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by 

Sonya Persia Flores 

B.S., Biology and Spanish, University of New Mexico, 2000 

Master of Science, Biomedical Sciences 

 

Abstract 

 

Human papillomaviruses (HPVs) are the causative agent of cervical cancer and infect 

skin and mucosal membranes. Through wounding the virus establishes infection in the 

basal layer of human keratinocytes and requires differentiating squamous epithelium to 

complete the viral life cycle. HPV virions contain two structural viral proteins: the major 

capsid protein L1 that self-assembles into capsid structures, and the minor capsid protein, 

L2, that is essential for infection. It is believed that HPV cellular entry occurs via 

receptor-mediated endocytosis and that the primary attachment factors used by the virus 

are heparan sulfonated proteoglycans (HSPGs). Most current HPV literature follows an 

entry model whereby L1 binds to HSPGs, causing a conformational change in the capsid, 

thus allowing access to a furin/proprotein convertase (PC) cleavage site on L2. Once L2 

is furin-cleaved, the virus binds to a yet unknown secondary internalization receptor(s). 

There is, however, a body of experimental evidence that does not support this entry 

model. For example, L1-only virus like particles (VLPs) are able to enter cells with 

similar kinetics as L1/L2 VLPs and mutagenesis of the L2 furin cleavage site does not 

abrogate the virion’s ability to enter the cell. Furthermore, recent research in our 
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laboratory indicates an alternative mechanism of HPV infection, whereby the virus binds 

to cell-anchored HSPGs that are normally in complex with a variety of ligands including 

growth factors (GF), cytokines, extracellular matrix (ECM) proteins, and proteinases. 

Ectodomain shedding of syndecan-1 and HSPG by matrix metalloproteinases (MMPs) 

allows the HPV-HSPG-GF complexes to become soluble and move to secondary GF 

receptors, thereby allowing the virus to gain access to the cell. While MMPs are known 

to activate many biological molecules, they themselves are activated by furin/PCs. Due to 

these new observations and the existence of experimental evidence that does not support 

the current model of HPV infection, we postulate that the function of furin has been 

misinterpreted. Our data suggest that a cellular component important for the infection 

process is also a target of furin/PC activity. Furthermore, we have found that multiple PC 

members play roles at different steps of HPV infection.  
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CHAPTER 1: INTRODUCTION 

Papillomavirus background 

Human papillomaviruses (HPVs) are non-enveloped DNA tumor viruses 

belonging to the family Papillomaviridae, and infect hosts in species-specific manners. 

Papillomaviruses (PVs) have been isolated from a wide range of avian and mammalian 

species and are grouped into phylogenies based on the pathologies induced by different 

viruses. Over 200 genotypes of HPV have been discovered, with the majority of the 16 

distinct HPV genera belonging to the alpha or beta genera. HPVs have been further 

categorized into high-risk and low-risk types based on their oncogenic potential (38).  

The capsid of HPV is non-enveloped and has a T=7 icosahedral structure. The 

viral particles are 50-60 nm in diameter and are formed through the association of 

disulfide bonds among capsid proteins. L1, the major capsid protein, contributes 360 

molecules arranged into 72 pentamers to the virion while L2, the minor capsid protein, 

may exist within the capsid in as few as 12 and at most 72 molecules (21). Within the 

virion capsid resides an 8-kb double stranded circular DNA genome that is associated 

with histones. The genome encodes for six early proteins (E1, E2, E4, E5, E6 and E7) 

and the two late proteins (L1 and L2).  

 

The HPV Life Cycle 

HPV replication and infection are unique, requiring a stratified squamous 

epithelium to complete the full viral life cycle (Fig. 1). It is thought that the virus gains 

access to the basal layer of keratinocytes through wounds or micro-abrasions, 

establishing infection only in mitotically active cells (72). Early proteins, such as E1 and 
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E2, are expressed only in the lower epidermal layers and are responsible for episomal 

genome maintenance. As cells derived from the infected basal layer differentiate, they 

ascend through the stratum with increased genome amplification occurring and other 

early proteins, including E1^E4 and E5, being expressed.  

 

 

Figure 1.1.  Model for PV infection in a stratified epithelium. Three stages of viral genome 
replication are indicated; major viral functions and presence of potential cellular attachment 
moieties in the differentiated epithelial tissues are noted at the right. In Stage I the viral genome 
is established at low copy number (10-50 copies/cell). In Stage II viral genomes are replicated 
along with cellular DNA. Stage III is the vegetative DNA replication phase occurring in suprabasal 
cells. Late gene expression restricted to the upper, differentiated epithelial layers is concurrent 
with viral DNA amplification leading to virion morphogenesis. Virion image from ref. (54). Many 
HSPGs including syndecans and glypicans are expressed on keratinocyte membranes 
throughout the epidermis and mucosa (52, 58). Alpha 6-integrin expression is generally restricted 
to basal keratinocytes where it can pair with beta 4-integrin attaching the keratin cytoskeleton to 
the basement membrane, in some cases by binding to laminin 5 (LN5: also known as laminin 32) 
(57). LN5 is an extracellular molecule found in the basement membrane where it anchors cells 
and is secreted into the leading edge of the wound (indicated by *) (2). 

 

In neoplastic lesions high-risk HPV genomes may be found integrated into the 

host cell chromosomes where they induce expression of E6 and E7 at high levels. These 

early proteins lend to the oncogenic potential of HPV, as they deregulate the cell cycle 

and induce long term uncontrolled cell proliferation by binding to and altering the 

function of tumor suppressor proteins: E6 binds to and facilitates the degradation of p53, 
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while E7 binds to and inhibits pRb to push the infected cell through critical cell cycle 

checkpoints (48). Over time these events lead to an accumulation of mutations that can 

eventually cause cells to become malignant (8).  

 

HPVs and Disease  

HPVs cause both benign and malignant tumors in cutaneous and mucosal epithelium. 

HPVs cause most common sexually transmitted disease globally and are the etiological 

agent of 99.7% of cervical cancer cases worldwide (87). In addition to causing cervical 

cancer, HPVs are linked to other anogenital as well as head-and-neck cancers. The high-

risk types most commonly associated with malignancy are HPV16, 18 and 31. The most 

common low-risk types, HPV6 and 11, are also found in the anogenital tract and although 

they cause warts, they are uncommonly associated with malignancy. It is also known that 

infection with a high-risk HPV type is a necessary, albeit insufficient, step in the onset of 

cervical cancer. Other factors such as, parity, smoking, immune function, disease state 

and age can all contribute to an individual’s cancer progression (17).  

Over 90% of women with low levels of cervical intraepithelial neoplasia (CIN) will 

have spontaneous regression without treatment. Due to high levels of screening and early 

treatment, the mortality rate related to cervical cancer in the developed world (3%) is 

relatively low compared to other cancers. Screening in the form of the Papanicolaou 

(Pap) smear, which detects cellular abnormalities, has caused the rate of cervical cancer 

in the U.S. to steadily decline over the last 50 years (8). In the developing world however, 

the relative death rate from cervical carcinoma is still the highest among cancer types 
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(15%), primarily due to a lack of screening, which leads to late detection, causing most 

cases to be fatal (13).  

 

HPV Vaccines  

Recently, two prophylactic VLP-based HPV vaccines targeting the L1 protein have 

become commercially available: Cervarix® is a bivalent vaccine targeting HPV16 and 18 

(GSK); and Gardasil® is a quadrivalent vaccine designed against HPV6, 11, 16 and 18 

(Merck). They are safe, highly immunogenic and nearly 100% effective in protecting 

against infection of the HPV types included within the respective vaccine (15). However, 

there are several drawbacks with these vaccines. For example, poor vaccine uptake exists 

as the target group for vaccination is pre-pubescent girls and there has been much social 

resistance to vaccinate against a viral agent that is sexually transmitted. Additionally, the 

cost of manufacturing the vaccine remains high, as it is VLP-based and must therefore be 

produced in eukaryotic cells (15). The high cost poses yet another obstacle in lessening 

the cervical cancer burden in developing countries, where screening levels are low. The 

currently available vaccines also provide no therapeutic benefit; those already infected 

with HPV are still at risk for malignant progression. Finally, current L1-based vaccines 

provide little to no cross protection for other HPV types; many high-risk HPV types, in 

particular 31 and 45, are not fully protected against with these vaccines.  

This has led researchers to begin developing L2 peptide based vaccines, which are 

being designed to confer cross protection amongst multiple HPV types. Several animal 

studies in both rabbit and bovine models have confirmed that immunization against L2 

provides cross protection between PV types (28, 34). Although, L2 vaccines would 
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provide cross protection and are less expensive as they can be produced in bacteria (15), 

they are not highly immunogenic and provide no therapeutic value. Even with the 

creation of improved HPV vaccine platforms, there will still be a need for additional 

therapeutic strategies, as there are currently over 20 million infected individuals in the 

U.S. alone (8). However, in order to develop more effective therapeutic approaches, 

ambiguous data for some areas of HPV biology must be fully elucidated. Additionally, if 

initial keratinocyte entry by the virus is better understood, better prophylaxis can be 

achieved.  

 

HPV Entry 

Historically, investigating the mechanism of HPV cellular entry has been 

challenging, as the number of HPV particles recovered from actual in vivo infections is so 

low that it has been nearly impossible to conduct infectivity studies (65). Additionally, 

because HPVs require epithelial differentiation to complete their life cycle, producing 

virus stocks in a laboratory setting has proven technically difficult. Not until the 

development and implementation of viral manufacturing techniques such as the 

organotypic-raft tissue culture system and the high-yield production (HiP) method were 

meaningful viral entry and infection studies possible. The organotypic-raft tissue culture 

system facilitates the completion of the viral life cycle because it recapitulates stratified 

epithelium (53). The high-yield production (HiP) method generates pseudovirions (PsVs) 

with viral or reporter genome packaged within self-assembling L1 and L2 capsids in 

transiently transfected mammalian cells. This method is advantageous because it 

produces 100X more infectious virus per cell than the organotypic-raft system, 
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independent of viral replication (10, 66). Although, these methods have permitted more 

thorough investigation of HPV cellular entry, �conflicting data exist about the receptor 

mediated endocytic pathway used by HPVs. Moreover, the technique used to produce 

virus in these studies may influence the resulting route of cell entry. 

HPV viral entry is a multi-step process with a number of reported attachment 

factors and suspected internalization receptors at the cell surface, a topic to be addressed 

at length in the subsequent paragraphs. Once viral entry is initiated, there are several 

endocytic pathways by which viruses gain access to the cell. These include clathrin- or 

caveolin-mediated entry, macropinocytosis and even pathways termed non-clathrin and 

non-caveolin mediated, all of which uptake extracellular matter into the cell by the 

formation of discrete vesicles that fuse with early endosomes where viral uncoating takes 

place (61, 62). HPVs have been reported to use several types of endocytosis; for example, 

several studies have demonstrated that HPV16 and 33 use a clathrin-mediated pathway 

(25, 76), whereas our lab using organotypic-derived virus showed a caveolin-mediated 

pathway for HPV31 (78). There is an additional study, reporting a clathrin and caveolae 

independent pathway with the involvement of tetraspanin-enriched microdomains (80). 

Although, the aforementioned studies have demonstrated disparate entry routes for 

different HPV types, the vast majority of HPV studies agree that the primary attachment 

factor used by the virus is heparan-sulfonated proteoglycans (HSPGs). 

 

HSPGs and MMPs 

HSPGs are ubiquitously present on the surface of animal cells as well as within the 

extracellular matrix (ECM) (5). They are categorized into three subfamilies: the 
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membrane-spanning proteoglycans, including syndecan-1, (abundant in epithelial cells), 

the glycophosphatidyl inositol (GPI) linked proteoglycans, and the secreted extracellular 

matrix proteoglycans. These highly negatively charged moieties consist of a core protein 

attached to heparan sulfate (HS) glycosaminoglycan (GAG) side chains, made up of 

interchanging N-acetylglucosamine (GlcNac) or N-sulphoglucosamine (GlcNS) units and 

uronic acids (29). As HSPGs are synthesized, a series of post-translational modifications 

occur in the Golgi leading to different degrees of acetylation and sulfation on the HS side 

chains (7). Due to this, HSPGs exist in a wide array of conformations, allowing the 

moieties to interact with a diverse population of protein binding partners (47). The large 

repertoire of ligands able to interact with HSPGs allows these molecules to play many 

roles within cell biology, such as in wound healing, organogenesis, growth factor binding 

and sequestration, as well as chemokine transportation and presentation (5).  

HSPGs, including syndecan-1, are the primary attachment factors used by the 

majority of HPV types tested thus far (35, 42), and are involved in the infection process 

of many different viruses including those from the Flaviviridae, Retroviridae, and 

Herpesviridae families (50). Extensive experimental evidence demonstrates the 

requirement of HS for HPV cellular binding and entry. For example, PsV treatment with 

heparin, functioning as a competitive inhibitor to the virus, inhibits infection as does 

removal of cell surface HS using heparinase I or sodium chlorate (35). Additionally, HS-

binding drugs inhibit HPV infection (75) and an in vivo model demonstrated that 

heparinase III instillation into the murine genital tract prior to challenge, severely reduces 

HPV infection (41). In cell culture, HS binding to the HPV L1 capsid protein occurs 

through charged interactions [Dasgupta,  #3267] and it is believed that HPV initially 
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binds to HSPGs on both the cell surface and deposited ECM. However, in the in vivo 

murine female cervicovaginal model, HPV-HS binding first occurs on the basement 

membrane and the virus particles then transfer to a cell surface receptor (41, 46).  

Although, the majority of studies indicate that HSPGs are the primary attachment 

factor in HPV infection, there is clear experimental evidence that a secondary non-HSPG 

internalization receptor exists for HPV. For example, viral particles treated post 

attachment with HS chemical inhibitors or neutralizing antibodies enter cells via a non-

infectious pathway (75) and infection of HS null cells is possible when virions are 

modified by the addition of furin during the maturation process (27). Additionally, some 

studies indicate that the HPV interaction with HS at the cell surface is not absolute for 

infection, for instance organotypic-raft tissue-derived HPV31 infection of a number of 

human keratinocyte cell lines is HS independent (63) and HPV5 infection is not inhibited 

when virions are pre-treated with a highly sulfated form of heparin (41).  

Another important aspect of HSPG biology to consider while investigating their 

function in HPV infection, is the process of cell surface “shedding”. Shedding is the 

process by which the ectodomains of HSPGs such as syndecan and glypican are 

proteolytically cleaved at the cell surface. These “shed” ectodomains function as soluble 

effectors and form matrices with ECM proteins that act as physical barriers as well as 

repositories for growth factors (GF) (7). The enzymes responsible for syndecan 

ectodomain shedding include members of the matrix metalloproteinase (MMP) family, 

specifically MMP-9, MMP-7, MT1-MMP, ADMTS1, and ADAM17 (18). In addition to 

their role in HSPG ectodomain shedding, MMPs function to both degrade ECM proteins 

and to activate a myriad of extracellular proteins. These diverse interactions allow MMPs 
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to wield effects on many cellular events, including cell proliferation and migration, 

angiogenesis, host immunity, as well as chronic inflammation, tumor invasion and 

metastasis. While MMPs activate many effector proteins, they too must be enzymatically 

converted from the zymogen into an active form. This activation occurs through several 

mechanisms including the activity of members of the proprotein convertase (PCs) family. 

Intracellularly, proMMPs are processed in the Golgi by the proteolytic cleavage of PCs 

and are then shuttled to the cell surface (67). Up to 40% of MMPs contain the basic 

sequence motif targeted by PCs (RXKR or RRKR) and activation of several types of 

MMPs has been directly measured. For example, furin (the most well characterized PC) 

is responsible for the activation of MT1-MMP and MT-MMP3 (45, 88). ADAM17 and 

ADAM 10 disintegrin metalloproteinases are also likely activated by furin (1, 51). 

 

Proprotein Convertases 

PCs, including furin, are serine endoproteases that activate a wide array of 

proproteins by cleavage at specific basic sequence motifs, the consensus cleavage site 

being just downstream from RXKR or RRKR (where X = any amino acid). Furin, a type-

I trans-membrane protein, is ubiquitously expressed across many cell types including 

keratinocytes. It is most abundant in the trans-Golgi network but also functions within 

endosomes and at the cell surface. The activity of furin is strictly calcium dependent and 

important in many homeostatic cellular events, such as activation of signaling receptors, 

GFs, and, as aforementioned, MMPs (59, 83). Since furin modifies such an extensive 

spectrum of growth and ECM-remodeling factors, it is also associated with cancer 

metastasis and tumor progression. Furin over-expression in tumor cells of head-and-neck, 
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breast, and lung cancers is documented, and it has been referred to as a “master switch” 

in the regulation of tumor progression and growth (3). Moreover, research indicates that 

treatment of cancer cells with a selective furin inhibitor reduces their invasive potential, 

indicating that furin inhibition could be a viable treatment for cancer (4). In addition to its 

well-established role in cancer, furin is also implicated in the cleavage and activation of 

many different pathogens. Several bacterial toxins such as anthrax toxin protective 

antigen, Pseudomonas exotoxin A, and diphtheria toxin are each processed by furin 

during entry into the host cell (36, 37, 55). Similarly, furin activates a number of viral 

coat proteins during intracellular virus assembly (33). These include influenza A virus 

(69), Ebola and Marburg viruses (85), (86) as well as HIV (6). The role of furin in HPV 

infection however, is distinct for viral pathogens, in that HPV is one of the first viruses 

described requiring furin activity during viral entry (68). Although Semliki Forest and 

dengue virus entry have been reported to involve furin activity as well (89, 90).  

 

Furin and HPV Infection 

The Day-Schiller group at the U.S. National Institutes of Health has developed the 

widely accepted model of HPV entry. They propose that L1 binds to HSPG receptors on 

the cell surface and the ECM (in-vitro) or basement membrane (in-vivo). This initial 

binding to HSPGs causes an L1 capsid conformational change that allows an otherwise 

masked cleavage site on the minor capsid protein, L2 to become accessible. This site is 

then cleaved by extracellular furin allowing the virus to detach from the HS moiety and 

interact with the yet unknown secondary internalization receptor (26).  Several studies 

provide experimental �evidence for this theory. For instance, Richards et al. (68) 
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demonstrated that HPV infection was blocked when HeLa and CHO-K1 derivative cell 

lines were treated with a broadly-active PC inhibitor, decanoyl-RVKR-chloromethyl-

ketone (dec-RVKR-CMK), and that the N-terminus of L2 of phylogenetically distinct 

papillomavirus types contains a furin cleavage consensus site (amino acids 8-12) not 

present on L1. Additionally, this study revealed that L2 is a furin substrate in in-vitro 

assays and PsVs carrying L2 that is mutated in the furin cleavage site have reduced 

infectivity. In another study conducted by this research group, the investigators exposed 

viral particles to furin during particle maturation in an attempt to access and pre-cleave 

L2 before full capsid formation took place. These virions, termed furin “pre-cleaved” 

were able to infect primary keratinocyte and CHO-K1 derived cells lines, pgsa-745 

(HSPG null), FD11 (furin null) and FD11+ (transfected with cDNA expressing furin). 

These cells also were efficiently infected when exposed to viral particles in the presence 

of conditioned medium containing exogenous furin. This study also demonstrated that 

virions matured in the presence of furin bound more readily to the plasma membrane of 

HSPG null cells (24). By using a murine challenge model, these same investigators 

confirmed these in-vitro findings; instillation of the PC inhibitor, dec-RVKR-CMK, into 

the murine genital tract significantly decreased infection, and particles exposed to furin 

during the maturation process were again able to overcome this inhibition (46). Another 

piece of experimental evidence consistent with the Day HPV entry model is that the 

monoclonal L2 neutralizing antibody (RG-1) recognizing an epitope (amino acids 17-36) 

just downstream of the furin cleavage site, causes viral capsid binding to the cell surface 

to be perturbed (23). Additionally, binding of the RG-1 antibody to L2 is only detectable 

by immunofluorescence confocal microscopy, after 4 hours post attachment in the mouse 
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challenge model (46). This experimental evidence has allowed researchers to postulate 

the current Day model of HPV entry: L2 becomes exposed after virus attachment at the 

cell surface, revealing the L2 antibody-binding site. This model is attractive because it 

explains how RG-1 and other L2 antibodies that confer cross protection between HPV 

types [Gambhira, 2007 #3281;Rubio,  #3282] could be neutralizing. Even though L2 

resides within the viral capsid covered by L1, a capsid conformational change induced by 

cell binding could reveal the furin cleavage site and subsequent to this cleavage, L2 

antibody binding could occur.  

 

Inconsistencies in the Day entry model 

Although there are a large amount of data providing evidence in support of the 

Day model of HPV entry, there are several experimental findings that the Day model fails 

to explain. For instance, L1 only VLPs are able to enter cells (56) and the entry kinetics 

for L1 only & L1/L2 VLPs are markedly similar (77). Additionally, BrdU-labeled PsV 

genomes, only detectable after uncoating, are present within cells infected with PsVs 

containing L2 mutated at the furin cleavage site (68), indicating that cellular entry by the 

virus is not deterred even when the L2 furin cleavage-site is lost. A 2006 study also 

observed that L2 was not specifically needed for viral uncoating, but demonstrated that a 

peptide located on the C terminus of L2 was required for egress from the endosome (44). 

Another experimental finding, not in full agreement with the current entry model is the 

ability of “mature” virus particles treated with exogenous furin to infect HS null cells 

(24). This research group had previously shown that only “immature” virus particles were 

susceptible to furin pre-cleavage, a finding that led them to hypothesize that mature virus 
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particles must undergo a conformational change before the L2 furin cleavage site is 

exposed (68). In cells that are devoid of HS, the attachment factor reportedly needed to 

cause the L1 conformational change in mature PsV is not available; therefore, it is 

unclear how the addition of exogenous furin to an intact viral particle would permit 

infection in HS null cells. We propose these data could rather indicate that the activity of 

furin has an effect on L2 intracellularly, once a decrease in endosomal pH allows the 

virus to uncoat and the L2 cleavage site is exposed (79). Additionally, we postulate that 

furin acts on a cellular factor that once activated, confers the virus infection potential in 

an environment lacking HS. Furthermore, the source of exogenous furin used in 

experiments to treat mature PsVs was conditioned medium, from a CHO derived (∆ fur) 

cell line secreting a functional truncated form of furin. Although a control experiment 

was carried out demonstrating that the addition of conditioned medium from furin null 

cells to untreated virus did not increase infection, it cannot be ruled out that components 

of the conditioned medium that are also targets of furin such as MMPs or GFs, could 

have aided the PsV’s ability to infect HS null cells.  Even though viral particles matured 

in the presence of furin are able to infect HS null cells, they too can be rendered non-

infectious by heparinase treatment as seen in the murine genital tract infection model 

(46). Taken together, these experimental observations are inconsistent with the Day 

model of entry. Alternative interpretations of the Day group’s findings along with current 

data from our lab (summarized below) provide evidence for a novel model of HPV 

infection. 
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New Model of HPV-Cell Binding & Entry 

Recent data from our lab provide evidence for an alternative model of HPV 

binding and entry, whereby infection requires the formation and release of soluble high 

molecular weight (HMW) complexes consisting of HPV, HS and GFs (HPV-HS-GFs). 

As part of the normal physiology of the cell, MMPs initiate the release or “shedding” of 

the ectodomains of HSPGs like syndecan-1 and membrane bound GFs (Fig. 2) (31). 

Whether attached to the cell or in the soluble form, HSPG moieties interact with these 

soluble growth factors and function to serve as repositories for the molecules. Once 

HPVs are introduced into the cellular environment, they attach to HSPGs also bound to 

GFs. This complex is then cleaved off the membrane by MMPs, and the resulting HMW 

complex can interact with a growth factor receptor (GFR), such as epidermal growth 

factor receptor (EGFR) triggering cell signaling necessary for infection and gaining 

access to the cell. The experimental evidence consistent with this model includes that 

HPV, HS and GFs are detected within HMW complexes present in the supernatant of 

PsV-exposed HaCaT cells; MMP inhibitors prevent the release of HPV from the cell 

surface and reduce infectivity; HPV exposure induces GFR activation and EGFR 

inhibitors hinder HPV infection (81).  As noted above, furin activates MMPs, GFs and 

GFRs; therefore, it is quite possible that the necessity of furin during HPV infection is 

due not solely to L2 cleavage but also to aid in the formation and release of HPV-HS-GF 

complexes. 
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Figure 1.2. Normal HSPG biology and proposed model for extracellular interactions of 
HPVs in the context HS-GF complexes. (A). Natural processes of HSPG shedding that occur in 
the absence of HPV. The lower edges of epithelial cell lipid bilayers are depicted interacting with 
the ECM. The ECM consisting of collagens, elastins, fibronectins, laminins is shown in pink. 
Laminin 332 (formerly laminin 5; orange) interacts with syndecan-1 (purple) and alpha-6 beta-4 
integrin (dark blue) on the cell surface to provide cell anchorage to the ECM/basement 
membrane. Notably, these three molecules have been identified as HPV attachment factors. (i.) 
Sheddases including MMPs and ADAM sheddases (green) normally catalyze the release or 
‘‘shedding’’ (dotted arrows) of membrane-bound GFs (light blue) and other bioactive molecules, 
the protein ectodomains of HSPGs like syndecan-1, and ECM residents like laminin 332 (31). (ii.) 
HSPGs in the plasma membrane and ECM act as local depots for soluble GFs and other 
bioactive molecules. The HS-GF and bioactive compounds can interact with their cognate 
receptors laterally, via soluble form after release (iii), or in the ECM when cells migrate over the 
HSPG-complexes. (iii.) Sheddases including MMPs and heparanases and proteolytic processing 
of laminin 332 liberate soluble complexes containing GFs and HS/syndecan-1. (iv.) Soluble HS-
GF complexes bind to GFR/RTK (yellow) and activate intracellular signaling cascades. (B). The 
natural processes of HSPG decoration and release from the cells also occur in the presence of 
HPV particles (red). The virion image is based on the atomic structure from Modis et al. (54). By 
virtue of interaction with HS, HPV can join the complex at each stage where HSPG is involved (i–
iv). HPV could associate with soluble HS-GF in a naive infection site or during release from 
infected cells (v.). HPV association with syndecan-1 via HSPG and binding of syndecan-1 to 
laminin 332 and alpha-6 beta-4 integrin are consistent with the fact that HPV particles colocalize 
and interact with each of these extracellular molecules (Figure from Surviladze et al. (81)). 
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Gaps in knowledge and rationale of this work 

Owing to these new observations and the flaws of the current model of HPV 

infection, it is possible that the role of furin in HPV infection has been misinterpreted or 

not fully elucidated. Although L2 does posses a furin consensus cleavage site, the 

presence of this site is not required for cellular entry; cleavage could take place either at 

an extracellular locale or downstream in the infectious pathway, (e.g. during endosomal 

residence). The enzyme could however be important for both L2 cleavage and MMP 

activation during HPV infection, or have a yet undefined function. Without further 

investigation, furin’s role(s) in HPV infection remains poorly defined. It is therefore the 

goal of this study to more closely examine the role of furin and proprotein 

convertases (PCs) in HPV early infection. The central hypothesis of the study is that, in 

addition to L2 cleavage, PCs have functions that regulate HPV infection of HKs. The 

specific aims set forth for the study are: 1) to investigate the infectious phenotype and 

presence of HS in “furin matured” PsV preparations; and 2) to determine how the 

absence of furin/PCs affects HPV early infection.  
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CHAPTER 2: MATERIALS AND METHODS 

Cell Culture 

Cell lines used in this work are summarized in Table 1. HEK-293T cells are 

derived from a human embryonic kidney cell line immortalized with SV40 large T 

antigen and were grown in DMEM high glucose (Irvine Scientific) supplemented with 

10% FCS (Sigma or Atlas Biologicals), 1% glutamine-penicillin-streptomycin (Sigma). 

HaCaT cells, a spontaneously immortalized epithelial line derived from adult skin (9), 

were maintained in DMEM/Ham’s F-12 medium (Sigma) supplemented with 10% FCS 

(Sigma or Atlas Biologicals), 4X amino acids (Sigma) and 10% glutamine-penicillin-

streptomycin (Sigma). CHO-K1 and their derivative pgsd-677 (49), and FD11 (36) cells 

were maintained in DMEM/Ham’s F-12 medium supplemented with 10% FCS (Sigma or 

Atlas Biologicals), 4X amino acids (Sigma), 1% glutamine-penicillin-streptomycin 

(Sigma), 2% nystatin (Invitrogen) and 1% Glutamax (Invitrogen). FD11+furin cells (37) 

were maintained in same medium as CHO-K1 cells with the addition of 200µg/ml G418 

(Gibco BRL Life Technologies).  

Table 1. Cell Lines used in this Study. 

Cell line Source Known 
Deficiency 

PC Expression Reference 

293T Human 
embryonic kidney 

N/A N/A (11) 

HaCaT Spontaneously 
immortalized HK 

N/A N/A (9) 

CHO-K1 Chinese hamster 
ovaries 

N/A furin, PC5/6, 
PACE4, PC7/8 

(84) 

pgsd-677 CHO-K1 parent HSPG, Cell 
surface PC5/6 

furin, PACE4, 
PC7/8 

(49) 

FD11 CHO-K1 parent furin PC5/6, PACE4, 
PC7/8 

(36) 

FD11+furin FD11 parent N/A furin, PC5/6, 
PACE4, PC7/8 

(37) 
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HPV Pseudovirion (PsV) Production and Purification 

HPV PsVs were generated in 293T cells as previously described (16, 78). The 

transfection-based method was modified from that previously published (11, 12). 293T 

cells were transfected by the calcium phosphate method with codon optimized HPV16-

L1/L2 expressing plasmid, pXULL (11), and a luciferase reporter (pGL3-control, 

Promega) genome. Cells were then trypsinized, pelleted, and resuspended at 1x108 

cells/ml in Dulbecco’s PBS/9.5mM MgCl2 at 48h post-transfection. Cells were lysed with 

0.35% Brij58 and freeze-thawed 3X. Lysates were treated with 20U/ml exonuclease V 

(Epicentre plasmid-safe) and 0.3% Benzonase (Sigma) in order to digest any non-

encapsidated DNA. Preparations were allowed to mature overnight at 37°C. For non-

treated PsV (nt-PsV) and furin matured PsV (FM-PsV) preparations, cell lysate was 

divided into two portions and furin (10U/100µl of cell pellet volume, Enzo Life Sciences) 

was added to one portion (FM-PsV). After maturation, preparations were clarified by low 

speed centrifugation, supernatants were layered on top of a 1.25g/ml-1.4g/ml CsCl 

gradient. The viral band was captured by side puncture after 16-18h of centrifugation at 

20,000xg. Using Amicon Ultra-4 centrifugal 100K filters (Millipore), virions were 

washed and concentrated in HSB (25mM HEPES pH 7.5, 0.5 M NaCl, 1mM MgCl2). 

SDS-PAGE and Coomassie staining assessed virion stocks for purity and L1 protein 

content. Viral genome equivalents (vge) of packaged reporter plasmids were determined 

by qPCR. 
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Infections  

Cells were seeded at 1.0-2.5 x 105 cells per well in 4 or 9cm2 wells and were 

allowed to attach overnight. Cells were 60% to 80% confluent at the time of infection. 

PsVs stocks were thawed from -80°C to room temperature (RT) and sonicated for 20s. 

Virions were added to cells at (100-200vge/cell), and allowed to attach with gentle 

rocking at 4°C for 1h. The cells were washed once with an excess of medium and then 

incubated at 37°C with fresh medium. Infections were allowed to proceed for 20-30h at 

which time infection levels were quantified by luciferase assay. Cells were washed 2X in 

PBS and then lysed with 1X cell culture lysis reagent (Promega) for 15m at RT. To 

remove large cell debris, cell samples were then subjected to centrifugation (10s at 

13,000xg). Luciferase activity was measured by using the Dual luciferase assay kit 

(Promega) and a Lumat LB 9501 luminometer (Berthold Technologies) or a Glowmax 

1000 luminometer (Promega). Sample protein content was measured by Bradford assay 

and used to normalize the RLU raw data (RLU/protein concentration). Infections were 

carried out in duplicate or triplicate and the experiments were replicated 2-5 times. Error 

bars represent standard error of the mean. For heparinase pretreated infections, nt-PsV or 

FM-PsV were diluted in complete medium (CM) or heparinase III buffer (20mM Tris-

HCl pH 7.5, 0.1mg/ml BSA and 4mM CaCl2) treated for 2h at 37°C with heparinase I 

(3U, Sigma) or heparinase III (1.5U, Sigma) before exposure to pgsd-677 cells for 1h at 

4°C. The entry half time (t1/2) of nt-PsV and FM-PsV was assessed using a post-

attachment neutralizing antibody time course experiment. H16.V5 monoclonal IgG2b 

antibody to HPV16 VLP (19) was diluted 1:2000 in medium and added to HaCaT cells at 

times 0, 4, 8, 12, 16 and 20h post attachment. Infections in the presence of furin 
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inhibitors were performed after HaCaT cells were pretreated with each inhibitor for 30m 

at 37°C. Inhibitors were present during viral attachment and as the infection proceeded at 

37°C for 24h. Dec-RVKR-CMK (Furin Inhibitor I, Calbiochem) was used at 1µM or 

5µM. H-(D)RRRRRR-NH2 (Furin Inhibitor II, Calbiochem) was used 1µM or 5µM. 

Alpha-1 PDX (Pierce) was used at 5µM. For the furin inhibited time course, HaCaT, 

CHO-K1 or FD11+furin cells were treated or mock treated with dec-RVKR-CMK (1µM) 

for 1 or 2h at 37°C. At 0,1, 2, 4, 8, and 20 or 26h post attachment dec-RVKR-CMK 

(1µM) was added to respective wells and infection was allowed to proceed at 37°C for 

30h. For furin rescued time course infections, FD11 cells wells were treated or mock 

treated with furin (1U, Sigma) for 1 or 2h at 37°C. At 0,1, 2, 4, 8, and 26h post 

attachment furin (1U) was added to respective wells and infection was allowed to 

proceed at 37°C for 30h. 

 

SDS-PAGE and Immunoblotting  

Nt-PsV or FM-PsV preparations were diluted in Heparinase III buffer, left untreated, 

treated for 10m or 2h with Heparinase III (1U). Samples were then solubilized in 6X 

Laemmli buffer with ß-mercaptoethanol with or without heat for 10m and subjected to 

SDS-PAGE using a pre-cast 10% polyacrylamide gel (BioRad). Proteins were then 

transferred to PVDF membranes and probed with primary antibodies: mouse monoclonal 

HPV16 L1 (Abcam) or mouse monoclonal HS (Millipore). Antigen-antibody interactions 

were detected using horseradish peroxidase-labeled secondary antibody (Pierce). 
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Immunofluorescence Staining and Microscopy 

HaCaT cells were cultured overnight on cover slips in 4 cm2 wells. Cells were 

treated with dec-RVKR-CMK (5µM) or H-(D)RRRRRR-NH2 (5µM) for 30min at 37°C 

or left untreated. HPV16 PsVs were allowed to attach (6500 vge/cell) for 1 hr at 4°C. 

Unbound virus was washed off and furin inhibitors were added to appropriate wells. 

Virus internalization was initiated by a shift to 37°C and infection was allowed to 

proceed overnight. At 20h post infection, cells were treated with a low pH solution (0.2M 

NaAcetate, 0.5M NaCl pH 4.6) at 4°C or left untreated. Cells were washed 2X in PBS, 

fixed in 3.7% PFA for 30m at RT and then stained with wheat germ agglutinin-Alexa 

Fluor® 488 (Invitrogen) for 18m. After 3 PBS washes, cells were permeabilized in 0.1% 

Triton X for 5m at RT, and again PBS washed 3X before being blocked in 1% BSA in 

PBS for 1h at RT. Cells were then incubated with mouse monoclonal antibody (1:200) 

against HPV16L1 (Millipore) for 1h at RT. Following 3X PBS washes, cells were 

incubated with DyLightTM 594-conjugated affinityPure donkey Anti-mouse IgG (1:200; 

Jackson Immunochem) for 1h at RT. Cells were again washed 4X in PBS and coverslips 

were inverted onto Vectashield mounting medium with DAPI (Vector Laboratories). 

Images were acquired with a Zeiss LSM 510 META confocal system using a 

DAPI/FITC/Rhodamine filter configuration. Laser intensities were kept constant during 

imaging. For transmission electron microscopy (TEM), viral stocks were diluted in HSB 

or Heparinase III buffer just prior to imaging and then visualized by TEM (Hitachi 7500) 

at 80kV following binding to carbon-coated, plasma discharged treated electron 

microscopic grids and negative staining with 2% uranyl acetate. 
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CHAPTER 3: AIM 1 RESULTS 

The first aim of the study was to investigate the infectious phenotype and 

presence of HS in “furin matured” PsV (FM-PsV) preparations. During PsV production 

in the 293T cell system, virions recovered from cell lysates are in a “loose” or immature 

capsid conformation. In order for the virions to reach a tighter conformation through 

inter-L1 disulfide bonding they are allowed to mature overnight at 37°C (11, 12). It is 

during this step, where presumably L2 is accessible, that furin is added to the virion 

preparation. Day et al. (24) demonstrated that HPV16 PsVs allowed to mature in the 

presence of furin could infect HSPG null cells, and concluded that this was due to the 

pre-cleavage of L2 conferring the virion the ability to bypass the initial HSPG interaction 

needed for a capsid conformational change. However, the researchers acknowledge that 

only 35% of L2 was cleaved within the virion preparation, and in another study from the 

same group the infectious potential of FM-PsVs was perturbed when virions were 

heparinase-treated in the murine genital tract infection model (46). Due to the fact that 

PsV maturation takes place in the presence of cell lysates, there is an alternative 

interpretation of the reported findings by Day et al. In light of the new model of HPV 

entry proposed by our lab, whereby a complex of HPV-HS-GF is released from the cell 

surface prior to engagement of a secondary internalization receptor (81), we thought it 

possible that during the viral production process PsVs may become “decorated” with HS-

GF and possibly other factors to some extent. In fact, Surviladze et al. showed that 

released HPV-HS-GF complexes are able to infect HSPG deficient cells (81). Several 

other furin substrates and binding partners, such as growth factors and HSPGs, are 

present within cell lysates, and it is known that furin activates MT1-MMP as well as 
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several growth factors (83). It is possible that these bioactive molecules, if coupled to the 

virus could confer the potential to infect HS null cells. We therefore hypothesized that in 

the process of generating FM-PsV, wherein immature virus particles are exposed to furin 

in 293T lysates, the virus particles become “decorated” with cellular factors essential for 

infection. Thus, my goal for this aim of the study was to generate particles allowed to 

mature in the presence of furin and determine if these particles became associated with 

HSPG during the production process.  

In order to verify that in our laboratory FM-PsV did indeed infect cells lacking 

HS, a CHO-K1 derivative cell line pgsd-677, lacking the enzymes required for heparan 

sulfate polymerization was used (49). FM-PsVs and non-treated PsVs (nt-PsVs) were 

allowed to attach to the cells for 1h at 4°C, cells were then washed, refed with growth 

medium and incubated at 37°C to allow viral entry. At 24h infection levels were 

quantified by luciferase assay. As expected, nt-PsVs had a very low infectious potential 

in pgsd-677 cells lacking HS, but FM-PsVs did infect almost 7 times better than nt-PsVs 

(Fig. 3.1). This confirmed the findings of Day et al. (24) and again demonstrated the fact 

that virions allowed to mature in the presence of furin have the ability to infect cells 

lacking HS. In the parental CHO-K1 cells that express HSPG, FM-PsVs infected 2.5 

times more than nt-PsVs. Although we expected FM-PsVs would infect HS null cells due 

to their proposed decoration with HS, the finding that FM-PsVs also better infect CHO-

K1 cells is noteworthy. CHO-K1 cells are much more readily infected than HS null cells, 

by both nt-PsVs and FM-PsVs (66 and 25 times greater, respectively).  
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 Figure 3.1. FM-PsV has a greater infectious 
potential regardless of HS status of cell. Nt-
PsVs or FM-PsVs (150 vge/cell) were allowed 
to attach for 1h at 4°C to subconfluent CHO-K1 
(wild type HSPG) or derivative pgsd-677 
(HSPG null) cells. Unbound PsVs were washed 
off and internalization was initiated by a shift to 
37°C. Infection levels were quantified at 24h 
post infection by luciferase activity. Each 
experiment was carried out in triplicate and the 
error bars represent the standard error of the 
mean (n=6). Values were normalized to nt-PsV 
infection in CHO-K1 cells. The mock level for 
CHO-K1 cells was 0.29% of nt-PsV infection 
and the mock of pgsd-677 cells was 12% of nt-
PsV infection. 

 

The results in Fig. 3.1 suggest that CHO-K1 cells provide additional important 

factor(s) for infection aside from what the FM-PsVs provide in HSPG-null cells. This 

also indicates that the factor(s) important for infection is not just increased levels of 

HSPG at the cell surface because presumably, FM-PsVs don’t require HS. This could be 

due to either FM-PsVs containing pre-cleaved L2 as the Day model suggests, thereby 

abolishing the need for HS primary attachment or alternatively (or in addition) by HS-

FM-PsV association during virus production and maturation, as we hypothesize. 

Additionally, although HSPG synthesis is the main difference between wild type CHO-

K1 cells and pgsd-677 cells, the HS deficient pgsd-677 cells also lack cell surface PC5/6 

(73). This could potentially affect the ability of HPV to infect these cells because, without 

this PC localized at the plasma membrane, furin/PC dependent processes, whether they 

be L2 cleavage or activation of a factor important for infection, will be severely hindered. 

Together, these results suggest that FM-PsVs are modified in such a way that their 

infectious potential is greater, regardless of the presence or absence of HS on the cell 

surface.   
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Figure 3.2. Heparinase pretreatment of FM-PsV 
does not hinder infection in HSPG null cells. Nt-
PsVs or FM-PsVs were treated for 2h at 37°C with 
heparinase I (3U) or heparinase III (1.5U) in 
heparinase III buffer (20mM Tris-HCl pH 7.5, 
0.1mg/ml BSA and 4mM CaCl2). Treated and 
untreated virions (150vge/cell) were diluted in CM 
and allowed to attach to subconfluent pgsd-677 
(HSPG null) cells for 1h at 4°C. Unbound PsVs were 
washed off and internalization was initiated by a shift 
to 37°C. Infection levels were quantified at 24h post 
infection by luciferase activity. Each experiment was 
carried out in triplicate and the error bars represent 
the standard error of the mean (n=3). Mock level 
was 75% of nt-PsV infection and infection is relative 
to FM-PsV set to 1.  

 

 To further test the hypothesis that the ability of FM-PsV to infect cells lacking 

HSPG is due to a greater association of FM-PsV with HS, virions were pretreated with 

heparinase I or III and exposed to pgsd-677 cells lacking HS. We expected that if FM-

PsVs were associated with HS, PsV treatment with heparinase I or III would disrupt this 

association and infection of pgsd-677 cells would be inhibited. Surprisingly, this did not 

occur as pre-treatment of both nt-PsVs and FM-PsVs with heparinase I (3U), or 

heparinase III (1.5U) for 2h at 37°C did not cause a significant reduction in infection 

(Fig. 3.2). As per the manufacturer’s recommendations (Sigma product sheet) heparinase 

enzymatic reactions require the presence of heparinase III buffer (20mM Tris-HCl pH 

7.5, 0.1mg/ml BSA and 4mM CaCl2). As a control, infection of pgsd-677 cells with nt-

PsVs and FM-PsVs pre-treated for 2h at 37°C, in the presence of heparinase III buffer 

alone was assessed. FM-PsVs and nt-PsVs were diluted in complete medium (CM) or 

heparinase III buffer and placed at 37°C for 2h. CM was then added to each dilution and 

added to cells for 1h at 4°C. Cells were washed, refed with growth medium and incubated 

at 37°C to allow viral entry. At 24h infection levels were again quantified by luciferase 

assay. As compared to virions incubated for 2h at 37°C in the presence of (CM), the 
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treatment of virions with heparinase III buffer alone augmented infection 5 fold for nt-

PsV and 10 fold for FM-PsVs. This was also an unexpected result, but we suspect that the 

likely constituent of heparinase III buffer responsible for the increased levels of infection 

is Ca2+. In this experiment the final Ca2+ concentration in CM is 0.4mM whereas PsV pre-

treated with heparinase III buffer were in 4mM Ca2+ at cell exposure. Ca2+ has been 

reported to enhance viral capsomer association in murine polyomavirus (MPV) [Chuan,  

#3292], and bovine papillomavirus (BPV) (60); allowing the virus to remain stable in 

solution could increase the number of viral particles available to infect the cells. 

Additionally, Ca2+ is required for furin/PC activity (83), if these enzymes are working at 

their maximum potential HPV infection levels will likely rise since infection is 

incontrovertibly furin/PC dependent.  

 Although, Fig. 3.2 suggests a trend in infection decrease for heparinase-treated 

FM-PsVs, no statistically significant change in infection levels was reproducibly seen 

when virions were exposed to heparinase. Therefore, we strove to directly measure HS 

associated with FM-PsVs, and determine if heparinase cleavage was active during the 

reaction conditions. Previous findings in our lab indicate that HS present in association 

with PsV is released from cells and “shed” into CM post exposure to cells (81). 

Although, detection of HS is challenging due to the dearth of effective antibodies, 

Surviladze et al. showed that PsVs released from cells were present in a HMW complex 

of >104 kDa. This complex was shown to be detergent resistant and heat sensitive and 

could be further dissociated by treatment with heparinase III (81). As detection of HS in 

these HMW HPV-HS-GF complexes from CM post exposure to cells was challenging, 

we chose to first test whether HS was present in our nt-PsV and FM-PsV preparations 



                                                                              27 

using a combination of heparinase III and heat treatment followed by immunoblot for L1 

and HS. We reasoned that such treatments would cause the shift in size of L1 proteins by 

SDS-PAGE if HS molecules were present at substantial levels in association with the 

PsVs. We also suspected that if HS was present in high enough quantities within the 

virion preparations, it might be detectable by immunoblotting for HS directly when the 

virions were treated with heparinase. Equal amounts of the nt-PsV or FM-PsV 

preparations were either heated, treated with heparinase III for 10m or 2h, or subjected to 

a combination of heat and heparinase III treatment (Fig. 3.3A). 

The immunoblots allowed for a number of important observations.  First, 

although 10 µg of total L1 protein (PsV preparation) was loaded into each well of the 

SDS polyacrylamide gel, differing amounts of L1 protein were detected by immunoblot 

depending upon the treatment of the PsVs prior to loading on the gel. There was a small 

amount of HPV16 L1 detected in lanes where PsV preparations were not heated or 

heparinase-treated (Fig. 3.3A, lanes 1 and 8). This might be due to an inability of the 

stable PsV-HMW complexes to enter the gels, which have an upper size restriction of ≈ 

350 kDa (BioRad product sheet). The results could also be due to lack of immuno-

recognition by the L1 antibody on the blot (i.e., the epitopes are not readily available 

without heparinase treatment or heating). Thus, our data indicate that heating of the PsVs  
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Figure 3.3. Heparan 
sulfate is present in nt-
PsV & FM-PsV 
preparations. Nt-PsV or 
FM-PsV preparations 
(10µg) were diluted in 
Heparinase III buffer and 
left untreated, treated for 2h 
or 10 m with Heparinase III. 
Samples were subjected to 
SDS-PAGE under reducing 
conditions (ß-
mercaptoethanol) with heat 
(∆) or without for 10m 
followed by an immunoblot 
for HPV16 L1 (Abcam) (A) 
or HS (Millipore) (B). Arrows 
at the left side of panel A 
indicate the species of 
multimers, monomers and 
proteolytic products of L1 
(12). 

 

affects the size and/or conformation of the PsV in permitting entry into the gel. The 

amount of immuno-reactive L1 detected increased when the PsVs were heated (Fig. 

3.3A, lanes 2, 9).  Similarly, heparinase III treatment of PsVs yielded more L1 detection 

(Fig. 3.3A lanes 3-6, 10-13), and longer heparinase III treatment resulted in even higher 

detection of L1 (compare 2h versus 10m treatments).  Furthermore, heating and 

heparinase III treatments were synergistic in their effects (compare Fig. 3.3A lanes 1 and 

8 to lanes 4 and 11).  Additionally, we can surmise that the heparinase III enzyme was 

functioning in these reactions (10m or 2h treatment of the virus at 37°C in heparinase III 

buffer) due to the difference in L1 detection observed (Fig. 3.3A lanes 3-6, 10-13). HS 



                                                                              29 

presence within the virion preparations was further confirmed by immunoblotting for HS 

directly (Fig. 3.3B). HaCaT cell lysate was used as a positive control for HS detection in 

this experiment, and appears as a large smear on the membrane (Fig 3.3B. lane 14), 

expected due to the numerous proteins modified with HS of varying sulfonation levels 

present in cell lysate, all able to react with the HS antibody used. As seen with the 

immunoblot for L1 (Fig. 3.3A), the amount of immuno-reactive HS detected increased 

when the PsVs were heated and treated with heparinase III (Fig. 3.3B lanes 2-4, 8-10). It 

is unlikely that heparan or HS disassociation from the virus was complete, as evidenced 

by the detection of HS at essentially the same molecular weights as L1. This is an 

indication that L1 and HS are associated, but also suggests that under the experimental 

treatment conditions, the binding partners are so stably complexed that they cannot be 

fully disassociated. This may explain why heparinase treatment of FM-PsVs did not 

significantly reduce infection in HS null cells (Fig. 3.2) if HS was still coupled to the 

virions allowing infection. Another noteworthy aspect of the HS immunoblot is that HS 

was only detected in the PsV preparations when virions were diluted in heparinase III 

buffer (Fig. 3.3B lanes 1-4, 7-10) No immuno-recognition was noted when virus was 

diluted in HSB (the normal diluent and storage buffer for pseudovirion preparations) (Fig 

3.3B lanes 5-6, 11-12). This indicates that not only does the heparinase III buffer 

augment infection, it also modifies the virus complex in such a way that PsVs can enter 

the gel and/or the epitopes for HS are recognizable.  

Another strategy utilized to investigate the infectious phenotype of FM-PsV was 

to assay the entry half time (t1/2) of the virus population by determining the time needed 

for half the infectious population to escape antibody mediated neutralization at the cell 
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surface. Based on our working hypothesis that FM-PsV virions are more extensively pre-

decorated than nt-PsVs, we expected the internalization time of FM-PsVs to be quicker 

because presumably those virions would be able to bypass the initial HSPG attachment 

factor and go straight to a secondary internalization receptor. Figure 3.4 depicts a 

neutralizing antibody time course experiment, which measures infection levels after 24h. 

The H16.V5 antibody neutralizes infection by interfering with viral endocytosis; the 

antibody does not hinder virus-cell surface association but does cause HPV16 virions to 

remain at the cell surface, as measured by immunofluorescent confocal microscopy (27). 

In order to calculate the t1/2 time of HPV16 PsV preparations, the H16.V5 antibody was 

added at successive time points post PsV binding to and initiation of entry in HaCaT 

cells. The infection data were plotted over time, and FM-PsV infection levels were 

normalized to nt-PsV that were not exposed to H16.V5.  The plot shows that FM-PsVs 

had a faster internalization time (t1/2  ≈ 6h) than nt-PsVs (t1/2  ≈10h). These data indicate 

that FM-PsVs are modified in such a way that they can escape the plasma membrane 

faster than nt-PsV. Similar to the greater infection potential in CHO-K1 and pgsd-677  

 

 Figure 3.4. FM-PsVs are internalized more 
rapidly than nt-PsVs. Post attachment antibody 
mediated neutralization time course. Nt-PsVs or 
FM-PsVs (150 vge/cell) were allowed to attach for 
1h at 4°C to subconfluent HaCaT cells. Unbound 
PsVs were washed off and internalization was 
initiated by a shift to 37°C. At the indicated times 
post attachment, half the media in each respective 
well were replaced with a dilution of 1:1000 
H16.V5 Ab in fresh media (final Ab dilution 
1:2000). Infection levels were quantified at 24h 
post infection by luciferase activity and values 
were normalized to untreated nt-PsVs at 0h. Each 
experiment was carried out in duplicate and the 
error bars represent the standard error of the 
mean (n=4). Mock level was 0.012% of nt-PsV 
infection. 
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cells, FM-PsVs also demonstrated a 1.5 fold higher infectivity in HaCaT cells than did nt-

PsVs. Although, this experiment does not measure HS association with PsVs, it does 

support the idea that FM-PsV particles are associated with a factor(s) that allows faster 

and higher overall infectivity. 

 

      

 
 
Figure 3.5. Electron 
micrographs of nt-PsVs and 
FM-PsVs. Nt-PsVs and FM-PsVs 
were diluted in HSB (A, B) or 
Heparinase III buffer (C, D) just 
prior to imaging and then 
visualized by transmission 
electron microscopy (TEM) 
(Hitachi 7500) at 80kV following 
binding to carbon-coated, plasma 
discharged treated electron 
microscopic grids and negative 
staining with 2% uranyl acetate.  
Black bars equal 100 nm. 

 

To visualize the capsid structure of nt-PsVs and FM-PsVs, and more directly 

assess the association of virions with potential binding partners, high-resolution 

transmission electron microscopy (TEM) images of the preparations were attained. We 

suspected heparinase III buffer modified capsid structure based on our findings that HS 

associated PsVs were only resolved by immunoblot when PsVs were diluted in 

heparinase III buffer. Thus, additional images in the presence of buffer were also 

acquired. Both the nt-PsV and FM-PsV preparations contained intact capsid structures; 

however, additional associated molecules were not visualized (Fig. 3.5 A, B).  

Furthermore, when virions were incubated for 2h at 37° C in heparinase III buffer 
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immediately prior to imaging, viral particles became associated with aggregates 

contained within the heparinase III buffer and took on a less regular form (Fig. 3.5 C, D). 

However, because of the associating material, it was difficult to discern specific effects 

on capsid structure.  

Taken together, these data indicate that both nt-PsVs and FM-PsVs are associated 

with HS upon isolation from cells, yet the infectious potential of FM-PsVs is greater in 

all of the cell lines tested thus far and FM-PsVs posses a quicker t1/2 internalization time 

than nt-PsVs. Additionally, we found that heparinase III buffer dramatically augments 

PsVs’ ability to infect HS null cells and increases the ability of HS to be detected by 

immunoblot on the viral particles. Furthermore, virions imaged by TEM displayed an 

irregular conformation in the presence of the buffer.  
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CHAPTER 4: AIM 2 RESULTS 

The second aim of this study was to determine how the absence of furin, either 

through the use of pharmaceutical inhibitors or a furin mutant cell line, affects early steps 

in HPV16 PsV infection. In addition, experiments supporting this aim have been 

designed to determine the time point at which furin is crucial in early infection, 

specifically with the goal of addressing whether furin activity is necessary before or after 

viral internalization.  

It is well established that the use of dec-RVKR-CMK (“Furin Inhibitor I”) hinders 

HPV infection in HeLa cells as well as in the murine female genital tract (46, 68). To 

assess if this same inhibition was seen in HaCaT cells, as well as with other small 

molecule furin inhibitors, we carried out infections in the presence of Furin Inhibitor I, 

hexa-D-arginine (“Furin inhibitor II”) and a serpine furin inhibitor, alpha-1 PDX. Table 2 

compares the properties of the furin inhibitors used in the study.  

Table 2. Furin/PC Inhibitors used in this Study. 

 Mode of 
Inhibition 

Cell 
Permeable 

Dissociation 
Constant 

Refs. 

Furin Inhibitor I 
dec-RVKR-CMK  
 

Blocks activity 
by irreversibly 
binding to 
catalytic site 
 

Yes furin (Ki~1nM) 
PC5/PC6, PC7/PC8 
(Ki=0.12nM) 
PACE4 (Ki=3.6nM) 

(33) 

Furin Inhibitor II 
H-(D)RRRRRR-NH2 
 
 

Competitive 
Inhibitor 
 

Poorly furin (Ki~106nM) 
PACE4 (580nM) 

(14, 55, 
71) 

alpha-1 PDX 
 

Slow tight 
binding 
mechanism/ 
suicide 
substrate 
inhibitor  

Yes furin  
(Ki ~0.6nM) 
PC5/6 (Ki~2.3nM) 
PACE4  
(NO inhibition) 
PC7  
(NO inhibition) 

(39, 40) 
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Infection of HaCaT cells with nt-PsVs in the presence of Furin inhibitor I at either 

concentration (1µM or 5µM) was almost completely abrogated (by 96%). Whereas Furin 

Inhibitor II, at a low concentration (1µM), reduced nt-PsV infection by 75%, and at a 

higher concentration (5µM) near complete inhibition was noted (Fig. 4.1A). Furthermore, 

FM-PsV infections were abolished by either inhibitor at the higher concentration (5µM), 

but at 1µM, Furin Inhibitor I treatment decreased infection by 44% and the presence of 

hexa-D-arginine at 1µM reduced infection by only 11%. Interestingly, FM-PsVs were not 

immune to furin inhibition, as would be expected per the Day model of entry.  If L2 was 

truly pre-cleaved in these preparations, there should be no reason furin inhibition would 

hinder infection by FM-PsVs. 

 

 

Figure 4.1. Furin inhibitors hinder FM-PsV infections. Subconfluent HaCaT cells were 
exposed to Furin Inhibitor I, II (at 1 or 5µM) or alpha-1PDX (5µM) for 30m at 37°C or left 
untreated. Nt-PsVs or FM-PsVs (150 vge/cell) were allowed to attach for 1 hr at 4°C. Unbound 
PsVs were washed off and inhibitors were again added to their respective wells. Internalization 
was initiated by a shift to 37°C. Infection levels were quantified at 24 h post infection by luciferase 
activity. Each experiment was carried out in duplicate and the error bars represent the standard 
error of the mean (n=4). Values were normalized to untreated nt-PsV infection. A. Mock level was 
1% of nt-PsV infection. B. Mock level was 5% of nt-PsV infection. 
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Day’s group determined that furin or PC5/6 were the PCs likely required during 

HPV infection (68). Keratinocytes express furin, PACE4, PC5/6 and PC7/8 (64) and 

experiments in LoVo and FD11 furin null cells lines indicated that PACE4 and PC7/8 

could not functionally substitute for furin or PC5/6 (68). Although the Day group’s 

findings suggest furin or PC5/6 to be the likely candidates important in HPV infection, 

our data indicated that nt-PsVs and FM-PsVs were differentially inhibited by dec-RVKR-

CMK versus the poly-arginine -- the former having a broad specificity for all PC family 

members and the later inhibiting at least furin and PACE4, while its effect on PC5/6 and 

PC7 is not established in the literature. Owing to these issues, we tested the effects of 

alpha-1 PDX, a serpin molecule that selectively inhibits only furin and PC5/6A (39). This 

inhibitor reduced infection with nt-PsVs by over 50% but only decreased infection with 

FM-PsVs by 28% (Fig. 4.1B). These results again confirm that FM-PsVs are less 

susceptible to furin inhibition than nt-PsVs but also indicate that another PC family 

member could play a role in HPV keratinocyte infection, because even when furin and 

PC5/6 are specifically targeted, infection of either virus type is not fully abrogated at 

5µM.  

To investigate the ability of FM-PsVs to infect furin-deficient cells as established 

by Day et al. (24), nt-PsVs and FM-PsVs were used to infect two CHO-K1 derivative 

cells lines, furin deficient FD11 cells and FD11+ cells transfected with cDNA expressing 

furin (36, 37). FM-PsVs infected FD11 cells 13X more efficiently than did nt-PsVs (Fig. 

4.2). This pattern was also observed in the FD11+ cells, as FM-PsVs infected 2X as well 

as did nt-PsVs. Interestingly, not only did the infectious potential of nt-PsVs rise 

dramatically in the FD11+ cells, so did that of the FM-PsVs; 7X better for FM-PsVs and 
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50X better for nt-PsVs. These results further support the likelihood of a cellular 

component that requires furin function during HPV infection, because even when PsVs 

are allowed to mature in the presence of furin and may well contain pre-cleaved L2, their 

infectious potential is even more pronounced when furin-expressing cells are infected.  

 

 Figure 4.2. FM-PsVs infect furin null 
cells. Nt-PsVs or FM-PsVs (150 vge/cell) 
were allowed to attach to subconfluent 
FD11 or FD11+furin cells for 1h at 4°C. 
Unbound PsVs were washed off and 
internalization was initiated by a shift to 
37°C. Infection levels were quantified at 
24h post infection by luciferase activity. 
Each experiment was carried out in 
triplicate and the error bars represent the 
standard error of the mean (n=6). Values 
were normalized to nt-PsV infection in 
FD11+furin cells. FD11 cells mock level 
was 0.02% of nt-PsV infection and 
FD11+furin cells mock level was 0.0005% 
of nt-PsV infection. 

 

Another goal for this aim of the study was to determine the time point at which 

furin is crucial for infection. The entire infection process is characterized as cell binding, 

entry, uncoating, transcription and translation followed by viral assembly and release. 

Early infection, however is described as comprising those events that occur prior to viral 

gene transcription including, binding, entry, uncoating and viral genome translocation to 

the nucleus, for a DNA virus, such as HPV. Although, the internalization time for a 

population of HPV particles is remarkably protracted and has been reported to vary 

among viral types, (t1/2 time of HPV16 ≈ 4h, (25) and HPV31 ≈ 14h (78)), for the 

purpose of this study, early infection is being designated as those events that occur within 

the first 8h. This investigation is specifically using HPV16 PsVs, and our neutralizing 



                                                                              37 

antibody time course data (t1/2 time of nt-PsV ≈ 10h) (Fig. 3.4) supports a slower 

internalization time for HPV16 as compared to other studies (25). It is therefore likely, if 

furin is acting on a cellular factor or the virus prior to entry, furin inhibition at a very 

early time point such as ≤ 4h should hinder infection. If furin were not important until 

later in the infectious cycle we would expect significant reductions in infection levels 

only when furin inhibition is initiated after 4h. To test this possibility a time course 

inhibition assay was utilized, whereby Furin Inhibitor I, the cell permeable compound, 

was added to HaCaT cells at sequential time points throughout the infectious cycle (Fig. 

4.3A). The addition of the furin inhibitor, at every time point up to 4h post infection 

severely inhibited the infection readout of PsV after 24h, and when added at 4h infection 

levels were only 50% compared to the 8h time point where infection was completely 

restored. These results indicate that furin is predominantly needed early during infection 

when the majority of the PsVs are binding and entering the cell. The reduced infection 

levels seen at the 4h mark could be due to the protracted internalization time of the virus, 

where some PsVs could be inhibited at an extracellular location at this late time point.  

Similar results were seen when this same time course inhibition assay was performed in 

CHO-K1 cells (Fig. 4.3B). The only notable difference being that full infection in this 

cell line was restored earlier, at the 4h time point. The same assay executed in FD11+ 

furin cells also produced similar results but full infection was again restored earlier, at 2h 

(Fig. 4.3C). As was seen in Fig. 4.2, the infection levels of FD11+ furin cells were well 

beyond those seen in HaCaT cells or parental CHO-K1 cells. Again, this demonstrates 

that HPV infection is augmented in cells expressing furin at elevated levels. Another 

noteworthy, but albeit, unexpected result from these experiments was that in CHO-K1 
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cells, when the inhibitor was added at 4 and 8h post binding, infection levels rose well 

above non-treated cells (the standard of 100% infection). This same result was even more 

pronounced in the FD11+furin cell line where at 4 and 8h addition of the furin inhibitor 

caused infection levels to double and almost triple, respectively. Without further 

investigation it is unclear as to why the addition of Furin Inhibitor I, a broadly acting PC 

inhibitor, at a late time point would aid the infectious process so dramatically. 

Nevertheless, these time course inhibition experiments indicate that furin/PC activity is 

necessary before 4h, very early in HPV infection. 

 

 
 

 

Figure 4.3. Furin Inhibitor I time course assay demonstrates that furin is necessary early in 
HPV infection. Time course inhibition assay wherein subconfluent (A) HaCaT, (B) CHO-K1 or 
(C) FD11+furin cells were exposed to dec-RVKR-CMK (1µM). Nt-PsVs (150vge/cell) were 
allowed to attach for 1h at 4°C in the presence or absence of the inhibitor. dec-RVKR-CMK was 
added to pre-treated, attachment treated and 0h wells. Unbound PsVs were washed off and 
internalization was initiated by a shift to 37°C. ��At 1, 2, 4 or 8h cells were exposed to inhibitor. 
Infection levels were quantified at 24h post infection by luciferase activity. Each experiment was 
carried out in duplicate and the error bars represent the standard error of the mean (n=4). A. 
HaCaT cells mock level was 0.026% and values were normalized to untreated control at 0hr, B. 
CHO-K1 cells mock level was 0.004% and values were normalized to untreated control at 0hr, C. 
FD11+ furin mock level was 0.001% and values were normalized to untreated control of CHO-K1 
cells. 

 

To further investigate the requirement of furin in early infection, the furin-null 

cell line, FD11, was exposed to exogenous furin at various time points before and after 
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the addition of nt-PsVs (Fig. 4.4). Based on the results from the previous time course 

inhibition assay we expected that addition of furin up to the 4h time point would cause 

the most significant enhancement of infection. As expected, when FD11 cells were 

treated with furin prior to HPV16 attachment (-2h), at attachment (-1h), and at the 0h 

time point, infection levels more than doubled. This trend however, was not observed at 

the 1, 2 and 4h time points, where infection levels were comparable to untreated cells. 

These results indicate that furin’s activity on the cells themselves likely effect the 

infection outcome. The only times at which furin activity in the presence of virus 

enhanced infection was at the -1h mark of infection, when the virus was binding to the 

cells and at the 0h time point, when viral entry initially occurs. Taken together, these data 

point toward an early role of furin/PC activity in HPV infection and further support the 

notion that furin, possibly in conjunction with another PC family member, is specifically 

involved in HPV infection because when furin is exogenously added to the cellular 

environment of FD11 cells infection levels increase.  

 

 Figure 4.4. Furin is necessary early in HPV 
infection. Time course of furin rescue of 
infection wherein subconfluent FD11 cells were 
exposed to furin (1U). Furin was added prior to 
(-2, -1h), at the time of (0h) and post (1-8h) nt-
PsV exposure. Nt-PsVs (150vge/cell) were 
allowed to attach for 1 hr at 4°C. Unbound 
PsVs were washed off and internalization was 
initiated by a shift to 37°C. Infection levels were 
quantified at 24h post infection by luciferase 
activity. Each experiment was carried out in 
duplicate and the error bars represent the 
standard error of the mean (n=4). Values were 
normalized to untreated control and mock level 
was 0.048%. 
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The results from the time course experiments demonstrate that furin/PC activity is 

necessary early in infection and suggest furin has an effect on a cellular component. 

However, these experiments cannot definitively reveal whether the enzymatic activity of 

a PC is required specifically before or after virus internalization. Richards et al. 

demonstrated that treatment with Furin Inhibitor I did not completely block BPV1 entry 

in C127 cells (68). In these experiments the investigators used immunofluorescent 

confocal microscopy to show co-localization of HA-tagged L2 and BrdU labeled viral 

psuedogenome with an endosomal marker Lamp-1, in cells treated with furin inhibitor. 

From this observation the researchers concluded that furin inhibition induced retention of 

genome and L2 protein in the endosome. However, the mouse mammary epithelial cell 

line used is not naturally infected by HPV and this piece of experimental data does not fit 

the research group’s “Day model of entry,” where furin activity is required at the plasma 

membrane. Therefore, in an attempt to resolve the ambiguity of the entry model and 

determine whether furin/PC activity is necessary prior to virus internalization, we 

examined if the use of different furin inhibitors (Table 2) would block virus entry into 

HaCaT cells. In the presence of Furin Inhibitor I, virus internalization was completely 

abrogated as visualized by immunofluorescent confocal microscopy. The virus appears to 

be trapped on the outside of the cell and co-localized with the plasma membrane (Fig. 

4.5A), suggesting PC inhibition blocks the majority of viral entry. Additionally, in order 

to remove any residual virus present on the outside of the cell membrane, an acid wash 

procedure commonly used to remove ligands from cellular receptors was employed (43). 

Cells were acid washed with a low pH solution after 20h of infection in the presence of 

Furin Inhibitor I (Fig. 4.5B). In this image there is no PsV present, further indicating that 
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the broadly acting PC inhibitor blocked virus internalization. However, this phenotype 

was not seen when the cells were treated with Furin Inhibitor II. In this case, internalized 

virus was seen in both images where cells had been acid washed or not (Fig. 4.5C, D). 

Since Furin Inhibitor I does inhibit all PC members and Furin Inhibitor II targets only 

furin and PACE 4, these results suggest that, not only furin, but also other members of 

the PC family contribute to the internalization process of HPV into keratinocytes.  

 

 

 

Figure 4.5. Furin Inhibitor I 
blocks HPV internalization. 
HaCaT cells were cultured 
overnight on cover slips. Cells 
were exposed to Furin 
inhibitor I (A, B) or II (C, D) 
(5µM) for 30m at 37°C or left 
untreated. Nt-PsVs (6500 
vge/cell) were allowed to 
attach for 1h at 4°C. Unbound 
PsVs were washed off and 
inhibitors were added to 
respective wells. 
Internalization was initiated by 
a shift to 37°C. After 24h cells 
were washed at 4°C in a low 
pH solution (B, D) or left 
untreated (A, C). Cells were 
stained with WGA (to 
visualize the plasma 
membrane), exposed to 
mouse monoclonal anti-
HPV16 (CamVir-1, Millipore) 
and then incubated with 
DyLightTM 594-conjugated 
affinityPure donkey anti-
mouse IgG for 1hr at RT. 
Vectashield with DAPI 
mounting solution was used 
to visualize nuclei. 

 

In summary, the experiments used to determine how the absence of furin/PCs 

affect HPV infection demonstrate that furin as well as another PC family member are 

important early in the HPV infection process. However, some of our experimental 
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evidence does suggest furin activity is specifically required in HPV infection because 

FD11 cells are poorly infected by nt-PsV and when exogenous furin is added to FD11 

cells at early time points, infection levels double. On the other hand, when only furin and 

PC5/6 are specifically inhibited, infection is not fully perturbed in HaCaT cells, 

suggesting activity of another PC present in keratinocytes could functionally substitute 

for furin/PC5/6. Additionally, these experiments reveal that FM-PsVs carry a factor that 

renders the PsVs to be less susceptible to furin/PC inhibition and more readily infectious 

in FD11 cells. Importantly, FM-PsV particles are not immune to furin inhibition 

signifying furin must play another role in HPV infection. If adding furin during the 

maturation of PsVs does indeed result in simply the “pre-cleavage” of L2 and this is an 

obligatory step for viral entry, then FM-PsV infection should be immune to furin 

inhibition. Furthermore, the fact that nt-PsVs and FM-PsVs both infect FD11+ cells 

much better than they infect FD11 cells supports our conclusion from Aim 1, that a 

cellular component important for the infection process could be the target of furin as it is 

highly expressed in this cell type. The findings of this aim of the study also illustrate that 

the activity of furin/PC is needed very early in infection, prior to 4h. The fact that broadly 

inhibiting the entire family of PCs with Furin Inhibitor I blocks viral internalization, 

whereas using a more specific inhibitor, Furin Inhibitor II does not, indicates an 

additional PC member, other than furin, perhaps PC5/6, is specifically needed for initial 

virus internalization. 
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CHAPTER 5: DISCUSSION AND FUTURE STUDIES 

The prevailing model for HPV infection set forth by Day and Schiller proposes 

that L1 binds to HSPG receptors on the cell surface and basement membrane, thus 

causing a L1 capsid conformational change that allows the masked furin cleavage site on 

L2 to become accessible. Once L2 cleavage by furin occurs, the virus supposedly 

detaches from HS and moves to the secondary internalization receptor (26).  Yet, a 

number of experimental observations are inconsistent with this model. These include that 

L1 only VLPs are able to enter cells with similar entry kinetics as L1/L2 VLPs (56, 77), 

and cellular entry of PsVs is not deterred even when the L2 furin cleavage-site is mutated 

(68). L2 was also shown to be required for egress from the endosome, but not needed for 

viral entry or uncoating (44). Additionally, “mature” virus particles treated with 

exogenous furin are able to infect HS null cells better than immature particles exposed to 

furin during the maturation process (24). This result also does not support the Day model 

of HPV entry, because if HS is not present for interaction with mature PsVs, then the 

cells should lack the ability to trigger the conformational change and L2 accessibility. 

Thus, it is not clear how the addition of exogenous furin to an intact viral particle permits 

L2 cleavage by furin enhancing infection of HS null cells. An alternative or additional 

possibility is that furin is acting on a cellular factor aside from L2, which is important for 

infection of HS null cells.  

Therefore, the central goal of this study was to more closely examine the role(s) 

of furin/PCs in HPV infection. Recent data from our lab has established that HPV 

infection is initiated by the formation and release of infectious HMW complexes 

containing HPV-HS-GFs from the cellular membrane. This release is dependent on the 
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activity of MMPs and once these HPV-HMW “decorated” complexes are “shed” from the 

cell, they interact with GFRs and are subsequently internalized (81). In light of this new 

model of HPV entry, furin activity could be important in a number of steps during the 

“shedding” process. For instance, furin/PCs activate growth factors like TGF-β, enhance 

expression of MMPs, as well as induce collagen processing important in ECM 

remodeling (3), each of which could promote better decoration of the virus. Hence, the 

overall hypothesis of this study is that furin and other PCs have additional roles in HPV 

infection, aside from L2 cleavage. The experimental evidence we provide supporting this 

hypothesis is summarized below.  

In order to understand how furin maturation of PsVs as described by Day et al. 

(24) functioned, we compared the infectivity of nt-PsVs and FM-PsVs in furin- and HS-

deficient cell lines. We found several important results. First, FM-PsV infects every cell 

line tested, HaCaT, CHO-K1 wild type, FD11+furin, FD11, as well as pgsd-677 cells. 

Our nt-PsVs infected these cells poorly if at all, indicating FM-PsVs do carry a 

modification that confers them with a greater infectious potential. Secondly, FM-PsVs 

infect CHO-K1 wild type cells and FD11+furin cells at much higher levels than they 

infect the counterpart mutant cells.  

The Day model of infection that suggests L2 cleavage is a HS and furin-

dependent process, explains why FM-PsV (if L2 pre-cleaved) could infect cells lacking 

HS (pgsd-677s) or furin (FD11s). However, it fails to clarify why FM-PsV infection is so 

much greater in HSPG proficient CHO-K1 wild type cells or FD11+furin cells compared 

to their counterpart mutant cells. If the addition of furin during the maturation process of 

PsVs simply pre-cleaves the L2 capsid protein, then one would expect FM-PsV, if 
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expressing a L2 pre-cleaved phenotype, to infect parental and mutant derivative cell lines 

at similar levels. This poses the question, why does the presence of cellular factors such 

as furin or HS augment these infections so greatly?  Day and co-workers fail to account 

for additional related deficiencies that the mutant cells are likely to have. It is probable 

that because the mutant cell lines lack furin and HS they are also deficient in the ability to 

properly “shed” fully decorated HMW infectious complexes. Without furin, MMP 

activity and GF processing will be hindered (3) and without HS and GFs, formation of 

HPV-HS-GF complexes will not occur.  

An additional facet of PC biology important to consider in HPV infection is the 

fact that PC5/6 is not present on the surface of pgsd-677 cells. PC5/6 is expressed as two 

different splice variants, A and B. PC5/6B contains a trans membrane domain but is only 

expressed in the kidney and small intestines, whereas PC5/6A (also referred to as just 

PC5/6) lacks a transmembrane domain and is expressed in every other tissue type (74). 

Although, PC5/6 lacks a transmembrane domain, HS can tether it to the cell surface; thus 

pgsd-677 cells lack PC5/6 and CHO-K1 and FD11+furin cells have an abundance of 

PC5/6 on their surface (73). Therefore, the low infectivity of pgsd-677 cells could be due 

not just to their lack of HS, but also due to the absence of PC5/6 at the cell surface. 

Conversely, the large quantity of PC5/6 present at the surface of CHO-K1 and 

FD11+furin cells could be one reason that infection levels in these cells are so high. One 

could test this postulate by simply adding exogenous furin and/or PC5/6 to HS null cells 

during HPV infection, if infection levels increased this would indicate that it is the lack of 

PC activity and not only the lack of HS at the cell surface that obstructs infection of pgsd-

677 cells.  
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FM-PsVs have a faster internalization t1/2 time than nt-PsVs, which indicates FM-

PsVs escape antibody-mediated neutralization faster and thus enter HaCaT cells quicker. 

We postulated that this could be due to the association of FM-PsVs with a component 

such as HS that allows FM-PsVs to bypass the need for primary receptor engagement and 

go straight to a secondary receptor. We did indeed demonstrate by immunoblot that HS 

was present within the virion preparation of FM-PsV, but also found HS associated with 

nt-PsV.  

Although, HS was present in both preparations this does not rule out the 

possibility that FM-PsVs are “decorated” with another bioactive molecule, such as a 

particular growth factor, which could confer the virion the increased ability to infect at 

high levels. The association of specific GFs with FM-PsV should be further examined by 

immunoblot, ELISA or Luminex® assays. Additionally, although heparinase treatment of 

these preparations did not hinder their infectious potential in pgsd-677 cells, this could be 

due to a very stable HS-virion complex, such that heparinase activity is inadequate. This 

explanation is supported by the fact that the preparations must be reduced, heated and 

diluted in Heparinase III buffer before the PsVs can disassociate enough to enter the gel 

and/or be recognized by immunoblot for HS. 

The results of our immunoblots as well as experiments using PsVs pre-treated 

with heparinase revealed that a component of Heparinase III buffer, likely Ca2+ 

augmented infection and modified the capsid structure of the virion preparations, 

allowing the epitope of HS to be unmasked. Ca2+ could potentially affect HPV infection 

in a number of ways. Foremost, furin/PC function is strictly Ca2+ dependent, increased 

concentration of the ion could boost convertase function and in turn augment HPV 
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infection, as any furin dependent process would increase. Secondly, Ca2+ is known to 

affect the function of several known HPV binding partners, for instance Ca2+ is required 

for the association of HPV with annexin A2, a potential secondary HPV receptor 

(Dziduszko and Ozbun manuscript in preparation).  

It is also known that Ca2+ is required for HSPG cell surface recycling in rat 

parathyroid cells (82). If Ca2+ does indeed affect HSPG function, this could play a role in 

HPV infection as well. Although, this would need to be tested in a relevant cell line as 

our experiments demonstrating the effect of heparinase III buffer on infection were 

carried out in HSPG null cells. Lastly, Ca2+ is known to stabilize the capsid structure of 

murine polyomavirus (MPV), a virus with similar capsid structure to HPV [Chuan,  

#3292] and is also required for capsid reassembly after capsomer disruption of BPV (60). 

Stabilizing viral capsomer structure could improve the viruses’ ability to bind to 

necessary receptors and/or binding partners during infection. Although, our TEM images 

did not reveal a “tighter” capsid structure in the presence of heparinase III buffer, this 

could be due to other interfering complexes within the buffer, such as BSA. Nonetheless, 

further work is necessary to determine how Ca2+ alters capsid structure and augments 

HPV infection.  

The TEM images however, did reveal that the FM-PsVs appear to contain more 

“loosely” associated capsids than did nt-PsVs. Studies have suggested that particles with 

a darker core are less electron dense as they take up more negative stain (30). Our FM-

PsV TEM images do contain more particles appearing to have a “looser” or less mature 

capsid structure as more of them have a darker core. Perhaps then, the greater infectious 

potential of FM-PsVs could be attributed to the preparation containing more particles that 
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were “loose” or leaky; this type of structure could allow the capsid to readily un-coat and 

nuclear genome delivery to occur more efficiently. Furthermore, it is known that 

immature HPV particles are infectious and it is thought that they are likely involved in 

naturally occurring infections (12). However, further examination of FM-PsV structure is 

required to determine if an immature conformation confers these virions with a greater 

infectious potential.  

The use of pharmacological inhibitors with different specificities revealed three 

important aspects of PC functions in HPV early infection. The varied furin/PC inhibitors 

used in the study (Table 2) affected PsV internalization and infection in different ways, at 

different times and at different cellular locations of the early infection process. Furin 

inhibitors affected nt-PsV and FM-PsV slightly differently and importantly FM-PsVs 

were not immune to pharmaceutical furin inhibition. Both the chloro-methyl-ketone and 

the poly-arginine at 5µM inhibit FM-PsV infection. If allowing PsVs to mature in the 

presence of furin only modifies the virus by pre-cleaving L2, and this is the only furin 

dependent process in HPV infection, then FM-PsV virus should be able to bypass the 

need for PC activity and infect when the inhibitors are applied. That FM-PsVs were not 

immune to furin inhibition provides powerful evidence for our underlying hypothesis that 

furin or another PC must play an additional role during HPV infection.  

Additionally, FM-PsV infections were less affected by the inhibitors at the lower 

concentration tested (1µM) than nt-PsV infection. The difference in inhibition seen 

between these concentrations (1µM versus 5µM) could be attributed to several different 

mechanisms. Foremost, the poly-arginine (Furin Inhibitor II) is a competitive inhibitor of 

furin, whereas the chloro-methyl ketone (Furin Inhibitor I) blocks the activity of furin by 
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irreversibly binding to the catalytic site of the enzyme, a much stronger mode of 

inhibition (14, 33); at a low concentration Furin Inhibitor II could simply not outcompete 

furin. Secondly, Furin Inhibitor II has been reported to be poorly cell permeable (55). 

Consequently the intracellular concentration of the poly-arginine could be too low to 

wield an inhibitory intracellular effect on furin, necessary if the endosomal release of the 

virus is furin dependent, as initially proposed by Day’s group (68). This would also be 

expected if the translocation of furin to the cell surface is a required intracellular early 

step that is also susceptible to furin inhibition. Additionally, MMP activation within the 

Golgi, a furin dependent process, could also be perturbed. Lastly, at higher 

concentrations, the inhibitor may affect other PC family members (14), which could play 

a yet undetermined role in HPV entry and infection. 

FM-PsVs are modified in such a way that allows them to be less susceptible to 

furin/PC5/6 inhibition as demonstrated by the fact that administration of alpha-1 PDX, 

the serpine molecule that only selectively inhibits furin and PC5/6, causes FM-PsV 

infection to be perturbed by only 28% as compared to over 50% for nt-PsVs. This result 

coupled with the fact that FM-PsVs can also better infect pgsd-677 and FD11 cells, than 

nt-PsVs, indicates FM-PsVs are associated with an additional component that could 

account for its high infectious potential. 

In using Furin Inhibitor I, the chloro-methyl ketone, which broadly inhibits all PC 

members, we were also able to determine that furin/PC activity is crucial before the 4h 

mark of infection, suggesting early events such as initial cell entry are furin/PC 

dependent. HaCaT cell infection was still significantly inhibited when Furin Inhibitor I 

was added 4h post binding, but CHO-K1 and FD11+furin cells were more resistant to PC 
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inhibition at this time point and only showed pronounced susceptibility to PC inhibition 

before 2h post binding. Intriguingly, in both of these cell types (CHO-K1 and 

FD11+furin) the addition of Furin Inhibitor I at the 8h mark increased infection 

substantially, suggesting blocking PC activity at a late time point benefits the infection 

process. However, since the average entry time of HPV particles is protracted and varies 

among viral types, it is difficult to fully interpret time course assay data. Although, we 

have demonstrated that PC activity is crucial in the first 4h of infection, this does not 

pinpoint an exact time when furin/PC activity is necessary. To differentiate if furin/PC 

activity was required before or after viral internalization, viral entry in the presence of 

furin/PC inhibition was examined using immunofluorescent confocal microscopy. 

Broadly inhibiting all PCs with Furin Inhibitor I blocked viral entry, whereas the poly-

arginine (Furin Inhibitor II) did not hinder virus internalization. This indicates that more 

than one PC member likely plays a role in HPV infection and they act at different steps. 

Moreover, our data indicate that infection levels rise in FD11 cells only when exogenous 

furin is added before and during viral attachment, indicating that specifically furin is 

required very early in infection, as the virus initially binds the cell. However, a further 

distinction between how furin and other PC members are specifically involved in viral 

internalization versus downstream steps of infection requires additional investigation. 

Prior to postulating the full model of HPV entry (26), the Day-Schiller research group 

demonstrated that furin L2 cleavage was necessary for viral endosomal escape, as L2 

cleavage-site mutants entered and uncoated but remained in the endosomal compartment 

(68). In comparing these findings with our own data it is likely that furin as well as 

another PC member is necessary for multiple steps of HPV infection, possibly one for 
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entry, such as PC5/6, by modifying a cellular component that acts as a viral binding 

partner and another, such as furin, for actual L2 cleavage either before or after the virus is 

internalized. Additional immunofluorescent confocal microscopy experiments using nt-

PsV and FM-PsV in the presence of furin inhibitors, including alpha-1 PDX, along with 

endosomal markers could help further reveal the nature of which PC(s) activity is 

necessary in HPV infection.  

Although, the specific mechanism of furin/PC activity has not been fully 

elucidated in this study, several important findings have been made. Furin is likely not 

the only PC member involved in HPV infection and cleavage of the L2 minor capsid 

protein is not the only furin dependent process required for HPV early entry. Furin/PC 

activities affect so many diverse processes now known to be involved in HPV infection, 

including growth factor processing and MMP activation (3). Therefore, it is essential that 

future studies examine if furin inhibition, either by the use of furin null cell lines or 

pharmaceutical inhibitors, hinders the release of HPV-HS-GF HMW viral complexes 

from the cell surface. Additionally, further research addressing which PC member is 

required for what step of infection is necessary. However, such studies will be 

challenging, due to the fact that within the cell culture model of infection, aside from 

immunofluorescent confocal microscopy, there is currently no definitive method to 

distinguish between furin/PC dependent processes that occur at the cell surface versus 

those within the cell. The use of neutralizing monoclonal antibodies or other inhibitors 

specific to different PC members, that do not cross the cell membrane, would be one way 

to discriminate extracellular versus intracellular furin/PC function. However, as of yet 

these types of reagents are not available. Until such time as these activities can be 
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differentiated, revealing the specific points at which furin/PC activity is crucial during 

HPV infection will remain elusive.  
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