ANCOHET test will boil down to the difference in the multipliers.  One way of 

expressing this intuitively is that the estimation of a single pooled slope reduces the 

effective sample size per group less than does the estimation of two separate slopes in the 
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two groups.  Thus the numerator of the ANCOVA would be expected to be somewhat 

larger than that in the ANCOHET test, and hence may be positively biased. 
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Appendix C 

SAS Syntax Used to Simulate Data, Perform Data Analysis and Analyze Results 

 

 Presented in this appendix is an example of the SAS code used to generate and 

analyze the data for the simulations.  The syntax for the two-group case is presented first 

followed by the three-group case. Most of the syntax is to prepare for a macro program 

that can be called to generate the data for a specific cell of the design.  This macro 

program is a general framework that incorporates macro variables, whose values change 

based on user specification, to simulate data and generate the desired output. While the 

macro program is presented below, the following macro variables are used within the 

program. The only difference between the two-group and three-group macro variables is 

that the three-group program contains the additional macro variables ‘slope3’ and 

‘sampsize3’ as a result of having an additional group. 

 The nine macro variables, in order of appearance, are: 

1. numsamples – number of simulation samples, always 10,000 in this project, but 

could be specified as something else 

2. slope1 – unstandardized regression slope for the first group 

3. slope2 – unstandardized regression slope for the second group 

4. sampsize1 – sample size for the first group 

5. sampsize2 – sample size for the second group 

6. mean – constant added to produce difference in adjusted means (takes on a value 

of zero for the null conditions) 
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7. location – specifies the location at which the test of between group differences 

occurs. Can take on the following values: 

a. x 

b. xbar 

c. ca 

8. output – specifies the output to be generated. Can take on the following values: 

a. TypeI 

b. Power 

c. ci 

d. ci_width 

e. trueSD 

9. seed – establishes the starting seed for the random number generator, which is 

important for replicating results exactly 

Macro Program for Two-Group Conditions 

%macro ODSOff; /*Macro to turn off output for certain SAS procedures*/ 
ods graphics off; /*This prevents output from 10,000 ANCOHETs from being*/ 
ods exclude all; /*Displayed*/ 
ods noresults; 
%mend; 
%macro ODSOn; /*Macro to turn output back on*/ 
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 

%macro two_group_simulation(numsamples, slope1, slope2, sampsize1, sampsize2, 

mean, location, output, seed); 
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data CI_2grp; 
 call streaminit(&seed); 
 do sampleid=1 to &numsamples; *Loops over total number of simulations; 
 do i=1 to (&sampsize1 + &sampsize2); *Loops over total sample size; 
  x = rand("Normal", 0, 1);   *Randomly generates x 
values from Normal Distribution with mean = 0 and standard deviation = 1; 
  e = rand("Normal", 0, 1);   *Randomly generates error 
values from Normal Distribution with mean = 0 and standard deviation = 1; 
   if i LE (&sampsize1) then do; 
    group=0;     
    y = &mean + &slope1*x + e; *Creates Y values based on 
macro values of mean and slope and randomly generated values of x and e for first group; 
   end; 
   if i GT (&sampsize1) then do; 
    group = 1; 
    y = &slope2*x + e; *Creates Y values for second group; 
   end; 
  output; 
 end; 
end; 
run; 
 
proc sort data=work.ci_2grp;by sampleid group;run; 
 
/*Calculates Correlations and Saves to Output Dataset*/ 
%odsoff; 
proc corr data=work.ci_2grp outp=corr; 
by sampleid group; 
var x; 
with y;run; 
%odson; 
 
data work.corr_grp0;set work.corr (where=(_type_="CORR" and group=0));drop 
_name_ _type_ group;rename x=corr_grp0;run; 
data work.corr_grp1;set work.corr (where=(_type_="CORR" and group=1));drop 
_name_ _type_ group;rename x=corr_grp1;run; 
data work.corr_both;merge work.corr_grp0 work.corr_grp1;by sampleid;run; 
 
/*Calculates Mean of X for Each Simulation*/ 
%odsoff; 
proc means data= CI_2grp mean stddev; 
by sampleid; 
var x; 
output out=simmean mean=xbar var=var;run; 
proc means data=CI_2grp mean stddev; 
by sampleid group; 
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var x; 
output out=simmean_grp mean=xbar var=var n=n;run; 
%odson 
 
 
proc transpose data=simmean_grp out=simmean_trans_mean 
(rename=(col1=xmean_grp0 col2=xmean_grp1)); 
var xbar; 
by sampleid; 
run; 
proc transpose data=simmean_grp out=simmean_trans_var (rename=(col1=xvar_grp0 
col2=xvar_grp1)); 
var var; 
by sampleid; 
run; 
proc transpose data=simmean_grp out=simmean_trans_n (rename=(col1=n_grp0 
col2=n_grp1)); 
var n; 
by sampleid; 
run; 
 
/*Merge Group and Overall Means for X*/ 
data simmean_bygroup;merge simmean_trans_mean simmean_trans_var 
simmean_trans_n;drop _name_;run; 
 
/*Merge mean of X for Each Simulation with Original Data*/ 
data CI_2grp_merge; merge CI_2grp simmean simmean_trans_mean simmean_trans_var 
simmean_trans_n corr_both end=lastobs; 
 by sampleid; 
SSx_grp0=(n_grp0-1)*xvar_grp0;  *Calculate Sums of Squares for Each Group; 
SSx_grp1=(n_grp1-1)*xvar_grp1; 
Ca=((SSx_grp1*xmean_grp0)+(SSx_grp0*xmean_grp1))/(SSx_grp1+SSx_grp0);  
/*Calculate Center of Accuracy*/ 
Xdev_Xbar= x-xbar;     /*Centers X around X_bar*/  
Xdev_Ca = x-ca;     /*Centers X around the Center of Accuracy*/ 
drop _type_ _freq_ _name_; 
run; 
 
/*Chen Calculation Dataset*/ 
data chen_calc;set work.ci_2grp_merge;by sampleid; if first.sampleid;drop i x e y 
xdev_xbar xdev_ca;run; 
 
data work.chen_calc;set work.chen_calc; 
chen_incr= ((corr_grp0-corr_grp1)*(corr_grp0-corr_grp1))*(var/(n_grp0+n_grp1)); 
partial_chen_incr=2.3*chen_incr; 
run; 
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/*Perform ANCOHET for Each Simulation Iteration based on Test Location and Output 
Results to ANCOHET_Stat Dataset*/ 
%if &location= xbar %then %do; 
%odsoff 
proc glm data=CI_2grp_merge outstat=ANCOHET_stat; 
 by sampleid; 
 class group; 
 model y = xdev_xbar group group*xdev_xbar/solution; 
 lsmeans group/ pdiff=all cl at xdev_xbar = 0 ; 
 ods output lsmeans=lsmeans_y; 
run;quit; 
%odson 
 
proc transpose data=work.lsmeans_y out=lsmeans_y_trans 
(rename=(col1=y_lsmean_grp0 col2=y_lsmean_grp1)); 
var lsmean; 
by sampleid; 
run; 
data work.lsmeans_y_trans;set work.lsmeans_y_trans;drop _name_ _label_;run; 
%end; 
 
%if &location=ca %then %do; 
%odsoff 
proc glm data=CI_2grp_merge outstat=ANCOHET_stat; 
 by sampleid; 
 class group; 
 model y = xdev_ca group group*xdev_ca/solution;  
 lsmeans group/ pdiff=all cl at xdev_ca = 0 ; 
 ods output lsmeans=lsmeans_y; 
run;quit; 
%odson 
 
proc transpose data=work.lsmeans_y out=lsmeans_y_trans 
(rename=(col1=y_lsmean_grp0 col2=y_lsmean_grp1)); 
var lsmean; 
by sampleid; 
run; 
data work.lsmeans_y_trans;set work.lsmeans_y_trans;drop _name_ _label_;run; 
%end; 
 
%if &location= x %then %do; 
%odsoff 
proc glm data=CI_2grp_merge outstat=ANCOHET_stat; 
 by sampleid; 
 class group; 
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 model y = x group group*x/solution; 
 lsmeans group/ pdiff=all cl at x = 0 ; 
 ods output lsmeans=lsmeans_y; 
run;quit; 
%odson 
 
proc transpose data=work.lsmeans_y out=lsmeans_y_trans 
(rename=(col1=y_lsmean_grp0 col2=y_lsmean_grp1)); 
var lsmean; 
by sampleid; 
run; 
data work.lsmeans_y_trans;set work.lsmeans_y_trans;drop _name_ _label_;run; 
%end; 
 
/*Save Sums of Squares and Degrees of Freedom from Individual ANCOHET Models 
and then Merge*/ 
data ANCOHET_stat;set ANCOHET_stat (where=(_type_ ne "SS1"));run; 
proc transpose data=ANCOHET_stat out=ancohetSS_wide prefix=SS; 
 by sampleid; 
 id _source_; 
 var SS; 
run; 
proc transpose data=ANCOHET_stat out=ancohetDF_wide prefix=df; 
 by sampleid; 
 id _source_; 
 var df; 
run; 
 
data ANCOHETstat_wide; merge ancohetss_wide ancohetdf_wide;by sampleid;drop 
_name_; 
run; 
 
/*Create Confidence Interval Data Set*/ 
data ci_info; set ci_2grp_merge;by sampleid; if first.sampleid;drop i x e group y 
xdev_xbar xdev_ca;run; 
data ci_info;merge work.ci_info lsmeans_y_trans ancohetstat_wide chen_calc;by 
sampleid;run; 
 
/*Calculate Quantities for Type I Error Rates, Power, and CI's*/ 
 
data work.ci_info;set work.ci_info; 
 
%if &location ne x %then %do; 
MSE_ANCOHET = (sserror/dferror); 
MSE_ANCOVA = 
(sserror+SSXdev_&location._group)/(dferror+dfXdev_&location._group); 
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MSE_interaction = (SSXdev_&location._group/dfXdev_&location._group); 
MSE_weight1 =  
(sserror+SSXdev_&location._group)/(dferror+dfXdev_&location._group); 
MSE_weight2 = (MSE_ANCOHET + MSE_Interaction)/2; 
%end; 
 
%if &location= x %then %do; 
Xp_diff_Xbar_grp0 = (0 - xmean_grp0)*(0 - xmean_grp0); 
Xp_diff_Xbar_grp1 = (0 - xmean_grp1)*(0 - xmean_grp1); 
 
MSE_ANCOHET = (sserror/dferror); 
MSE_ANCOVA = (sserror+SS&location._group)/(dferror+df&location._group); 
MSE_interaction = (SS&location._group/df&location._group); 
MSE_weight1 =  (sserror+SS&location._group)/(dferror+df&location._group); 
MSE_weight2 = (MSE_ANCOHET + MSE_Interaction)/2; 
%end; 
 
%if &location= xbar %then %do; 
Xp_diff_Xbar_grp0 = (xbar - xmean_grp0)*(xbar - xmean_grp0); 
Xp_diff_Xbar_grp1 = (xbar - xmean_grp1)*(xbar - xmean_grp1); 
%end; 
 
%if &location= ca %then %do; 
Xp_diff_Xbar_grp0 = (ca - xmean_grp0)*(ca - xmean_grp0); 
Xp_diff_Xbar_grp1 = (ca - xmean_grp1)*(ca - xmean_grp1); 
%end; 
 
ratio_grp0 = Xp_diff_Xbar_grp0/ssx_grp0; 
ratio_grp1 = Xp_diff_Xbar_grp1/ssx_grp1; 
ratio_01 = ((xmean_grp0 - xmean_grp1)*(xmean_grp0 - 
xmean_grp1))/(ssx_grp0+ssx_grp1); 
 
samp_inv = (1/n_grp0) + (1/n_grp1); 
 
Stderr_ANCOHET = sqrt(MSE_ANCOHET*(samp_inv + ratio_grp0 + ratio_grp1)); 
ANCOHET_variance=(stderr_ancohet)*(stderr_ancohet); 
stderr_ancohet2 = sqrt(mse_ancohet)*sqrt((samp_inv + ratio_grp0 + ratio_grp1)); 
Stderr_ANCOVA = sqrt(MSE_ANCOVA*(samp_inv + ratio_01)); 
Stderr_Interaction = sqrt(MSE_interaction*samp_inv); 
Stderr_Weight1 = sqrt(MSE_weight1*(samp_inv + ratio_01)); 
Stderr_Weight2 = sqrt(MSE_weight2*samp_inv); 
 
stderr_ancohet_chen=sqrt(ANCOHET_variance+chen_incr); 
stderr_partial_chen=sqrt(ANCOHET_variance+partial_chen_incr); 
 
%if &location ne x %then %do; 
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CV_ancohet=sqrt(finv(.95, dfgroup, dferror)); 
CV_ANCOVA=sqrt(finv(.95, dfgroup, (dferror+1))); 
CV_Interaction=sqrt(finv(.95, dfgroup, dfXdev_&location._group)); 
CV_Weight1=sqrt(finv(.95, dfgroup, (dferror+dfXdev_&location._group))); 
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+dfXdev_&location._group)/2))); 
%end; 
 
%if &location = x %then %do; 
CV_ancohet=sqrt(finv(.95, dfgroup, dferror)); 
CV_ANCOVA=sqrt(finv(.95, dfgroup, (dferror+1))); 
CV_Interaction=sqrt(finv(.95, dfgroup, df&location._group)); 
CV_Weight1=sqrt(finv(.95, dfgroup, (dferror+df&location._group))); 
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+df&location._group)/2))); 
%end; 
 
lsmeans_y_diff = y_lsmean_grp0 - y_lsmean_grp1; 
 
ci_halfwidth_ancohet=CV_ancohet*Stderr_ANCOHET; 
ci_lower_ancohet= lsmeans_y_diff-ci_halfwidth_ancohet; 
ci_upper_ancohet=lsmeans_y_diff+ci_halfwidth_ancohet; 
ci_width_ancohet=2*CV_ancohet*Stderr_ANCOHET; 
 
ci_halfwidth_chen=CV_ancohet*stderr_ancohet_chen; 
ci_lower_chen= lsmeans_y_diff-ci_halfwidth_chen; 
ci_upper_chen=lsmeans_y_diff+ci_halfwidth_chen; 
ci_width_chen=2*CV_ancohet*stderr_ancohet_chen; 
 
ci_halfwidth_chen_partial=CV_ancohet*stderr_partial_chen; 
ci_lower_chen_partial= lsmeans_y_diff-ci_halfwidth_chen_partial; 
ci_upper_chen_partial=lsmeans_y_diff+ci_halfwidth_chen_partial; 
ci_width_chen_partial=2*CV_ancohet*stderr_partial_chen; 
 
ci_halfwidth_ANCOVA=CV_ANCOVA*Stderr_ANCOVA; 
ci_width_ANCOVA=2*CV_ANCOVA*Stderr_ANCOVA; 
ci_lower_ANCOVA= lsmeans_y_diff-ci_halfwidth_ANCOVA; 
ci_upper_ANCOVA=lsmeans_y_diff+ci_halfwidth_ANCOVA; 
 
ci_halfwidth_interaction=CV_Interaction*Stderr_interaction; 
ci_width_interaction=2*CV_Interaction*Stderr_interaction; 
ci_lower_interaction= lsmeans_y_diff-ci_halfwidth_interaction; 
ci_upper_interaction=lsmeans_y_diff+ci_halfwidth_interaction; 
 
ci_halfwidth_weight1=CV_Weight1*Stderr_weight1; 
ci_width_weight1=2*CV_Weight1*Stderr_weight1; 
ci_lower_weight1= lsmeans_y_diff-ci_halfwidth_weight1; 
ci_upper_weight1=lsmeans_y_diff+ci_halfwidth_weight1; 
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ci_halfwidth_weight2=CV_Weight2*Stderr_weight2; 
ci_width_weight2=2*CV_Weight2*Stderr_weight2; 
ci_lower_weight2= lsmeans_y_diff-ci_halfwidth_weight2; 
ci_upper_weight2=lsmeans_y_diff+ci_halfwidth_weight2; 
 
%if &location= x %then %do; 
MU_adj_g0=&mean + (&slope1*0); 
Mu_adj_g1=&slope2*0; 
difference_population = mu_adj_g0 - mu_adj_g1; 
%end; 
 
%if &location = xbar %then %do; 
MU_adj_g0=&mean + (&slope1*xbar); 
Mu_adj_g1=&slope2*xbar; 
difference_population = mu_adj_g0 - mu_adj_g1; 
%end; 
 
%if &location = ca %then %do; 
MU_adj_g0=&mean + (&slope1*ca); 
Mu_adj_g1=&slope2*ca; 
difference_population = mu_adj_g0 - mu_adj_g1; 
%end; 
 
%if &location ne x %then %do; 
F_ANCOHET = (ssgroup/dfgroup)/(sserror/dferror); 
F_ANCOVA = 
(ssgroup/dfgroup)/((sserror+SSXdev_&location._group)/(dferror+dfXdev_&location._gr
oup)); 
F_interaction=(ssgroup/dfgroup)/(ssXdev_&location._group/dfXdev_&location._group); 
F_weight1=(ssgroup/dfgroup)/((SSXdev_&location._group + 
sserror)/(dfXdev_&location._group + dferror)); 
F_weight2 = (ssgroup/dfgroup)/(MSE_weight2); 
p_ANCOHET = 1-probf(F_ANCOHET,dfgroup,dferror); 
p_ANCOVA = 1-probf(F_ANCOVA,dfgroup,(dferror+dfXdev_&location._group)); 
p_interaction=1-probf(f_interaction,dfgroup,dfXdev_&location._group); 
p_weight1=1-probf(F_weight1, dfgroup, (dferror+dfXdev_&location._group));  
p_weight2=1-probf(F_weight2, dfgroup, ((dferror+dfXdev_&location._group)/2)); 
%end; 
 
%if &location=x %then %do; 
F_ANCOHET = (ssgroup/dfgroup)/(sserror/dferror); 
F_ANCOVA = 
(ssgroup/dfgroup)/((sserror+SS&location._group)/(dferror+df&location._group)); 
F_interaction=(ssgroup/dfgroup)/(ss&location._group/df&location._group); 
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F_weight1=(ssgroup/dfgroup)/((SS&location._group + sserror)/(df&location._group + 
dferror)); 
F_weight2 = (ssgroup/dfgroup)/(MSE_weight2); 
p_ANCOHET = 1-probf(F_ANCOHET,dfgroup,dferror); 
p_ANCOVA = 1-probf(F_ANCOVA,dfgroup,(dferror+df&location._group)); 
p_interaction=1-probf(f_interaction,dfgroup,df&location._group); 
p_weight1=1-probf(F_weight1, dfgroup, (dferror+df&location._group));  
p_weight2=1-probf(F_weight2, dfgroup, ((dferror+df&location._group)/2)); 
%end; 
 
RejectHO_ANCOHET = (p_ancohet<=.05); 
RejectHO_ANCOVA = (p_ANCOVA<=.05); 
RejectHO_Interaction = (p_interaction<=.05); 
RejectHO_Weight1 = (p_weight1<=.05); 
RejectHO_Weight2 = (p_weight2<=.05); 
Pop_ParamInCI_ancohet = (ci_lower_ancohet<difference_population & 
ci_upper_ancohet>difference_population); 
Pop_ParamInCI_ancohet_chen = (ci_lower_chen<difference_population & 
ci_upper_chen>difference_population); 
Pop_ParamInCI_ANCOVA = (ci_lower_ANCOVA<difference_population & 
ci_upper_ANCOVA>difference_population); 
Pop_ParamInCI_interaction = (ci_lower_interaction<difference_population & 
ci_upper_interaction>difference_population); 
Pop_ParamInCI_weight1 = (ci_lower_weight1<difference_population & 
ci_upper_weight1>difference_population); 
Pop_ParamInCI_weight2 = (ci_lower_weight2<difference_population & 
ci_upper_weight2>difference_population); 
run; 
 
%if &output= TypeI %then %do; 
proc freq data=ci_info; 
title1 "Type I Error Rates for"; 
title2 "b0=&slope1, b1=&slope2"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2"; 
title5 "at &location"; 
table RejectHO_ANCOHET RejectHO_ANCOVA RejectHO_Interaction 
RejectHO_Weight1 RejectHO_Weight2/nocum; 
run; 
%end; 
 
%if &output= Power %then %do; 
proc freq data=ci_info; 
title1 "Power Rates for"; 
title2 "b0=&slope1, b1=&slope2"; 
title3 "and"; 
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title4 "n0=&sampsize1, n1=&sampsize2"; 
title5 "at &location"; 
table RejectHO_ANCOHET RejectHO_ANCOVA RejectHO_Interaction 
RejectHO_Weight1 RejectHO_Weight2/nocum; 
run; 
%end; 
 
%if &output= ci %then %do; 
proc freq data=ci_info; 
title1 "Confidence Interval Coverage Rates for"; 
title2 "b0=&slope1, b1=&slope2"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2"; 
title5 "at &location"; 
table pop_paraminCI_ancohet pop_paraminCI_ancova pop_paraminCI_interaction 
pop_paraminCI_weight1 pop_paraminCI_weight2 
Pop_ParamInCI_ancohet_chen/nocum;run; 
%end; 
 
%if &output=ci_width %then %do; 
proc means data=ci_info n mean stddev min max; 
title1 "Average Confidence Interval Width for"; 
title2 "b0=&slope1, b1=&slope2"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2"; 
title5 "at &location"; 
var ci_width_ancohet ci_width_ancova ci_width_interaction ci_width_weight1 
ci_width_weight2 ci_width_chen ci_width_chen_partial; 
run; 
%end; 
 
%if &output= trueSD %then %do; 
proc means data=ci_info n mean stddev min max; 
title1 "True SD and Empirical SD"; 
title2"b0=&slope1, b1=&slope2"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2"; 
title5 "at &location"; 
var lsmeans_y_diff Stderr_ANCOHET Stderr_ANCOVA Stderr_Interaction 
Stderr_Weight1 Stderr_Weight2 stderr_ancohet_chen; 
run; 
%end; 
 
%mend two_group_simulation; 
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Macro Program for Three-Group Conditions 

%macro three_group_simulation(numsamples, slope1, slope2, slope3, sampsize1, 
sampsize2, sampsize3, mean, location, output, seed); 

data CI_3grp; 
call streaminit(&seed); 
do sampleid=1 to &numsamples; 
 do i=1 to (&sampsize1 + &sampsize2 + &sampsize3); 
  x=rand("Normal", 0, 1); 
  e=rand("Normal", 0, 1); 
   if i LE (&sampsize1) then do; 
    group = 0; 
    group_contrast=0; 
    y = &mean + &slope1*x + e; 
   end; 
  if i GT (&sampsize1) and i LE (&sampsize2+&sampsize1) then do; 
    group = 1; 
    group_contrast=1; 
    y = &slope2*x + e; 
   end; 
   if i GT (&sampsize1+&sampsize2) then do; 
    group=2; 
    group_contrast=1; 
    y = &slope3*x + e; 
   end; 
  output; 
 end; 
end; 
run; 
 
data ci_3grp;set ci_3grp; 
if group=0 then group_2grp=0; 
if group in (1,2) then group_2grp=1; 
run; 
 
/*Calculates Correlations and Saves to Output Dataset*/ 
%odsoff; 
proc corr data=work.ci_3grp outp=corr; 
by sampleid group; 
var x; 
with y;run; 
%odson; 
 
/*Calculates Correlations Grouping 1 and 2 Together*/ 
%odsoff; 
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proc corr data=work.ci_3grp outp=corr_2grp; 
by sampleid group_2grp; 
var x; 
with y;run; 
%odson; 
 
/*Assembles Correlation Data Sets */ 
data work.corr_grp0;set work.corr (where=(_type_="CORR" and group=0));drop 
_name_ _type_ group;rename x=corr_grp0;run; 
data work.corr_grp1;set work.corr (where=(_type_="CORR" and group=1));drop 
_name_ _type_ group;rename x=corr_grp1;run; 
data work.corr_grp2;set work.corr (where=(_type_="CORR" and group=2));drop 
_name_ _type_ group;rename x=corr_grp2;run; 
data work.corr_both;merge work.corr_grp0 work.corr_grp1 work.corr_grp2;by 
sampleid; 
avg_corr_1_2=mean(corr_grp1,corr_grp2);run; 
 
data work.corr_grp0_2grp;set work.corr_2grp (where=(_type_="CORR" and 
group_2grp=0));drop _name_ _type_ group_2grp;rename x=corr_grp0_other;run; 
data work.corr_grp1_2grp;set work.corr_2grp (where=(_type_="CORR" and 
group_2grp=1));drop _name_ _type_ group_2grp;rename x=corr_grp1_other;run; 
 
data work.corr_both; merge work.corr_both work.corr_grp0_2grp 
work.corr_grp1_2grp;by sampleid; 
corr_diff= avg_corr_1_2-corr_grp1_other;run; 
 
/*Calculates Mean of X for Each Simulation*/ 
%odsoff; 
proc means data= CI_3grp mean stddev; 
by sampleid; 
var x; 
output out=simmean mean=xbar var=var;run; 
proc means data=CI_3grp mean stddev; 
by sampleid group; 
var x; 
output out=simmean_grp mean=xbar var=var n=n;run; 
 
proc means data=ci_3grp mean stddev; 
by sampleid group_contrast; 
var x; 
output out=simmean_grp_contrast mean=xbar var=var n=n;run; 
%odson 
 
proc transpose data=simmean_grp out=simmean_trans_mean 
(rename=(col1=xmean_grp0 col2=xmean_grp1 col3=xmean_grp2)); 
var xbar; 
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by sampleid; 
run; 
proc transpose data=simmean_grp out=simmean_trans_var (rename=(col1=xvar_grp0 
col2=xvar_grp1 col3=xvar_grp2)); 
var var; 
by sampleid; 
run; 
proc transpose data=simmean_grp out=simmean_trans_n (rename=(col1=n_grp0 
col2=n_grp1 col3=n_grp2)); 
var n; 
by sampleid; 
run; 
 
proc transpose data=simmean_grp_contrast out=simmean_trans_mean_contrast 
(rename=(col1=xmean_grp0_contrast col2=xmean_grp1_contrast)); 
var xbar; 
by sampleid; 
run; 
proc transpose data=simmean_grp_contrast out=simmean_trans_var_contrast 
(rename=(col1=xvar_grp0_contrast col2=xvar_grp1_contrast)); 
var var; 
by sampleid; 
run; 
proc transpose data=simmean_grp_contrast out=simmean_trans_n_contrast 
(rename=(col1=n_grp0_contrast col2=n_grp1_contrast)); 
var n; 
by sampleid; 
run; 
 
data simmean;set simmean;drop _type_ _freq_;run; 
 
/*Merge Group and Overall Means for X*/ 
data simmean_bygroup;merge simmean_trans_mean simmean_trans_var 
simmean_trans_n simmean_trans_mean_contrast simmean_trans_var_contrast 
simmean_trans_n_contrast simmean;drop _name_;run; 
 
/*Merge mean of X for Each Simulation with Original Data*/ 
data CI_3grp_merge; merge CI_3grp simmean_bygroup corr_both end=lastobs; 
 by sampleid; 
 xbar=(xmean_grp0+xmean_grp1+xmean_grp2)/3; 
SSx_grp0=(n_grp0-1)*xvar_grp0;  *Calculate Sums of Squares for Each Group; 
SSx_grp1=(n_grp1-1)*xvar_grp1; 
SSx_grp2=(n_grp2-1)*xvar_grp2; 
SSx_grp1_contrast = (n_grp1_contrast-1)*xvar_grp1_contrast; 
grp0_weight=(ssx_grp1+ssx_grp2); 
grp1_weight=(ssx_grp0+ssx_grp2); 
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grp2_weight=(ssx_grp1+ssx_grp0); 
ca=((grp0_weight*xmean_grp0)+(grp1_weight*xmean_grp1)+(grp2_weight*xmean_grp
2))/(grp0_weight+grp1_weight+grp2_weight); 
Xdev_Xbar= x-xbar;          
     /*Centers X around X_bar*/  
Xdev_Ca = x-ca;          
     /*Centers X around the Center of Accuracy*/ 
run; 
 
/*Chen Calculation Dataset*/ 
data chen_calc;set work.ci_3grp_merge;by sampleid;if first.sampleid; drop i x e y 
xdev_xbar xdev_ca;run; 
 
data work.chen_calc;set work.chen_calc; 
chen_incr = ((corr_grp0-avg_corr_1_2)*(corr_grp0-
avg_corr_1_2))*(var/(n_grp0+n_grp1+n_grp2)); 
partial_chen_incr=2.3*chen_incr; 
run; 
 
%if &location= xbar %then %do; 
/*Perform ANCOHET for Each Simulation Iteration and Output Results to 
ANCOHET_Stat Dataset*/ 
%odsoff 
proc glm data=CI_3grp_merge outstat=ANCOHET_stat; 
 by sampleid; 
 class group; 
 model y = xdev_xbar group group*xdev_xbar/solution; *&location is a 
MACRO variable that specifies the location of the test for between group differences; 
Contrast "Contrast" group 1 -.5 -.5; 
lsmeans group/ pdiff=all cl at xdev_xbar = 0 ; 
 ods output lsmeans=lsmeans_y; 
run;quit; 
%odson 
 
proc transpose data=work.lsmeans_y out=lsmeans_y_trans 
(rename=(col1=y_lsmean_grp0 col2=y_lsmean_grp1 col3=y_lsmean_grp2)); 
var lsmean; 
by sampleid; 
run; 
data work.lsmeans_y_trans;set work.lsmeans_y_trans;drop _name_ _label_;run; 
%end; 
 
%if &location=ca %then %do; 
%odsoff 
proc glm data=CI_3grp_merge outstat=ANCOHET_stat; 
 by sampleid; 
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 class group; 
 model y = xdev_ca group group*xdev_ca/solution; *&location is a MACRO 
variable that specifies the location of the test for between group differences; 
 Contrast "Contrast" group 1 -.5 -.5; 
 lsmeans group/ pdiff=all cl at xdev_ca = 0 ; 
 ods output lsmeans=lsmeans_y; 
run;quit; 
%odson 
 
proc transpose data=work.lsmeans_y out=lsmeans_y_trans 
(rename=(col1=y_lsmean_grp0 col2=y_lsmean_grp1 col3=y_lsmean_grp2)); 
var lsmean; 
by sampleid; 
run; 
data work.lsmeans_y_trans;set work.lsmeans_y_trans;drop _name_ _label_;run; 
%end; 
 
%if &location=x %then %do; 
%odsoff 
proc glm data=CI_3grp_merge outstat=ANCOHET_stat; 
 by sampleid; 
 class group; 
 model y = x group group*x/solution; *&location is a MACRO variable that 
specifies the location of the test for between group differences; 
 Contrast "Contrast" group 1 -.5 -.5; 
 lsmeans group/ pdiff=all cl at x = 0 ; 
 ods output lsmeans=lsmeans_y; 
run;quit; 
%odson 
 
proc transpose data=work.lsmeans_y out=lsmeans_y_trans 
(rename=(col1=y_lsmean_grp0 col2=y_lsmean_grp1 col3=y_lsmean_grp2)); 
var lsmean; 
by sampleid; 
run; 
data work.lsmeans_y_trans;set work.lsmeans_y_trans;drop _name_ _label_;run; 
%end; 
 
/*Save Sums of Squares and Degrees of Freedom from Individual ANCOHET Models 
and then Merge*/ 
data ANCOHET_stat;set ANCOHET_stat (where=(_type_ ne "SS1"));run; 
proc transpose data=ANCOHET_stat out=ancohetSS_wide prefix=SS; 
 by sampleid; 
 id _source_; 
 var SS; 
run; 
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proc transpose data=ANCOHET_stat out=ancohetDF_wide prefix=df; 
 by sampleid; 
 id _source_; 
 var df; 
run; 
 
data ANCOHETstat_wide; merge ancohetss_wide ancohetdf_wide;by sampleid;drop 
_name_; 
run; 
 
/*Create Confidence Interval Data Set*/ 
 
data ci_info; set ci_3grp_merge;by sampleid; if first.sampleid;drop i x e group 
group_contrast y xdev_xbar xdev_ca;run; 
data ci_info;merge work.ci_info lsmeans_y_trans simmean_bygroup ancohetstat_wide 
chen_calc;by sampleid;run; 
 
data work.ci_info;set work.ci_info; 
 
%if &location ne x %then %do; 
MSE_ANCOHET = (sserror/dferror); 
MSE_ANCOVA = 
(sserror+SSXdev_&location._group)/(dferror+dfXdev_&location._group); 
MSE_interaction = (SSXdev_&location._group/dfXdev_&location._group); 
MSE_weight1 =  
(sserror+SSXdev_&location._group)/(dferror+dfXdev_&location._group); 
MSE_weight2 = (MSE_ANCOHET + MSE_Interaction)/2; 
%end; 
 
%if &location = x %then %do; 
Xp_diff_Xbar_grp0 = (0 - xmean_grp0)*(0 - xmean_grp0); 
Xp_diff_Xbar_grp1 = (0 - xmean_grp1)*(0 - xmean_grp1); 
Xp_diff_Xbar_grp2 = (0 - xmean_grp2)*(0 - xmean_grp2); 
 
MSE_ANCOHET = (sserror/dferror); 
MSE_ANCOVA = (sserror+SS&location._group)/(dferror+df&location._group); 
MSE_interaction = (SS&location._group/df&location._group); 
MSE_weight1 =  (sserror+SS&location._group)/(dferror+df&location._group); 
MSE_weight2 = (MSE_ANCOHET + MSE_Interaction)/2; 
%end; 
 
%if &location = xbar %then %do; 
Xp_diff_Xbar_grp0 = (xbar - xmean_grp0)*(xbar - xmean_grp0); 
Xp_diff_Xbar_grp1 = (xbar - xmean_grp1)*(xbar - xmean_grp1); 
Xp_diff_Xbar_grp2 = (xbar - xmean_grp2)*(xbar - xmean_grp2); 
%end; 
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%if &location = ca %then %do; 
Xp_diff_Xbar_grp0 = (ca - xmean_grp0)*(ca - xmean_grp0); 
Xp_diff_Xbar_grp1 = (ca - xmean_grp1)*(ca - xmean_grp1); 
Xp_diff_Xbar_grp2 = (ca - xmean_grp2)*(ca - xmean_grp2); 
%end; 
 
ratio_grp0 = (1*Xp_diff_Xbar_grp0)/ssx_grp0; 
ratio_grp1 = (.25*Xp_diff_Xbar_grp1)/ssx_grp1; 
ratio_grp2 = (.25*Xp_diff_Xbar_grp2)/ssx_grp2; 
ratio_01 = (((1*xmean_grp0) + (-.5*xmean_grp1) + (-
.5*xmean_grp2))**2)/(ssx_grp0+ssx_grp1+ssx_grp2); 
 
samp_inv_other = (1/n_grp0) + (1/n_grp1_contrast); 
samp_inv = (1/n_grp0) + (.25/n_grp1) + (.25/n_grp2); 
 
Stderr_ANCOHET = sqrt(MSE_ANCOHET*(samp_inv + ratio_grp0 + ratio_grp1 + 
ratio_grp2)); 
ANCOHET_variance=(stderr_ancohet)*(stderr_ancohet); 
stderr_ancohet2 = sqrt(mse_ancohet)*sqrt((samp_inv + ratio_grp0 + ratio_grp1 + 
ratio_grp2)); 
Stderr_ANCOVA = sqrt(MSE_ANCOVA*(samp_inv + ratio_01)); 
Stderr_Interaction = sqrt(MSE_interaction*samp_inv); 
Stderr_Weight1 = sqrt(MSE_weight1*samp_inv + ratio_01); 
Stderr_Weight2 = sqrt(MSE_weight2*samp_inv); 
 
stderr_ancohet_chen=sqrt(ANCOHET_variance+chen_incr); 
stderr_partial_chen=sqrt(ANCOHET_variance+partial_chen_incr); 
 
%if &location ne x %then %do; 
CV_ancohet=sqrt(finv(.95, dfgroup, dferror)); 
CV_ANCOVA=sqrt(finv(.95, dfgroup, (dferror+1))); 
CV_Interaction=sqrt(finv(.95, dfgroup, dfXdev_&location._group)); 
CV_Weight1=sqrt(finv(.95, dfgroup, (dferror+dfXdev_&location._group))); 
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+dfXdev_&location._group)/2))); 
%end; 
 
%if &location = x %then %do; 
CV_ancohet=sqrt(finv(.95, dfgroup, dferror)); 
CV_ANCOVA=sqrt(finv(.95, dfgroup, (dferror+1))); 
CV_Interaction=sqrt(finv(.95, dfgroup, df&location._group)); 
CV_Weight1=sqrt(finv(.95, dfgroup, (dferror+df&location._group))); 
CV_Weight2=sqrt(finv(.95, dfgroup, ((dferror+df&location._group)/2))); 
%end; 
 
y_lsmean_grp1_contrast=(y_lsmean_grp1 + y_lsmean_grp2)/2; 



127 
 

lsmeans_y_diff = y_lsmean_grp0 - y_lsmean_grp1_contrast; 
 
ci_halfwidth_ancohet=CV_ancohet*Stderr_ANCOHET; 
ci_lower_ancohet= lsmeans_y_diff-ci_halfwidth_ancohet; 
ci_upper_ancohet=lsmeans_y_diff+ci_halfwidth_ancohet; 
ci_width_ancohet=2*CV_ancohet*Stderr_ANCOHET; 
 
ci_halfwidth_chen=CV_ancohet*stderr_ancohet_chen; 
ci_lower_chen= lsmeans_y_diff-ci_halfwidth_chen; 
ci_upper_chen=lsmeans_y_diff+ci_halfwidth_chen; 
ci_width_chen=2*CV_ancohet*stderr_ancohet_chen; 
 
ci_halfwidth_chen_partial=CV_ancohet*stderr_partial_chen; 
ci_lower_chen_partial= lsmeans_y_diff-ci_halfwidth_chen_partial; 
ci_upper_chen_partial=lsmeans_y_diff+ci_halfwidth_chen_partial; 
ci_width_chen_partial=2*CV_ancohet*stderr_partial_chen; 
 
ci_halfwidth_ANCOVA=CV_ANCOVA*Stderr_ANCOVA; 
ci_width_ANCOVA=2*CV_ANCOVA*Stderr_ANCOVA; 
ci_lower_ANCOVA= lsmeans_y_diff-ci_halfwidth_ANCOVA; 
ci_upper_ANCOVA=lsmeans_y_diff+ci_halfwidth_ANCOVA; 
 
ci_halfwidth_interaction=CV_Interaction*Stderr_interaction; 
ci_width_interaction=2*CV_Interaction*Stderr_interaction; 
ci_lower_interaction= lsmeans_y_diff-ci_halfwidth_interaction; 
ci_upper_interaction=lsmeans_y_diff+ci_halfwidth_interaction; 
 
ci_halfwidth_weight1=CV_Weight1*Stderr_weight1; 
ci_width_weight1=2*CV_Weight1*Stderr_weight1; 
ci_lower_weight1= lsmeans_y_diff-ci_halfwidth_weight1; 
ci_upper_weight1=lsmeans_y_diff+ci_halfwidth_weight1; 
 
ci_halfwidth_weight2=CV_Weight2*Stderr_weight2; 
ci_width_weight2=2*CV_Weight2*Stderr_weight2; 
ci_lower_weight2= lsmeans_y_diff-ci_halfwidth_weight2; 
ci_upper_weight2=lsmeans_y_diff+ci_halfwidth_weight2; 
 
%if &location = x %then %do; 
MU_adj_g0=&mean + (&slope1*0); 
Mu_adj_g1=&slope2*0; 
difference_population = mu_adj_g0 - mu_adj_g1; 
%end; 
 
%if &location = xbar %then %do; 
MU_adj_g0=&mean + (&slope1*xbar); 
Mu_adj_g1=&slope2*xbar; 
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difference_population = mu_adj_g0 - mu_adj_g1; 
%end; 
 
%if &location = ca %then %do; 
MU_adj_g0=&mean + (&slope1*ca); 
Mu_adj_g1=&slope2*ca; 
difference_population = mu_adj_g0 - mu_adj_g1; 
%end; 
 
%if &location ne x %then %do; 
F_ANCOHET = (sscontrast/dfcontrast)/(sserror/dferror); 
F_ANCOVA = 
(sscontrast/dfcontrast)/((sserror+SSXdev_&location._group)/(dferror+dfXdev_&location
._group)); 
F_interaction=(sscontrast/dfcontrast)/(ssXdev_&location._group/dfXdev_&location._gro
up); 
F_weight1=(sscontrast/dfcontrast)/((SSXdev_&location._group + 
sserror)/(dfXdev_&location._group + dferror)); 
F_weight2 = (sscontrast/dfcontrast)/(MSE_weight2); 
p_ANCOHET = 1-probf(F_ANCOHET,dfcontrast,dferror); 
p_ANCOVA = 1-probf(F_ANCOVA,dfcontrast,(dferror+dfXdev_&location._group)); 
p_interaction=1-probf(f_interaction,dfcontrast,dfXdev_&location._group); 
p_weight1=1-probf(F_weight1, dfcontrast, (dferror+dfXdev_&location._group));  
p_weight2=1-probf(F_weight2, dfcontrast, ((dferror+dfXdev_&location._group)/2)); 
%end; 
 
%if &location=x %then %do; 
F_ANCOHET = (sscontrast/dfcontrast)/(sserror/dferror); 
F_ANCOVA = 
(sscontrast/dfcontrast)/((sserror+SS&location._group)/(dferror+df&location._group)); 
F_interaction=(sscontrast/dfcontrast)/(ss&location._group/df&location._group); 
F_weight1=(sscontrast/dfcontrast)/((SS&location._group + sserror)/(df&location._group 
+ dferror)); 
F_weight2 = (sscontrast/dfcontrast)/(MSE_weight2); 
p_ANCOHET = 1-probf(F_ANCOHET,dfcontrast,dferror); 
p_ANCOVA = 1-probf(F_ANCOVA,dfcontrast,(dferror+df&location._group)); 
p_interaction=1-probf(f_interaction,dfcontrast,df&location._group); 
p_weight1=1-probf(F_weight1, dfcontrast, (dferror+df&location._group));  
p_weight2=1-probf(F_weight2, dfcontrast, ((dferror+df&location._group)/2)); 
%end; 
 
RejectHO_ANCOHET = (p_ancohet<=.05); 
RejectHO_ANCOVA = (p_ANCOVA<=.05); 
RejectHO_Interaction = (p_interaction<=.05); 
RejectHO_Weight1 = (p_weight1<=.05); 
RejectHO_Weight2 = (p_weight2<=.05); 
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Pop_ParamInCI_ancohet = (ci_lower_ancohet<difference_population & 
ci_upper_ancohet>difference_population); 
Pop_ParamInCI_ancohet_chen = (ci_lower_chen<difference_population & 
ci_upper_chen>difference_population); 
Pop_ParamInCI_ancohet_chenpart = (ci_lower_chen_partial<difference_population & 
ci_upper_chen_partial>difference_population); 
Pop_ParamInCI_ANCOVA = (ci_lower_ANCOVA<difference_population & 
ci_upper_ANCOVA>difference_population); 
Pop_ParamInCI_interaction = (ci_lower_interaction<difference_population & 
ci_upper_interaction>difference_population); 
Pop_ParamInCI_weight1 = (ci_lower_weight1<difference_population & 
ci_upper_weight1>difference_population); 
Pop_ParamInCI_weight2 = (ci_lower_weight2<difference_population & 
ci_upper_weight2>difference_population); 
run; 
 
%if &output= TypeI %then %do; 
proc freq data=ci_info; 
title1 "Type I Error Rates for"; 
title2 "b0=&slope1, b1=&slope2, b2=&slope3"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2, n2=&sampsize3"; 
title5 "at &location"; 
table RejectHO_ANCOHET RejectHO_ANCOVA RejectHO_Interaction 
RejectHO_Weight1 RejectHO_Weight2/nocum; 
run; 
%end; 
 
%if &output= Power %then %do; 
proc freq data=ci_info; 
title1 "Power Rates for"; 
title2 "b0=&slope1, b1=&slope2, b2=&slope3"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2, n2=&sampsize3"; 
title5 "at &location"; 
table RejectHO_ANCOHET RejectHO_ANCOVA RejectHO_Interaction 
RejectHO_Weight1 RejectHO_Weight2/nocum; 
run; 
%end; 
 
%if &output=ci %then %do; 
proc freq data=ci_info; 
title1 "Confidence Interval Coverage Rates for"; 
title2 "b0=&slope1, b1=&slope2, b2=&slope3"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2, n2=&sampsize3"; 
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title5 "at &location"; 
table pop_paraminCI_ancohet pop_paraminCI_interaction pop_paraminCI_ancova  
pop_paraminCI_weight1 pop_paraminCI_weight2 Pop_ParamInCI_ancohet_chen 
Pop_ParamInCI_ancohet_chenpart/nocum;run; 
%end; 
 
%if &output=ci_width %then %do; 
proc means data=ci_info n mean stddev min max; 
title1 "Average Confidence Interval Width for"; 
title2 "b0=&slope1, b1=&slope2, b2=&slope3"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2, n2=&sampsize3"; 
title5 "at &location"; 
var ci_width_ancohet ci_width_interaction ci_width_ancova  ci_width_weight1 
ci_width_weight2 ci_width_chen ci_width_chen_partial; 
run; 
%end; 
 
%if &output=trueSD %then %do; 
proc means data=ci_info n mean stddev min max maxdec=4; 
title1 "True SD and Average Standard Errors for"; 
title2 "b0=&slope1, b1=&slope2, b2=&slope3"; 
title3 "and"; 
title4 "n0=&sampsize1, n1=&sampsize2, n2=&sampsize3"; 
title5 "at &location"; 
var lsmeans_y_diff Stderr_ANCOHET Stderr_Interaction Stderr_ANCOVA 
Stderr_Weight1 Stderr_Weight2 stderr_ancohet_chen; 
run; 
%end; 
 
 
%mend three_group_simulation; 

 Running the previous code does not generate output, but instead establishes a 

macro program that will run when SAS receives the proper input. The following line of 

code will generate and output the results for the true standard deviation in the two-group, 

low heterogeneity of regression condition, where n = 10 and the test is being conducted at 

𝑋. 

%two_group_simulation(10000, .258, .374, 10, 10, 0, xbar, trueSD, 600); 
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Appendix D 

An Attempted Replication of Harwell and Serlin (1988) 

 

The current research project was partially motivated by the findings of Harwell 

and Serlin (1988). Harwell and Serlin investigated the Type I error rates and power of 

several methods – both parametric and nonparametric - of analyzing data that include a 

quantitative and qualitative predictor of a continuous outcome. While their paper focused 

on multiple distributions for the dependent variable, the current paper focused solely on 

the results where the outcome was normally distributed. They found that the Type I error 

rates of the Rogosa approach were significantly greater than the nominal .05 for different 

combinations of sample size (both equal and unequal) and levels of heterogeneity. In fact, 

all eight combinations produced Type I error rates significantly greater than what would 

be expected due to sampling error when α = .05 (see Table 8 on p. 275). 

Because the current project was based on the work of Harwell and Serlin, the first 

step was to replicate their results. The following sections contains these findings, and is 

followed by a section regarding Harwell and Serlin’s purported use of standardized 

regression coefficients.   

Harwell and Serlin Method Overview 

 Along with the normal distribution, Harwell and Serlin generated data under 

exponential, double exponential and Cauchy distributions. They used combinations of 

two group sizes (n = 10, 30) and two sets of regression coefficients to model between 

group heterogeneity of regression for three groups: .2, .2, .9 and .9, .9, .2. There were 

eight combinations of slopes and sample sizes in total. They performed 2,000 simulations 
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for each combination, and Type I error rates were calculated as the total number of 

simulations out of 2,000 where the p value would have resulted in the rejection of the null 

hypothesis given the specified nominal α (they looked at α = .01, .05 and .10). The 

standard error of a proportion was used to calculate sampling error for each α used the 

following equation: 

𝑆𝐸 =        (D.1) 

where p is the nominal α, q = 1 –p, and N is the number of replications of the simulation. 

Any Type I error rate greater than 2 standard errors above or below α was considered to 

be outside of the range specified by sampling error. 

For combinations of regression heterogeneity and sample sizes where the Type I 

error rate was below or within the sampling error around nominal α, they also looked at 

the power of the test. Though, as mentioned previously, for the Rogosa procedure all 

eight of the combinations had Type I error rates significantly greater than what would be 

expected when α = .05. As a result, power was not calculated for the Rogosa procedure 

for any of the combinations when α = .05. In fact, for the data where the outcome 

followed the normal distribution, only one condition out of 18 had a Type I error rate 

within sampling error of the nominal α. 

Attempted Replication of Harwell and Serlin 

The current paper attempted an exact replication of the Harwell and Serlin 

findings. Initially, it was discovered that regardless of the heterogeneity of regression 

level used (i.e., .2, .2, .9 vs. .9, .9, .2), the Type I error rates were equal for each 
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combination of sample size when the same starting seed value was used for the random 

number generator. This was not the case for Harwell and Serlin, who likely used different 

seed values for each of the conditions. As a result, the current paper presents results only 

from one of the two levels of heterogeneity of regression. Consequently, the Type I error 

rates from Harwell and Serlin were averaged for each combination of sample size in 

order to making comparisons with the current simulation. 

Table D1 contains the Type I error rates from the original Harwell and Serlin 

article, combined with the error rates from the current project. There are also upper and 

lower limits around each set of Type I error rates. The Harwell and Serlin upper and 

lower limits were based on 4,000 simulations whereas the current study’s limits were 

based on 10,000 simulations. The Type I error rates from each study were compared in 

two ways: first, it was determined if the Harwell and Serlin average fell within the 

confidence interval for the current study. Subsequently, the overlap between the 

confidence intervals from each of the studies was evaluated. As seen in the table, all 

confidence intervals from the current student did not contain α = .05. Additionally, the 

confidence intervals from each study overlapped, but the Harwell and Serlin Type I error 

rate average fell within only two of the four confidence intervals for the current study. In 

conclusion, while Harwell and Serlin’s Type I error rates may have been slightly higher 

than what the current study found in the case of equal-n, the overlap of the confidence 

intervals from both studies suggests that the Rogosa procedure is indeed a liberal test.  

Use of Standardized Regression Coefficients 
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 Until this point, it was assumed that Harwell and Serlin’s coefficients of .2 and .9 

were the raw regression coefficients used to simulate the data. With a more careful 

reading, however, Harwell and Serlin claim that they used standardized regression 

coefficients of .2 and .9 to produce their simulated data (see simulation factor (b) in the 

first full paragraph on pg. 272). However, this seems highly unlikely given results from 

preliminary work undertaken for the current study.  In order to calculate the raw 

regression coefficients to produce standardized regression weights of these values, one 

method involves using the standard deviation of Y computed separately in each group. It 

is necessary to use the standard deviation of Y separately in each group because, as 

mentioned previously in the body of this paper, the standard deviation of Y will not be the 

same across groups in order to meet the assumption of heterogeneity of residual 

variances.  

 In general, the formula for a standardized regression coefficient is: 

𝛽 =  𝑏  ×      (D.2) 

Where 𝛽  and 𝑏  are the kth standardized and unstandardized regression coefficients, 

respectively, and 𝑠  and 𝑠  are the standard deviations of the X and Y variables. Given σε 

= 1 and σx = 1 (based on the simulation set-up), one can solve for the raw slopes to 

achieve particular standardized slopes as follows: 

𝐾𝑛𝑜𝑤𝑛: 𝜌 =  
( , )

    (D.3) 

𝐾𝑛𝑜𝑤𝑛: 𝜎 =  𝑏 𝜎 + 𝜎 =   𝑏 (1) + 1 = 1 +  𝑏   (D.4) 
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𝐾𝑛𝑜𝑤𝑛: 𝑐𝑜𝑣(𝑥, 𝑦) =  𝑏 𝜎 =  𝑏 (1) = 𝑏    (D.5) 

Combining D.2, D.3 and D.4 after squaring the terms in D.2 produces 

𝜌 =
( )

=       (D.6) 

Using equation D.5, if ρyx = .9, then solving for b1 results in a raw regression coefficient 

of b1 = 2.06474. Similarly, the same equation can be used to solve for the necessary raw 

regression coefficient to produce ρyx = .2, resulting in b2 = 0.204124. 

 Table D2 contains the Type I error rates using raw regression coefficients to 

produce standardized coefficients of .2, .2, and .9. As can be seen, these Type I error rates 

are significantly greater than the rates Harwell and Serlin found, making it unlikely that 

their study used standardized regression coefficients. 

Conclusions 

 The current study partially replicated the findings of Harwell and Serlin (1988) 

regarding Type I error rates for testing the main effect of a qualitative grouping variable 

in the presence of heterogeneity of regression. However, despite the claims that their 

simulations were conducted using standardized regression coefficients of .2 and .9, the 

current study found this claim to be highly unlikely. Instead, standardized regression 

coefficients would have produced Type I error rates significantly higher than what 

Harwell and Serlin originally found.  



 

Table D1 

Comparing Type I Error Rates for Harwell and Serlin (1988) and the Current Replication Attempt 

    
Using .2, .2, .9 as unstandardized coefficients to generate data, 
as suggested by Harwell & Serlin (1988, Equation 10, p. 273) 

Harwell and Serlin McLouth 

B1, B2, 
B3 N 

Average based 
on 4,000 

Simulations 
Lower 
Limit 

Upper 
Limit   

10,000 
Simulations 

Lower 
Limit 

Upper 
Limit 

Does 
Interval 
Contain 

.05? 

Does 
Interval 
Contain 

H&S 
Average? 

Do 
Intervals 
Overlap? 

.2, .2, .9 10,10,10 0.072 0.06525 0.07875   0.0641 0.05983 0.06837 NO NO YES 
10,10,30 0.071 0.06425 0.07775   0.0728 0.06853 0.07707 NO YES YES 
30,30,10 0.079 0.07225 0.08575   0.0767 0.07243 0.08097 NO YES YES 
30,30,30 0.068 0.06075 0.07425   0.0619 0.05763 0.06617 NO NO YES 
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Table D2 
Type I Error Rates Using Raw Regression 
Coefficients to Produce Standardized Coefficients of 
.2, .2, .9 

B1, B2, B3 n Type I Error Rate 
.204, .204, 2.0647 10,10,10 0.180 

10,10,30 0.238 
30,30,10 0.232 
30,30,30 0.169 
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