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Abstract 

The focus of the work in this dissertation is to improve the efficiency of a gene 

therapy for the treatment of chronic pain. The introduction, Chapter 1, is intended to 

orient the reader to the underlying physiological principles and anatomical structures 

involved in general sensory and pain transmission in the peripheral and central nervous 

systems. Pain modulatory systems are described in detail. Also included, is a discussion 

of how peripheral nerve injury can provoke immune changes at the spinal level, including 

the activation of spinal macrophages and glial cells (microglia, astrocytes and 

oligodendrocytes) with the release of immune modulators, such as pro- and anti-

inflammatory cytokines, that can lead to the development of chronic pain. One of the 

most important of these is the anti-inflammatory cytokine, Interleukin-10 (IL-10). As a 

framework for the experiments described in the dissertation, earlier studies using spinal 

injections of IL-10 protein and DNA containing the gene for IL-10 for the treatment of 

neuropathic pain in a chronic constriction injury (CCI) rodent model are introduced. Also 
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presented in this dissertation, are some of the key problems of delivering DNA to cells 

(tranfection). The studies in Chapter 2, explore the use of one novel non-viral synthetic 

platform, a silica/lipid nanoparticle or “protocell,” as a potential platform for IL-10 

transgene delivery to the central nervous system (CNS). These particles had never before 

been examined in vivo in the CNS. The first objective was to determine if they simply 

would be tolerated by animals following peri-spinal injection. The second objective was 

to determine their biodistribution in the whole body following these injections and the 

cell type interacting with them near the spinal injection site. The final objective was to 

determine if the IL-10 transgene produced functional IL-10 protein following loading on 

protocells and if the gene loaded on protocells would produce a therapeutic pain reversal 

in neuropathic animals. The studies in Chapter 3 are based on previously published 

results72 of a critical interval following spinal injection of a transgene, the “sensitization 

period”, during which there is immune cell enrichment in the cerebral spinal fluid (CSF) 

in the subarachnoid matrix. This local enrichment of immune cells in the spinal CSF, is 

key to the development of the experimental approach used in Chapter 3, which is to 

prime improved cellular uptake of the IL-10 gene with small molecules as immune 

adjuvants. In Chapter 2 and Chapter 3, each experimental data set is presented in the form 

of the original manuscripts, submitted for external peer-review and publication. Chapter 4 

includes a discussion of the gene therapy approaches used in this work and by other 

investigators. Also considered are some future directions, including the use of a  different 

synthetic polymer, polylactic co-glycolic acid, PLGA, that is FDA approved and highly 

biodegradable in the body. A concluding statement completes the work of this 

dissertation. 
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1. Introduction 

1.1 Normal Pain Processing 

1.1.1 The neuron 

The primary and basic unit of the nervous system is a specialized cell, the neuron, 

composed of a cell body or soma from which extend many processes known as dendrites 

that receive incoming signals, and axons, which are long extensions of cytoplasm ending 

in nerve terminals for signal transmission. Some neuronal axons are myelinated by a 

layer of insulating myelin protein, while others are unmyelinated and lack this covering. 

Neurons communicate with other neurons across the synapse or space between them by 

releasing chemicals known as neurotransmitters. The cell body or soma houses the 

nucleus containing chromosomal DNA and the transcriptional machinery for cellular 

replication and protein synthesis. The cell soma also contains the subcellular organelles 

responsible for metabolic and neuronal nutritional support and the formation of the 

neurotransmitters. 1 

There are three types of morphologically distinct neurons. The classically 

depicted neuron is multi-polar, with many branching dendrites emanating from the cell 

body. From this neuron projects only one long axon that ends in multiple branched 

terminals. Bipolar neurons have two long processes, one a dendrite and one an axon, with 

a cell soma in the middle. Both ends are composed of many branches. These are found in 

the visual, auditory and vestibular systems. One category of sensory neurons is composed 

of nociceptors, having specialized receptors on their peripheral terminal endings that to 
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respond to and transmit painful stimuli that can cause tissue damage (harsh chemicals, 

high or low temperatures or hard pressure). Nociceptors have one axon with two terminal 

endings, one in the periphery, in the skin or viscera, and the other end synapsing onto 

neurons in the spinal cord or brainstem. All sensory neurons entering the spinal cord, 

including nociceptive neurons, have cell bodies outside the CNS in a structure referred to 

as the dorsal root ganglia (DRG).2  

The resting membrane potential in neurons is about -60 mV. During resting 

conditions, passive inward diffusion of extracellular positive ions (cations; Na+, K+) is 

opposed by an outward diffusion of intracellular negative ions (anions; Cl-, negatively 

charged amino acids and proteins). Transient membrane currents make the neuronal 

membrane either more negative (hyperpolarized) or less negative (depolarized). 

Depolarization of the axon hillock to about -45 mV results in the firing of an action 

potential, caused by the rapid influx of Na+ through volt sensitive Na+ channels. This is 

countered by an efflux of K+, that eventually returns the membrane to its resting state. 

The action potential courses along the axon as the voltage reaches that necessary to open 

voltage-gated Na+ ion channels. The velocity is dependent on the diameter of the axon 

and the amount of myelination. Along the course of myelinated axons are periodic gaps, 

known as Nodes of Ranvier. The low capacitance and concentration of Na+ channels in 

these nodes allows the action potential to jump between nodes (salutatory conduction), 

increasing the speed of conduction over long distances in myelinated neurons. It is 

important to note that larger diameter myelin-insulated axons conduct more quickly than 

smaller myelinated axons. Unmyelinated axons, conduct slowly. Pain is transmitted by 

lightly myelinated Aδ and unmyelinated C-fibers.3 
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Sensory neuronal communication from the periphery, results from the release of 

neurotransmitters in a Ca2+ dependent manner from the axon terminals of presynaptic 

neurons. Thsese neurotransmitters act upon receptors on dendrites or the cell soma of the 

post-synaptic neuron in the spinal cord. If neurotransmitter binding generates 

depolarizing ionic fluxes of the post-synaptic membrane, the net result is an excitatory 

post-synaptic potential (EPSP). However, if the post-synaptic membrane is 

hyperpolarized, an opposite response or inhibitory post-synaptic potential or (IPSP) 

occurs. The intensity of a stimuli is transduced into a frequency code. That is, the more 

intense the sensory stimuli, the more rapid is the firing of axonal action potentials. The 

major consequence of nociceptor firing is the release of excitatory neurotransmitters from 

central terminals onto post-synaptic neurons in the spinal cord. Inhibitory neurons within 

the spinal cord, also respond to increased firing frequency from peripheral sensory 

neurons but release inhibitory neurotransmitters that change the membrane potential in 

the direction of hyperpolarization. In addition to frequency based, temporal summation of 

post-synaptic potentials, there post-synaptic potentials can be summated in a spatial 

manner because one axon terminal can converge on more than one dendrite in the spinal 

cord. Via summation, a painful stimulus transmitted by one primary nociceptive neuron is 

capable of generating high frequency post-synaptic action potentials on many nearby 

central spinal cord neurons. Temporal or spatial summation can lead to an exacerbation 

of the intensity of pain perception despite the fact that the stimulus remains constant.4, 5 
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1.2 Peripheral versus central sensory relay systems 

Grossly, the nervous system in animals is composed of the central nervous system 

(CNS) and the peripheral nervous system the (PNS). The PNS conveys incoming or 

afferent messages and outgoing or efferent messages from the tissues and organs of the 

body and outside environment to and from the CNS (spinal cord and brain). The CNS is 

composed of both myelinated (white matter) and unmyelinated (gray matter) tissue. The 

spinal cord, a relay system of neurons, is housed in the vertebral canal formed anteriorly 

by the vertebral body and posteriorly by boney laminae connecting the tranverse and 

spinous processes. The peripheral nerves enter and exit from openings, or foraminae, 

between two adjacent vertebrae. The spinal cord and brain are protected by the meninges, 

which is composed of three connective tissue membranes. Closest and adhering to the 

spinal cord is a thin layer known as the pia mater. The outside layer is a thicker protective 

layer, the dura mater, while sandwiched between is the arachnoid membrane. Between 

the pia and arachnoid membranes is the subarachnoid space, in which the CSF is 

contained and circulates. This space is also known as the intrathecal (i.t.) space. The 

spinal cord extends from an opening in the skull, known as the foreman magnum, and 

ends inferiorly at level of the L1-2 vertebra in humans, forming a cone-like structure 

known as the conus medullaris. In this area are many nerve rootlets, collectively known 

as the cauda equina or “horses-tail” floating in a pool of CSF, within the lumbar cistern in 

the dural sac.6, 7  
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1.2.1 Sensory relay in the PNS 

There are two major classes of sensory neurons carrying information from the 

periphery to the spinal cord, each classified by letters of the Greek alphabet or Roman 

numerals. The first class are non-nociceptors, possessing Aα (I) and Aβ (II) fibers that 

transmit non-painful stimuli such as light touch, pressure, vibration or proprioception 

(body position). These fibers have large diameters 12-20 and 6-13 µm respectively, and 

are highly myelinated, allowing for rapid conduction of action potentials. Under normal 

conditions, Aα (I) fibers respond to motion and limb position, while Aβ (II) fibers 

respond to vibration and light touch pressure.8 Sensory neurons express many different 

types of receptors. In the skin, mechanoreceptors discriminate tactile, vibratory and body 

position sense (proprioceptive) stimuli. These receptors include Meissner corpuscles 

(tactile, shapes and surfaces), Merkel discs (indentations), hair follicle receptors (tactile), 

Ruffini endings (stretch), Pacinian corpuscles (vibrations). In the muscle, specialized 

muscle spindles respond to  proprioceptive stimuli.9  

The second class are the nociceptive neurons previously discussed. To reiterate, 

nociceptors have receptors that are only activated when mechanical, thermal or chemical 

stimuli reach, noxious harmful (tissue damaging) levels. There are two sub-types of 

nociceptive fibers. Aδ (III) fibers, are small in diameter (1-6 µm) and thinly myelinated, 

and are slow conducting and have a higher activation threshold, perceived as “fast” pain, 

described as a sharp, pricking, well-localized pain. Aδ fibers can be further divided into 

two sub-types. Type I, respond to low mechanical or chemical stimuli, such as pinprick 

but have a high heat threshold (> 50°C). Conversely, Type II fibers have a much lower 
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heat threshold, but a higher mechanical threshold. C (IV) fibers are unmyelinated and 

smallest in diameter, <1.5 µm, thus are very slow conducting, with a very high 

mechanical and thermal activation threshold. Pain perceived via these nociceptors is 

described as “slow”, burning, diffuse and poorly localized. The nociceptors, Aδ and C 

fibers, can be further divided into two broad categories, the peptidergic class, which 

release the neuropeptides, substance P and calcitonin-gene related peptide (CGRP) and 

classical excitatory neurotransmitters such as glutamate. The non-peptinergic fibers 

release only the classical excitatory neurotransmitters. In addition, many non-peptidergic 

neurons express the purinergic ATP-gated ion channel receptor, P2X3. It is important to 

note that PX3 is part of a much larger 2PX receptor family. ATP binding to this receptor 

plays a role in the development of chronic pain.10-12 In summary, nociceptors respond, via 

thermo and mechanoreceptors, to extremes of heat, cold and pressure. 

While mechano and thermo-receptors are critical in nociceptor activation, their 

terminal endings also express chemo- receptors that respond to a host of chemical stimuli. 

One classic example is the chemical in red hot peppers, capsaicin, which activates 

transient receptor potential cation channel (TRPV1). Other TRPV receptors respond to 

natural cooling agents such as menthol and eucalyptol (TRPM8), or acids (ASICs). 

TRPV1 also responds to inflammatory factors generated following tissue damage.11, 15, 16 

The major classical excitatory transmitter released in the dorsal horn of the spinal 

cord by primary sensory afferents, both nociceptive and non-nociceptive, is glutamate. 

Glutamate binds to fast acting ionotropic α-amino-3-hydroxy-5-methyl-4-isooxazole 

proionate (AMPA) receptors, causing an influx of Ca+ that raises baseline membrane 
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potential sufficiently to activate ionotrophic N-methyl-D-aspartate (NMDA) receptors. 

This response will be explained in greater detail below. Metabotropic NMDA, and kainite 

receptors also respond to glutamate. With membrane depolarization, petidergic Aδ and C-

fibers release the small peptides substance P, which binds neurokinin-1 receptors (NK1) 

receptors, and CGRP,15which binds its receptor CGRP1.16-18  

In summary, when nociceptive receptors are activated, an action potential is 

propagated along the course of primary (1o) axons terminating in the dorsal spinal cord 

where they synapse on secondary (2o) projection neurons that carry the message from the 

spinal cord to the brainstem or brain. Others synapse on interneurons that communicate 

with other neurons at the spinal cord level. Whereas nociceptive 1o neurons terminate in 

the dorsal horn (DH), non-nociceptive neurons also synapse locally in the DH, yet have 

major collateral branches that ascend in the dorsal column to the dorsal column nuclei in 

the medulla. Moreover, both nociceptive and non-nociceptive axons send collateral 

branches to other areas of the spinal cord several segments above or below their entry 

into the dorsal spinal cord or to other areas on the same level.19, 20  

1.3 Sensory relay in the CNS 

The DH is the primary spinal cord area for pain modulation. The gray matter of 

spinal cord is divided into ten layers or laminae, analogous to the layers of an onion 

extending from the posterior, Lamina I, to the anterior, Lamina IX. Lamina X is located 

in the center of the spinal cord, surrounding the central canal. The DH includes Lamina I-

VI. Nociceptive sensory afferent axons enter the spinal cord through the dorsal root entry 

zone, collect in the Tract of Lissauer (dorsal lateral fasciculus) and then send axons 
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collaterals into the DH where they synapse on 2o pain projection neurons and 

interneurons in laminae I-VI in the dorsal horn. Nociceptive 2o projection neurons cross 

or decussate to the opposite of the spinal cord (contralateral) where they course rostrally 

toward the brain via the lateral spinothalamic tract, such that painful stimuli received on 

the left side of the body is processed in the right side of the brain. Axons of non-

nociceptors ascend to the medulla, where they synapse in the dorsal column nuclei on the 

same side (ipsilateral). In humans, those non-nociceptive neurons originating below the 

thoracic 6 (T6) vertebral level, ascend in the dorsal column fasiculus gracilis (medial 

dorsal column), while those above T6 ascend in the fasiculus cuneatus (lateral dorsal 

column). At the level of the caudal medulla in the brainstem, axonal fibers from the 

cuneate and gracilis nuclei cross to the contralateral side and ascend via the medial 

lemniscus to the somatosensory cortex. As a result, non-nociceptive stimuli received 

from the left side of the body are also processed by the contralateral somatosensory 

cortex.2, 20  

Important to the development of chronic pain, both myelinated and non-

myelinated, 1o nociceptive and non-nociceptive fibers project to the superficial Lamina I 

and II of the spinal cord. While some nociceptive Aδ project more deeply to Lamina V, 

most synapse in Lamina I, and Lamina II.21 In these lamina, there are inhibitory 

interneurons that release gamma-aminobutyric acid (GABA) or glycine. These inhibitory 

neurotransmittors can act both pre and post-synaptically.12 Type I Aδ fibers have been 

shown to bifurcate upon entry into the dorsal horn and ascend and descend several 

segments. Type II Aδ have main branches that ascend in the dorsal columns giving rise to 

many collaterals that penetrate ventrally to the dorsal horn lamina I, where they arborize, 
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thus communicating with many neurons at several segmental levels.15 Wide dynamic 

range (WDR) neurons that have cell bodies in Lamina V and dendrites in Lamina II-V 

that receive input from Aδ, Aβ and C fibers. WDRs are critical to pain relay and the 

development of pathological pain.21 Peptidergic C fibers mostly terminate in Lamina I 

and II, while non-peptidergic C fibers terminate mostly on Lamina II interneurons.11 Aβ 

fibers enter the dorsal spinal cord with ascending branches and in addition send 

collaterals to Lamina II and V.16 It is possible to propose an anatomical mechanism, 

whereby non-noxious sensory information, such as light touch, is miscoded to noxious 

painful stimuli, based on the contacts that non-noxious Aβ fibers make with Lamina V, 

WDR neurons and the dendrites of Lamina I neurons.  

1.3.1 Ascending pain transmission 

From the spinal cord, 2o nociceptive projection neurons ascend to the brainstem or 

brain. These fibers travel to the medulla, through the pons and further rostrally to the 

mid-brain and on to the thalamus, the major sensory relay system of the brain. There they 

synapse on tertiary 3o (thalamic) sensory neurons that send projections to the post central 

gyrus of the cortex and other cortical areas involved in sensory processing. The post 

central gyrus processes the type, amplitude, location, duration of the noxious stimuli, 

while the hippocampus processes the memory of pain. Other pain processing occurs in 

the limbic system, including the amygdala, anterior cingulate and insular cortex, which 

together process the emotional experience of pain. Noxious stimuli activate the 

hypothalamic-pituitary adrenal axis, which in turn activates the sympathetic nervous 

system and the cardiovascular stress responses associated with pain. While there are 
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several other ascending pathways, two are important for pain transmission. First is the 

spino-reticular tract, composed of ipsilateral axons from laminae VII and VIII, which 

terminate in the reticular formation of the pons and the thalamus. The second, is the 

spinomesencephalic tract composed of neurons from laminae I and V, projecting from the 

anterolateral spinal cord to the mid-brain mesencephalic reticular formation and 

periaqueductal gray matter and from there via the spinoparabrachial tract to the 

parabrachial nuclei in the thalamus. Pain and touch sensations from the head and face 

mostly travel to the brainstem by the cranial nerve V, the trigeminal nerve. Most of these 

1o trigeminal axons enter the mid-pons and descend in the spinal trigeminal tract to 

synapse with the spinal nucleus V which extends from the lower pons along the entire 

length of the medulla. The 2o projections from the trigeminal nucleus then cross to the 

contralateral side before ascending to the thalamus where they synapse on 3o neurons. A 

small portion of trigeminal neurons synapse on 2o projection neurons that remain on the 

ipsilateral side, and ascend directly to the thalamus.19  

1.3.2 Descending modulation of pain 

One of the best characterized systems of descending modulation upon the dorsal 

horn neurons begins in the mid-brain, peri-aquetuctal gray (PAG) and the rostral 

ventromedulla (RVM), including the nucleus raphe magnus and the adjacent reticular 

formations. The system, known as the PAG-RVM, receives ascending information from 

the dorsal horn of the spinal cord and responds to descending information from the higher 

pain processing areas in the forebrain. Conversely, the PAG-RVM sends output fibers, 

mostly serotonergic, back to the dorsal horn of the spinal cord, modulating nociceptive 
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input from peripheral sensory neurons and enkephalin releasing interneurons. The 

neurons of the PAG–RVM have been shown to be the main site in the CNS for the action 

of a number of pain suppressing agents such as endogenous opioids (enkephalins, β-

endorphins, dymorphins, endomorphins and nociceptins) that bind the µ, δ, κ opioid 

receptors. Opioid drugs and endogenous opioids work partially by increasing inward K+ 

conductance, which hyperpolarizes the post-synaptic membrane and indirectly decreases 

Ca+ entry into the presynaptic terminals altering their GABA release.20, 22 Other 

important inhibitors with receptors in this area are cyclooxygenase (COX) inhibitors23 

and cannabinoids.24, 25 In addition, noradrenergic neurons, originating in the locus 

ceruleus of the pons exert descending modulation of dorsal horn interneurons via α2-

adrenergic receptors on these cells, with concurrent release of enkephalins.26  

One role of the neurons of the PAG-RVM is to provide descending inhibitory 

control to the spinal cord. One example of this inhibition of pain responses or 

hypoalgesia (decreased response to painful stimuli) is that which occurs under extreme 

stress and fear. Such is the case when a soldier or athelete continues functioning on the 

battlefield or playing field following injury. The opposite response, hyperalgesia 

(increased responsiveness to painful stimuli), such as that experienced in inflammation or 

nerve injury, can at least in part be attributed to a shift in the balance of descending pain 

modulation from inhibition to facilitation. 

Once thought to be only inhibitory, descending control is now recognized to be 

facilitory as well.24, 27 A seminal study by H.L. Fields et al., using electrical stimulation 

and pharmacological blockade, demonstrated three types of cells in the RVM, ON-cells 
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and OFF-cells and NEUTRAL-cells.28 When ON-cells were active, OFF-cells were silent 

and visa versa. Subsequent experiments confirmed that OFF-cells function to inhibit 

nociceptive neurons in the dorsal horn and as such are anti-nociceptive, while ON-cells 

are facilitory or pro-nociceptive. The role of NEUTRAL-cells in pain modulation has not 

yet been clearly established.28 ON-OFF cells have also been shown to exert similar 

influence from the PAG.29 The equilibrium between these two cell populations in the 

RVM has been associated with the subtle shifts of spinal nociceptive responses leading to 

chronic pain.  

1.4 Pathological Pain 

In some cases, such as after a traumatic injury or wound infection, pain itself can 

become pathological. Some examples are post-surgical pain, phantom pain following an 

amputation, diabetic neuropathy, fibromyalgia and complex regional pain syndrome 

(CRPS).30 Normally, pain serves to protect individuals from harmful stimuli that might 

cause severe tissue damage or injury. Typically, when the harmful stimulus is removed 

the pain goes away.30 Chronic pain, clinically defined as lasting greater than 3 months, is 

no longer adaptive or serving any useful purpose.31 Neuropathic pain is typically 

characterized by hyperalgesia and/or allodynia, a condition in which stimuli not normally 

considered painful, such as a light touch, is perceived as excruciatingly painful.32 Primary 

hyperalgesia occurs at the actual site of the peripheral injury and is very intense, while 

secondary hyperalgesia is in the surrounding, uninjured tissue, and is usually of lesser 

intensity.33 Chronic neuropathic pain is a serious clinical problem that effects millions of 

people annually costing billions of dollars while current treatments are sorely inadequate. 
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31 In a survey conducted by the American Pain Foundation, of 303 pain sufferers 

currently on opioid medications, 50% felt that they had little or no control over their pain 

and 60% experienced break through pain that severely affected their quality of life.34 

There are at least four proposed hypotheses as to how acute pain becomes 

chronic.35 The first is synaptic “plasticity” involving modulation of synaptic efficacy. 

Primary sensory neurons can become sensitized or respond to equal or lesser stimuli with 

greater firing frequency and more release of neurotransmitter. This can happen between 

either two similar (homosynaptic) types of neuronal fibers, or between two different 

(heterosynaptic) fiber types. A second important mechanism involves NMDA receptors, 

producing Ca+ dependent long-term potentiation. The third is loss of inhibition from 

descending pain modulatory pathways and interneurons. Finally, glial cells, activated by 

inflammatory immune responses have been shown to contribute to the onset of 

pathological pain. These mechanisms are explained in detail in the sections that follow.35  

1.4.1 Peripheral Sensitization  

If a 1o nociceptive terminal ending is exposed to sustained stimuli, it fires a 

barrage of action potentials that can lead to temporal and spatial summation accompanied 

by short-term changes at the terminals, known as peripheral sensitization. In now classic 

studies Medall, in 1984,36 showed that a repeated low frequency firing of nociceptive C 

fibers leads to a progressive increase in action potential frequency, with the co-release of 

glutamate, substance P and CGRP from both peripheral and central terminals. The result 

is increased membrane excitability and lowered threshold for receptor activation, 

occurring centrally as well as peripherally. Now while there change in their intensity, 
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subsequent stimuli, even those that are non-noxious, can be perceived as more painful,. 

This form of short-term potentiation of synaptic signaling terminates when the sensory 

stimulus is removed.37-39  

With prolonged firing, endogenous factors are also released from terminal 

endings of nociceptors, including serotonin, cytokines interleukin-1β (IL-1β), substance 

P, protons such as H+, reactive oxygen species (ROS) and other factors that facilitate 

leukocyte migration or extravasation in the tissue injured region. In turn extravasating 

innate immune cells such as mast cells, macrophage and dendritic cells release even more 

factors that compound the excitement of nerve terminals. Together, these molecules are 

known as the “inflammatory soup”.40, 41 As a consequence, peripheral nerve terminals are 

dramatically sensitized, leading to decreased nociceptor-activation thresholds, which if 

sustained, can lead to pathological pain. 37, 39  

1.4.2 Central Sensitization 

In the CNS there are essentially four general mechanisms that contribute to 

“central sensitization”, a form of long term enhancement or facilitation of output from the 

dorsal horn of the spinal cord following injury. These include: 1) increased trafficking of 

AMPA receptor subunits to the synapse, particularly those that are Ca2+ permeable, 2) 

activation of NMDA receptors with sufficient depolarization of the neuronal membrane 

to allow expulsion of a magnesium ion (Mg2+) that under resting conditions normally 

blocks the central channel of the NMDA receptor, 3) activation of kinases, enzymes 

capable of phosphorylating membrane channels and receptors altering their activity, and 

4) activation of downstream intracellular signaling pathways. 38, 39, 41  
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To expand in more detail, with repetitive and prolonged nociceptor firing, there is 

sufficient binding of glutamate to fast acting AMPA receptors, and generation of enough 

post-synaptic depolarization, to activate NMDA receptors. The voltage change results in 

expulsion of a magnesium (Mg2+) ion normally blocking its central channel. The opening 

of this channel allows for a rapid influx of Ca2+ into the neuron and activation of 

Ca2+dependent kinases. Some of these are the Ca2+-calmodulin dependent protein kinase 

(Cam-KII), protein kinase C (PKC) and protein kinase A (PKA). All are capable of 

phosphorylating of tyrosine and serine residues on subunits of the AMPA and NMDA 

receptors with the subsequent activation of intracellular signaling pathways. The 

Ca2+dependent signaling occurring in the development of chronic pain has been 

suggested to be similar to the changes thought to be occurring in long term potentiation 

(LTP) of memory in the hippocampus.42 Elevated Ca2+ levels drive the calmodulin-

induced activation of adenylyl cyclases, increasing cAMP and turning on PKA. Other 

pathways sustaining central sensitization are the phosolipase C/phosphokinase C 

(PLC/PKC) pathways that facilitate release of Ca2+ from the endoplasmic reticulum. 

Another is the mitogen-activated protein kinase (MAPK) pathway activating the kinases 

(ERK 1 and ERK 2), serine threonine kinases that turn on genes under the control of the 

cAMP response element binding protein (CREB), a nuclear transcription factor. Such 

signaling ultimately results in long term changes in gene expression, with transcriptional 

up regulation of pain neurotransmitters, modulators and their receptors with increased 

trafficking of the receptors to the cell surface and expansion of receptor fields. 

Nociceptors are now firing with greater frequency to stimuli of lesser intensity.32, 39  
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1.4.3 Loss of inhibition 

Critical to the enhancement of excitatory pain responses is loss of local DH spinal 

inhibitory influences. Activation of Aδ fibers causes long term NMDA and CA2+ 

depression of DH inhibitory interneuron firing and internalization of AMPA receptors.43 

Peripheral nerve injury can cause the death or apoptosis of GABAergic interneurons in 

the dorsal horn contributing to disinhibition of nociceptive inputs. This cell death may be 

the direct result of glutamate in the synapse. High levels of glutamate are known to be 

toxic in neurons .42, 44, 45  

Loss of descending pain inhibition also exacerbates the chronicity of pain. It has 

been shown that in conditions of chronic inflammation, such as in chronic arthritis that 

ON-cell firing predominates, with elevation of c-fos, a transcription factor up-regulated 

following recent neuronal activity.46 Studies using c-fos labeling to demonstrate dynamic 

neuronal activity, have shown that descending inhibition from the VLM failed to inhibit 

the powerful nociceptive pain signaling from the spinal cord in the early stages of 

inflammation. Thus, the control from the brain and brainstem during inflammation or 

nerve injury can contribute to the positive feedback loops leading to pathologic pain 

states.  

1.4.4 Glial cells 

Research in the last 15+ years has shown that neuropathic pain is at least in part 

the consequence of activated immune cells and immune-like glial cells in the CNS.40, 47 

This activation has been shown to alter and amplify normal nociceptive signaling, leading 
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to alteration of the perception of pain and its chronicity. Both innate and adaptive 

immune cells are also important for pain modulation, not only in acute peripheral 

inflammation and nerve trauma, but also in development of persistent pain. 40, 47 Spinal 

glial cells are widely characterized to be activated by excitatory factors (e.g. substance P, 

ATP) released from the central terminals of Aδ, Aβ and C fibers. In turn these activated 

glia release factors, discussed below, that further stimulate nearby neurons and glia 

creating a positive feed-forward excitatory loop.48, 40 

While there are three glial cell types found in the CNS, the most widely 

characterized to play a role in the development of neuropathic pain signaling are 

microglia, considered the resident immune cell of the CNS and astroglia, known for their 

role in glutamate uptake and neuronal homeostasis (neuronal nutritional support and 

participation in the blood brain barrier). 47, 49, 50 Recently, the oligodendrocyte, the third 

glial cell, responsible for myelination of axons, has been suggested to respond to pro-

inflammatory signaling by IL1-β, in a white matter injury in mouse brain resulting in 

increased secretion of metalloprotease-9 (MMP-9) with the promotion of small blood 

vessels and capillaries (angiogenesis) into the injured area. 51 Another study has shown 

IL-1-β to disturb oligodendrogenesis and increase the number of nonmyelinated neurons 

in neonatal mice.52 Under normal conditions quiescent astrocytes and microglia are 

scattered around the spinal parenchyma.38 Once glial cells become activated, they secrete 

pro-inflammatory cytokines (IL-1β, Il-6 TNF-α, INF-γ) as well as prostaglandins, 

diffusible nitric oxide (NO), ROS, complement proteins, histamine and other small 

molecules. Concurrent with this release and glial activation, are phenotypic changes in 

their normal resting morphology to a more spindly, branched appearance when active.  
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Glial activation contributes to the dysfunction of excitatory signaling from 

nociceptors. 40, 47, 48 The result is altered expression of cytokines, cytokine receptors, volt-

gated sodium channels, increased release of glutamate and enhanced glutamate receptor 

functions in both peripheral and central axon terminals. All these changes subsequently 

provoke disinhibiton at the level of spinal cord and from higher pain regulatory pathways 

and activation and migration of peripheral and CNS resident immune cells. To resolve 

inflammation and restore homeostasis to the extracellular environment, the onset of a 

pro-inflammatory state is followed by a delayed release of anti-inflammatory cytokines 

interleukin-4 (IL-4), interleukin-13 (IL-13), IL-10, and transforming growth factor-beta 

(TGF-β). These restore the local environment to its basal state. 40, 47, 48  

1.5 Immunological interactions mediate pathological pain 

1.5.1  Innate and adaptive immunity  

There are essentially two types of immune responses, each with its own 

specialized cells. The cells in the “innate” or early immune response, have genetically 

evolved to recognize specific molecular patterns on invading pathogens or microbes, 

known as pathogen associated molecular patterns (PAMPS). Innate immune cells, such as 

the antigen presenting cells (APCs), macrophage, dendritic cells (DCs), have specialized 

receptors known as patterned recognition receptors (PRRs) which bind PAMPs, 

activating cell signaling pathways. Receptor activation and the release of certain 

cytokines can stimulate a dynamic process known as phagocytosis in which the 

pathogen/receptor complex is engulfed by cytoplasm and carried into the cell in 

specialized cell surface sub-cellular vesicles or phagosomes. There, the foreign matter is 
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broken down in to small molecular pieces known as antigens. Antigens are then presented 

to the cells of the adaptive immune system, namely B and T cells, by protein complexes 

on the cell surface. These complexes are known as major histocompatibility complex 

(MHC). All cells of the innate immune system are capable of the processes involved in 

antigen presentation.53  

When presented with antigen and in the presence of critical co-stimulatory 

molecules, B cells produce and secrete antibodies that are specific to each antigen. The 

antibody/antigen complexes then bind specialized receptors on phagocytic macrophages 

and are destroyed by cellular enzymes. The second response is cell-mediated immunity 

and relies chiefly on T helper 1 (Th1) cells and T helper 2 (Th2) and other T cells. 40, 53  

In the periphery and CNS innate leukocytes, like macrophage and DCs, are 

continually surveying for foreign materials or pathogens and are rapid responders. 

Adaptive immune responses directed by B and T cells are much more delayed as they 

must be presented antigen by APCs before becoming activated. 

1.5.2  Innate Immune Cells Display Two Distinct Activation Profiles  

 Macrophages and DCs, are capable of two polarized states. M1 or “classical” 

activation is created by expression of pro-inflammatory cytokines, such as IL-1β, TNF-α 

and others, important for pathogen clearance following viral or bacterial derived 

recognition of PAMPs. M1 macrophage assume a rounded morphology, express more 

receptors for the pro-inflammatory cytokines and can be characterized by 
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immunohistochemistry using antibody to human CD68 (rat ED1) a 110 kD protein 

primarily expressed on M1 macrophage cells.54-56  

Conversely, the M2 activation profile is distinguished by the presence of anti-

inflammatory cytokines IL-4, IL-13 and IL-10,54-56 and mostly associated with 

phagocytic activity during wound healing and clearance of dying cells or cells 

undergoing apoptosis. M2 polarized cells can be characterized by the markers, human 

CD163 (rat ED2), a 130 kD macrophage associated antigen, which is a member of the 

scavenger receptor family, exclusively expressed by monocytes and macrophages and 

mannose receptor (MR; human CD206), a classic marker of alternative macrophage 

activation.47, 49, 50, 54-56 

 In the past, the CNS was considered “immune privileged” such that under normal 

conditions, the neurons of the brain and spinal cord parenchyma were protected from 

immune cell invasion by the endothelial blood brain barrier (BBB). It was thought that 

only in the event of an infection or inflammatory process, did these barriers open and 

allow the passage of immune cells. The more recent perspective is that immune traffic is 

normal and necessary for protection from infection and cancer.57, 58 In actuality, the CNS 

contains many cells that when activated can release and express receptors capable of 

responding to cytokines, inflammatory and pain mediators and contribute to pathological 

pain signaling. Antigen presenting macrophage, DCs and other leukocytes capable of 

mounting immune responses and cytokine release, reside in the meninges and around 

small spinal capillaries and blood vessels and in peri-vascular spaces around the central 

spinal canal. 47, 59  
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1.6 Interleukin-10 a powerful anti-inflammatory cytokine 

One of the most powerful anti-inflammatory cytokine, is interleukin-10 (IL-10). IL-

10 dramatically inhibits the exacerbation of the pro-inflammatory responses preventing 

potential cellular and organismal damage.60-62 In the CNS, IL-10 is endogenously produced 

by innate immune cells, such as microglia,63-65 macrophages,66, 67 and DCs.60-62 Astrocytes 

also express receptors for this cytokine.  

The binding of IL-10 to its receptor initiates a number of phosphorylation events that 

activate the Janus kinase (JAK)/ signaling transducer and activator of transcription (STAT) 

signaling pathway and leads to long-term transcriptional alterations. The receptor is 

composed of two subunits, IL-10R1 and IL-10R2 subunits. Two IL-10 molecules form a 

homo-dimer that bind the receptor and constitutively activate two tyrosine kinases, Jak1 and 

Tyk2, associated with the IL-10R1 and IL-10R2 cytoplasmic tails respectively.62 Activation 

of these residues is followed by the recruitment of STAT3 to the receptor and 

phosphorylation of its Tyr705 residue.60 Phosphorylated STAT3, then translocates to the 

nucleus, and binds a STAT3 recognition sequence in the transcriptional promoter for the 

interleukin 1 receptor antagonist (IL-1Ra). Subsequent chromatin remodeling and histone 

acetylation at this promoter exposes other transcription sites to transcription factors such as 

the p65/p50NFκ-B and upregulates expression of IL-1Ra. IL-1Ra is a cytokine capable of 

profound reduction in proinflammatory signaling by the IL-1β cytokine and others. A 

delayed expression of more IL-10 and IL-10 receptor contributes to a robust anti-

inflammatory response.60, 62  
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1.6.1 IL-10 as a Therapeutic for Chronic Neuropathic Pain  

Capitalizing on it natural anti-inflammatory effect, prior work has shown that peri-

spinal intrathecal injection of IL-10 protein can reverse neuropathic pain. However, the 

reversal was only transient, lasting less than 24 hours, an observation explained as being due 

to the short, ~ 2 hour, half-life of the protein. Next, a similar injection strategy was attempted 

using a naked plasmid, containing the gene for IL-10. The hypothesis was that over-

expression of IL-10 protein near the area of the dorsal spinal cord, responsible for pain 

modulation would prolong pain relief. Indeed, the hypothesis proved correct. Pain relief was 

prolonged to 3 months, but required two injections and excessive doses of DNA, (125 µg), 

which is of limited clinical usefulness when translated to humans.68 

1.6.2 Period of Sensitization and Cell Enrichment 

An important discovery was observed during these initial studies. There was a 

discrete interval or “sensitization period” between the two i.t. injections, between 5 hours 

and 3 days, during which the first injection served to sensitize the sub-arachnoid 

compartment to the second injection.69 If the second injection was given outside this time 

window, the length of pain reversal was dramatically shortened, from 3 months to 10 

days.69 

Examination of CSF during the sensitization period showed that it was enriched 

with cells that were found to be mostly macrophage expressing an activated phenotype 

(possible proinflammatory), identified by the a cell surface glycoprotein, ED1(CD68).69 

By six hours, the number of ED1 positive cells had dramatically declined. Six days later, 
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the majority of cells expressed the anti-inflammatory phenotype, identified by ED2 

(CD163), another cell surface glycoprotein. More importantly, increased expression of 

ED2 positive cells paralleled the increase of endogenous IL-10 production in the sub-

arachnoid space, following injection of pDNA.69 

Cell enrichment and sensitization by immune cells can be stimulated by factors 

that act as PAMPs but without the presence of actual bacteria or virus. 70, 71 An example 

are cytosine-phosphate-guanine (CpG) DNA sequences that occur with high frequency in 

bacterial DNA. Naked DNA used in these studies, contains many of these stimulatory 

sequences which may have been responsible for activation of immune cells following the 

first injection of pDNA-IL10 in these early experiments.72 By the time of the second 

injection, three days later, M2 polarized macrophage were poised and ready for 

phagocytosis and efficient uptake of the IL-10 transgene.72, 73 Facilitating a switch from 

M1 activation to M2 activation of the subarachnoid immune and spinal glial cell milieu 

was hypothesized to be one approach to harness innate immune responses for optimal 

transgene uptake and expression. 

In an effort to improve transgene uptake by inducing M2 polarization of peri-

spinal macrophage, Sloane et al. explored the use of a discrete CpG containing 

oligodeoxynucleotide sequence, ODN2006, as candidate gene transfer adjuvant.72 This 

ODN sequence is a natural ligand for toll-like receptor 9 (TLR9), an endosomal receptor 

in macrophages, and part of a large family of Toll-like receptors (TLRs).71 CpG 

sequences are taken up by macrophages and transported by clathrin-coated vesicles to the 

endosome where they fuse and bind to TLR9. This can induce the expression of 
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endogenous IL-10, leading to a phenotypic switch from a pro-inflammatory to an anti-

inflammatory profile shown to facilitate phagocytosis.71,74 A priming injection of 

ODN2006 (2 µg), administered 3 days prior to a low dose of naked pDNA-IL-10 (25 µg), 

causes pain reversal to baseline levels but only for approximately one month. This data 

can be interpreted that ODNs may act as adjuvants. 

In Chapter 3 of this dissertation, two alternative transgene adjuvants, Dexamethasone 

(Dex) and D-mannose, are used with pDNA-IL-10 to achieve enduring pain reversal. Both 

Dex and D-mannose are known to bind their cognate receptors, glucocorticosteroid receptor 

(GR) and mannose receptor (MR), respectively. This binding triggers anti-inflammatory 

signaling cascades in leukocytes (macrophage and dendritic cells) and results in the release 

of IL-4, IL-10 with a concurrent reduction in pro-inflammatory cytokine levels, such as IL1-

β and TNF-α, leading to a switch from an M1 to an M2 phenotype. M2 polarization is 

accompanied by enhanced phagocytic ability.75-77 We hypothesized that a priming injection 

of Dex or D-mannose as an adjuvant might facilitate a switch from M1 to M2 polarization of 

leukocytes near the injection site in the spinal cord. The consequence would be the 

enhancement of IL-10 transgene uptake with subsequent IL-10 expression, thereby achieving 

allodynic reversal with lower doses and number of injections. Such expression of the anti-

inflammatory IL-10 protein by meningeal cells, microglia, dendritic cells and astroglia near 

the injection site would allow for diffusion of the IL-10 cytokine directly near the source of 

the pathologic pain response.78, 79  
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1.6.3  Strategies for intrathecal delivery of pDNA-IL-10 for long term expression of IL-

10  

1.6.3.1  Naked Plasmid 

One of the key barriers for transgene delivery of a naked plasmid DNA (pDNA) is 

translocation across the cell membrane. Moreover, the exact mechanisms by which the non-

viral pDNA reaches the cell nucleus are not well characterized. One potential route is by 

pinocytosis, a process that all cells are capable of performing. The cell membrane surrounds 

the DNA engulfing it in a small vesicle which then travels through the cytoplasm and fuses to 

a larger vesicle known as an endosome (pH 5.0-5.5). The DNA must escape the endosome or 

it can be carried to a lysosome (pH 4.0-4.5) where DNA degradation occurs. If the DNA 

successfully escapes the endosome, it must travel across the cytoplasm to the cell nucleus 

where it must cross the nuclear membrane by fusion or passage through nuclear pores to 

reach the cellular transcription machinery. Other than pinocytic endocytosis, potential 

mechanisms for pDNA entry are 1) phagocytosis or engulfment by specialized cells such as 

macrophage, 2) receptor mediated endocytosis, or 3) entry during mitotic breakdown of the 

outer cell and nuclear membranes during cell division.80  

As noted previously, in order to be transcribed pDNA must cross the nuclear 

membrane or envelope. In replicating mitoic cells, the membrane breaks down and the 

DNA easily crosses, but in cells that are post-mitotic, this process is more difficult. The 

nuclear envelope is a double membrane crossed by many large protein complexes known 

as nuclear pore complexes (NPCS) which regulate transport. NPCs have a pore size of ~9 

nm, which allow free diffusion of small and medium ions and molecules up to 40-60 kD 
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or nucleic acids up to 300 bp. Non-dividing transport of larger molecules such as pDNA, 

requires a sequence specific nuclear localization signal (NSL), which is recognized by 

specialized proteins called importins. Protein-NLS/importin complexes dock at the NPC 

allowing DNA entry.81 The nuclear entry of transfected DNA is accomplished indirectly 

by its association with NLS on transcription factors.82  

1.6.3.2 Synthetic carriers for gene delivery 

It is thought that synthetic delivery platforms can assist in enhancing transgene 

expression by protecting DNA from acidic degradation and promoting endosomal escape.83 

Certain synthetic formulations lower energy barriers and promote membrane fusion or attract 

protons (H+) creating an osmotic sponge attracting water molecules, which burst the 

endosomal membrane.84, 85  

The studies presented in Chapter 1 of this dissertation investigate the potential of 

using a novel silica particle supporting a lipid bilayer known as a “protocell” as a possible 

platform to deliver the 5.9 kilobase pair (kb) pDNA-IL-10 to the CNS by intrathecal 

injection. At the time these studies began, protocells had never been taken in vivo in the 

CNS, so the initial goal was to simply see if they would be tolerated by the animals and to 

determine their anatomical biodistribution following intrathecal injection. In addition we 

wanted to know what spinal cells were interacting with them. Another question was whether 

the IL-10 transgene loaded on protocells could successfully transfect cells, and if the 

transgene generate functional IL-10 protein following transfection. Finally, as proof of 

concept, we wanted to know if IL-10 loaded on protocells could be utilized as therapeutic IL-

10 gene vector that would reverse allodynic behavior in neuropathic rats. We set out to 
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determine these goals in vivo using 62 Sprague-Dawley rats and in vitro with cell culture 

studies. The protocells used in these experiments were “first generation” protocells similar to 

those used by Liu, et al.100,101,215 The mesoporous silica core had a diameter from ~150-200 

nm and a range of pore diameters of ~1-10 nm. The majority of pores were ~3 nm in 

diameter. The core supported either a positively charged, DOTAP:CHOL 1:1 lipid or a 

zwiterionic, neutrally charged DOPC lipid. Silica at pH7 is negatively charged95 and would 

repel the negatively charged pDNA-IL10, so 10% aminoproyltriethoxysilane APTES was 

included to reverse the charge of the silica to positive. (Please refer to Chapter 1 (Methods) 

for more detail.) It is important to note that at the time of these experiments, these were the 

only protocells documented.100,101,215 By the time the “next” generation of protocells was 

developed,94 animals and materials had been utilized and the goals outlined above had been 

completed. It was imperative in these initial studies that we establish a fundamental 

understanding of protocell distribution in the CNS and any potential for toxicity in our 

animal model of neuropathic pain, before further modifying the delivery vector, protocells. 

In total, 3 different protocell cargos were used in the experiments in Chapter 1. The 

first, was a red fluorphore Dextran tetramethyl rhodamine (DexRHO). The second was a 

FAM-tagged 18 base pair single stranded DNA oligomer. FAM is a green fluorophore used 

as a reporter in our microscopic examination of protocell distribution in the CNS and body 

following intrathecal injection of the particles. The third cargo was a 5.9 kilo base (kb) 

plasmid, encoding the gene for IL-10. While determining exactly how these cargos load on 

the protocell was not a goal of the studies in Chapter 1, we have speculated how these 

molecules would load on the protocell in the schematic below (Scheme 1 A-C). 
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Scheme 1- Schematic showing theoretical loading of 3 protocell cargos- A) This cargo is a negatively 
charged, 18 bp DNA oligomer with an approximate length of 6.12 nm and a diameter of ~2. It is tagged 
with a negatively charged fluorophore, FAM, which has a MW of 473.4 and an approximate planar length 
of .139 nm and height of .722 nm, as calculated by bond lengths. FAM-tagged DNA may load directly into 
the silica pores (~3 nm diameter). B) Negatively charged dextran tetramethyl-rhodamine (DEXRHO) is 
composed of a dextran polymer with a MW of 10,000 conjugated tetra-methyl rhodamine groups. The 
tetramethyl-rhodamine group has an approximate planar length of .983 nm and height of .576 nm as 
calculated by bond lengths. This very large molecule is thought to load onto the protocell by adsorption 
with the positively charged DOTAP:CHOL 1:1 lipid bilayer and positively charged 10% aminated 
mesoporous silica core. C) Negatively charged plasmid encoding the gene for IL-10 most likely assumes a 
supercoiled structure and is thought to load by adsorption in a manner similar to DEXRHO. During the 
synthesis process each cargo was mixed with the silica and rinsed 3xs with PBS before the liposomes were 
added.  

 

A more in depth discussion regarding the loading of these cargos and the advantages 

and disadvantages of using protocells and other synthetic platforms for gene delivery will 

presented in Chapter 4, the discussion section of this dissertation. 
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1.7 Global Hypothesis Synthetic delivery platforms and small molecule adjuvants 

will improve the efficacy of spinal interleukin-10 gene therapy for chronic 

neuropathic pain. 

1.8 Research objectives and aims: original and revised 

As experiments progressed, the sequence and content of the original research aims 

was revised to better correlate with the data being observed. The original aims and 

revised aims are outlined below for the reader’s convenience. 
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1.8.1 Original Aims 

Specific Aim I: Encapsulating pDNA-IL-10 in PLGA microparticles (pDNA-IL10-
PLGA) will safely reduce the dose and number of injections required to provide 
pain relief of 3 months or greater 

Specific Aim IA: In vitro characterization of PLGA: 

1) To determine if cultured mammalian cells will remain viable following 
application of pDNA IL-10-PLGA. 

2) To determine if cultured mammalian cells transfected with pDNA-IL-
10-PLGA will express higher levels of IL-10 protein than when 
transfected with naked pDNA-IL-10.  

Specific Aim IB: In vivo characterization of PLGA : 

1) To determine if pDNA-IL10-PLGA will produce pain relief for 3 
months with only one i.t. injection 

2) To determine if pDNA-IL-10 must be encapsulated to produce pain 
relief for 3 months or greater 

3) To determine if there is an optimal dose of pDNA-IL-10-PLGA that 
will provide enduring pain relief lower both the doses of pDNA-
IL-10 and PLGA while a ratio of 1:100 is maintained (1 ug pDNA-
IL-10/100 ug PLGA; ratio = 1/100) 

a) Lower the dose of pDNA-IL-10 while the PLGA dose is 
constant (1 ug pDNA-IL-10/ 1 mg PLGA; ratio = 1/1000)  

Specific Aim II: Protocells can be safely used to deliver small molecules or pDNA-IL10 
(pDNA-IL-10-PCs) to the CNS for enduring pain relief of 3 months or greater 

Specific Aim IIA: In vitro studies: to determine the dissolution and 
biocompatibility characteristics of protocells 

1) To determine the dissolution rate of protocells over time at different 
physiological pH (temperature held at 37ºC) 

2) To determine if cultured mammalian cells will remain viable following 
application of pDNA-IL-10GFP-PCs 

3) To determine if cultured mammalian cells can be transfected with 
pDNA-IL-10GFP-PCs to produce measurable levels of IL-10 
protein 
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Specific Aim IIB: In vivo studies: characterization of protocells and assessment 
of functional transgene delivery 

1) Biocompatibility following spinal delivery in rats 

2) Biodistribution in the CNS and body  

3) Characterization of cellular interactions 

Specific Aim IIB1: Protocell delivery of pDNA-IL-10 will cause pain reversal in 
neuropathic rats  

Specific Aim III: Protocells loaded with known adjuvants and co-administered with 
pDNA-IL10-PLGA will lower the transgene dose required to reverse pain for 3 
months or greater 

Specific Aim IIIA: In vitro studies-characterization of the cellular influence of 
adjuvants (Dex and ODNs) 

1) To determine if mammalian cell cultures are viable in the presence of 
adjuvant loaded protocells  

2) To determine if IL-10 protein levels are improved if adjuvant molecules 
are co-administered with pDNA-IL-10-PLGA 

3) Characterization of the pro or anti-inflammatory cellular profile of 
macrophage cells interacting with adjuvant loaded protocells 

Specific Aim IIIB: In vivo studies- behavioral characterization 

1) To determine if protocells loaded with adjuvants co-injected with 
pDNA-IL-10-PLGA extend pain reversal  

2) To determine if IL-10 gene expression and pain relief will be blocked 
or altered by an anti-IL-10 neutralizing antibody  

1.8.2 Revised Aims 

Specific Aim I: Protocells can be safely used for spinal delivery of pDNA encoding the 
IL-10 gene.  

Specific Aim IA: In vitro characterization: to determine the release and 
biocompatibility characteristics of protocells 

1) To determine the release rate of protocell cargo over time at different 
physiological pH (temperature held at 37ºC) 
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2) To determine if cultured mammalian cells will remain viable following 
application of pDNA-IL-10GFP-PCs 

3) To determine if cultured mammalian cells can be transfected with 
pDNA-IL-10GFP-PCs to produce measurable levels of IL-10 
protein 

Specific Aim IB: In vivo characterization and assessment of functional transgene 
delivery 

1) Biocompatibility following spinal delivery in rats 

2) Biodistribution in the CNS and body  

3) Characterization of cellular interactions 

4) Protocell delivery of pDNA-IL-10 will cause pain reversal in 
neuropathic rats  

Specific Aim II: Immune adjuvants will lower the transgene dose required to reverse 
chronic neuropathic pain  

Specific Aim IIA: Characterization of immune adjuvants to initiate the 
sensitization period for improved pain reversal with low dose IL-10 gene  

1) To determine if a priming injection of DEX will lower the required IL-
10 gene dose for prolonged pain reversal 

Specific Aim IIB: Characterization of D-mannose as an M2 polarizing agent  

1) In vitro: To determine if D-mannose induces an M2 polarized profile in 
macrophage 

2) In vivo: To determine if D-mannose alone leads to pain reversal 

Specific Aim IIC: To identify an M2 polarized profile following the sensitization 
period in pain-reversed rats 

1) In vivo: To determine if IL-10 or IL-1β protein levels are altered in the 
spinal cord if the best candidate adjuvant is delivered prior to 
naked pDNA-IL-10 

Specific Aim IID: To determine if a single co-injection of D-mannose with low 
dose pDNA-IL-10 will generate enduring pain reversal 
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1.9 Brief Summary of Each Chapter 

Chapter 2 describes experiments that characterize the release rates of protocell 

cargo, formulated with either DOPC or DOTAP:Cholesterol lipids. Different pH and time 

values were examined in an effort to understand cargo release under specific conditions. 

These two protocell formulations were tested in vivo by injecting them into the peri-

spinal, i.t., space in Sprague-Dawley rats and found to be biocompatible and non-toxic 

over an 8 week time course. Interestingly, protocells supporting the two different lipids 

revealed not only slightly different release kinetics in vitro, but a clear difference in 

distribution patterns in vivo and transfection efficiency. These studies are the first 

demonstration that protocell vectors can be used as a non-viral platform for spinal 

delivery of a therapeutic gene to reverse allodynia in neuropathic rats, albeit for a short 

duration. 

Chapter 3 explores the use of the two small molecules, Dex and D-Mannose, 

referred to as gene therapy M2 polarizing adjuvants. I observed that compared to Dex, D-

Mannose was superior in priming prolonged and dose dependent suppression of pain in 

neuropathic rats at low transgene IL-10 doses. Macrophage cell culture studies 

demonstrated that D-Mannose was capable of reducing levels of proinflammatory 

modulators, the cytokines IL-1β and tumor necrosis factor TNFα and nitric oxide (NO) 

while increasing endogenous and transgene derived IL-10 protein levels of IL-10, 

supporting notion that the adjuvant, D-mannose altering spinal immune cells in the 

direction of an M2 phenotype and improved efficiency of transgene uptake. 
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Abstract 

Amorphous mesoporous silica nanoparticles (‘protocells’) that support surface 

lipid bilayers recently characterized in vitro as carrier constructs for small drug and DNA 

delivery are reported here as highly biocompatible both in vitro and in vivo, involving the 

brain and spinal cord following spinal delivery into the lumbosacral subarachnoid space 

(intrathecal; i.t.). Specifically, positively charged, 1, 2-Dioleoyl-3-Trimethylammonium-

Propane (DOTAP)-cholesterol (DOTAP:Chol) liposome-formulated protocells revealed 

stable in vitro cargo release kinetics and cellular interleukin-10 (IL-10) transgene 

transfection. Recent approaches using synthetic non-viral vector platforms to deliver the 

pain-suppressive therapeutic transgene, IL-10, to the spinal subarachnoid space has 

yielded promising results in animal models of peripheral neuropathy, a condition 

involving aberrant neuronal communication within sensory pathways in the nervous 

system. However, these non-viral platforms are limited in terms of tuning cargo release-

rates and surface chemistries, thereby minimizing flexibility in lowering dosage 

formulations. We report here that i.t. delivery of protocells, with modified chemistry 

supporting a surface coating of DOTAP:Chol liposomes and containing the IL-10 

transgene, results in functional suppression of pain-related behavior in rats for extended 

periods. This study is the first demonstration that protocell vectors offer amenable and 

enduring in vivo biological characteristics that can be applied to spinal gene delivery. 

2.1 Introduction 

The development of synthetic non-viral vectors for gene therapeutic purposes has 

steadily increased during the past 10 years, an effort that is reflected by increased non-
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viral gene therapeutic clinical trials worldwide.86, 87 While viral vectors are superior in 

gene transfection efficiency, non-viral gene transfer systems are associated with less 

safety concerns. The application of central nervous system (CNS) non-viral gene transfer 

to express therapeutic proteins is significantly underexplored in light of the broad-ranging 

therapeutic potential in controlling a host of neurological diseases. The arsenal of 

potential clinical gene delivery platforms includes cationic lipids and peptides, co-

polymers, polymeric micelles, and modified silica nanoparticles.88-90 Indeed, a significant 

amount of progress toward our understanding and utilizing mesoporous silica 

nanoparticles (MSN) for controlled drug and gene release, while optimizing 

biocompatibility, has occurred in recent years.91 Silicas are present in crystalline and non-

crystalline (amorphous) forms, with amorphous silica occurring either naturally or are 

synthesized. While crystalline silica is widely associated with adverse health effects 

including silicosis that involves proinflammatory cytokine-mediated pathogenesis, 

virtually no toxicity has been identified with synthetic amorphous silicas at moderate 

doses.92, 93 Therefore, synthetic amorphous silicas have been explored in biomedical 

applications including targeted drug delivery for cancer chemotherapeutics and DNA 

delivery for gene therapy.94, 95 The major advantage of using synthesized MSNs is that 

their surface can be chemically modified, resulting in improvements in their drug cargo 

capacity, as well as facilitation of tunable release rates which further enhances their 

biocompatibility and functional capabilities.96 

Mesoporous silicas contain a porous structure with hundreds of channels referred 

to as mesopores, which are able to adsorb bioactive molecules.96 The properties of MSNs 

include a large surface area (> 900m2/g), large pore volumes (> 0.9 cm3/g), a tunable 
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pore size (~1-30 nm), and good chemical and thermal stability; all of which contribute to 

their suitability for controlled drug release applications. Additionally important, efficient 

cellular uptake of mesoporous silica particles is size-dependent, with optimal uptake 

occurring at the sub-micron scale with potential for controlled DNA release.90  

Non-viral spinal gene therapy to suppress neuropathic pain is a relatively new 

approach that has resulted in successful therapeutic outcomes in a variety of animal 

models of pathological pain produced by peripheral nerve inflammation and/or trauma 

from systemic cancer chemotherapeutic administration, peri-sciatic immune activators, or 

chronic constriction injury.73, 79, 97-99 However, high transgene doses and limited cargo 

loading efficiency of polymer platforms were observed, which may minimize the clinical 

utility of this delivery method. One approach to circumvent these limitations is to deliver 

therapeutic genes utilizing MSNs for transgene delivery due to their flexibility in cargo 

loading and release.  

In the present work, in vitro and in vivo long-duration biocompatibility, 

biodistribution, and functional gene expression following delivery to the spinal cord was 

conducted using cationic amine-chemically-modified (functionalized) mesoporous silica 

cores with ~2 nm diameter pores prepared by aerosol-assisted self-assembly, with 

phospholipid bilayers fused to the core surface. The term ‘protocell’ will be used to 

reference MSN-supported lipid bilayers to maintain consistency of nomenclature with the 

initial published description of their manufacture and characterization.94, 100,101 The 

principle attractiveness of utilizing these protocells as drug and gene delivery platforms is 
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in their potential for increased drug containment properties, and the tenability of surface 

chemistry modifications tailored to specific cargos.  

2.2 Materials And Methods 

Animals. A total of 62 adult, male Sprague-Dawley rats (Harlan Labs, Houston, 

TX); 300 +/- 5 g were double housed at 21 +/- 4°C in light controlled rooms (12:12 light: 

dark) and fed standard rodent chow and water available ad libitum. All procedures were 

approved by the Institutional Care and Use Committee (IACUC) of the University of 

New Mexico, and conducted in accordance to the guidelines recommended by the 

International Association for the Study of Pain for the handling and use of laboratory 

animals. 

Behavioral assessment for sensory changes. Baseline spinal cord activity is 

evaluated using the well-characterized protocol for assessing threshold responses to light 

touch applied to the hindpaws with a series of calibrated monofilaments (0.4-15 g). The 

monofilaments generate a touch stimulus when applied to the hindpaw that induces a paw 

withdrawal response within 8 seconds.102,103 Paw withdrawal sensory thresholds are 

highly sensitive to subtle inflammatory perturbations in the spinal cord, as normal 

hindpaw response thresholds (5-10 g) are present during healthy, non-pathological 

conditions, 103, 104 while response thresholds dramatically decrease (< 1 g) in the presence 

of inflammatory signaling.103,104 This behavioral response phenotype is used as an 

indicator of spinal cord health. Prior to behavioral thresholds, rats were habituated to the 

testing conditions for 4 consecutive days, 1 hr/day, in a quiet dimly lit and temperature 

controlled room (26.0-27.0° C), where rats were placed on top of an open grid of bars 
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with 2 mm thickness, spaced 8 mm apart to allow access to the entire plantar surface of 

the hindpaw for tactile stimulation. Response thresholds were determined by a 

logarithmic series of calibrated Semmes-Weinstein monofilaments (von Frey hairs; 

Stoeling, Wood Dale, IL). Testing of behavioral thresholds were conducted identically to 

that described previously.103,104 Briefly, baseline (BL) responses to light mechanical 

touch stimuli were assessed using 10 monofilaments, each with a log-stiffness value, 

defined as log10 (milligrams X 10), values in grams follow in parentheses: 3.61(.407), 

3.84(.692), 4.08(1.202), 4.17(1.48), 4.31(2.04), 4.56(3.63), 4.74(5.49), 4.93(8.51), 

5.07(11.75) and 5.18(15.14). BL values derived from three threshold assessments, at 20 

min intervals, were averaged for the right and left hindpaws separately. After injection of 

protocells, threshold responses were re-assessed at .5, 1, 2, 3, 24 and 72 hrs. In those rats 

that underwent unilateral sciatic nerve injury, thresholds were reassessed at 3 and 10 days 

post surgery and every 2 days, up to 32 days post peri-spinal (intrathecal; i.t.) protocell 

injection. To assess normal food consumption as an indication of general health, body 

weights were measured following 2, 4, 8, 12, 14, 21, 28, and 56 days following i.t. 

administration of protocells. 

Chronic constriction injury (CCI). The surgical procedure for chronic 

constriction injury (CCI) was performed identically as previously described 105, 106. 

Briefly, under isofluorane anesthesia (1.5-2.0% vol. in oxygen), the mid to lower back 

and dorsal thigh were shaved and cleaned with diluted Bactri-Stat AE (EcoLab 

HealthCare Division, Mississauga, Ontario, Canada). Using aseptic procedures, the 

sciatic nerve was carefully isolated and four chromic gut sutures (Ethicon, Somerville, 

NJ) were loosely tied around one sciatic nerve. The overlying muscle was sutured closed 
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with two, sterile, silk sutures (Ethicon, Somerville, NJ), and the overlying skin was 

closed with wound clips. The sciatic nerve of sham-operated rats were identically 

exposed but not ligated. Animal body weight was recorded and recovery from anesthesia 

was observed within 10 minutes. 

Intrathecal (i.t.) injections. Injections were acutely administered and conducted 

as described previously.99,107 Briefly, rats were anesthetized with isofluorane (5.0% 

volume in oxygen) and an 18-gauge cannula constructed from an 18-gauge sterile 

hypodermic needle (Beckton Dickinson & Co., Franklin Lakes, NJ), removed from its 

hub, was inserted percutaneously between lumbar vertebra 5 and 6 (L5-6). During this 

time, a small amount of cerebral spinal fluid (CSF) efflux from the 18-gauge cannula and 

a tail flick were observed, indicating subarachnoid catheter placement. A 1 ml Hamilton 

syringe connected to a 30-gauge, 0.5 inch needle inserted into a catheter composed of a 

30 cm-length polyethylene tubing (PE-10; cat# 427401; Becton Dickinson, Sparks, MD) 

was then used to draw up DOTAP:Chol or DOPC protocells (1.0, 0.1 or 0.01 mg) in a 

total volume of 20 µl sterile, isotonic saline. The drug-filled PE-10 catheter was then 

inserted into the open end of the 18-gauge guide cannula, and advanced 7.7 mm rostrally, 

placing the internal portion of the PE-10 catheter at the lumbosacral enlargement of the 

spinal cord where axon terminals of sciatic afferent nerve fibers synapse onto pain-

relevant spinal cord neurons. Injections were given over a 0.5-1 minute interval. 

Following drug injection, the PE-10 catheter was removed followed by removal of the 

18-gauge cannula, and both were discarded. The total time required for these i.t. 

injections was 2-3 minutes. All animals displayed full motor activity following recovery 

from anesthesia. 
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Preparation of plasmid DNA. The plasmid vector used in these studies was 

identical to that previously described.107 This plasmid’s transcriptional cassette consists 

of a cytomegalovirus enhancer/chicken beta-actin (CB) promoter driving expression of 

the rat IL-10 gene containing a point mutation (F129S) and the SV40 polyadenylation 

signal. The identical plasmid lacking the IL-10 gene was used as a control. Both plasmids 

were amplified in SURE II competent E. coli (Stratagene, Cedar Creek, TX.) and isolated 

using an endotoxin free Giga plasmid purification kit (Qiagen, Valencia, CA).  

 Preparation of mesoporous cationic silica “core” protocells. The mesoporous 

silica particles were prepared by the surfactant self-assembly method described 

previously.100, 108 Briefly, a homogeneous solution of the soluble silica precursor, 

tetraethylorthosilicate (TEOS; Sigma-Aldrich Corp., St. Louis, MO), and hydrochloric 

acid was mixed in ethanol and water. A surfactant, cetyl trimethylammonium bromide 

(CTAB; Sigma-Aldrich Corp., St. Louis, MO), with an initial concentration much less 

than the critical micelle concentration was added to lower the surface tension of the liquid 

mixture and act as the mesoporous structure-directing template. Aerosol solutions of 

soluble silica plus surfactant were then generated with nitrogen as a carrier atomizing gas 

using a commercially available atomizer (Model 9392A, TSI, Inc., St. Paul, MN). The 

aerosol droplets were solidified in a tube furnace at 400 °C until dry. Once dried, a 

durapore membrane filter, kept at 80 °C, was used to collect the particles. As a final step, 

the surfactant was removed at 400 °C for 5 hrs via calcination. The surface of the 

mesoporous silica core in these studies was chemically modified with 10% by wt. 

aminopropyltriethoxysilane (APTES; Sigma-Aldrich Corp., St. Louis, MO) to create a 

positive surface charge to increase loading efficiency of negatively charged cargo.  
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Preparation of liposomes for protocells. The lipids used in this study were 

either positively charged, 1, 2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP; cat. # 

890890C; Avanti Polar Lipids Inc. Alabaster, AL) or zwitterionic and neutrally charged, 

1, 2- dioleoyl-sn-glycero-3-phosphocholine (DOPC; cat. # 850375; Avanti Polar Lipids 

Inc., Alabaster, AL). Cholesterol was added to DOTAP in a 1:1 ratio, as it has been 

reported to improve transfection efficiency when included in cationic liposomes.109 

Phospholipids were dissolved in chloroform at concentrations of 10-25 mg/ml. Lipid 

aliquots of 2.5 mg were placed in scintillation vials. Alexa Fluor 647, a red fluorescent 

dye (absorption 650 nm and emission 658 nm; Invitrogen, Carlsbad, CA), was added at 

2% for labeling studies. Chloroform was then evaporated under nitrogen flow. The vials 

were then stored overnight in a vacuum oven to remove remaining chloroform. Samples 

were stored at -20oC until used. 

To prepare liposomes, vials were brought to room temperature and samples 

rehydrated with 1 ml buffer (10 mM MOPS, pH 7.0, 60 mM NaCl) and shaken for 1 hr, 

which resulted in a cloudy suspension. The suspension was extruded through a 100 µm 

pore diameter membrane with in a mini-extruder (Avanti Polar Lipids), and repeated for a 

minimum of 21 times. The resulting liquid was placed in a fresh vial and stored at 4 °C 

until used in the preparation of DNA loaded protocells. 

Preparation of DNA loaded “protocells”. An 18 bp-DNA oligomer (5ʹ′-

CTTGAGAAAGGGCTGCCA-3ʹ′) tagged with 6-carboxylfluorocein (FAM; absorption 

492 nm emission 520 nm; Invitrogen, Carlsbad, CA) was used to identify the safety 

profile and anatomical location of protocell cargo following i.t. injection. To load the 
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silica core with DNA, 35 µl of 200 µM DNA was added to 3.5 mg of cationic silica 

nanoparticles, gently mixed in sterile 0.5X PBS (25 mg/ml; 140 µl per 3.5 mg particles) 

and allowed to incubate for 5 min. In a sterile microcentrifuge tube, 300 µl of 2.5 mg/ml 

of liposome mixture was added and mixed with the nanoparticle/ DNA mixture by 

pipetting until homogeneous. The resulting mixture was allowed to sit at room 

temperature for 1 hr with occasional agitation by pipetting and then centrifuged for 2 

min. at 6000 RPM to remove excess lipids. The supernatant was discarded, and the pellet 

was washed in sterile PBS followed by centrifugation at 6000 RPM. Pellets 

(protocell/18mer-DNA-FAM/ lipid mixture) were washed 3X and resuspended in sterile 

PBS at 50, 5 or 0.5 mg/ml. Identical steps were followed when loading pDNA-IL-10 and 

resuspended in 50 mg/ml.  

Characterization of silica. Transmission electron microscopy (TEM) images 

were acquired with a JEOL 2010 200kV high-resolution transmission electron 

microscope. The pore diameter was calculated by the Barrett-Joyner-Halenda (BJH) 

method.110 The total surface area was calculated by the Brunauer, Emmett & Teller 

(BET) method,111 from the N2 sorption isotherm shown in Supplemental Figure 1. 

Characterization of cargo release-rate from protocells. Mesoporous silica 

nanoparticles (25 mg) modified with 10% APTES were dispersed in 1 ml PBS to give a 

concentration of 25 mg/ml, 12.5 µl of 20 mM dextran-tetramethylrhodamine 

(DexRho;Molecular Probes, Invitrogen, Carlsbad, CA) was added to yield ~250 µM. The 

solution was agitated at room temperature for 45 min, and 50 µl aliquots of each protocell 

formulation for each time point were centrifuged for 2 min, washed 3X with 200 µl of 
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0.25X PBS to remove unincorporated dye. The dye-loaded cores were then mixed with 

DOTAP:Chol 1:1 (DOTAP:Chol) or DOPC liposomes as outlined above. A total of 200 

µl of pH appropriate buffer was added to each sample to give a final concentration of 

6.25 µg/µl. The particles and buffers were kept at 37°C. At designated time points, 1, 3, 

6, 24, 48, 72, 96 and 168 hours (1 week), samples were removed, centrifuged at 14000 

RPM for 2 minutes to precipitate the silica. A 100 µl sample of supernatant was then 

transferred into a borosilicate microcuvette to measure absorbance at 555 nm on a 

Beckman DU 530 UV/vis spectrophotometer (Beckman-Coulter, Inc., Fulterton, CA). In 

order to determine the quantity of dye released, absorbance readings from the supernatant 

samples were compared against a serial dilution curve based on known concentrations of 

dextran-tetramethylrhodamine. (100% loading was determined as 200 ng/ul). The 

following buffers were brought to a 1L volume in dH20 to generate the corresponding pH 

values: 0.1 M Acetic acid (pH 2), 0.1 M Citrate with 0.03% H2O2 (pH 4), 10.0 mM PBS 

(pH 7.4), 10.0 mM PBS with 0.1% BSA (pH 8.0), and 0.1 M Amino-Methyl-Propanediol 

(pH 10). 

Microscopy. For tissue collection, rats were euthanized by overdosing with 

sodium pentobarbital (Abbott Laboratories, North Chicago IL) at 72 hr, and 2, 4 and 8 

wks (N=3 rats for each time point and each protocell formulation (DOTAP:Chol or 

DOPC). Blood samples were taken and mixed with 0.1 ml heparin (APP Parmaceuticals, 

LLC., Schaumour, IL) to prevent clotting. Transcardial PBS (warmed to ~45°C; 3-5 min) 

perfusion, followed by room temperature .01M PBS; (3-5 min), and then ice cold 4% 

paraformaldehyde (pH 7.24; 6-8 min) perfusion. Spinal cord, brain, cervical nodes, 

thymus, spleen, kidney and liver were harvested and post fixed in 4% paraformaldehyde 
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overnight and transferred to PBS and stored at 4°C. Bone encased spinal cords were 

placed in 10% ethylenediaminetetraacetic acid (EDTA) solution (~3-4 weeks) to chelate 

calcium and soften bone for sectioning spinal cord encased in the spinal column to 

maintain anatomical integrity of the perispinal meninges. The entire spinal cord was cut 

and cross-sectioned into five, 5 mm, segments starting at the i.t. injection site (pt 0) and 

proceeding both rostrally and caudally. Brain and organ tissues were cryoprotected in 

30% sucrose in (0.1M PBS + 50 µl 10% sodium azide) for 24 hrs, embedded in O.C.T. 

compound in cryomolds (cat# 4565-Sakura Finetek, Torrence, CA), flash frozen in 45°C 

isopentane on dry ice and finally stored at -80°C until the time of sectioning. For 

cryosectioning, 10 µm tissue slices were cut on a cryotome, Microm HM505E (Zeiss, 

Thornwood, NY), and placed on Vectabond (Vector Laboratories, Burlingame, CA) 

coated slides. 

Quantitative spectral imaging. For FAM-tagged DNA, multi-spectral tissue 

imaging and quantification was conducted as previously described.106 Briefly, images 

were obtained using an Axioscope microscope connected to a Nuance Camera 2.8 (FX) 

Multispectral Imaging System, (Cambridge Research and Instrumentation Inc., (CRI) 

Wolburn, MA).112 This camera contains a liquid crystal tunable filter (LCTF) capable of 

filtering light from 400-720 nm, and can capture a series of images of a particular tissue 

region at 10 nm wavelength increments. Every pixel of every image (series collected at 

specific 10 nm wavelength increment) was then analyzed by CRI software to determine 

its peak spectral intensities from 400-720 nm. For each tissue type examined, the 

software subtracts background fluorescence, defined as any spectral emission falling 

below that of specific fluorescence. True FAM signal (excitation 494 nm; emission 522 
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nm) was determined from a control cover-slipped slide on which a small drop of 100X 

diluted FAM-tagged DNA 18-oligomer was placed. The autofluorescence was 

determined by imaging naïve tissue. The intensity of FAM fluorescence across the full 

wavelength range (400-720 nm) was calculated using the computer software. A minimum 

threshold intensity was set automatically by the software and FAM spectral emissions 

below this point were not included in the calculation. The FAM intensity signal “counts” 

were then averaged per exposure time (sec) per mm2 area for each image collected (signal 

counts/sec/ mm2). An image was acquired for each of 4 slices (n=4) per tissue region (e.g. 

spinal cord) per rat, and then averaged to generate a mean value for a tissue region per rat 

(N=3 rats/treatment group). An overall mean value is calculated for each treatment group, 

and the data are reported as signal counts/sec / mm2. Detailed information regarding the 

computer software can be found on the Caliper Life Science website, a subsidiary of 

Perkin-Elmer(URL:http://www.caliperls.com/products/microscopy-imaging-

analysis/microscopy-imaging/nuance-fx.htm). 

Immunohistochemistry. Tissues were collected and sliced identically as 

described above (n=3 rats with 12 slices per anatomical area). Next they were 

permeabilized and blocked against non-specific antibody binding in PBS + 5% BSA + 

0.5%Triton-X for 1 hr at RT. Primary antibodies were diluted in a solution of PBS with 

0.1% BSA, 0.3% Triton-X with 0.1% sodium azide and incubated overnight at RT in a 

humidity chamber with slight rotation. Primary antibodies were diluted as follows: ED1 

(a.k.a CD68, a classic marker of pro-inflammatory macrophage activation) 1:300; ED2 

(a.k.a. CD162, a marker of alternative activation, anti-inflammatory) 1:300 (ED1- Cat# 

SC-7084 and ED2- Cat # SC-18796; Santa Cruz Biotechnology, Santa Cruz, CA); GFAP 
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(astroglia) (Cat#AB5804,Millipore,Temecula, CA) 1:300; OX42 (microglia/macrophage) 

monoclonal (Cat# MCA 275EL, AbD Serotec, Raleigh, NC) 1:300; and Cleaved-Caspase 

3 (Asp175) (apoptotic cells) (Cat#9664 Cell Signaling Technology, Beverly, MA) 1:200. 

Slices were washed 3Xs with 0.1M PBS and then incubated for 2 hrs at room temperature 

in a dimly lit room at a 1:200 dilution of a Rhodamine Red-labeled secondary antibody 

(Jackson Immunoresearch Laboratories, West Grove, PA) in the same solution as that 

used for primary antibodies. Unbound secondary antibody was removed with three, 5 min 

washes in 0.1M PBS. Slices were then covered with a fluoro-protectant, Vectashield, 

containing the nuclear stain DAPI (4, 6-diamidino-2-phenylindole) (Vector Laboratories, 

Burlingame, CA), cover slipped, and stored at 4°C. Three slides, with 3 tissue sections on 

each slide (n=9), were examined for each primary antibody. As a negative control, no 

primary antibody was added to an additional slide. A positive control for the Caspase-3 

antibody was also included in this experiment. Cultures of Raw 264.7 mouse macrophage 

cells, representative of CNS meningeal macrophage, were treated with bacterial 

lippopolysaccharide (LPS; 1 µg/ml) for 2 hours to initiate apoptosis, and then were 

subjected to the activated Caspase-3 antibody. Red Apoptotic cells stained positively and 

confirmed the integrity of the Caspase-3 antibody (data not shown). Tissues or cells were 

examined using an Olympus BX- 60 fluorescent microscope, Olympus D71 camera and 

software (Olympus America, Inc., Center Valley, PA). 

Confocal imaging. To determine subcellular location of FAM-tagged protocells, 

40X confocal image z-stacks of ED-1 + Raw 264.7 macrophage were obtained with a 

Zeiss Axiovert 100 inverted microsope (Carl Zeiss Laser Optics, Oberkochen, Germany) 

using LSM510 Image Acquisition software. The microscope excited the fluorophore of 
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interest DAPI, FAM, and rhodamine with one of three lasers: argon-405 nm; NeHe1-543 

nm; HeNe2-633nm respectively.  

Cellular transfection. For HEK 293 cell culture procedures, human embryonic 

kidney cells (HEK 293) cells were purchased from American Type Culture Collection 

(ATCC; Manassas, VA-cat# CRL-1573) and maintained in Minimum Essential Medium, 

containing Earle’s Salts and L-glutamine (Invitrogen- cat# 11095) to which was added 

10% heat inactivated fetal calf serum (FCS) (Gibco-Cat#10438) and 100 U/ml penicillin 

and 100 µg/ml Streptomycin (Gibco-Cat#15140). Cells were allowed to grow to 80% 

confluence and were then trypsinized with 0.05% Trypsin-EDTA (Gibco-Cat# 15400) to 

loosen cells. The cell suspension was centrifuged in a sterile 50 ml conical tube at 1500 

RPM for 5 mins at 4o C. After adding 20 ml of fresh media, the cells were counted by 

standard technique on a hemocytometer and passed to a new sterile T-75 flask, plated at 

10.0–15 X 106 at each pass. Cells were incubated at 37°C with an atmosphere of air, 

95% and CO2, 5%.  

For transfection with protocells, HEK 293 cells were plated at 1.0 X106 cells/mL 

on 24 well, sterile, poly-D lysine coated, culture plates (Becton Dickinson, Twin Oak 

Park, Bedford, MA) in 1 ml sterile MEM or DMEM respectively, both supplemented 

with 10% heat inactivated FCS and 100 U/mL penicillin and 100 µg/ml streptomycin and 

allowed to grow 24 hrs to 80% confluency. Media was exchanged with 1 ml fresh media 

containing 500, 50, 25, 10, and .5 µg/ml DOTAP or DOPC protocells loaded with 

pDNA-IL-10-GFP or pDNA-IL-10. Blank protocells without pDNA served as a control. 

The protocell containing media was removed after 5 hrs and replaced with fresh media. 
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Media was collected 24 hrs later and analyzed for GFP transfection (green fluorescence) 

and/or IL-10 using IL-10 ELISA (R&D Systems, Minneapolis, MN) according to 

manufacturer’s instructions or immunostaining with IL-10 primary antibody (R&D 

Systems, Minneapolis, MN) with rhodamine 2° antibody in a procedure identical to that 

used for the immunohistochemical staining outlined above.  

Cell viability assay. HEK 293 cells were plated at 5-6 X106 cells/mL on 24-well 

sterile poly-D lysine coated culture plates (Becton Dickinson, Twin Oak Park, Bedford, 

MA) in 1 ml sterile MEM supplemented with 10% heat inactivated FCS, 100 U/ml 

penicillin and 100 µg/ml streptomycin, and allowed to grow to 80% confluency. Media 

was removed and 1 ml of fresh media was added containing 500, 50, 25, 10, and .5 µg/ml 

DOTAP or DOPC protocells loaded with pDNA-IL-10-GFP, or blank protocells. The 

media was removed after 5 hrs and replaced with fresh media and the cells allowed to 

incubate for an additional 21 hrs. Cells were removed with a standard sterile cell scraper 

and 500 µl of cell suspensions placed in a flow cytometry tube on ice (Falcon Cat# 

352008- Becton Dickinson Labware, Franklin Lakes, NJ). Three minutes before 

examination by flow cytometry (Facscan4, Becton Dickinson), 50 µl of 10 µM ethidium-

homodimer D-1 was added to label dead cells.  

Mouse macrophage (RAW 264.7) cells. RAW264.7 cells were obtained from 

American Type Culture Collection (ATCC, Manassas VA, USA-cat # TIB-71) and 

cultured as adherent cells in Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich, cat# 

D6429) supplemented with 10% heat-inactivated fetal bovine serum (Gibco, cat # 10082-

147) and 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco- cat#-15140122) and 
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maintained at 37°C under humidified 5% CO2 atmosphere. Cells were grown to 85% 

confluency, collected by scraping, and sub-cultured for 3 passages. For these 

experiments, dead cells were counted by hemocytometer using trypan blue exclusion.  

Measurement of nitric oxide production 

RAW 264.7 cells were seeded at a density of 2.75 x 105 cells/ml in 24 well plates 

24 hours prior to experimentation and maintained at 37°C under humidified 5% CO2 

atmosphere. At 85% confluency, the supernatant was exchanged with DMEM containing 

different formulations of DMEM and protocells or protocell constituents and followed by 

a 2 hour incubation then washed twice in PBS (pH 7.4, Gibco-cat # 10010). Wells treated 

with 10 ng/ml lipopolysaccharides from Escherichia coli (LPS, Sigma-Aldrich, cat 

#L6529) were exposed to DMEM containing LPS for 10 minutes followed by removal 

and washed twice in PBS. Nitric oxide production was measured using the commercially 

available Griess Reagent System (Promega, USA, cat #-G2930) according to the 

manufacturer’s instructions. Absorbance was measured at 550 nm using a Tecan 

Infinite® plate reader (Tecan Systems, Inc., San Jose, CA). All experiments were run in 

triplicate.  

Data analysis. Psychometric behavioral analysis was performed as previously 

described103 to compute the absolute threshold that resulted in the 50% hindpaw 

withdrawal response. As described previously103, 104, 113 withdrawal thresholds were 

determined by using the software program, PsychoFit. The software for PsychoFit may 

be downloaded from L.O. Harvey’s website (http://psych.colorado.edu/~lharvey). This 

program fits the pattern of hindpaw responses for each timepoint to a Gaussian integral 
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psychometric function and generates a 50% threshold value for that time point. As such, 

parametric statistical analyses (repeated measures ANOVA) are applied to determine the 

statistical significance between treatment groups at multiple timepoints using the 

computer software, GraphPad Prism, version 4.03 (GraphPad Software Inc., San Diego, 

CA). All other statistical analyses were performed using the computer software, 

GraphPad Prism, version 4.03 (GraphPad Software Inc., San Diego, CA). All data is 

expressed as mean +/- SEM. Post hoc analysis was completed using Bonferroni’s test. 

2.3 Results  

2.3.1 Characterization of protocells 

Mesoporous silica particle cores were prepared by the surfactant templated 

aerosol-assisted self-assembly method previously developed and communicated.114 The 

resulting hydrophilic nanoparticles were further modified with APTES and characterized 

by a uniform, ordered and connected mesoporosity (Figure 2.1, A), with a specific 

surface area or 935 m2/g and pore diameter of 2-5 nm (Figure 2.1, B, C). Each 50 µl 

aliquot containing 1.25 mg protocells was examined for loading capacity using the 

negatively charged molecule, dextran tetramethylrhodamine (DexRho) (Figure A.13 B). 

Protocells formulated with DOPC lipids resulted in a cargo loading capacity of ~ 13.49 

µg Dex Rho, and protocells formulated with DOTAP:Chol lipids exhibited a cargo 

loading capacity of ~ 16.12 µg DexRho. 

Protocells with either DOPC or DOTAP:Chol formulations were characterized 

separately for their release of DexRho cargo. Separate aliquots were individually 
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incubated in pH solutions ranging from 2-10, for durations of 1 to 168 hours. While both 

DOTAP:Chol and DOPC formulated protocells revealed pH-dependent increases in cargo 

release with increased duration (Figure 2.1, D, E), a statistically insignificant trend 

toward greater cargo release at pH 4 compared to pH 7.4 was observed with 

DOTAP:Chol protocells. These cargo release profiles are relevant to physiological 

conditions of cellular organelles, such as lysosomes, that have acidic compartments 

typically near pH 4. Additionally, physiologically relevant pH 7.4 occurs in extracellular 

regions, suggesting that protocell cargo may remain associated with protocells until 

cellular uptake and trafficking into the more acidic late endosomes and lysosomes where 

the cargo is released.  
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Figure 2.1 Characterizations of protocells. 

(A) TEM image of mesoporous silica nanoparticles; scale bar = 50 nm. (B) Nitrogen sorption isotherm of 

10% aminated silica nanoparticles. (C) Determination of pore size of 10% aminated silica nanoparticles by 

the Barrett-Joyner–Halenda (BJH) method.110 (D) DOTAP:Chol protocells and (E) DOPC protocells 

examined from 1 – 168 hours in specific pH solutions. The negatively charged fluorophore, dextran 

tetramethylrhodamine (DexRho) loaded into the protocells served as cargo. Dashed line indicates 20% 

release for ease of comparison between groups and conditions. For both DOTAP:Chol and DOPC 

protocells cargo release increased as time and pH increased. A significant interaction between time and pH 

was revealed (DOTAP:Chol: F(35, 84) = 2.16, p = 0021; DOPC: F(35, 84) = 2.35; p = 0.0008). A trend for 

increased cargo release at pH 4 compared to pH 7.4 from DOTAP:Chol protocells was observed. 

DOTAP:Chol protocells at pH 6 revealed the greatest degree of cargo retention at 3 and 72 hours (p < 

0.05). The pattern of greater cargo retention (~15%) at pH 7.4 and 6.0 in DOTAP:Chol protocells suggests 

that cargo will remain associated with protocells until taken up within the cell and released within the late 
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lysosome for optimal cargo delivery. (A, B, C – Data provided by the Brinker Group; D, E- Experiment 

performed by Audra Kerwin; statistical analysis and graphic by Ellen Dengler) 

2.3.2 In vitro cellular viability 

Cells remain viable following application of protocells formulated with 

DOTAP:Chol or DOPC. HEK cells were incubated with 10-500 µg/ml protocells 

formulated with DOTAP:Chol or DOPC containing plasmid DNA encoding the anti-

inflammatory cytokine, interleukin-10, and the reporter gene, green fluorescent protein 

(pDNA-IL-10/GFP; 10 µg/mg protocells) for 24 hrs. Protocells without cargo served as 

controls. To examine the effects of DOTAP:Chol or DOPC protocells containing pDNA-

IL-10/GFP cargo on cellular viability, flow cytometry was used by applying Ethidium-

Homodimer-1 (EH-1) to stain the cells. EH-1 enters the cell nucleus and intercolates with 

DNA only in dead or dying cells in which the membrane is breaking down. Thus, EH-1 

does not interact with DNA of live cells with intact membranes. Excitation of EH-1 at 

528 nm leads to 617 nm emission (red fluorescence), which is detected by the flow 

cytometer, and each dead cell is counted. The percentage of dead cells is quantified per 

10,000 cells. The percent of live cells was determined (Figure 2.2). Cells left untreated 

served as an index of basal cell viability, which was observed to be > 98%. To ensure 

dead cell quantification, a separate group of cells were treated with 0.1% saponin, and 

only ~3% remained viable. Protocells formulated with either DOTAP:Chol or DOPC 

resulted in < 5% dose-related decrease in cell viability compared to live controls and 

remained stable even at the highest dose of 500 µg/ml. Thus, cells exposed to 

DOTAP:Chol or DOPC protocells remained healthy, suggesting that DOTAP:Chol or 

DOPC protocells lack overt toxicity in vivo. 
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Figure 2.2 Cells remain highly viable following application of DOTAP:Chol and DOPC protocells 
containing pDNA-IL-10-GFP. 

Cells were incubated for 24 hours with DOTAP:Chol or DOPC protocells loaded with pDNA-IL-10-GFP 

or blank control protocells (no pDNA) at varying concentrations across a 50-fold dose range, 500, 50, 25 

and 10 ug/ml. Dead cells were identified by flow cytometry after staining with ethidium-homodimer-1. 

Results are representative of the percentage of gated cells (average of 4 experiments) compared to untreated 

control cells, **p < 0.01; ***p < 0.0001. (Experiment, statistical analysis and graphics by Ellen Dengler) 

2.3.3 Protocells are well tolerated in an animal model.  

Light touch sensory threshold assessment is highly sensitive to subtle 

perturbations in spinal cord homeostasis. Increases in local spinal immune signaling 

molecules lead to spinal sensitization of pain-related projection neurons resulting in a 

hypersensitivity to light touch stimuli applied to the body area innervated by axons whose 

central terminals also project to the affected spinal segment.102, 103 Thus, assessing 

alterations in light touch thresholds from basal values following central nervous system 
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protocell application can be a timely, robust and reliable in vivo examination of protocell 

early-phase toxicity within the local spinal cord compartment. Baseline (BL) sensory 

threshold values for both hindpaws were recorded prior to an i.t. injection of 

DOTAP:Chol or DOPC formulated protocells loaded with a FAM-18 bp single stranded 

DNA oligomer. Thresholds close to 10 grams of stimulus intensity were observed in all 

rats prior to treatment (Figure 2.3). Following an i.t. injection of 0.01 or 1 mg 

DOTAP:Chol formulated protocells, a small increase in light touch sensitivity of the left 

paw was observed at 30 min and rapidly recovered to basal levels and remained stable 

during a 72 hr observation period (Figure 2.3, A, B). Normal insignificant basal 

variations in paw thresholds were observed in 0.01 mg protocell and control, vehicle 

injected rats. Conversely, both 0.01 and 1 mg DOPC formulated protocells induced a 

small increase in light touch sensitivity (values dropped to <1.0 g stimulus intensity) in 

both the left and right hindpaws at 2 hrs, that mostly recovered to BL values during the 

remaining 72 hr observation period (Figure 2.3, C, D). The transient 2-hr increase in 

light touch sensitivity following DOPC formulated protocells was unexpected given 

reports show that in vitro, DOPC toxicity is virtually absent. However, in vivo subtle 

changes in the local spinal milieu may occur to a greater extent that alters early-phase 

toxicity and corresponding neuronal processing of normal sensory stimuli. Nevertheless, 

normal body weight gain was observed in all rats throughout an 8 week observation 

period during which time, animals remained active and well-groomed (Figure 2.3, E). 

Taken together, these data support that i.t. administration of DOTAP:Chol, lack 

alterations from normal sensory processing and both DOTAP:Chol and DOPC 

formulated protocells are well-tolerated in the peri-spinal region of rats. 
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Figure 2.3 In vivo subtle differences in biocompatibility are revealed between DOTAP:Chol and 
DOPC protocells. 

Baseline threshold responses of both hindpaws (left and right) between animal groups were similar; at 10 g 

(right y-axis) (F(4, 14)= 0.3721; p > 0.05). (A, B) Following i.t. injection with either 1 or 0.01 mg of 

DOTAP:Chol or (C, D) DOPC protocells, threshold responses remained unchanged throughout the 

timecourse (0.5, 1, 2, 3, 24, 48 and 72 hrs) suggesting no spinal inflammation. (C, D) For DOPC - treated 

animals, while a decrease in thresholds was not observed across the majority of the timecourse left- F(24, 60)= 

1.88, p > 0.05; right- F(24, 60)= 1.01 p > 0.05), there was a small but significant decrease at 2 hours in both 

hindpaws (p < 0.05 left and right), indicating a subtle and transient spinal cord inflammation resulting in 

decreased sensory thresholds . All animals exhibited normal feeding, grooming and exploratory behavior 
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throughout the 8-week observation. (E) Body weight gain remains normal following i.t. injection with 

DOTAP:Chol or DOPC protocells. At BL, there was no significant difference in body weight between 

untreated (open triangles) and treated animals that received i.t. DOTAP:Chol (2 wks, solid circles; 4 wks, 

solid diamonds; 8 wks, solid squares) or DOPC protocells (2 wks, open circles; 4 wks, open diamonds; 8 

wks, open squares)(F(6, 14)= 2.837, p = 0.0506), followed by a normal gain in body weight. This normal gain 

in body weight between control animals and those receiving protocells by i.t. injection remained consistent 

over time in all groups of animals (n = 3 per group). (Behavioral testing, statistical analysis and graphics by 

Ellen Dengler) 

2.3.4 Intrathecal (.i.t) DNA delivered by DOTAP:Chol or DOPC protocells remains 

closely associated with meninges.  

Non-coding 18 bp oligonucleotide DNA labeled with the fluorophore, FAM 

(Ex/Em 492/517 nm; green) delivered by either DOTAP:Chol (Figure A.13 A) or DOPC 

formulated protocells remained closely associated with the cells of the meningeal layer in 

the spinal cord, but did not penetrate tissue parenchyma. A representative spinal tissue 

section near the i.t. injection site, revealed DOTAP:Chol protocells containing FAM-

tagged DNA (green) in/adjacent to the meningeal layer (Figure 2.4, A, B, D), with 

cellular nuclei counter-stained with the nuclear specific flurophore, DAPI. Glial cell 

astrocyte processes and endfeet (astocytes stained for glial fibrillary acidic protein, 

GFAP; red) are typically present at the neural-pial meningeal interface, which are capable 

of taking up extracellular material. Yet, no co-localization of FAM-tagged DNA protocell 

cargo within astrocytes was observed (Figure 2.4, A, white arrow). However, immune-

relevant macrophage and microglia that normally reside in meninges and at the neural-

pial interface are highly efficient phagocytic cells. Indeed, FAM-tagged DNA containing 

protocells robustly co-localized with macrophages/microglia (stained for CD11b marker; 

red) in the meningeal peri-spinal region. Co-localization appears yellow (Figure 2.4, B, 
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white arrow). While microglia are present (red) in the deeper spinal parenchyma, FAM-

tagged DNA is absent (Figure 2.4, B). 

 Caspase-3 is a well-characterized enzyme that plays a critical role in the late 

stages of programmed cell death (apoptosis). Immunohistochemical detection of Caspase-

3 (red) was entirely absent in the spinal cords and brains of rats where DOTAP:Chol 

formulated protocells were present. A representative image of protocells containing 

FAM-tagged DNA (green) in the meninges reveals no positive Caspase-3 

immunoreactivity at 8 wks following i.t. injection (Figure 2.4, C). Confocal examination 

of meningeal macrophage/microglial cells immunostained for expression of ED1, a 

marker for activated immune cells with a proinflammatory phenotype, revealed 

DOTAP:Chol protocells containing FAM-tagged DNA were closely associated with the 

DAPI-stained peri-nuclear area of ED1 expressing cells (Figure 2.4, D, white arrow). 



 60 

 

Figure 2.4 Histological examination of DOTAP:Chol protocells with DNA cargo. 

 Fluorescent histological examination of spinal cord sections near the lumbar spinal cord injection site 

(segments L3-4) 8 weeks after i.t. injection of DOTAP:Chol protocells loaded with FAM-tagged 18 base 

pair (18bp) DNA oligomer. (A) Protocells containing DNA cargo (green; white arrow) are not colocalized 

with astroglia stained for glial fibrillary acidic protein, GFAP (red). (B) However, protocells are 

colocalized in the pial meninges with activated microglia/macrophage stained for OX2 (red). 

Colocalization of microglia with DNA cargo (green) results is indicated (white arrow). (C) There is no 

evidence of cellular death in the meninges or spinal cord, as indicated by the absence of positive staining 

for the apoptotic marker, activated Caspase 3 (red) while protocell-containing DNA cargo (green; white 

arrow) is clearly present. (D) Confocal image identifying DOTAP:Chol protocell cargo of FAM-tagged 18 

bp DNA (green) in the peri-nuclear area (cell nuclei stained with DAPI; blue) of meningeal macrophage 

cells stained for the classic activation marker, EDI (red; white arrow) in the dorsal spinal cord. Overlap 

reveals yellow cytoplasmic and peri-nuclear staining. All images are at 20X; scale bar = 40 µm. (A-D- IHC 

and fluorescent imaging by Ellen Dengler; D- confocal imaging by Tamara Roitbach) 
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2.3.5 In vivo biodistribution of protocells.  

Eight weeks following i.t. injection, protocells remain in the CNS and are not 

found in peripheral tissue. As the animals appeared to experience no adverse effects from 

DOTAP:Chol or DOPC formulated protocells, even at the highest dose, the 

biodistribution of protocells within and outside of the central nervous system (CNS) was 

quantified. In these experiments, rats received an i.t. injection of DOTAP:Chol or DOPC 

protocells loaded with FAM (1 µg FAM 18bp DNA oligomer/1 mg protocells), and 

tissues were harvested 2, 4, and 8 weeks later. Blood, the immune organs (cervical lymph 

nodes, thymus and spleen), the filtering organs (kidney and liver), as well as sections 

from the brain, cervical, thoracic and lumbar spinal cord were examined to quantify 

protocells by spectral microscopy analysis that allows computerized de-convolution and 

quantification of the true FAM-signal from background autofluorescence (Figure 2.5, 

and Table 1).  

The blood was negative for FAM detection (data not shown). The highest amount 

of FAM levels at 72 hr post DOPTAP:Chol or DOPC protocell injection were observed at 

the i.t. injection site in the lumbar spinal cord, which significantly decreased by 8 wks 

(Figure 2.5, B). Only DOPC formulated protocells containing FAM-tagged DNA 

accumulated in the brain by 8 weeks (Figure 2.5, A). Thus, differences in the 

biodistribution between the two protocell lipid formulations were observed. Also at 8 

weeks, the DOTAP:Chol protocell FAM signal had diminished and was only significant 

locally, near the injection site, suggesting that DOTAP:Chol formulated protocells may 
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be optimal to maintain localized drug effects, while leaving the brain and the body 

primarily undisturbed.  

Outside the central nervous system, FAM signal was negligible including in the 

liver and kidney. At 72 hours, a minor but significant amount of FAM was detected in the 

thymus following treatment of both DOTAP:Chol and DOPC formulated protocells. The 

data represented in Figure 2.5, A and B are included in Table 1 to provide relative 

comparisons in FAM detection levels with respect to FAM levels observed in other tissue 

regions that in most cases, appear negligible.  
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Figure 2.5 The spread to brain following i.t. protocell injection is determined by the lipid bilayer 
formulation. 

 Graphs are representative of the key data in the corresponding Table I. Fluorescent spectral signal from 

FAM-tagged 18bp DNA cargo in cryo-sliced tissue sections (n = 4) of DOTAP:Chol or DOPC protocell i.t. 

treated animals is compared to the spectra of background autofluorescence from naïve animals. (A) In the 

brain, after 72 hours, there was no significant signal from FAM-tagged DNA delivered by either 

DOTAP:Chol or DOPC protocells. By 8 weeks, background signal in DOTAP:Chol protocell treated tissue 
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was comparable to that of auto-fluorescence (p > 0.05), while the signal from FAM-tagged DNA delivered 

by DOPC protocells had significantly increased compared to autofluorescence (F(2, 6) = 8.60; p = 0.0173. 

(B) At the lumbar spinal cord protocell delivery site, FAM-tagged DNA delivered by both DOPC and 

DOTAP:Chol prototocells was clearly present at both 72 hours and 8 weeks when levels of FAM signal 

analysis was compared to levels from autofluorescence (F(2, 6) = 6.18; p = 0.0348), with the signal at 72 

hours significantly higher than that at 8 weeks (F(1, 6 )= 10.71; p = 0.0170). (Table 1) Values (1 X E-04) of 

each anatomical region are an average of computer-generated spectral analyses taken from 4 separate 

images of four 10 µm sliced tissue sections. Yellow boxes indicate those areas in which the signal from 

FAM-tagged DNA cargo reached levels that were significantly higher than control autofluorescence for 

that tissue. Asterisks indicate the amount of significance. Very low levels of DOTAP:Chol protocells were 

detected in the lymph organs, such as thymus and spleen, while DOPC remained in the CNS. *p < 0.05; 

**p < 0.01; ***p < 0.0001. (Tissue slicing by Ellen Dengler with assistance from Leisha Armijo; Spectral 

microscopy and computerized analysis by Ellen Dengler with assistance from Kate Gentry)  

2.3.6 Protocell IL-10 gene delivery leads to robust transgene expression.  

Following a 24 hr incubation with DOTAP:Chol formulated protocells containing 

pDNA-IL-10/GFP, robust GFP protein was observed in ~40% of HEK cells (Figure 2.6, 

A). Transfection of HEK cells with a bicistronic plasmid containing the gene for IL-10 

and GFP successfully resulted in expression of both proteins, GFP and IL-10, indicating 

functional IL-10 transgene expression in GFP expressing HEK cells (Figure 2.6, A; 

insert). Protocells formulated with either DOTAP:Chol or DOPC and loaded with 

plasmid DNA encoding the IL-10 gene alone (pDNA-IL-10) or in combination with the 

reporter gene, pDNA-IL-10/GFP, were incubated with HEK cells to examine transgene 

IL-10 protein expression. It is important to note that HEK cells do not produce IL-10 

protein thus providing a reliable assay to quantify transgene-specific IL-10 gene 

activation. The cell culture supernatants were examined for IL-10 protein using ELISA 

assay procedures (Figure 2.6, B,C). Surprisingly, only those protocells formulated with 

DOTAP:Chol containing pDNA-IL-10 or pDNA-IL-10/GFP resulted in a robust dose-
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dependent increase in protein IL-10 levels compared to untreated controls, with the 

greatest amount of protein (~900 pg/ml) produced following incubation with 500 µg/ml 

DOTAP:Chol formulated protocells. In contrast, IL-10 protein from transgene IL-10 

delivered by DOPC protocells containing either pDNA-IL-10 or pDNA-IL-10-GFP was 

significantly lower and reached maximal values of no greater than 100 pg/ml. 

 

Figure 2.6 DOTAP:Chol protocells improve cellular transfection of pDNA-IL10 transgene.  

In vitro transfection of HEK cells with a bicistronic plasmid containing the genes for both IL-10 and GFP 

employing an internal ribosomal entry site results in expression of GFP (A; green). Staining with antibody 
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for IL-10 (red) shows colocalization (yellow) in a GFP-positive HEK cell (green), indicating functional 

bicistronic transgene expression (A; insert). pDNA IL-10-GFP (B) or pDNA-IL-10 (C) delivered by 

DOTAP:Chol protocells results in functional transgene expression as measured by IL-10 protein release in 

culture supernatants following a 24 hour incubation. Results are the average of 4 representative 

experiments (F(1, 4) = 24.85; ***p < 0.0001, **p < 0.01). Scale bar = 10 µm in both Figure 6A and insert. 

(A- Transfection experiment and IHC by Ellen Dengler; B-ELISA by Ellen Dengler with assistance from 

Brandi Bowman) 

2.3.7 Protocells are functionally effective as gene delivery platforms.  

Given that IL-10 transgene delivered by DOTAP:Chol formulated protocells 

yielded robust transgene-derived IL-10 protein levels in cell culture (Figure 2.6) and 

DOTAP:Chol protocells appeared to show minimal toxicity in vivo (Figure 2.3), we next 

asked whether DOTAP:Chol formulated protocells containing pDNA-IL-10 (Figure 

A.13 C) could act therapeutically by delivering sufficient amounts of the IL-10 transgene 

to suppress light touch hypersensitivity (allodynia), a neuropathic condition mediated by 

sensitization of spinal neurons that communicate to brain areas about pain-related stimuli. 

Allodynia occurs when non-painful stimuli are coded as painful. Following BL 

assessment of withdrawal behavior to light touch tactile stimuli, rats underwent either 

sham surgery or CCI of the sciatic nerve. Clear development of allodynia was observed 3 

and 10 days later (Figure 2.7, A, B). On Day 10, rats received an i.t. injection of 

DOTAP:Chol formulated protocells containing pDNA-IL-10, pDNA-control (non-coding 

DNA), or equivolume vehicle (20 µl). While sham rats remained stably non-allodynic, a 

rapid and complete reversal from neuropathic allodynia was observed in IL-10 treated 

rats. Neuropathic rats injected with i.t. control pDNA or vehicle remained stably 

allodynic throughout a 26-day timecourse. It is important to note that a prior report 

demonstrated an equivalent dose of i.t. naked pDNA-IL-10 lacks efficacy to reverse 
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allodynia.14 Taken together, these data show that pDNA-IL-10 delivered to the peri-

spinal regions by DOTAP:Chol protocells was able to reverse allodynia to BL levels for 

almost 2 wks. These data support that the production of IL-10 protein from pDNA-IL-10 

transgene loaded on protocells is functionally and physiologically effective.in reversing 

pain thresholds. 

Materials composing protocells do not lead to nitric oxide (NO) production. In 

order to assess subtle and transient cell-stress responses to the identical DOTAP:Chol 

protocell formulation examined for in vivo spinal gene therapy, cultured macrophage 

cells (Raw 264.7) were examined, given the observed in vivo spinal co-localization of 

DOTAP:Chol protocells with macrophages/microglial cells, as described above in figure 

4. Macrophages were assayed for NO following a 2-hour incubation with whole 

protocells or the component silica core and lipid (DOTAP:Chol) (Figure 2.7). 

Lipspolysaccharide (LPS) was included, as it is known to produce robust enhancement of 

NO in this cell line.115-118 As expected, cells incubated with LPS for 10 minutes produced 

increased levels of NO compared to untreated controls. However, similar basal NO levels 

were observed between untreated controls, whole protocells, silica cores and 

DOTAP:Chol lipid, suggesting that these materials do not generate transient or even 

subtle cell stress events. 
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Figure 2.7 Intrathecal delivery of protocells loaded with pDNA-IL-10 causes therapeutic reversal of 
allodynia. 

(A and B) At pre-treatment baseline (BL) values, no significant differences were observed (ipsilateral and 

contralateral; p > 0.05). Following BL assessment, animals underwent CCI of the left sciatic nerve, and 

threshold values were reassessed 3 and 10 days later. Robust allodynia was observed compared to sham-

treated controls (ipsilateral- F(8, 36) = 4.94; p < 0.0004; contralateral- F(8, 36) = 19.89; p < 0.0001). On day 10 

after CCI, rats then received an i.t. injection with DOTAP:Chol/ pDNA-IL-10 protocells or control 

DOTAP:Chol protocells without DNA. A significant bilateral reversal of allodynia beginning on day 12 

after CCI (day 2 after i.t. injection), and continuing through day 22 was observed (overall treatment effect, 

ipsilateral- F(4, 108) = 44.91; p < 0.0001; contralateral- F(4, 108) = 85.09; p < 0.0001). Each CCI operated group 

(closed symbols) received an i.t injection of DOTAP:Chol protocells loaded with pDNA-IL-10 (squares; n 

= 7) or a non-coding DNA (triangles; n = 5) (10 µg pDNA in 1mg protocells in 20 µl PBS) or PBS vehicle 

(circles; n = 3) (20 µl). Each sham-operated group (open symbols) received an i.t. injection of non- coding 

DNA (triangles; n = 5) (10 µg pDNA in 1 mg protocells in 20 µl PBS) or PBS vehicle (circles; n = 3) 

(20ul). Black arrow indicates i.t. injection; *p < 0.05; **p < 0.01; ***p < 0.0001. Nitric oxide 

concentration was measured in cultured Raw 264.7 cells (C) in LPS (black bar) and non LPS-stimulated 

cells (white bar) and those treated with whole protocells or constituents of protocells; silica core (500 µg) 

or Dotap:Chol lipid (20 µl)(hatched bars); All three treatments resulted in significantly less NO production 

than the LPS stimulated positive control (F4,14 = 321.8; p < 0.0001). (A, B – Behavioral testing by Ellen 

statistical analysis by and graphics by Ellen Dengler; C- Experiment run by Audra Kerwin; statistical 

analysis and graphics by Ellen Dengler) 

2.4 Discussion 

Our results demonstrate that mesoporous silica nanoparticle (MSN) cores with 

their surface fused to either DOTAP:Chol or DOPC formulated liposomes (protocells) 
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differentially release cargo (Dextran Rhodamine; a negatively charged fluorophore) when 

exposed to a wide range of pH values, with both formulations resulting in high cellular-

viability values (>90%) following a 50-fold dose range exposure (Figure 2.1, Figure 

2.2). Additionally, peri-spinal application (subarachnoid, intrathecal; i.t.) of either 

DOTAP:Chol protocells or DOPC protocells in separate groups of rats resulted in 

different toxicity and biodistribution profiles. Subtle but significant differences in 

hindpaw sensory threshold values were generally lower in DOPC protocell-treated rats at 

3 hrs compared to thresholds of DOTAP:Chol protocell treated rats (Figure 2.3, A-D). 

Importantly, assessment for threshold changes in light mechanical touch from baseline is 

a surrogate indicator for physiological perturbations involving early-phase toxicity or 

spinal cord inflammation104 that can go undetected by overt observations for general 

health measures such as ambulatory function and body weight gain. Indeed, an 8-wk 

observation period for body weight gain revealed no differences between i.t. 

DOTAP:Chol protocell and DOPC protocell-treated animals (Figure 2.3, E). Spinal 

immunohistochemical examination of DOTAP:Chol protocells containing DNA revealed 

clear co-localization with macrophage/microglial cells at the spinal-meningeal interface 

(Figure 2.4, A, B, D), with a complete lack of cell death, as indicated by the absence of 

immunoreactivity for the late phase necessary apoptotic enzyme, caspase-3 (Figure 2.4, 

C). These finding support that DOTAP:Chol protocells offer a significant degree of 

biocompatibility. However, clear differences were observed between the in vivo 

biodistribution of DOTAP:Chol protocells and DOPC protocells. While both 

DOTAP:Chol and DOPC formulated protocells surrounding the spinal cord injection site 

were identified for as long as 8 wks following administration, only DOPC protocells 
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revealed an increased spread to brain observed at 8 wks (Figure 2.5, A and Table 1). 

Furthermore, IL-10 transgene expression in vitro was significantly greater following 

cellular incubation with DOTAP:Chol-protocells containing plasmid DNA encoding IL-

10 (pDNA-IL-10) than cells incubated with DOPC-protocells-pDNA-IL-10 (Figure 2.6). 

Based on the overall profile of DOTAP:Chol protocells in their biocompatibility, 

localized biodistribution and greater transgene expression, DOTAP:Chol protocells were 

loaded with pDNA-IL-10 to examine their therapeutic potential as a novel non-viral gene 

transfer vector delivered to the spinal cord to treat peripheral neuropathic pain. Compared 

to various control-treated rats, i.t. injections of DOTAP:Chol pDNA-IL-10 protocells 

resulted in robust bilateral reversal of allodynia for as long as 12 days (Figure 2.7, A, B). 

Importantly, inflammatory nitric oxide, used as a sensitive and specific factor indicative 

of cell stress, was virtually absent in macrophages exposed to the composite 

DOTAP:Chol protocell formulation or its constitutive components (Figure 2.7, C). 

Our data show that protocells are capable of prolonged drug delivery, as 

DOTAP:Chol-protocells bilayers retain ~60% of negatively charged cargo at pH 7.4, 

which mimics CSF as well as extracellular pH, during a 1 week timeframe. Importantly, 

protocells at lower pH values release 25-50% of cargo within a 72 hr window. 

Importantly, a substantial amount of protocell cargo content remains by 1 week (Figure 

2.1, D, E), supporting the possibility that enduring cargo release for many weeks can be 

achieved resulting in long-duration therapeutic transgene efficacy. Future studies will 

determine whether trafficking to late lysosomes containing ~3-4 pH values results in a 

significant amount of cargo release as well as enduring efficacy. While the mechanism of 

protocell escape from lysosomes remains unknown, the general pattern of pH-dependent 
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cargo release may support an approach that optimizes cargo delivery to the intracellular 

compartment. Of further note is the stability of cargo-associated protocells formulated 

with either DOTAP:Chol or DOPC at pH 6, suggesting that early endosomal organelles 

(typically near pH 6) stabilize protocell cargo until subsequent trafficking to lysosomes. 

Confocal microscopy shown in the current report demonstrates that protocell cargo is 

indeed present within and adjacent to cellular nuclei of macrophages in the spinal 

meninges surrounding the injection site. These observations suggest that while protocells 

do not necessarily need to enter the nucleus for transgene host cell gene activation, 

nuclear localization is possible.  

While MSNs have been widely studied and are known for in vitro 

biocompatibility, high cargo capacity, tunable pore diameters and surface chemistries 114, 

119-124, this report is the first in vivo demonstration of protocell constructs as being non-

toxic and functionally capable as non-viral spinal gene therapy vectors. The therapeutic 

application of protocells is highly beneficial for several critical reasons. First, a low in 

vitro toxicological effect by the components of protocells is observed (Figure 2.7, C), as 

our data show unaltered levels of inducible nitric oxide, a factor that is rapidly produced 

following cell stress and inflammation known to mediate the induction of reactive oxygen 

species further contributing to cell stress.125, 126 The current data also reveal a lack of in 

vivo toxicological effects following spinal protocell application (Figure 2.3, A-D), as 

spinally-mediated sensory hindpaw response-thresholds remained unchanged from 

baseline, a physiological ‘read-out’ of healthy conditions. Further, we demonstrate that 

spinal tissue immunohistochemical examination indicated the complete absence of 

activated Caspase-3 (Figure 2.4 C), a critical enzyme that mediates programmed cell 
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death.127 Second, these protocells offer simpler manufacturing methods aimed at 

controlling cargo displacement compared to more sophisticated methods that employ 

additional organic molecules used for ‘gating’ silica pores.128 Third, a high degree of 

flexibility to modify silica surface chemistry and pore size to tailor adsorption of specific 

cargo129 is available. Collectively, these properties of protocells make them attractive 

platforms for non-viral drug or gene delivery using a wide range of formulations. In the 

current study, this first-generation protocell supporting a DOTAP:Chol lipid bilayer 

appears to be functionally effective as spinal gene delivery vehicles for pain-related 

therapeutic purposes. 

The majority of worldwide clinical trials using non-viral gene delivery techniques 

currently represents ~27% of the total gene therapy clinical trials,130 with these trials 

mostly applying naked plasmid DNA, and none aimed at neuropathic pain control. 

However, the examination of gene therapy applications for neuropathic pain in animal 

models has significantly increased during the past dozen years, with candidate gene 

products intended to disrupt pain-associated biochemical changes, or themselves, act as 

analgesics.131 These trends point to the extraordinary need for new approaches toward 

developing novel pain therapeutics, as currently available drugs are minimally effective 

for pathological pain. Thus, the emerging area of CNS gene therapeutics for pain control 

is rapidly growing.  

Neuropathic pain results from pathology in the nervous system and arises from 

aberrant signals in sensitized injured axons in the peripheral and/or central nervous 

system.132 The anti-inflammatory cytokine, IL-10, leads to exceptionally robust 
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suppression of several pain-related conditions including allodynia in various animal 

models.133 Allodynia, as assessed in this study, is a pathological sensory condition 

whereby non-noxious stimuli such as mechanical light touch to the skin are processed as 

painful.134 and spinal IL-10 gene therapy results in prolonged suppression of chronic 

allodynia.97 Indeed, non-viral naked plasmid DNA or polymer-encapsulated gene therapy 

to control neuropathic pain has been successfully demonstrated in animal models of 

neuropathic pain.73,79,135 Interestingly, these non-viral approaches are thought to harness 

phagocytic innate immune cells that are present at low levels in the peri-spinal meninges 

and subarachnoid space,97 as an increase in phagocytic macrophages accumulate 

surrounding the intrathecal lumbar spinal injection site. However, the transgene dose, 

release rate and cellular targets are constrained by the method of gene delivery used in 

these prior studies. Conversely, increased transgene dose (cargo retention) and greater 

flexibility in DNA release rate and cellular targeting can be achieved via protocells as 

delivery platforms. 

The prior established efficacy of IL-10 for pain control allows comparisons with 

novel gene delivery approaches, like protocells, that result in therapeutic pain-

suppression, and enables one to identify new and improved gene and drug carrier 

platforms with promising clinical applications. Our data demonstrate that this first-

generation DOTAP:Chol protocell formulation is a highly feasible carrier platform for 

spinal gene therapy. It is important to note that developing next-generation protocell 

platforms are aimed at delivering cargo that act to stimulate transgene uptake; a multi-

therapy approach, and may be superior to existing approaches. 
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2.5 Conclusions 

This work characterizes the in vitro and in vivo toxicological profile of liposomes 

fused on MSNs, and examines their use as gene therapeutic vectors delivered to the 

spinal cord. These liposome-supported MSN constructs are referred to as protocells, 

which act to retain and protect DNA cargo used in these studies. The advantage of 

applying protocells as cargo delivery systems (drug and genes) lies not only in their 

potential for exceptional cargo capacity, cell-specific targeting and tunable release rates, 

but also, as demonstrated in this report, in their high and enduring biocompatibility 

within the CNS. As non-viral vectors, protocells allow transgenes of interest to remain 

physiologically functional. Most intriguing is the potential application of this approach to 

other CNS diseases.136, 137 The data in this report demonstrate that protocells loaded with 

the IL-10 transgene and delivered peri-spinally produce robust pain suppression 

supporting prior reports that spinal IL-10 gene therapy leads to a reduction of pain.68,72,73, 

98,138 Thus, protocells offer a potentially new drug delivery vessel to the CNS with 

intrinsic flexibility to tailor drug therapy. 
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Abstract 

Non-viral naked plasmid DNA gene therapy encoding the anti-inflammatory 

cytokine, interleukin-10 (pDNA-IL-10), results in therapeutic efficacy when delivered to 

the peri-spinal subarachnoid region (intrathecal; i.t.) to suppress chronic neuropathic pain 

in animal models. However, two sequential i.t. naked pDNA injections must occur within 

a discrete 5-72 hr period, defining a time of local immune cell sensitization for improved 

transgene uptake and prolonged pain suppression assessed by decreases in light touch 

sensitivity known as allodynia. Utilizing the anti-inflammatory M2-polarizing properties 

of the synthetic glucocorticoid, dexamethasone, or the hexose sugar, D-mannose, to 

prime local peri-spinal immune cells, we examined improvement of transgene efficacy 

with reduced naked pDNA-IL-10 doses previously determined ineffective when delivered 

without a priming pre-treatment. Compared to dexamethasone, i.t. mannose priming 

significantly and dose-dependently prolonged pDNA-IL-10 pain suppressive effects, 

reduced spinal IL-1β and enhanced spinal and dorsal root ganglia IL-10 

immunoreactivity. Macrophages exposed to D-mannose revealed reduced 

proinflammatory tumor necrosis factor-α, IL-1β, and nitric oxide, and increased 

endogenous and transgene-derived IL-10 protein production. A single co-injection of 

mannose with a 25-fold lower pDNA-IL-10 dose produced prolonged pain suppression in 

neuropathic rats, supporting this novel approach of tuning spinal immune cells toward an 

activated M2 phenotype for improved non-viral gene therapy. 

Key Words: M2 polarized, cytokine, sciatic nerve, gene therapy, intrathecal injection, 
spinal, allodynia, rat 
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3.1 Introduction 

Existing drugs, which primarily target neurons, partially reduce pain (~25-40%) 

in less than half of the 7-8% of patients suffering from chronic neuropathic pain in the 

US,139, 140 which underscores the need to develop new therapeutic approaches to treat 

pathological pain. Modern views of pain processing are emerging which include critical 

roles of factors released from non-neuronal cells in the central nervous system (CNS), 

like glial cells,141, 142 and glia in the dorsal root ganglia (DRG) that house pain-related 

neurons.143, 144 Glial proinflammatory cytokines like interleukin-1β (IL-1β ) and tumor 

necrosis factor-alpha (TNF-α), and inducible factors such as calcium-independent nitric 

oxide (NO) are characterized to mediate the initiation and maintenance of experimental 

neuropathic pain. Leukocytes (e.g. macrophages, dendritic cells, T cells), responding to 

glial cytokines and NO, accumulate in DRG sites as well as peri-spinal subarachnoid 

regions immediately adjacent to spinal pain transmission neurons during pain 

neuropathies produced by remote, localized peripheral nerve lesions,145, 48, 146-150 

suggesting that leukocytes may further contribute to neuropathic pain. Leukocyte-derived 

IL-1β, TNF-α and other immune-related signaling factors in peri-spinal subarachnoid 

regions can create continuous feed-forward cytokine production and activity. Notably, 

accumulation of leukocytes into these sites concomitant with neuropathic pain is 

generated in the absence of infection. Together, the actions of spinal and DRG glia, as 

well as local leukocytes, enhance signaling processes that mediate neuropathic pain in 

animal models.  
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Because IL-1β, TNF-α and NO are so powerful, leukocytes and glial cells have 

evolved the means to create negative feedback suppression of their activity. This is 

achieved by mechanisms that include the production of anti-inflammatory cytokines, of 

which interleukin-10 (IL-10) is one of the most potent. IL-10 can inhibit a variety of 

cytokines including IL-1β and TNF-α by preventing intracellular kinase activation 

pathways, and preventing IL-1β and TNF-α transcription, translation, post-translational 

processing and protein release.151, 152 Additionally, IL-10 is both a natural product of glia 

(astrocytes and microglia)153 and leukocytes, such as macrophages and dendritic cells, 

which express IL-10 receptors.62 Importantly, adult spinal cord neurons do not produce 

IL-10 and do not express IL-10 receptors, even under neuropathic conditions.154, 155 Prior 

reports demonstrate that IL-10 administration is an effective strategy to produce pain 

relief by blunting glial mediators of neuropathic pain signaling.156, 97, 98,157,158 Thus, the 

application of IL-10 is a therapeutic intervention of pathological cytokine and NO-

mediated pain signaling, without exerting direct actions on neurons. 

Gene therapy has received some recognition as a tool to target glia for pain 

control.131, 159, 160 While gene transfer using non-viral naked plasmid DNA (pDNA) is the 

least effective method to transform host cells with therapeutic genes of interest,161 our 

prior work demonstrates that utilizing pDNA encoding the IL-10 transgene (pDNA-IL-

10) delivered to the peri-spinal subarachnoid (intrathecal; i.t.) region produces robust and 

enduring pain reversal in animal models.68, 97 While a clearly defined mechanism by 

which spinal cord non-viral pDNA gains access to host cell machinery for transgene 

expression is poorly understood, one strong possibility is that gene transfection can result 

from non-specific phagocytosis by macrophages/dendritic cells.80 Although virtually 
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every cell type is capable of phagocytosis, macrophages and dendritic cells are 

specialized immune phagocytic cells that reside within healthy and intact peri-spinal 

meninges.78 Additionally, spinal cord microglia and astrocytes are ascribed as highly 

efficient phagocytic cells of the CNS.162, 163 Indeed, microglia are “the macrophages of 

the CNS”, and astrocytes maintain a healthy microenvironment by routinely 

clearing/digesting dying cells. Naked pDNA can stimulate macrophages, dendritic, and 

glial cells,71, 164, 165 leading to the rapid production of cytokines that trigger leukocyte 

extravasation from circulation into peri-spinal meninges and the i.t. space.72 The cell-

enriched peri-spinal subarachnoid region may be a key component for augmented 

transgene uptake and expression.  

Different phenotypic profiles of immune and glial cell activation in the meninges 

may be particularly permissive for non-viral, DNA-based gene transfer, which can be a 

unique target for therapeutic long-duration pain control. Activation of phagocytic 

leukocytes (particularly macrophages and dendritic cells) leads to the production and 

release of a family of proinflammatory cytokines including IL-1β and TNF-α that are 

characterized as possessing an M1 polarized/classical activation phenotype (pro-

inflammatory state). More recently, these same cell types have been described with an 

M2 polarized/alternative activation phenotype that is characterized by a distinct set of 

anti-inflammatory cytokines55 including IL-4 and IL-10.54,166-169 One hallmark of 

alternative activation is increased expression the mannose receptor (MR)167 in the 

presence of increased IL-4 and IL-10 protein production with decreased IL-1β, TNF-α 

 and NO production.54, 166-169 Moreover, the synthetic glucocorticoid, dexamethasone, is 

characterized to induce MR expression and induces an M2 polarized/alternative 
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activation phenotype.167 M2 polarized/alternatively activated leukocytes (e.g. 

macrophage/dendritic cells) and glial cells express low levels of pro-inflammatory IL-1β, 

TNF-α, cytokines, and higher levels of IL-10, and reveal enhanced IL-10-mediated 

phagocytic capacity.170 Thus, spinal transgene uptake may be substantially improved by 

targeting M2 polarized/alternatively activated leukocytes, including macrophages present 

in the peri-spinal subarachnoid region, to phagocytose naked pDNA encoding IL-10. 

We recently reported the discovery of a sensitization period between two 

sequential peri-spinal i.t. injections of naked pDNA that exploits immune phagocytes 

(e.g., macrophages) for improved IL-10 transgene uptake (Scheme 1).72,107 The 

components of the naked pDNA used in the first injection does not require the presence 

of the IL-10 transgene. However, the IL-10 transgene must be present in the pDNA used 

for the second injection to result in long-duration pain relief. Thus, the pDNA used for 

the first injection may simply act to stimulate the surrounding local leukocytes and is 

thought to initiate a local cellular response that leads to enhanced uptake of the IL-10 

transgene used for the second injection.72 The sensitization period is discrete within the 

spinal subarachnoid microenvironment, with a 5-72 hour inter-injection interval, as inter-

injection intervals outside of this period fail to produce transgene-derived IL-10 mRNA 

expression, increased IL-10 protein or long-duration pain relief. 68, 72, 73, 171  
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Scheme 1 Illustration depicting the “sensitization period”. 

This scheme describes a discrete window of time or sensitization period, from 5-72 hours following the 

first i.t. injection of pDNA-IL-10 (100 µg), during which the second injection of pDNA-IL-10 (25 µg) must 

be given to generate stable and enduring pain relief. If the second injection is given outside of this time 

interval, pain reversal is dramatically shortened. During the sensitization period, an accumulation of 

leukocytes was found surrounding the i.t. injection site, a large number identified as macrophages.135 A 

possible mechanism underlying improved transgene therapeutic efficacy during this period may be a 

change in the macrophage cytokine profile with a switch from proinflammatory M1/classical activation to 

anti-inflammatory M2/alternative activation resulting in improved phagocytosis of transgene. 

 The goal of the present studies is to sensitize and shift peri-spinal immune 

phagocytes to an M2 polarized/alternative activation phenotype for enhanced pDNA-IL-

10 uptake within the sensitization interval that leads to enduring pain relief. 

Dexamethasone and D-mannose, both previously characterized to strongly induce the 

expression of the M2 polarized/alternative activation phenotype, will be examined as 

factors capable of priming peri-spinal macrophages for improved pDNA-IL-10 transgene 

uptake, as assessed by the efficacy of low-dose transgene i.t. delivery (duration of 

therapeutic pain suppression) and increased IL-10 protein expression in discrete spinal 

and DRG regions critical for pain processing.  
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3.2 Results 

3.2.1 Dexamethasone primes subsequent i.t. pDNA-IL-10 to produce transient and 

minimal behavioral reversal of allodynia 

The synthetic glucocorticoid steroid, dexamethasone (DEX), given as an initial i.t. 

priming injection and followed by an i.t. pDNA-IL-10 (25 µg) injection results in a 

delayed and transient reversal of allodynia produced by chronic constriction injury (CCI) 

of one sciatic nerve. This is a well-characterized and widely used animal model of 

chronic peripheral neuropathic pain that results in clinically relevant neuropathic 

behavioral changes such as allodynia and is assessed by sensitivity to light touch using 

the von Frey test (Figure 3.1). Following establishment of baseline (BL) responses to 

von Frey filaments, animals are treated with either CCI or sham surgery. Compared to 

sham-operated controls that reveal stable threshold responses near BL values, clear 

development of allodynia occurs in CCI-operated rats, as measured 3 and 10 days later. 

Rat hindpaw responses now occur at <1.0 grams of touch stimuli. On day 10, sham and 

CCI animals received 2 sequential i.t. saline injections 3 days apart. Shams remained 

stably non-allodynic hindpaw throughout the 27-day timecourse while neuropathic CCI-

operated rats given similar injections had clear and chronic hindpaw allodynia throughout 

the same period. Those CCI animals given a priming i.t. injection of 62.4 ng DEX, but 

not 6.2 ng, followed 3 days later by an i.t. injection of pDNA-IL-10 (25 µg) experienced 

a delayed onset of partial but short-term reversal of allodynia, lasting only 2 weeks. 

Similar behavioral hindpaw responses were observed contralateral to CCI (Figure 3.1).  
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Figure 3.1 Dexamethasone for improved pDNA-IL-10 uptake does not create robust pain reversal. 

(a and b ) Baseline (BL) hindpaw sensory threshold responses to light mechanical touch were measured by 

the von Frey test with calibrated monofilaments). There were no significant differences observed between 

groups (Ipsilateral, F(3,24) =0.2154; p=0.8846; Contralateral, F(3,24)=0.6930; p=0.5665). Following either 

CCI or sham surgery, behavioral testing continued at the time points indicated on the x-axis. Animals 

receiving CCI surgery developed stable allodynia from day 3 to day 10 compared sham-operated animals 

(day 10: Ipsilateral, F(3, 24) =53.54; p<0.0001; Contralateral, F(3, 24)=71.70; p<0.0001). On day 10 following 

CCI surgery, animals received an i.t. injection of DEX (62.4 ng, n=6 or 6.2 ng, n=6), or equivolume i.t. 

saline (n=7) and sham-operated animals received i.t. equivolume saline (n=6). Three days later, an i.t. 

injection of pDNA-IL-10 (25 µg) or equivolume saline was given. Sham-control animals remained non-

allodynic, while CCI animals given i.t. saline remained allodynic. I.t. pDNA-IL-10 following a priming 

injection of DEX (62.4 ng) revealed a delayed and partial bilateral pain reversal (Ipsilateral, F(3,140) =33.83; 

p<0.0001; Contralateral, F(3,140)=19.7; p<0.0001). Black arrows indicate i.t. injections. (A, B- Behavioral 

testing by Ellen Dengler with assistance from Lauren Alberti and Brandi Bowman) 

3.2.2 D-Mannose primes subsequent i.t. pDNA-IL-10 to produce long-term behavioral 

reversal of allodynia 

An i.t. priming injection of D-mannose dose-dependently and dramatically 

increased the therapeutic efficacy of 25 µg i.t. pDNA-IL-10 given within a 3-day inter-

injection interval (Figure 3.2). Non-neuropathic sham-operated saline injected control-
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treated rats revealed stable, bilateral non-allodynic responses, while CCI-treated rats 

given i.t. saline control injections revealed ongoing bilateral chronic allodynia throughout 

a 91-day timecourse. Strikingly, an i.t. priming injection of D-mannose (50 µg) followed 

three days later by i.t. pDNA-IL-10 (25 µg) produced a complete reversal of allodynia 

similar to BL thresholds that stably persisted for 3 months. Allodynia never returned. 

Also provocative was the observation that a 10-fold lower i.t. priming dose of D-mannose 

(5 µg) followed by i.t. pDNA-IL-10 produced a partial and enduring relief from bilateral 

allodynia. However, when a priming injection of D-mannose (50 µg) was followed by a 

25 fold lower dose of i.t. pDNA-IL-10 (1 µg) there was complete but only transient 

reversal from allodynia of ~11 days (Figure 3.2).  

 

Figure 3.2 The D-Mannose used to prime M2 polarization for improved pDNA-IL-10 uptake reverses 
allodynia greater than 90 days. 

(a and b) No significant differences in BL responses between groups prior to CCI or sham surgery were 

observed (Ipsilateral, F(4,32)=1.009; p=0.4197; Contralateral, F(4,32)=1.147; p=0.3551). Sham operated 

animals (open triangles; n=6) remained non-allodynic throughout the time course. CCI animals (open 

diamonds; n=7) revealed clear allodynia from day 3 to day 10 compared to shams (day 10: Ipsilateral, 
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F(4,32)=32.87; p<0.0001; Contralateral, F(4,32)=37.01; p<0.0001). On day 10, animals received an i.t. 

injection of either D-mannose (50 µg; 5 µg) , or equivolume saline followed three days later by pDNA-IL-

10 (25 µg or 1 µg) or equivolume saline. Following the first priming injection of D-mannose (50 µg; closed 

squares; n=8), a robust reversal was observed, compared to CCI-saline injection (Ipsilateral, F(3, 70)=15.87; 

p=0.0004; Contralateral, F(3, 70)=20.40; p=0.001). Full reversal to BL levels continued for a 3 month period 

beyond the 2nd injection of pDNA IL-10 (25 µg) in those animals given D-mannose (Ipsilateral, F(3, 384) 

=57.46; p<0.0001; Contralateral, F(3, 384) =59.20; p<0.0001). A 2nd injection of a lower dose of pDNA-IL-

10 (1ug: closed triangles; n=5) produced a transient 11-day reversal. Animals pretreated with the lower 

dose of D-Mannose (5 µg) followed by a second injection of pDNA-IL-10 (25 µg) (closed circles, n=7) 

showed partial bilateral reversal for the 3 month time course that was not significant (Ipsilateral, F(3,17)= 

12.71; p=0.0270; Contralateral, F(3, 17)= 14.64; p= 0.002). (A, B- Behavioral testing by Ellen Dengler with 

assistance from Lauren Alberti, Brandi Bowman, Vanessa Garcia and Daniel Moezzi) 

3.2.3 Characterization of D-mannose: short-term reversal of allodynia, M2-polarization, 

and increased IL-10 transgene expression. 

Results illustrated in Figure 3.2 raise the possibility that D-mannose may exert 

enduring pain-suppressive effects in the absence of transgene IL-10. To examine this 

question, we investigated whether a single i.t. injection of D-mannose could sustain 

prolonged pain relief. Following BL threshold assessment, all animals underwent CCI 

surgery, and threshold responses revealed clear bilateral allodynia 3 and 10 days later. On 

day 10, a single i.t. injection of 50, 5, or 0.5 µg D-mannose or saline was delivered. 

Behavioral thresholds revealed robust bilateral reversal from allodynia following the 

highest dose of i.t. D-mannose compared to lower doses or saline (Figure 3.3, a and b).  

To examine whether D-mannose could directly induce an anti-inflammatory 

phenotype, mouse macrophage RAW264.7 cell cultures were used as a cell type 

comparable to macrophages that occur in high populations in high numbers in the peri-

spinal subarachnoid region. A classic proinflammatory response was initiated by 
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Lipopolysaccharide (LPS), which is cell-wall particles from gram-negative bacteria, to 

mimic the local peri-spinal signaling milieu present during chronic peripheral neuropathic 

conditions, namely increased TNF-α, IL-1β and nitric oxide production. These data 

confirm that cells pre-incubated with D-mannose followed by challenge with LPS 

resulted in increased IL-10 protein levels (Figure 3.3, c) with simultaneous ablation of 

IL-1β protein (Figure 3.3, d), and a robust reduction of protein TNF-α (Figure 3.3, e), 

and NO production (Figure 3.3, f). Interleukin-4, an anti-inflammatory cytokine strongly 

associated with an M2 phenotype, was also tested. However, D-mannose at the doses 

tested yielded no reliable IL-4 protein increases (data not shown). Thus, in cultured 

macrophage cells, D-mannose creates a robust reduction in pro-inflammatory markers 

while significantly elevating IL-10 during stimulatory conditions that activate 

inflammatory pathways.  

A possible mechanism for increased pDNA-IL-10 efficacy on pain reversal 

observed in Figure 2 is that D-mannose could increase transgene uptake. To directly 

examine D-mannose’s effects on pDNA-IL-10 uptake, cultured RAW264.7 cells (mouse 

cell line) were incubated with either D-mannose, pDNA-IL-10 (encoding rat IL-10 

protein; 0.5 µg or 5.0 µg), or D-mannose + pDNA-IL-10 (0.5 µg or 5.0 µg). A significant 

increase in rat IL-10 protein levels were measured from supernatants of cells treated with 

D-mannose in combination with pDNA-1L-10 at either 0.5 µg or 5.0 µg (Figure 3.3, g). 

IL-10 protein levels increased with increased dosages of the pDNA-IL-10 transgene only 

in the presence of D-mannose. It is important to note that the ELISA for rat IL-10 does 

not cross-react with mouse IL-10 protein levels, demonstrating that plasmid-derived IL-
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10 protein is robustly expressed when the IL-10 transgene is delivered to RAW264.7 

cells in combination with D-mannose.  
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Figure 3.3 D-Mannose generates short-term reversal of allodynia without pDNA-IL-10. 
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(a and b) No significant BL response differences between groups prior to CCI was observed (Ipsilateral, 

F(3,13) =0.4995; p=0.6910; Contralateral, F(3,13)=0.1761; p=0.9099). All animals underwent CCI surgery and 

revealed clear allodynia by day 10 with no significant differences between groups (F(3,13)=0.1897; 

p=0.9010; Contralateral, F(3,13)=0.2234; p=0.8780). On day 10, animals were given a single i.t. injection of 

D-mannose (50, 5, or .5 µg; closed squares, closed circles, or closed diamonds respectively) or an 

equivolume saline only (n=3-4/group). Saline-treated animals (open diamonds) remained bilaterally 

allodynic throughout the time course. Treatment with D-mannose (50 µg, n=3) resulted in bilateral partial 

reversal from allodynia that gradually returned by day 20 following injection (Ipsilateral, F(3,70)=15.87; 

p<0.0005; Contralateral F(3,70)= 20.40; p=0.0001). Black arrows indicate i.t. injection. (c-f) Cultured Raw 

264.7 mouse macrophage cells were pretreated with D-Mannose (100 mM) followed by a 2 hour incubation 

with a combination of D-Mannose (100 mM) and LPS (10 ng). (c) Compared to control treatment (No 

Tx=no treatment; Mann=D-mannose), LPS-stimulated cells given D-mannose treatment resulted in 

significantly increased IL-10 protein production, (d) almost complete ablation of IL-1β levels (e) 

significantly reduced TNF-α protein levels, and (f) reduced NO production. (g) Cultured Raw 264.7 mouse 

macrophage cells were pretreated with D-Mannose (500 mM) for 5 hours followed by a 24 hour incubation 

with D-mannose with or without pDNA-IL-10, or D-Mannose and pDNA-IL-10 alone. Those cells 

incubated with D-mannose and pDNA-IL-10 showed robust and significantly increased exogenous rat IL-

10 production over controls (F(5,17)=69.3; p<0.001)*p<0.05; **p<0.01; ***p<0.0001 (A, B- Behavioral 

testing by Ellen Dengler with assistance from Lauren Alberti, Vanessa Garcia and Daniel Moezzi; C-G- 

Experiment run by Audra Kerwin with statistical analysis and graphics by Ellen Dengler) 

3.2.4 Intrathecal D-mannose priming followed by i.t pDNA-IL-10 results in increased IL-

10 and decreased IL1β expression in spinal cord and DRG 

The data described above show that D-Mannose (50 µg) followed by pDNA-IL-

10 (25 µg) results in enduring pain reversal. We next examined whether cytokine changes 

critical for neuronal pain processing occurred in regions where active glial and immune 

cells are found. We examined by immunohistochemical detection, IL-10 and IL1 β in 

lumbar and DRG tissue regions from behaviorally verified rats. Following BL 

assessment, behavioral thresholds were reassessed on day 3 and 10 to ensure the presence 

of chronic allodynia in CCI-treated rats. As before, animals received an i.t. injection of 

saline, or D-mannose (50 µg) followed three days later by saline or pDNA-IL-10 (25 µg). 
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Duplicating the results of our prior experiment above, i.t. D-mannose followed 3 days 

later by i.t. pDNA-IL-10 produced full and sustained reversal from allodynia compared to 

non-mannose controls receiving either i.t. saline followed by pDNA-IL-10, or 2 i.t. saline 

injections in CCI-treated rats (Figure 3.4, a and b). Animals were deeply anesthetized on 

Day 29 and spinal cord and DRG tissues were collected to examine potential spinal and 

DRG cytokine changes corresponding to the observed behavioral profile. The anatomical 

regions of the spinal cord analyzed correspond to the terminals of sciatic nerve fibers 

entering the L4-L6 spinal cord from the corresponding DRG. Primary antibodies 

immunoreactive (IR) for IL-10 and IL-1β, were detected using immunoreactive 

Rhodamine-Red fluorophore-conjugated secondary antibodies. Immunofluorescence was 

quantified using computer-assisted spectral analysis software as described in the 

methods, below. 

Analysis of ipsilateral spinal cord IL-10 (Figure 3.4, c), revealed significant 

increases in IL-10 IR in D-mannose-pDNA-IL-10 treated rats compared to non-mannose 

treated controls. Contralateral spinal cord IL-10 IR revealed similarly increased levels 

(data not shown). Representative photomicrographs of the quantified data are shown 

(Figure 3.4, d-f), revealing IL-10 IR occurs primarily in gray matter in the deeper spinal 

laminae. Conversely, fluorescent quantification demonstrates that spinal IL-1β IR is 

significantly reduced in D-mannose primed pDNA-IL-10 injected rats compared non-

mannose treated controls (Figure 3.4, g). As with IL-10, representative 

photomicrographs are shown (Figure 3.4, h-j) that are part of the analyzed data of the 

different treatment groups, and depict a punctate pattern primarily in the white matter of 

the spinal cord. Contralateral IL-1β IR appears similar (data not shown) to that observed 
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in the ipsilateral spinal cord, but failed to reach significance. Unexpectedly, IL-10 IR was 

significantly increased in DRG following D-mannose-pDNA-IL-10 treatment compared 

to non-mannose treated controls (Figure 3.4, k). Representative photomicrographs 

(Figure 3.4, l-n) are shown. Notably, the pattern of IL-10 IR is peri-neuronal. 

Given high variance was observed only in the saline-pDNA-IL-10 group, a 

Grubb’s Z-test172 (as described in Methods) was applied to identify an outlier from the 

group mean, and one rat was omitted from the lumbar and DRG analyses, resulting in 

saline-pDNA-IL-10 data that is representative of 8, and not 12, tissue slices.  
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Figure 3.4 Spinal and DRG pro-and anti-inflammatory markers expression. 

(a and b) Verification of animal behavior prior to tissue collection is represented. There were no differences 

between groups at BL prior to CCI or sham surgery (Ipsilateral, F(5,18) =0.2597; p=0.8999; Contralateral, 

F(5,18)=0.4947; p=0.9398). As before, CCI treated animals revealed clear bilateral allodynia to day 10 

compared to sham controls (Ipsilateral, F(5, 18) = 35.54; p<0.0001; Contralateral, F(5, 18)=35.96; p<0.0001). 

On day 10 following sham or CCI surgery, animals were given an i.t. pretreatment with D-mannose (50, 

µg) or equivolume saline injection followed three days later by i.t. pDNA-IL-10 (25 µg; closed squares; 
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n=7) or equivolume saline (closed circles; n=4). Saline-CCI treated animals (open diamonds; n=3) 

remained bilaterally allodynic throughout the time course compared to sham-D-mannose (open squares; 

n=3) or sham-saline (open circles; n=6) treated animals (Ipsilateral, F(3,9)=28.79; p=0.0001; Contralateral, 

F(3,9)=19.7; p=0.0007). These data replicated our earlier results above, and reveal that i.t. pretreatment with 

D-Mannose (50 µg) followed by pDNA-IL-10 (25 µg) causes a full bilateral reversal of allodynia compared 

to CCI-control groups (Ipsilateral F(4,126)= 30.27; p < 0.0001; Contralateral F(4,126)= 35.75; P< 0.0001). At 

day 29 while rats remained fully reversed from allodynia, spinal cord and associated DRG tissues were 

collected and stained for the anti-inflammatory cytokine, IL-10 or the pro-inflammatory cytokine, IL-1β. 

(c) Animals that received D-mannose (50 µg) on day 1 and pDNA-IL-10 on day 3, revealed significantly 

greater IL-10 immunoreactivity (IR) in the lumbar spinal cord compared to those animals injected with 

saline only or saline followed by pDNA-IL-10 (Ipsilateral F(3, 5)=34.23; p<0.01; Contralateral F(3, 5)=2.714; 

p>0.05). (d,e,f). Representative images used for the data analysis are presented (red=IL-10 IR, blue=cell 

nuclei). (g) Adjacent tissue sections revealed significantly less IL-1β IR in the ipsilateral lumbar spinal cord 

compared to non-mannose treated control groups (Ipsilateral F(3,5)=10.67; p<0.05; Contralateral F(3,5)=3.73; 

p> 0.05). (h, i, j). Corresponding fluorescent images of the analyzed data are presented (red =IL-1β IR, 

blue=cell nuclei). (k) In addition, significantly greater IL-10 IR in the DRG is observed in the D-mannose 

primed treatment group compared to both non-mannose treated control groups (Ipsilateral F(3, 5) =10.35; 

p<0.05; Contralateral F(3, 5) =5.73; p>0.05). (l, m, n). Corresponding fluorescent images of the analyzed 

data are presented (red =IL-10 IR, blue=cell nuclei). Data for the contralateral DRG data are not shown. 

*p< 0.05; **p< 0.01; ***p<0.0001; all images were taken at 10X; scale bar =100µm (A, B- Behavioral 

testing by Ellen Dengler with assistance from Lauren Alberti, Vanessa Garcia and Daniel Moezzi; C-N- 

Tissue slicing by Ellen Dengler with assistance from Pamela Palermo; IHC and spectral microscopy by 

Ellen Dengler with assistance from Jenny Wilkerson; computerized analysis by Ellen Dengler with 

assistance from Jenny Wilkerson and Pamela Palmero) 

3.2.5 A single i.t. co-injection of D-Mannose with a very low dose of pDNA-IL-10 

extends reversal of allodynia 

Robust and fast-acting anti-inflammatory responses of macrophage cells were 

observed following D-mannose exposure in culture suggesting that D-Mannose may 

rapidly act to shift local peri-spinal immune cells to an M2 activated phenotype. Indeed, 

behavioral profiles following i.t. D-mannose treatment described in Figure 2 produced 

reversal from allodynia within 24 hrs. To expand upon these findings, we examined 
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whether the efficacy of a low dose of pDNA-IL-10 (1µg) shown to induce an ~11 day 

pain suppression (Figure 3.2), could be improved with a single co-injection of D-

mannose. As before, von Frey BL responses were assessed, followed by sham or CCI 

treatment and a reassessment of allodynia through day 10. Compared to non-neuropathic 

sham controls, CCI produced clear bilateral allodynia by day 10, which persisted 

following an i.t. saline injection, while non-neuropathic sham control animals given i.t. 

saline remained non-allodynic through a 26 day timecourse (Figure 3.5, a and b). 

However, animals that received a single i.t. co-injection of D-mannose (50 µg) with 

pDNA-IL-10 (1 µg) resulted in a clear bilateral reversal of allodynia that was sustained 

for 26+days (Figure 3.5, a and b), while control saline or DNA-injected rats remained 

fully allodynic. These data demonstrate for the first time that a single injection of D-

Mannose (50 µg) co-injected with pDNA-IL-10 (1µg) reverses allodynia for ~26 days.  

 

Figure 3.5 A single co-injection of D-mannose with low dose pDNA-IL-10 produces enduring reversal 
of allodynia. 
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 (a and b) No significant BL response differences were observed between groups prior to CCI or sham 

surgery (Ipsilateral, F(3, 32) =0.8932; p=0.4973; Contralateral, F(36, 32) =1.393; p=0.231. As before, CCI 

treated animals revealed clear bilateral allodynia through day 10 compared to sham controls (Ipsilateral, 

F(3,32) =32.07; p<0.0001; Contralateral, F(3, 32)=38.78; p<0.0001). On day 10 after testing, sham rats received 

a single i.t. saline injection (open triangles; n=8) or D-Mannose (50 µg; closed triangles; n=4), and CCI rats 

received a single i.t. co-injection of D-Mannose (50 µg) with pDNA-IL-10 (1 µg; closed squares; n=10), 

pDNA lacking the IL-10 gene (control pDNA; open circles; n=7), or equivolume saline (open diamonds; 

n=6). Sham-saline and CCI-saline or CCI-control pDNA resulted in no change from bilateral allodynia 

throughout the time course, D-mannose co-injected with a low-dose of pDNA-IL-10 (1 µg) (closed squares, 

n=5) resulted in a significant and full reversal of allodynia throughout the 3 week time course (Ipsilateral 

F(3, 238)= 60.23; p<0.001; Contralateral =F(3, 224)=22.18; p< 0.001). (A, B- Behavioral testing by Ellen 

Dengler with assistance from Lauren Alberti and Daniel Moezzi) 

3.3 Discussion 

The studies in the current report describe the timing and dose refinement of a non-

viral peri-spinal naked plasmid DNA (pDNA) therapy by which long-term suppression of 

neuropathic pain is achieved. Long-term efficacy of this naked DNA therapy requires 

initial priming of peri-spinal intrathecal (i.t. subarachnoid) meningeal immune cells 

followed by i.t. injection of pDNA encoding the anti-inflammatory cytokine, interleukin-

10 (IL-10), which is in line with the previous observation that i.t. stimulatory 

oligodeoxynucleotide (ODN) injection facilitated therapeutic pain reversal upon i.t. 

pDNA-IL-10 injection.72 While i.t. ODN injection served to prime local innate immune 

cells for improved uptake of pDNA-IL-10, these ODN adjuvants are characterized to 

stimulate the immune cell receptor, Toll-like receptor 9 (TLR9) that leads to 

proinflammatory cytokine production,173 suggesting that ODNs may not be the ideal 

adjuvant for transgene therapy. However, corticosteroids provide robust anti-

inflammatory effects by suppressing the activation of multiple proinflammatory genes,75 

and thereby, may act to facilitate transgene uptake by controlling pDNA-derived 
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proinflammatory cytokine production. A recent report demonstrated that dexamethasone, 

a potent synthetic glucocorticoid widely used to control clinical inflammatory conditions, 

co-delivered with pDNA yielded greater pDNA uptake and lower proinflammatory 

cytokine levels.174 Surprisingly, results in the current report demonstrate that a priming 

i.t. dexamethasone injection followed by i.t. pDNA-IL-10 failed to significantly improve 

the efficacy of pDNA-IL-10 treatment, and in fact, failed to alter behavioral sensitivity to 

light touch (Figure 3.1), a pain-related condition referred to as allodynia. Conversely, i.t. 

D-mannose, characterized to exert anti-inflammatory effects,175,176 primed subarachnoid 

immune cells in a dose-dependent manner, such that a subsequent i.t. pDNA-IL-10 

injection produced complete and enduring suppression of allodynia induced by CCI 

(Figure 3.2). These results suggest that D-mannose may dramatically alter the peri-spinal 

microenvironment in strong favor of transgene uptake. These data are the first 

demonstration of enduring neuropathic pain suppression by a 5-fold lower dose of i.t. 

naked pDNA-IL-10 (25 µg), than the 125 µg previously documented.135 These 

experiments support the notion that D-mannose may alter an active and ongoing process 

in the subarachnoid compartment prior to transgene administration such that lower doses 

of i.t. pDNA-IL-10 are transformed into efficacious treatments for pain suppression. 

While the combination of i.t. D-mannose followed 3 days later by i.t. pDNA-IL-

10 significantly improved pDNA-IL-10 efficacy, the possibility that D-mannose could 

exert enduring pain reversal in the absence of IL-10 transgene treatment remained a 

possibility and was addressed in the current study. Intriguingly, i.t. D-mannose alone 

produced a dose-dependent but transient reversal of allodynia (Figure 3.3, a and b), 

demonstrating that mannose alters spinal proinflammatory cytokine actions characterized 
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as crucial mediators of neuropathic pain in animal models.59 The transient reversal of 

allodynia additionally suggests that the enduring pain reversal is not due to the effects of 

mannose only, but to the effects following pDNA-IL-10 treatment.  

In further of support of prior studies documenting the anti-inflammatory role of 

D-mannose, the current data show that D-mannose not only blunts the protein release of 

the proinflammatory cytokine, TNF-α, and the inflammatory signaling molecule, nitric 

oxide (NO) generated by calcium-independent inducible NO synthase, but also fully 

suppresses IL-1β protein levels with simultaneous increases in IL-10 protein levels in 

lipopolysaccharide (LPS) stimulated macrophage cell cultures (Figure 3.3, c-f). Thus, 

these data suggest two important and related mechanisms could be altered by spinal 

application of D-mannose. First, a single injection of D-mannose creates complete but 

transient reversal of allodynia in an animal model of peripheral neuropathy that is 

mediated by spinal proinflammatory TNF-α, IL-1β and NO actions. Thus, D-mannose 

could exert broad spinal anti-inflammatory actions relevant to pathological pain 

processing. Second, the spinal anti-inflammatory effects of D-mannose may be critical 

for inducing a local immune cell switch to an M2 activated phenotype, thereby 

optimizing naked pDNA-IL-10 uptake.  

Given D-mannose pretreatment profoundly improved pDNA-IL-10 efficacy as 

demonstrated by a >90-day pain-reversal profile at transgene doses previously shown as 

transiently effective,23 we examined whether D-mannose improved transgene IL-10 

uptake in cell culture. The data are striking and demonstrate that in the presence of D-

mannose, transgene-derived IL-10 protein levels increase as the IL-10 transgene dose 
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increases. Thus, D-mannose may be acting as a transgene adjuvant in vivo, to enhance 

IL-10 transgene uptake that ultimately produces enduring pain reversal. 

Spinal cords from rats showing enduring behavioral reversal from allodynia 

produced following an i.t. D-mannose injection followed 3 days later with i.t. pDNA-IL-

10 (Figure 3.4, a and b), revealed significant increases in IL-10 protein 

immunoreactivity (IR). These data suggest that pretreatment with D-mannose improves 

transgene uptake for sustained pain suppression by priming peri-spinal immune cells to 

respond to transgene material by a process of enhanced phagocytosis. 

Simultaneous decreases in IL-1β IR are observed (Figure 3.4, c-n) in spinal white 

matter and in corresponding DRG. While speculative, this pattern of staining observed in 

white matter appears similar to that observed following oligodendrocyte staining, as 

previously described.177, 178 DRG is home to sensory neurons that process pain, and an i.t. 

injection of D-mannose followed by pDNA-IL-10 three days later, within the 

sensitization period, plays a role in altering DRG cellular IL-10 IR expression levels. 

Notably, the pattern of IL-10 IR is peri-neuronal, likely expressed by satellite glial cells 

and/or infiltrating macrophage that are capable of modifying sensory neuron activity and 

subsequent allodynia. Bilateral allodynia with bilateral spinal decreases in IL-10 IR and 

unilateral increases in spinal and DRG IL-1β induced by unilateral CCI observed in the 

present report supports recent publications.106, 112 Bilateral IL-10 IR levels were similar to 

control levels in IL-10 following gene therapy treatment. IL-10 gene therapy additionally 

reduced ipsilateral IL-1β spinal and DRG levels. These data additionally suggests that IL-
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1β in contralateral spinal cord and DRG do not play a significant role in contralateral 

allodynia. 

The sensitization period of the peri-spinal region can be examined to understand 

the potential mechanism that leads to immune-mediated transgene uptake. This interval 

can also be exploited to achieve single-injection combination small-molecule adjuvant-

pDNA co-therapy. Indeed, the data reported here show for the first time, that a previously 

demonstrated ineffective low dose of pDNA-IL-10 (1 µg) is now efficacious for 3+ 

weeks when delivered with mannose upon a single i.t. injection (Figure 3.5). These 

observations suggest that inducing an M2 phenotypic switch to optimize transgene uptake 

is a viable approach for non-viral gene therapy. 

Prior work demonstrates that relief from allodynia, produced chronic CCI-induced 

neuropathy of the rat sciatic nerve, is observed at increasingly longer intervals (reversal 

from allodynia) with each subsequent i.t. pDNA-IL-10 injection, but not with control 

pDNA. That is, allodynia is reversed 3, 7, and 26 days following an initial, second and 

third i.t. injection, respectively,107 which supports that the IL-10 receptor is not 

desensitized following prolonged exposure, and an ongoing active cellular process is 

present. Adjustment of the time interval between the initial and second pDNA-IL-10 

injection, such that the second injection occurs during reversal from allodynia (e.g. 3 day 

inter-injection interval), results in a ~2-month pain relief profile.107 An examination of 

the i.t. inter-injection interval revealed the magnitude and the duration of allodynia 

reversal is significantly diminished and shortened if the inter-injection interval occurs 

outside sensitization period (5 – 72 hour),72 suggesting time-sensitive cell-mediated 
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mechanism in the lumbar meninges surrounding the i.t. injection site may be important 

for therapeutic transgene actions. 

Macrophages and dendritic cells are the predominant immune cells found in the 

meninges, including the pia mater which is in direct contact with underlying spinal cord 

pain-projection neurons.147, 179 Increases in these cell types in meninges after chronic 

neuropathic pain produced by partial sciatic nerve ligation have been identified,147 

suggesting that these cell types may make up a population of sensitized cells upon initial 

priming and subsequent pDNA uptake within the sensitization interval. Notably, 

additional local macrophage cell enrichment measured in CSF from hours to days after an 

i.t. pDNA-IL-10 injection corresponds to the sensitization interval.97, 135 The pro-and-

anti-inflammatory phenotype of these cells in lumbar CSF shifts during the sensitization 

interval and beyond to 6-days, as measured by the expression the pro-inflammatory 

marker, ED1, and the anti-inflammatory expression of the scavenger receptor, CD163 

(also known as ED2), supporting the potential importance of the M1 polarized/classical 

activation phenotype (pro-inflammatory state) and the M2 polarized/alternative activation 

phenotype180, 54, 166-169 in mediating transgene uptake. Cells characterized as M2 polarized 

are strongly associated with an anti-inflammatory cytokine profile that includes 

interlukin-4 (IL-4) and IL-10, with low levels of TNF-α, IL-1β,54, 55, 181 reveal enhanced 

phagocytic capacity.170 Indeed, cell culture protein data from the current report 

demonstrate that while IL-4 protein levels remained unaltered in mannose-stimulated 

macrophages, significant IL-10 protein increases were measured from cell culture 

supernatant with simultaneous decreases in NO, TNF-α and IL-1β, supported the 

possibility that i.t. D-mannose induces an M2 polarized phenotype. Thus, M2 polarized 
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macrophages and other immune cells may be critically important for enhanced peri-spinal 

transgene uptake.  

Interestingly, i.t. pDNA-IL10 in healthy, non-neuropathic control groups results 

in only small increases in IL-10 transgene expression in the meninges and DRG.171 This 

observation is critical because it suggests that conditions in non-pathological spinal cord 

are not sufficient for substantial pDNA-based IL-10 transgene expression. Indeed, pain is 

only minimally alleviated when i.t. pDNA-IL-10 is injected prior to full allodynia.171 We 

speculate that pre-emptive i.t pDNA-IL10 is ineffective because the local environment 

may not be permissive for non-viral transgene uptake and subsequent expression. 

Clinically, gene delivery-based therapeutics will be applicable to people who have 

persistent pain, and not for prophylactic pain treatment. Together, these data suggest that 

active and ongoing cellular processes during the sensitization period may impact 

continuous transgene expression and efficacy, and that anti-inflammatory signaling is 

necessary for enduring duration pain relief.182  

D-Mannose is a simple hexose sugar with a molecular weight of 180.2 which 

decreases inflammatory processes during wound healing,175 reduces oxidative bursts 

required in inflammatory processes,183 suppresses adjuvant-induced arthritis in a rat 

model,184 and inhibits LPS-induced IL-1β, TNF-α, and decreased NF-kB/p65 critical for 

pro-inflammatory cytokine expression, and immune cell influx following intratracheal 

instillation of LPS in rats, a model of sepsis-associated acute lung injury and respiratory 

distress syndrome.176, 185 The macrophage mannose receptor (MR) is a glycoprotein 

pattern recognition receptor involved in host defense innate immunity by recognizing 
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mannosylated ligands (e.g. lysosomal hydrolases) and phagocytosis of a variety of 

bacteria, yeasts and parasites that express mannosylated molecules at their surface.186-189 

Cells identified to express the MR include brain astrocytes, microglia, in meninges and 

perivascular macrophages as well as some neuronal populations (hippocampus, pons 

cerebellum and cortex).190, 191 Mannose-mediated MR activation leads to secretion of IL-

10 and other cytokines that contribute to a down-regulation of M1 polarized immune 

responses including decreased IL-1β and TNF-α protein production.192 The presently 

reported data are in support of these prior reports and extend these findings by 

demonstrating that mannose stimulates an anti-inflammatory profile both in vitro and in 

vivo. Indeed, macrophage cell cultures pretreated with mannose blunt or abolish NO, 

TNF-α and IL-1β levels while increasing IL-10 expression following LPS stimulation. 

Moreover, in vivo i.t. injection of mannose transiently reverses allodynia associated with 

spinal proinflammatory cytokines and significantly enhances therapeutic efficacy of IL-

10 spinal gene therapy increases spinal protein IL-10 IR.  

We speculate that mannose acts to ‘prime’ cells in the meninges to augment 

macrophage and dendritic cell phagocytosis of pDNA-IL-10. Importantly, the current 

data show the enduring effects of mannose to stimulate M2 polarized peri-spinal immune 

response eliminates the necessity of a second injection, as a single co-injection of 

mannose with pDNA-IL-10 produces enduring 3-week suppression of allodynia. Thus 

spinal subarachnoid mannose may be a key component for augmented transgene uptake 

and therapeutic expression. Studies are in progress to further define the role of the MR in 

enhancing spinal transgene uptake, thus further reducing required pDNA-IL-10 doses, 
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with the goal of producing an extended duration of neuropathic pain suppression lasting 

multiple months. 

3.4 Materials and methods 

Animals 

One hundred-twelve total, adult, male Sprague-Dawley rats (Harlan Labs, 

Houston, TX, USA) were used in these experiments. Their weight upon arrival was 300 g 

+/- 5 gm; the animals were housed at 21 +/- 2°C in light controlled rooms (12:12 light: 

dark; lights on at 6:00 AM) and fed standard rodent chow and water available ad libitum. 

Behavioral testing was performed during the first 4 hrs of the light cycle. All procedures 

were approved by the Institutional Care and Use Committee (IACUC) of the University 

of New Mexico, following NIH Guidelines for the Care and Use of Laboratory Animals 

and in accordance with guidelines in the Ethical Issues of the International Association 

for the Study of Pain.  

von Frey test for mechanical allodynia 

The von Frey test was used to quantify rat hindpaw responses to tactile 

stimulation and conducted identically as previously described. 102, 103 Briefly, rats were 

habituated to the testing environment consisting of placing rats on an overhead shelf 

composed of open powder-coated wire grid allowing access to the entire plantar surface 

of the hind paw for tactile stimulation by a logarithmic series of calibrated Semmes-

Weinstein monofilaments (von Frey hairs; Stoeling, Wood Dale, IL, USA). Rats were 

habituated for 4 consecutive days, 20-30 min/day in a quiet area with dim red lighting, at 
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26.0-27.0° C. Following habituation, baseline (BL) light touch sensitivity was assessed 

using monofilaments. The monofilaments were randomly applied, perpendicular to the 

left and right hind paws for 8 sec, to determine the threshold stiffness that would elicit 

paw withdrawal. Ten monofilaments were used, each with a log-stiffness value, defined 

as log10 (milligrams X 10), values in milligrams follow in parentheses: 3.61 (407), 3.84 

(692), 4.08 (1202), 4.17 (1479), 4.31 (2041), 4.56 (3630), 4.74 (5495), 4.93 (8511), 5.07 

(11,749) and 5.18 (15,136). Both the ipsilateral and contralateral withdrawal responses 

were measured and testing was conducted prior to and 3 and 10 days after surgery, and 

again following i.t. injections at designated time points presented in the representative 

figures. Three baseline measures were averaged for the right and left paws separately. 

The log stiffness that resulted in the 50% response threshold values (absolute threshold) 

was computed by fitting into a Gaussian integral psychometric function, PsychoFit, 

allowing parametric statistical analysis.103, 104, 113, 193 The software for PsychoFit may be 

downloaded form L.O. Harvey’s website (http://psych.colorado.edu/~lharvey).  

Chronic constriction injury (CCI) 

The surgical procedure for chronic constriction injury (CCI) was performed 

identically as previously described.99, 105 Briefly, under isofluorane anesthesia (1.5-2.0% 

vol. in oxygen), the mid to lower back and dorsal thigh were shaved and cleaned with 

diluted Bactri-Stat AE (EcoLab Health Care Division, Mississauga, Ontario, Canada).	  

Using aseptic procedures, the sciatic nerve was carefully isolated and four chromic gut 

sutures (Ethicon, Somerville, NJ, USA) were loosely tied around one sciatic nerve. The 

overlying muscle was sutured closed with two, sterile, silk sutures (Ethicon, Somerville, 
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NJ, USA), and the overlying skin was closed with wound clips. The sciatic nerve of 

sham-operated rats were identically exposed but not ligated. Animal body weight was 

recorded and full recovery from anesthesia was observed within 10 minutes. 

Drugs 

Commercially available water soluble dexamethasone (DEX; cat# D2915) and D-

mannose (cat# M6020) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Intrathecal (i.t.) injections  

Injections were acutely administered and conducted as described previously. 99, 107 

Briefly, rats were anesthetized with isofluorane (5.0% volume in oxygen) and an 18-

gauge guide cannula constructed from an 18-gauge sterile hypodermic needle (Beckton 

Dickinson & Co., Franklin Lakes, NJ, USA) with the plastic hub removed, was inserted 

percutaneously between lumbar vertebra 5 and 6 (L5-6). During this time, a small amount 

of CSF efflux from the 18-gauge cannula and a tail flick were observed, indicating 

subarachnoid catheter placement.  

Injectors used for i.t. delivery were constructed as follows. A 1 ml sterilized 

Hamilton syringe connected to a 30 cm-length polyethylene tubing (PE-10; cat# 427401; 

Becton Dickinson, Sparks, MD, USA) via a 30-gauge, 0.5-inch needle inserted into a 

catheter. The open end of the PE-10 tubing (catheter) was then used to draw up 

DOTAP:Chol or DOPC protocells (1.0, 0.1 or 0.01 mg) in a total volume of 20 µl sterile, 

isotonic saline. The drug-filled PE-10 catheter was then inserted into the open end of the 

18-gauge guide cannula and advanced 7.7 mm rostrally, placing the internal portion of 
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the PE-10 catheter at the lumbosacral enlargement of the spinal cord where axon 

terminals of sciatic afferent nerve fibers contact pain-relevant spinal cord neurons. 

Injections were given over a 0.5-1 minute interval. Following drug injection, the PE-10 

catheter and the 18-gauge cannula was removed and were discarded. The total time 

required for these i.t. injections was 2-3 minutes. All animals displayed full motor 

activity following recovery from anesthesia. 

Preparation of plasmid DNA 

The plasmid vector used in these studies is described previously.107 It consists of a 

5.9 base pair circular plasmid DNA containing a transcriptional cassette consisting of a 

cytomegalovirus enhancer/chicken beta-actin promoter driving expression of the rat IL-

10 gene including a point mutation (F129S) and a viral SV40 polyadenylation signal. The 

transcription cassette is flanked by a 149 base-pair inverted terminal repeat sequence. An 

identical plasmid lacking the IL-10 gene was used as a pDNA control. Both plasmids 

were amplified in SURE II competent E. coli (Stratagene, Cedar Creek, Tx., USA) and 

isolated using an endotoxin free Giga plasmid purification prep kit (Qiagen, Valencia, 

Ca., USA).  

Tissue sample preparation 

Procedures described for tissue processing followed those previously 

described.106, 112 Briefly, following behavioral assessment at Day 29 after i.t. injection, 

animals were overdosed with 8-1.5 cc of sodium phenobarbital (Sleepaway, Fort Dodge 

Animal Health, Fort Dodge, IA, USA) and perfused transcardially with saline followed 

by 4% paraformaldehyde. Whole vertebral columns with intact spinal cords (cervical 2 
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through sacral 1 spinal column segments) were removed, and underwent overnight 

fixation in 4% paraformaldehyde at 4°C. This procedure ensured that all relevant 

anatomical components, including the spinal cord, DRG, and related meninges, were 

intact within the vertebral column, allowing important spatial relationships to remain 

intact to examine corresponding functional interactions at specific spinal cord levels. All 

specimens underwent ethylenediaminetetraacidic acid (EDTA; cat# EDS; Sigma Aldrich, 

St. Louis, MO, USA) decalcification for 30 days, and spinal cord sections were 

subsequently paraffin processed and embedded in Paraplast Plus Embedding Media 

(McCormick Scientific, St. Louis, MO, USA), as previously described. 194 Adjacent 

tissue sections (7 µm) were mounted on vectabond-treated slides (Vector Labs, 

Burlingame, CA, USA), and allowed to adhere to slides overnight at 40°C, followed by 

deparaffinization, and rehydration via descending alcohols to PBS (1X, pH 7.4). Sections 

were then processed with microwave antigen retrieval procedures (citrate buffer pH 6.0, 

or tris-based buffer, pH 9.0; BioCare Medical, Concord, CA, USA).  

Antibody staining 

Procedures conducted for antibody staining were conducted similar to that 

previously described.106, 112 In brief, slides were incubated with 5% normal donkey serum 

(NDS), in PBS (1X, pH 7.4) for 2 hours, followed by overnight primary antibody 

incubation in a humidity chamber at 3° C. Slides underwent secondary antibody 

incubation for 2 hours in a humidity chamber at room temperature, rinsed in PBS, and 

then coverslipped with Vectashield containing the nuclear stain 4’, 6-diamidino-2-

phenylindole (DAPI) (Vector Labs, Burlingame, CA, USA). For detection of IL-10 and 

IL1-β expression, sections were incubated overnight with primary antibodies (IL-10; R & 
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D Systems, Minneapolis, MN, USA; IL1-β; Santa Cruz Biotechnology, Santa Cruz, CA, 

USA), incubated with biotinylated secondary antibody for 1 hour, and then treated with 

Vectastain ABC Elite kit (Vector Labs, Burlingame, CA, USA) and stained using TSA 

Plus Fluorescein System (PerkinElmer Life Sciences, Waltham, MA, USA) and finally 

cover slipped with Vectashield containing DAPI. Stained section orientation was kept 

consistent throughout for proper identification of ipsilateral and contralateral spinal cord 

and DRGs. For lumbar spinal cord, sections were taken from L4-L6, and the ipsilateral 

spinal cord analyzed. L5 DRG sections were taken with the most proximal portion of the 

DRG analyzed. Low magnification photomicrographs were obtained using a Nikon 

Optiphot fluorescent microscope equipped with a DP2-BSW (Olympus) camera.  

Spectral imaging for immunofluorescent quantification 

Procedures conducted for immunofluorescent quantification of stained section 

were conducted identically to that previously described.106, 112 In summary, multi-spectral 

tissue imaging was obtained using an Axioscope microscope connected to a Nuance 

Camera 2.8 (FX) Multispectral Imaging System, (Perkin-Elmer, MA, USA). This camera 

contains a liquid crystal tunable filter (LCTF) able to filter light over a 420-720 nm 

interval capturing a series of images at every 10 nm increment. Every pixel of every 

image (series collected at specific 10 nm wavelength increment) was then analyzed by 

CRI software (Cambridge Research and Instrumentation Inc., (CRI) Wolburn, MA) to 

determine its peak spectral intensities from 400-720 nm. A different imaging protocol 

was established separately for spinal cord and DRG. A major aspect of the protocol 

requires the software to subtract background fluorescence, defined as any spectral 

emission falling outside that of tissue-specific autofluorescence. The image was then de-
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convoluted into images containing: 1) the spectra of a true Rhodamine Red signal 

(Rhodamine Red emission: 600 nm+/- 5 nm), as determined from a control cover-slipped 

slide on which a small drop of 100 X diluted fluorophore was placed, and 2) the 

autofluorecence wavelength emission-spectra determined for spinal cord and DRG tissue 

not exposed to primary antibody. Two sets of control slides with tissue sections, one with 

only PBS without primary but with secondary antibody treatment, and the other, with 

primary but without secondary antibody treatment, were then used to objectively 

eliminate autofluorescence and very low-intensity fluorescence. Using these control 

slides, the Nuance software allows the user to set an acceptable threshold of very low-

level emission fluorescent intensity (as opposed to the software’s “autothreshold” option) 

within and outside the Rhodamine Red emission peak wavelength range between tissue 

samples. Stained tissue sections with Rhodamine Red are then examined under the 

microscope eyepiece and the very low-level emission intensity is then re-adjusted by the 

user to reflect the actual images observed through the eyepiece. Thus, the experimenter 

determines low-level emission intensity by closely replicating the composite computer 

image with that observed through the microscope eyepiece. The resultant image contains 

Rhodamine Red, but without artifactual very low-level emission intensity and without 

autofluorescent wavelength peaks near to the Rhodamine Red wavelength peak, while 

retaining all the cellular and anatomical features of the actual tissue specimen. Emission 

values that fall below this acceptable threshold of low-level emission or outside the 

Rhodamine Red wavelength peak were eliminated from our immunofluorescent 

quantification.  
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The amount of fluorescent wavelength signal was calculated by the computer 

software for each area of contiguous pixels defined as a region of interest (ROI). A 

minimum threshold intensity was set that excluded autofluorescent and artifactual low-

level background. The Rhodamine Red fluorescent signal intensity for each ROI that falls 

above this threshold was quantified and given a numerical value. These signal “counts” 

were then averaged and divided by the exposure time for each image collected per ROI 

An image was captured for each of 4 slices (n=4 slices per rat and 3 rats per group=12 

total slices analyzed per experimental group) for the spinal cord and separately for the 

DRG tissue region (ipsilateral or contralateral). The positive Rhodamine Red data from 

all 12 slices per experimental group was then averaged to represent a group average and 

reported as “signal counts/sec/mm2”. More detailed information regarding the Nuance 

spectral system can be found at URL: http://www.cri-inc.com/products/nuancew.asp. 

Cell Culture 

Mouse macrophage (RAW 264.7) cells were obtained from American Type 

Culture Collection (cat# TIB-71; ATCC Manassas, VA, USA) and cultured as adherent 

cells in Dulbecco’s Modified Eagle’s Medium (cat#D6429; Sigma-Aldrich, St Louis, 

MO, USA) supplemented with 10% heat-inactivated fetal bovine serum (cat# 10082-147; 

Gibco-Life Technologies, Grand Island, NY, USA) and 100 U/ml penicillin and 100 

µg/ml streptomycin (cat# 15140122; Gibco-Life Technologies, Grand Island, NY, USA), 

and maintained at 37°C under humidified 5% CO2 atmosphere. Cells were grown to 85% 

confluence, collected by scraping, and sub-cultured for 3 passages. For experiments, dead 

cells were counted by hemocytometer and trypan blue exclusion.  
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Nitric Oxide Assay 

RAW 264.7 cells were seeded at a density of 3.0 x 105 cells/ml in 24 well plates 

24 hours prior to experimentation and maintained at 37°C under humidified 5% CO2 

atmosphere. At confluence to 85%, the supernatant was removed and replaced with 

DMEM containing 10 mM mannose or fresh DMEM that was allowed to incubate for 1 

hour. After 1 hour incubation with mannose, media from the wells was removed and 

replaced with fresh DMEM containing either 10 mM D-Mannose, 10 ng/ml 

lipopolysaccharide (LPS) from Escherichia coli (LPS; cat# L6529; Sigma-Aldrich, St 

Louis, MO, USA), 10 mM D-mannose and 10 ng LPS, or DMEM alone. The different 

treatments were allowed to incubate with the cells for 10 minutes, followed by removal 

of supernatant and a 2X wash with 1X Phosphate Buffered Saline (PBS, pH 7.4, cat# 

10010; Gibco-Life Technologies, Grand Island, NY, USA). Supernatant was removed 

from each well and nitric oxide production was measured using commercially available 

Griess Reagent System (cat# G2930; Promega Corp., Madison, WI, USA). Briefly, 50 µl 

of supernatant from each well was removed and mixed with 50 µl of sulfanilamide 

solution and 50 µl of N-1-napthylethylenediamine dihydrochloride. The reaction was 

allowed to incubate protected by light and the absorbance was measured at 550 nm using 

a Tecan Infinite® plate reader (Tecan Systems, Inc., San Jose, CA). Limit of detection for 

the NO assay=1.56 µM. All experiments were run in triplicate.  

Quantification of IL-1β, IL-10, TNFα protein levels 

RAW 264.7 cells were treated exactly as outlined above with the exception that 

100 mM D-Mannose is used and cells were allowed to incubate for 2 hours with LPS. In 
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a second experiment, the same number of cells were incubated with 500 mM D-mannose 

for 5 hours. The media from the wells was then removed and replaced with fresh DMEM 

containing either 500 mM D-mannose with or without pDNA-IL10 (0.5 or 5 µg), pDNA-

IL10 (0.5 or 5 µg) without D-mannose, or DMEM only. After washing, the supernatant 

was removed from each well and assayed by mouse ELISA according to the 

manufacturer’s instructions. (IL-1β, cat# SML800C; IL-4, cat# M4000B; IL-10, cat# 

M100; TNFα, cat# MTA00B, R & D Systems, Inc., Minneapolis, MN, USA) Limit of 

detection for the IL-10 protein assay=15.6 pg/ml; positive IL-10 kit control value= 

117.68 pg/ml; limit of detection for the IL-1β assay= 12.5 pg/ml; positive IL1-β kit 

control value=553.75 pg/ml; limit of detection for the TNFα=10.9 pg/ml; positive kit 

control value=110.17 pg/ml. All experiments were run in triplicate. 

Data analysis 

 Psychometric behavioral analysis for hindpaw threshold responses was 

performed as previously described103 to compute the log stiffness that would have 

resulted in the 50% paw withdrawal rate. Briefly, thresholds were estimated by fitting a 

Gaussian integral psychometric function to the observed withdrawal rates for each of the 

tested von Frey hairs, using a maximum-likelihood fitting method.113, 193 Estimated 

thresholds derived from a Gaussian integral function yield a mathematical continuum and 

thus, are appropriate for parametric statistical analyses.103, 113, 193 The computer program 

PsychoFit may be downloaded from L.O. Harvey’s website 

(http://psych.colorado.edu/~lharvey). Repeated measures two-way analysis of variance 

(ANOVA) procedures were applied to determine statistical significance between 
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experimental treatment groups, with significance determined at p< 0.05. All other data 

analyses were performed using one-way ANOVA on the computer program GraphPad 

Prism version 4.03 (GraphPad Software Inc., San Diego, CA). All data are expressed as 

mean +/- SEM. For post-hoc analysis, the Bonferroni’s test was performed. Given 

unusually high variance was observed in immunofluorescent-quantified tissue only from 

the saline-pDNA-IL-10 group, a Grubb’s Z-test172 was applied to identify a potential 

outlier from the group. 
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4. Discussion 

4.1 Gene delivery to the CNS 

4.1.1  Clinical uses 

Over the past three decades, the development of gene based therapeutics has been 

rapidly growing. While advances for the treatment of genetic-based disorders such 

hemophilia, cystic fibrosis have been made,195 development of gene therapeutics for 

neurological diseases, such as Alzheimer’s, Parkinson’s, Huntington’s disease and 

chronic neuropathic pain is an important and exciting contribution to the field of 

neuroscience. Delivering genes to the CNS poses a particular problem in that the blood 

brain barrier must be crossed. Transport of genes to neurons presents some especially 

difficult challenges. The specialized electrical nature of the neuronal membrane, with the 

fluxing of membrane charge associated with the firing of action potentials, can make 

negatively charged DNA uptake problematic due to repulsive forces. In addition, the 

elongated morphology of the neuron can necessitate the transport of the therapeutic gene 

across long distances.88, 196  

In general, the expression of the therapeutic gene is intended to either improve 

or reduce a specific cellular response. In genetic diseases, the intention is for the gene 

to replace the defective one. In other cases, such as in IL-10 gene therapy for 

neuropathic pain, the intention is to increase gene expression above endogenous levels. 

Conversely, protein levels can be reduced, for example by blocking transcription with 

small anti-sense RNA (siRNA).88, 197 The gene of choice can be delivered in simple 
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“naked form” or loaded onto viral or synthetic vectors, such as the protocells evaluated 

in Chapter 2 of this dissertation. Each of these delivery platforms has its own 

advantages and disadvantages which will be addressed below. 

Brief mention should be made of some of the methods used for gene therapy 

delivery in human clinical trials and animal models. Most common is standard injection 

of gene into the muscle, the abdomen or the vein. Another approach uses a gene gun and 

pressurized gas or liquid to increase permeability of cell membranes by poration. 

Ultrasound or electric current (electroporation) are also used for this purpose. As noted 

above, delivery to the CNS is difficult as the gene must pass the BBB, so gene and/or 

vector is usually placed into the brain by direct injection. One group injected 

fluorescently tagged silica particles directly into lateral ventricles.136 Ours is the first 

evaluation of intrathecally injected of silica based particles.  

4.2  Approaches 

4.2.1 Viral vectors 

Virus-based gene delivery is most often accomplished by using replication-deficient 

viruses containing the gene of interest, but with the disease-causing sequences deleted 

from the viral genome. Both RNA and DNA viruses have been utilized for this 

purpose.198 Viruses are essentially composed of a protein coat or capsid that encases 

either DNA or RNA and are specialized to inject this nucleic acid contents into a cell and 

use the “host” cell transcription machinery to reproduce.199 Consequently, viral vectors 

have high transfection efficiencies, as they are naturally evolved and highly specialized 
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for transfer of DNA across the host cell membrane.198 Most often a virus enters a cell 

through receptor mediated endocytosis following binding of a protein on the capsid to a 

cell surface receptor.199 

 One of the most frequently used viral vector is engineered from the adeno-associated 

virus (AVV).8 This vector was used in our early studies to deliver the IL-10 gene.99 AAV 

vectors retain only about 300 bp of the original viral genome, so there is very little risk of 

recombination events with wild-type virus that might lead to infection. In fact, no viral 

products are actually expressed in the cell, reducing the risk of pathogenicity and 

immunogenicity. Other attributes are heat stability and resistance to solvents, changes in 

pH and temperature.200, 201 Particularly important, AAV vectors are able to transfect not 

only dividing cells, but non-dividing cells which reduces the problem of “gene dilution” 

or loss of the therapeutic transgene in future generations of dividing cells.201 There are 12 

different serotypes of human AAV, each characterized by specific cell surface antigens, 

allowing a particular AAV vector to be designed for tissue specific delivery.200, 201 An 

advantage for the treatment of CNS disease, one AAV serotype, AAV9, is able to cross 

the BBB.202  

Lentiviral vectors (LVs), derived from human immunodeficiency virus-1 (HIV-1), 

have been used for gene transfer as they can transfect both non-dividing cells and 

dividing cells.202 Important to gene therapy for chronic pain and neurodegenerative 

disease, is their ability to transduce most cell types including the cells of the CNS; 

neurons, astrocytes, adult neuronal stem cells, oligodendocytes and glial cells. Of special 

interest, some LVs can undergo retrograde transport from the neuronal axon to cell body, 
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which is critical for potential gene therapy in motor neurons. LVs are not, however, able 

to cross the blood brain barrier, limiting the practicality of their use for gene delivery in 

the CNS. An advantage of LV vectors over AVV, is that they are able to accommodate 

larger transgenes. It is critically important that they be replication deficient to reduce the 

risk of HIV infection. One of the risks of using LV, because it is a single stranded RNA, 

is that reverse transcriptase, the transcription enzyme that converts RNA to DNA is error-

prone and may result in mutations that might possibly cause disease.202 

One of the major drawbacks of all viral vectos is their small size, which limits the 

size of the therapeutic gene insertion. Gene expression is sometimes slow in onset, for 

example when single stranded DNA must be converted to double stranded DNA, before 

the transgene is transcribed.200 Finally, it has been shown that viral vectors can 

preferentially integrate into transcriptionally active areas possibly leading to insertion of 

the therapeutic gene into the genome, “insertional mutagenesis”.201 Incorrect insertion 

might activate or inactivate the “wrong” gene, and can lead to tumorogenesis or 

leukemia.200 In addition, mutagenesis might alter the transgene product encoded by the 

vector, and eliminate or pollute the expressed protein by changing its function. 

One of the key problems in using viral vectors to carry a transgene, such as the gene 

for IL-10, are immune responses to the vector itself or the virally transduced cells. 

Clearly, immunogenicity and oncogenicity are the major risks of using of viral vectors for 

therapeutic gene delivery. In fact in human clinical trials, a gene delivered by an  

adenoviral vector to treat a rare disorder, ornithine transcarbamylase deficieny, caused a 

fatal acute inflammatory reaction in the lung. In another study a gene for treating 
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immunodeficiency disease was delivered by a LV vector and five subjects developed a 

leukemia-like blood disorder attributed to insertional mutagenesis and resulted in another 

fatality.203 These cases heightened public concern and awareness about the potential 

dangers of viral vectors and hastened the development of non-viral, synthetic materials to 

delivery therapeutic genes. Never the less, as of May 2011, 1703 gene therapy clinical 

trials were being conducted across the world, the majority delivered by viral vectors.204 

4.2.2 Non-viral vectors 

Non-viral vectors are either naked DNA or synthetic vectors, composed of materials 

that bind to negatively charged (anionic) DNA or RNA through electrostatic interaction. 

Consequently, positively charged (cationic) materials are used more frequently than 

those with negative or neutral charge. Through these interactions, the genetic material is 

condensed to nano-sized complexes that are able to cross cellular and nuclear 

membranes more efficiently than the naked nucleic acid. The materials used for 

synthetic gene delivery platforms are many, but for the purposes of this discussion 

attention will be focused on cationic lipids, cationic polymers and mesoporous silica 

nanoparticles. 

4.2.2.1  Naked DNA 

The obvious advantage to using naked plasmid DNA are that it can be engineered 

to contain genes of quite a large size such as the IL-10 gene which is ~557 bp and it is 

easily and relatively inexpensively amplified to quantities needed for in vivo use by 

commercially available kits. It is also easily stored short term at -20°C and longer periods 

at -80C°.205, 206 
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One of the key problems in using naked DNA is transport across cell 

membranes.83, 88 Being a hydrophilic negatively charged molecule, it is easily repelled by 

cell membranes, which contain many negatively charged proteins. As already discussed 

in the introduction of this manuscript, DNA must escape endosomal or phagocytic 

transport vesicles intracellularly and reach the nucleus to be transcribed. In addition, it 

can be easily degraded by nuclease enzymes, and/or the acidic environment of lysosomes. 

If DNA is administered directly into the blood stream or intra-muscularly, it can be 

degraded by serum enzymes.14 As with virally delivered transgene, naked plasmid DNA 

can be diluted in subsequent generations of cells. 82 For these reasons, gene delivery by 

injecting naked plasmid intravenously or under the skin has been unsuccessful.207 

Intrathecal delivery, the method used to deliver the IL-10 transgene, offers an 

improvement in that the gene is placed directly near the dorsal spinal cord site of pain 

modulation, thus is poised to alter cytokine profiles of nearby glial and meningeal cells 

known to contribute to neuropathic pain onset. 

One potential problem of naked DNA frequently cited in the literature, is that it 

can trigger adverse innate immune responses, as often it contains CpG base sequences 

that are recognized by toll-like and scavenger receptors on immune cell surfaces.82, 195 

These sequences might be actually working to our advantage in our double injection 

paradigm. The immune responses evoked by the 1st injections are thought to prime 

leukocytes, making them more capable of IL-10 transgene uptake that alters the actions 

of nearby spinal glia and meningeal immune cells.72 
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4.2.2.2  Cationic liposomes  

Cationic liposome-mediated gene transfer, a process known as lipofection, is one 

of the most common method of non-viral delivery.82, 208 LipofectamineTM 2000, marketed 

by Life Technologies, Grand Island, New York, is one commonly used cationic lipid 

transfection agent. The lipids used for lipofection, share a similar structure of positively 

charged, water attracting (hydrophilic) head group, connected by a linker to a water 

repelling (hydrophobic) tail. This linkage, between the head and tail groups, is important 

for biodegradability. The head groups are frequently composed of amine (NH) groups 

containing 1, 2, 3 or 4 hydrogens (H+), known as primary (1o), secondary (2o), tertiary 

(3o) or quaternary amines (4o) respectively.18 Thus, the head group binds with the 

negatively charged phosphate groups in nucleic acids. Also, often included in the head 

groups are cholesterol or steroid rings, the purpose of which will be explained later. The 

hydrophobic tails are usually straight or branched carbon chains.82, 208 

Advantages and disadvantages have been noted with the use of lipoplexes. In their 

favor, lipoplexes are easy and cheap to produce, and are non-toxic, supporting their use in 

cell culture for short-duration gene expression. They can also be engineered for tissue 

specific delivery208 and have been used for intrathecal gene delivery to the CNS.260 

However their use for in vivo gene delivery has been limited as they are prone to generate 

acute cellular toxicity and inflammatory responses at higher doses and durations of 

exposure.82, 195 

The transfection efficiency of cationic lipids can vary dramatically depending on 

their composition. The nature of the linker and number of charged groups, the overall 
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shape and charge of the lipid can alter interaction with DNA and cellular membranes. For 

example, positively charged head groups improve the interaction of the lipoplex with 

negatively charged cell membranes.82 The greater the positive charge the more intimate 

the contact with the membrane, and the logical result is that the lipoplex will have a 

greater chance of entry into the cell.208 Conversely, if the charge becomes overly positive, 

the amount of compaction or condensation of DNA increases, reducing the probability of 

release and eventual transcription in the nucleus.195  

  One frequent complication in using lipoplexes for gene delivery is that they can 

aggregate forming a larger complex.82, 195 When mixed with DNA, lipids immediately 

form compacted micellar structures due to the hydrodynamics of the lipids. The 

hydrophyllic heads are exposed to the surrounding extra or intra cellular fluid, while the 

hydrophobic tails are directed toward the interior of the micelle. While protecting DNA 

from degradative enzymes, the exposed positive charges of the exterior head groups can 

interact with negatively charged platelets, erythrocytes and serum proteins in the blood 

causing aggregation and the formation of small clots.15 Moreover, a larged sized 

aggregate reduces interactions with the cell membrane and lowers transfection efficiency. 

Surface charge can be shielded by the inclusion of polyethylene glycol or (PEG), a 

hydrophilic, neutrally charged polymer, which can prolong the circulation half-life of 

lipoplexes, while at the same time reducing the charge interaction between the lipoplex 

and cell membrane, reducing transfection efficiency.82, 195 
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4.2.2.3  Cationic polymers  

When DNA is mixed with cationic polymers, the net result is the formation of 

condensed nano-sized polyplexes, a complex of DNA and polymer, similar to lipoplexes. 

According to Kundu and Shamara,197 ideal polymers should be non-toxic, non-

immunogenic and biodegradable and package large amounts of DNA. Some of the many 

other polymers that are being used for gene transfer are polyethylenimine (PEI), 

Polyamidoamine (PAMAM), acrylate, poly(amino-ester) based polymer vectors, and the 

FDA approved, biodegradable formulation, poly-lactic co-glycolic (PLGA) used in our 

laboratory.197 Biodegradability ensures that there is no cellular accumulation over time.  

As with lipids, the interaction of the polymer with DNA and the formation of a 

polymer-DNA complex, is dependent on factors “intrinsic” to the polymer itself such as 

the number of its charge groups, the structure of charge groups (1o, 2 o, 3 o, 4o), and their 

spacing within the polymer, polymeric branching and hydrophobicity.82 Also important to 

DNA loading are “extrinsic” factors, such the ionic strength of the solution in which the 

polyplex is formed, the charge ratios of DNA/polymer and the kinetics and 

thermodynamics involved with polyplex formation.82 Polyethylenime (PEI) serves as a 

good example of how intrinsic and extrinsic factors effect gene delivery. Intrinsically, the 

structure of branched PEI has been shown to be more toxic resulting in lower DNA 

transfection efficiency than linear PEI.82 The extrinsic environment surrounding the 

polymer-DNA complex is hypothesized to play a role in increasing transfection by 

improving endosomal escape. PEI contains many amine groups that are mostly 

unprotonated at physiological pH. In the acidic environment of the endosome, there are 

many protons (H+) that are readily absorbed by the amine groups on PEI. One hypothesis 
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is that this condition lowering the acidity in the endosome, leading to an influx of 

negative ions, resulting in a build up of H20 and osmolytic pressure that ruptures the 

endosomal membrane allowing the polyplex/DNA complex to escape and travels to the 

nucleus. This process has been termed the proton sponge effect.84, 209  

 Several benefits of synthetic vectors are that they can be designed to release cargo 

in a time or pH dependent manner and their surface is easily modified.195, 197 By attaching 

cell targeting molecules such as cell receptor-specific ligands, antibodies or small 

stimulatory molecules, they can be designed to directly target one cell type and avoid 

damage to others.91, 210, 211 

Toxicity to cells is the major limitation to the use of polymeric gene delivery 

platforms. In vivo, their longevity and biodistribution remain relatively unexplored.195 

Like liposomes, some polyplexes can tend to aggregate forming larger complexes in the 

blood and have been found in lung and liver following intravenous administration. But, 

because of easy modification, inclusion of an anionic or neutrally charged polymer, such 

as water soluble PEG or cholesterol, can reduce aggregation and increase circulation 

times.195 Like lipoplexes, polyplexes can be immunogenic, either from the polymer itself 

or the DNA, although one group has shown less proinflammatory cytokine induction by 

the use of polyplexes over lipoplexes.212 Despite toxicity problems, their potential as 

therapeutic delivery agents remains high due to their flexibility of design, easy 

modification with targeting molecules, potential to cross the blood brain barrier.  
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4.2.2.4  Mesoporous silica nanoparticles 

MSNs, such as those used to form the core of protocells, have many properties that 

make them desirable for drug and DNA delivery. Slowing et al. summarizes these factors 

eloquently.96 First, their diameter and pore size are adjustable from 50-300 nm and 2-6 

nm respectively. They have a rigid structure that is resistant to degradation by heat, pH, 

mechanical stress and hydrolysis. Their high pore volume (> 0.9 cm3) and surface area (> 

900 m2/g) allows efficient loading of drug on two functional surfaces, the internal surface 

of the pore and the external surface. Finally, because of the regular nature of the pores, 

they are easily sealed to prevent premature “leaking” of cargo.96, 123, 129, 213 More 

advanced modifications for loading small molecules or drugs into MSNs involve “gating” 

strategies to seal cargo in the pores, such as the use of quantum dots or small 

nanoparticles to cap the pore.96 In addition, they are easily customized for specific 

targeting. MSNs can be engineered for controlled release of cargo with changes in 

temperature, pH, enzymatic cleavage or exposure to light.95, 96 

As with most nanomaterials, modulation of particle size, shape, and surface charge 

can greatly influence cellular uptake, cellular and bodily responses, and biodistribution.96, 

123, 129, 213 Because their ultra small size, nanoparticles do not physically behave as larger 

particles and the physics of their actions with each other and other molecules may be 

unpredictable in different tissues, cells, blood and bodily fluids. Thus it is important that 

their biotoxicity be evaluated with each modification.214 Studies such as those in Chapter 

2, which evaluate cell stress as a function of surface charge, are important contributions 

to our current understanding of these materials.  
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4.2.2.5  Protocells 

The protocell, essentially a MSN with a lipid bilayer on its surface, offers 

additional advantages. According to Liu et al.,101 the lipid bilayer on the MSN core of a 

protocell actually provides a “synergistic system” for simultaneously loading and sealing 

cargo. For example, while a negatively charged fluorescent dye was unable to load a 

negatively charged mesoporous core, the dye was easily loaded when a positively 

charged lipid was used as a bilayer. In fact, the lipid-sealed protocell was able to load a 

concentration of dye that was 100X that of the surrounding solution.101 The lipid layer is 

easily conjugated to PEG to improve circulation time and both are easily conjugated to 

specific cell targeting molecules such as receptor ligands or antibodies.95 In vitro, 

protocells have been shown to successfully deliver hydrophobic cancer therapeutics94 and 

plasmid DNA.215  

The synthesis of MSN used for the silica core of the protocell involves the 

hydolysis of a silica precursor such as tetraethylortosilicate (TEOS) dissolved in ethanol 

and water to form a homogenous solution or “gel-sol”. Hydrochloric acid is used as a 

catalyst to begin the growth and nucleation process, while a surfactant, 

cetyltrimethylammonium bromide (CTAB), an alkyl ammonium salt, serves as a liquid 

crystalline template for the mesoporous structure. If the reactions are kept at 

concentrations above the critical concentration for micelle formation, regular crystalline 

mesoporous nanostructures are formed.95 It has been proposed that the silica material 

forms “inorganic walls” between ordered surfactant micelles forming pores in a process 

of self assembly.216 Further engineering lead to the development of an Evaporation 

Induced Self Assembly (EISA) method. This method uses a dip-coating process to form a 
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thin film of silica/surfactant micelles that organize into liquid-crystalline mesophases as 

the concentration of soluble silica increases, with the evaporation of solvent. Brinker and 

colleagues,217 improved upon this procedure by forcing the silica/surfactant solution 

through an atomizer to form aerosol droplets. The droplets direct the process of self 

assembly to form spherical MSNs.217 In the last phase of synthesis, the particles are dried 

in a furnace by evaporation or calcination to drive off excess solvent. There are two other 

approaches for forming MSNs, a growth-quench approach, which uses a dilution and pH 

change to “quench” or slow the silica condensation reaction and another that separates 

the nucleation and growth stages into two processes.213 Important for drug or DNA 

delivery, regardless of which synthesis process is used, the fine tuning of the reaction 

temperature and relative amounts of reactants can control the orientation and diameter of 

pores and particle size.  

Another key advantage of the MSN is that silanol groups inside the pores and on 

the outside surface can be altered by changing the electrostatic, hydrostatic and colloidal 

properties improving their biocompatibility.95, 213 These functional groups can then be 

used to covalently attach other molecules for cell specific targeting or adsorb other 

coatings, to change the charge and hydrophobicity of the MSN. The positively charged 

polymer, polyethylene glycol (PEG), is one such coating, used to reduce aggregation with 

serum proteins and increase circulation times. On the protocell, the surface coating is the 

lipid bilayer. By using lipids with different charge, fluidity and melting/transition 

temperatures, the interaction of the protocell with biological membranes can be 

controlled. Such was the case in the transfection studies in Chapter 2, in which pDNA-IL-

10-GFP delivered via DOTAP:Cholesterol covered protocells to HEK cells, caused 
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significantly more IL-10 expression than when delivered on DOPC protocells. Co-lipids 

or “helper” lipids such as cholesterol or dioleoylphosphatidylethanolamine (DOPE) are 

added to the bilayer to help increase the fluidity and favor “mixing” or fusion of the 

protocell with cell membranes and facilitate transfection efficiency by improving the 

transfer of nucleic material to the cell interior. 

Intracellular endosomal vesicles are composed of a single, mostly anionic 

membrane on the surface exposed to the cytoplasm. Once inside the endosome, 

cholesterol is thought to alter membrane electrical potentials by absorbing charge via its 

cyclic ring structure and displace anionically charged lipids from the outside membrane 

to the inside, promoting transfer and escape of lipid coated particle/DNA complex from 

the inside to the outside, by a “flip-flop” mechanism.85, 218 Therefore, inclusion of 

cholesterol with positively charged DOTAP in the protocell bilayer, might improve 

transfection efficiency by enhancing DNA escape from the endosome so that more was 

available for transcription in the nucleus. 

In total, 3 different protocell cargos were used in the experiments in Chapter 1. The 

first was a FAM-tagged 18 bp single stranded DNA (ssDNA). FAM is a green fluorophore 

used as a reporter in these studies. FAM or 6-carboxyfluoroscein is a molecule composed of 

a number of benzene rings and other carbon ring structures (Figure A.13 A). It has a MW of 

537.5. While the 3-dimensional structure of a molecule can vary depending upon pH and 

salinity and other physical characteristics of the solution surrounding it, a rough estimate of 

its size can be determined by its bond lengths.258 Using this method the dimensions of FAM 

were determined to be ~.139 nm in width and ~0.722 nm in height. The length of the 18 bp 
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DNA at .34 nm/bp253 is ~6.12 and diameter of the ssDNA is ~2 nm253. It nucleotide 

composition is 5’-CTTGAGAAAGGGCTGCCA-3’ and as no self-complimentarity254 so it 

will not form the hair-pin loops common to other single stranded sequences. For these 

reasons it is most likely that the FAM DNA would load inside the pores in the silica core. 

The second cargo was a red fluorophore Dextran tetramethyl rhodamine (DexRHO) 

with a MW of 10,000 (Figure A.13 B). It is a hydrophillic polysaccharide composed of α-D-

1, 6 glucose molecules to which a tetramethylrhodamine fluorophore is linked. The molecule 

has an overall negative charge. It has been determined that 1-2 tetramethylrhodamine groups 

are conjugated to each 10,000 MW of Dextran polymer.252 Calculations of the planar bond 

length of the DexRHO component without the dextran polymer show the width to be ~.983 

nm and the height ~.576 nm. Considering the very large size of the entire DexRHO polymer, 

the molecule would most likely load by adsorption to the surface of the positively charged 

protocell core. In fact because of these physical characteristics, DexRHO was chosen as a 

surrogate molecule for the large 5.9 kb plasmid DNA molecule the final protocell cargo used 

in these studies (Figure A. 13 C).  

Plasmid IL-10 has previously been shown assume a supercoiled state.79 If linearized, 

the length at .34 nm/basepair would be 20060 nm253 and double stranded DNA has a 

diameter of ~2 nm.253 However in actuality, the circular plasmid DNA is supercoiled with 

elastic qualities in “standard aqueous conditions of 0.14M univalent salt”.255 Supercoiled 

DNA assumes many different structures based the linking number or the number of times the 

two sides of circular plasmid cross. The linking number is a function of the twisting number, 

or the total number of turns of the duplex, and the writhing number, the total number of turns 
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of the duplex.256 For size comparison, one bacterial 4361 bp plasmid, pBR322, ~1539 bp 

smaller than pDNA-IL-10, was examined by atomic force microscopy and was ~225 nm 

across.257 Determining the actual dimensions of the supercoil is beyond the scope of this 

dissertation and was not a goal of the studies Chapter 1, but it can be speculated that like 

DexRHO, supercoiled DNA would be too large to load into the pores of the silica core but 

would load by charge interaction with a positively charged silica core and a positively lipid  

such as DOTAP:CHOL 1:1 covering the surface. 

Future studies will most certainly incorporate the newest generation of protocells that 

have larger multi-modal pore sizes and a capacity for pDNA loading94 and show promising 

potential as gene delivery vectors for spinal gene therapy. Another aim will be to reduce the 

size of the pDNA-IL10 to better utilize these second generation protocells.  

4.3 Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery 

to the spinal cord ( re-submitted to the Journal of Controlled Release) 

4.3.1 Investigation of toxicity and biocompatibility of protocells 

Given protocells are novel nanocarriers, their biocompatibility and potential for 

cell toxicity were initially examined. The testing for biocompatibility of MSNs has been 

complicated. Different combinations of materials and differences in synthesis result in 

various MSN characteristics (shapes, pore sizes, chemical composition, surface 

chemistry). Therefore the assessment of toxicity and cellular uptake and responses in 

living systems is not easily generalized to all MSNs.95, 214, 219 As pointed out by Tarn et 

al.,95 most of the toxicity studies in the past century have been related to concerns about 
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silicosis resulting to exposure to both crystalline and amorphous silicon dioxide. The 

authors emphasize that, “ not all silica is created equal”, but can exist in a wide variety of 

forms depending on synthesis and environmental exposure.95 They explain that toxicity is 

mostly related to surface silanol (SiOH) groups that can hydrogen bond to membrane 

components or when dissociated, form SiO,- that can interact with positively charged 

lipid head groups, and may lead to lysis of cell membranes such as red blood cells.95 

Silicate radicals can similarly react with H2O to produce reactive oxygen species (ROS) 

known to damage proteins and upregulate cytokines and inflammatory molecules leading 

to cell death or carcinogenesis.95 In support of the use of silica, these reactive silica 

groups can be modified to reduce or eliminate this problem. In addition, the small 

diameter of the MSN reduces the surface area and exposed hydroxyl groups available to 

react.  

Depending on mode of synthesis, particle or pore diameter and in vivo delivery 

route, toxicity can vary.93 Different cell types also can be more susceptible than others. 

Hudson et al.93 evaluated biocompatibility of two different cell lines, myoblasts and 

macrophages to mesoporous silicates with diameters of ~150 nm, ~800 nm and ~4 µm 

and pore sizes of 3 nm, 7 nm and 16 nm respectively. The particles were synthesized in 

three different processes. All three particles showed increasing toxicity correlating with 

increasing their concentration in mesothelial and myoblast cells but not in macrophages, 

cells important to studies described in this thesis. Interestingly, differing methods of 

MSN delivery had differing toxicity. Mice were injected subcutaneously with 1 ml of 30 

mg/ml, which was well tolerated. Histological examination showed no sign of MSN 

material at 2 or 3 months. Surprisingly, in contrast, mice that received an intra-peritoneal 
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injection of the same dose either died or became distressed after 24 hours and were 

euthanized. Those that received intra-peritoneal doses of 10 mg or 5 mg became ill 30-40 

hours later. However, intraperitoneal injection of a lower dose, 1 mg/ml was not fatal to 

mice. Intravenous injection of 6 mg/ml resulted in rapid death.93 These studies point out 

that careful consideration must be made of not only the dose but the method of delivery 

are extremely important to an assessment of toxicity of nanomaterials in vivo. 

A biocompatibility study by Witsap et al.,220 assessing anionic MSNs in 

macrophages prepared from adult human blood donors, parallels some of the results and 

issues in our studies with protocells that we found to co-localize with spinal 

macrophages. In the Witsap experiments, three different MSNs prepared by calcination 

only, solvent extraction only, or calcinated and covalently loaded with the green 

fluorophore, fluorescein isocyanate (FITC), were evaluated in primary macrophage 

cultures. Viability of macrophage was measured by trypan blue assay and cells remained 

viable at 10 and 100 ug/ml doses after a 6 or 24 hour exposure, similar to the results of 

our experiments with DOTAP and DOPC protocells in mouse macrophage cells (Raw 

274.7) and HEK cells. Interestingly, Witsap et. al reported that the autofluorescent 

properties of MSNs confounded their attempt to use the colorometric 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) assay for measuring 

mitochondrial metabolic activity. Protocell green autofluorescence similarly confounded 

our initial assays of live cells using the green fluorophore, Calcein-AM, followed by 

analysis using flow cytometry. We found the problem was solved instead by assessing 

dead cells using the red fluorophore, Ethidium homodimer-1. Protocell autofluorescence 

also confounded our examination of protocells in spinal cord slices by standard 
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microscopy, yet was remedied by a switch to the use of spectral analysis to determine 

biodistribution.  

In the Hudson report,93 uptake of MSNs was drastically reduced by an actin-

inhibitor, Cytochalasin-D and a cocktail of endocytosis inhibitors, suggesting that the 

particles were being taken up by macrophages by the actin dependent process of 

endocytosis. The macrophage function was unaffected following internalization of 

MSNS, as the cells readily engulfed apoptosed neutrophils, Jurkat cells and Ig-opsonized 

sheep red blood cells as they would normally. Important to our studies, MSN containing 

macrophages stimulated with LPS produced their usual levels of IL-10, TNF-α and IL1-β 

cytokines.220 These studies support our findings that macrophages appear viable and 

healthy both in vivo in the CNS and in vitro in macrophage cell cultures following 

exposure to mesoporous silicates such as the protocell. The fact that autofluorescence 

confounded their microscopic examination of cells and colorometric viability assays 

supports our similar observations. 

While our studies have shown that 1 mg in 20 µL of both positively charged 

DOTAP:Chol 1:1 and DOPC protocells had no adverse effects when delivered to the 

CNS intrathecally, the issues of early cell stress or even programmed cell death remained 

a concern. The realm of nano-MSNs and their tolerance in living systems remains a 

largely uncharted territory, due to the many variations in synthesis, composition, size 

shape and immunogenicity. Toxicity could be a benefit in some cases, such as in the 

elimination of cancer cells. Conversely, nano-MSNs would be a risk if healthy cells are 

destroyed in the process.  
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4.3.2 Transfection capacity and efficiency of protocells 

Our results show that protocells can be effectively used to deliver pDNA, thus 

their use in this regard will be addressed in more detail below. For an excellent study 

describing their use to deliver anti-cancer therapeutics please refer to the Ashley paper.94 

Due to the deprotonation of surface silanol groups on the protocell core, silica is 

intrinsically negatively charged.95 To avoid repulsion of negatively charged DNA, it can 

be altered to become positively charged.95 This was accomplished by adsorbing 

(layering) the silica with positively charged DOTAP lipid. Lui et al. found that the size of 

the silica core as well as the lipid charge was important for DNA loading.215 Silica 

particles with an 8 nm diameter when mixed with DOTAP continued to have a negative 

charge (negative zeta potential) while larger particles (30, 50, 80, 130 nm diameter) 

assumed a positive charge (positive zeta potential). When a plasmid DNA coding for the 

DsRed fluorescent protein (4.8 kbp) was loaded onto these protocells it was found that 

pDNA loading was dependent not only on particle size, but also on the ratio of particle to 

DNA mass. For protocells of 30 and 80 nm diameter particle, mass of protocells needed 

to be 4X or 16X the DNA mass, while for larger particles of 130 nm diameter, 40X the 

DNA mass was needed.215 The particles in our studies had a diameter of ~150-200 nm 

(data not reported). The studies by Liu et al.215 also demonstrated that in vitro transfection 

efficiency of DOTAP: Chol 1:1 in CHO cells in studies was approximately 30 % of 

transfected cells and equivalent to that of LipofectamineTM 2000. A casual estimate of 

transfection efficiency in the HEK cells used in our studies was comparable. Supporting 

the use of protocells for DNA delivery, Liu’s group demonstrated DOTAP: Chol 1:1 

protocells completely protected the pDNA-IL-10 from degradation in an assay with the 
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DNA specific degradative enzyme, DNAse I, and successfully transfected cells even if 

previously exposed to the nuclease. In a final study, the Liu team used different 

fluorescent labels for the lipid, silica core (50 nm diameter) and DNA and demonstrated 

that all the components remained intact after 2 hours, suggesting that they all entered the 

cell simultaneously. By 12 hours, the DNA was observed in the nucleus while most of the 

silica remained peri-nuclear. Larger particles of 200 nm appeared to remain in the 

endosome. The confocal data in our studies revealed similar peri-nuclear localization of 

protocells around 30 nm in diameter. While the studies of Liu et.al215 demonstrate that 

protocells protect the DNA from degradation and are capable of cellular delivery of a 

fluorescent tagged plasmid, our HEK cell transfection studies (Chapter 2, Figure 2.6) 

are the first to demonstrate that a therapeutic gene such as IL-10, remains fully 

operational and generates functional protein following loading on protocells. 

4.4  Adjuvants to improve pDNA therapy 

4.4.1  Adjuvants defined 

Classically, adjuvant compounds are used with non-pathogen based vaccinations 

such as protein-based vaccines to induce a safer and longer lasting immune response. 

Typically, they are used to enhance the immunogenicity of an antigen-based vaccination 

or to improve efficacy of a vaccination in immunocompromised populations.221 Others 

serve as vehicles to present an immune stimulatory antigen, such as the commonly used 

Complete Freund’s Ajuvant (CFA), which presents antigen in a water-in-oil emulsion.222 

In our studies, adjuvants are being evaluated in an attempt to reduce the dose and number 

of pDNA-IL10 injections required to generate enduring pain relief in the CCI model of 
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neuropathic pain. To be clinically successful, the candidate adjuvant must induce an 

innate response by stimulating antibody production or longer lasting adaptive cellular 

immune responses.221 

There are two basic categories of adjuvant.223 Conventional adjuvants can be 

synthetic, such as lipids, polymers or emulsions, or natural adjuvants, such as those that 

are pathogen-derived, using pathogen associated molecular patterns (PAMPs) from 

bacteria or plants. Interestingly, mannose conjugated glucoproteins are a common PAMP 

on bacterial pathogens. DNA based adjuvants are genetically engineered vectors that 

modulate expression of immune stimulatory molecules such as cytokines, B or T cell co-

stimulatory molecules, complement molecules, transcription factors or heat shock 

proteins.223 The route of inoculation of an adjuvant may be critical to the nature of the 

adaptive immune response. For example, early studies showed that intramuscular 

injections of adjuvant stimulate Th1 responses, while high pressure delivery by a 

pneumatic gene gun, elicited Th2 responses.223  

4.4.2  Adjuvants to prime innate immunity 

4.4.2.1 Stimulating cytokines and antibody immune responses 

Most commonly, adjuvants stimulate innate immunity.221 One such example are 

the CpGs DNA motifs that bind toll-like receptors (TLRs) with activation of patterned 

recognition receptors (PRRs) on antigen presenting cells (APCs), such as macrophage 

and dendritic cells. This binding leads to the presentation of antigen by the specialized 

protein complexes, MHC I and II to B and T cells, with activation of co-stimulatory 
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molecules and up-regulation of antibodies, cytokines and complement proteins. 

Complement proteins coat antigen for improved recognition by antibodies. 

4.4.2.2  Adjuvants to prime adaptive cellular immunity 

A second use for adjuvants is to prime the prolonged adaptive cellular responses 

of adaptive immunity. Presentation of adjuvant antigens by MHCII on APCs to CD4+ T 

cells is critical to the maturation and differentiation of CD4+ T cells. When so activated, 

CD4+ T cells differentiate into two distinct cell types with two different cytokine 

profiles, T helper type (Th1), that primarily release INF-γ and Th2 cells that produce anti-

inflammatory cytokines such as IL-4 and IL-13. A third T helper cell type, Th17, thought 

to regulate the cytokine profiles in the other two, is also differentiated.222 As a 

consequence adjuvants can be designed to polarize T cell populations with a Th1 or Th2 

bias. 222  

Cytokines released by Th2 polarized CD4+ T helper cell populations have the 

potential to influence macrophage polarization, priming a feed forward response in the 

direction of the M2 phenotype, including improved ability to phagocytose a therapeutic 

gene. Therefore, evaluation of intrathecally delivered adjuvant compound for T cell 

responses might be an important future direction for our studies, given T cells and 

MHCII expression have been identified in the DRG and DH of the spinal cord during 

neuropathic conditions. 

Another adaptive immune cell that can be stimulated with adjuvants is the 

dendritic cell.224 Like macrophages, they are continually surveying the extracellular 

environment for antigens resulting from pathogens or tissue damage. They have also been 
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dubbed, ‘Nature’s adjuvant’225 as they process and present antigens to T cells, and in 

doing so, regulate the Th1 or Th2 response to the antigen. For example, current therapies 

have been designed to target DC surface receptors with monoclonal antibody adjuvants to 

facilitate cytotoxic T cell responses against cancer cells or stimulation of specific 

antibody responses by B cells.224, 225 DC cells in mice can be divided into CD8+ DCs, 

that initiate Th1, proinflammatory cytotoxic functions, and CD8- cells. The latter are 

better at activating CD4+ T cells and their differentiation into Th2 and a T17 regulatory 

(T17reg) cells, that are programmed to facilitate an anti-inflammatory cytokine profile.224, 

225 By using antibody adjuvants specific to DC surface receptors, a T cell specific 

population with an anti-inflammatory profile can be generated, leading to M2 

polarization of nearby macrophage with improved gene uptake.224, 225 Excitingly, the 

mannose receptor is highly expressed on DCs188, 192 and its ligand, D-mannose the most 

successful candidate adjuvant used in our present study. Future studies using specific 

targeting of mannosylated protocells as an adjuvant to prime anti-inflammatory 

populations of DC and T cells may further enhance proliferation of M2 polarized 

macrophages and lead to enhanced IL-10 transgene uptake prolonging neuropathic pain 

reversal at lower doses and with only one injection. 

4.5  Improvement of spinal non-viral IL-10 gene delivery using D-mannose as a 
transgene adjuvant to control chronic neuropathic pain (re-submitted to 
Molecular Pain) 

4.5.1 Dexamethasone as an adjuvant 

Dexamethasone (DEX) is a synthetic glucorticosteroid (GC) that has been found 

to be important in the resolution of inflammatory diseases by accelerating the apoptosis 
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of leukocytes, such as the eosinophil cells associated with asthma and potentiation of 

their phagocytosis.226 Glucocorticoids such as Dex, act by binding the Glucocorticoid 

Receptor (GR). This receptor exists in its inactive form as a complex with the heat shock 

protein HSP90 and other chaperone proteins that bind to its cytoplasmic tail. With ligand 

binding, these proteins dissociate and expose a nuclear localization signal resulting in the 

translocation of the GC-GR complex to the nucleus.227 In the nucleus, two GR molecules 

form a dimer that binds to the promoter region of corticosteroid-responsive genes, the 

corticosteroid-response element (GRE). The genes upregulated are mostly anti-

inflammatory, and include IL-10 and the inhibitor of NFκ-B, Iκ B-α.75 In addition, the 

GC-GR acts indirectly on co-activator molecules which have histone acetylation activity 

leading to the activation of other anti-inflammatory genes, and at the same time recruits 

histone deacetylases that result in the deacetylation and down regulation of 

proinflammatory genes.75 In vitro, Dexamethasone has been shown to inhibit pro-

inflammatory IL-1β gene expression by blocking the transcription factor NFκ-B and AP-

1 activation.227 Another report showed that glucocorticoids could induce the 

differentiation of an anti-inflammatory subtype of macrophage.228 Because of its well-

known anti-inflammatory effects and potential to induce M2 polarization in spinal 

macrophage cells, DEX was a logical choice as a candidate adjuvant. 

Surprisingly, when used as an adjuvant to prime IL-10 transgene uptake, DEX 

caused only partial pain reversal in neuropathic animals, and the results were short lived. 

The literature regarding the pharmacokinetics of Dexamethasone, intrathecally injected 

into rats, is scant. One group assessed the stability, bioavailability and safety of 

chronically administered Dexamethasone sodium phosphate using indwelling lumbar 
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catheter in naïve Sprague-Dawley rats. Free dexamethasone, within 40 minutes and at 

low doses of 12.5 ng/hour, produced no side effects of neuropathy.229 However, there 

were signs of inflammation observed in the lumbar sub-arachnoid space, when a higher 

dose of 125 ng/hour was administered in the same manner.229 This study was used as to 

establish the dose of Dex used in the studies in Chapter 3. We injected 62.4 ng or 6.2 ng 

(62.4 mg of Dex in 1 gram of powdered compound; Sigma-Aldrich) in a 1st priming 

injection and attributed the observed short-term pain reversal, to inadequate IL-10 

transgene uptake, possibly due to dose issues. If the dose was too high, it may have 

resulted in inflammatory responses of peri-spinal immune cells similar to the effect of 

high doses of Dexamethasone sodium phosphate described above. Alternatively, if the 

dose was too low or the DEX degraded early on, the switch to M2 polarization may have 

failed and thwarted adequate transgene uptake. 

4.5.2 D-mannose as an adjuvant 

4.5.2.1 The sugar 

D-mannose is a 6 carbon sugar that is a C-2 epimer of glucose. In eukaryotic cells 

mannose is required for N-glycosylated glycophospholypid anchor synthesis and the 

source of mannose in eukaryotic cells is mainly derived from glucose. Glucose is broken 

down to fructose-6 phosphate in the Kreb’s cycle and further processed by 

phosphomannose isomerase (PMI) to mannose-6-phosphate.230 The literature on the 

pharmacokinetics of D-mannose is also scant. One study in mice showed that an 

intravenous injection of [2-3H] mannose showed a clearance half-life of 28 minutes with 

98% of the label cleared after 2 hours.231 In humans given D-mannose orally, blood 
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mannose levels increased in a dose dependent manner with increasing doses of mannose 

(0.07-0.21g mannose/kg body weight). It is possible that D-mannose in CSF would have 

at least a similar or even longer half-life of around 0.5 hours following our i.t. injections, 

long enough to bind receptors on peri-spinal macrophage and dendritic cells. 

4.5.2.2 Structure of the mannose receptor 

The mannose receptor (MR; also known as CD206) is a glycoprotein with one 

transmembrane domain and a cytosolic domain, with a single tyrosine residue that 

mediates receptor internalization and recycling but contains no domains involved in 

intracellular signaling.76 The MR exists in both membrane bound and soluble forms.232 It 

is highly expressed on dendritic and macrophage cells and in the lymph organs, liver and 

to some extent on smooth muscle and endothelial cells. It contains three different 

extracellular domains an N-terminal cytosine rich domain (CR) that can bind sulfonated 

sugars ending in SO4-3-GAL or SO4-3/4-Gal NAc, a fibronectin-like domain, involved in 

collagen binding and eight tandemly arranged C-type lectin-like domains (CTLDs) that 

bind sugars terminating with D-mannose, L-fructose or N-acetyl glucosamine in a Ca2+ 

dependent manner.76 Carbohydrate moieties containing these sugars are often found on 

the surfaces of pathogens and self-antigens. Thus the receptor plays an important role in 

the innate immune response and the internalization and processing of antigens by 

APCs.76,233 Studies in transgenic knock out (k.o.) mice have shown the receptor is 

necessary for clearing mannosylated enzymes and proteins involved in inflammation and 

wound healing from the blood.23 70% of the receptor is localized internally in the early 

endosomal compartment while the other 30% is localized on the cell surface and is 

constantly recycling back and forth between the two via clathrin coated vesicles.234 
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Fluorescent microscopy has shown that MR is dominantly expressed in early endosomes 

and late endosomes which suggests that MR might be transported with its ligand to 

compartments involved in antigen presentation by MHC I or class II.76 These studies 

support MR involvement in ligand-receptor internalization and antigen presentation by 

macrophage and dendritic cells with the potential to polarize both innate and adaptive 

immune cells in the direction of anti-inflammatory M2 polarization.  

4.5.2.3 Receptor function 

While the role of MR in clathrin-dependent endocytosis has been clearly 

demonstrated, the role of the receptor in phagocytosis remains controversial.76, 77 

Phagocytosis is an actin-mediated process involving formation of pseudopodia or 

extensions of cytoplasm that surround and engulf material in a large vesicle known as a 

phagosome. After the material is taken into the cell, the actin depolymerizes and the 

phagosome moves into the cell entering the endosomal pathway.76 Non-phagocytic CHO 

cells, transfected with a hMR cDNA to express MR, failed to phagocytose zymosan, a 

yeast derived particle, mannosylated latex beads, or Mycobacterium kansasii but they 

were able to endocytose mannosylated glycoproteins in a clathrin-dependent manner. 

Transient expression of hMR in two human cell lines also failed to phagocytose.235 The 

authors suggest that while the receptor itself is not responsible for phagocytosis, binding 

of ligand such as D-mannose, may cause recruitment of other cell surface receptors, 

which activate phagocytic processes beyond clathrin dependent endocytosis. 

Notably, the MR lacks signaling domains in its cytoplasmic tail even though the 

receptor has been shown to contribute to down stream signaling events. Thus it appears to 
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require assistance form other receptors to accomplish signaling and modulation of 

cytokines.76 It has been suggested that MR activation by ligands such a D-Mannose, 

reduces pro-inflammatory cytokine production by upregulation of IRAK-M. This 

inhibitor of TLR signaling acts by preventing the dissociation of the kinases, IRAK1 and 

4, from the My88 adaptor molecule, preventing the downstream binding of NFκ-β to its 

promotor, thus preventing upregulation of pro-inflammatory molecules.76 Tachado et 

al.236 demonstrated that MR required assistance from another receptor to generate one 

cytokine, IL-8. The group transfected HEK-293 cells with cDNA coding for hTLR2 only, 

or hMR only, and found that no IL-8 was released from the cells upon challenge with p. 

carinii (jirovecci). Suprisingly, when both receptors were co-expressed, IL-8 was 

detected. Their co-precipitation studies suggested that ligand binding MR might form a 

functional complex with toll-like receptor 2 (TLR2) on the cell surface.236 TLR2 has been 

shown to stimulate phagocytosis in macrophage cells and may contribute to improved 

transgene uptake.237 A second study by Chieppa et al.192 supports the idea that MR works 

in concert with other receptors. They found that DCs treated with an MR specific 

monoclonal antibody, LAM-1, were unable to release cytokines that stimulate Th1 

recruitment, suggesting the antibody was blocking the receptor. However, cells treated in 

the same fashion were still able to release anti-inflammatory cytokines, IL1r-a and IL-RII 

and recruit Th2 cells. Not all MR ligands generated these effects. Cytokine production 

was not significantly altered when mannan, a well characterized MR ligand was used, but 

changes in T cell recruitment were observed when mannose capped–LAM (man-Lam) 

was the ligand.192 These results support the notion that man-Lam may have been acting 
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through MR in concert with other receptors such as, Dectin-2 and DC-SIGN, both with 

well known signaling capabilities.  

An early study by Raveh et al.238 suggests that Il-1β and IL-4 cytokines, may 

actually work together to enhance mannose receptor mediated phagocytosis. They 

showed that the Th2 cytokine, IL-4, increases both cell surface expression and 

endocytosis-mediated internalization of ligand bound receptor. The Th2 cytokine, IL-13, 

produced similar effects. The Th1 cytokine INF-γ had the opposite effects on 

endocytosis. Surprisingly, when applied together, the normally antagonistic cytokines, 

IL-4 and INF-γ, enhanced receptor mediated phagocytosis, an actin mediated process, 

even though they had had opposing effects on endocytosis.238  

Recently, it has been reported that there are many other receptors in the C-Lectin 

family that are capable of binding mannose on macrophage and DCs, cell types common 

to the meningeal layer. These are macrophage inducible C-type lectin (MINCLE), which 

can up regulate pro-inflammatory cytokines and leukocyte migration, dendritic cell 

immune receptor (DCIR) expressed on DCs and many leukocytes and DECTIN-2, a Syk 

signaling coupled PRR on DCs, and dendritic cell-specific intercellular adhesion 

molecule-3 (DC-SIGN).239 All have signaling motifs in their cytoplasmic tails that may 

be working cooperatively with MR to improve endocytosis and IL-10 transgene uptake 

leading to prolonged reversal of allodynia observed when D-mannose was used as an 

adjuvant to assist in IL-10 gene delivery (Chapter 3, Figure 2). 
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4.5.3  Mannose receptor in the CNS 

In the mouse CNS, the mannose receptor is most highly expressed on peri-

vascular and meningeal and choroid plexus macrophages240 which are demonstrated in 

the current report to uptake FAM-tagged protocells. MR are also found on dendritic cells, 

microglia241,242 and to a lesser extent, on astrocytes.190, 243 All three cell types are 

involved in modulating immune responses, and hence could respond to stimulation by the 

adjuvant D-mannnose. While expressed in some brain areas during development, the MR 

is not expressed on neurons in the adult brain or on oligodendrocytes, although in the 

periphery, they have recently been shown to be expressed on similar myelin producing 

Schwann cells.244  

In summary, MR has been shown to be heavily involved in innate immunity 

through the recognition of mannosylated PAMP ligands. By a process that is not well 

understood, the ligand bound receptor is internalized and adaptive immune responses are 

generated. As previously discussed, the receptor may work in synergy with other 

receptors with active signaling motifs in their cytoplasmic domains to aide this process. 

Different combinations of cytokines may also be involved. The receptor/ligand complex 

is processed after internalization into short peptide antigen fragments that are presented 

on MHC I or II for the stimulation of B and T cells. The release of pro- or anti-

inflammatory cytokines is capable of influencing M1 or M2 polarization of macrophage 

with subsequent effects on IL-10 transgene uptake.  
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4.6  Future directions 

4.6.1 Protocells to deliver adjuvant  

Protocells have excellent potential for multimodal delivery of drug or DNA to 

specific cells because of the high loading capacity of the porous silica core and ease with 

which targeting molecules can be conjugated to the lipid by layer. The in vitro and in vivo 

studies in Chapter 2 demonstrate that IL-10 transgene can be delivered by protocells and 

remain fully functional for gene expression following loading procedures. Allodynic 

reversal was robust and full for around two weeks in neuropathic rats intrathecally 

injected with 10 µg of pDNA loaded on DOTAP:CHOL protocells (Chapter 2, Figure 

2.7). While these results are promising, there is much room to improve efficacy of 

intrathecal IL-10 transgene delivery using protocells. One way to advance these studies is 

to use cell specific targeting of pDNA-IL10 and/or adjuvant loaded protocells to DC or 

macrophages in the meningeal lining or to microglia or astrocytes in superficial regions 

of the spinal cord. In this fashion these cells could be directly stimulated to polarize to an 

alternatively activated M2 phenotype with improved capability for transgene uptake. As 

these studies point out, D-mannose is an excellent adjuvant to prime these responses. By 

conjugating mannosylated protein ligands to the lipid bilayer of protocells and 

simultaneously loading the protocell with D-mannose enduring pain relief may be 

achieved in a single co-injection with a very low dose of pDNA-IL10 (1 µg) that was 

previously shown to be ineffective when given as a single injection. 

An early study Kawakami S et al.,245 points to the feasibility of using mannose 

receptor targeted gene transfer. Cultured mouse peritoneal macrophage cells were 
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transfected with a pDNA encoding the luciferase gene complexed with the cationic 

liposome composed of a mannosylated cholesterol derivative, DOPE lipid or non-

mannosylated cholesterol, DOPE lipsome. Mannosylated cholesterol/DOPE lipid was 

found to have significantly higher transfection as measured by fluorescent intensity of the 

luciferase by a luminometer. In vivo, mice were given intravenous injection of the two 

varieties of lipid/pDNA-luciferase and those with mannose showed 16-fold higher 

expression of luciferase in the liver, an organ well characterized to express high numbers 

of MRs. When mannosylated bovine serum was injected 5 minutes prior to the liposome 

injections to saturate MRs, gene expression in the liver was significantly lower, 

supporting the idea that the improved transfection involved the MR.245 Improved 

transfection efficiency also demonstrated by another group using Mannose-C4-

cholesterol containing liposomes to deliver pDNA luciferase, using the same mouse in 

vitro and in vivo models.246 More recently, Jaing, H. et al.,247 used mannosylated 

chitosan-grafted polyethylenimine (Man-CHI-g-PEI) to transfect Raw 264.7 mouse 

macrophage cells and found that the transfection efficiency of Man-CHI-g-PEI/DNA was 

10948.3 than naked DNA, 9.4 higher than CHI-g-PEI/DNA , and 16.6-fold higher than, 

PEI/DNA complexes. Man-CHI-g-PEI/DNA complexes had a much reduced transfection 

efficiency in the presence of excess free mannose (50 µM) used to saturate MRs in a 

receptor binding competition assay, supporting that the mannosylated complexes were 

being taken up by a MR dependent mechanism.247 Mannosylated cholesterol or PEI 

conjugated lipid bilayers on adjuvant or pDNA loaded protocells might fine-tune the use 

of D-mannose as an adjuvant and exploit the unique features of the protocell, namely, 

high loading capacity and ease of surface modification. This new generation of protocell 
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has great potential for generating safe and long term pain reversal with lower doses of IL-

10 transgene with only one injection.  

4.6.2 PLGA encapsulation 

Studies using FDA approved, biodegradable, poly-lactic-co-glycolic acid (PLGA) 

to encapsulate pDNAIL-10 and/or adjuvant, as outlined in the original aims of this 

dissertation also offer great promise to improve intrathecal IL-10 gene delivery. Our 

studies have already demonstrated, in the CCI neuropathic rat model, that only one 

injection of 10 µg of PLGA encapsulated IL-10 was able to generate pain relief of ~ 3 

month duration while unencapsulated pDNA at that dose had no effect.73 Because the 

double emulsion synthesis process used to make the particles, loading efficiency is very 

poor. It took 1 mg of PLGA to encapsulate 10 µg DNA. The ideal would be to drop both 

the dose of pDNA and PLGA and generate the same pain reversal. One way to do this is 

to adjust the double emulsion synthesis process. The method involves three phases: 1) a 

hydrophyllic water based phase that contains the DNA 2) an intermediate organic phase 

composed of polymer mixed with solvent and 3) an outer water phase containing an 

emulsifying agent. Adjusting any of these phases has the potential to improve DNA 

loading efficiency in our future work and our collaborators are currently working on this 

issue. While plasmid DNA is difficult to load, small single stranded DNA such as 

ODN2006 may load without difficulty. One study planned for the future is to encapsulate 

this ODN or other adjuvant molecules to prime IL-10 gene uptake. Encapsulation in 

PLGA may protect the adjuvant from degradation as it protects DNA from nuclease 

digestion.73 ODNs adsorbed on PLGA particles and co-administered with human anthrax 
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vaccine induced faster and greater immunoglogulin G response than when naked ODNs 

with the vaccine.248 

PLGA may be ideal for delivering adjuvants such as ODNs, as it has a bimodal 

release profile so it would cause an initial burst of adjuvant or priming immune response 

during the sensitization period followed by a sustained release that might generate 

prolonged M2 polarization of peri-spinal macrophage. An in vitro analysis of pDNA-

IL10 performed in our studies showed that 30% was released from PLGA by 3 days with 

a steady release continuing greater than 72 days.73  

 The terminal carboxyl groups on PLGA can be conjugated with other molecules 

for cell targeting but the efficiency is low as there are few of these groups available per 

particle.249 One strategy is to coat the microparticle with another polymer that contains 

higher densities of functional groups of polyamines. Another strategy is to coat the 

particle with avidin to which biotinylated ligands are attached.249 Either strategy might 

allow mannosylation of PLGA and targeted delivery for IL-10. 

4.7 Concluding remarks 

The research and development of therapeutic gene based methods of treating 

chronic neuropathic pain such as those presented here have been progressing for greater 

than a decade. While lumbar delivery of transgene has been shown to successfully to treat 

this problem in a number of animal models,68,73,79,99,131,250 there is much room for 

improvement to achieve greater efficiency. Using synthetic particles is an excellent 

approach to advance the effectiveness of such therapy. 
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The use of synthetic particles for biomedical purposes such as drug delivery, cell-

specific targeting, medical imaging and gene delivery has rapidly expanded in recent 

years. As discussed herein, these particles are advantageous in that they can be 

engineered to be highly stable in physiological conditions, and tuned for release of cargo 

at a certain time or pH. They are readily functionalized with ligands, molecules or 

antibodies for specific cell targeting, loaded with therapeutic drugs and administered to 

the CNS safely.214, 251  

Cell specific targeting is being increasingly used in approaches to treat 

neurodegenerative diseases and cancer, where the BBB and neuronal anatomy have 

limited other gene therapy approaches.91 Specific targeting of adjuvant or pDNA-IL-10 to 

peri-spinal macrophage or DCs, may offer key improvements in delivery of Il-10 

transgene as a therapeutic treatment to relieve chronic neuropathic pain states. Modifying 

biodegradable polymers such as PLGA or non-toxic nanomaterials such as protocell with 

cell specific ligand holds exciting promise to advance the work presented here. It is of 

upmost importance that while improving the efficiency of the gene therapy approach, that 

biocompatibility and safety are maintained and continually monitored. 
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Appendix A: Figures 

 

Figure A.1 Characterizations of protocells. 

(A) TEM image of mesoporous silica nanoparticles; scale bar = 50 nm. (B) Nitrogen sorption isotherm of 

10% aminated silica nanoparticles. (C) Determination of pore size of 10% aminated silica nanoparticles by 

the Barrett-Joyner–Halenda (BJH) method [27]. (D) DOTAP:Chol protocells and (E) DOPC protocells 

examined from 1 – 168 hours in specific pH solutions. The negatively charged fluorophore, dextran 

tetramethylrhodamine (DexRho) loaded into the protocells served as cargo. Dashed line indicates 20% 

release for ease of comparison between groups and conditions. For both DOTAP:Chol and DOPC 

protocells cargo release increased as time and pH increased. A significant interaction between time and pH 

was revealed (DOTAP:Chol: F(35,84)= 2.16, p = 0021; DOPC: F(35,84) = 2.35; p = 0.0008. A trend for 

increased cargo release at pH 4 compared to pH 7.4 from DOTAP:Chol protocells was observed. 

DOTAP:Chol protocells at pH 6 revealed the greatest degree of cargo retention at 3 and 72 hours (p < 

0.05). The pattern of greater cargo retention (~15%) at pH 7.4 and 6.0 in DOTAP:Chol protocells suggests 

that cargo will remain associated with protocells until taken up within the cell and released within the late 

lysosome for optimal cargo delivery. 
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Figure A.2 Cells remain highly viable following application of DOTAP:Chol and DOPC protocells 
containing pDNA-IL-10-GFP. 

Cells were incubated for 24 hours with DOTAP:Chol or DOPC protocells loaded with pDNA-IL-10-GFP 

or blank control protocells (no pDNA) at varying concentrations across a 50-fold dose range, 500, 50, 25 

and 10 ug/ml. Dead cells were identified by flow cytometry after staining with ethidium-homodimer-1. 

Results are representative of the percentage of gated cells (average of 4 experiments) compared to untreated 

control cells, **p < 0.01; ***p < 0.0001. 
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Figure A.3 In vivo subtle differences in biocompatibility are revealed between DOTAP:Chol and 
DOPC protocells. 

Baseline threshold responses of both hindpaws (left and right) between animal groups were similar; at 10 g 

(right y-axis) F(4,14)= 0.3721; p > 0.05). (A, B) Following i.t. injection with either 1 or 0.01 mg of 

DOTAP:Chol or (C, D) DOPC protocells, threshold responses remained unchanged throughout the 

timecourse (0.5, 1, 2, 3, 24, 48 and 72 hrs) suggesting no spinal inflammation. (C, D) For DOPC - treated 

animals, while a decrease in thresholds was not observed across the majority of the timecourse (left- F(24,60) 

= 1.88, p > 0.05; right- F(24, 60) = 1.01 p > 0.05), there was a small but significant decrease at 2 hours in both 

hindpaws (p < 0.05 left and right), indicating a subtle and transient spinal cord inflammation resulting in 

decreased sensory thresholds [35]. All animals exhibited normal feeding, grooming and exploratory 
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behavior throughout the 8-week observation. (E) Body weight gain remains normal following i.t. injection 

with DOTAP:Chol or DOPC protocells. At BL, there was no significant difference in body weight between 

untreated (open triangles) and treated animals that received i.t. DOTAP:Chol (2 wks, solid circles; 4 wks, 

solid diamonds; 8 wks, solid squares) or DOPC protocells (2 wks, open circles; 4 wks, open diamonds; 8 

wks, open squares)(F(6, 14) = 2.837, p = 0.0506), followed by a normal gain in body weight. This normal 

gain in body weight between control animals and those receiving protocells by i.t. injection remained 

consistent over time in all groups of animals (n = 3 per group). 

ll  
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Figure A.4 Histological examination of DOTAP:Chol protocells with DNA cargo. 

 Fluorescent histological examination of spinal cord sections near the lumbar spinal cord injection site 

(segments L3-4) 8 weeks after i.t. injection of DOTAP:Chol protocells loaded with FAM-tagged 18 base 

pair (18bp) DNA oligomer. (A) Protocells containing DNA cargo (green; white arrow) are not colocalized 

with astroglia stained for glial fibrillary acidic protein, GFAP (red). (B) However, protocells are 

colocalized in the pial meninges with activated microglia/macrophage stained for OX2 (red). 

Colocalization of microglia with DNA cargo (green) results is indicated (white arrow). (C) There is no 

evidence of cellular death in the meninges or spinal cord, as indicated by the absence of positive staining 

for the apoptotic marker, activated Caspase 3 (red) while protocell-containing DNA cargo (green; white 

arrow) is clearly present. (D) Confocal image identifying DOTAP:Chol protocell cargo of FAM-tagged 18 

bp DNA (green) in the peri-nuclear area (cell nuclei stained with DAPI; blue) of meningeal macrophage 

cells stained for the classic activation marker, EDI (red; white arrow) in the dorsal spinal cord. Overlap 

reveals yellow cytoplasmic and peri-nuclear staining. All images are at 20X; scale bar = 40 µm. 
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Figure A.5 The spread to brain following i.t. protocell injection is determined by the lipid bilayer 
formulation. 

 Graphs are representative of the key data in the corresponding Table I. Fluorescent spectral signal from 

FAM-tagged 18bp DNA cargo in cryo-sliced tissue sections (n = 4) of DOTAP:Chol or DOPC protocell i.t. 

treated animals is compared to the spectra of background autofluorescence from naïve animals. (A) In the 

brain, after 72 hours, there was no significant signal from FAM-tagged DNA delivered by either 

DOTAP:Chol or DOPC protocells. By 8 weeks, background signal in DOTAP:Chol protocell treated tissue 
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was comparable to that of auto-fluorecence (p > 0.05), while the signal from FAM-tagged DNA delivered 

by DOPC protocells had significantly increased compared to autofluorescence (F2, 6 = 8.60; p = 0.0173. 

(B) At the lumbar spinal cord protocell delivery site, FAM-tagged DNA delivered by both DOPC and 

DOTAP:Chol prototocells was clearly present at both 72 hours and 8 weeks when levels of FAM signal 

analysis was compared to levels from autofluorescence (F(2, 6) = 6.18; p = 0.0348), with the signal at 72 

hours significantly higher than that at 8 weeks (F(2, 6) = 10.71; p = 0.0170). (Table 1) Values (1 X E-04) of 

each anatomical region are an average of computer-generated spectral analyses taken from 4 separate 

images of four 10 µm sliced tissue sections. Yellow boxes indicate those areas in which the signal from 

FAM-tagged DNA cargo reached levels that were significantly higher than control autofluorescence for 

that tissue. Asterisks indicate the amount of significance. Very low levels of DOTAP:Chol protocells were 

detected in the lymph organs, such as thymus and spleen, while DOPC remained in the CNS. *p < 0.05; 

**p < 0.01; ***p < 0.0001.  
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Figure A.6 DOTAP:Chol protocells improve cellular transfection of pDNA-IL10 transgene.  

In vitro transfection of HEK cells with a bicistronic plasmid containing the genes for both IL-10 and GFP 

employing an internal ribosomal entry site results in expression of GFP (A; green). Staining with antibody 

for IL-10 (red) shows colocalization (yellow) in a GFP-positive HEK cell (green), indicating functional 

bicistronic transgene expression (A; insert). pDNA IL-10-GFP (B) or pDNA-IL-10 (C) delivered by 

DOTAP:Chol protocells results in functional transgene expression as measured by IL-10 protein release in 

culture supernatants following a 24 hour incubation. Results are the average of 4 representative 

experiments (F(1, 4) = 24.85; ***p < 0.0001, **p < 0.01). Scale bar = 10 µm in both Figure 6A and insert.  
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Figure A.7 Intrathecal delivery of protocells loaded with pDNA-IL-10 causes therapeutic reversal of 
allodynia. 

(A and B) At pre-treatment baseline (BL) values, no significant differences were observed (ipsilateral and 

contralateral; p > 0.05). Following BL assessment, animals underwent CCI of the left sciatic nerve, and 

threshold values were reassessed 3 and 10 days later. Robust allodynia was observed compared to sham-

treated controls (ipsilateral- F(8, 36) = 4.94; p < 0.0004; contralateral- F(8, 36) = 19.89; p < 0.0001). On day 10 

after CCI, rats then received an i.t. injection with DOTAP:Chol/ pDNA-IL-10 protocells or control 

DOTAP:Chol protocells without DNA. A significant bilateral reversal of allodynia beginning on day 12 

after CCI (day 2 after i.t. injection), and continuing through day 22 was observed (overall treatment effect, 

ipsilateral- F(4, 108) = 44.91; p < 0.0001; contralateral- F(4, 108) = 85.09; p < 0.0001). Each CCI operated group 

(closed symbols) received an i.t injection of DOTAP:Chol protocells loaded with pDNA-IL-10 (squares; n 

= 7) or a non-coding DNA (triangles; n = 5) (10 µg pDNA in 1mg protocells in 20 µl PBS) or PBS vehicle 

(circles; n = 3) (20 µl). Each sham-operated group (open symbols) received an i.t. injection of non- coding 

DNA (triangles; n = 5) (10 µg pDNA in 1 mg protocells in 20 µl PBS) or PBS vehicle (circles; n = 3) 

(20ul). Black arrow indicates i.t. injection; *p < 0.05; **p < 0.01; ***p < 0.0001. Nitric oxide 

concentration was measured in cultured Raw 264.7 cells (C) in LPS (black bar) and non LPS-stimulated 

cells (white bar) and those treated with whole protocells or constituents of protocells; silica core (500 µg) 

or Dotap:Chol lipid (20 µl)(hatched bars); All three treatments resulted in significantly less NO production 

than the LPS stimulated positive control (F(4,14)= 321.8; p < 0.0001). 



 181 

 

Figure A.8 Dexamethasone for improved pDNA-IL-10 uptake does not create robust pain reversal. 

(a and b) Baseline (BL) hindpaw sensory threshold responses to light mechanical touch were measured by 

the von Frey test with calibrated monofilaments). There were no significant differences observed between 

groups (Ipsilateral, F(3,24) =0.2154; p=0.8846; Contralateral, F(3,24)=0.6930; p=0.5665). Following either 

CCI or sham surgery, behavioral testing continued at the time points indicated on the x-axis. Animals 

receiving CCI surgery developed stable allodynia from day 3 to day 10 compared sham-operated animals 

(day 10: Ipsilateral, F(3, 24)=53.54; p<0.0001; Contralateral, F(3, 24)=71.70; p<0.0001). On day 10 following 

CCI surgery, animals received an i.t. injection of DEX (62.4 ng, n=6 or 6.2 ng, n=6), or equivolume i.t. 

saline (n=7) and sham-operated animals received i.t. equivolume saline (n=6). Three days later, an i.t. 

injection of pDNA-IL-10 (25 µg) or equivolume saline was given. Sham-control animals remained non-

allodynic, while CCI animals given i.t. saline remained allodynic. I.t. pDNA-IL-10 following a priming 

injection of DEX (62.4 ng) revealed a delayed and partial bilateral pain reversal (Ipsilateral, F(3,140) =33.83; 

p<0.0001; Contralateral, F(3,140)=19.7; p<0.0001). Black arrows indicate i.t. injections.  
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Figure A.9 The D-Mannose used to prime M2 polarization for improved pDNA-IL-10 uptake 
reverses allodynia greater than 90 days. 

(a and b) No significant differences in BL responses between groups prior to CCI or sham surgery were 

observed (Ipsilateral, F(4,32)=1.009; p=0.4197; Contralateral, F(4,32)=1.147; p=0.3551). Sham operated 

animals (open triangles; n=6) remained non-allodynic throughout the time course. CCI animals (open 

diamonds; n=7) revealed clear allodynia from day 3 to day 10 compared to shams (day 10: Ipsilateral, 

F(4,32)=32.87; p<0.0001; Contralateral, F(4,32)=37.01; p<0.0001). On day 10, animals received an i.t. 

injection of either D-mannose (50 µg; 5 µg) , or equivolume saline followed three days later by pDNA-IL-

10 (25 µg or 1 µg) or equivolume saline. Following the first priming injection of D-mannose (50 µg; closed 

squares; n=8), a robust reversal was observed, compared to CCI-saline injection (Ipsilateral, F(3, 70)=15.87; 

p=0.0004; Contralateral, F(3, 70)=20.40; p=0.001). Full reversal to BL levels continued for a 3 month period 

beyond the 2nd injection of pDNA IL-10 (25 µg) in those animals given D-mannose (Ipsilateral, F(3, 384) 

=57.46; p<0.0001; Contralateral, F(3, 384) =59.20; p<0.0001). A 2nd injection of a lower dose of pDNA-IL-

10 (1ug: closed triangles; n=5) produced a transient 11-day reversal. Animals pretreated with the lower 

dose of D-Mannose (5 µg) followed by a second injection of pDNA-IL-10 (25 µg) (closed circles, n=7) 

showed partial bilateral reversal for the 3 month time course that was not significant (Ipsilateral, F(3.17)= 

12.71; p=0.0270; Contralateral, F(3, 17)= 14.64; p= 0.002). 
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Figure A.10 D-Mannose generates short-term reversal of allodynia without pDNA-IL-10. 
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(a and b) No significant BL response differences between groups prior to CCI was observed (Ipsilateral, 

F(3,13) =0.4995; p=0.6910; Contralateral, F(3,13)=0.1761; p=0.9099). All animals underwent CCI surgery and 

revealed clear allodynia by day 10 with no significant differences between groups (F(3,13) =0.1897; 

p=0.9010; Contralateral, F(3,13)=0.2234; p=0.8780). On day 10, animals were given a single i.t. injection of 

D-mannose (50, 5, or .5 µg; closed squares, closed circles, or closed diamonds respectively) or an 

equivolume saline only (n=3-4/group). Saline-treated animals (open diamonds) remained bilaterally 

allodynic throughout the time course. Treatment with D-mannose (50 µg, n=3) resulted in bilateral partial 

reversal from allodynia that gradually returned by day 20 following injection (Ipsilateral, F(3,70)=15.87; 

p<0.0005; Contralateral F(3,70)= 20.40; p=0.0001). Black arrows indicate i.t. injection. (c-f) Cultured Raw 

264.7 mouse macrophage cells were pretreated with D-Mannose (100 mM) followed by a 2 hour incubation 

with a combination of D-Mannose (100 mM) and LPS (10 ng). (c) Compared to control treatment (No 

Tx=no treatment; Mann=D-mannose), LPS-stimulated cells given D-mannose treatment resulted in 

significantly increased IL-10 protein production, (d) almost complete ablation of IL-1β levels (e) 

significantly reduced TNF-α protein levels, and (f) reduced NO production. (g) Cultured Raw 264.7 mouse 

macrophage cells were pretreated with D-Mannose (500 mM) for 5 hours followed by a 24 hour incubation 

with D-mannose with or without pDNA-IL-10, or D-Mannose and pDNA-IL-10 alone. Those cells 

incubated with D-mannose and pDNA-IL-10 showed robust and significantly increased exogenous rat IL-

10 production over controls (F(5,17)=69.3; p<0.001)*p<0.05; **p<0.01; ***p<0.0001 
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Figure A.11 Spinal and DRG pro-and anti-inflammatory markers expression. 

(a and b) Verification of animal behavior prior to tissue collection is represented. There were no differences 

between groups at BL prior to CCI or sham surgery (Ipsilateral, F(5,18) =0.2597; p=0.8999; Contralateral, 

F(5,18)=0.4947; p=0.9398). As before, CCI treated animals revealed clear bilateral allodynia to day 10 

compared to sham controls (Ipsilateral, F(5, 18) = 35.54; p<0.0001; Contralateral, F(5, 18)=35.96; p<0.0001). 

On day 10 following sham or CCI surgery, animals were given an i.t. pretreatment with D-mannose (50, 

µg) or equivolume saline injection followed three days later by i.t. pDNA-IL-10 (25 µg; closed squares; 
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n=7) or equivolume saline (closed circles; n=4). Saline-CCI treated animals (open diamonds; n=3) 

remained bilaterally allodynic throughout the time course compared to sham-D-mannose (open squares; 

n=3) or sham-saline (open circles; n=6) treated animals (Ipsilateral, F(3,9)=28.79; p=0.0001; Contralateral, 

F(3,9)=19.7; p=0.0007). These data replicated our earlier results above, and reveal that i.t. pretreatment with 

D-Mannose (50 µg) followed by pDNA-IL-10 (25 µg) causes a full bilateral reversal of allodynia compared 

to CCI-control groups (Ipsilateral F(4,126)= 30.27; p < 0.0001; Contralateral F(4,126)= 35.75; P< 0.0001). At 

day 29 while rats remained fully reversed from allodynia, spinal cord and associated DRG tissues were 

collected and stained for the anti-inflammatory cytokine, IL-10 or the pro-inflammatory cytokine, IL-1β. 

(c) Animals that received D-mannose (50 µg) on day 1 and pDNA-IL-10 on day 3, revealed significantly 

greater IL-10 immunoreactivity (IR) in the lumbar spinal cord compared to those animals injected with 

saline only or saline followed by pDNA-IL-10 (Ipsilateral F(3, 5) =34.23; p<0.01; Contralateral F(3, 5) =2.714; 

p>0.05). (d,e,f). Representative images used for the data analysis are presented (red=IL-10 IR, blue=cell 

nuclei). (g) Adjacent tissue sections revealed significantly less IL-1β IR in the ipsilateral lumbar spinal cord 

compared to non-mannose treated control groups (Ipsilateral F(3,5)=10.67; p<0.05; Contralateral F(3,5)=3.73; 

p> 0.05). (h, i, j). Corresponding fluorescent images of the analyzed data are presented (red =IL-1β IR, 

blue=cell nuclei). (k) In addition, significantly greater IL-10 IR in the DRG is observed in the D-mannose 

primed treatment group compared to both non-mannose treated control groups (Ipsilateral F(3, 5) =10.35; 

p<0.05; Contralateral F(3, 5) =5.73; p>0.05). (l, m, n). Corresponding fluorescent images of the analyzed data 

are presented (red =IL-10 IR, blue=cell nuclei). Data for the contralateral DRG data are not shown. *p< 

0.05; **p< 0.01; ***p<0.0001; all images were taken at 10X; scale bar =100µm 
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Figure A.12 A single co-injection of D-mannose with low dose pDNA-IL-10 produces enduring 
reversal of allodynia. 

 (a and b) No significant BL response differences were observed between groups prior to CCI or sham 

surgery (Ipsilateral, F(3, 32)=0.8932; p=0.4973; Contralateral, F(36, 32)=1.393; p=0.231). As before, CCI 

treated animals revealed clear bilateral allodynia through day 10 compared to sham controls (Ipsilateral, 

F(3,32) =32.07; p<0.0001; Contralateral, F(3, 32)=38.78; p<0.0001). On day 10 after testing, sham rats received 

a single i.t. saline injection (open triangles; n=8) or D-Mannose (50 µg; closed triangles; n=4), and CCI rats 

received a single i.t. co-injection of D-Mannose (50 µg) with pDNA-IL-10 (1 µg; closed squares; n=10), 

pDNA lacking the IL-10 gene (control pDNA; open circles; n=7), or equivolume saline (open diamonds; 

n=6). Sham-saline and CCI-saline or CCI-control pDNA resulted in no change from bilateral allodynia 

throughout the time course, D-mannose co-injected with a low-dose of pDNA-IL-10 (1 µg) (closed squares, 

n=5) resulted in a significant and full reversal of allodynia throughout the 3 week time course (Ipsilateral 

F(3, 238)= 60.23; p<0.001; Contralateral =F(3, 224)=22.18; p< 0.001). 
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Figure A.13 Schematic showing theoretical loading of 3 protocell cargos 

A) This cargo is a negatively charged, 18 bp DNA oligomer with an approximate length of 6.12 nm and a 

diameter of ~2. It is tagged with a negatively charged fluorophore, FAM which has a MW of 473.4 and an 

approximate planar length of .139 nm and  height of .722 nm, as calculated by bond lengths. FAM-tagged 

DNA may load directly into the silica pores (~3 nm diameter). B) Negatively charged dextran tetramethyl-

rhodamine (DEXRHO) is composed of a dextran polymer with a MW of 10,000 conjugated with tetra-

methyl rhodamine groups. The tetramethyl-rhodamine group has an approximate planar length of .983 nm 

and height of .576 nm as calculated by bond lengths. This very large molecule is thought to load onto the 

protocell by adsorption with the positively charged DOTAP:CHOL 1:1 lipid bilayer and positively charged 

10% aminated mesoporous silica core. C) Negatively charged plasmid encoding the gene for IL-10 most 

likely assumes a supercoiled structure and is thought to load by adsorption in a manner similar to 

DEXRHO. During the synthesis process each cargo was mixed with the silica and rinsed 3xs with PBS 

before the liposomes were added.  

 


