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ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor
involved in the metabolism of environmental pollutants including halogenated aromatic
hydrocarbons, for example, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR and
its downstream target gene cytochrome P4501A1 (CYP1A1) are also involved in
cardiovascular development. AHR knockout (KO) mice are hypotensive, with cardiac
hypertrophy. Additionally, CYP1ALl is involved in the production of potent vasodilator
metabolites from omega-3 polyunsaturated fatty acids (n-3 PUFASs) metabolism. Thus, we
hypothesize that the AHR and its downstream target gene, CYP1AL, both contribute to
normal vascular reactivity of blood vessels and to blood pressure (BP) regulation.

We generated mice with conditional deletion of the AHR from the endothelium
(ECahr™), to elucidate the degree to which loss of AHR contributes to vasoreactivity and
BP regulation in vivo. BP and heart rate (HR) was assessed prior to and following
angiotensin (Ang) Il injection, or chronic treatment with an angiotensin converting enzyme
inhibitor, captopril. Vasoreactivity was assessed in aorta in presence of perivascular

adipose tissue. Immunoblot was used to assess Ang 1 receptor A (AT1R) protein

expression in the aorta.



We used CYP1A1 KO mice to determine the degree to which global deletion of
CYP1AL contributes to vasoreactivity in the aorta and mesenteric arterioles, and to BP
regulation. BP and HR was measured + nitric oxide synthase (NOS) inhibitor, LNNA.
Vasoreactivity to eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA) were
conducted in aorta and mesenteric arterioles. CYP1A1 WT and KO mice were provided
n-3 or n-6 PUFA-enriched diets for 2 months, and BP and HR measured £ LNNA.
Endothelial NOS (eNOS) and phospho-eNOS protein were measured in the aorta of all
diet treated mice.

Our data showed that ECahr”™ mice are hypotensive, associated with reduced
responses to Ang Il, and reduced aortic AT1R expression. Moreover, CYP1Al1 KO mice
exhibited elevated BP compared to WT mice, with attenuated vasodilation to EPA and
DHA. Further, supplementation with an n-3 PUFA-enriched diet normalizes BP in
CYP1A1 KO mice to WT levels. In contrast, an n-6 PUFA-enriched diet increased BP in
WT mice to levels seen in CYP1A1 KO mice on standard chow. Phospho-eNOS protein
expression was reduced in aorta of CYP1A1 KO mice fed an n-3 PUFA-enriched diet,
compared to WT mice.

Taken together, these data suggest that endothelial AHR and global CYP1A1 have
a physiologically important role in the regulation of vascular function and BP, and involve
different mechanisms. The clinical implications are that n-3 PUFA-enriched diets could be
recommended in the treatment of hypertension in humans. Additionally, AHR antagonists
and stable analogues of CYP1ALl n-3 PUFA metabolites could be used in the treatment of

long term resistant hypertension.
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. CHAPTER 1

Introduction
The aryl hydrocarbon receptor (AHR)

AHR signaling pathway

The aryl hydrocarbon receptor (AHR) is a ligand-activated, basic helix-loop-
helix/Per-ARNT-Sim transcription factor involved in the adaptive and toxic responses of
xenobiotics (Mimura and Fujii-Kuriyama, Feb 17). The AHR evolved about 500 million
years ago and is evolutionarily conserved from invertebrates to vertebrates (Hahn, Nov;
Hahn, Sep 20). Several studies have demonstrated that the AHR exists in an inactive
cytosolic complex sequestered to two molecules of the chaperone heat shock protein 90
(HSP90), the co-chaperone aryl hydrocarbon receptor-associated protein 9 (ARA9), and
p23. Binding of HSP90 to AHR is thought to mask the AHR-nuclear localization signal,
and this interaction is necessary for cytoplasmic retention of the AHR (Kazlauskas et al.,
2001). Therefore, the ARA9 maintains the AHR in a cytosolic localization, decreases
AHR degradation, and increases its ligand binding capacity (LaPres et al., 2000). AHR
MRNA is constitutively expressed in a large number of mammalian tissues, with the
highest amounts of expression found in the liver, lung, kidney, heart, and placenta (Dohr
et al., 1996).

In response to agonist binding, the AHR undergoes a conformational change,
translocates to the nucleus, dissociates from the HSP90, and dimerizes with its nuclear
partner, the aryl hydrocarbon receptor nuclear translocator (ARNT). The formation of the
heterodimeric complex leads to its interaction with dioxin-response elements (DRES)

upstream of target genes, inducing their activation and transcription (Fig. 1.1). Once



transcriptional activation has occurred, the AHR is exported to the cytosol where it is
degraded by the ubiquitin-proteosome pathway (Davarinos and Pollenz, 1999). DREs are
located upstream of both Phase | metabolizing enzymes (e.g., cytochromes P450 (P450s)
1A1, 1A2, 1B1), and Phase 1l metabolizing enzymes (e.g., glutathione S-transferase and
UDP glucuronosyltransferase). The AHR is activated by halogenated aromatic
hydrocarbons (HAH), including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the
sustained activation of AHR, has been proposed to account for its toxicity (Fernandez-
Salguero et al., 1996). The AHR has been shown to mediate the toxic endpoints of HAH
exposure, including teratogenicity. For example, in pregnant mice treated with dioxin at a
dose of 40 pg/kg body weight at gestation day 12.5, fetuses that were AHR-null were
insensitive to the teratogenic effects of TCDD. In contrast, all wildtype fetuses suffered
from cleft palate and hydronephrosis, suggesting that the AHR is involved in

teratogenicity (Mimura et al., 1997).
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Figure 1.1. Schematic of the AHR signaling pathway. Exogenous ligands bind to the
AHR in the cytoplasm and induce a conformational change exposing the nuclear
localization signals, which facilitates nuclear translocation. Once in the nucleus, the aryl
hydrocarbon receptor nuclear translocator (ARNT) binds to the AHR and a
transcriptionally active heterodimer is formed that can bind to consensus regulatory
dioxin response elements (DRES) located in the promoter upstream of target genes,
such as cytochrome P4501A1 (CYP1A1). After transcriptional activation has occurred,
the AHR dissociates from ARNT and is targeted back to the cytoplasm where it is
degraded by the proteasomal system. (Abbreviations; ARA9: aryl hydrocarbon
receptor-associated protein 9; hsp90: heat shock protein 90; AHR: aryl hydrocarbon
recentor)



AHR in cardiovascular development and blood pressure control

The AHR is necessary for cardiovascular development. In addition to its orthodox
role in the metabolism of xenobiotics, recent studies demonstrate a functional role for
AHR in vascular development and homeostasis, in the absence of exogenous ligands. In
patients with cardiomyopathy, the expression of the AHR mRNA and protein levels were
highly upregulated in the left ventricle, suggesting a potential pathological role for the
AHR in heart disease (Mehrabi et al., 2002). Moreover, the generation and investigation
of the aryl hydrocarbon receptor knockout (ahr’") mouse by several laboratories has shed
more light in this area (Fernandez-Salguero et al., 1995; Schmidt et al., 1996). The ahr”
mice exhibit a reduction in liver size due to smaller hepatocytes, which results from the
persistence of the fetal ductus venosus (DV) after birth. The DV shunts blood from the
umbilical vein to the inferior vena cava in the fetus, and rapidly closes after birth. The
patency of the DV greatly reduces the portal blood supply in the ahr” mice, and the
failure of this vessel to close is dependent on AHR expression. Further, studies in which
the AHR is genetically deleted solely from endothelial cells (ECs), versus deletion solely
from hepatocytes or KUpfer cells, demonstrate that AHR expression in ECs is required for
closure of the DV after birth (Lahvis et al., 2005; Walisser et al., 2005). It has been
suggested that the failure of the DV to close in the ahr” mice may result from the failure
of this blood vessel to adequately constrict (Fugelseth et al., 1998; Lahvis et al., 2005). In
addition, the ahr’™ mice also develop cardiac hypertrophy and fibrosis, correlated with an
increase in size of cardiomyocytes (Thackaberry et al., 2002; Vasquez et al., 2003).

These studies highlight the role of AHR in cardiovascular development and homeostasis.



Studies show that the AHR also contributes to BP regulation in addition to
cardiovascular development. Eight month old ahr’™ mice were demonstrated to be
hypotensive using invasive catherization of the carotid artery with a 1.4F Millar
micromanometer (Miller instruments, Inc, TX) connected to a heart performance analyzer
(MicroMed, Louisville, KY). The hypotension was associated with a decreased cardiac
output caused by diminished stroke volume (Vasquez et al., 2003), suggesting a role for
AHR in cardiac function. In another study, three month old ahr” mice were also shown
to be hypotensive (Zhang et al., 2010). Mean arterial pressure (MAP), systolic and
diastolic BP were significantly lower during both light and dark cycles in ahr’”” mice, with
no difference in heart rate (HR). Interestingly, endothelial nitric oxide synthase (eNOS)
protein was upregulated in the aorta, but increased NO bioavailabilty did not mediate the
resultant hypotension in the ahr” mice as demonstrated by the inability of pharmacological
NOS inhibition to normalized BP (Zhang et al., 2010). In contrast, inhibition of the renin
angiotensin system (RAS) by the angiotensin converting enzyme (ACE) inhibitor,
captopril, produced a less significant decrease in MAP in the ahr” mice, suggesting that
the RAS contributed significantly less to maintaining basal BP in the ahr’” mice as

+/+

compared to ahr™" mice. Nonetheless, indices of RAS activity, including plasma renin
activity, ACE activity, and plasma Ang Il levels were normal, suggesting that hypotension
in ahr’ mice may be due to an attenuation of Ang 11 downstream signaling.

Additionally, the AHR is activated by shear stress (SS). SS is the frictional force
exerted on the vascular endothelium due to blood flow, and is necessary in regulating

vascular tone and BP. Laminar SS (10-30 dynes/cm?) occurs in linear regions of the

vasculature and elicits a response in vascular ECs that is predominantly considered to be



anti-atherogenic and anti-proliferative (Traub and Berk, 1998). The vasoprotective effect
of laminar SS is mediated, in part, by an upregulation and activation of the endothelial
NOS (eNOS), and a subsequent increase in NO production. Under static conditions,
constitutive expression of AHR and its downstream target gene, CYP1A1, have been
detected in cultured human ECs, albeit at low levels. However, upon induction of laminar
SS (25 dynes/cm?), mRNA and protein levels of AHR and CYP1A1 were significantly
upregulated after 24 h of SS. Additionally, CYP1AL1 activity levels were up seven fold
after 48 h of laminar SS. Interestingly, the modest inducible expression was attenuated by
turbulent SS (Eskin et al., 2004; Conway et al., 2009). In support of this, Han and
coworkers demonstrated that laminar fluid SS-induced CYP1AL1 activation in vascular
ECs. Human umbilical vein endothelial cells subjected to 15 dynes/cm?® showed
upregulation of CYP1AL protein levels at 2 h, and increased activity at 1 h after SS
induction (Han et al., 2008). Interestingly, in bovine aortic endothelial cells subjected to
SS (15 dyne/cm?), eNOS was phosphorylated at serine 1179 (Ser 1179) as early as 2 min,
while phosphorylation at serine 635 (Ser 635) was detected at 15 min (Boo et al., 2002a;
Boo et al., 2002b). The phosphorylation of eNOS at these specific sites increases its
activity, hence NO bioavailability (Dimmeler et al., 1999; Iwakiri et al., 2002). Taken
together, these studies clearly suggest that the activation of AHR and its responsive gene,
CYP1AL by SS might contribute to EC regulation, NO production, and overall vascular

function.



Endogenous ligands of the AHR

The physiological function of AHR as identified from the ahr” mice, suggests that
there is an endogenous mechanism leading to AHR activation, such as the presence of an
endogenous ligand. In fact, several endogenous compounds have been shown to
transactivate the AHR into the nucleus in the absence of xenobiotics, although the
physiological relevance of these compounds remains unclear. Some of the compounds
proposed to activate the AHR include cyclic adenosine monophosphate (CAMP), modified
low density lipoproteins (LDL), indigo and indirubin, and lipoxinA4. The second
messenger CAMP has been shown to transactivate the AHR (Oesch-Bartlomowicz and
Oesch, 2009). However, this activation did not result in subsequent dimerization with
ARNT, a mechanism distinct from that observed with xenobiotic AHR activation.

Further, modified LDL have also been shown to act as endogenous ligands for the AHR
(McMillan and Bradfield, 2007a). Purified LDL from sheared sera was shown to induce
AHR-signaling by up to six fold compared to static sera. Induction of AHR signaling was
also shown with modified LDL after preincubation with sodium hypochloride and in the
ahr” mice, increased accumulation of the AHR-activating LDL was evident. Indigo and
indirubin, isolated from human urine and from bovine serum, have also been suggested to
be endogenous ligands for the AHR. These compounds bind and activate the AHR
although activation was about a hundred fold less than dioxin (Adachi et al., 2001; Peter
Guengerich et al., 2004). Although the levels of these compounds are low in the
picomolar range in human urine, it is possible that they may reach physiological nanomolar
range in certain body compartments required to activate DREs of target genes. Therefore,

their physiological relevance cannot be completely disregarded. Other suggested



endogenous ligands include a key metabolite of arachidonic acid, Lipoxin A4 which has
been demonstrated to induce CYP1A1 and CYP1AZ2, and in addition, can also serve as
their substrates (Schaldach et al., 1999). Chang and colleagues showed using gel shift
assay that CYP1A1-deficient mouse hepatoma cell lines (c37 cells) contain a
transcriptionally active AHR-ARNT complex in the absence of an exogenous ligand. This
was also detected when wildtype Hepa-1 cells were treated with the CYP1A1 inhibitor,
ellipticine, suggesting that an unknown CYP1A1 substrate is a possible AHR endogenous
ligand (Chang and Puga, 1998). Moreover, derivatives of tryptophan as well as biliverdin
have been suggested to activate the AHR. Thus, the translocation of the AHR into the
nucleus independent of exogenous ligands suggests a biologically relevant role for the

AHR.

Cytochrome P4501A1 (CYP1A1l)

Regulation and function of CYP1ALl gene

As mentioned above, CYP1AL1 is a xenobiotic metabolic enzyme induced by the
activation of the AHR, and two regulatory regions of the CYP1AL gene are responsible
for its constitutive and inducible expression. The first region is the DRE which serves as
the binding site for the AHR/ARNT complex in response to xenobiotics, depicted by the
sequences 5’-TNGCGTG-3. In the rat, the DRE has been demonstrated to be positioned
upstream of the CYP1A1 gene promoter (Fujisawa-Sehara et al., 1987; Neuhold et al.,
1989). The DRE also serve as a binding site for several transcription factors (Jones and
Whitlock, 1990). Nonetheless, in the mouse, six DRE sites have been identified for the

binding of the AHR/ARNT complex (Denison et al., 1989). The second regulatory region



of the CYP1AL gene is known as the basal transcription element (BTE) and is involved in
the constitutive expression of CYP1AL1. Most importantly, these two regulatory regions

of the human CYP1AL gene were also shown to be conserved in the mouse (Yanagida et
al., 1990).

Chromatin structural analysis of the CYP1AL gene reveals the presence of a
nucleosome at the promoter/enhancer region in the absence of an AHR agonist (Morgan
and Whitlock, 1992). Activation of the AHR by TCDD led to a conformational change in
the promoter/enhancer region of the CYP1AL1 gene, and the resultant disruption of the
occupied nucleosome, turning on the CYP1A1 gene. Additionally, chromatin
immunoprecipitation experiments have revealed that the CYP1A1 enhancer region is
hypermethylated in prostate cancer cells, creating an inaccessible chromatin structure,
thereby preventing xenobiotic responsiveness in these cells (Okino et al., 2006).

A positive correlation has also been shown between CYP1AL expression and
protein kinase C (PKC) signaling. It was demonstrated that PKC inhibition blocked ligand
activation of the AHR/ARNT complex and inhibited CYP1A1 induction by TCDD
(Carrier et al., 1992). Further analysis revealed that the ligand-dependent nuclear
translocation of AHR is inhibited by phosphorylation of the amino acid, serine, at position
12 (Ser12), or Ser36 by PKC. In contrast, the phosphorylation of the Ser 68 has been
demonstrated to target the AHR from the nucleus back to the cytoplasm thereby
attenuating CYP1A1 induction (Ikuta et al., 2004). Thus, the activity and
phosphorylation target of PKC directly impacts CYP1A1 expression. Ina 2011 study, it

was shown that the CYP1AL promoter harbored a -catenin binding site. Signaling



through B-catenin contributed to basal expression of CYP1A1 and also, in part, to
CYP1ALl induction by xenobiotics (Braeuning et al., 2011).

The best studied function of the CYP1A1 enzyme is the transformation of
xenobiotics, thereby facilitating their clearance. The mechanism of action of CYP1ALl has
been studied extensively, using benzo (a) pyrene (BaP) as substrate. CYP1AL metabolizes
BaP into reactive epoxide intermediates which are then converted to water soluble diol
epoxides for elimination. BaP is oxidized by CYP1ALl to BaP-7,8-oxide, which is further
hydrolyzed by the enzyme epoxide hydrolase to B(a)P-7,8-diol and the two enantiomers
(+)-BaP-7,8-diol, and (-)-BaP-7,8-diol (Shimada and Fujii-Kuriyama, 2004). Further
oxidation of these metabolites produces four diol epoxides that are very reactive (Tang et
al., 2000). In rats treated with BaP (10 mg/Kg), CYP1ALl induction was increased after
24 10 48 h in the lung and liver, and this increased was associated with the presence of

carcinogenic DNA-adducts (Harrigan et al., 2004; Harrigan et al., 2006).

Expression and localization of CYP1Al

Constitutive levels of CYP1AL are non-detectable in the liver. Nonetheless, one
primary location where CYP1AL is constitutively expressed is in vascular endothelial cells
(ECs). Several in vitro studies have demonstrated the constitutive expression of
CYP1AL. In human umbilical vein endothelial cells (HUVECs), CYP1A1 protein was
detected by western blot. Using immunohistochemical staining of mouse aorta, CYP1A1l
was shown to be localized to the endothelial layer, and in addition, immunostaining of
CYP1AL protein was also localized specifically to the endothelium of cross-sections of

human coronary artery (Conway et al., 2009). In addition to its constitutive expression,
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CYP1Al1 mRNA and protein have also been shown to be induced by physiological level of
SS in the endothelium (Eskin et al., 2004; Han et al., 2008; Conway et al., 2009).

Further, several studies have demonstrated the expression of CYP1A1 in the endothelium
following its induction after treatment with AHR agonists. Annas and coworkers,
demonstrated that CYP1AL was present in blood vessels of the heart, kidneys, and liver as
detected using substrates for CYP1AL1 following induction with AHR agonists, beta-
naphthoflavone (BNF). Autoradiography was used to localize sites of metabolic
activation of *H-labeled Trp-P-1 (3-amino-1, 4-dimethyl-5H-pyrido [4, 3-b] indole), a
heterocyclic amine shown to be metabolized by CYP1A1 (Annas and Brittebo, 1998;
Annas et al., 2000). Further evidence comes from detecting the induction of CYP1Al
after treatment with BNF in the coronary arteries, capillaries, and veins of the heart; portal
veins of the liver; and afferent and efferent arteries, and glomerular and peritubular
capillaries in the kidneys (Annas et al., 2000; Granberg et al., 2000). More evidence has
been shown with polychlorinated biphenyl (PCB)-mediated induction of CYP1A1 mRNA
predominantly in vascular endothelium (Farin et al., 1994; Stegeman et al., 1995). Other
studies have shown that CYP1A1 mRNA is not constitutively expressed in the mouse
vascular smooth muscle cells (vsmc), and upon treatment with the AHR agonist, BaP (3
umol/L), CYP1AL protein levels remained uninducible even though mRNA levels were
upregulated (Kerzee and Ramos, 2001). Nonetheless, in a 2007 study, Wilson and
colleagues showed that CYP1A1 mRNA was highly induced in vascular endothelial cells,
vascular smooth muscle, and nerve cells in the dermis of the bottlenose dolphins,
suggestive of PCB contamination (Wilson et al., 2007). In a recent study, C57BL/6

wildtype mice were treated with the AHR agonist TCDD and CYP1ALl protein induction
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detected by immunohistochemistry was predominantly localized in the endothelial layer of
the mesenteric artery and the aorta (Kopf et al., 2010). Given the importance of the
endothelium in vascular development and function, it is relevant to consider the role of
CYP1AL in the cardiovascular system.

Additional extrahepatic tissues in which CYP1AL has been established to be
present include the intestine, skin and the lung. In mice treated intraperitoneally with 3-
methylcholanthrene (3MC) (200 mg/kg body weight) for 10 h, CYP1A1 mRNA was
detected in the villous epithelium and cells around the lamina propria in duodenum, the
jejunum (Dey et al., 1999), as well as at low levels in the epidermis in normal human
keratinocytes (Pavek and Dvorak, 2008). Lastly, CYP1AL enzyme activity and mRNA
levels have also been detected in the microsomal fractions of human lung (Smith et al.,

2001; Bernauer et al., 2006).

CYP1A1 polymorphisms and cardiovascular disease

A plethora of mutations in the CYP1A1 gene have been identified. The first of
these polymorphisms denoted CYP1A1*1 occurs at position 3801 whereby thymidine is
substituted by cytosine. This polymorphism does not result in differential CYP1AL
expression. Another polymorphism involves adenine to guanine substitution at position
2455 of codon 462 at exon 7. This polymorphism is known as CYP1A1*2B or lle462Val
polymorphism (Hayashi et al., 1991). Additionally, the mspl polymorphism whereby
thymidine is substituted by cytosine at position 3798 (3798T>C), and the Ile462Val
polymorphisms of CYP1A1 both have been associated with smoking-induced squamous

cell carcinoma in the lung, and smoking related coronary artery disease (Nakachi et al.,
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1993; Wang et al., 2002). Recently, another CYP1A1 mspl gene polymorphism was also
shown to be associated with greater mortality in patients with acute coronary syndrome
(ACS) with a history of smoking. When patients with ACS were genotyped for the
T6235C polymorphism and the survival rate was stratified by smoking history, the
CYP1A1 T6235C polymorphism was particularly correlated with mortality of smokers
whether past or current (Jarvis et al., 2009). In contrast, the CYP1A1*2C (A4889G)
polymorphism was shown to be protective against coronary artery disease in the
Taiwanese population particularly among non-smokers (Yeh et al., 2009). Lastly, an
interaction between human polymorphisms of CYP1A1 and AHR was implicated in
determining blood pressure (BP) among smokers, non-smokers, and ex-smokers (Gambier
et al., 2006). Thus, CYP1A1 expression and polymorphisms may play a role in the

development or pathogenesis of cardiovascular diseases.

Omega-3 Polyunsaturated Fatty Acids (n-3 PUFA)

n-3 PUFA Biology and the Cardiovascular System

Epidemiological evidence shows that fish-eating Greenland Inuits exhibit
significantly lower risk of death from acute myocardial infarction when compared to those
from the Danish population which consumed less fish. The Inuit diet provides several
grams of n-3 PUFAs per day from fish (Blanchet et al., 2000). More evidence has also
been seen in the Japanese population with higher fish consumption compared to the United
States. A lower rate of acute myocardial infarction and overall death from cardiovascular

disease is significantly lower in the Japanese population (Menotti et al., 1999). These
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observations were some of the first studies to raise the potential of the beneficial and
cardiovascular protective effects of fish oil.

Randomized clinical trials in humans have also revealed some benefits of n-3
PUFA supplementation. In the Gruppo Italiano per lo Studio della Sopravvivenza
nell’Infarto Miocardico (GISSI)-Prevenzione (GISSI-Prevenzione) clinical trials, 11,324
patients surviving recent myocardial infarction were randomly assigned supplements of n-3
PUFA (1 g/day), vitamin E (300 mg/day), or both for three and a half years. Treatment
with n-3 PUFA only, reduces the risk of cardiovascular deaths, myocardial infarction and
stroke by 15% (1999; Marchioli et al., 2002). The second large scale clinical trial
conducted was the Japan EPA lipid intervention study (JELIS). In 18,645 patients with
hypercholesterolemia, 1.8 g/day of EPA with statin, or statin only, were assigned for a
period of 5 years. In patients with a history of coronary artery disease supplemented with
EPA, major coronary events and deaths were reduced by 19% (Yokoyama et al., 2007).
Moreover, in the Diet and Reinfarction Trial (DART), 2,033 Welsh men following
myocardial infarction were randomly assigned two servings of fish per week for over two
years. Cardiovascular deaths were reduced by 29% in patients who consumed fish,
compared to patients with no fish in their diets (Burr et al., 1989). Further, in the Study
on Prevention of Coronary Atherosclerosis by Intervention with Marine Omega-3 fatty
acids (SCIMO), 223 patients with coronary artery disease were assigned fish oil, at 6
g/day for 3 months and then 3 g/day for 21 months, or placebo. The fish oil group had
significantly more regression of coronary atherosclerotic lesions compared to control
group (Von Schacky et al., 1999). Taken together, these clinical trials reveal the

cardiovascular benefits of n-3 PUFAs.
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The cardiovascular benefits of n-3 PUFAs are likely mediated through multiple
mechanisms including anti-hypertensive, anti-arrhythmic, anti-inflammatory,
vasoprotective, and anti-lipidemic, among others. In a 1996 study, Chen and colleagues
showed that the BP-lowering effect of fish oil was independent of thromboxane A2 levels
in the spontaneously hypertensive rats (Chen et al., 1996). Further, Engler and colleagues
followed up with young spontaneously hypertensive rats treated with a DHA-enriched diet
for 6 weeks. Systolic BP was reduced by 34 mmHg compared to controls (Engler et al.,
1999). In addition, in a meta regression analysis of randomized trials in humans, fish oil
was shown to reduce systolic BP by 2.1 mmHg and diastolic BP by 1.6 mmHg with
greater effects in hypertensive patients (Geleijnse et al., 2002). Furthermore, in a
population-based randomized 10 week long study, 6 g per day of 85 percent EPA and
DHA were fed to 156 men and women with essential hypertension. The mean systolic BP
was reduced by 4.6 mmHg while the diastolic BP by 3 mmHg. Interestingly, there was no
change in BP in the control group on corn oil (BA naa et al., 1990). Additionally, in a
meta-analysis of 31 placebo-controlled trials on 1356 subjects, there was a dose response
effect of n-3 PUFAs on BP with strong association in patients with hypertension and
atherosclerosis (Morris et al., 1993). Taken together, these studies provided compelling
evidence of anti-hypertensive benefits of n-3 PUFAs.

The majority of studies done so far have been focused on the effects of n-3 PUFASs
on serum cholesterol levels as well as their role in inflammation and lipoprotein
metabolism (Bronsgeest-Schoute et al., 1981; Hudert et al., 2006). Nonetheless, few
studies have investigated the vascular function of n-3 PUFAs. n-3 fatty acids are essential

fatty acids for vertebrates because they cannot be synthesized de novo, but rather must be
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obtained from the diet. Marine phytoplankton and other aquatic invertebrates can
synthesize these fatty acids (Yazawa, 1996; Wen and Chen, 2003) and thus, these fatty
acids biomagnify in fish. n-3 PUFAs are comprised principally of two key constituents;
eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA). EPA consists of twenty
carbon atoms with five double bonds (C20:5), whereas DHA is comprised of twenty two
carbon atoms with six double bonds (C22:6). In contrast, n-6 fatty acids are more
saturated (i.e. fewer double bonds) and these include the precursors linoleic acid (LA) and

arachidonic acid (Fig. 1.2).
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Figure 1.2. Structure of arachidonic acid, eicosapentaenoic acid (EPA), and
docosahexaenoic acid (DHA). Arachidonic acid consists of 20 carbon atoms with 4 double
bonds and the last double bond is sixth from the omega end (n-6), EPA consists of 20
carbons with 5 double bonds, and the last unsaturated carbon is located third from the
omega end (n-3). Docosahexaenoic acid consists of 22 carbons with 6 double bonds, and
also with the last unsaturated carbon located third from the omega end (n-3).
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Cytochrome P450s (P450s) and n-3 PUFA metabolism

P450s display different regioselectivities for n-3 PUFA hydroxylation and
epoxidation. Several P450 family members metabolize EPA and DHA as preferred
substrates. Recombinant human CYP2J2 has been shown to metabolize EPA and DHA
into 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), and 19,20- epoxydocosapentaenoic
acid (19,20-EDP), respectively (Fer et al., 2008). In addition, all members of the CYP2C
epoxygenase family, including 2C8, 2C9 and 2C19, metabolized both DHA and EPA,
resulting in a large mixture of products including 10,11-, 13,14-, 16,17-, and 19,20-EDP
from DHA, and 11,12-, 14,15-, and 17,18-EEQ from EPA (Barbosa-Sicard et al., 2005).
Further, members of the CYP4A family have also been shown to metabolized EPA and
DHA. Mouse CYP4al2a metabolizes EPA producing 56% of metabolites as 17,18-EEQ
(Muller et al., 2007). Further, human CYP4F2 hydrolyses DHA with higher rates,
compared to EPA as a substrate (Fer et al., 2008). Recently, recombinant human
CYP1A2 and 2D6 were also shown to metabolize EPA and DHA in a stereospecific
manner to 17(R),18(S)-EEQ, and 19(R),20(S)-EDP, respectively (Lucas et al., 2010).
Taken together, these results suggest that a large number of P450 families are capable of

metabolizing n-3 PUFAs.

CYP1ALl and n-3 PUFA metabolism

CYP1AL in particular, acts primarily as an epoxygenase toward EPA as substrate
(Schwarz et al., 2004). Human CYP1AL has been shown to epoxidized the 17,18-olefinic
bond of EPA in a stereospecific manner to form mainly 17(R),18(S)-EEQ, as 70% of its

metabolites. CYP1AL1 also hydroxylated EPA in a highly regioselective manner to
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produce 19-OH-epoxypentaenoic acid. Interestingly, the human CYP1Al Ile462Val
polymorphism has been shown to metabolize EPA as substrate with twice higher rates
than wildtype CYP1ALl (Schwarz et al., 2005). This suggests that CYP1A1 metabolism
of EPA may contribute to differences between individuals in the production of
physiologically active PUFA metabolites. CYP1ALl has also been demonstrated to
metabolize DHA into stereospecific products. In an in vitro study, recombinant human
CYP1ALl was shown to convert DHA 100 % to 19(R),20(S)-EDP (Fer et al., 2008).
Furthermore, the degree of epoxidation for EPA and DHA by CYP1A1 was markedly
greater compared to arachidonic acid (AA). CYP1AL1 also produced 14,15-
epoxyeicosatrienoic acid (EET) from AA. Nonetheless, this accounted for a very small

percentage of the total epoxides produced.

Cardiovascular function of CYP1A1 metabolites of n-3 PUFAs

Metabolites of n-3 PUFA metabolism have been shown to exhibit vasoactive
properties. In fact, 17,18-EEQ, the product of EPA metabolism by CYP1A1 has been
reported to induce vasorelaxation in porcine and canine coronary microcirculatory vessels
(Zhang et al., 2001). Further, 17,18-EEQ has also been reported to be metabolized to
novel prostaglandins that are physiologically relevant (Oliw, 1991). In a recent study,
17,18-EEQ was shown to relax and hyperpolarize both pulmonary artery and bronchial
smooth muscle cells in the human lung (Morin et al., 2009). In the spontaneously
hypertensive rats, EPA concentration response in aortic rings was shown to elicit
significantly greater relaxation at all doses compared to the normotensive Wistar-Kyoto

rats (Engler et al., 1994). Interesting, in another study, 19,20-EDP, the product of DHA
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metabolism by CYP1A1 was shown to induce up to 70 % relaxation in porcine coronary
microvessels, and the mechanism of dilation was shown to be mediated by large
conductance calcium-activated potassium channels (Ye et al., 2002). Taken together,

CYP1A1 metabolizes DHA and EPA as substrates into vasoactive metabolites.

Arachidonic acid (AA) as endogenous substrate of CYP1A1l

The cyclooxygenase and lipoxygenase enzymes have been known to metabolize
AA into 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE), prostaglandins, 14,15
EET, prostacyclins, and thromboxanes (Miller and Vanhoutte, 1985; Churchill et al.,
1989; Escalante et al., 1989; Brock et al., 1999). Additionally, P450 enzymes, including
CYP1AL, also use AA as a substrate (Roman, 2002). CYP1A1 has been shown to act
mainly as a hydroxylase toward AA metabolism. Recombinant human CYP1ALl was
shown to produce 14,15-EET from AA. Nonetheless, the amount of 14,15 EET produced
was less than 60% relative to the total epoxides produced from AA, suggesting that AA
metabolism by CYP1AL1 is of less importance compared to EPA and DHA (Fer et al.,
2008; Lucas et al., 2010). In fact, EETs were shown to be 1000 fold less potent that
DHA-derived epoxides (Ye et al., 2002). Regardless, 14,15-EET has been demonstrated
to relax precontracted coronary microvessels (Campbell et al., 1996), to induce NO-
dependent relaxation in pressurized arterioles in the mouse (Hercule et al., 2009), and to
dilate the renal microcirculation of rats ex vivo (Imig et al., 1996). Taken together, these
studies suggest that CYP1Al-generated EETs have vasodilatory properties, even though

their potency is less, compared to n-3 PUFA metabolites.
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Nitric oxide

Nitric oxide biology, regulation, and the cardiovascular system

NO is a potent vasodilator that is produced by three unique forms of NOS,
including eNOS, neuronal NOS (nNOS) and inducible NOS (iNOS). In the endothelium,
NO is produced in a reaction catalyzed by eNOS, transforming L-arginine to L-citrulline,
in the presence of molecular oxygen with several cofactors including NADPH, flavin
adenine dinucleotide (FAD), flavin mononucleotide (FMN), tetrahydrobiopterin (BH,) and
Ca”*/calmodulin (Ignarro et al., 1987; Palmer et al., 1988). The primary stimulus that
increases eNOS activity is a transient increase in intracellular calcium concentration (Busse
and Mulsch, 1990; Busse and Fleming, 1995). The availability of both the substrate, L-
arginine, and the co-factor, BH,, also regulates NO production. BHy, in particular is
important because in its deficiency, electron transport through eNOS can become
uncoupled, leading to accumulation of reactive oxygen species as superoxide anions
(Cosentino et al., 1998; Cherng et al., 2009). The regulation of NO production has also
been demonstrated to be affected by the phosphorylation status of eNOS at different
serine residues, the most important being ser1177 phosphorylation (Fulton et al., 1999).

Basal NO levels play an important role in regulating vascular tone and BP. NO
produced from the endothelium, diffuses across the plasma membrane mediated by
aquaporin-1, to the underlying vascular smooth muscle cells, and binds to soluble
guanylate cyclase to produce cyclic guanosine monophosphate (cGMP). cGMP activates
protein kinases, resulting in vasodilation by decreasing smooth muscle intracellular Ca**
(Fig. 1.3). This NO-mediated vasodilation contributes to basal BP regulation. In fact,

mice that overexpress the eNOS enzyme are hypotensive (Ohashi et al., 1998).
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Conversely, eNOS null mice or mice treated with a NOS antagonist are hypertensive
(Shesely et al., 1996; Yang et al., 1999). The dysregulation of NO signaling has been
implicated in many cardiovascular diseases. In particular, pathological increases in reactive
oxygen species have been demonstrated to scavenge NO, leading to loss of NO-mediated

relaxation as one common contributor to endothelial dysfunction (Fresquet et al., 2006).
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Figure 1.3. Mechanism of endothelial cell production of NO leading to vascular smooth
muscle relaxation. Various stimuli, such as acetylcholine, bradykinin, and SS increase
intracellular calcium levels in endothelial cells which stimulates the production of NO by
eNOS. NO diffuses to the underlying smooth muscle cell and activates soluble guanylate
cyclase (sGC) resulting in the accumulation of cGMP. An increase in cGMP activates
protein kinase G (PKG) and protein kinase A (PKA). Activation of PKA and PKG inhibits
L-type Ca®* channels, activates sarcoplasmic endoplasmic reticulum Ca®* ATPases
(SERCA) thereby pumping Ca®* back into the sarcoplasmic reticulum. This leads to a
reduction in intracellular calcium in the smooth muscle resulting in vasorelaxation.
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Nitric oxide and n-3 PUFA crosstalk

Several studies have investigated potential crosstalk between n-3 PUFAs and NOS
expression, particularly eNOS. Treatment of human coronary artery endothelial cells with
DHA for 7 days tended to increase both total and phospho-eNOS, and upregulated the
expression of phospho-AKT and HSP90, two proteins involved in the activation of eNOS.
In addition, nitrate and nitrite (NOX) levels were increased in the media of DHA-treated

cells, suggesting an increase in NO production (Stebbins et al., 2008).

In another study, using human cultured umbilical vein endothelial cells, EPA
stimulated the translocation of eNOS from caveolae to the cytosol, a step required for
activation. Interestingly, EPA upregulation of eNOS was not accompanied with a robust
increase in intracellular calcium (Omura et al., 2001). Li and colleagues also confirmed
that EPA stimulated the translocation of eNOS from caveolae (Li et al., 2007a; Li et al.,
2007b). Additionally, in EA hy 926 endothelial cells, both DHA and EPA significantly
increased expression of phospho-eNOS, with no change in total eNOS expression

(Gousset-Dupont et al., 2007).

Animal studies have also demonstrated a possible crosstalk between eNOS
expression in caveolae and n-3 PUFAs. In rats treated with n-3 or n-6 diets, phospholipid
n-3 fatty acyl content was increased, while caveolin-1 and cholesterol were significantly
reduced in the colon of n-3 PUFA fed rats compared to n-6. Moreover, caveolae-resident
proteins, eNOS and H-Ras were reduced by 45 and 56%, respectively, in rats fed the n-3
diet, while non-caveolae proteins, K-Ras and clathrin, were not affected (Ma et al., 2004).

Further evidence also comes from young pigs treated with DHA. DHA significantly
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increased BH, and NADPH levels in the brain, muscle and liver, and increased NOS
activity by 45-48% in the muscle and brain (Li et al., 2008). These data further suggest
that n-3 PUFAs can remodel the microdomain of membranes in vivo, thereby altering the
localization of proteins, including eNOS. Taken together, these data suggest that n-3

PUFAs could lead to increases in NOS activity and potentially in NO bioavailability.
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Rationale for Research

Cardiovascular diseases are the leading cause of death in the United States (Roger
et al., 2011) and high BP is a major independent risk factor, including stroke, myocardial
infarction, and coronary artery disease (Stokes et al., 1989). The AHR has been
implicated in the regulation of vascular function and BP. AHR null mice were
demonstrated to exhibit altitude-induced hypertension with low BP at sea level (Lund et
al., 2003; Lund et al., 2008). In addition, cardiac hypertrophy and portosystemic shunting
were hallmarks of the AHR null mice (Lahvis et al., 2000; Thackaberry et al., 2002).
Nonetheless, the sustained activation of the AHR results in vascular dysfunction and
hypertension, and it has been established that this cardiovascular toxicity requires the
sustained induction of CYP1A1, the AHR downstream target gene (Walker and Catron,

2000; Kopf et al., 2010).

However, many questions remain. The endogenous role of the AHR in the vascular
endothelium, and its target gene CYP1Al, in the regulation of BP remain to be
determined. The AHR and its downstream target gene CYP1A1 have been demonstrated
to be modestly induced by physiological level of laminar SS in the vascular endothelial
cells, and in addition, CYP1A1 metabolize n-3 PUFAs as substrate in the production of
vasodilator metabolites (Schwarz et al., 2004; Schwarz et al., 2005; Han et al., 2008;
Conway et al., 2009). These observations strongly suggest that the AHR and its target
gene, CYP1A1, might be involved in cardiovascular homeostasis. Thus, the long term
objective of this study is to elucidate the contribution of the AHR in the vascular
endothelium and of global CYP1A1 to vascular function and BP regulation in the absence
of xenobiotics.
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Central Hypothesis: The aryl hydrocarbon receptor (AHR) and its downstream target
gene, cytochrome P4501A1 (CYP1A1l), both contribute to normal vascular reactivity of

blood vessels and to BP regulation.

Aim 1: Establish the degree to which loss of AHR in ECs contributes to vascular

reactivity and BP regulation in vivo.

Rationale: The ahr’”™ mice are hypotensive and this is mediated, in part, by a decreased
contribution of Ang Il to maintaining normal basal BP. However, the specific cell type(s)
requiring AHR expression for BP regulation is not known, since this phenotype was
elucidated in the global AHR knockout mouse. Nonetheless, since it has been shown that
AHR expression in vascular endothelial cells is required for normal vascular development,
we hypothesized that loss of AHR in EC would attenuate Ang Il-dependent signaling
resulting in hypotension. To test this hypothesis we generated EC-specific ahr” mice
(ECahr”) and investigated the contribution of Ang I to vascular reactivity and BP

regulation.

Aim 2: Establish the degree to which global deletion of CYP1A1 contributes to vascular
reactivity in conduit and mesenteric resistance arterioles, and to BP regulation
Rationale: CYP1AL1 is constitutively expressed in vascular endothelial cells and
metabolizes n-3 PUFAs, producing vasodilator metabolites that contribute in maintaining
vascular tone of blood vessels. However, understanding the contribution of CYP1AL1 to
vasoreactivity and to BP regulation has not been investigated. Thus, our working
hypothesis is that global genetic deletion of CYP1AL will result in reduced vascular

vasodilatory responses to n-3 PUFAs and increases in BP. To test this hypothesis we used
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CYP1A1 KO mice that were generously provided by Dr Daniel Nebert (University of
Cincinnati), to determine the BP phenotype and n-3 PUFA-mediated vasorelaxation in

CYP1A1l KO mice.

Aim 3: Determine the degree to which CYP1AL contributes to changes in vascular
function and BP as a result of providing an n-3 versus n-6 PUFA-enriched diet.
Rationale: CYP1AL1 stereospecifically metabolizes n-3 PUFAs to potent vasodilatory
products. However, numerous studies have demonstrated the involvement of several
P450s in n-3 PUFA metabolism, in addition to CYP1A1, including members of the
CYP2C and CYP4A families (Barbosa-Sicard et al., 2005; Muller et al., 2007). Thus, it is
not known if any specific P450 is required to mediate the vascular benefits of n-3 PUFAs.
In addition, n-3 PUFAs have also been shown to upregulate NOS signaling in animal
models and in cell culture (Ma et al., 2004; Li et al., 2007a; Li et al., 2007b). Thus, our
working hypothesis is that an n-3 PUFA-enriched diet, but not an n-6 PUFA-enriched diet,
will reduce BP in CYP1AL KO mice via a NOS-dependent mechanism. To test this
hypothesis we fed CYP1A1 WT and KO mice either a diet enriched in n-3 PUFASs or n-6
PUFAs, and determine the contribution of CYP1A1 to vascular function and BP

regulation.
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Il. CHAPTER 2

Endothelial cell-specific aryl hydrocarbon receptor knockout mice exhibit

hypotension mediated, in part, by an attenuated angiotensin Il responsiveness.

Larry N. Agbor, Khalid M. Elased, and Mary K. Walker. Biochem Pharmacol 5: 514—

523, 2011.
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A. ABSTRACT

Hypotension in aryl hydrocarbon receptor knockout mice (ahr™) is mediated, in part, by a
reduced contribution of angiotensin (Ang) 11 to basal blood pressure (BP). Since AHR is
highly expressed in endothelial cells (EC), we hypothesized that EC-specific ahr” (ECahr
") mice would exhibit a similar phenotype. We generated ECahr” mice by crossing AHR

floxed mice (ahr™™

) to mice expressing Cre recombinase driven by an EC-specific
promoter. BP was assessed by radiotelemetry prior to and following an acute injection of
Ang |1 or chronic treatment with an angiotensin converting enzyme inhibitor (ACEi).
ECahr” mice were hypotensive (ECahr™*: 116.1 + 1.4; ECahr™: 107.4 + 2.0 mmHg,
n=11, p<0.05) and exhibited significantly different responses to Ang Il and ACEi. While

+/+

Ang Il increased BP in both genotypes, the increase was sustained in ECahr™", whereas
the increase in ECahr” mice steadily declined. Area under the curve analysis showed that
Ang Il-induced increase in diastolic BP (DBP) over 30 min was significantly lower in
ECahr” mice (ECahr** 1297 + 223 mmHg/30 min; ECahr” auc: 504 + 138 mmHg/30
min, p<0.05). In contrast, while ACEi decreased BP in both genotypes, the subsequent
rise in DBP after treatment was significantly delayed in the ECahr” mice. ECahr” mice
also exhibited reduced vascular and adipose Ang Il type 1 receptor (AT1R) expression,
and reduced aortic Ang Il-dependent vasoconstriction in the presence of vascular adipose.

Taken together these data suggest that hypotension in ECahr”" mice results from reduced

vascular responsiveness to Ang Il that is influenced by AT1R expression and adipose.
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B. INTRODUCTION

The aryl hydrocarbon receptor (AHR) is a ligand-activated, basic helix-loop-
helix/Per-ARNT-Sim transcription factor involved in the adaptive and toxic responses of
xenobiotics (McMillan and Bradfield, 2007b). The most potent ligand for AHR is the
halogenated aromatic hydrocarbon 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). In
addition to its conventional role in xenobiotic metabolism, recent studies demonstrate a
novel role for AHR in vascular development and physiological homeostasis in the absence
of exogenous ligands (Thackaberry et al., 2002; Vasquez et al., 2003). AHR knockout
mice (ahr™) exhibit significant reduction in liver size, which results from the persistence of
the fetal ductus venosus after birth. The patency of the ductus venosus greatly reduces the
portal blood supply, and the failure of this vessel to close is dependent on AHR expression
solely in vascular endothelial cells (EC) (Lahvis et al., 2000; Walisser et al., 2004; Lahvis
et al., 2005; Walisser et al., 2005). Beyond its role in vascular development, the AHR
also is involved in cardiac development and blood pressure regulation. AHR deficient
mice develop cardiac hypertrophy and fibrosis, correlated with an increased size of
cardiomyocytes (Thackaberry et al., 2002; Vasquez et al., 2003).

Evidence for the role of AHR in blood pressure regulation has been studied by a
number of laboratories. In one study, eight-month-old ahr” mice are hypotensive,
associated with a decreased cardiac output caused by diminished stroke volume (Vasquez
et al., 2003). In another study, three-month-old ahr” mice are also hypotensive with
mean arterial pressure (MAP) and systolic (SBP) and diastolic blood pressures (DBP)
significantly lower during the entire 24 hr light/dark cycle (Zhang et al., 2010). Although

both endothelial nitric oxide synthase (eNOS) and its product, nitric oxide (NO), a potent
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vasodilator, are upregulated in the aorta of ahr” mice, the increased NO does not mediate
the resultant hypotension. Rather, hypotension in ahr” mice is mediated, in part, by a
decrease in the contribution of the vasoconstrictor, angiotensin (Ang) 11, to basal vascular
tone. The ahr” mice are significantly less responsive to a decrease in blood pressure when
Ang Il formation is inhibited, using the angiotensin converting enzyme (ACE) inhibitor,
captopril. These data suggest that Ang Il contributes significantly less to maintaining

+H+

basal blood pressure, compared to ahr™" mice. Interestingly, however, indices of renin-
angiotensin system (RAS) activity, including plasma renin and ACE activities, and plasma
Ang Il levels, are normal, suggesting that hypotension in ahr’” mice may be due to an
attenuation of Ang Il signaling (Zhang et al., 2010).

In addition to the classic circulating components of the RAS, localized tissue RAS
also has been identified in numerous tissues, including the heart, brain, blood vessels, and
adipose (Stoll et al., 1995; Vaughan et al., 1995). Angiotensinogen, the precursor of Ang
I, is secreted by white adipose tissue and all the components of the RAS are localized in
rat and human adipose (Engeli et al., 1999; Engeli et al., 2000; Giacchetti et al., 2000).
The perivascular adipose tissue (PVAT) is interspersed with vasa vasorum and transmits
secreted factors that act in a paracrine manner on the underlying blood vessels to modulate
vascular tone and contribute to blood pressure regulation. These secreted factors include
vasodilators, such as adipocyte-derived relaxing factor, Ang,.;, hydrogen peroxide, and
others (Lohn et al., 2002; Verlohren et al., 2004; Gao et al., 2007), as well as
vasoconstrictors, including Ang Il and superoxide anion (Massiera, 2001; Gao et al.,

2006). Therefore, adipose is a major vasoregulator of blood pressure, in part, by

contributing to overall RAS activity in the blood vessels.
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Since AHR is highly expressed in the endothelium, and endothelial AHR is
required for normal vascular development, it seemed logical to investigate the contribution
of endothelial AHR to blood pressure regulation. To this end, we generated ECahr”™ mice
using Cre-lox recombination to elucidate the mechanism by which AHR in the
endothelium modulates blood pressure. We hypothesized that loss of AHR in EC will

attenuate Ang Il-dependent signaling resulting in hypotension.
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C. METHODS

Mouse models

Mice expressing the ahr floxed allele (ahr™™

) were crossed to mice expressing a Cre
transgene driven by the Tie2 kinase promoter enhancer (Tek) (CreTek, strain name:
B6.Cg-Tg(Tek-cre)12FIvJ; (The Jackson Laboratory, Bar Harbor, ME) (Postic et al.,
1999; Koni et al., 2001). Mice homozygous for the floxed allele and hemizygous for the
Cre transgene (ahr™™Cre™*) were obtained by crossing male ahr™*Cre™ mice to female

ahr™™ mice. Littermates that were Cre negative were used as genetic controls. Because

Cre™ activity results in the deletion of floxed targets in the female germ line, male mice

fx/fx Tek

expressing the ahr™™ allele and the Cre™ transgene were used to transmit Cre™ to the
offspring. Only male mice were used in subsequent experiments. All animal protocols
were approved by the University of New Mexico Animal Care and Use Committee and
the investigation conforms to the Guide for the Care and Use of Laboratory Animals
published by the U. S. National Institutes of Health (NIH Publication No. 85-23, revised

1996).

Assessment of ahr excision

PCR analysis was used to genotype for the Cre transgene using DNA isolated from
tail snips. The reaction contained 0.6 UM of each primer (Table 2.1) and 0.05 U/ul Tag
Polymerase (Promega, Madison, WI, USA), and 1X buffer (Epicentre Biotechnologies,
Madison, WI, USA). PCR was carried out for 39 cycles (94°C/1 min; 55°C/1 min; 72°C/2

mins). A 450-bp band confirmed the presence of the Cre transgene. Analysis of ahr™™
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excision was carried out by multiplex PCR using 1 pM of two forward primers and one
reverse primer (Table 2.1S, supplemental data), and 0.025 U/ul Tag Polymerase
(Promega), 1X PE Buffer Il (Applied Biosystems, Foster City, CA,USA), 2 mM MgCl,,

and 0.2 mM dNTPs. PCR was carried out for 29 cycles (95°C/30 s; 60°C/30 s; 72°C/30

S).

Assessment of endothelial AHR expression

Aortas were fixed in 10% neutral-buffered formalin and embedded in paraffin.
Five micron sections were immersed in 1X Tris-EDTA buffer at 95°C for 15 min for
antigen retrieval. Sections were then treated with 3% hydrogen peroxide to block
endogenous peroxidase activity, followed by blocking with 10% goat serum. Mouse
monoclonal anti-AHR antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) was
applied (1:200) overnight at 4°C. After washing, a secondary antibody, goat anti-mouse
conjugated to horseradish peroxidase (SouthernBiotech, Birmingham, AL, USA), was
applied for 1 h at room temperature (1:200). Slides were washed, stained with 3, 3°-
diaminobenzidine tetrahydrochloride solution (Vector Laboratories, Burlingame, CA,
USA) for 5 min, and counterstained with methyl green. Sections treated only with second

antibody were used as negative controls.
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In vivo analysis of blood pressure

Arterial blood pressure and heart rate were measured using radiotelemetry (Data
Sciences International, St. Paul, MN, USA) as described (Lund et al., 2008), using PA-
C10 telemeters. Mice were allowed to recover from surgery for 7 d prior to data
collection. Basal blood pressure, including systolic, diastolic, mean and pulse arterial
blood pressure, and heart rate were collected for 7 d before drug treatments began. Blood
pressure was recorded for 10 s every 15 min during baseline measurements and chronic
drug treatment, or for 10 s every 1 min for 30 min starting 5 min after prazosin,

hexamethonium, or Ang Il injection.

Drug treatments

To determine the effects of Ang Il on blood pressure, mice were treated with 4
mg/kg captopril (angiotensin converting enzyme inhibitor, ACEI) in the drinking water for
5 d followed by a 4 d washout (Lund et al., 2003). To further elucidate the contribution
of Ang Il to blood pressure, mice were subsequently challenged with an i.p. injection of
Ang Il (30 pg/kg). Prazosin (1 mg/kg) or hexamethonium (30 mg/kg) was injected i.p.
into conscious animals to assess acute responses in blood pressure and heart rate (Chen et
al., 2005), while N“-nitro-L-arginine (LNNA) was administered in the drinking water (250
mg/L) to assess chronic changes in blood pressure for 2 wk followed by a 1 wk washout
(Duling et al., 2006). In all experiments blood pressure was monitored prior to, during
and after drug treatments. All drugs were purchased from Sigma-Aldrich (St. Louis, MO,

USA).
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Urine collection and analysis

ECahr” and ECahr** mice were placed into metabolic mouse cages, one animal
per cage, with access to food and water ad libitum. Mice were acclimated to the cage for
24 h and urine generated during this period was discarded. Then, 24 h urine samples were
collected twice in the subsequent 48 h and pooled. Urine was analyzed for osmolality
using the Vapro™ Vapor Pressure Osmometer, model 5520 (Wescor, Inc Biomedical
Division, Logan, UT, USA). Urinary nitrate/nitrite levels (NOx) were measured using the

Griess colorimetric assay (Cayman Chemical, MI, USA).

Analysis of plasma ACE, renin activity, and salt balance

Plasma renin activity (PRA) was determined using a commercial kit (GammaCoat®

Plasma Renin Activity '*°I Kit; DiaSorin, Stillwater, MN) (Senador et al., 2009). The
PRA assay is a two-step process, where first angiotensin | is generated and second
angiotensin | is detected by a radioimmunoassay. PRA is expressed as ng/ml/hr of
generated angiotensin I. Plasma ACE activity was determined using a commercial kit
(Alpco Diagnostics, Salem, NH, USA). Plasma samples were incubated with a synthetic
ACE substrate, *H-hippuryl-glycyl-glycine, and the product, *H- hippuric acid, was
extracted and measured in a beta counter. ACE activity was expressed as Units/Liter.
One unit of ACE activity was defined as the amount of enzyme required to release 1 pumol

of hippuric acid per minute per liter of plasma at 37° C.
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mRNA analysis of renin, angiotensinogen, and AT1R from adipose and aorta

Total RNA was isolated from perirenal visceral white adipose, aortic PVAT, and
aortas cleaned of adipose tissue, using Trizol reagent (Invitrogen, Carlsbad, CA, USA).
cDNA was synthesized using iScript Select cDNA Synthesis Kit (Bio-Rad Laboratories,
Hercules, CA) with the supplied random primers and 250 ng RNA. PCR amplification was
performed using an iCycler (Bio-Rad Laboratories) with a reaction mixture comprised of
iIQ SYBR Green Supermix (Bio-Rad Laboratories) with 500 uM of each forward and
reverse primer (Table 2.1S, supplemental data). Cycle threshold data for both the target
gene of interest and control normalization gene, DNA Polymerase 11 (POL2) for adipose
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for aorta, were used to

calculate mean normalized expression as previously described (Simon, 2003).

Aortic AT1R protein analysis

Abdominal aortas, free of PVAT were homogenized in RIPA buffer (Santa Cruz
Biotechnology), the homogenate frozen at -80 °C, thawed, sonicated and centrifuged at
15,000 x g 4 °C for 10 min. Protein concentration in the supernatant was measured using
micro BCA protein assay kit (Thermo Scientific, Rockford, IL, USA). A 30 ug aliquot of
protein was analyzed on a 10 % Tris-HCL polyacrylamide gel for AT1R protein, using
rabbit anti-AT1R antibody (Santa Cruz Biotechnology), and GAPDH (Millipore, Billerica,

MA, USA) as a hormalization control.

Ex vivo analysis of abdominal aortic reactivity
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The abdominal aorta was removed, placed in ice-cold physiological saline (PSS)
containing 130 nM NaCl, 4.7 mM KCI, 1.2 mM KH,PO,, 1.2 mM MgSQ,, 15 mM
NaHCO;, 5.5 mM glucose, 26 uM CaNa,EDTA, 1.8 mM CaCl,, pH 7.4. The abdominal
aorta in presence or absence of PVAT was cut into 2 mm segments and individual rings
were suspended in an organ bath containing PSS at 37°C bubbled with 21% O, 6% CO,,
balanced N,. The rings were attached to a force transducer (Grass Technologies, West
Warwick, RI, USA) with steel hangers and resting tension was increased step wise to 1.5
g over 30 min. After equilibration, rings were treated with KCI (80 mM) for 5 min.
Thereafter, rings were treated to 100 nM and 500 nM Ang Il. After a final washout,
contraction with 10 uM phenylephrine (PE) for 5 min was followed by relaxation with 10
KM acetylcholine (ACh) to determine the viability of the rings. Rings with dilation less

than 50% were discarded. All chemicals were purchased from Sigma-Aldrich.

Statistical analysis

Differences among genotypes were analyzed by student’s t-test. The treatment-
related changes in blood pressure between genotypes were analyzed by repeated measures,
two-way analysis of variance with post hoc Holm-Sidak comparisons; *P < 0.05 was

considered statistically significant in all cases.

39



D. RESULTS
ahr excision as determined by PCR and endothelial AHR deletion as determined by
immunohistochemistry

fx/fx

PCR amplification of the ahr™"-unexcised allele results in a 140-bp band, while

fx/fx

amplification across the ahr™"-excised allele amplifies a 180-bp band. PCR amplification

of the WT allele, when present, generates a 106-bp band (Walisser et al., 2005). Our

results demonstrated the successful excision of the ahr™™

allele in organs that contain EC
and specifically in conduit and resistance blood vessels, including the aorta and mesenteric
arteries, respectively (Fig. 2.1A). Further, immunohistochemistry confirmed the deletion
++

of AHR protein from the endothelium of the aorta of ECahr” mice, compared to ECahr

mice (Fig. 2.1B).

Basal blood pressure, activity, and organ weights

+/+

Blood pressure of ECahr” and ECahr*’* littermates was measured by
radiotelemetry. The ECahr” mice exhibited significantly lower SBP and DBP, compared
to ECahr™* mice (Fig. 2.2A). Pulse pressure (data not shown) and heart rate were
normal (Fig. 2.2B). The decrease in blood pressure in ECahr” mice was evident
throughout the entire 24 h light/dark cycle, although the circadian pattern of MAP
exhibited a normal increase during the night wakeful period (Fig. 2.2C). The level of
activity was comparable between ECahr” and ECahr™* mice during the 24 h light/dark
cycle (Fig. 2.2D). Finally, ECahr” mice exhibited a decreased liver weight and cardiac

hypertrophy accompanied by renal enlargement (Table 2.1), but did not exhibit any

changes in weight of adipose tissue (Table 2.2S, supplemental data).
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Figure 2.1. Cre"™*-mediated excision of the ahr floxed allele (ahr™™). (A) Excision by
Cre™ was determined by genotyping for both the unexcised (140 bp) and excised (180
bp) alleles of ahr™™in genomic DNA isolated from liver, kidney, heart, aorta and
mesenteric arterioles obtained from ahr™™Cre” (ECahr*'*) and ahr™™Cre* (ECahr”) mice.
(B) Representative sections of aorta from ECahr” and ECahr** mice stained with primary
AHR antibody. Positive horseradish peroxidase activity (arrows) can be seen in the

endothelium of ECahr*’*, but absent in the ECahr™ mice.
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Figure 2.2. Loss of ahr alleles in endothelial cells (EC) decreases systolic and diastolic
blood pressure. (A) Systolic and diastolic blood pressure, (B) heart rate, (C) hourly mean
arterial pressure (MAP) over a 24 hr period (light and dark cycle), and (D) activity of
ECahr™* and ECahr™” mice, as measured by radiotelemetry (n=12/genotype). Data
represent mean = SEM and were analyzed by Student’s t-test; *p < 0.05, compared to
ECahr™ (A and B) or by two-way, repeated measures ANOVA, using post hoc Holm-
Sidak comparisons; *p < 0.05, compared to ECahr™* mice (C and D).
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Table 2.1. Body and organ weights of 4-

+/+

month-old male ECahr** and ECahr™ mice.

Weight ECahr*™* ECahr”
(n=10) (n=14)
Body (9) 28.8+0.8 28.7+0.8
Heart (mg) 119+4 130+ 4
(0.412 + 0. (0.455 £ 0.
104)" 137)*
LV+S (mg) 91.1+3 102 + 3*
(0.320 £ 0. 099) (0. 358 = 0.
087)*
Kidney (mg) 356 + 17 398 + 14
(0. 616 £0.171) (0.694 £ 0.
162)*
Liver (mg) 1412 £ 52 1110 + 57*

(0.049 % 0. 180) (0. 039 0. 168)*

Values are expressed as mean + SEM
*P <0.05

" (Organ/body weight ratio x 100)
Legend: LV+S, Left ventricle + Septum.
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Inhibition of NOS on blood pressure

To determine the potential contribution of NOS and NO to hypotension in ECahr”
mice, we treated ECahr™* and ECahr” mice chronically with the NOS inhibitor, LNNA
(250 mg/L) in drinking water for 2 wk and assessed changes in blood pressure by
radiotelemetry. There was an increase in MAP during LNNA treatment in both ECahr™
and ECahr** mice, and the relative change in MAP was similar between the two
genotypes (Fig. 2.3A and B). After treatment ended, MAP returned to baseline in both
genotypes. To further determine if vascular eNOS or systemic NO levels were altered, we
measured aortic eNOS mRNA and protein, and urinary NOx. Aortic eNOS expression
and urinary NOXx levels did not different between ECahr™ and ECahr** mice (Fig. 2.1S,

supplemental data).

Sympathetic nervous system activity and intrinsic heart rate

To determine if a reduction in the sympathetic contribution to vascular tone or a
lower intrinsic heart rate drives the hypotension in the ECahr” mice, we assessed changes
in MAP and heart rate in ECahr” and ECahr™* mice, following an acute exposure to
prazosin, an ol adrenoceptor antagonist, or to hexamethonium, a ganglionic blocker. We
found that MAP decreased significantly more in the ECahr”” mice after prazosin
(ECahr**; -5.3 + 1.7 mmHg; ECahr’:-11.7 + 2.3 mmHg, n=4/genotype, p<0.05) and
hexamethonium treatment (ECahr**; -18.2 + 1.8 mmHg; ECahr’:-25.8 + 1.5 mmHg,

+/+

n=4/genotype, p<0.05), compared to ECahr™" mice, suggesting that sympathetic

contribution to vascular tone is increased (Fig. 2.2S, supplemental data). However, the
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intrinsic heart rate observed following hexamethonium treatment was similar between

genotypes.
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Figure 2.3. ECahr” mice exhibit normal responses to NOS inhibition by LNNA in vivo.
(A) Change in MAP after treatment with 250 mg/L LNNA in drinking water of male
ECahr” and ECahr** mice. (B) Percent change in MAP after treatment with 250 mg/L
LNNA. Data represent mean + SEM and were analyzed by two-way, repeated measures
ANOVA, using post hoc Holm-Sidak comparisons; *p < 0.05, compared to ECahr*’* (A),
and by Student’s t-test (B) (n=8/genotype for all experiments).
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Functional assessment of Ang Il responsiveness in vivo

To determine if hypotension in the ECahr” mice was due to reduced

++

responsiveness to Ang 11 in vivo, we challenged ECahr” and ECahr** mice with a bolus
dose of Ang 11 (30 pg/kg) and recorded the blood pressure response starting 5 min after
injection. An immediate, robust response to Ang Il was demonstrated by a comparable
increase in MAP in both genotypes during the first 2 min (ECahr™: 150 + 2 mmHg;
ECahr** 140 + 10 mmHg) (Fig. 2.4). However, the subsequent change in blood pressure

++

after the first 5 min differed considerably between genotypes. MAP in ECahr™ mice
remained highly elevated (150 + 8 mmHg at 5 min) with only a very modest decrease after
30 min (137 = 3 mmHg). In contrast, the MAP in ECahr” mice exhibited a steady decline
(138 + 2 mmHg at 5 min) with significantly lower MAP values being evident as early as 9
min (136 + 2 mmHg) and dropping further by 30 min (122 + 4 mmHg) (Fig. 2.4A).

+/+

Interestingly, the SBP response was similar between ECahr™ and ECahr** mice, although
SBP did decrease slightly faster in the ECahr” mice reaching significantly lower values by
20 min (Fig. 2.4B). In contrast, the DBP response was significantly diminished in ECahr™
mice across all time points beginning as early as 3 min (Fig. 2.4C). Area under the curve
analysis following Ang Il injection showed that the increase in DBP was significantly
attenuated in ECahr” mice (ECahr” auc: 504 + 138 mmHg/30 min; ECahr**ayc: 1297 +
223 mmHg/30 min, p<0.05), while the increase in SBP was not different between

genotypes (ECahr” auc: 702 + 70 mmHg/30 min; ECahr**auc: 1106 + 150 mmHg/30 min,

(p>0.05)( Fig. 2.4D).
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Figure 2.4. Loss of ahr in endothelium attenuates RAS responsiveness in vivo. (A) MAP
response, (B) change in systolic, (C) change in diastolic blood pressure, and (D) area
under curve analysis, for 30 min following i.p. injection of Ang 11 (30 pug/kg). Blood
pressure was recorded starting after 5 mins of Ang 11 administration to exclude handling
as a confounding factor. Data represent mean = SEM and were analyzed by two-way,
repeated measures ANOVA, using post hoc Holm-Sidak comparisons; *p < 0.05
compared to ECahr** (Fig. A, B, and C). Data in panel (D) were analyzed by student t-
test *p < 0.05 compared to ECahr™* (n=4/genotype).
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Inhibition of RAS on blood pressure

To further elucidate the contribution of the RAS to the hypotension in ECahr”
mice, we investigated the responsiveness of ECahr” and ECahr** mice to an ACEi. We
found that captopril significantly decreased MAP, SBP and DBP in mice of both
genotypes after 5 d of treatment. While the decrease tended to be greater in ECahr**
mice during the first days of treatment, it was not statistically different than the drop seen
in ECahr™ mice (Fig. 2.5A, B and C). Interestingly, during the 4 days of washout after
drug treatment stopped, MAP and DBP remained significantly lower and did not return to
baseline in ECahr™ mice, compared to ECahr™ mice (Fig. 2.5A, C and D). To determine
if any components of the systemic RAS or indices of RAS activity, such as salt and water
balance were altered, we evaluated PRA, ACE activity, plasma electrolytes and urine
osmolality. We found that all, except plasma K, were similar between ECahr” and

ECahr™* mice, and although plasma K was slightly reduced in ECahr” mice it was still

within normal physiological limits (4.0 - 7.0 mM) (Table 2.2).

mRNA analysis of RAS components from adipose and aorta

To determine if tissue RAS components were altered in their expression, we
measured mMRNA of renin, angiotensinogen (Agt) and AT1R in visceral white adipose,
aortic PVAT, and in aortas cleaned of adipose tissue. We found that Agt mMRNA was
significantly increased in aortic PVAT in ECahr” mice, but not altered in either visceral
white adipose or the aorta proper, compared to ECahr*™ mice (Fig. 2.6A). In addition,

both renin and AT1R mRNA was significantly reduced in visceral adipose from ECahr™

49



+/+

mice, compared to ECahr™" mice, but not altered in aortic PVAT or the aorta (Fig. 2.6B

and C).
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Figure 2.5. Loss of ahr in endothelium attenuates the contribution of Ang 1l to basal
blood pressure. (A) MAP response, (B) change in diastolic, and (C) change in systolic
blood pressure, following treatment with 4 mg/kg ACEi, captopril, in drinking water for 5
d, followed by a 4 d washout. (D) Area under the curve analysis of systolic and diastolic
blood pressure response during washout. Data represent mean £ SEM and were analyzed
by repeated measures two-way ANOVA, using post hoc Holm-Sidak comparisons; *p <
0.05, compared to ECahr™* (Fig. A, B and C). Data in panel (D) were analyzed by
student’s t-test *p < 0.05, compared to ECahr** (n=4/genotype).

51



Table 2.2. Indices of the renin-angiotensin system (RAS) in ECahr™* and ECahr™ mice.

Parameter ECahr™ (n) ECahr” (n)
PRA (ng Ang I/ml/hr) 3.9+0.2 (10) 3.7+0.2 (10)
Plasma ACE (units/L) 196 £ 7 (10) 189 £ 9 (10)
Hematocrit (%) 46.8 £ 0.6 (9) 44.9+£1.0 (8)
Plasma Na (mM) 148. 4+ 0.8 (9) 146.2 £ 0.9 (8)
Plasma K (mM) 6.8x0.2(9) 5.8x0.2(8)*
Plasma CI (mM) 118.2+ 1.2 (9) 115.4 +0.9 (8)
Urine Osmolality (mmol/Kg) 3566.9 + 216 (9) 3952.1 + 260 (14)

Values are expressed as mean + SEM
*p < 0.05; n, sample size.
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Figure 2.6. Loss of ahr in endothelium alters mMRNA expression of RAS components in
adipose. mRNA quantification of (A) Agt, (B) renin, and (C) AT1R from visceral white
adipose, aortic PVAT, and aorta free of PVAT. Data represent mean + SEM and were

+/+

analyzed by Student’s t-test; *P < 0.05, compared to ECahr™".
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ATIR protein expression and aortic reactivity to Ang Il

To determine if the decreased responsiveness to Ang Il could result from
decreased protein expression of the AT1R ECahr™ mice, we measured AT1R protein
expression in aortas cleaned of adipose. We found that AT1R protein expression in the

++

aorta free of adipose was significantly lower in the ECahr™, compared to ECahr** mice
(Fig. 2.7A and B). To further determine if vascular reactivity to Ang Il was decreased in
ECahr™” mice, and if this was influenced by the presence of PVAT, we examined ex vivo
abdominal aortic reactivity to two different doses of Ang Il in the presence and absence of
aortic PVAT. We found that responsiveness of the abdominal aorta to Ang Il was
completely normal in ECahr™ mice in the absence of PVAT (Fig. 2.8A). However, we
found that the responsiveness of the abdominal aorta to Ang 11 was significantly

attenuated in ECahr™ mice in the presence of PVAT (ECahr**; 0.2 + 0.04 ; ECahr™: 0.1

+ 0.01, n=11/genotype, p<0.05) (Fig. 2.8B).
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Figure 2.7. Loss of ahr in endothelium diminishes AT1R expression in aorta. (A)
Representative western blot of abdominal aortic AT1R protein expression. (B)
Quantification of AT1R protein expression relative to GAPDH. Data represent mean +
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SEM and were analyzed by Student’s t-test; *P < 0.05, compared to ECahr™".
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Figure 2.8. Loss of ahr in endothelium reduces abdominal aortic reactivity to Ang Il in
the presence of perivascular adipose tissue (PVAT). (A) Ang Il-induced contraction (%
KCI) in absence of PVAT. (B) Ang ll-induced contraction (% KCI) in the presence of
PVAT. (ECahr” n=12; and ECahr** n=11). Data represent the mean = SEM and were
analyzed by Student’s t-test; *P < 0.05, compared to ECahr*".
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E. DISCUSSION

The findings from our study show for the first time that AHR in the endothelium
is critically involved in blood pressure regulation and is required to maintain normal basal
levels of blood pressure. Notably, ECahr” mice are significantly hypotensive and this
phenotype is associated with alter gene expression of tissue RAS components as well as
decreased protein expression of vascular AT1R. Further, the hypotension is mediated, in
part, by a reduction in vasoconstrictive responsiveness to Ang Il, measured both in vivo
and ex vivo. The blood pressure phenotype in ECahr” mice is nearly identical to that
observed in the global AHR knockout mice, demonstrating that endothelial-expressed
AHR is a critical regulator of vascular control of blood pressure and this function cannot
be compensated by the normal expression of AHR in other tissues or cell types.

Hypotension can have many physiological etiologies, such as decreases in the
contribution of the sympathetic nervous system to vasoconstriction or increases in
vascular eNOS expression and NO production. For example, genetic deletion of al
adrenergic receptors or transgenetic overexpression of vascular eNOS both produces
hypotension (Ohashi et al., 1998; van Haperen et al., 2002; Sanbe et al., 2007).
However, our data rule out these two possible mechanisms in contributing to the
hypotension observed in ECahr” mice. Treatment of ECahr” mice with the ol
adrenoceptor blocker, prazosin, or the ganglionic blocker, hexamethonium, significantly
reduce blood pressure in ECahr” mice, suggesting that sympathetic nervous system
control of blood pressure is actually enhanced in ECahr”™ mice, rather than reduced.
Additionally, neither eNOS expression nor NOXx levels are increased in ECahr” mice and

chronic NOS inhibition increases blood pressure to the same degree in both genotypes.
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Taken together these data suggest that increased NO is not responsible for the
hypotension in ECahr”" mice. This observation is consistent with that observed for the
global AHR knockout mice (Zhang et al., 2010).

Another mechanism that may mediate hypotension in ECahr” mice is a reduction
in RAS signaling. Several studies have demonstrated the requirement for the RAS in
maintaining basal blood pressure within a normal range. Mice that lack angiotensinogen,
ACE, or AT1R, have all been shown to be hypotensive (Kim et al., 1995; Esther et al.,
1996; Tsuchida et al., 1998), and our data clearly demonstrate a decrease of Ang Il

+/+

signaling both in vivo and ex vivo. In vivo exposure of ECahr” and ECahr*"* mice to an
acute dose of Ang Il produces an immediate rise in blood pressure in both genotypes;
however, this increase is not sustained in the ECahr” mice. Further, the steady decline in
DBP in ECahr” mice after acute Ang Il injection suggests a significant reduction in the
duration of the vasoconstrictor response. In addition, chronic exposure of ECahr’ and
ECahr*™* mice to an ACEi reduces blood pressure in both genotypes; however, the
subsequent increase in DBP after drug treatment is stopped is significantly attenuated in
ECahr” mice, further suggesting a decrease in response to Ang |1-mediated
vasoconstriction. These in vivo data are further supported by ex vivo vasoreactivity data
that show abdominal aortas from ECahr”" mice are significantly less responsive to Ang I1-
mediated constriction in the presence of PVAT. It is notable that although Ang Il
responsiveness is reduced, other indices of RAS activity are normal, including PRA and

ACE activity, renin, angiotensinogen, and plasma Ang Il. Taken together these data

suggest that downstream signaling of Ang Il is reduced.
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One mechanism by which Ang I1-mediated vasoconstriction could be reduced is by
a reduction in receptor expression. Both pharmacological blockade of AT1R and genetic
deletion of AT1R reduce blood pressure (Kim et al., 1995; lyer et al., 1996; Lu et al.,
1997). Our data show that loss of endothelial AHR significantly reduces white adipose
expression of AT1R mRNA as well as aortic expression of AT1R protein. The
mechanism by which AHR deficiency reduces AT1R expression is not known. The AHR
regulates gene expression via binding to dioxin response elements (DRE) containing the
core recognition motif 5’-GCGTG-3’(Swanson et al., 1995). Putative DREs are located
in the promoter sequence of both the mouse AT1a and AT1b receptors, supporting the
plausibility that expression of the mouse AT1R could be directly regulated by AHR. This
is further supported by the fact that activation of the AHR by exogenous ligands sensitizes
mice to Ang I1-mediated hypertension (Aragon et al., 2008), and induces AT1R mRNA
expression in mesenteric arteries (unpublished data). Further, physiological shear stress
has been shown to activate the AHR (Eskin et al., 2004; Han et al., 2008; Conway et al.,
2009), and to increase AT1R expression (Lindstedt et al., 2009), providing indirect
evidence that AHR may contribute to the regulation of AT1R expression. Additionally, the
AHR interacts with several other transcription factors including E2F1, TFIIE, TFIIB, as
well as coactivators like CREB-binding protein, CBP/p300 and nuclear receptor-
interacting protein 1 (RIP140) (Swanson and Yang, 1998; Hankinson, 2005) and thus
alteration in AT1R expression could result from crosstalk with other signaling pathways.

Despite the observed reduction in vascular AT1R expression, this is unlikely to be
the sole explanation for the hypotensive phenotype observed in ECahr™ mice, since

vasoreactivity to Ang Il ex vivo is not significantly attenuated in the absence of PVAT.
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Rather, a significant decrease in vasoconstriction to Ang Il is only observed in ECahr™
mice in the presence of PVAT. It is possible that loss of AHR from the endothelium might
alter the paracrine signaling between that occurs between the microcirculation and the
adipose, including PVAT. Both renin and AT1R mRNA were significantly decreased in
expression in visceral white adipose, which might contribute to a reduction in Ang 11
release from the adipose and a shift in the balance between vasoconstrictors and
vasodilators released from adipose. It has been shown that stimulation of adipose AT1R
by Ang Il acts in a feedforward mechanism to increase adipocyte release of Ang Il
(Takemori et al., 2007). It is also possible the loss of AHR from the endothelium
increases vasodilators released from adipose. These dilators could include the newly
discovered hydrogen sulphide gas (H.S) generated by cystathionine gamma lyase enzyme
(CSE) (Yang et al., 2008; Fang et al., 2009)as well as adipocyte-derived relaxing factor,
adiponectin, leptin, omentin, and interleukin-6 (Fesus et al., 2007; Sahin and Bariskaner,
2007; Yamawaki et al., 2010). Taken together, the deregulation of the RAS in adipose
associated with diminished AT1R expression in the vasculature might drive the subsequent
hypotension observed in the ECahr” mice.

The ahr floxed mice (ahr™™

), which were our genetic control in these studies,
harbor the low affinity, ahr® allele, derived from the DBA-2 strain (Poland and Glover,
1980). In contrast, the ahr** mice used as a genetic control in previously published
studies harbor the high affinity, ahr™ allele. Thus, we cannot directly compare the blood
pressure phenotype of the ECahr” mice and ahr” mice. Nevertheless, the blood pressure

phenotype of the ECahr” and the ahr” mice, compared to their respective wildtype

controls, shares many similarities. First, hypotension is a hallmark of both of these mouse
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models (Zhang et al., 2010), where the ahr” mice exhibit a 14% lower MAP, compared

+/+ +/+

to ahr*’*mice, while ECahr™ mice exhibit an 8% lower MAP, compared to ECahr** mice.
Second, the resultant hypotension in both ECahr™ and the ahr” mice is not mediated by
an increase in NO production. Third, both ECahr™ and the ahr” mice exhibit a reduced
responsiveness to the RAS without apparent changes in indices of RAS activation,
suggesting that the RAS contributes less in maintaining basal blood pressure in both the
ECahr” and ahr” mice (Zhang et al., 2010).

Finally, ECahr” and ahr” mice also share some fundamental similarities related to
in changes in organ weight. The ahr” mice exhibit decreased liver size, as well as
increased weight of heart and kidneys (Lund et al., 2006; Zhang et al., 2010). In our
study, ECahr”" mice also exhibit a decreased liver size, as well as increased weight of heart
and kidneys. While the reduction in liver weight has been attributed to the persistent
ductus venosus and reduced hepatocyte size (Lahvis et al., 2000; Lahvis et al., 2005), the
reasons for the increases in heart and kidney weight have not been firmly established. The
increased heart weight might reflect a compensatory response to increase cardiac output in
an attempt to normalize blood pressure, hence a physiological hypertrophy (Vasquez et
al., 2003), while increased kidney weight may result from altered developmental
vascularization (Lahvis et al., 2000). Nonetheless, our study demonstrates that these
organ weight changes result from loss of AHR solely from the endothelium.

The mechanism by which AHR regulates blood pressure remains to be fully
determined; however, our study establishes that AHR expression in the endothelium is

particularly critical to normal vascular responsiveness to Ang Il and thus basal blood

pressure control. Since the RAS is not only essential to the physiological regulation of
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basal blood pressure but also a primary pathological mediator of hypertension, the AHR
signaling pathway could represent an important novel mechanism to influence RAS
activity and to control blood pressure. Future studies are needed, however, to identify the
specific AHR genes that mediate these changes in RAS responsiveness and that influence

the vascular responsiveness in the context of adipose tissue.
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SUPPLEMENT DATA
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Endothelial cell-specific aryl hydrocarbon receptor knockout mice exhibit
hypotension mediated, in part, by an attenuated angiotensin Il responsiveness.

Larry N. Agbor, Khalid M. Elased, and Mary K. Walker. Biochem Pharmacol 5: 514—

523, 2011.
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RNA isolation and gPCR analysis.

Aortic eNOS mRNA was analyzed from total RNA by quantitative real time PCR
using an Icycler (Bio-Rad), with PGK gene as an internal normalization control. Total
RNA was isolated from aortas with RNeasy Fibrous Tissue Mini Kit (Qiagen, GmbH,
Germany). cDNA was synthesized using iScript Select cDNA Synthesis Kit (Bio-Rad
Laboratories,Hercules, CA) with the supplied random primers and 250 ng RNA. PCR
amplification was performed using an iCycler (Bio-Rad Laboratories) with a reaction
mixture comprised of iQ SYBR Green Supermix (Bio-Rad Laboratories) with 500 puM
sense and antisense primers, and 250 pg cDNA. Cycle threshold data for the target gene

and reference, PGK, were used to calculate mean normalized expression.

Protein extraction and western blot.

Aortas were homogenized in RIPA buffer (Santa Cruz Biotechnology),
homogenate frozen at -80 °C for 15 min, sonicated for 10 s and centrifuged at 15,000 x g
4 °C for 10 min. Protein concentration was measured using Bio-Rad protein assay (Bio-
Rad Laboratories). A 20 pg aliquot of protein was mixed with 2x loading buffer (100
mM pH6.8 Tris-HCI, 4% sodium dodecyl sulfate, 0.2% bromophenol blue, 20% glycerol,
200 mM dithiothreitol) and denatured at 95 °C for 5 min. Denatured samples were
subjected to electrophoresis on 7.5% Tris-HCL polyacrylamide gel at 150 V for 1 hour in
running buffer (25 mM Tris-base, 150 mM glycine, 0.1% sodium dodecyl sulfate) and
separated proteins were transferred to polyvinylidene fluoride (PVDF) membrane (Bio-
Rad Laboratories) at 100 V for 1 hour in cold transfer buffer (20 mM Tris-base, 150 mM

glycine, 20% methanol). The membrane was washed with Tris-buffered saline (TBST,
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0.8% NaCl, 0.02% KCI, 0.3% Tris-base, 0.05% Tween-20, pH7.4) and blocked for 1
hour in 5% nonfat dry milk in TBST. The blocked membrane was incubated with mouse
anti-eNOS antibody (1:2000, Catalogue No. 610296, BD Transduction Laboratories, San
Jose, CA) at 4 °C overnight, washed with TBST, and incubated with horseradish
peroxidase (HRP) conjugated goat anti-mouse (Southern Biotech, Birmingham, AL) for 1
hour at room temperature. The membrane was washed with TBST and developed for 10
min with 1 mL chemiluminescence reagent (Perkin-Elmer, Waltham, MA) under KODAK
Image Station 4000MM digital imaging system (Perkin-Elmer). The membrane was
stripped (7 M guanidine hydrochloride, 0.75% KCI, 0.38% glycine, 50 uM EDTA, 0.14%
2-mercaptoethanol, pH10), washed with TBST, reblocked, and incubated with mouse
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Millipore, Billerica, MA, USA)
overnight, washed with TBST, incubated with HRP-conjugated goat anti-mouse IgG
(Southern Biotech), washed and developed as above. Protein quantification was done

using Image J software (National institute of Health, USA)
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Figure. 2.1S. Hypotension in ECahr’ mice is not associated with increased eNOS
expression nor increased NO bioavailability. (A) Aortic eNOS mRNA from ECahr” and
ECahr*"* mice as measured by gPCR and normalized to PGK. (B) Representative western
blot of total eNOS protein expression from aorta, (C) quantification of total eNOS
protein expression relative to GAPDH, and (D) urinary NOx of ECahr** and ECahr”
mice (n=5/genotype) . Data represent mean + SEM and were analyzed by Student’s t-test.
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Figure. 2.2S. Loss of AHR in endothelial cells enhances sympathetic innervation to the
vasculature. (A) Change in blood pressure following prazosin and hexamethonium
treatment was calculated by averaging readings for 30 mins after injections, and expressed
as change from baseline MAP. (B) Basal and intrinsic heart rate following
hexamethonium injection. Data represent mean = SEM and were analyzed by Student’s t-
test; *p < 0.05, compared to ECahr*"*, n=5/genotype.
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Table 1S: Real Time PCR primer sequences

Gene

Sense primer

Antisense primer (s)

DNA Polymerase 2 (POL2)
AT1R

Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)
Renin

Angiotensinogen

Cre recombinase (cre)

Aryl hydrocarbon receptor

genotyping primers (ahr™™)

Endothelial nitric oxide
Synthase (eNOS)

TGACTCACAAACTGGCTGACATT

GGGCGTCATCCATGACTGTAAA

CCAATGTGTCCGTCGTGGATC

ATGAATATGTTGTGAGCTGTAGCC

CACTCATTTGTTCAGAGCCTGG

TGCCTGCATTACCGGTCGATGC

GTCACTCAGCATTACACTTTCTA

GCCAAAGTGACCATAGTGGACC

TACATCTTCTGCTATGACATGGGC

TTCCCCAGAAAGCCGTAAAACA

TGTAGCCCAAGATGCCCTTCA

GTCTCTCCTGTTGGGATACTGTAG

GTTCATCTTCCACCCTGTCACA

CCATGAGTGAACGAACCTGGTCG

CAGTGGGAATAAGGCAAGAGTGA/
IGGTACAAGTGCACATGCCTGC

TTCTGCTCATTTTCCAGGTGCTT
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Table 2S: Adipose weights of 2-month-old male

ECahr'* and ECahr” mice.

Adipose ECahr** ECahr”

(n=8) (n=5)

Mesentery (mg) 65.7+£59 441 +8.9

(0.249£0.02)"  (0.177+0.01)"
Perirennal (mg) 123.6 £9.5 91.6+4.3
(0. 107 + 0. (0.125 +0.02)

008) f

PVAT (mg) 28.1+2.1 31.0+4.9

(0.469 £ 0.03)"  (0.369 + 0.04)"

Values are expressed as mean + SEM
" (Adipose/body weight ratio x 100)
Legend: PVAT, Perivascular adipose tissue.
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1. CHAPTER 3
Elevated blood pressure in cytochrome P4501A1 (CYP1A1) knockout mice is

associated with reduced vasodilation to omega-3 polyunsaturated fatty acids.

In preparation for submission to Toxicology and Applied Pharmacology
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A. ABTRACT

Cytochrome P4501A1 (CYP1Al) metabolizes omega-3 polyunsaturated fatty
acids (n-3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), to
potent vasodilators in vitro. Although CYP1AL is constitutively expressed in the
vasculature, its role in regulating vascular tone and blood pressure (BP) has not been
investigated. Thus, we tested the hypothesis that global genetic deletion of CYP1A1 will
result in reduced vasodilatory responses to n-3 PUFAs and increases in BP. We assessed
BP by radiotelemetry in CYP1A1 wild type (WT) and knockout (KO) mice + nitric oxide
synthase (NOS) inhibitor (N“-nitro-L-arginine). Acetylcholine (ACh), EPA, DHA, 19,20-
epoxydocosapentaenoic acid (19,20-EDP), and 17,18-epoxyeicosatetraenoic acid (17,18-
EEQ)-mediated vasorelaxation was assessed in the aorta and first order mesenteric
arterioles. Further, S-nitroso-N-acetylpenicillamine (SNAP)-mediated relaxation was
assessed in endothelium-disrupted aorta and DHA-mediated relaxation was assessed in
mesenteric arterioles + inhibitors of the voltage-gated (Kv), and large conductance,
calcium-activated potassium channels (BK). We found that CYP1A1 KO mice were
hypertensive, compared to WT mice (mean arterial pressure in mmHg, WT 1031, KO
116+1; systolic BP: WT 114+1, KO 124+1; diastolic BP: WT 931, KO 10841,
n=5/genotype, p<0.05), and exhibited a reduced HR (in beats per minute, WT 575£5; KO
530+7; p<0.05). Nonetheless, CYP1A1 KO mice exhibited normal responses to NOS
inhibition and aortic vasorelaxation to ACh and SNAP, suggesting that hypertension is not
associated with loss of NO. Conversely, CYP1A1 KO mice exhibited significant
attenuation to EPA and DHA-mediated vasodilation in mesenteric arterioles and aorta, but

normal vasodilatory responses to putative CYP1A1 metabolites of EPA and DHA, 17,18-
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EEQ and 19,20-EDP . Lastly, inhibition of Kv and BK channels significantly inhibited
DHA-mediated vasodilation in mesenteric arterioles. These data suggest that constitutive
CYP1AL expression has a physiologically important role in the regulation of vascular

function and blood pressure, which may involve vasodilatory responses to n-3 PUFAs.
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B. INTRODUCTION

Omega-3 polyunsaturated fatty acids (n-3 PUFAS) are metabolized by numerous
cytochrome P450s into several products that have potent vasodilatory properties
(Schwarz et al., 2004; Schwarz et al., 2005). Some of these metabolites have been
recognized to play key roles in contributing to underlying vascular tone, BP, and overall
cardiovascular health (Billman et al., 1994; Engler et al., 1999; Menotti et al., 1999;
Blanchet et al., 2000). Nonetheless, the contribution of specific P450s to the regulation of

vascular tone and BP via n-3 PUFA metabolism remains poorly understood.

Cytochrome P4501A1 (CYP1ALl) is one P450 shown to metabolize n-3 PUFAs to
vasodilatory products. CYP1AL is constitutively expressed in vascular endothelium with
CYP1A1 mRNA and protein levels detected in cultured human umbilical vein endothelial
cells as well as in endothelial cells of the mouse descending thoracic aorta, and human
coronary arteries (Eskin et al., 2004; Han et al., 2008; Conway et al., 2009). In addition
to its basal expression in the endothelium, CYP1AL is also induced in the endothelium by
physiological levels of shear stress (Han et al., 2008; Conway et al., 2009). Physiological
laminar shear stress is considered to be anti-atherogenic (Cunningham and Gotlieb, 2004).
It significantly induces antioxidants, antithrombotic factors, and vasodilators, such as nitric
oxide (NO) and prostacyclin, and suppresses prothrombotic substances and
vasoconstrictors. This raises the possibility, as suggested by Conway et al. (2009) and De
Caterina and Madonna (2009), that physiological induction of CYP1AL in the endothelium
could also contribute to the anti-atherogenic phenotype and that this may be mediated via

metabolism of PUFAs. Parallel increases in CYP1A1 and NO have also been observed in
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cultured endothelial cells treated with an aryl hydrocarbon receptor agonist (Lim et al.,

2007).

As noted above, evidence from several studies show that CYP1A1 metabolizes
two major n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in
a stereospecific manner. Human CYP1AL epoxidizes the 17,18-olefinic bond of EPA in a
regiospecific manner to form mainly 17(R),18(S)-epoxyeicosatetraenoic acid
[(17(R),18(S) EEQ)] (Schwarz et al., 2004). CYP1AL also exclusively epoxidizes the
19,20-olefinic bond of DHA, producing 19(R),20(S)-epoxydocosapentaenoic acid
[19(R),20(S)-EDP] (Fer et al., 2008; Lucas et al., 2010). Furthermore, both of these
metabolites, 17,18-EEQ and 19,20-EDP, are potent vasodilators in the microcirculatory
vessels of the pig and/or mouse (Zhang et al., 2001), and 17,18-EEQ causes relaxation
and hyperpolarization of pulmonary artery smooth muscle (Morin et al., 2009). Studies
have identified a variety of downstream mechanisms that mediate this vasodilation,
including increases in NO signaling (Ma et al., 2004; Li et al., 2007a; Stebbins et al.,
2008) as well as activation of potassium channels on vascular smooth muscle cells

(Lauterbach et al., 2002; Ye et al., 2002; Wang et al., 2011).

Taken together, these data suggest that CYP1A1 could metabolize DHA and EPA
as substrates in vivo into vasodilatory metabolites that act via NO or potassium channel
activation. Thus, we sought to determine the degree and mechanism by which CYP1Al
contributes to vascular responses to n-3 PUFAs and to BP regulation. We used CYP1Al

wild type (WT) and knockout (KO) mice to test the hypothesis that global genetic deletion
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of CYP1AL will result in reduced vasodilatory responses to n-3 PUFAs and increases in

BP.
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C. METHODS

Chemicals

Acetylcholine (ACh), phenylephine (PE), N“-nitro-L-arginine (LNNA), S-nitroso-
N-acetyl penicillamine (SNAP), 4-aminopyridine, iberiotoxin, and all ingredients of
physiological saline solution (PSS) and HEPES-PSS were purchased from Sigma—Aldrich
(St. Louis, MO). EPA, DHA, 17,18-EEQ, 19,20-EDP and U46619 were purchased from
Cayman Chemical (Ann Arbor, MI). lonomycin was purchased from EMD Millipore

Chemicals (San Diego, CA).

Animals

CYP1A1 KO mice, backcrossed more than eight generations onto the C57BL/6J
background, were generously provided by Dr. Daniel Nebert (University of Cincinnati)
and were bred at the University of New Mexico (Dalton et al., 2000). Age-matched
C57BL/6J mice served as WT controls. Animals were housed in a temperature-controlled
environment receiving standard mouse chow and water ad libitum. All animal protocols
were approved by the University of New Mexico Animal Care and Use Committee and the
investigations conform to the Guide for the Care and Use of Laboratory Animals
published by the U. S. National Institutes of Health (NIH Publication No. 85-23, revised
1996). When tissues were harvested and organ weight determined, mice were
anesthetized with ketamine (80 mg/kg)/xylazine (4 mg/kg). The heart was removed, atria
were dissected, and the total ventricle weight measured. The right ventricle was dissected
and the left ventricle and ventricular septum measured. Kidneys and liver weights were

also measured. All tissues were frozen at —80°C.
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In vivo analysis of blood pressure

Arterial BP and heart rate (HR) were measured using radiotelemetry in 4-5 month-
old CYP1A1 WT and KO male mice (Data Sciences International, St. Paul, MN, USA) as
previously described (Lund et al., 2008), using PA-C10 radiotelemeters. Mice were
allowed to recover from surgery for 7 d prior to data collection. BP, including systolic,
diastolic, mean and pulse pressures, and HR were collected for 7 d before drug treatments
began. BP was recorded for 10 s every 15 min during baseline measurements. After basal
BP was measured, all mice were treated with LNNA in the drinking water (250 mg/L) for

one week followed by one week of washout (Duling et al., 2006).

Aortic vasoreactivity analysis

Mice were anesthetized with ketamine (80 mg/kg)/xylazine (4 mg/kg) and
euthanized by exsanguinations. Either the thoracic or abdominal aorta was removed,
depending on the study, and placed in ice-cold physiological saline (PSS) containing 130
mM NaCl, 4.7 mM KCI, 1.2 mM KH,PO,, 1.2 mM MgSQO,, 15 mM NaHCO;, 5.5 mM
glucose, 26 mM CaNa,EDTA, 1.8 mM CaCl,, pH 7.4, and cleaned of connective tissue
and adventitial fat. The vessel was cut into 3 mm segments and individual rings were
suspended in an organ bath containing PSS at 37 °C bubbled with 21% O,, 6% CO,,
balanced N,. The rings were attached to a force transducer (Grass Technologies, West
Warwick, RI) with steel hangers and resting tension was increased stepwise to 1.5 g over
1 h. In thoracic aorta, after an initial contraction with 10 mM PE followed by relaxation
with 10 mM ACh, dose-response curves to PE (0.001-10 mM), or PE following a 30 min

preincubation with the NOS inhibitor, LNNA (100 uM) was performed. An ACh dose-
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response (0.001-10 mM) was also conducted in the thoracic aorta following
preconstriction with PE (30 puM). In endothelium-disrupted thoracic aorta, a dose-
response to the NO donor, SNAP (0.001-10 mM) was also conducted. In abdominal
aorta, DHA and EPA dose-response studies (0.001-10 mM) were conducted following
preconstriction with the thromboxane A2 mimetic, U46619. Lastly, dose-response curves
to 17,18-EEQ, and 19,20-EDP (10°-10 nM) were conducted in the abdominal aorta

preconstricted with U46619.

Mesenteric vasoreactivity analysis

Mice were administered heparin (10 ul/g of 1000 U/ml) by intraperitoneal injection
for 5 min, anesthetized with ketamine (80 mg/kg)/xylazine (4 mg/kg), and euthanized by
exsanguination. The intestine together with mesenteric arteries were quickly excised and
placed in HEPES-PSS solution (134 mM NacCl, 6.0 mM KCI, 1 mM MgCl,, 2 mM CacCl,,
10 mM HEPES, 0.026 mM EDTA, 10 mM glucose, and buffered to pH 7.4 with NaOH).
The tissue was then pinned to the bottom of a petri dish, and a long segment of a first-
order branch of the mesenteric artery was cleared from surrounding adipose tissue and
dissected. The artery was transferred to the chamber of a pressure myograph system
(DMT -110 systems, Danish Myo Technology, Ann Harbor, MI) for cannulation. The
chamber was filled with warm PSS at 37 °C bubbled with 21% O,, 6% CO,, balanced N,
(130 mM NacCl, 4.7 mM KCI, 1.18 mM KH,PQOy, 1.17 mM MgSO4, 14.9 mM NaHCO3,
5.5 mM glucose, 26 uM CaNa,EDTA, and 1.8 mM CaCl,, pH 7.4). One end of the
vessel was cannulated with the outflow pipette and tied securely with 10-0 ethilon surgical

silk thread. The other end of the vessel was then cannulated with the inflow pipette. The
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pressure was then increased by 10 mmHg increment every 5 mins to a maximum of 40 or
60 mmHg, and the artery allowed to equilibrate for 30 min. After equilibration, baseline
internal diameter (WT 167.9 + 3.3, KO 171.7+ 3.1) was measured using edge detection
software (MyoView acquisition software, DMTVAS 6.2.0.59 Danish Myo Technology,
Ann Harbor, MI). In other vessels, passive internal diameter (WT 178.3 £ 5.1, KO 181.4
+ 2.0) was also determined after preincubation with the calcium ionophore, ionomycin (10
pUM) for 15 mins. Viability of the arteries was tested by constriction to 60 mM KCI and
vessels that failed to constrict to 30% of baseline internal diameter were discarded. After
a PSS wash, the artery was allowed to return to baseline diameter and to rest for at least
15 min. Arteries were then preconstricted to 45% of internal diameter with U46619, and
a dose-response to EPA (0.001-100 mM) and DHA (0.001-100 mM) conducted. In
other vessels, a DHA dose-response was conducted after preincubation with 100 nM
Iberiotoxin (IBTX) + 4-aminopyridine (4-AP) (5 mM). Further, a dose-response to
U46619 (0.01-1 uM) was also conducted. Lastly, we assessed dose-responses to 17,18-
EEQ and 19,20-EDP (10®° -10 nM). All experiments were performed without luminal

flow.

Plasma NOx analyses

Mice were anesthetized with ketamine (80 mg/kg)/xylazine (4 mg/kg) and
euthanized by exsanguination. Plasma was collected from whole blood using heparinized
syringes. Plasma nitrate/nitrite levels (NOX) were measured using the Griess colorimetric

assay (Cayman Chemical).
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mRNA analysis of potassium channel subunits, CYP2C29, CYP2E1, CYP2D6 and COX2
Total RNA was isolated from aorta cleaned of connective tissue and adventitial fat,
using Trizol reagent (Invitrogen, Carlsbad, CA, USA). cDNA was synthesized using
iScript Select cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA) with the
supplied random primers and 250 ng RNA. PCR amplification was performed using an
iCycler (Bio-Rad Laboratories) with a reaction mixture comprised of iQ SYBR Green
Supermix (Bio-Rad Laboratories) with 500 uM of each forward and reverse primer (Table
3.1). Cycle threshold data for both the target gene of interest and control normalization
gene, DNA Polymerase 11 (POL2) was used to calculate mean normalized expression as

previously described (Simon, 2003).

Statistical analysis

Differences between genotypes were analyzed by Student’s test. The treatment-
related changes in BP and vasoreactivity between genotypes were analyzed by repeated
measures, two-way analysis of variance with post hoc Holm-Sidak comparisons; p < 0.05

was considered statistically significant.
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D. RESULTS

Body and organ weights

We compared body and organ weights of CYP1AL1 WT and KO mice. CYP1A1 KO mice
exhibited significantly lower body weights, compared with age-matched CYP1A1 WT
mice (Table 3.2). All organs weighed from CYP1A1 KO mice, including heart, kidneys
and liver, were significantly smaller than WT. When organ weight was normalized to
body weight, the liver/body weight and kidney/body weight ratios remained significantly

lower in CYP1A1 KO mice, compared to WT mice.

Basal blood pressure, heart rate, and activity

BP of CYP1A1 WT and KO mice was measured by radiotelemetry. The CYP1Al
KO mice exhibited significantly higher systolic and diastolic BPs, compared to WT (Fig.
3.1A). Corresponding HR was significantly lower in CYP1A1 KO mice, compared to WT
(Fig. 3.1B). When assessed over a 24 h light/dark cycle, the increase in systolic BP in
CYP1A1 KO mice was evident only at nighttime (Fig. 3.1C). In contrast, diastolic BP
was significantly increased in CYP1A1 KO mice throughout the entire 24 h light/dark
cycle, although the normal circadian pattern of an increased BP during the night wakeful
period was preserved (Fig. 3.1D). The level of activity was comparable between CYP1A1l
WT and KO mice over the 24 h light/dark cycle (Fig. 3.1E). Finally, the difference
between mean nighttime and mean daytime arterial pressure (MAP) was significantly

higher in CYP1A1 KO mice, compared to WT (Fig. 3.1F).
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Table 3.1. Real-time PCR primer sequences

Gene Sense Primer Antisense Primer
BKoa subunit TCACGGAACTCGCTAAGCC AATGTGCGTCCCACTGTTTTT
BKpB4 subunit GCGAAGCTCAGGGTGTCTTAC CCGGAGACGATGAGGAACAA
Kv1.5 subunit TCCGACGGCTGGACTCAATAA GCCTCCTCGGTGATGTTTCT
CYP2C29 TGGTCCACCCAAAAGAAATTGA GCAGAGAGGCAAATCCATTCA
COX2 TGCCTGGTCTGATGATGTATGCCA AGTATGTCGCACACTCTGTTGTGCT
CYP2E1 TGCGGAGGTTTTCCCTAAGTA TGTGCCTCTCTTTGGATGCG
CYP2D6 CCGCCTTCGCTGACCATAC CGATCACGTTACACACTGCTT
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Table 3.2. Gross tissue weight measurements in 4 month-old CYP1A1 WT and KO mice

Weight CYPLALWT CYP1A1 KO
(n=5) (n=5)
Body (9) 29.4+£04 23.6 £0.3*
Heart (mg) 129+ 4 107 = 3*
(0.439+£0.024) (0.452=+0.
f 029)
LV+S (mg) 101 +4 84.5 £ 3*
(0.343£0.022) (0.356 £ 0.
024)
Kidney (mg) 425+ 11 293 + 10*
(2.13+£0.024) (1.54+0.003)*
Liver (mg) 1671 +£42 1215 + 31*

(5.6 £0.014) (5.1 0. 089)*

Values are expressed as mean + SEM
*p<0.05

f(Organ/body weight ratio x 100)
Legend: LV+S, Left ventricle + Septum.
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Figure 3.1. Genetic deletion of CYP1ALl increases systolic and diastolic BP, and reduces
HR. (A) 24 h mean systolic and diastolic BP, (B) 24 h mean HR, (C) Hourly systolic
pressure over a 24 hr period (light and dark cycle), (D) Hourly diastolic pressure over a 24
hr period (light and dark cycle), (E) Activity over a 24 hr period, and (F) Difference in
MAP between nighttime and daytime, as measured by radiotelemetry. Data represent
mean + SEM. Data in A, B, and F were analyzed by Student’s t-test; *p < 0.05, and in C,
D and E by two-way, repeated measures ANOVA, using post hoc Holm-Sidak
comparisons; *p < 0.05 (n=7/genotype)
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Vascular reactivity in aorta and mesenteric resistance arterioles

We sought to determine if genetic deletion of CYP1AL resulted in altered vascular
responses indicative of a loss of the endothelial-derived vasodilator, NO. Since ACh-
mediated vasorelaxation in the thoracic aorta is dependent solely on NO (Rees et al.,
1989), we conducted a dose-response to ACh in aortic segments preconstricted with PE.
We found that CYP1A1 KO mice exhibited completely normal vasorelaxation responses
to ACh (Fig 3.2A). To confirm that NO-mediated signaling was normal in the vascular
smooth muscle, we next conducted a dose-response to the NO donor, SNAP, in
endothelium-disrupted aortic segments. Again, CYP1AL1 KO mice exhibited completely
normal responses to SNAP (Fig. 3.2B). Lastly, if NO was reduced we would expect
constrictor responses to be enhanced and the enhancement eliminated by treatment with a
NOS inhibitor. We found that CYP1A1 KO mice exhibited normal vasoconstriction
responses to PE with and without a NOS inhibitor, LNNA (Fig. 3.2C and D). Since
ACh-mediated dilation in resistance vessels also is dependent on NO to a limited degree,
we conducted a dose response to ACh in first-order pressurized mesenteric arterioles.
Again CYP1A1 KO mice exhibited completely normal vasodilation responses to ACh,

suggesting that NO-dependent dilation is also not altered in resistance vessels (Fig. 3.2E).

Plasma NOx and effects of NOS inhibition on blood pressure.

To further confirm whether a reduction in NO bioavailability contributed to the
hypertension in CYP1A1 KO mice, we measured plasma NOx as an indicator of systemic
NO and we treated CYP1A1 WT and KO mice with a NOS inhibitor and measured their

BP responses. We found that CYP1A1 KO mice tended to have reduced plasma NOx
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(p=0.07), although it was not statistically different (data not shown). Further, NOS
inhibition failed to normalize BP between CYP1A1 WT and KO mice. Hourly MAP over
a 24 hr period (light and dark cycle) after NOS inhibition showed that CYP1A1 KO mice
remain hypertensive (Fig. 3.3A) and the relative change in MAP was equivalent between

CYP1A1 KO and WT (Fig. 3.3B).
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Figure 3.2. Loss of CYP1A1 does not affect vascular sensitivity to ACh- or SNAP-
mediated dilation, nor PE-mediated contraction in the absence or presence of the NOS
inhibitor, LNNA (A)-(D) thoracic aorta, (E) mesenteric arterioles. (A) ACh-mediated
dilation (% PE preconstriction), (B) SNAP-mediated dilation in endothelium denuded
aorta (% PE preconstruction), (C) PE-mediated constriction (% KCI), and (D) PE-
mediated constriction in the presence of LNNA, (E) ACh-mediated relaxation (% U46619
preconstriction). Data represent mean = SEM and were analyzed by two-way, repeated
measures ANOVA, using post hoc Holm-Sidak comparisons (n=7-8/genotype).
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DHA- and EPA-mediated vasorelaxation and vasodilation are attenuated in abdominal
aorta and mesentery arteries, respectively, of CYP1A1 KO mice

Given that our previous results ruled out a loss of NO bioavailability as a
contributor to hypertension in CYP1A1 KO mice, we next sought to determine if vascular
reactivity to n-3 PUFAs; DHA and EPA, was altered. We assessed the vasodilation
responses in abdominal aorta and pressurized mesenteric arterioles to DHA and EPA.
CYP1A1 KO mice exhibited significantly attenuated dose-dependent vasorelaxation to
both DHA and EPA in the aorta (Fig. 3.4A and B). Similarly, CYP1Al KO mice
exhibited significantly reduced dose-dependent vasodilation to DHA and EPA in
mesenteric arterioles when pressurized at 40 (Fig. 3.5A and B) or 60 mmHg (Fig. 3.5C

and D).

90



[=)]
= ]
= 100 | * *
© &\ &
*

5 80 T N
o \\I *
S 601 i ¥
5 s
E 40 %\
o —&— CYP1ATWT
] 20 1 o cypiaiko \$\§\
8 ¢
- 0 '
;E T

-9 -8 -7 -6 -5

100] 4 *
§\ & s
80 - B J T =

60 - \%\
g,

CYPT1ATWT
. %\jg

—&— CYP1A1 KO

o

% Vasoconstriction Remaining

-9 -8 -7 -6 -5
Log 410 EPA (M)
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CYP1Almetabolites of EPA and DHA (17,18-EEQ and 19,20-EDP, respectively) are
potent vasodilators in the abdominal aorta and mesenteric arterioles.

If CYP1AL mediates n-3 PUFA vasodilation by generating the 17,18-EEQ and
19,20-EDP metabolites as has been demonstrated in vitro, then we would expect that the
ability of these metabolites to produce vasodilation when applied directly to the vessel
would not differ between genotypes. Thus, we assessed vasorelaxation of the abdominal
aorta and vasodilation of mesenteric arterioles to 17,18-EEQ and 19,20-EDP. We found
that 17,18-EEQ and 19,20-EDP elicited potent and highly efficacious vasorelaxation
responses in the aorta of both CYP1A1 WT and KO mice at nanomolar concentrations
(Fig. 3.6A and B). In mesenteric arterioles, both metabolites were less potent in inducing
vasodilation compared to the aorta, and 17,18-EEQ was significantly less efficacious.
Nonetheless, the responses elicited in both CYP1A1 WT and KO mesenteric arterioles

were equivalent (Fig. 3.6C and D).

Voltage-gated (Kv) and large conductance, calcium-activated potassium (BK) channels
are targets for DHA-mediated vasodilation

Since previous studies have implicated the activation of potassium ion channels in
mediating vasodilation to n-3 PUFA, we investigated the contribution of two of these
channels to vasodilation in CYP1A1 WT and KO mice. We preincubated mesenteric
arterioles with a blocker of the BK channel, IBTX, in the absence or presence of an
inhibitor of the Kv channel, 4-AP, and then conducted a dose-response with DHA. We
found that both CYP1A1 WT and KO mesenteric arterioles elicited vasodilation to DHA

in the presence of the BK channel blocker (Fig. 3.7A and B). Nonetheless, blockade of
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both BK and Kv channels significantly inhibited DHA-mediated vasodilation in both

CYP1A1 WT and KO mice (Fig. 3.7C and D).

mRNA analysis of Kv and BK channel subunits, CYP2C29, CYP2E1, CYP2D6 and COX2
To determine if aortic expression of BK and Kv channel subunits, as well as
several vascular P450s involved in n-3 PUFA metabolism, CYP2C29, CYP2E1, CYP2D6,
and COX2 were altered in their expression, we measured mRNA of BKa, BKp4, Kv1.5,
CYP2C29, CYP2E1, CYP2D6 and COX2 in aortas of CYP1AL1 KO and WT mice
cleaned of adipose tissue. We did not find any differences in the mRNA expression of
these potassium channel subunits or P450 (data not shown). In contrast, COX2 mRNA
expression was significantly lower by two fold in the aorta of CYP1AL1 KO mice,

compared to WT mice (data not shown).
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Figure 3.6. P450 metabolites of EPA and DHA, 17,18-EEQ and 19,20-EDP,
respectively, induce an equivalent degree of vasorelaxation in the abdominal aorta and
vasodilation in mesenteric arterioles in CYP1A1 WT and KO mice. Vasorelaxation in
abdominal aorta to 17,18-EEQ (A) and to 19,20-EDP (B). Vasodilation in mesenteric
resistance arterioles to 17,18-EEQ (C), and 19,20-EDP (D). Data represent mean + SEM
and were analyzed by two-way, repeated measures ANOVA, using post hoc Holm-Sidak
comparisons; *p < 0.05, compared to WT (n=6-8/genotype).
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Figure 3.7. Voltage-gated (Kv) and large conductance calcium-activated potassium (BK)
channels are targets for DHA-mediated vasodilation in mesenteric resistance arteries in
both CYP1A1 WT and KO mice. DHA-mediated vasodilation after pre-incubation with
the BK channel blocker, iberiotoxin (IBTX) in CYP1AL WT (A), and KO mice (B).
DHA-mediated relaxation after pre-incubation with both IBTX and the voltage gated
potassium blocker, 4-aminopyridine (4-AP) in CYP1A1 WT (C) and KO mice (D). Data
represent mean £ SEM and were analyzed by two-way, repeated measures ANOVA, using
post hoc Holm-Sidak comparisons; *p < 0.05, compared to wildtype (n=4-6/genotype).
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E. DISCUSSION

Our study shows for the first time that constitutive expression of CYP1ALl is
required to maintain normal levels of BP and to mediate vasodilation responses to n-3
PUFAs ex vivo. CYP1A1 KO mice are hypertensive with a reduced HR. Additionally,
they exhibit attenuated vasodilation to the n-3 PUFAs, EPA and DHA, in both conduit
arteries as well as resistance arterioles. Notably, the putative CYP1A1 metabolites of
EPA and DHA, 17,18-EEQ and 19,20-EDP, respectively, exhibit equivalent vasodilatory
effects in CYPLAL WT and KO mice, demonstrating that downstream signaling pathways
are not altered by loss of CYP1AL. Finally, although DHA-induced vasodilation was
attenuated in CYP1AL KO mice, compared to WT, our results suggest that this
vasodilation is mediated by activation of potassium channels in both genotypes, further
suggesting that the loss of n-3 PUFA-mediated vasodilation in CYP1A1 KO mice is not a
result of changes in the downstream signaling pathways.

Despite evidence that CYP1A1 is expressed in the vascular endothelium and highly
induced by physiological shear stress (Han et al., 2008; Conway et al., 2009), the role of
CYP1AL in the regulation of blood pressure has never been investigated previously. We
found that CYP1A1 KO mice exhibit significantly elevated systolic and diastolic blood
pressure. Interestingly, systolic blood pressure is significantly increased only at night
when the mice are active. Since physical activity is associated with increased levels of
physiological shear stress, this would suggest that CYP1AL plays a role in the blood
pressure responses to activity and physiological shear stress. In addition, we found that
CYP1A1 KO mice exhibit significantly elevated diastolic blood pressure throughout the

entire 24 h light/dark cycle. This would suggest that CYP1ALl also plays a role in the
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overall regulation of peripheral vascular resistance, which would be consistent with a
decrease in HR as a compensatory response. Nonetheless, future studies that assess
cardiac output and stroke volume, or use of flow probes would be needed to confirm if, in
fact, peripheral vascular resistance is increased.

Despite evidence that CYP1A1 and NO are induced simultaneously by
physiological shear stress in the endothelium (Malek et al., 1999; Boo et al., 2002a; Boo
et al., 2002b; Eskin et al., 2004; Han et al., 2008; Conway et al., 2009) and that n-3
PUFAs mediate vasodilation, in part, via increases in NO (Ma et al., 2004; Li et al.,
2007a; Stebbins et al., 2008), the increase in BP in CYP1A1 KO mice is not a result of a
loss of NO. In fact, multiple lines of evidence demonstrate that NO bioavailability and
signaling are normal in CYP1A1 KO mice. We found that ACh-mediated dilation in the
thoracic aorta, which is exclusively NO-dependent (Rees et al., 1989), is normal in
CYP1A1 KO mice as is the dilation response to a NO donor. Most convincingly,
treatment of CYP1A1 WT and KO mice with a NOS inhibitor does not normalize BP
between the two genotypes, demonstrating that NO contributes equally to BP regulation.

Since constitutive expression of CYP1AL is regulated by the AHR as is shown in
the AHR KO mice, it might be expected that AHR KO and CYP1A1 KO mice would
exhibit similar BP phenotypes. However, this is not the case. Our data show that genetic
deletion of CYP1AL1 is associated with elevated BP, in contrast to reduced blood pressure
(i.e. hypotension) observed for global AHR KO mice (Zhang et al., 2010) as well as the
endothelial cell-specific AHR conditional KO mice (Agbor et al., 2011). This suggests
that multiple downstream targets regulated by the AHR are involved in BP regulation.

One of these targets, in addition to CYP1ALl, could be CYP1B1. CYP1B1 is
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constitutively expressed in vascular smooth muscle, and although CYP1B1 KO mice have
normal blood pressure, they show a significantly attenuated response to angiotensin I1-
induced hypertension (Jennings et al., 2010). Thus, constitutive expression of CYP1B1
may be pro-hypertensive, while that of CYP1A1 is pro-hypotensive.

The involvement of P450s in blood pressure regulation is not unique to CYP1AL.
Genetic deletion of CYP2J5 is associated with increased BP and overt afferent arteriolar
responses to angiotensin Il and endothelin I (Athirakul et al., 2008). In addition, loss of
CYP4A10 in mice is associated with a hypertensive phenotype which is salt-sensitive
(Nakagawa et al., 2006). Further, mice in which CYP4A14 is deleted are also
hypertensive (Holla et al., 2001), associated with an increase in renal CYP4A12
expression and an increase in the production of the potent vasoconstrictor, 20-
hydroxyeicosatetraenoic acid (Carroll et al., 1996). Nonetheless, to the best of our
knowledge, other P450s that have been shown to metabolize n-3 PUFAS in a
stereospecific manner in vitro have not been investigated for their contribution to BP
regulation in vivo (Lucas et al., 2010; Westphal et al., 2011).

Our study also provides the first in vivo evidence that constitutive expression of
CYP1AL mediates, in part, the vasodilatory properties of n-3 PUFAs, EPA and DHA, in
both conduit arteries and resistance arterioles. This result is highly consistent with the in
vitro studies demonstrating that recombinant human CYP1A1 metabolizes EPA and DHA
stereospecifically into products with vasodilatory properties (Fer et al., 2008; Lucas et al.,
2010). Schwarz et al. (2004) show that 17(R),18(S)-EEQ represents 70% of the
products produced by human CYP1A1 metabolism of EPA, while 19(R),20(S)-EDP is the

only product produced by human CYP1AL metabolism of DHA (Fer et al., 2008). While
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it is not known if mouse CYP1A1 also shows this same degree of specificity in EPA and
DHA metabolism, our results strongly suggest that mouse CYP1A1 mediates the
production of vasodilatory products from EPA and DHA in vivo.

Our data also suggest that the attenuation of vasodilation to EPA and DHA in
arteries of CYP1A1 KO mice is not likely a result of altered downstream signaling. There
are no differences in the vasodilation responses between CYP1A1 WT and KO mice when
the two putative CYP1Al-metabolites, 17,18-EEQ and 19,20-EDP, are applied directly to
the arteries. Further, DHA-mediated vasodilation is attenuated by two potassium channel
inhibitors in both genotypes, again suggesting that downstream signaling that results in
vasodilation is not different between genotypes.

Irrespective of the P450 involved, our data also confirm that 17,18-EEQ and
19,20-EDP are potent and efficacious vasodilators. We found that 17,18-EEQ and 19,20-
EDP induce ~50% relaxation of the aorta at sub-nM concentrations and >90% relaxation
at nM concentrations. In general, the mesenteric arterioles are less responsive and require
nM to uM concentrations to induce vasodilation. The potency and efficacy of 17,18-EEQ
and 19,20-EDP in vasorelaxation of the mouse aorta is similar to the vasodilatory
responses observed in porcine coronary microvessels (Zhang et al., 2001; Ye et al., 2002).
However, the vasodilation responses to 17,18-EEQ in the mouse mesenteric arterioles is
more similar to that observed in human pulmonary arteries with ~ 80% relaxation
occurring at UM concentrations (Morin et al., 2009). Thus, the vasodilatory responses to
these n-3 PUFA metabolites are likely to be both species- and vascular bed-specific.

Studies suggest that there are various downstream mechanisms by which EPA and

DHA mediate their vasodilatory responses. Wang et al. (2011) showed that the
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vasodilatory actions of DHA are mediated by P450 metabolism and downstream activation
of Kv and BK channels in rat coronary arteries, while Lauterback et al. (2002) showed
that 17,18-EEQ hyperpolarizes vascular smooth muscles from rat cerebral arteries
exclusively by BK channel activation. Our data show blockade of BK channels alone does
not attenuate DHA-mediated dilation in mouse mesenteric arteries; however, the
simultaneous inhibition of Kv channels does significantly attenuate the dilation response,
suggesting that BK channels may not play a role in DHA dilation in this microvascular
bed.

Finally, CYP1A1 KO mice exhibit key phenotypic characteristics that are distinct
from age-matched CYP1AL1 WT mice. Body weights in CYP1A1 KO mice are
significantly lower as are kidney and liver weights when normalized to body weight. The
decrease in liver weight is similar to the AHR KO mice which exhibit decreased liver size
resulting from a persistent ductus venosus and reduced hepatocyte size (Lahvis et al.,
2000; Lahvis et al., 2005). Further studies are needed to determine the underlying reasons
for the differences in body and organ weights between CYP1A1 WT and KO mice. Since
the WT and KO mice used in this study are not littermates, it is possible that maternal
factors could contribute to these differences.

In summary, our study suggests for the first time that constitutive CYP1A1
expression has a physiologically important role in the regulation of vascular function and
blood pressure, which may involve vasodilatory responses to n-3 PUFAs. Since CYP1A1l
is constitutively expressed in the vascular endothelium and physiological levels of shear
stress can induce its expression, CYP1AL metabolism of n-3 PUFAs could represent a

novel pathway contributing to an anti-atherogenic phenotype. Future studies will need to
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determine whether the loss of n-3 PUFA vasodilation and potential increase in peripheral
vascular resistance are the proximal mediators of the increase in blood pressure in

CYP1A1 KO mice.
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IV. CHAPTER 4

Cytochrome P4501A1 contributes to nitric oxide-dependent vasodilation and blood

pressure lowering on an omega-3 polyunsaturated fatty acid-enriched diet.

In preparation for submission to Hypertension.
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A. ABSTRACT

Elevated blood pressure (BP) in cytochrome P4501A1 knockout (CYP1Al KO)
mice is associated with attenuated vasodilation to omega-3 polyunsaturated fatty acids (n-
3 PUFAS); eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA) ex vivo. We
tested the hypothesis that dietary supplementation of n-3 PUFAs rather than n-6 PUFAs
will reduce BP in CYP1A1 KO mice via a nitric oxide synthase (NOS) dependent
pathway. Diets enriched in n-3 or n-6 PUFAs were fed to CYP1AL1 WT and KO mice for
2 months. BP and heart rate (HR) was assessed by radiotelemetry in CYP1A1 WT and
KO mice = NOS inhibitor (N“-nitro-L-arginine, LNNA), and following an acute Ang 11
challenge in vivo (30 pg/kg). We measured endothelial NOS (eNOS) and phospho-eNOS
protein expression in aorta, and also assessed mesenteric dose-responses to acetylcholine
(ACh), and to the thromboxane A2 mimetic, U46619. We found that an n-3 PUFA-
enriched diet significantly reduced mean arterial pressure (MAP) in CYP1A1 KO mice
(Chow, 116.0 + 1.2, n-3: 107.6 + 1.5, p<0.005), with no effect in CYP1A1 WT mice
(Chow, 103.0 £ 0.9, n-3: 105.0 + 2.5). In contrast, MAP in CYP1A1 WT mice fed an n-6
PUFA-enriched diet was significantly increased (Chow, 103.0 £ 0.9, n-6: 118.2 + 4.1,
p<0.005), with no effect in CYP1AL1 KO mice (Chow, 116.0 + 1.2, n-6: 115.3 + 1.5).
Interestingly, NOS inhibition increased BP significantly more in the CYP1A1 WT mice
(+16 = 0.5 mmHg) than CYP1A1 KO mice (+11 + 0.6, p<0.002) on an n-3 PUFA-
enriched diet, but resulted in similar increases in BP in CYP1A1 WT and KO mice on an
n-6 PUFA-enriched diet (WT: +11 £ 1.8; KO: +11 + 0.8). Area under the curve analysis
showed that Ang Il significantly increased systolic BP in CYP1AL1 KO mice fed an n-3

PUFA-enriched diet, compared to CYP1AL1 WT mice (WT,3, 938 + 90; KO3, 1250 £ 51,
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p<0.05). Additionally, CYP1A1KO mice on an n-3 PUFA-enriched diet exhibited
significantly attenuated ACh-dependent vasodilation in mesenteric arterioles, and reduced
expression of aortic phospho-eNOS protein, compared to CYP1AL1 WT mice. However,
neither of the endpoints was altered in CYP1AL KO mice on an n-6 diet, compared to
CYP1A1 WT mice. Taken together, these data suggest that CYP1AL1 contributes to NO-

mediated vasodilation and BP lowering benefits derived from dietary n-3 PUFAs.
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B. INTRODUCTION

Although cardiovascular (CV) disease is a leading cause of death in the developed
countries, studies have shown that there are considerable differences in the incidence and
death rates among different cultures. One of the contributing factors is dietary patterns,
and numerous studies have shown that diets high in marine fish and mammals, which
contain high levels of omega-3 polyunsaturated fatty acids (n-3 PUFAS), are inversely
correlated with CV mortality. For example, Greenland Eskimos, who consume diets
highly enriched in n-3 PUFAs, show significantly lower rates of coronary heart disease and
CV mortality than Western European countries (Bang et al., 1980; Kromann and Green,
1980). These benefits are observed even among Western countries. The Seven Countries
Study of dietary eating patterns of more than 12,000 men shows that consumption of a
diet high in fish significantly reduces the risk of death from acute myocardial infarction
(Menotti et al., 1999). The CV benefits of n-3PUFAs have been further confirmed by
clinical trials. Randomized human clinical trials show that n-3 PUFASs reduce the risk of
cardiovascular death, myocardial infarction, and stroke by up to 20% (Marchioli et al.,
2002; Yokoyama et al., 2007).

The mechanisms by which n-3 PUFAs mediate their cardioprotective benefits are
multifactorial and include anti-hypertensive, anti-hyperlipidemic, anti-arrhythmic, and anti-
inflammatory effects. For example, a meta-analysis of randomized human clinical trials
found that n-3 PUFAs systematically reduce systolic and diastolic blood pressure (BP)
(Morris et al., 1993; Geleijnse et al., 2002). Additionally, n-3 PUFAs have been shown to

significantly reduce triglyceride levels by up to 30% (Harris, 1997) and reduce plasma
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levels of soluble adhesion molecules associated with the inflammatory disease process as
shown in a meta-analysis of 18 separate studies (Yang et al., 2012).

The mechanisms that mediate the anti-hypertensive effects of n-3 PUFASs have not
been fully elucidated, but likely result from pro-vasodilatory effects. n-3 PUFAs are
metabolized to vasodilatory products via cytochrome P450s (Schwarz et al., 2004;
Schwarz et al., 2005; Fer et al., 2008; Lucas et al., 2010) and lead to increases in nitric
oxide (NO) bioavailability, a potent vasodilator (Rees et al., 1989). Using a broad
spectrum P450 inhibitor in rat coronary arteries, Wang et al., (2011) show that the
vasodilatory actions of docosapentaenoic acid (DHA), an n-3 PUFA, require P450
metabolism. Further, multiple studies show that n-3 PUFASs increase the activation of
endothelial nitric oxide synthase (eNOS) in cultured endothelial cells (Omura et al., 2001,
Gousset-Dupont et al., 2007; Li et al., 2007a; Stebbins et al., 2008) and increase eNOS
and NO production in rats and mice in vivo (Nishimura et al., 2000; Lopez et al., 2004;
Ma et al., 2004). Lastly, dietary n-3 PUFA supplementation in humans enhances NO-
dependent forearm vasodilation (Tagawa et al., 1999). Nonetheless, it is not clear if
P450-generated metabolites are responsible for the increases in NO production or if the
increases in NO result from an independent mechanism.

n-3 PUFAs are efficient and, in some cases, the preferred endogenous substrates
for members of the CYP1A, CYP2D and CYP2E families of P450s,which metabolize n-3
PUFAs in a stereospecific manner, generating potent and efficacious vasodilators
(Barbosa-Sicard et al., 2005; Muller et al., 2007; Westphal et al., 2011). For example,
CYP1A1 metabolizes the principal n-3 PUFAs, DHA and eicosapentaenoic acids (EPA),

to the stereospecific products 19(R),20(S)-epoxydocosapentaenoic acid (19(R),20(S)-
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EDP) and 17(R),18(S)-epoxyeicosatetraenoic acid (17(R),18(S)-EEQ), respectively
(Schwarz et al., 2004; Lucas et al., 2010). Both of these metabolites are potent
vasodilators in microcirculatory vessels (Zhang et al., 2001; Morin et al., 2009). Despite
the knowledge of P450 metabolism of n-3 PUFASs, the contributions of individual P450s
to the regulation of vascular tone and BP in vivo remains uninvestigated. Recently,
however, we demonstrate, using CYP1A1 knockout (KO) mice, that CYP1ALl is a partial
contributor to the vasodilation responses to DHA and EPA and is required for regulating
BP in vivo as CYP1AL KO mice exhibit significant increases in BP, particularly when
active (Agbor et al., unpublished data). Nonetheless, these results show that CYP1AL is
not the sole mediator of the responses to n-3 PUFAs. Since other P450s also efficiently
metabolize n-3 PUFAs, we hypothesized that providing an n-3 PUFA-enriched diet to
enhance substrate availability would reduce BP in CYP1A1 KO mice and this decrease
would be mediated, in part, by increased NO bioavailability. We further hypothesized that
providing an n-6 PUFA-enriched diet to diminish n-3 PUFA substrate bioavailability

would increase BP in CYP1A1 WT mice.
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C. METHODS

Chemicals
Acetylcholine (ACh), N“-nitro-L-arginine (LNNA), angiotensin (Ang) 11, all

ingredients of physiological saline solution (PSS) and HEPES-PSS were purchased from
Sigma—Aldrich (St. Louis, MO). U46619 was purchased from Cayman Chemical (Ann

Arbor, MI).

Animals

CYP1A1 KO mice, backcrossed more than eight generations onto the C57BL/6J
background, were generously provided by Dr. Daniel Nebert (University of Cincinnati)
and were bred at the University of New Mexico (Dalton et al., 2000). Age-matched
C57BL/6J mice served as wildtype (WT) controls. All animals were housed in a
temperature-controlled environment. All animal protocols were approved by the
University of New Mexico Animal Care and Use Committee and the investigations
conform to the Guide for the Care and Use of Laboratory Animals published by the U. S.
National Institutes of Health (NIH Publication No. 85-23, revised 1996). When tissues
were harvested and organ weight determined, mice were anesthetized with ketamine (80
mg/kg)/xylazine (4 mg/kg). The heart was removed, atria were dissected, and the total
ventricle weight measured. Kidneys and liver weights were also measured. All tissues

were frozen at —80°C.
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Diets

Mice were fed a standard chow rodent diet (product no. 2020XC, Teklad Diets,
Harlan Laboratories, Madison WI), an n-3 PUFA-enriched diet containing 15% fish oil
(wt/wt), or an n-6 PUFA-enriched diet containing 15% safflower oil/linoleic (wt/wt)
(Teklad Diets, Harlan Laboratories) (Table 4.1). Both PUFA diets were equivalent in
total protein, carbohydrates, fat content and all other dietary components. Diets were
prepared in bulk, and packaged into individual 4 kg whirl-Pak bags (Nasco, Fort Atkinson,
WI), flushed with nitrogen to minimize oxidation and stored at 4 °C. Fresh diets were fed
twice weekly. Diets were weighed before and after administration to determine the

amount of food consumed, and any uneaten food was discarded.
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Table 4.1. Diet composition: Standard chow, n-3 PUFA enriched diet, and n-6 PUFA-enriched

diet
Standard Chow n-3 PUFA diet n-6 PUFA diet
Composition (2020X) (TD.110516) (TD.110517)
(% by weight) (% by weight) (% by weight)
Protein 24.0 18.6 18.6
Carbohydrates 60.0 52.2 52.2
Total fat 16.0 15.2 15.2
Kcallg 3.1 4.2 4.2
Fatty acids
n-3 PUFA 10 80 0
n-6 PUFA 90 20 100
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Blood pressure analysis

Arterial BP and heart rate (HR) were measured using radiotelemetry in 4-5 month-
old CYP1A1 WT and KO mice (Data Sciences International, St. Paul, MN, USA) as
previously described (Lund et al., 2008), using PA-C10 radiotelemeters. Mice were
allowed to recover from surgery for 7 d prior to data collection. Basal BP, including
systolic, diastolic, mean and pulse arterial BP, and HR were collected for 7 d before drug
treatments began. BP was recorded for 10 s every 15 min during baseline measurements.
After basal BP was measured, all mice were treated with LNNA in the drinking water
(250 mg/L) for one week followed by one week of washout (Duling et al., 2006). In
addition, BP was also measured for 10 s every 1 min for 30 min, starting 5 min following

an acute Ang Il injection (30 pg/kg i.p.).

Mesenteric arteriole reactivity

Mice were administered heparin (10 pl/g of 1000 units/ml) by intraperitoneal
injection for 5 min, anesthetized with ketamine (80 mg/kg)/xylazine (4 mg/kg), and
euthanized by exsanguination. The intestine together with mesenteric arteries were
quickly excised and placed in HEPES-PSS solution (134 mM NaCl, 6.0 mM KCI, 1 mM
MgCl,, 2 mM CaCl,, 10 mM HEPES, 0.026 mM EDTA, 10 mM glucose, and buffered to
pH 7.4 with NaOH). The tissue was then pinned to the bottom of a petri dish, and a long
segment of a first-order branch of the mesenteric artery was cleared from surrounding
adipose tissue and dissected. The artery was transferred to the chamber of a pressure
myograph system (DMT -110 systems, Danish Myo Technology, Ann Arbor, MI) for

cannulation. The chamber was filled with warm PSS at 37 °C bubbled with 21% O,, 6%
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CO,, balanced N; (130 mM NacCl, 4.7 mM KClI, 1.18 mM KH2PQO,, 1.17 mM MgSQy,
14.9 mM NaHCOs3, 5.5 mM glucose, 26 uM CaNa,EDTA, and 1.8 mM CaCl,, pH 7.4).
One end of the vessel was cannulated with the outflow pipette and tied securely with 10-0
ethilon surgical silk thread. The other end of the vessel was then cannulated with the
inflow pipette. The pressure was then increased by 10 mmHg increment every 5 mins to a
maximum of 60 mmHg, and the artery allowed to equilibrate for 30 min. After
equilibration, baseline internal was measured using edge detection software (MyoView
acquisition software, DMTVAS 6.2.0.59 Danish Myo Technology, Ann Arbor, MI).
Viability of arteries was tested by constriction to 60 mM KCI and vessels that failed to
constrict to 30% of baseline internal diameter were discarded. After a PSS wash, the
artery was allowed to return to baseline diameter and to rest for at least 15 min. Arteries
were then preconstricted to 45% of internal diameter with U46619, and a dose response
to ACh (0.001-100 mM) was conducted. A concentration-response to U46619 (0.01-1

M) was also conducted. All experiments were performed without luminal flow.

Western blot

Aortas were cleaned of connective tissue and adventitial fat, and then
homogenized in RIPA buffer (Santa Cruz Biotechnology, Santa Cruz, CA). The
homogenate was frozen at -80 °C for 15 min, sonicated for 10 s and centrifuged at 15,000
X g 4 °C for 10 min. Protein concentration was measured using micro BCA protein assay
kit (Thermo Scientific, Rockford, IL, USA). A 20 ug aliquot of protein was mixed with
6X loading buffer (100 mM pH6.8 Tris-HCI, 4% sodium dodecyl sulfate, 0.2%

bromophenol blue, 20% glycerol, 200 mM dithiothreitol) and denatured at 95 °C for 10

113



min.  Denatured samples were subjected to electrophoresis on 10 % Tris-HCL
polyacrylamide gel at 150 V for 1 hour in running buffer (25 mM Tris-base, 150 mM
glycine, 0.1% sodium dodecyl sulfate) and separated proteins were transferred to
polyvinylidene fluoride (PVDF) membrane (Bio-Rad Laboratories) at 100 V for 1 hour in
cold transfer buffer (20 mM Tris-base, 150 mM glycine, 20% methanol). The membrane
was washed with Tris-buffered saline (TBST, 0.8% NaCl, 0.02% KCI, 0.3% Tris-base,
0.05% Tween-20, pH7.4) and blocked for 1 hour in 5% nonfat dry milk in TBST. The
blocked membrane was incubated with mouse anti-eNOS antibody (1:2000, BD
Transduction Laboratories, San Jose, CA) or mouse anti-phopho-eNOS antibody (1:2000,
BD Transduction Laboratories) at 4 °C overnight, washed with TBST, and incubated with
horseradish peroxidase (HRP) conjugated goat anti-mouse (Southern Biotech,
Birmingham, AL) for 1 hour at room temperature. The membrane was washed with
TBST and developed for 2 min with 1 mL supersignal west femto maximum sensitivity
substrate (Thermo Scientific) using a KODAK Image Station 4000MM digital imaging
system (Perkin-Elmer). The membrane was stripped (7 M guanidine hydrochloride,
0.75% KCI, 0.38% glycine, 50 uM EDTA, 0.14% 2-mercaptoethanol, pH10), washed
with TBST, reblocked, and incubated with mouse B-actin (Santa Cruz Biotechnology)
overnight, washed with TBST, incubated with HRP-conjugated goat anti-mouse IgG
(Southern Biotech), washed and developed as above. Protein quantification was done

using Image J software (National Institutes of Health, USA).
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Lipid profile, plasma NOx, and thiobarbituric acid reactive substances (TBARS)
analyses.

To analyze lipid profile prior to and following treatment with n-3 and n-6 PUFA-
enriched diet, CYP1A1 WT and KO mice were fasted for 12 h overnight and using whole
blood, lipid panel analysis was conducted using lipid panel screening strips, with a
CardioCheck PA analyzer (Polymer Technology Systems, Inc, CardioChek, Indiana,
USA). Total cholesterol, high density lipoprotein (HDL) cholesterol, and triglycerides
were measured. Further, mice were anesthetized with ketamine (80 mg/kg)/xylazine (4
mg/kg) and euthanized by exsanguination. Plasma was collected from whole blood using
heparinized syringes and NOXx levels were measured using the Griess colorimetric assay
(Cayman Chemical). Hearts were suspended in 1:10 weight:volume of saline,
homogenized, and sonicated for 15 s at 40 V. TBARS was measured in heart
homogenates using an assay kit (OXItek, ZeptoMetric Corp, Buffalo, NY). Triplicate
samples were read on a spectrophotometer (Beckman Instruments DU Series 600), using

a malondialdehyde (MDA) standard curve, and results expressed as MDA equivalents.

Statistical analysis

Diets- and genotype-related changes in organ and body weights were analyzed by
two-way analysis of variance (ANOVA) with post hoc Holm-Sidak comparisons.
Vasoreactivity and BP measurements following NOS inhibition and Ang Il treatment were
analyzed by repeated measures, two-way analysis of variance with post hoc Holm-Sidak
comparisons. The eNOS and phospho-eNOS protein quantifications were analyzed using

Student’s t-test. *p < 0.05 was considered statistically significant.
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D. RESULTS
Food consumption, body and organ weights, and lipid profile

We measured food intake, and compared body and organ weights of CYP1A1 WT
and KO mice fed an n-3 or n-6 PUFA-enriched diet at 8 months of age. Regardless of
genotype or diet, food intake was not different between treatment groups (Fig. 4.1). Body
and organs weights from CYP1A1 KO mice fed an n-3 PUFA-enriched diet were not
different, compared to WT mice. In contrast, CYP1A1 KO mice fed an n-6 PUFA-
enriched diet exhibited significantly lower body, heart and liver weights, compared to age-
matched CYP1A1 WT mice. However, when heart and liver weights were normalized to
body weight, there was no difference between CYP1A1 WT and KO mice (Table 4.2). In
addition, neither the n-3 nor n-6 PUFA-enriched diet had any effect on cholesterol levels,
but both diets significantly reduced triglyceride levels in CYP1A1 KO and WT mice

(Table 4.3).

Effects of n-3 and n-6 PUFA-enriched diets on mean 24 hr BP and HR in CYP1A1 WT
and KO mice

Since n-3 PUFAs have anti-hypertensive effects due, in part, to their metabolism
by P450s including CYP1AL, we sought to determine how diets enriched in n-3 PUFAs
versus n-6 PUFAs would affect BP in CYP1A1 WT and KO mice. BP of CYP1A1 WT
and KO mice were measured by radiotelemetry. CYP1A1 KO mice on standard chow
exhibited elevated BP, compared to WT mice (mean arterial pressure (MAP) in mmHg,
WTghow 103 £ 1, CYPLAL KOghow 116 + 1; p<0.05) (Fig. 4.2A). An n-3 PUFA-enriched

diet significantly reduced MAP in CYP1A1 KO mice, compared to KO mice on standard
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chow (MAP in mmHg, CYP1A1 KO3, 107.6 £ 1.5; p<0.05), but had no affect on MAP
in CYP1A1 WT mice (CYP1Al WT,3: 105.0 + 2.5), (Fig. 4.2B). In contrast, an n-6
PUFA-enriched diet significantly increased MAP in CYP1A1 WT mice, compared to WT
mice on standard chow (WT, 118.2 £ 4.1; p<0.05), but had no affect on MAP in
CYP1A1 KO mice (CYP1A1 KOy 115.3 £ 1.5) (Fig. 4.2C). HR increased in CYP1Al
KO mice fed an n-3 PUFA-enriched diet, but there were no other differences in HR among

groups (Fig. 4.2D).
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Figure 4.1. Food consumption in CYP1A1 WT and KO mice fed an n-3 PUFA-enriched
diet or n-6 PUFA-enriched diet. Data represent mean + SEM and were analyzed by
student t-test (n=8/genotype/diet).
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Table 4.2. Body and organ weights in 8 month-old CYP1A1 WT and KO mice on n-3 and

n-6 PUFA-enriched diets

Weight CYP1A1 CYP1A1 CYP1A1 CYP1Al
WT n-3 KO n-3 WT n-6 KO n-6
(n=8) (n=8) (n=8) (n=8)
Body (g) 325+11 31.2+0.9 31.9+0.8 28.2+1.0*
Heart (mg) 128 + 4 120+ 4 122 +2 110 £ 0.9*
(0.397 0. (0.387 £ 0. (0.386 £ 0. (0.394 0.
256)" 244) 179) 160)
Liver (mg) 1661 + 95 1553 + 43 1382 + 27 1245 + 37*
(5.0+0.173) (5.0 £ 0. 190) (4.3+0.128) (4.4 £0.064)
Kidney (mg) 403 £ 13 369 +13 329+7 348+ 9
(1.2 +£0.075) (1.2 £0.076) (1.0 £ 0. 046) (1.2+0.035)

Values are expressed as mean + SEM
*p < 0.05 versus corresponding WT
f(Organ/body weight ratio x 100)
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Table 4.3. Lipid profile measurements in CYP1A1 WT and KO mice fed standard chow,
an n-3 and an n-6 PUFA-enriched diet

Parameters CYP1Al CYP1Al| CYP1A1 CYP1A1l | CYP1Al CYP1lAl
WT chow KO chow| WT n-3 KOn-3 | WT n-6 KO n-6
(n=7) (n=7) | (n=3) (n=4) (n=4) (n=3)
Total <100 <100 <100 <100 <100 <100
cholesterol
(mg/dL)
HDL 76 +5 87+6 34 +5* 37+2* 75+5 84+9
cholesterol
(mg/dL)
Triglycerides | 95+ 22 83+23 <50 <50 <50 <50
(mg/dL)

Values are expressed as mean + SEM

*p < 0.05, vs chow and n-6 diet

Legend: KO, CYP1Al KO; WT, Wildtype.
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Figure 4.2. Effects of n-3 and n-6 PUFA-enriched diets on mean 24 hr BP and HR in
CYP1A1 WT and KO mice. (A) MAP in CYP1A1 WT and KO mice fed standard chow,
(B) an n-3 PUFA-enriched diet or (C) an n-6 PUFA-enriched diet. (D) Corresponding HR
of CYP1AL1 WT and KO mice fed standard chow, an n-3 PUFA-enriched diet, or an n-6
PUFA-enriched diet. Data represent mean + SEM and were analyzed by Student’s t-test.
letters are not different from each other.

*p < 0.05



Effects of an n-3 PUFA-enriched diet £ LNNA on mean hourly BP and HR in CYP1Al
WT and KO mice.

To determine the contribution of NO to the reduction in BP in CYP1A1 KO mice
fed an n-3 PUFA-enriched diet, we treated CYP1A1 WT and KO mice with the NOS
inhibitor, LNNA for 1 week and continuously assessed changes in BP and HR by
radiotelemetry. Hourly MAP over a 24 hr period prior to LNNA treatment was
comparable between CYP1A1 WT and KO mice on an n-3 PUFA-enriched diet (Fig.
4.3A). Following NOS inhibition, hourly MAP increased in both CYP1A1 WT and KO
mice, but it increased significantly less in CYP1A1 KO mice especially during nighttime
periods of increased activity, although the normal circadian pattern of an increased MAP
during the night wakeful period was preserved (Fig. 4.3B). Although the 24 hr mean HR
was not significantly different between CYP1A1 WT and CYP1A1 KO mice fed an n-3
PUFA-enriched diet, when hourly HR was compared over a 24 hr period, CYP1Al1 KO
mice exhibited significantly lower HR at multiple times, particularly during peak activity
after lights were turned off, compared to WT mice (Fig. 4.3C). Following NOS inhibition,
HR decreased in both genotypes, but again CYP1A1 KO mice exhibited a lower HR
particularly when active, compared to WT mice (Fig. 4.3D). Further, the increase in MAP
following NOS inhibition was significantly greater in CYP1A1 WT mice (+16 £ 0.5
mmHg) than KO mice (+11 £ 0.6, p<0.002), (Fig. 4.3E). However, the decrease in HR
following NOS inhibition was not different between treatment groups (Fig. 4.3F).
Additionally, following NOS inhibition in CYP1A1 WT and KO mice on both standard
chow and n-3 PUFA-enriched diets, BP increased significantly more in WT mice on an n-3

PUFA-enriched diet (Fig. 4.4).
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Figure 4.3. Effects of an n-3PUFA-enriched diet + LNNA on mean hourly BP and HR in
CYP1A1 WT and KO mice. (A) Hourly MAP over a 24 hr period , (B) Hourly MAP over
a 24 hr period after NOS inhibition by LNNA, (C) Hourly HR and (D) Hourly HR after
NOS inhibition by LNNA. (E) Change in MAP and (F) Change in HR following NOS
inhibition. Data represent mean + SEM and were analyzed by two-way, repeated
measures ANOVA, using post hoc Holm-Sidak comparisons; *p < 0.05, compared to
corresponding CYP1A1 WT (A-D), and by Student’s t-test (E and F) (n=4-7/genotype).
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Figure 4.4. Effects of NOS inhibition on MAP in CYP1A1 WT and KO mice fed standard
chow and an n-3 PUFA-enriched diet. Change in MAP following NOS inhibition by
LNNA. Data represent mean £ SEM and were analyzed by two-way ANOVA, using post
hoc Holm-Sidak comparisons; *p < 0.05 (n=4-7/genotype).
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Effects of an n-6 PUFA-enriched diet £ LNNA on mean hourly BP and HR in CYP1Al

WT and KO mice

To determine if a loss of NO contributed to the increase in BP in CYP1IAL WT
mice fed an n-6 PUFA-enriched diet, we treated CYP1AL1 WT and KO mice with the NOS
inhibitor, LNNA as described above. Hourly MAP over a 24 hr period prior to LNNA
treatment was comparable between CYP1A1 WT and KO mice (Fig. 4.5A). Following
NOS inhibition, hourly MAP increased, but remained similar between genotypes (Fig.
4.5B). Additionally, hourly HR over a 24 hr period was similar between genotypes both
before (Fig. 4.5C) and after NOS inhibition (Fig. 4.5D). Finally, the increase in MAP
(Fig. 4.5E) and decrease in HR (Fig. 4.5F) following NOS inhibition did not differ

between genotypes.

Effects of n-3 PUFA-enriched diet on acute Ang Il responsiveness in CYP1A1 WT and
KO mice in vivo.

To determine if the CYP1AL KO mice fed an n-3 PUFA-enriched exhibited an
enhanced response to vasoconstriction, we challenged CYP1A1 WT and KO mice with a
bolus dose of Ang Il (30 pg/kg) and recorded BP starting 5 min after i.p. injection. An
immediate, robust increase in BP following Ang Il injection was observed in both
genotypes; however, the increase in systolic BP was significantly greater in CYP1A1 KO
mice, compared to WT mice, during the first 5 minutes following Ang Il administration as
well as from 10-15 min and 20-30 min post injection (Fig. 4.6A). Area under the curve
analysis following Ang Il injection showed that systolic BP was significantly increased in

CYP1A1 KO mice (WT, 938 + 90; KO, 1250 * 51, p<0.05) (Fig. 4.6B).
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Figure 4.5. Effects of an n-6 PUFA-enriched diet £ LNNA on mean hourly BP and HR in
CYP1A1 WT and KO mice. (A) Hourly MAP over a 24 hr period , (B) Hourly MAP over
a 24 hr period after NOS inhibition by LNNA, (C) Hourly HR, and (D) Hourly HR after
NOS inhibition by LNNA. (E) Change in MAP and (F) Change in HR following NOS
inhibition. Data represent mean + SEM and were analyzed by two-way, repeated
measures ANOVA, using post hoc Holm-Sidak comparisons; *p < 0.05, compared to
corresponding CYP1A1 WT (A-D), and by Student’s t-test (E and F) (n=4-7/genotype).
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Figure 4.6. Effects of n-3 PUFA-enriched diet on acute Ang Il responsiveness in
CYP1A1 WT and KO mice in vivo. (A) Increase in systolic BP (SBP) and (B) Area under
the curve analysis for 30 min following i.p. injection of Ang Il (30 pg/kg). BP was
recorded starting after 5 mins of Ang Il administration. Data represent mean £ SEM and
were analyzed by two-way, repeated measures ANOVA, using post hoc Holm-Sidak
comparisons; *p < 0.05 compared to CYP1AL1 WT (A). Data in (B) were analyzed by
Student’s t-test. (n=4/genotype).
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Effects of n-3 and n-6 PUFA-enriched diets on aortic eNOS and phospho-eNOS protein

expression in CYP1A1 WT and KO mice

To further elucidate the potential contribution of NOS to differences in BP, we
measured protein expression of eNOS and phospho-eNOS from aortas of CYP1A1 WT
and KO mice fed an n-3 or an n-6 PUFA-enriched diet. We found that eNOS protein
expression in the aorta was not different between CYP1A1 WT and KO mice between
diets (Fig. 4.7A-D). In contrast, phospho-eNOS protein expression was significantly
reduced in CYP1A1 KO mice fed an n-3 PUFA-enriched diet, compared to WT mice (Fig.
4.8A and B). There was no difference in phospho-eNOS expression between CYP1Al

WT and KO mice fed an n-6 PUFA-enriched diet (data not shown).
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Figure 4.7. Effects of n-3 and n-6 PUFA-enriched diets on aortic eNOS protein
expression in CYP1A1 WT and KO mice. Aortic eNOS protein expression and
quantification relative to pf-actin in CYPLAL1 WT and KO mice fed an n-3 PUFA-enriched
diet (A and B), or an n-6 PUFA-enriched diet (C and D). Data represent mean + SEM
and were analyzed by Student’s t-test; *p < 0.05, compared to corresponding WT (n=3-
4/genotype/diet)
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Figure 4.8. Effects of an n-3 PUFA-enriched diet on aortic phospho-eNOS protein
expression in CYP1A1 WT and KO mice. (A) Aortic p-eNOS and B-actin protein
expression, (B) Quantification of p-eNOS protein expression relative to f-actin in
CYP1A1 WT and KO mice fed an n-3 PUFA-enriched diet. Data represent mean + SEM
and were analyzed by Student’s t-test; *p < 0.05, compared to WT. (n=3-4/genotype)
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Effects of n-3 and n-6 PUFA-enriched diets on ACh-mediated vasodilation, and U46619-

dependent vasoconstriction in mesenteric arterioles of CYP1A1 KO and WT mice

To determine if vascular reactivity was altered in mice fed an n-3 or n-6 PUFA-
enriched diet, we assessed mesenteric arteriolar vasodilation to ACh and vasoconstriction
to U46619. We found that CYP1A1 KO mice on an n-3 PUFA-enriched diet exhibited an
attenuated, dose-dependent vasodilation to ACh, compared to WT mice (Fig. 4.9A). In
contrast, there was no difference in ACh-mediated vasodilation between CYP1A1 WT and
KO mice on an n-6 PUFA-enriched diet (Fig. 4.9B). Further, dose-dependent
vasoconstriction to U46619 did not differ between genotypes on either diet (Fig. 4.9C and

D).

Effects of n-3 and n-6 PUFA-enriched diets on plasma NOx levels

To determine if CYPLAL WT and KO mice exhibited differences in systemic levels
of NO, we measured plasma NOx. We found that plasma NOX levels were not different
between CYP1A1 WT and KO mice on neither an n-3 PUFA-enriched diet nor an n-6

PUFA-enriched diet (Fig. 4.10).

Effects of standard chow, n-3 and n-6 PUFA-enriched diets on cardiac TBARS levels

To determine the effects of the different diets on tissue oxidative stress levels, we
measured cardiac TBARS. Levels of cardiac TBARS were significantly elevated in
CYP1A1 WT and KO mice on an n-3 PUFA-enriched diet, compared to mice on standard
chow or an n-6 PUFA-enriched diet (Fig. 4.11). Nonetheless, the effects of the different

diets on TBARS levels were independent of genotype.
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Figure 4.9. Effects of n-3 and n-6 PUFA-enriched diets on ACh-mediated vasodilation
and U46619-dependent vasoconstriction in mesenteric arterioles of CYP1A1 WT and KO
mice. (A) ACh-mediated relaxation in mesenteric arterioles of CYP1A1 WT and KO mice
fed an n-3 PUFA-enriched diet or (B) an n-6 PUFA-enriched diet. (C) U46619-mediated
vasoconstriction in mesenteric arterioles of CYP1A1 WT and KO mice fed an n-3 PUFA-
enriched diet or (D) an n-6 PUFA-enriched diet. Data represent mean = SEM and were
analyzed by two-way, repeated measures ANOVA, using post hoc Holm-Sidak
comparisons; *p < 0.05, compared to corresponding WT (n=8/genotype/diet).
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Figure 4.10. Effects of n-3 and n-6 PUFA-enriched diets on plasma NOx levels. Plasma
NOx level in CYP1A1 WT and KO fed either an n-3 PUFA-enriched diet or an n-6
PUFA-enriched diet. Data represent mean = SEM and were analyzed by Student’s t-test
(n=5/genotype/diet).
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Figure 4.11. Effects of standard chow, n-3 PUFA-enriched diet, and n-6 PUFA-enriched
diet on cardiac TBARS levels. Cardiac TBARS levels in CYP1AL1 WT and KO mice fed
standard chow, an n-3 PUFA-enriched diet and an n-6 PUFA-enriched diet. Data
represent mean + SEM and were analyzed by Student’s t-test. Bars with the same letters
are not different from each other. *p < 0.05 (n=5/genotype/diet).
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E. DISCUSSION

These results show that an n-3 PUFA-enriched diet effectively reduces BP in
CYP1A1 KO mice to CYP1AL1 WT levels, demonstrating that CYP1AL is not solely
required to mediate the antihypertensive benefits of n-3 PUFAs. Further, our results show
that the benefits of the n-3 PUFA diet on BP result, in part, by increases in NO as is
illustrated by the significantly greater increase in BP when WT mice are treated with a
NOS inhibitor, compared to WT mice on standard chow or an n-6 PUFA diet.
Interestingly, CYP1AL is required to mediate the n-3 PUFA-dependent increase in NO,
since BP does not increase to the same extent in CYP1AL KO mice treated with a NOS
inhibitor, compared to WT mice. The contribution of CYP1A1 to n-3 PUFA-dependent
increases in NO is further illustrated by the significantly reduced expression of phospho-
eNOS protein and the attenuation of ACh-mediated vasodilation in CYP1A1 KO mice,
compared to WT mice on the n-3 PUFA diet. Finally, our results show that BP and
vascular reactivity of CYP1A1 WT and KO mice are essentially identical when fed an n-6
PUFA-enriched diet, suggesting that CYP1A1 is not necessary for n-6 PUFA-dependent
regulation of BP or vascular homeostasis

Numerous studies demonstrate that an n-3 PUFA-enriched diet or n-3 PUFA
supplements can lower BP in hypertensive laboratory animals and human subjects. For
example, an n-3 PUFA-enriched diet fed for two months decreases BP in aged male and
female spontaneously hypertensive rats (Mitasikova et al., 2008; Dlugosova et al., 2009).
Similarly, n-3 PUFAs significantly reduce hypertension in rats infused with Ang Il (Hui et
al., 1989). Moreover, a meta-analysis of 31 placebo-controlled trials shows that n-3

PUFA:s significantly reduce BP in hypertensive humans and exhibit a dose-dependent
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effect (Morris et al., 1993). Our data showing that an n-3 PUFA-enriched diet fed for two
months significantly reduces MAP in modestly hypertensive CYP1A1 KO mice is
consistent with these previously published studies. Further, our results show that
CYP1ALl is not required to mediate this decrease. In addition, we found that an n-3
PUFA-enriched diet does not reduce MAP in normotensive C57BL/6J mice. This is in
contrast to a limited number of studies that show n-3 PUFAs also can reduce BP in
normotensive animals and humans (Mori et al., 1999; Dlugosova et al., 2009; Liu et al.,
2011).

One mechanism by which n-3 PUFAs may regulate vascular function and BP is
thought to involve an increase in NO bioavailability and signaling. In cultured HUVECs,
n-3 PUFAs increase the translocation of eNOS from caveolin to the cytosol, a step
required for activation (Omura et al., 2001; Li et al., 2007a; Li et al., 2007b) and
subsequently lead to increases in NO production, while in EA hy 926 endothelial cells n-3
PUFAs increase the expression of phospho-eNOS, the activated form of the enzyme
(Gousset-Dupont et al., 2007). Additionally, in vivo studies demonstrate that rats fed n-3
PUFAs exhibit increases in aortic eNOS expression (Ma et al., 2004), activity (Dlugosova
et al., 2009), and NO production (Lopez et al., 2004), as well as improvements in NO-
dependent vasodilation (Matsumoto et al., 2009). Finally, a meta-analysis of randomized
controlled human trials shows that n-3 PUFA supplements significant improve NO-

dependent brachial artery vasodilation (Wang et al., 2012).

Although CYP1AL1 is not required to mediate the decrease in BP by the n-3 PUFA
diet, a number of lines of evidence from our study suggest that CYP1A1 does mediate

increases in NO bioavailability resulting from the n-3 PUFA diet. We found that aortic
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phospho-eNOS protein expression is significantly lower in CYP1A1 KO mice fed an n-3
PUFA-enriched diet, compared to WT mice. Further, ACh-mediated vasodilation is
significantly attenuated in CYP1A1 KO mice fed an n-3 PUFA-enriched diet, compared to
WT mice. Finally, the increase in BP resulting from NOS inhibition is significantly less in
CYP1A1 KO mice fed an n-3 PUFA-enriched diet, compared to WT mice. These results
suggest that CYP1A1 contributes to n-3 PUFA-dependent increases in NO. The
mechanism underlying these observations remains to be elucidated; however, limited
evidence supports the notion that there may be cross-talk between caveolin-1, CYP1AL,
and eNOS (Lim et al., 2007). Nonetheless, since eNOS knockout mice are hypertensive
(Shesely et al., 1996), it will be interesting to elucidate the contribution of n-3 PUFAS in

reducing BP in the eNOS knockout mice, and the mechanisms involve.

One particularly surprising observation is that the n-6 PUFA-enriched diet
significantly increases BP in CYP1A1 WT mice, but has no effect in CYP1AL1 KO mice,
compared to these same mice fed a standard chow diet.  These results, however, are
consistent with studies showing n-3 PUFA deficient diets lead to increases in BP. Ren-2
rats that have high levels of Ang 11 show significantly higher BP when maintained on an n-
3 PUFA deficient diet from conception (Jayasooriya et al., 2008). Similarly, rats fed n-3
PUFA deficient diets from the prenatal period through adulthood show significantly higher
BP at 9 months of age (Begg et al., 2012). While our n-6 PUFA-enriched diet did not
contain any detectable amounts of n-3 PUFAs, we would not have expected that the two
month duration of feeding was sufficiently long to deplete all endogenous n-3 PUFAs.

Nonetheless, results of the tissue and blood analysis of PUFA and PUFA metabolites from

137



CYP1A1 WT and KO on each diet should help us to further interpret the changes in BP

observed following the n-6 PUFA-enriched diet.

Lastly, we also observed fundamental differences in body and organ weights in
CYP1A1 WT and KO mice fed either an n-3 PUFA or n-6 PUFA-enriched diet. We
reported previously that CYP1A1 KO mice fed standard chow exhibit reduced body,
heart, kidney and liver weights, compared to WT mice (Kopf et al., 2010)(Agbor at el.,
unpublish data). Notably, however, our current findings show that body and organ
weights of CYP1A1 KO mice are normalized by an n-3 PUFA-enriched diet, but not an n-
6 PUFA-enriched diet. Rockett et al., (2010, 2012) report that high doses of n-3 PUFAs
increase body weight and reduce activity of C57BL/6 mice. Similarly, mice fed an n-3
PUFA-enriched diet exhibited significant increase in body weight at 14 weeks, compared
to control diet (Anderson et al., 2012). Since CYP1A1 KO mice exhibit significantly
lower activity on the n-3 PUFA-enriched diet (data not shown), compared to WT mice,
this could account for the normalization of body and organ weights. Nonetheless,
additional studies assessing metabolic activity will be needed to determine if changes in

physical activity are reflected by changes in metabolism.

In summary, our study demonstrates that an n-3 PUFA-enriched diet increases the
contribution of NO to vascular function and BP regulation, and this is mediated, in part,
by CYP1AL. Given that CYP1ALl is constitutively expressed in the vascular endothelium
and is induced by physiological levels of shear stress (Han et al., 2008; Conway et al.,
2009), this pathway could provide some cardiovascular and BP-lowering benefits

following dietary intake of foods enriched in n-3 PUFAs, in addition to regular exercise
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regimens. Future studies are however, needed to investigate crosstalk between CYP1A1l

and NOS signaling in contributing to the BP lowering effects of n-3 PUFAs.
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V. CHAPTER 5

Conclusion and future directions

l. Endothelial cell-specific aryl hydrocarbon receptor knockout (ECahr™) mice
and blood pressure (BP) regulation.

Conclusion

Our primary objective was to develop an endothelial cell-specific aryl hydrocarbon
receptor (AHR) knockout (KO) (ECahr™) mouse to investigate the contribution of
endothelial AHR to BP regulation. We successfully generated ECahr” mice with genetic
deletion of the AHR in the endothelium using cre-lox recombination, and our data
revealed that ECahr’™ mice are hypotensive, similar to the BP phenotype of the AHR KO
mice (Zhang et al., 2010). This demonstrates that endothelial-expressed AHR is a critical
regulator of vascular tone and BP.

Hypotension in ECahr” mice was associated with altered gene expression of tissue
renin angiotensin system (RAS) components, as well as decreased protein expression of
aortic angiotensin 1 receptor (AT1R). In addition, the reduced BP was mediated, in part,
by a reduced vasoconstriction response to Ang Il, measured both in vivo and ex vivo in

-+/+

ECahr” mice, compared to ECahr™*'* mice. Vasoreactivity studies in the aorta showed a
significant reduction in vasoconstriction to Ang 11 in the ECahr” mouse aorta in the
presence of perivascular adipose tissue (PVAT). Additionally, renin and AT1IR mRNA
expression were significantly reduced in the visceral white adipose tissue. Nonetheless the

specific mechanism through which the AHR regulates AT1R expression is still unclear and

warrants further investigation.
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Classically, the AHR modulates gene expression by binding to dioxin response
elements (DRE) containing the core recognition motif 5’-TNGCGTG-3’ (Denison et al.,
1989). Interestingly, several DRE sequences are located in the promoter region of both
the mouse AT1a and AT1b genes, supporting the possibility that expression of the mouse
AT1R in the vasculature could directly be modulated by the AHR. Supporting evidence
for this comes from studies where activation of the AHR by TCDD was demonstrated to
sensitize mice to Ang Il-mediated hypertension. Taken together, this suggests that AHR
expression in the endothelium is particularly important to normal vascular responsiveness

to Ang Il and thus, BP regulation.

Future direction

Although our findings establish an association between loss of endothelial AHR
and reduced RAS signaling, it does not elucidate how the AHR regulates the AT1
receptor. Therefore, future studies should focus on determining the interaction between
the AHR and the AT1 receptor. One possible way to investigate this is in cell culture
studies. Using human umbilical vein endothelial cells, the AHR receptor could be knocked
down by RNA interference. AT1 mRNA and protein expression profiles from both siRNA
treated and untreated cells would demonstrate whether the loss of AHR contributes to the
downregulation and reduced expression of the AT1 receptor mRNA and protein. If this is
not the case, since the mMRNA of AHR and its downstream target gene, CYP1AL, have
been shown to be inducible in vsmc (Kerzee and Ramos, 2001), targeted knockdown of

AHR could also be conducted in vsmc in culture.
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The AHR activates its gene battery by binding to DREs in the promoters of genes
to turn them on (Boutros et al., 2004; Tijet et al., 2006). Interestingly, the AT1 receptor
gene sequence harbors several DREs in its promoter; however, their transcriptional
regulation by the AHR has not been demonstrated. It is plausible therefore, that basal
AHR levels could contribute to the expression of constitutive AT1 receptor by binding to
DREs in its promoter region. To investigate this, we could use a luciferase reporter
plasmid system containing specific nucleotide deletions of the AT1 receptor promoter, and
transfect into cell lines, for example HEK29 cell lines. Following treatment with an AHR
agonist such as dioxin, we could determine by luciferase activity measurements, if specific
DNA regions of the AT1 receptor promoter region is regulated by the AHR.

To further elucidate how the AHR could regulate the AT1 receptor, we could
conditionally delete the AHR specifically from the vsmc in mouse, to determine if AHR in
vsmc alters Ang 11 signaling and BP in vivo. Notably, mice expressing cre-recombinase
driven under a vsmc specific promoter, smooth muscle 22-alpha (SM-22a), could be bred
to mice harboring exon 2 of the AHR gene flanked by lox-P sites. Through two
generation of breeding, mice that are cre-positive or negative but harbor the floxed AHR
allele could be used as conditional knockouts and wildtype controls, respectively. AT1R
mMRNA and protein levels in aorta and mesenteric arterioles could be determined. In
addition, BP could also be measured using radiotelemetry to demonstrate whether the loss
of AHR only from the vsmc is involved in BP regulation. If a significant reduction in BP
is not seen, then an acute in vivo challenge to Ang Il could be conducted to determine if a

vascular deficit is present in the vasculature as a result of loss of AHR from vsmc.
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In summary, the contributions of the endothelial AHR to BP regulation and the
underlying mechanisms involved are not well understood. Nonetheless, the findings from
this study and those from the AHR KO mice suggests that there is significant cross talk
between AHR signaling and the RAS and future studies delineating this interaction would
be necessary.

In conclusion, the results from the AHR KO and the ECahr™ mice show that both
models are hypotensive, suggesting that global deletion of the AHR or loss of the AHR
specifically from the vascular endothelium contributes to hypotension, in part, by
significantly attenuating Ang Il responses. Taken into account that RAS is the primary
contributor to the pathogenesis of hypertension, it is plausible that the AHR crosstalk with
the RAS. The implication therefore is that specific AHR antagonists could be designed
and tested as potential anti-hypertensives in the treatment of high BP in humans, in
combination with other anti-hypertensive agents including Ang converting enzyme

inhibitors.

1. Cytochrome P4501A1 knockout (CYP1A1 KO) mice and BP regulation
Conclusion

The findings reported herein show that CYP1AL1 KO mice exhibit elevated BP
with a reduced HR. Systolic BP was significantly elevated at nighttime periods of
increased activity, while diastolic BP was significantly increased across 24 hr period,
compared to WT mice. Additionally, CYP1A1 KO mice exhibited attenuated vasodilation
to DHA and EPA in the aorta and mesenteric arterioles, but normal responses to NOS

inhibition and aortic vasorelaxation to ACh and SNAP, suggesting that elevated BP in
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CYP1A1 KO mice is not associated with loss of NO. Our data further demonstrate that
putative CYP1A1 metabolites of EPA and DHA, 17,18-EEQ and 19,20-EDP, are potent
and efficacious vasodilators. Lastly, inhibition of Kv channel significantly inhibited DHA-
mediated vasodilation in mesenteric arterioles. Our data suggests that the limiting factor
could be the amount of vasodilator metabolites produced by CYP1A1 metabolism of n-3
PUFAs. Taken together, the findings from our study show for the first time that CYP1A1l
is required in maintaining normal levels of BP.

In addition, diets enriched in n-3 PUFAs contributed significantly in lowering BP in
CYP1A1 KO mice. Notably, elevated BP in CYP1A1 KO mice was lowered to
comparable WT levels after supplementing for 2 months with an n-3 PUFA-enriched diet,
with no effects in CYPLAL WT mice. In contrast, BP in WT mice significantly increased
after supplementing with an n-6 PUFA-enriched diet, with no effect in CYP1AL1 KO mice.
Phospho-eNQOS protein expression was significantly reduced in the aorta of CYP1Al1 KO
mice fed an n-3 PUFA-enriched diet, compared to CYP1A1 WT mice. Moreover,
although BP was reduced in the CYP1A1 KO mice fed an n-3 PUFA-enriched diet,
following NOS inhibition, BP increase was significantly less in CYP1A1 KO, compared to
WT mice. Additionally, ACh-mediated vasodilation was attenuated in mesenteric
arterioles from CYP1A1 KO mice fed an n-3 PUFA-enriched diet, compared to WT mice,
with no difference in mice on an n-6 PUFA-enriched diets. Although we have previously
reported that CYP1AL KO mice exhibited reduced body and organ weights on standard
chow (Kopf et al., 2010), our data herein show that body and organ weights of CYP1A1
KO mice were normalized by an n-3 PUFA-enriched diet, but not on an n-6 PUFA-

enriched diet. Consistent with studies demonstrating that n-3 PUFA supplementation
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results in weight gain via reduced activity in mice (Anderson et al., 2012; Rockett et al.,
2012), average 24 hr and nighttime activity measurements were significantly reduced in
CYP1A1 KO mice, compared to CYP1AL1 WT mice on an n-3 PUFA-enriched diet.
Taken together, our study suggests that the mechanism of action of n-3 and n-6
PUFAs might be different. As seen, the difference in BP phenotypes between n-3 and n-6
PUFA-enriched diets demonstrate that both diets could have opposing effects in
contributing to vascular tone and BP control, and involves CYP1AL. Thus, increasing
substrate availability via n-3 PUFA supplementation, changes the BP phenotype of
CYP1A1 KO mice towards that of WT mice, and depleting substrate availability via n-6
PUFA supplementation changes the BP phenotype of CYP1AL1 WT mice to that of

CYP1Al KO mice.

Future directions

The phenotype of the CYP1A1 KO mouse provides a good model to further
elucidate the physiological role of CYP1AL in contributing to cardiovascular homeostasis.
The hypertensive phenotype strongly suggests that CYP1AL is involved in contributing to
vascular tone and BP regulation. Although CYP1AL has been demonstrated to be induced
by physiological levels of shear stress in vascular endothelial cells (Han et al., 2008;
Conway et al., 2009), its beneficial role following shear-induction has not been elucidated.
To initially investigate this, vascular endothelial cells from CYP1A1 WT and KO mice
could be isolated and cultured. Following NOS inhibition with LNNA (100 uM),
endothelial cells could be subjected to laminar shear stress of 15-25 dynes/cm?, and the

media collected and applied to pressurized mesenteric arterioles from C57BL/6J mice,
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preconstricted to U46619. Mesenteric vasodilation can be monitored and compared to
media subjected to no shear stress. Further, we could also investigate this in vivo using
radiotelemetry to monitor BP. Notably, in CYP1A1 WT and KO mice, following NOS
inhibition, MAP could be measured prior to, during, and following an exercise regimen
(Harri et al., 1999).

Although our studies show that CYP1A1 KO mice exhibited attenuated
vasodilation to EPA and DHA in the aorta and mesenteric arterioles, these studies were
carried out without any luminal flow, thereby not mimicking in vivo conditions that
incorporate flow mediated dilation (FMD). It will be logical therefore for future studies to
be conducted under varied degrees of luminal flow, since CYP1A1 has been demonstrated
to be inducible by physiological levels of shear stress (Han et al., 2008; Conway et al.,
2009). It is plausible we might expect to see even wider differences in vasodilation
responses to n-3 PUFAs; EPA and DHA under flow conditions.

In addition to elucidating the contribution of CYP1A1 to shear induced
vasorelaxation, it would be necessary to determine also the concentrations of n-3 PUFA
metabolites from CYP1A1 metabolism of n-3 PUFAs in plasma and red blood cells, and
also following treatment with diets enriched in n-3 or n-6 PUFAs. Since our data suggests
that differential level of metabolites may drive the hypertension in CYP1AL1 KO mice,
using liquid chromatography—mass spectrometry (LC/MS/MS), we could measure these
metabolites. Additionally, since diastolic BP is significantly elevated across 24 hr period in
CYP1A1KO mice, this could suggest that CYP1AL metabolism of n-3 PUFA contributes
to maintaining peripheral vascular resistance. Future studies that assess cardiac output

and stroke volume could be done to confirm if peripheral vascular resistance is altered in
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the absence and presence of n-3 or n-6 PUFA supplementation in CYP1A1 WT and KO
mice.

Furthermore, it would be very insightful to elucidate the contribution of CYP1A1
in maintaining membrane potential in vascular endothelial cells and vsmc, in the presence
or absence of n-3 or n-6 PUFAs. Endothelial and vsmc could be isolated from CYP1Al
WT and KO mice and patch clamp experiments conducted to determine membrane
potential prior to, and following treatment with n-3 or n-6 PUFAs. These studies could
also be repeated in the presence or absence of inhibitors of BK and Kv membrane
channels. This information will help determine the contribution of CYP1ALl to the
hyperpolarization of the plasma membrane in general and elucidate further, alternative
mechanisms of PUFA-mediated vasodilation in particular.

While the role of CYP1AL in BP regulation and the cardiovascular system in
general is not clearly understood, it is noteworthy that several polymorphisms in the
CYPL1AL gene exist in the human population. For example, a common allelic variant of
human CYP1A1 (lle462Val) was shown to metabolize EPA in a different pattern, and the
catalytic efficiency of this polymorphism for hydroxylation was five times higher, while
that for epoxidation was twice higher than that of CYP1A1 WT (Schwarz et al., 2005).
This suggests that CYP1A1 metabolism of n-3 PUFAs could contribute to differences
between individuals in the production of beneficial physiologically active PUFA
metabolites in the cardiovascular system.

In summary, the nutritional benefits of n-3 PUFAs to the cardiovascular system
remain not fully understood. Nonetheless, our data demonstrate a BP lowering effect of

n-3 PUFAs in CYP1A1 KO mice. This suggests that n-3 PUFA-enriched diets could
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contribute in lowering BP in hypertensive human subjects. Regardless of the BP lowering
effects of n-3 PUFASs, our study also demonstrates that n-3 and n-6 PUFAs lower
triglycerides levels, and overall, this is beneficial to cardiovascular human health. More
clinical trial studies could be conducted to determine the amount and benefits of daily
intake of n-3 PUFAs as supplements in humans, as a protection strategy against
cardiovascular diseases.

Currently, the American Heart Association (AHA) recommends 1 g
EPA+DHA/day for patients with known coronary heart disease (CHD). Additionally, for
individuals with no CHD, the AHA recommends the consumption of two oily fish meals
per week, which would provide 400-500 mg EPA+DHA/day (Kris-Etherton et al., 2002).
However, if fish meals are not desirable, fish supplements as capsules could also be taken.
It is recommended that fish supplements as capsules be labeled as ‘molecularly distilled’
since this process removes polychlorinated biphenyls contaminants.

In summary, as show by our data herein, 17,18-EEQ and 19,20-EDP will be
excellent and potential anti-hypertensive candidates. It is important therefore, for future
studies to look at clinical trials of CYP1A1l metabolites of n-3 PUFAs; 17,18-EEQ and
19,20-EDP as anti-hypertensives, and the development of stable analogues of these
metabolites to treat long-term resistant hypertension.

The conclusion from our study is that the AHR and its downstream target gene,
CYP1AL, regulate BP through different pathways and involve the perivascular adipose
tissue (PVAT). Our findings show that loss of AHR in the endothelium resulted in a
hypotensive phenotype, consistent with the BP phenotype of the global AHR KO mouse,

independent of NO. Additionally, the hypotension was associated with reduced Ang Il
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responses ex vivo, in the presence of PVAT. This suggests that loss of AHR in the
endothelium alters paracrine signaling in the adipose tissue and supports a role for the
PVAT in contributing to blood pressure regulation. Although AHR is deleted in
endothelium, CYP1AL is still expressed in the adipose tissue and could also contribute to
the pro-hypotensive effects seen in the ECahr” mice. Our study further show that global
deletion of CYP1A1, in contrast, resulted to a hypertensive phenotype associated with
reduced vasorelaxation to EPA and DHA. The elevated BP was independent of NO,
suggesting that CYP1A1 metabolism of n-3 PUFASs contributes to BP regulation by the
production of stereospecific products that exhibit vasodilatory properties. However, our
results also show that loss of CYP1AL could be compensated by other vascular P450
epoxygenases in the presence of n-3 PUFA substrate bioavailability. Although CYP1Al
was globally deleted, n-3 PUFA supplementation was shown to normalize BP in CYP1Al
KO mice to WT levels via a NO-dependent mechanism. It is plausible that the global
deletion of CYP1AL1 including in the PVAT, contributes to a pro-hypertensive phenotype
in the CYP1A1 KO mice. In conclusion, although AHR is deleted in endothelium, adipose
CYP1AL1 could contribute to the hypotension seen in the ECahr’ mouse. In contrast, the
vasodilatory benefits of CYP1AL including contributions from the PVAT is lost,

contributing to an elevated BP as seen in the CYP1A1 KO mouse.
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