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ABSTRACT 

 The high affinity IgE receptor (FcεRI) plays a primary role in the pathogenesis of 

allergic disease and shares significant similarities with the two other multichain immune 

recognition receptor family members, the B-cell receptor and T-cell receptor.  A wealth 

of information exists in all three of these receptor systems with regard to the signaling 

cascades occurring subsequent to receptor activation.  It is also known that all three 

require binding of multivalent antigen to initiate signaling.  However, very little is known 

about the precise mechanism by which multivalent antigen binding initializes 

downstream signaling.  It has long been known that, in response to antigen binding, 

FcεRI reorganizes into large aggregates on the cell surface and that the receptor 

transitions from freely diffusing to highly immobile.  The extent of aggregation and 

immobilization appears to correlate strongly with the extent of cellular activation, as 

measured by release of pre-formed mediators of allergic inflammation from intracellular 

granules.  These observations have fueled speculation that immobilization of FcεRI may 

be the primary driver behind signal initiation.  However, technical limitations related to 

the challenges of imaging highly dynamic, nanometer scale phenomena in living cells has 

precluded detailed examination of these processes. 
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 Here, we describe the development of novel live cell imaging techniques and 

quantum dot (QD) based probes to address the role played by receptor dynamics in FcεRI 

signaling.  Using multi-color single QD tracking, we rigorously quantified the diffusion 

of FcεRI in the absence of multivalent antigen and discovered a novel role for the actin 

cytoskeleton in modulating the diffusion of transmembrane proteins on micron length 

scales.  We developed a real-time assay to monitor the kinetics of antigen-induced 

immobilization of FcεRI and report that this process is influenced by the actin 

cytoskeleton and heavily dependent on multivalent antigen concentration.  We describe 

the relationship between immobilization, clustering and signal intiation and demonstrate 

that immobilization is not required for robust signaling.  We also show that antigen-

induced aggregation and internalization of FcεRI is not dependent on downstream 

signaling.  From these data, we propose that the size of receptor clusters alone dictates 

the mobility, signaling competence, and internalization of FcεRI. 
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1.1 The multichain immune recognition receptor family 

The multichain immune recognition receptor family includes the B-cell receptor 

(BCR), T-cell receptor (TCR), and the high affinity IgE receptor (FcεRI) (Sigalov 2004).  

Given the key role that each of these receptor systems plays in mediating the delicate 

balance between health (via recognition and clearance of bacterial, viral, and parasitic 

infections) and disease (via induction of autoimmunity and allergy), it is not surprising 

that their signaling cascades are among the most well studied in all of biology (Sigalov 

2004).   

From these studies, many of the specific intracellular proteins involved in the 

signaling cascades downstream of these receptors have been identified.  Subsequent to 

ligand binding, these intracellular proteins initiate kinase activation and Ca2+ 

mobilization, leading in turn to cytoskeletal reorganization, receptor trafficking and cell-

specific responses, including cytokine production and altered gene expression (Boniface, 

Rabinowitz et al. 1998; Thyagarajan, Arunkumar et al. 2003; Kraft and Kinet 2007).  In 

addition to the similarities among the signaling cascades of the BCR, TCR, and FcεRI, 

these receptors share a common mechanism of activation, in which oligomerization of 

multiple receptors via binding of multivalent ligand is required (Boniface, Rabinowitz et 

al. 1998; Thyagarajan, Arunkumar et al. 2003; Kraft and Kinet 2007).  However, despite 

this extensive understanding of the requirements for and consequences of receptor 

activation, the precise mechanism by which multivalent engagement of receptors initiates 

signaling has remained elusive. 
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1.2 Overview of an allergic inflammatory response 

When a person is first exposed to a putative allergen, the allergen will be taken up 

by antigen presenting cells (APCs) in the periphery, such as dendritic cells, macrophages, 

and B-cells.  These cells will then process the allergen and express it on their surface as 

peptide fragments bound to major histocompatibility complex class II (MHC II).  APCs 

with peptide-MHC (pMHC) complexes on their surface then travel to the lymph nodes, 

where they will interact with CD4+ T-cells.  This interaction is mediated by antigen-

specific TCR engagement with pMHC and also interaction of leukocyte function 

associated antigen 1 (LFA-1) integrins on T-cells with intercellular adhesion molecule 1 

(ICAM-1) on the APC.  This interaction produces a characteristic contact between APC 

and T-cell termed the immunological synapse (Dustin, Olszowy et al. 1998; Grakoui, 

Bromley et al. 1999).  This interaction induces T-cell activation and proliferation, driven 

primarily by T-cell derived interleukin 2 (IL-2).  If this interaction occurs in the presence 

of APC-derived IL-12, the proliferating T-cells will begin to secrete Th2-type cytokines, 

specifically IL-4, IL-5, and IL-13.  These cytokines have a wide range of effects that 

serve to polarize the immune response away from the interferon-γ, IgG, macrophage- 

dominated response required for control of bacterial and viral infection, and toward the 

IgE, mast cell-dominated response associated with control of parasitic infection and also 

induction of allergy (Goldsby, Kindt et al. 2000).     

In the presence of Th2 cytokines, B-cells, which become activated by multivalent 

engagement of their BCR by the putative allergen, will begin proliferating and undergo 

isotype switching to produce IgE (Vercelli 2002).  This IgE will be secreted into the 

circulation by the activated B-cells, now called plasma cells, where it will encounter 
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FcεRI on the surfaces of basophils and also eventually make its way into tissues where it 

will bind to FcεRI on mast cells.   

These mast cells and basophils are now said to be “primed” with allergen-specific 

IgE.  Although IgE binding has several other important consequences (Kitaura, Song et 

al. 2003; Kawakami and Kitaura 2005), its main function is to confer mast cells and 

basophils with the ability to respond to allergen.  Upon secondary exposure to allergen, 

often the next season in the case of seasonal allergies, the allergen binds to IgE-FcεRI 

complexes on the cell surface, triggering a complex signaling cascade that ultimately 

results in the release of pre-formed mediators of the allergic inflammatory response, 

stored in granules within the mast cells and basophils.  Although variable depending on 

tissue distribution and species, these granules predominantly contain histamine, 

leukotrienes, prostaglandins, and serine proteases (Prussin and Metcalfe 2003).  Once 

released into the surrounding tissue, these mediators induce the familiar symptoms of 

allergic disease:  swelling, redness, irritation, mucus production, and bronchoconstriction 

(Prussin and Metcalfe 2003). 

1.3 High Affinity IgE Receptor Overview 

The high affinity IgE receptor is expressed on a wide range of cell types and can 

exist in two distinct forms.  In its most well-studied form, FcεRI exists as a 

heterotetramer, consisting of a single membrane-pass α-subunit, which contains the IgE-

binding domain, the four membrane-pass β-subunit, which contains a single 

immunoreceptor tyrosine-based activation motif (ITAM), and two γ-subunits, which exist 

as a disulfide-linked homodimer and also contain one ITAM on each subunit.   In 



   

 5

addition to its well-known role as the principal receptor on the surface of mast cells and 

basophils, FcεRI can also exist in humans as a heterotrimer which lacks the β-subunit and 

is expressed in relatively lower numbers on several cell types, such as plasmacytoid and 

myeloid dendritic cells, Langerhans cells, monocytes, macrophages, eosinophils, and 

platelets (Kraft and Kinet 2007).  In this heterotrimeric form, FcεRI is believed to 

function predominantly in antigen presentation, although other functions are currently 

under investigation (Kraft and Kinet 2007).   

The α-subunit is heavily glycosylated, with seven N-linked glycosylation sites 

that are essential for proper folding and export from the endoplasmic reticulum (ER) 

(Letourneur, Sechi et al. 1995).  The intracellular tail of the α-subunit has no known 

signaling function, whereas the two Ig-like domains of the extracellular portion are 

responsible for IgE-binding.  These two domains interact asymmetrically with the two 

hydrophobic regions on the paired Cε3 domains of the Fc portion of IgE (Figure 1.1) 

(Garman, Wurzburg et al. 2000; Gould and Sutton 2008).  This asymmetry not only 

explains the 1:1 binding stoichiometry between FcεRI and IgE, but also underlies the 

resulting high affinity (KD=10-10-10-11 M (Garman, Wurzburg et al. 2000)), since the two 

distinct binding interactions increase the avidity of the binding. 
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Figure 1.1 Structure of the alpha chain of FcεRI and its interaction with IgE. (a) Structure of 
the FcεRIα chain taken as it appears when co-crystallized with the Fcε3-4 domains of IgE.  The 
CC’ loop has shown some variability among different cystal structures of the FcεRIα extracellular 
chain and is shown in red.  (b) Crystal structure of the extracellular domain of FcεRIα (gold) in 
complex with the Fcε3-4 domains of IgE (green and purple).  (c) Cartoon of the full FcεRI 
tetramer in complex with IgE.  Image taken from (Gould and Sutton 2008). 

The β-subunit is a member of the tetraspanin family of proteins and contains a 

non-canonical ITAM in its C-terminal cytoplasmic tail (Donnadieu, Jouvin et al. 2003).  

The β-subunit associates with the core-glycosylated α-subunit while still in the ER and, 

along with the γ-subunit, facilitates transit of the receptor through the secretory pathway 

to the cell surface (Miller, Blank et al. 1989).  Once at the cell membrane, the β-subunit 

ITAM associates with the SH2-domain containing Src-family kinases Lyn and Fyn; an 

association which transiently increases upon antigen-mediated activation of FcεRI 

(Gilfillan and Tkaczyk 2006). 

The two γ-subunits have very short extracellular domains, are linked by a 

disulfide bond within the transmembrane domain, and contain a canonical ITAM in their 

cytoplasmic domain (Gilfillan and Tkaczyk 2006; Kraft and Kinet 2007).  The γ-subunit 

also associates with the core-glycosylated α-subunit while still in the ER, masking an ER 
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retention signal on the α-subunit and permitting transit of the trimeric (αγ2) or tetramteric 

(αβγ2) receptor to the cell surface (Gilfillan and Tkaczyk 2006; Kraft and Kinet 2007).  

Once at the surface and upon activation, the γ-subunit ITAMs are responsible for the 

binding and activation of the spleen tyrosine kinase (Syk), which is the main driver of 

signaling downstream of the receptor (Gilfillan and Tkaczyk 2006; Kraft and Kinet 

2007).   

The interactions between subunits that stabilize the receptor in the membrane are 

poorly understood.  However, it has been determined that electrostatic and hydrophobic 

interactions between covalently and non-covalently associated lipids are crucial to 

maintaining receptor integrity (Kinet, Quarto et al. 1985; Kinet 1999). 

1.4 FcεRI Signaling 

1.4.1 The FcεRI signaling cascade 

 In response to antigen-mediated aggregation of IgE-FcεRI on the cell surface, Lyn 

phosphorylates the ITAMs of the β and γ-subunits (Kraft and Kinet 2007).  Given that 

Lyn is a dually acylated kinase (Xu, Harder et al. 2005), it has been suggested that Lyn’s 

association with aggregated FcεRI is due to their antigen-induced colocalization in lipid 

rafts (Young, Zheng et al. 2005).  However, recent studies have shown that interactions 

between FcεRI and Lyn require the presence of the SH2-domain of Lyn (Larson, Gosse et 

al. 2005), suggesting colocalization in lipid rafts is not sufficient to produce productive 

associations between FcεRI and Lyn. 
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 After phosphorylation of FcεRIβ and γ ITAMs, a complex signaling cascade is 

initiated involving a series of membrane-associated and cytoplasmic proteins (Figure 

1.2).   

 

Figure 1.2 Schematic representation of FcεRI signaling.  Taken from (Kraft and Kinet 2007). 

 

The primary and most well-studied pathway involves signaling through Lyn.  However, 

experiments in Lyn-deficient cell lines have revealed a secondary pathway through 

another Src family kinase, Fyn, which appears to primarily mediate degranulation.  This 

complementary pathway is described in detail in (Kraft and Kinet 2007).  In the primary 

(Lyn) pathway, Lyn-mediated ITAM phosporylation facilitates binding of Lyn and Syk to 
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FcεRIβ and FcεRIγ, respectively, through their SH2 domains.  Lyn is then able to 

phosphorylate and activate Syk, initiating downstream signaling (Kraft and Kinet 2007).  

Once Syk is activated, it phosphorylates scaffolding proteins, such as SH2-domain 

containing leukocyte protein of 76 kD (SLP76) and linker for activation of T-cells (LAT).  

LAT is a transmembrane scaffolding protein which is able to scaffold growth factor 

receptor bound protein 2 (Grb2) through its SH2 domain.  Grb2 can then interact with son 

of sevenless (Sos), which is a guanine nucleotide exchange factor for Ras, subsequently 

initiating the Ras-Raf-MAP kinase signaling cascade which results in altered gene 

transcription (cytokine synthesis) and also simulates the synthesis of eicosanoids via 

activation of phospholipase A-2.  LAT and SLP76 also work in concert with Syk and 

Bruton’s tyrosine kinase (Btk) to activate phospholipase Cγ (PLCγ).  Once activated, 

PLCγ hydrolyzes phosphatidylinositoltrisphosphate lipids in the plasma membrane to 

produce diacylglycerol (DAG) and inositol-trisphosphate (IP3).  IP3 binds to its receptor 

on the ER membrane, which simulates Ca2+ release from ER stores.  The rise in 

cytoplasmic calcium has a wide range of effects, including acting in concert with DAG to 

activate protein kinase C (PKC); which, like Ca2+ itself, facilitates degranulation.  This 

entire sequence of events is reviewed in (Kraft and Kinet 2007). 

1.4.2 Role of topography in FcεRI signaling 

In addition to the biochemical studies which have provided the framework for 

understanding the signaling cascade downstream of antigen binding, there is also a 

significant body of literature examining the spatial aspects of FcεRI signal initiation.  An 

earlier study by the Oliver lab using scanning electron microscopy (SEM) showed 

characteristic patterns of FcεRI redistribution and clustering during signal transduction.  



   

 10

Specifically, FcεRI were observed to move off of actin-supported membrane ruffles and 

into large aggregates in response to crosslinking with anti-IgE antibodies (Seagrave, 

Pfeiffer et al. 1991).  This study also demonstrated that small oligomers of FcεRI 

produced the most robust secretion, whereas larger aggregates appeared to be associated 

with a diminished secretory response (Seagrave, Pfeiffer et al. 1991).    

More recently, high-resolution transmission electron microscopy (TEM) studies 

using immunogold labeling have enhanced the understanding of the role of receptor 

topography in FcεRI signaling.  These studies have shown that FcεRI, a protein with no 

known homotypic interactions, exists in small clusters on the surface of unstimulated 

cells (Figure 1.3A).  It was also determined that about 25% of these small clusters are 

associated with the Src-family kinase, Lyn (Wilson, Pfeiffer et al. 2000).  A separate 

study using chemical cross-linking arrived at a similar estimate (3-20%) of the extent of 

Lyn association with non-activated FcεRI (Yamashita, Mao et al. 1994).  Treatment of 

cells with a multivalent antigen (DNP-BSA) produced similar effects as seen with anti-

IgE-mediated activation of FcεRI:  FcεRI redistributed into larger clusters, which were 

associated with coated pits (Figure 1.3B).  These clusters also contained the downstream 

signaling molecule Syk (Wilson, Pfeiffer et al. 2000).   
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Figure 1.3 FcεRI is distributed nonrandomly on resting and activated mast cells. Membrane 
sheets were prepared from RBL-2H3 cells before (A) or after (B) cross-linking the FcεRI with 
DNP-BSA or anti-IgE.  The FcεRI ß subunit was labeled from the inside of the membrane using 
5-nm gold particles conjugated to anti-FcεRI ß mAb. 5-nm gold particles marking FcεRI ß are 
distributed in small dispersed clusters and strings (circled) in the membranes of resting cells (A) 
and as larger clusters in the membranes of IgE-primed cells that were activated for 2 min at 37°C 
with DNP-BSA (B). Bars = 0.1 µm.  Figure adapted from (Wilson, Pfeiffer et al. 2000). 

A detailed analysis of the process of clustering and the extent of association with 

downstream signaling molecules produced a topographical model of FcεRI signal 

initiation.  In this model, antigen binding causes the small, partially Lyn-associated FcεRI 

clusters to coalesce into larger clusters, of which clusters containing less then 20 FcεRI 

associate with Lyn, whereas larger clusters (20-100 FcεRI) exclude Lyn and begin to 

associate with Syk and clathrin-coated pits (Figure 1.4) (Wilson, Pfeiffer et al. 2000).   
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Figure 1.4 Schematic representation of topographical progression of FcεRI signaling.  (A) 
FcεRI is distributed as monomers and small clusters and partially associated with Lyn in the 
absence of multivalent antigen. (B) Upon stimulation, FcεRI coalesce into larger clusters which 
begin to recruit Syk.  (C) As signaling progresses, the clusters continue to grow in size and 
largely exclude Lyn while retaining Syk.  These large clusters are often associated with coated 
pits.  Taken from (Wilson, Pfeiffer et al. 2000). 

The high spatial resolution of EM-based studies has enabled discoveries that 

highlight the important role played by receptor topography in antigen-induced FcεRI 

signaling.  However the inherently low temporal resolution and extensive fixation 

required for EM imaging make this technique unsuitable for probing the dynamic 

behavior of FcεRI as signaling is initiated.   

1.4.3 Role of dynamics in FcεRI signaling 

Fluoresence microscopy of living cells has contributed significantly to the 

understanding of the relationship between FcεRI dynamics and signaling.  A series of 

studies using fluorescence recovery after photobleaching (FRAP) (Schlessinger, Webb et 

al. 1976; McCloskey, Liu et al. 1984; Menon, Holowka et al. 1986; Mao, Varin-Blank et 

al. 1991; Thomas, Feder et al. 1992; Feder, Chang et al. 1994; Feder, Brust-Mascher et al. 
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1996; Born and Wolf 1997; Pyenta, Schwille et al. 2003) and time-resolved 

phosphorescence anisotropy (TPA) (Zidovetzki, Bartholdi et al. 1986; Rahman, Pecht et 

al. 1992; Feder, Chang et al. 1994) established that non-cross-linked, IgE-bound 

receptors are relatively free to diffuse across the cell surface and that antigen binding 

leads to receptor immobilization within two minutes (Menon, Holowka et al. 1986).  

Through the use of IgE-oligomers of varying sizes, FRAP studies have also shown that 

larger oligomers result in larger immobile fractions of FcεRI and that larger immobile 

fractions correlate with a greater extent of degranulation (Menon, Holowka et al. 1986), 

complementing the insights provided by SEM (Seagrave, Pfeiffer et al. 1991).  It has 

been shown that treatment with even small oligomers of IgE produces large aggregates 

that are visible at the resolution of the light microscope (Menon, Holowka et al. 1984).  

The formation of these clusters is therefore not believed to be due solely to crosslinking 

individual FcεRI into large aggregates, but is instead thought to be facilitated by 

interactions with other components of the cell membrane (Menon, Holowka et al. 1986).     

The model that emerges from these studies is that crosslinking of receptors into 

small oligomers sends a signal to the cell that facilitates their reorganization into larger 

signaling domains where kinase recruitment occurs.  While the EM-based studies were 

limited by their low temporal resolution, the fluorescence-based techniques are limited in 

their spatial resolution and therefore do not provide information about the dynamic 

behavior of groupings of FcεRI smaller than 200 nm in size, including individual 

receptors.   

1.5 Single Particle Tracking 
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1.5.1 Single Particle Tracking Overview 

Live cell imaging techniques capable of sub-200 nm resolution are required to 

determine the characteristics of crosslinked FcεRI oligomers that putatively signal the 

cell to initiate reorganization of FcεRI into signaling domains.  Single particle tracking 

(SPT) provides the necessary spatial and temporal resolution to acquire information on 

the diffusion characteristics of single molecules and permits correlation of the activation 

state of FcεRI with their spatial distribution and dynamics.   

In this technique, a target of interest is labeled with a polystyrene bead, colloidal 

gold particle, or fluorophore (organic dye or genetically encoded fluorescent protein).  

This is typically accomplished through conjugation of the label to an antibody against the 

target molecule.  The target molecule is then labeled at a very low density, such that only 

a few are labeled on any given cell (Saxton and Jacobson 1997).  At this low density, 

individually labeled target molecules remain well-separated and can therefore be easily 

distinguished and tracked.  Tracking is achieved by imaging live, labeled cells at rapid 

frame rates (typically >4 frames per second) either by transmitted light (in the case of 

polystyrene beads or colloidal gold particles) or by fluorescence microscopy.  The 

transmitted light techniques have the advantage of producing high signal-to-noise images, 

enabling very rapid imaging rates (up to 40,000 frames per second (Murase, Fujiwara et 

al. 2004)) and can also be used to follow single molecules for long time periods, since 

photobleaching is not a problem.  However, these techniques require relatively large 

probes (40 nm for colloidal gold up to several microns for polystyrene beads) which can 

significantly alter the diffusion of the target molecule due not only to their size, but also 

due to the multivalent nature of their binding (Saxton and Jacobson 1997).  By 
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comparison, organic fluorophores or genetically encoded fluorescent tags are much 

smaller (1-4 nm), however the signal-to-noise ratio is not as favorable as in the 

transmitted light techniques, necessitating slower imaging rates, and photobleaching 

limits the imaging duration (Harms, Cognet et al. 2001; Ueda, Sako et al. 2001). 

In addition to facilitating rapid imaging of live cells, SPT also enables individual 

molecules to be localized with sub-diffraction limited resolution.  The lateral resolution 

of the light microscope is traditionally considered to be ~250 nm (λ/2) (James 1976).  

Due to this fundamental limitation, isolated objects smaller than 250 nm, so called 

“point-source emitters”, will appear as diffraction limited spots.  These diffraction limited 

spots can be fit by a 2D Gaussian function which returns the center of the spot and a 

measure of the accuracy of this determination (Equation 1.1) (Jonas, Yao et al. 2006). 

 

Equation 1.1  Equation describing the localization accuracy of a 2D Gaussian fit to a point 
source emitter.  The standard error of the mean (σµ) is related to the number of collected photons 
(N), the width of the Gaussian distribution (σ0), the effective pixel size (a), and the standard 
deviation of the background (b).  Taken from (Jonas, Yao et al. 2006). 

Using this method under conditions of very high signal-to-noise, particles can be 

localized to within 1 nm (Jonas, Yao et al. 2006); however the long integration times 

required to achieve this level of accuracy are not practical for imaging diffusing proteins 

in live cells.  Therefore, a compromise between localization accuracy and frame rate must 

be reached based upon the goals of any given experiment.  SPT algorithms incorporating 

this method of particle localization have been demonstrated to be superior to other 

methods in the low signal-to-noise (S:N<4) conditions typically encountered when using 
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fluorescent probes and the relatively rapid frame rates required to obtain meaningful 

information about diffusion of the target molecule (Cheezum, Walker et al. 2001). 

 Once the appropriate labeling and imaging conditions are determined, a time 

series of images of the labeled, live cells can be obtained.  This raw image series then 

serves as the input for a SPT algorithm, which performs the 2D Gaussian fit to each 

diffraction limited spot in the image series.  This yields a set of XY coordinates for each 

image in the series, which can then be assembled into trajectories for each labeled 

molecule (Saxton and Jacobson 1997).  An example of a simulated trajectory for a single 

molecule obtained by imaging at 30 frames per second for 30 seconds is shown in Figure 

1.5A.  A trajectory can also be represented as a plot of the mean square of the 

displacement (MSD) versus the time interval (Δt) (Figure 1.5B).  This way of 

representing the data enables it to be fit by different equations which describe the various 

types of motion that have been observed for molecules diffusing in the cell membrane 

(Figure 1.5B) and also facilitates calculation of the diffusion coefficient (D).  A detailed 

explanation is provided in Appendix A. 
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Figure 1.5 Mean square displacement plots. (A) Example of a trajectory for a single molecule 
undergoing free (Brownian) diffusion.  (B) Example of an MSD plot for a single molecule 
undergoing free diffusion (black squares) and its fit (red line) along with fits to simulations 
representing directed diffusion (green line) or restricted diffusion (blue line).  The equations used 
to fit the data for the three types of motion are shown at right. The offset term is related to the 
localization accuracy (Martin, Forstner et al. 2002), D is the diffusion coefficient, Δt is the time 
interval, v is the velocity of the transport process, t is time, L describes the area of the region in 
which the restricted diffusion occurs, and τ is the correlation time.  The equations for directed and 
free diffusion were adapted from (Kusumi, Sako et al. 1993), and the equation for restricted 
diffusion from (Destainville and Salome 2006). 

1.5.2 Single Particle Tracking of FcεRI 

While FcεRI signaling has been examined previously by SPT, these studies were 

rather narrow in scope and suffered from some important limitations related to the probes 

used.  Previous SPT studies of FcεRI diffusion employed low density lipoprotein (LDL) 

particles labeled with the fluorescent lipid 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindo-

carbocyanine (diI) (Feder, Brust-Mascher et al. 1996) or colloidal gold probes (Barisas, 

Smith et al. 2007).  While providing important information on the behavior of individual 

FcεRI, these measurements suffered from long integration times (1.6 s per image in the 

case of the diI-LDL studies), large (>40 nm) particle size, and labeling or tracking at 

nonphysiological temperatures (i.e. 4°C and room temperature).  The use of cold (4°C) 

labeling conditions in studies of FcεRI dynamics is of particular concern since long 
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duration cold labeling has since been shown to yield significant decreases in measured 

diffusion of other transmembrane proteins (Suzuki, Ritchie et al. 2005).   

1.5.3 Quantum Dots for SPT 

Recently, quantum dots (QDs) have been demonstrated to be useful probes for 

SPT due to their relatively small size (5-20 nm) compared to colloidal gold (30-50 nm), 

as well as their large extinction coefficients and robust photostability compared to 

organic fluorophores (Dahan, Levi et al. 2003; Lidke, Lidke et al. 2005).  These 

properties allow single molecules to be imaged over long time periods and at rapid 

acquisition rates with a minimum of interference from the probe itself (Dahan, Levi et al. 

2003).  Additionally, the broad absorption and narrow emission spectra of QDs facilitates 

the simultaneous tracking of multiple proteins of interest through multi-color labeling 

(Dahan, Levi et al. 2003; Lidke, Nagy et al. 2004; Lidke, Lidke et al. 2005).    

In addition to simultaneously tracking multiple targets, multi-color labeling can 

also be used to increase the labeling density of a single target while still maintaining 

single particle resolution (Esa, Edelmann et al. 2000).  The ability of SPT to localize 

individual particles with sub-wavelength resolution is dependent upon low density 

labeling, such that particles remain separated by at least 200 nm (Saxton and Jacobson 

1997).  Tracking in multiple colors enables the labeling density for any one color to 

remain low, while the overall concentration of label can be increased in direct proportion 

to the number of colors used.  In this case, the labeling density is limited by the number 

of emission species that can be reliably distinguished by the imaging system.  In the 

context of FcεRI signal initiation, multi-color SPT provides a method for examining the 
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dynamic behavior of the small FcεRI clusters previously visible only in the static images 

of EM. 

1.6 Hypothesis:  Changes in FcεRI diffusion and topography serve to initiate FcεRI 

signaling. 

 A large number of studies over the past 30 years have examined the lateral 

mobility of the high affinity IgE receptor (Schlessinger, Webb et al. 1976; McCloskey, 

Liu et al. 1984; Menon, Holowka et al. 1986; Zidovetzki, Bartholdi et al. 1986; Mao, 

Varin-Blank et al. 1991; Rahman, Pecht et al. 1992; Thomas, Feder et al. 1992; Feder, 

Chang et al. 1994; Feder, Brust-Mascher et al. 1996; Born and Wolf 1997; Pyenta, 

Schwille et al. 2003).  However, few of these studies went beyond determining the 

diffusion coefficient and all of them were conducted at non-physiological temperatures.  

A subset of these studies measured FcεRI mobility before and at least two minutes after 

exposure to a single, relatively high dose of multivalent antigen and all reported a 

dramatic decrease in FcεRI mobility (Menon, Holowka et al. 1986; Zidovetzki, Bartholdi 

et al. 1986; Mao, Varin-Blank et al. 1991; Pecht, Ortega et al. 1991; Rahman, Pecht et al. 

1992; Pyenta, Schwille et al. 2003).  A further subset found a correlation between an 

activating agent’s ability to immobilize FcεRI and the extent of degranulation it induced 

(Menon, Holowka et al. 1986; Pecht, Ortega et al. 1991).    The only study to employ a 

low, yet still activating dose of cross-linking agent reported that FcεRI remained mobile 

after cross-linking (Schlessinger, Webb et al. 1976).   Despite this one seemingly aberrant 

result, the overall picture of FcεRI signal initiation that emerged from these studies was 

that immobilization of FcεRI strongly correlated with cell activation. 
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 Given this concept, we hypothesized that changes in FcεRI diffusion and 

topography serve to initiate FcεRI signaling.  More specifically, we proposed that 

immobilization of FcεRI was the inciting event which triggered a cellular response and 

induced downstream signaling and large-scale reorganization of FcεRI into large 

aggregates on the cell surface.  To address this hypothesis, we developed and 

implemented novel live-cell imaging techniques and QD based probes to rigorously 

assess the diffusion and topography of FcεRI in the context of signal initiation.  Through 

the following series of experiments, we describe a new role for the actin cytoskeleton in 

influencing diffusion of transmembrane proteins on micron length scales, quantify the 

kinetics and dose dependence of antigen-induced immobilization and clustering of FcεRI, 

and elucidate the role of receptor dynamics in FcεRI signaling.  In the end, we 

determined that our results contradicted the original hypothesis, prompting us to propose 

a new paradigm for the role of receptor dynamics in FcεRI signaling. 
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CHAPTER 2:  ACTIN RESTRICTS FCεRI DIFFUSION AND 

FACILITATES ANTIGEN-INDUCED RECEPTOR 
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2.1 ABSTRACT 

The actin cytoskeleton has been implicated in restricting diffusion of plasma 

membrane components.  Here, simultaneous observations of quantum dot-labelled FcεRI 

motion and GFP-tagged actin dynamics provide direct evidence that actin filament 

bundles define micron-sized domains that confine mobile receptors.  Dynamic 

reorganization of actin structures occurs over seconds, making the location and 

dimensions of actin-defined domains time dependent. Multiple FcεRI often maintain 

extended close proximity without detectable correlated motion, suggesting that they are 

co-confined within membrane domains. FcεRI signaling is activated by cross-linking 

with multivalent antigen. We show that receptors become immobilized within seconds of 

cross-linking.  Disruption of the actin cytoskeleton results in delayed immobilization 

kinetics and increased diffusion of cross-linked clusters. These results implicate actin in 

membrane partitioning that not only restricts diffusion of membrane proteins, but also 

dynamically influences their long-range mobility, sequestration, and response to ligand 

binding. 
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2.2 INTRODUCTION 

Signal transduction from the external environment to the cell interior is typically 

mediated by ligand-bound transmembrane receptors embedded in a lipid bilayer.  In 

many systems, receptor activation is associated with changes in receptor dynamics and 

membrane topography (Dustin and Cooper 2000; Lidke, Lidke et al. 2005; Zhang, 

Leiderman et al. 2006).  Among these are the multichain immune recognition receptor 

family members that include the B-cell receptor (BCR) of B-cells, the T-cell receptor 

(TCR) of T-cells, and the high affinity IgE receptor (FcεRI) of mast cells and basophils, 

which are crucial to the execution of key events in the immune response.  Cross-linking 

of these transmembrane receptors induces receptor oligomerization, protein and lipid 

kinase activation and Ca2+ mobilization, leading in turn to cytoskeletal reorganization, 

receptor trafficking and cell-specific responses including altered gene expression 

(Boniface, Rabinowitz et al. 1998; Thyagarajan, Arunkumar et al. 2003; Kraft and Kinet 

2007).  These signaling events have been well studied by biochemical techniques, but the 

precise mechanism by which oligomerization initiates these events has remained elusive.  

Full understanding of these complex signaling cascades will require a more complete 

description of receptor movements in the membrane, including restrictions that might 

limit receptor diffusion and accessibility.   

A rich literature on single particle tracking (SPT) methods to follow the lateral 

diffusion of transmembrane and membrane-associated proteins (Saxton and Jacobson 

1997; Murase, Fujiwara et al. 2004; Kusumi, Ike et al. 2005; Ritchie, Shan et al. 2005) 

has revealed nanometer-scale “confinement zones” that restrict lateral diffusion and 

supports the general notion that plasma membrane organization is more structured than 
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originally postulated by the fluid mosaic model (Singer and Nicolson 1972).  A 

membrane-skeleton fence (picket fence) model has been proposed to explain confined 

diffusion (Jacobson, Sheets et al. 1995; Kusumi, Nakada et al. 2005) at the scale of 

nanometers and microseconds.  In this model, a relatively static meshwork of actin-

defined domains transiently retain diffusing membrane proteins and lipids, leading to 

apparent long time-scale diffusion rates that are much slower than those measured in 

artificial lipid bilayers.  A recent comparison of high resolution electron microscopy 

(EM) images of cytoskeletal “ghosts” with high-speed SPT data demonstrates that 

nanometer-sized transient confinement zones measured by SPT correlate well to regions 

delimited by membrane-associated cortical cytoskeleton visualized by EM (Morone, 

Fujiwara et al. 2006).  However, technical limitations preclude simultaneous SPT and 

direct observation of nanometer-scale actin structures in living cells, leaving the precise 

mechanism of restricted diffusion at the nanometer scale open to debate.  Specifically, 

other structural features in membranes, such as lipid rafts or protein islands (Draber and 

Draberova 2002; Douglass and Vale 2005; Frankel, Pfeiffer et al. 2006; Lillemeier, 

Pfeiffer et al. 2006), have also been suggested to affect lateral diffusion.  

Here, we directly characterize transmembrane receptor diffusion with respect to 

actin by simultaneous fluorescence imaging of micron-scale features of the cortical actin 

cytoskeleton and FcεRI.  Quantum dot (QD)-labelled IgE was used to tag FcεRI.  IgE 

binds tightly to the α subunit of FcεRI, essentially becoming another subunit of the 

receptor (Kulczycki and Metzger 1974; Garman, Wurzburg et al. 2000).  Exploiting this 

tight binding enables labeling of the resting receptor with minimal disruption to normal 

cell physiology, providing a highly specific and relevant probe of receptor dynamics and 
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membrane topography.  Micron scale features of the actin-based cytoskeleton have been 

described in detail using EM of detergent-extracted platelets (Hartwig and DeSisto 1991).  

We sought to visualize large membrane-proximal actin bundles in RBL-2H3 cells using 

GFP-tagged actin with confocal and total internal reflection fluorescence (TIRF) 

microscopy.  We provide direct evidence that actin cables near the membrane define 

regions that limit receptor diffusion. These structures do not provide a static meshwork of 

enclosed domains, but instead form a dynamic labyrinth defined by micron-scale actin 

barriers that reorganize over time scales of 1-10 seconds.  In contrast to the putative 

transient confinement zones of the picket fence model, here we describe a phenomenon 

that occurs in time scales of seconds and over distances of microns.  In addition to 

restriction of membrane protein diffusion, we provide evidence that actin-based 

membrane partitioning dynamically influences long-range mobility, sequestration and 

response to ligand binding.  

 

2.3 RESULTS 

2.3.1 QD-IgE is functionally monovalent 

A monovalent QD-IgE probe was developed in order to study properties of the 

resting IgE receptor, FcεRI.  The reaction conditions were carefully controlled to produce 

functionally monovalent complexes of QD with IgEanti-DNP (QD-IgE; see Materials and 

Methods).  Several approaches were taken to evaluate valency (see Materials and 

Methods, Appendix A, Fig. S2.1).  For functional evaluation, we determined that QD-IgE 

did not induce substantial activation of RBL-2H3 cells assessed by confocal microscopy 
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as a lack of ruffle formation and QD-IgE internalization (Fig. 2.1a; top panels) and by 

degranulation assay as a lack of β-hexosaminidase release (Fig. 2.1b).  In addition, QD-

IgE primed cells were capable of responding to stimulation with the multivalent antigen 

DNP-BSA.  This was demonstrated visually as cell ruffling and QD-IgE internalization 

(Fig. 2.1a, bottom panels and Appendix A, Video 2. 1) and biochemically as significant 

β-hexosaminidase release (Fig. 2.1c).  The somewhat blunted secretory response of QD-

IgE primed cells (Fig. 2.1c) is likely due to steric limitations that the QD label imposes 

on the IgE-FcεRI aggregates (Ortega, Schweitzer-Stenner et al. 1988).    

Since QDs can serve as probes in both EM and fluorescence imaging (Giepmans, 

Deerinck et al. 2005), we analysed the topography of QD-IgE-tagged receptors on native 

membrane sheets by TEM.  A visual inspection of QD distribution on the sheets shows 

many singlets as well as small clusters of 20-40 nm in size (Fig. 2.1d), verified as 

statistically nonrandom by the Hopkins test (Fig. 2.1d; inset).  These results are consistent 

with previous studies using immunogold (Wilson, Pfeiffer et al. 2000; Zhang, Leiderman 

et al. 2006) and confirm that previously observed clustering of resting receptors cannot be 

trivially explained as an artifact of the multivalent gold probes used to label fixed cell 

membranes (described in (Kusumi, Ike et al. 2005)).  Brief treatment of QD-IgE labelled 

cells with polyvalent antigen results in the formation of large clusters of receptors (Fig. 

2.1e), as well as the appearance of QD-labelled receptors in clathrin coated pits (Fig. 

2.1e, upper inset).  These studies demonstrate that QD-IgE behaves comparably to 

unlabelled IgE and therefore serves as a reliable probe of IgE-FcεRI dynamics.   
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Figure 2.1 QD-IgE serves as a non-perturbing probe of FcεRI diffusion.  (a) RBL-2H3 cells 
stably expressing FcεRI-gamma-mCFP were labelled with 1 nM QD655-IgE and then imaged 
(top panels) or cross-linked with 14 nM DNP-BSA for 10 min prior to imaging (bottom panels).  
(b,c) Degranulation assay plots showing the percentage of total β-hexosaminidase content 
secreted in response to 30 min incubation at 37°C with various IgE (b) or after priming with QD-
IgE or IgE in response to various amounts of DNP-BSA (c).  (d,e) Individual QD655-IgE-FcεRI 
are indicated by white circles in electron micrographs from membrane sheets prepared from 
RBL-2H3 cells labelled with QD655-IgE (d) and stimulated for 10 min with 14 nM DNP-BSA 
(e) before fixation.  A right shift in the experimental data (grey bars) away from a random 
distribution (solid line) in the Hopkins plot indicates a slightly clustered distribution of QD655-
IgE-FcεRI in the resting state (d, inset) and a highly clustered distribution after cross-linking (e, 
inset)(Zhang, Leiderman et al. 2006).  The scale bars represent 10 µm in a and 100 nm in d and e. 
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2.3.2 QD-IgE-FcεRI demonstrates characteristic membrane protein diffusion  

Estimations of membrane protein diffusion are variable, depending on differences 

in acquisition rates, temperature and the method of measurement.  For example, imaging 

at ambient temperatures is simpler, but the diffusion rate is slower than at physiological 

temperatures.  The frequent use of cold (4°C) labeling conditions in studies of FcεRI 

dynamics (Feder, Brust-Mascher et al. 1996; Barisas, Smith et al. 2007) is of particular 

concern because long duration cold exposure has been shown to decrease measured 

diffusion of other transmembrane proteins (Suzuki, Ritchie et al. 2005).  We compared 

the diffusion of QD-IgE-FcεRI at room temperature (22°C) and at 35°C and observed a 

faster diffusion coefficient (D) and larger restricted region of diffusion (L) at the higher 

temperature (Appendix A, Fig. S2.2).  To avoid these potentially confounding effects, we 

labelled cells and acquired data at physiological temperatures (34-37°C).  The median 

diffusion coefficient (D1-3), measured at video rate (33 frames/s), was 0.074 µm2/s (Table 

2.1).  This value is consistent with previous measurements performed at lower 

temperatures (D = 0.02-0.05 µm2/s (Schlessinger, Webb et al. 1976; Thomas, Feder et al. 

1992; Feder, Brust-Mascher et al. 1996; Pyenta, Schwille et al. 2003; Barisas, Smith et al. 

2007)).   

As documented in previous studies of other membrane proteins (Kusumi, Sako et 

al. 1993; Daumas, Destainville et al. 2003; Murase, Fujiwara et al. 2004; Suzuki, Ritchie 

et al. 2005; Jacquier, Prummer et al. 2006; Barisas, Smith et al. 2007), we observed four 

distinct modes of FcεRI diffusion in unstimulated cells:  free, directed, restricted, and 

immobile (Appendix A, Fig. S2.3).  Our observation of restricted and immobile receptors 
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is consistent with the general notion that the plasma membrane contains structures that 

limit lateral diffusion, which are not present in artificial bilayers. 

Table 2.1. Median diffusion coefficients and actin overlap 

 

Imaging 
Condition 

Cell Treatment N D1-3 
(µm2/s)a 

IQRc Relative Actin 
Overlapd 

Apical resting 236 0.074 0.065  

Apical Latrunculin B 138 0.10  0.087  

Apical DNP-BSA 647 0.010 0.038  

Apical Latrunculin B + DNP-
BSA 

403 0.020  0.044  

TIRF resting 303 0.077b 0.074 1.43 

TIRF Latrunculin B 265 0.059b 0.067 1.30 

TIRF PMA 102 0.075b 0.078 1.32 

 

a D1-3 values were calculated as described in 2. 5 Materials and Methods.  Values are reported as median. 

b Median D1-3 values from TIRF experiments were calculated after excluding “immobile” trajectories, 
defined as D1-3 ≤0.0009 mm2/s. 

c Interquartile Range (IQR), see Materials and Methods. 

d Ratio of actin crossings between simulated and real trajectories.  A value > 1 indicates that simulated, 
freely-diffusing particles cross actin more frequently than real trajectories.  The differences in behavior 
between real and simulated data are statistically significant (see text and Appendix A for details). 

2.3.3 Receptors are co-confined in micron-scale membrane domains 

Despite labeling conditions that resulted in only a few QD-IgE labeled receptors 

per cell, we often observed prolonged overlap between the emissions of two or three 

tracked receptors (Appendix A, Video 2. 2).  These observations raised the possibility 

that weak attractive interactions may exist between non-cross-linked receptors.  However, 
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when two QDs with the same emission spectra overlap, they cannot be easily 

distinguished until they separate.  Thus, the analysis of close interactions between 

receptors is limited in protocols using only one color of fluorophore.    

We overcame this limitation by labeling cells with a mixture of QD585-IgE and 

QD655-IgE and simultaneously tracking both QDs.  This allowed us to independently 

localize each molecule even when their emissions overlapped.  In the example shown in 

Figure 2a-c, two QD-labelled receptors repeatedly approach each other to within our 

localization limits (see Materials and Methods) while never moving farther than 500 nm 

apart before coming back together (Fig. 2.2c).  Despite their close proximity, the 

trajectories of the two molecules do not appear to be correlated (Fig. 2.2b).  In the second 

example (Fig. 2.2d-f), a maximum separation of 2 µm occurs before the two molecules 

come back together (Fig. 2.2f).  The observation that QD-IgE-FcεRI complexes can move 

microns apart before seeming to reverse direction to rejoin each other cannot be 

explained by attractive forces between the observed receptors.   

To determine if protein-protein interactions (i.e., transient dimerization) could 

explain the prolonged colocalization of QD-IgE-FcεRI complexes, we developed 

mathematical analyses to quantify coordinated movement between receptors at separation 

distances less than 500 nm (see Supplementary Methods).  In order to capture these 

potentially highly dynamic events, we used TIRF microscopy with a faster acquisition 

rate of 100 frames/s.  The analysis involves measuring the magnitude of a receptor’s 

displacement vector (jump magnitude) and the extent of correlated motion between 

nearby receptors (uncorrelated jump distance).  If two receptors form a transient dimer, 

their diffusion is expected to be slowed (Kusumi, Nakada et al. 2005), producing a  
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Figure 2.2 FcεRI are co-confined.  (a) Sample images from a time series showing two QD-
IgE-FcεRI complexes co-confined within a ~500 nm domain.  (b) XY versus time plot of 
trajectories of QD655-IgE-FcεRI (magenta) and QD585-IgE-FcεRI (green) from time 
series shown in a.  (c) Plot of interparticle distance versus time for particles shown in a.  
(d) Sample images from a time series showing two QD-IgE-FcεRI complexes co-
confined within a ~2 μm domain.  (e) XY versus time plot of trajectories of QD655-IgE-
FcεRI (magenta) and QD585-IgE-FcεRI (green) from time series shown in d.  (f) Plot of 
interparticle distance versus time for particles shown in d.  Images in a and d have been 
Gaussian filtered.  Images were acquired on the apical surface at 33 frames/s.  The scale 
bars represent 1 μm in a and d.  

decrease in their jump magnitude.  Additionally, if two receptors are forming a transient 

dimer, they would move together during the lifetime of this dimer; i.e., the motion of the 

two interacting receptors would be correlated, producing a decrease in the uncorrelated 
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jump distance.  By plotting the jump magnitude and the uncorrelated jump distance as a 

function of distance between receptor pairs, we can detect the presence of transient 

dimers, provided their lifetime is longer than the acquisition time for each image (10 ms). 

To model the observed behavior of prolonged colocalization, we performed 

simulations of diffusing particles which formed transient dimers for 200 ms when two 

particles approached within 25 nm (see Appendix A, Fig. S2.4).  This produced a 

dramatic decrease in the uncorrelated jump distance as receptors came close enough to 

interact (Appendix A, Fig. S2.4).  In contrast to the simulations, analysis of real 

trajectories produced only gradual decreases in the jump magnitude (Fig. 2.3, open 

circles) and the uncorrelated jump distance (Fig. 2.3, x-marks).  The weak dependence of 

these values on separation distance is consistent with measuring a slower diffusion 

constant when particles are confined in a small region (as described in (Ritchie, Shan et 

al. 2005)).  Together, these analyses do not support transient dimer formation as a 

mechanism for the prolonged colocalization we observed and instead suggest co-

confinement by membrane structure as the most likely explanation. 
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Figure 2.3 Motion of QD-IgE-FcεRI is consistent with co-confinement; not attraction.  Mean 
distance of uncorrelated jump distance (x-marks) and jump magnitude (open circles) plotted as a 
function of distance between QD-IgE-FcεRI complexes.  Data are presented as mean ± s.e.m. of 
1,128 instances of QD-IgE-FcεRI complexes approaching within 0.5 µm. 

2.3.4 Dynamic actin structures restrict FcεRI diffusion 

To determine the role of the actin cytoskeletal network in the lateral diffusion and 

observed co-confinement of QD-IgE-FcεRI complexes, RBL-2H3 cells were stably 

transfected with GFP-actin.  Two-color time series of QD-IgE-FcεRI motion with respect 

to the actin cytoskeleton were acquired.  Due to its superior signal-to-noise ratio, TIRF 

microscopy was primarily used to track QD-IgE-FcεRI and GFP-actin movements on the 

adherent cell surface at 33 frames/s.   

 In initial experiments, cells were treated with the protein kinase C agonist, 

phorbol myristate acetate (PMA), to induce actin filament bundles resembling stress 

fibers (Pfeiffer and Oliver 1994).  QD-IgE-FcεRI diffusion was largely limited to actin-

poor regions of the membrane, often remaining confined within a single actin-defined 
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compartment for several seconds of tracking (Fig. 2.4a,b and Appendix A, Video 2.3).  

The size of these compartments (L) can be estimated based upon the plateau value on the 

Y axis of the mean square displacement (MSD) plot.  Figure 2.4a illustrates a typical 

MSD plot, generated from the receptor trajectory trace shown in Figure 2.4a (inset), and 

fit by MSD = offset + (L2/3)(1-exp(-Δt / τ)) (Destainville and Salome 2006), where 

D=L2/12τ.  From the fit we find that L = 1.1 µm, which correlates very well with the 

actual, observed actin-defined region in Figure 2.4a.   

Imaging of untreated RBL-GFP-actin cells revealed continuous re-organization of 

the actin network, resulting in a nearly complete change in the pattern of GFP-actin 

fluorescence on a 10 s time scale (Appendix A, Video 2.4).  Nevertheless, diffusion of 

QD-IgE-FcεRI still remained largely limited to actin-poor regions (Fig. 2.4c).  

Mathematical analysis of receptor/actin crossing frequency was performed to verify that 

receptors are avoiding actin structures.  Comparing the real data trajectories with 

simulated, freely diffusing particles found a significant difference in actin/trajectory 

overlap, confirming that the real trajectories cannot be modelled by free diffusion 

unaffected by actin structures (Table 2.1 and Appendix A).  
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Figure 2.4 Actin defines regions of FcεRI motion in the membrane.  (a) MSD plot of the 
trajectory shown in inset, demonstrating diffusion restricted to an area consistent with that 
delineated by the actin structures. (a, inset) QD-IgE-FcεRI trajectory (magenta) overlayed with 
the deconvolved GFP-actin image (green) from the adherent surface of a PMA-treated RBL-2H3 
cell. (b,c) Image series of deconvolved GFP-actin (green) and 1.5 s long segments of a single 
QD655-IgE-FcεRI trajectory (magenta) on the adherent surface of a PMA treated (b) or untreated 
(c) RBL-2H3 cell.  (d) Full 100 s QD-IgE-FcεRI trajectory (magenta) with position at 25 s 
intervals highlighted (white) overlayed with the deconvolved GFP-actin image (green) on the 
apical membrane of an RBL-2H3 cell.  Panels a-c were acquired with TIRF microscopy at 33 
frames/s.  Panel d is from a 1 frame/s confocal time series with 1 µm slice thickness.   The scale 
bars represent 1 µm in a-c and 5 µm in d. 

 The data in Figure 2.4a-c above were acquired from the relatively flat, adherent 

cell surface in TIRF mode, which images structures within ~200 nm of the coverslip.  We 

performed multiple control experiments to ensure that interactions between the plasma 

membrane and the coverslip were not responsible for the observed behavior of QD-IgE-

FcεRI complexes (Appendix A, Fig. S2.5).  The observation of similar behavior on the 
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apical cell surface provides perhaps the most compelling support of the TIRF data for 

evidence of actin-restricted FcεRI diffusion.  Confocal microscopy was used to eliminate 

the cytoplasmic GFP-actin signal and image the actin structure in a 1 µm slice at the 

apical cell surface.  In confocal mode, the frame rate had to be reduced to 1 frame/s in 

order to image single QDs.  Despite the slower frame rate, we were able to follow the 

trajectories of QD-labelled receptors over a period of 100 s while simultaneously imaging 

GFP-actin.  Figure 2.4d shows that receptors on the apical surface were restricted from 

crossing actin-rich regions.  As seen at the adherent cell surface, dynamic actin 

reorganization accompanies receptor movement into previously restricted areas (Fig. 2.4d 

and Appendix A, Video 2. 5).   

 To determine if FcεRI alters its diffusion properties when encountering actin 

structures or is simply deflected by the physical barrier, we calculated the mean square 

single jump length of FcεRI as a function of distance from actin (Fig. 2.5).  Although the 

data analysis in Figure 5 suggests a slight reduction in mean jump distance as the receptor 

approaches the actin (solid line), simulations (dashed line) show that this can be 

explained by a combination of geometric effects and finite detector integration time 

(Ritchie, Shan et al. 2005).  Thus, there is no indication of a real change in diffusion as 

close as 100 nm from underlying actin structures.  These results favor the interpretation 

that membrane-associated actin structures or proteins bound to actin act on FcεRI as a 

physical barrier that deflects the receptor. 
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Figure 2.5 Effect of actin proximity on FcεRI trajectories.  All QD-IgE trajectories found by 
TIRF-SPT at 33 frames/s in PMA-treated cells were used to calculate single time step mean 
square jump distances as a function of distance from an actin structure (solid line).  For 
comparison, simulations of particles diffusing near a reflecting boundary with constant membrane 
viscosity and finite localization accuracy, modelled after the real data, were used to calculate 
mean square jump distances as function of distance from the reflecting boundary (dashed line).   

 

To further discern the influence of the actin cytoskeleton on FcεRI diffusion, we 

treated cells with 500 nM latrunculin B for 10 minutes prior to imaging.  This dose of 

latrunculin disrupts cytoskeletal architecture (see Appendix A, Fig. S2.6) without causing 

significant damage to cells (Frigeri and Apgar 1999).  Latrunculin produced a small but 

significant (p=1.9x10-5 by K-S test) increase in FcεRI diffusion on the apical membrane 

(Fig. 2.6a, Table 2.1), consistent with previous observations of less confined motion 

(Kusumi, Ike et al. 2005).  Unexpectedly, latrunculin treatment decreased diffusion at the 

adherent surface (Table 2.1).  While the mechanism is unclear, we note that non-actin 

components of the cortical cytoskeleton (possibly spectrin) are still visible in EM as a 

fine meshwork on the adherent surface of treated cells (see Appendix A, Fig. S2.7).  
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Figure 2.6 Actin facilitates cross-link-induced immobilization of FcεRI.  (a) Cumulative 
probability distribution plot of diffusion coefficients for QD-IgE in the absence (solid lines) and 
presence (dashed lines) of latrunculin B and before (thin lines) and after (thick lines) cross-
linking with DNP-BSA.  (b) XY versus time plot of a single QD-IgE-FcεRI.  Arrow indicates 
time of DNP-BSA addition.  (c) Kinetics of cross-link-induced immobilization in the presence 
(light gray, n=12) and absence (dark gray, n=17) of latrunculin B.  Black lines are fits to the 
exponential decay model: D(t) = Doe(-t/τ), where D is the instantaneous diffusion coefficient and τ 
is the decay constant.    
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2.3.5 Cytoskeletal disruption slows immobilization kinetics 

Activation of RBL-2H3 cells is well-known to induce substantial cytoskeletal 

remodeling and an increase in F-actin content (Frigeri and Apgar 1999).  There is also a 

dramatic decrease in FcεRI mobility within minutes of cross-linking (Menon, Holowka et 

al. 1986).  To determine the kinetics of receptor immobilization, we devised an assay to 

measure the mobility of QD-IgE-FcεRI complexes during cross-linking with 30 ms time 

resolution.   

Upon addition of 14 nM DNP-BSA, FcεRI diffusion is rapidly decreased.  The 

mobility transition is evident in trajectories of individual receptors, as seen in Figure 6b. 

Averaging the behavior of many receptors over time yields the mean instantaneous 

diffusion coefficient plot (Fig. 2.6c).  Note that diffusion reaches a baseline within 

seconds after cross-linking.  An exponential decay model was used to fit the data after 

cross-linker addition, returning a characteristic decay time (τ) of 11.0 ± 0.19 s for 

untreated cells.  In the presence of latrunculin, which disrupts both nanometer and 

micron-scale actin structures, τ increased to 30.0 ± 1.3 s (error indicates 95% confidence 

interval), suggesting a role for actin structure in the process of antigen-mediated receptor 

immobilization.  From these data, we were also able to calculate median diffusion 

constants both prior to and immediately after cross-linking.  Latrunculin treatment 

significantly (p=1.8x10-13 by K-S test) increases the final diffusion rate after cross-linker 

addition (Fig. 2.6a and Table 2.1), confirming that the actin cytoskeleton plays an 

important role in cross-link-induced immobilization of FcεRI. 
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2.4 DISCUSSION 

Our results provide evidence for micron-scale restriction of membrane protein 

diffusion by dynamic actin structures and are particularly relevant to studies where 

membrane molecules are tracked on relatively long time scales (seconds).  We frequently 

observed two or more QD-IgE-FcεRI complexes remaining in close proximity for several 

seconds (Fig. 2.2 and Appendix A, Video 2. 2).  However, close inspection of this 

behavior revealed an absence of detectable correlated motion between individual 

receptors (Fig. 2.3).  We suggest that this behavior represents co-confinement of multiple 

receptors within the same membrane domain and support the idea that the micron-scale 

domains of co-confinement are defined by barriers of filamentous actin.  These shifting 

actin barriers sub-divide the membrane, producing transiently co-confined sub-

populations of membrane proteins.  Actin could restrict diffusion through various 

mechanisms, including acting as a physical barrier (actin itself or associated proteins), 

directly binding FcεRI, or interacting with lipids and increasing membrane viscosity.  

Our analysis of FcεRI diffusion with respect to actin bundles (Fig. 2.5) favors the 

physical barrier explanation.  

In addition to the micron-scale actin-mediated restriction we have observed, we 

recognize that there is a finer level of membrane organization at work that we cannot 

directly visualize.  This level of organization has been described as a meshwork 

composed not only of actin, but also a wide variety of cell-type specific intermediate 

filament proteins (eg., spectrin (Dahl, Geib et al. 1994; Tang and Edidin 2003)).  This 

nano-scale organization likely underlies the small “confinement zones” apparent in 

higher frame rate SPT measurements (Saxton and Jacobson 1997; Murase, Fujiwara et al. 



   

 42

2004; Kusumi, Ike et al. 2005; Ritchie, Shan et al. 2005) and may play a role in forming 

the smaller clusters (~50 nm) of resting FcεRI observed in electron micrographs (Fig. 

2.1d).  We speculate that the finer cytoskeletal meshwork may be involved in producing a 

heterogeneous distribution of membrane components on a nanometer scale.  The 

literature offers several representations of this heterogeneity, which exists within the 

boundaries of large-scale actin-defined regions described in this work, including the 

protein islands model (Douglass and Vale 2005; Lillemeier, Pfeiffer et al. 2006), the lipid 

raft model (Pike 2006; Viola and Gupta 2007) and the membrane skeleton model 

(Jacobson, Sheets et al. 1995; Kusumi, Nakada et al. 2005) (see Appendix A, Fig. S2.8).  

The published models, while differing in their descriptions of the roles played by 

specific proteins in the cytoskeletal meshwork, are universally dependent upon an intact 

cortical cytoskeleton (Kusumi, Nakada et al. 2005; Lillemeier, Pfeiffer et al. 2006; Viola 

and Gupta 2007).  Each of these putative membrane features are reported to be highly 

dynamic.  In the membrane skeleton model, tracked membrane components reside in 

individual domains on millisecond time scales (Kusumi, Nakada et al. 2005).  Lipid rafts 

are also reported to be very dynamic (Pike 2006; Viola and Gupta 2007).  In our data, the 

lack of correlated motion at small separation distances (Fig. 2.3) implies that receptors 

only briefly remain in the same nanometer-scale domain.  These data suggest that the 

small clusters of resting FcεRI observed by EM (Fig. 2.1d) are highly dynamic, with 

exchange between neighbouring small domains occurring on time scales much more 

rapid than the diffusion of the domains themselves. 

The immobilization of IgE-FcεRI complexes in response to treatment with cross-

linking agent has been previously studied by fluorescence recovery after photobleaching 
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(FRAP) (Schlessinger, Webb et al. 1976; Menon, Holowka et al. 1986; Mao, Varin-Blank 

et al. 1991; Pyenta, Schwille et al. 2003) and by SPT (Barisas, Smith et al. 2007).  

Unique features of our study include labeling and tracking at physiological temperatures 

and acquisition of real-time kinetics.  A previous attempt to measure the time course of 

cross-linking-induced immobilization by FRAP was limited to events occurring at least 

90 s after addition of cross-linking agent, at which time immobilization had already 

reached a maximum (Menon, Holowka et al. 1986).  We employed our real-time assay to 

evaluate the kinetics of cross-linking from the precise moment of cross-linker addition.  

Our results demonstrate that diffusion of QD-IgE-FcεRI decreases within seconds of 

adding cross-linking agent (Fig. 2.6b) and that the rate of immobilization is slowed by 

actin disruption with latrunculin (Fig. 2.6a, Table 2.1).  Combining our kinetic data with 

the SPT and EM results reveals that small, dynamic clusters of FcεRI transition to large, 

stable clusters by an actin-dependent mechanism within seconds of cross-linking.  

Disruption of actin by latrunculin also increased the apical diffusion coefficient of both 

resting and cross-linked receptors by two fold (Fig. 2.6a, Table 2.1).  Interestingly, 

treatment with latrunculin is reported to prolong FcεRIγ phosphorylation and to increase 

degranulation (Frigeri and Apgar 1999), suggesting that the more mobile clusters may 

have an increased signaling lifetime.  Our observation that cross-linked receptors are not 

as immobile in the presence of latrunculin suggests that immobilization is an important 

regulatory mechanism of FcεRI signaling.  

Our direct and simultaneous observations of FcεRI motion and actin dynamics 

demonstrate that IgE receptors diffuse within micron-sized membrane domains defined 

by actin bundles and that confinement is dynamic over length scales of microns and time 
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scales of seconds.   Restricted motion has been observed for a wide variety of membrane 

proteins, including the erbB family (Kusumi, Sako et al. 1993), glycine receptors (Dahan, 

Levi et al. 2003), and G-protein coupled receptors (Suzuki, Ritchie et al. 2005).  The 

ubiquitous nature of restricted diffusion, coupled with the observations here, suggest that 

actin-mediated restriction of membrane protein diffusion plays an important regulatory 

role in a wide variety of signaling pathways.   
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2.5 MATERIALS AND METHODS 

2.5.1 Reagents   

Mouse monoclonal anti-DNP IgE was prepared as described(Liu, Bohn et al. 

1980).  Monovalent biotin-IgE was prepared through modification of the FluoReporter® 

Mini-Biotin-XX Protein Labeling Kit protocol (Invitrogen, Carlsbad, CA):  a biotin-

succinimidyl ester to IgE ratio of 4:1 and a 15 min reaction time was used to generate 

biotin-IgE with an average biotin:IgE ratio of 0.83:1 as determined with the 

FluoReporter® Biotin Quantitation Assay Kit (Invitrogen, Carlsbad, CA).  Biotin-IgE 

was combined in 1:1 stoichiometry with Qdot® 655 or Qdot® 585 streptavidin conjugate 

(Invitrogen, Carlsbad, CA) in PBS + 1% BSA to generate 20-60 nM stock solutions of 

monovalent QD-IgE.  Stock solutions were stored at 4°C and used within four weeks.  To 

facilitate comparisons between unlabelled IgE and QD-IgE, all concentrations are 

reported in nM, with 5 nM IgE or 14 nM DNP-BSA being equivalent to 1 µg/ml.  

Latrunculin B was from Sigma-Aldrich (St. Louis, MO).  PMA was from Invitrogen 

(Carlsbad, CA).  DNP-BSA was from Molecular Probes (Eugene, OR). 

2.5.2 Cell culture  

Rat basophilic leukemia (RBL-2H3) cells were grown as adherent monolayers in 

minimum essential medium with 10% fetal calf serum (Invitrogen, Carlsbad, CA) as 

described (Wilson, Pfeiffer et al. 2000).  For microscopy, cell monolayers were cultured 

in 8-well Lab-Tek chambers (Nunc, Rochester, NY) 24 hours before experiments.   

2.5.3 Degranulation assay 
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Cell monolayers were grown in 24-well tissue culture plates for 24 hours.  

Typically, FcεRI  were primed by adding 5 nM anti-DNP-IgE to cultures overnight.  

After washing away excess IgE, cells were activated with 0.014-140 nM DNP-BSA.  

Release of β-hexosaminidase was measured as described (Ortega, Schweitzer-Stenner et 

al. 1988).  

2.5.4 Cell treatment for SPT experiments 

Cells in Lab-Tek chambers were labelled with 50 or 100 pM QD-IgE in Hanks’ 

balanced salt solution (HBSS) for 10 min at 37°C, then washed with HBSS prior to 

imaging.  This yielded an average of ten QD-IgE-FcεRI complexes per cell.  For TIRF 

imaging, washing was omitted.  All imaging was performed at 34-36°C.  PMA-treated 

samples were pre-incubated for 30 min and imaged in the presence of 50 nM PMA.  

Latrunculin B-treated samples were pre-incubated for 10 min and imaged in the presence 

of 500 nM latrunculin B.  Where indicated, cells were stimulated with 14 nM DNP-BSA.   

2.5.5 Cell treatment for immobilization 

Cells were labelled with 500 pM QD-IgE for 10 min at 37°C as above, then 

incubated at 37°C for 30 min with 140 nM unlabelled IgE.  Cells were washed and 

imaged by wide field microscopy at 35°C in 200 µl HBSS for ~10 seconds, followed by 

addition of DNP-BSA to a final concentration of 14 nM.  Where described, cells were 

treated with 500 nM latrunculin B during the last 10 min of IgE priming and latrunculin 

B was maintained in the medium during activation.  The presence of 500 nM latrunculin 

B did not affect the rate or amount of IgE binding (data not shown).  

2.5.6 Electron Microscopy 
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RBL-2H3 cell monolayers on glass coverslips were labelled with 30 nM QD655-

IgE for 30 min at 37°C.  Cells were fixed for seven min in 0.5% PFA and membrane 

sheets prepared as described in (Wilson, Pfeiffer et al. 2000).  Electron micrographs were 

acquired using a transmission electron microscope (Hitachi H600).  Probe identification 

and Hopkins statistical analysis were performed as described in (Zhang, Leiderman et al. 

2006). 

2.5.7 Fluorescence Microscopy  

Confocal imaging was performed on a Zeiss LSM 510 META system equipped 

with a 63× 1.4 N.A. oil objective.  Single 1 µm z-sections were acquired at 1 frame/s.  

GFP and QDs were excited simultaneously using 488 nm excitation and emission 

collected using a 545 nm dichroic mirror with 505 nm LP filter and the 625-689 nm range 

of the META detector, respectively. 

Wide field imaging for SPT was performed using an Olympus IX71 inverted 

microscope equipped with a 60× 1.3 N.A. water, 100× 1.4 N.A. oil, or 150× 1.45 N.A. oil 

TIRF objective.  Wide field excitation was provided by a mercury lamp with either a 436 

nm BP or 543 nm BP excitation filter.  Objective-based total internal reflection 

fluorescence (TIRF) microscopy was performed using excitation from a 472 nm 

continuous wave laser (CrystaLaser, Reno NV), which was expanded and entered the 

microscope through a laser side port of the microscope filter turret.  Fluorescence 

emission was filtered with a 473 nm long pass filter (LP01-473RU, Semrock, Rochester, 

NY).  Emission was collected by an electron multiplying CCD camera (Andor iXon 887 

for widefield; Andor Luca for TIRF).  In both cases, an image splitter (Cairn Research 
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OptoSplit II, Kent, U.K.) was used to simultaneously image two spectrally distinct QDs 

or QD655 and GFP.  Images were registered using a calibration image of multi–

fluorophore fluorescent beads (0.2 µm Tetraspeck, Invitrogen, Carlsbad, CA) that have 

an emission spectrum covering the two spectral windows.  For further details see 

Appendix A.  QD emission was collected using the appropriate QD (20 nm bandpass) 

emission filters (Chroma, Rockingham, VT).  GFP emission was collected using a 510/40 

BP emission filter.  The sample temperature (34-36 °C) was maintained by an objective 

heater (Bioscience Tools, San Diego, CA). 

2.5.8 Single Particle Tracking   

Images were acquired at either 33 or 100 fames/s for a total of 3,000 frames.  

Analysis of the acquired image series was performed as described previously (Arndt-

Jovin, Lopez-Quintela et al. 2006) and similar to (Dahan, Levi et al. 2003) to obtain 

trajectories, which were used to generate mean square displacement (MSD) plots (Martin, 

Forstner et al. 2002) (see Supplementary Methods for more detail).  Diffusion 

coefficients were found by fitting the first three points of the MSD plots to MSD = offset 

+ 4D1-3Δt, (Kusumi, Sako et al. 1993).  Localization accuracy for each individual 

trajectory is described by the offset from the origin of the resulting fit. Localization 

accuracy of the system was determined by imaging QD-IgE-FcεRI in cells treated with 

14 nM DNP-BSA for 5 minutes, then fixed in 2% paraformaldehyde for 20 minutes at 

room temperature.  Imaging under various experimental conditions yielded localization 

accuracies of 11.86 and 13.81 nm for QD655 and QD585, respectively imaged at 100 

frames/s in TIRF mode; 9.32 and 10.37 nm for QD655 and QD585, respectively imaged 

at 33 frames/s in TIRF mode; and 50.00 nm for QD655 imaged on the apical surface at 
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33 frames/s in wide-field mode.  Note that all interaction analysis was performed on data 

acquired under TIRF imaging conditions, where the localization is most accurate.  

Instantaneous diffusion coefficients are average diffusion coefficients calculated over all 

tracked QDs and using all points within a sliding window of 10 frames (.3 s).  The 

instantaneous diffusion coefficient is given by  

D=(1/N)St,t,n((rt+t-rt)2-offset)/4t where r is a trajectory position, offset is found by a fit to 

the longest trajectory, and the sum is over all N valid trajectory coordinate pairs in the 

time window. 

2.5.9 Statistical Analysis 

Due to the wide range of values and nonparametric distribution of D1-3, values are 

reported as medians and interquartile range is provided as a measure of statistical 

dispersion.  Statistical comparisons between data sets were made using the Kolmogorov-

Smirnov test unless otherwise noted and significance was defined as p<0.05. 

2.5.10 Image Processing   

All image processing was performed using Matlab (The MathWorks, Inc., Natick, 

MA) in conjunction with the image processing library DIPImage (Delft University of 

Technology).  For descriptions of specific analysis routines, see Appendix A.  
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3.1 ABSTRACT 

The high affinity IgE receptor (FcεRI) plays a central role in the allergic 

inflammatory response.  Cross-linking of IgE-bound FcεRI by multivalent antigen 

stimulates the release of pre-formed mediators of allergic inflammation from mast cell 

granules.  At high concentrations, multivalent antigen-binding has been shown to cause a 

rapid decrease in the lateral mobility of FcεRI and subsequent internalization of the 

receptor.  In this study, we use quantum dot (QD) based probes, single molecule tracking, 

and hyperspectral microscopy to address the causal relationship between antigen-induced 

FcεRI immobilization, signal initiation, and internalization.  We demonstrate that the 

kinetics and extent of immobilization are highly dependent on antigen concentration and 

are directly related to the size of IgE-FcεRI clusters formed.  The Src-family kinase 

inhibitor PP2, which inhibits the earliest steps in FcεRI signaling, does not significantly 

affect antigen-induced immobilization, aggregation, or internalization of FcεRI.  By 

employing two different specificities of IgE, we show that each specificity forms clusters 

independently and that cross-linking one subset of receptors does not alter the diffusion 

or distribution of non-cross-linked receptors.  Using hyperspectral microscopy, we 

demonstrate that small, antigen-induced clusters of at least three IgE-FcεRI remain freely 

mobile on the cell surface under conditions in which activation is occurring.  We also 

demonstrate that multivalent antigen itself, in the form of DNP-QD, remains mobile on 

the cell surface at activating doses. Our results demonstrate that antigen-induced 

immobilization is due solely to formation of large receptor clusters and is required for 

FcεRI internalization; not signaling. 
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3.2 INTRODUCTION 

The T-cell receptor (TCR), B-cell receptor (BCR), and high affinity IgE receptor 

(FcεRI) constitute the multichain immune recognition receptor family and are crucial to 

the execution of key events in the immune response (Sigalov 2004).  These receptors 

share a common mechanism of activation in which multiple receptors must be cross-

linked together by a multivalent antigen in order to initiate signal transduction (Boniface, 

Rabinowitz et al. 1998; Thyagarajan, Arunkumar et al. 2003; Kraft and Kinet 2007).  In 

each of these systems, antigen binding is associated with changes in receptor dynamics 

and topography (Dustin and Cooper 2000; Wilson, Pfeiffer et al. 2000; Thyagarajan, 

Arunkumar et al. 2003).  In the case of the TCR, it has recently been shown that TCR 

microclusters signal actively while diffusing through the peripheral supramolecular 

activation complex (pSMAC), and cease signaling in the central supramolecular 

activation complex (cSMAC) where they are largely immobile (Varma, Campi et al. 

2006).  In the FcεRI system, it is well established that IgE-FcεRI mobility decreases 

dramatically upon addition of high doses of multivalent antigen (>1 μg/ml) (Menon, 

Holowka et al. 1986; Zidovetzki, Bartholdi et al. 1986; Pecht, Ortega et al. 1991; Larson, 

Gosse et al. 2005; Andrews, Lidke et al. 2008).  These studies demonstrate that changes 

in receptor diffusion in response to activation is a common feature of multichain immune 

recognition receptor family members.  However, the relationship between these changes 

and signaling remains to be elucidated. 

In contrast to the clear changes in diffusion of FcεRI in response to high doses of 

multivalent antigen, the effects of lower antigen doses on receptor mobility are less well-

studied.  One early study used Fluorescence Recovery After Photobleaching (FRAP) to 
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demonstrate that cross-linking of FITC-IgE-labeled FcεRI by low levels of anti-FITC 

antibodies induced degranulation without causing significant decreases in FcεRI mobility 

(Schlessinger, Webb et al. 1976).  Subsequent studies using FRAP (Menon, Holowka et 

al. 1986; Mao, Varin-Blank et al. 1991; Pyenta, Schwille et al. 2003) and rotational 

correlation spectroscopy (Pecht, Ortega et al. 1991) concluded that the extent of IgE-

FcεRI immobilization is correlated with the extent of degranulation, leading to 

speculation that immobilization of IgE-FcεRI may drive signaling. 

To examine the relationship between antigen-induced changes in FcεRI mobility 

and signaling, we generated monovalent quantum dot (QD)-IgE that binds FcεRI without 

cross-linking (Andrews, Lidke et al. 2008) and also multivalent 2,6-dinitrophenyl-QD 

(DNP-QD), which serves as a multivalent antigen. We have previously described the 

development of a real-time assay for following the kinetics of cross-link induced FcεRI 

immobilization (Andrews, Lidke et al. 2008).  Using this assay, we showed that 

immobilization occurs within seconds of antigen addition (at 1 µg/ml of DNP-BSA) and 

that the kinetics of this response are delayed nearly three-fold by cytoskeletal disruption 

with latrunculin B (Andrews, Lidke et al. 2008).  In the present study, we use the real-

time fluorescence assay to demonstrate that antigen-induced immobilization of FcεRI is 

dose-dependent and electron microscopy to show that the extent of immobilization 

correlates with the size of FcεRI clusters formed.  We also show that inhibition of 

downstream signaling by the Src-family kinase inhibitor PP2 does not appreciably affect 

antigen-induced immobilization or FcεRI internalization and that direct cross-linking of 

IgE-FcεRI complexes by multivalent antigen is required for the immobilization to occur.  

Using hyperspectral imaging microscopy, we provide evidence that antigen cross-linked 
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clusters of FcεRI remain mobile, even at doses sufficient to trigger degranulation.  

Finally, we demonstrate that receptor-bound multivalent antigen itself also remains 

mobile at doses that trigger degranulation.  We conclude that signaling requires FcεRI 

crosslinking but not FcεRI immobilization.  

3.3 RESULTS 

3.3.1 Dose dependence of immobilization and cluster size 

The dramatic reduction in IgE-FcεRI mobility that accompanies cross-linking at 

high doses of multivalent antigen has been well documented (Schlessinger, Webb et al. 

1976; Menon, Holowka et al. 1986; Zidovetzki, Bartholdi et al. 1986; Mao, Varin-Blank 

et al. 1991; Pecht, Ortega et al. 1991; Andrews, Lidke et al. 2008).  We investigated the 

dose-dependence of this immobilization in order to understand its relationship to FcεRI 

signaling.  RBL-2H3 cells were labeled with a mixture of QD625- and QD705-IgEanti-DNP 

and then the remaining FcεRI sites were saturated with dark (unlabeled) IgEanti-DNP.  

Single QD tracking was initiated at 20 frames/s and cells were stimulated by the addition 

of varying doses of the multivalent antigen, DNP-BSA, ten seconds into each image 

series.  From the resulting time-series images, we calculated the mean instantaneous 

diffusion coefficient (see 3.7 Materials and Methods), which provides a high temporal 

resolution measure of the average diffusion rate of IgE-FcεRI.  We then plotted this value 

as a function of time and antigen dose (Figure 3.1A).  These data clearly demonstrate that 

the rate and extent of QD-IgE-FcεRI immobilization is highly dependent on the dose of 

multivalent antigen.  We noted that 0.001 μg/ml DNP-BSA produced only a slight 

decrease in QD-IgE-FcεRI mobility (Figure 3.1A; magenta line) while still eliciting 
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robust degranulation (Figure 3.1B), contrary to previous reports suggesting a link 

between extent of immobilization and amount of degranulation (Menon, Holowka et al. 

1986; Mao, Varin-Blank et al. 1991; Pecht, Ortega et al. 1991; Pyenta, Schwille et al. 

2003).  However, since degranulation is measured as total ß-hexosaminidase release over 

a 30 minute period of antigen exposure, it was possible that QD-IgE-FcεRI were in fact 

immobilizing at some later time point.  To examine this possibility, we followed the 

mean instantaneous diffusion coefficient in response to cross-linking with 0.001 µg/ml 

DNP-BSA out to 15 minutes and noted no decrease in diffusion (Appendix B, 

Supplementary Figure S3.1).  To further assess the relationship between signaling onset 

and receptor immobilization, we simultaneously measured the kinetics of immobilization 

and calcium response of individual cells (Appendix B, Supplementary Methods) and 

showed that intracellular calcium signaling occurs while QD-IgE-FcεRI remains mobile 

(Appendix B, Supplementary Figure S3.2). 
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Figure 3.1 Antigen induced immobilization and degranulation are dose-dependent. (A) The 
relative change in diffusion rate as a function of time.  Cells were treated with DNP-BSA at the 
indicated doses (in μg/ml) 10 s into each image series. (B) Degranulation assay plot showing 
percentage of total β-hexosaminidase released from cells stimulated with the indicated doses of 
DNP-BSA in the presence (white bars) and absence (gray bars) of PP2.  Error bars represent 
standard deviation. 

 A previous study using scanning electron microscopy demonstrated a relationship 

between IgE-FcεRI aggregate size and extent of ß-hexosaminidase release.  This study 

reported that formation of small oligomers (chains and small clusters) by anti-IgE 

antibodies was associated with robust degranulation, whereas the formation of large 

aggregates at higher doses of anti-IgE was associated with a diminished secretory 

response (Seagrave, Pfeiffer et al. 1991).  Here, we used transmission electron 
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microscopy (TEM) of membrane sheets to obtain information on the dose-dependence of 

IgE-FcεRI cluster formation for comparison with the kinetics of IgE-FcεRI 

immobilization.  After one minute of stimulation, significant dose-dependent differences 

in IgE-FcεRI cluster size were clearly visible (Figure 3.2A-C).  Quantification of these 

images confirmed that larger clusters of IgE-FcεRI are formed at higher antigen doses 

(Figure 3.2D) where the secretory response is diminished (Figure 3.1B).  Given that 

aggregate size is reported to be a major determinant of diffusion rate (Peters and Cherry 

1982; Kusumi, Nakada et al. 2005), these data suggest that cross-linking receptors into 

large complexes could be the sole driving force behind antigen-induced immobilization.  
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Figure 3.2 Clustering of IgE-FcεRI is dose-dependent.  (A-C) Electron micrographs from 
membrane sheets with 5 nm gold particles marking the position of the β-subunit of FcεRI.  
Membrane sheet preparations were from resting cells (A), or cells treated with 0.001 (B) or 1 (C) 
μg/ml DNP-BSA for 1 min.  (D) Quantification of receptor clustering after 1 min of stimulation 
at the indicated doses of DNP-BSA, based upon 10 micrographs per condition.  Arrowhead in B 
indicates a clathrin coated pit.  Scale bars in A-C represent 0.1 μm. 

3.3.2 Role of downstream signaling 

To assess the relationship between signaling and immobilization, we performed 

anti-phosphotyrosine western blotting over a range of DNP-BSA doses.  These 

experiments demonstrated that the kinetics of tyrosine phosphorylation of the 72 kD band 

(Syk) in RBL-2H3 lysates were highly dose dependent (Figure 3.3A and B).  Tyrosine 

phosphorylation of Syk occurred with slower kinetics at the lowest antigen dose (0.001 

µg/ml), whereas the highest antigen dose (10 µg/ml) showed rapid but attenuated 
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phosphorylation.  We used the Src-family kinase inhibitor PP2 to examine the causal 

relationship between downstream signaling and the antigen-induced immobilization and 

internalization of FcεRI.  At the dose employed (10 µM), PP2 dramatically reduced 

antigen-induced tyrosine phosphorylation in response to crosslinking with 1 µg/ml DNP-

BSA (Figure 3.3C, D) and largely inhibited degranulation across a range of DNP-BSA 

concentrations (Figure 1.1B).  We employed a flow-cytometry based assay to measure 

internalization of IgE-FcεRI in response to treatment with various concentrations of 

DNP-BSA in the presence or absence of PP2 (see 3.7 Materials and Methods).  Our 

results indicate that PP2 treatment did not appreciably affect antigen-induced FcεRI 

internalization (Figure 3.3E).  We also used our kinetics of immobilization assay to 

examine the effects of PP2 on antigen-induced immobilization of IgE-FcεRI.  As can be 

seen in Figure 3.3F, treatment of cells with 1 µg/ml DNP-BSA resulted in a dramatic 

immobilization of IgE-FcεRI, irrespective of the presence of PP2.  We also observed that 

antigen-induced clustering of IgE-FcεRI still occurred in the presence of PP2 (Appendix 

B, Supplementary Figure S3.3). These data indicate that both antigen-induced 

immobilization and internalization are independent of PP2-sensitive downstream 

signaling. 
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Figure 3.3 PP2-sensitive signaling is not required for immobilization or internalization. (A) 
Western blot showing the phosphotyrosine signal from the 72 kD band (Syk) in RBL-2H3 cells 
stimulated with the indicated doses of DNP-BSA. (B) Quantification of blot shown in A.  (C)  
Western blot showing phosphotyrosine signal from RBL-2H3 cells stimulated with 0.1 µg/ml 
DNP-BSA in the presence or absence of PP2.  (D) Quantification of the 72 kD (Syk) and 55 kD 
(Lyn) bands from the blot shown in C.  Intensity is normalized to the peak signal for each band. 
(E)  Percent internalization of IgE-FcεRI as a function of time and antigen dose in the presence 
(open symbols) or absence (filled symbols) of PP2.  (F) CPA plot showing diffusion of QD-IgE-
FcεRI before (solid lines) or 1 min after (dashed lines) addition of 1 µg/ml DNP-BSA in the 
presence (thin lines) or absence (thick lines) of PP2.  In D and E, U=untreated; P= PP2.  All 
antigen doses are in µg/ml. 

 



   

 63

3.3.3 Direct cross-linking of IgE-FcεRI is required for immobilization 

To date, the majority of studies have employed cells labeled with only a single 

specificity of IgE.  While this facilitates experimentation, it does not reflect the 

physiological reality in which less than 10% of receptors on any single cell are likely to 

be specific for the same allergen (Johansson, Oman et al. 2006).  The ability of cells to 

respond when only a small number of IgE-FcεRI bind antigen has been demonstrated in 

an earlier study which estimated that only 5% of total surface FcεRI needs to be cross-

linked to yield a secretory response (Ortega, Schweitzer-Stenner et al. 1988).  These 

observations raise the possibility that antigen-bound receptors may be able to activate 

nearby, non-cross-linked receptors, amplifying the signal.  A similar model has been 

proposed for the epidermal growth factor receptor (Verveer, Wouters et al. 2000), and a 

related phenomenon has been observed in TCR signaling, in which CD4 mediates 

formation of a “pseudodimer” between two TCRs, enabling T-cells to respond to a single 

peptide-MHC complex (Irvine, Purbhoo et al. 2002).  To determine if such a 

phenomenon plays a role in antigen-induced clustering and immobilization of FcεRI, we 

employed IgE of two different specificities:  one idiotype recognizes DNP (IgEanti-DNP) 

and the other recognizes dansyl (IgEanti-dansyl).  We first confirmed the specificity of each 

antibody by priming cells with either IgEanti-dansyl or IgEanti-DNP and then stimulating with 

either dansyl-BSA or DNP-BSA.  As expected, cells loaded with IgEanti-dansyl and 

stimulated with dansyl-BSA produced a comparable secretory response to cells loaded 

with IgEanti-DNP and stimulated with DNP-BSA (Appendix B, Supplementary Figure 

S3.3).  We also observed that IgEanti-dansyl primed cells did not respond to DNP-BSA and 
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IgEanti-DNP primed cells did not respond to dansyl-BSA (Appendix B, Supplementary 

Figure S3.4) over a range of antigen doses.  

We next examined whether the two different IgE specificities co-clustered upon 

stimulation with one or both antigens.  We primed cells with a 1:1 mixture of Alexa488-

IgEanti-DNP and Alexa633-IgEanti-dansyl.  These cells were then exposed to 0.1 µg/ml DNP-

BSA, dansyl-BSA, or both (0.05 µg/ml each) for 1 min, then fixed and imaged by 

confocal microscopy.  As can be seen in Figure 3.4A, each IgE specificity only forms 

clusters in the presence of its cognate antigen, as had been previously suggested 

(Boniface, Rabinowitz et al. 1998), and these clusters form independently when both 

antigens are applied simultaneously.  This suggests that the clustering of IgE-FcεRI is 

due to the direct effects of cross-linking by multivalent antigen, and is not due to a global 

cellular response which induces cluster formation. 

 To determine the requirement for direct binding to antigen in antigen-induced 

immobilization of IgE-FcεRI, we developed an SPT-based assay.  Cells were labeled 

with SPT levels of QD655-IgEanti-DNP and then the remaining receptor sites were saturated 

with either IgEanti-DNP or IgEanti-dansyl.  As shown in Figure 3.4B, cross-linking the IgEanti-

dansyl primed receptors with 1 µg/ml dansyl-BSA did not significantly affect the diffusion 

of QD655-IgEanti-DNP primed receptors.  Conversely, cross-linking the IgEanti-DNP primed 

receptors with 1 μg/ml DNP-BSA produced the expected dramatic decrease in QD-

IgEanti-DNP primed receptors. 
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Figure 3.4 Direct cross-linking is required for immobilization.  (A) Cells were primed with 
Alexa647-IgEanti-dansyl and Alexa488-IgEanti-DNP and then stimulated for 1 min with DNP-BSA, 
dansyl-BSA, or both.  Scale bars represent 5 µm.  (B)  The cumulative probability plot of the 
diffusion rate of QD-IgEanti-DNP for four conditions is shown.  Cells were labeled with QD-IgEanti-

DNP and then primed with either IgEanti-DNP or IgEanti-dansyl.  The diffusion rate of QD-IgEanti-DNP was 
then measured in IgEanti-DNP primed cells before (thick, solid line) and after (thick, dashed line) 
addition of 1 μg/ml DNP-BSA.  The diffusion rate of QD-IgEanti-DNP was also measured in IgEanti-

dansyl primed cells before (thin, solid line) and after (thin, dashed line) addition of 1 μg/ml dansyl-
BSA.  
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We also modified the above experiment in order to visualize the relationship 

between antigen-induced clusters and non-cross-linked FcεRI.  We labeled cells with 

SPT levels of QD655-IgEanti-DNP and then saturated the remaining receptor sites with 

Alexa488-IgEanti-dansyl.  We then stimulated cells with 1 µg/ml dansyl-BSA and 

simultaneously imaged clustering of Alexa488-IgEanti-dansyl and diffusion of QD655-

IgEanti-DNP.  We did not observe prolonged interactions of QD655-IgEanti-DNP with the 

clusters of Alexa488-IgEanti-dansyl (Appendix B, Video 3.1).  These experiments together 

demonstrate the requirement for direct cross-linking in antigen-induced clustering and 

immobilization of IgE-FcεRI and do not support the existence of lateral signal 

propagation from antigen-bound to unbound receptors. 

3.3.4 Antigen-induced clusters of at least three receptors do not immobilize 

 It has been previously reported that cross-linking of FcεRI to aggregates larger 

than dimers induces immobilization (Menon, Holowka et al. 1986).  As this did not 

appear to be consistent with our observations, we designed an experiment to directly 

observe the motion of small antigen-induced clusters of FcεRI.  Cells were labeled with a 

mixture of five colors of QD-IgE (QD525-, QD565-, QD585-, QD625-, and QD655-IgE) 

and imaged used a custom-built confocal, hyperspectral microscope (Sinclair, Haaland et 

al. 2006).  This instrument collects emitted light from 490 to 800 nm (512 wavelengths) 

at each pixel in the image, enabling the entire spectrum of each emitting species in a 

given sample to be collected.  Coupled with powerful multivariate curve resolution 

(MCR) algorithms, we have previously used this system to identify individual QDs even 

within a single QD “class” (e.g. Qdot® 565) based on their characteristic emission 

spectra (Lidke, Andrews et al. 2007).  This instrumentation enabled us to acquire 
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confocal images at a rate of one frame every four seconds while simultaneously 

visualizing all five colors of QD-tagged IgE-FcεRI complexes.  Since we could load cells 

with a five-fold higher concentration of IgE than could be used in single-color imaging, 

enough receptors could be primed with QD-IgE to produce a secretory response when 

cells were challenged with multivalent antigen, without having to prime additional 

receptors with unlabeled IgE (Appendix B, Supplementary Figure S3.5).  Based upon our 

prior work, we expected to observe some instances of transient co-confinement of 

multiple IgE-FcεRI (Andrews, Lidke et al. 2008).  Consistent with our expectations, we 

never observed two or more colors of QD diffusing together for more than four seconds 

(i.e., no two QDs were together over two consecutive frames) in the absence of 

multivalent antigen.  However, upon addition of 0.1 μg/ml DNP-BSA, we frequently 

observed prolonged (>10 s) co-diffusion of multiple QD-IgE-FcεRI.  By obtaining the 

spectrum from a cluster of QD-IgE-FcεRI, we could easily determine the number of 

distinct spectral peaks, which correspond to the minimum number of QD-IgE-FcεRI 

within the cluster.  Given that the peak positions within the spectrum obtained from a 

single cluster were quite stable over time, we were able to demonstrate that at least three 

QD-IgE-FcεRI diffused as a stable aggregate over many seconds.  Two examples of this 

behavior are shown in Figure 3.5, in which three spectrally distinct QD-IgE-FcεRI 

diffuse together for over two minutes.  We confirmed that activation was in fact 

occurring under these conditions by degranulation assay (Appendix B, Supplementary 

Figure S3.5). 
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Figure 3.5 Antigen-induced clusters of at least three QD-IgE-FcεRI remain mobile. Cells 
were labeled with five colors of QD-IgE and then stimulated with 0.1 μg/ml DNP-BSA.  Selected 
images showing diffusing QD-IgE-FcεRI clusters and the spectra of selected clusters (red 
rectangles) to the right of each image.  (A) A cluster composed of QD565-, QD585-, and QD655-
IgE-FcεRI diffusing together for over two minutes. (B) A cluster composed of QD565-, QD625-, 
and QD655-IgE-FcεRI diffusing together for 20 s.  Variation in the peak intensities over time is 
attributed to QD “blinking.”  Pseudo-colored RGB images generated by displaying 635-655 nm 
as red, 575-630 nm as green, and 540-570 nm as blue.  Scale bars represent 2 μm. 
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3.3.5 Multivalent antigen remains highly mobile at low, activating doses 

 Finally, we sought to examine the diffusion of multivalent antigen upon binding 

to IgE-FcεRI.  We generated a QD-based multivalent antigen by reacting biotin-DNP 

with Qdot® streptavidin conjugates to produce multivalent DNP-QD.  We first tested the 

ability of this antigen to trigger degranulation and found a robust secretory response that 

was essentially identical for DNP-QD655 and DNP-QD585 (Figure 3.6A).  We then 

primed cells with IgEanti-DNP and labeled them with a sub-activating dose (1 pM) of DNP-

QD655.  Using single QD tracking, we determined the diffusion coefficient of DNP-

QD655 to be slightly slower than that of unstimulated QD655-IgE (Table 3.1), consistent 

with formation of small oligomers of IgE-FcεRI upon DNP-QD binding.  We next added 

an activating dose of DNP-QD585 (500 pM) and noted only a slight decrease in the 

diffusion of DNP-QD655 (Figure 3.6B).  These data indicate that, at doses capable of 

elciting degranulation, multivalent antigen remains mobile upon binding to IgE-FcεRI, 

consistent with the formation of small, mobile clusters. 
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Figure 3.6 DNP-QD remains mobile at activating doses.  (A) Degranulation assay plot 
showing percentage of total β-hexosaminidase released from cells stimulated with the indicated 
doses of DNP-QD655 (white bars) or DNP-QD585 (gray bars).  Error bars represent standard 
deviation. (B) Cells were primed with IgEanti-DNP and then labeled with 1 pM DNP-QD655.  The 
cumulative probability of the diffusion rate of DNP-QD655 was then calculated before (thick 
line) and two min after (thin line) addition of 500 pM DNP-QD585. 



   

 71

Table 3.1. Median diffusion coefficients 

Probe Priming PP2 Stimulus Ratea 
(Hz) 

D1-3
b

 

(μm2/s) 
IQRc N 

QD-IgEanti-DNP IgEanti-DNP - None 20 0.0986 0.0862 6437 

QD-IgEanti-DNP IgEanti-DNP - 0.001 μg/ml DNP-BSA 20 0.0662 0.0801 892 

QD-IgEanti-DNP IgEanti-DNP - 0.01 μg/ml DNP-BSA 20 0.0519 0.0777 523 

QD-IgEanti-DNP IgEanti-DNP - 0.1 μg/ml DNP-BSA 20 0.0119 0.0461 534 

QD-IgEanti-DNP IgEanti-DNP - 1 μg/ml DNP-BSA 20 0.003 0.0320 421 

QD-IgEanti-DNP IgEanti-DNP - 10 μg/ml DNP-BSA 20 0.0069 0.0362 567 

QD-IgEanti-DNP IgEanti-DNP - None 33 0.0855 0.0747 424 

QD-IgEanti-DNP IgEanti-DNP + None 33 0.0740 0.0701 667 

QD-IgEanti-DNP IgEanti-DNP - 1 μg/ml DNP-BSA 33 0.0083 0.0210 310 

QD-IgEanti-DNP IgEanti-DNP + 1μg/ml DNP-BSA 33 0.0041 0.0089 309 

QD-IgEanti-DNP IgEanti-DNP - None 33 0.0823 0.0757 763 

QD-IgEanti-DNP IgEanti-dansyl - None 33 0.0807 0.0872 687 

QD-IgEanti-DNP IgEanti-DNP - 1μg/ml DNP-BSA 33 0.0059 0.0236 497 

QD-IgEanti-DNP IgEanti-dansyl - 1μg/ml dansyl-BSA 33 0.0727 0.0771 842 

DNP-QD IgEanti-DNP - 1 pM DNP-QD655 33 0.0377 0.0360 505 

DNP-QD IgEanti-DNP - 1 pM DNP-QD655 + 

500 pM DNP-QD585 

33 0.0321 0.0366 576 

aRate is the frame rate at which the data was acquired. 

bD1-3 is the diffusion coefficient as calculated by fitting to the first three points of the mean square 
displacement plot.  The value reported is the median.  All data were acquired at 35°C. 

cIQR is the interquartile range, a statistical measure of dispersion. 
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3.6 DISCUSSION 

It has long been known that high doses of multivalent antigen cause rapid 

immobilization of IgE-FcεRI.  A series of studies demonstrated that the extent of this 

immobilization correlated strongly with degranulation, leading to speculation that 

receptor immobilization may drive downstream signaling (Menon, Holowka et al. 1986; 

Mao, Varin-Blank et al. 1991; Pecht, Ortega et al. 1991; Pyenta, Schwille et al. 2003).  

However, technical limitations prevented a detailed examination of this hypothesis, since 

techniques did not exist which enabled dynamic studies of small receptor clusters in 

living cells.  Multi-color single particle tracking is able to overcome these limitations and 

directly address the relationship between antigen-induced immobilization of IgE-FcεRI 

and the initiation of downstream signaling.   

In this study, we systematically evaluated the rate and extent of antigen-induced 

immobilization as a function of antigen dose (Figure 3.1A) and compared these data with 

the extent of degranulation (Figure 3.1B) and clustering (Figure 3.2).  When examined 

together, these data indicate that binding of multivalent antigen cross-links IgE-FcεRI 

into clusters whose size is dependent on antigen dose and that the size of the clusters 

dictates their mobility in the plasma membrane.  Although it had been previously 

reported that the extent of receptor immobilization correlated with degranulation, our 

high spatiotemporal resolution data show that this is not in fact the case and that the small 

clusters formed at low antigen doses (0.001 µg/ml DNP-BSA) produce robust 

degranulation (Figure 3.1B) while remaining highly mobile.   
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Previous studies demonstrating that IgE dimers were able to induce large scale 

clustering suggested that these small oligomers induced a cellular response which in turn 

reorganized the small oligomers into larger aggregates (Menon, Holowka et al. 1984).  

We addressed this possibility by pre-treating cells with the Src-family kinase inhibitor 

PP2, which dramatically attenuated antigen-induced tyrosine phosphorylation (Figure 

3.3C and D).   While it is possible that as yet unknown signaling pathways downstream 

of FcεRI, which do not significantly rely on tyrosine phosphorylation, might still be 

active, our data strongly suggest that downstream signaling is not required for 

immobilization. Therefore, based upon our model that the extent of immobilization is due 

to extent of clustering by antigen, FcεRI signaling is also unlikely to be involved in 

cluster formation.  In support of this, we observed large-scale aggregation of IgE-FcεRI 

even in the presence of PP2 (Appendix B, Supplementary Figure S3.3).   

Given that cross-linking of only 5% of surface IgE-FcεRI is required to produce 

degranulation (Ortega, Schweitzer-Stenner et al. 1988), and the proposed existence of signal 

amplification to non-liganded receptors in the EGFR and TCR systems (Verveer, 

Wouters et al. 2000; Irvine, Purbhoo et al. 2002), we examined the possibility of signal 

amplification in the FcεRI system.  By using two different specificities of IgE, we were 

able to independently cross-link discrete fractions of FcεRI on the cell membrane and 

probe for changes in organization and diffusion of the non-cross-linked FcεRI.  We 

detected no appreciable changes in either the distribution or diffusion of non-antigen-

bound IgE-FcεRI, despite cross-linking of the majority of IgE-FcεRI by multivalent 

antigen (Figure 3.4).  This was consistent with a previous study in which a fraction of 

IgE-bound, cross-linked FcεRI and non-IgE-bound FcεRI were fractionated and probed 
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for tyrosine phosphorylation in response to cross-linking with anti-IgE (Paolini, Jouvin et 

al. 1991).  This early study showed no detectable phosphorylation of non-IgE-bound 

FcεRI, despite extensive phosphorylation of cross-linked IgE-bound FcεRI.  However, 

since the time of this study, it has been well documented that IgE-binding alone triggers 

substantial changes in FcεRI (Kitaura, Song et al. 2003; Kawakami and Kitaura 2005), 

therefore the presence of IgE on the non-cross-linked FcεRI in our study is an important 

distinction between these two experimental approaches.  Additionally, our study 

supplements the phosphorylation data by demonstrating that the diffusive properties of 

non-cross-linked IgE-FcεRI are not appreciably altered by cross-linking a majority of 

IgE-FcεRI.  This gives further credence to the idea that antigen-induced clustering of 

IgE-FcεRI is the sole driving force behind the observed changes in receptor diffusion. 

Also of note, PP2-sensitive downstream signaling appeared to be dispensible for 

antigen-induced internalization of IgE-FcεRI (Figure 3.4E).  This result is consistent with 

earlier studies in which the bulk of the cytoplasmic domains (i.e., ITAMs) of FcεRI did 

not appear to play a significant role in antigen-induced internalization of the receptor 

(Mao, Varin-Blank et al. 1991).  Given that the extent of antigen-induced internalization 

correlates very well with the extent of antigen-induced immobilization and cluster 

formation (compare Figure 3.5E with Figures 3.1A and 3.2) and that immobilization and 

internalization are both unaffected by PP2 treatment, it seems reasonable to speculate that 

extensive clustering and the concomitant immobilization of FcεRI are sufficient to induce 

internalization.  A study using confocal microscopy and antigen immobilized on 

substrates did not detect a recruitment of clathrin-coated pits or AP-2 to sites of antigen 

binding (Santini and Keen 1996), suggesting that immobilization of FcεRI alone is not 
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sufficient to induce internalization.  However, a recent study showed that siRNA-

mediated knockdown of clathrin heavy chain did not affect FcεRI internalization 

(Fattakhova, Masilamani et al. 2006).  Given the apparent dispensability of clathrin for 

antigen-mediated internalization of FcεRI, it could be that immobilization alone could 

induce internalization through some clathrin- and AP-2-independent pathway. 

In addition to providing an ideal platform for following the diffusion of single 

molecules, the unique spectral characteristics of QDs also facilitate multicolor imaging.  

We took advantage of these properties to probe the behavior of small clusters of 

receptors, an important topographical regime that cannot be readily addressed by 

traditional single molecule or ensemble imaging techniques.  To accomplish this, we 

employed hyperspectral microscopy, which facilitates discrimination of multiple 

fluorescent species with narrowly separated emission maxima (Sinclair, Haaland et al. 

2006).  Together, our QD-based probes and hyperspectral imaging instrumentation 

allowed us to demonstrate that small antigen-induced oligomers of at least three IgE-

FcεRI remain mobile on the cell surface and diffuse together as stable complexes for 

minutes (Figure 3.5).  This result further supports the uncoupling of signaling from 

receptor immobilization, given that the dose of antigen used to generate these mobile 

oligomers was sufficient to trigger degranulation (Appendix B, Supplementary Figure 

S3.5). 

We next examined the diffusion of multivalent antigen itself, using another QD-

based probe, DNP-QD.  These experiments corroborated the hyperspectral and single-

color QD-IgE based measurements in showing that DNP-QD also remained mobile on 

the surface at doses sufficient to trigger degranulation (Figure 3.6).  The fact that the 
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diffusion coefficient of DNP-QD was somewhat slower than that measured for QD-IgE 

(Table 3.1) is consistent with DNP-QD binding to multiple IgE-FcεRI and forming a 

small, stable complex as was directly observed in the hyperspectral imaging studies.  

Given that only a slight difference in DNP-QD diffusion was observed at doses both 

above and below the threshold for degranulation, it is likely that the aggregates formed 

under these two conditions are of comparable size and signaling activity and that 

degranulation occurs due to the increased number of signaling aggregates.  

The picture that emerges from this work is that binding of multivalent antigen 

serves to cross-link multiple IgE-FcεRI together into small, stable aggregates that 

actively signal.  At higher antigen doses, these clusters are more extensively cross-linked 

into larger aggregates, which become immobile and signal poorly.  The mere existence of 

these large, immobile aggregates appears to be sufficient to trigger their internalization 

through a mechanism that may or may not involve clathrin coated pits.  This series of 

events appears to be consistent with the current understanding of TCR signaling in the 

immune synapse.  In the immune synapse, antigen-induced microclusters of TCR signal 

actively in the peripheral supramolecular activation complex (pSMAC) as they diffuse 

freely (Varma, Campi et al. 2006).  These microclusters make their way to the central 

supramolecular activation complex (cSMAC) due to frictional coupling to the centripetal 

flow of actin (Kaizuka, Douglass et al. 2007; DeMond, Mossman et al. 2008).  Once the 

microclusters reach the cSMAC, they coalesce, become immobile, and cease signaling 

prior to being internalized (Varma, Campi et al. 2006).  Due to the micron-scale structure 

of the immune synapse, the diffusing microclusters are well-segregated from the larger, 

non-signaling clusters of TCR which are internalized in the cSMAC, facilitating study.  
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The soluble antigens used in the FcεRI system do not induce this cellular-scale 

reorganization, although recent studies have shown that mast cells are capable of forming 

an immune synapse when presented with surface-associated antigens (Juan Rivera, oral 

presentation, FASEB Summer Research Conference on Immunoreceptors, New Haven, 

CT, August 2008).  However, due to the significant similarities in FcεRI response to 

soluble antigen and the TCR response to surface-associated antigen, a model emerges in 

which cluster size is the primary regulator of signaling.   

In both FcεRI and TCR signaling, low levels of multivalent antigen induce the 

formation of small receptor clusters which signal actively while remaining relatively free 

to diffuse.  The formation of larger clusters, whether due to high doses of soluble antigen 

or centripetal actin flow-mediated aggregation of existing small clusters of receptors, 

causes receptor immobilization, signal termination, and internalization (Figure 3.7).   
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Figure 3.7 Cluster-centric model of MIRR signaling.  Antigen dose and valency, as well as 
actin, modulate receptor clustering, which is inversely related to receptor mobility.  The extent of 
clustering is the primary regulator of internalization, which occurs most extensively in the context 
of large, immobile clusters; and also of signaling, which occurs most efficiently in the context of 
small, mobile clusters. 

 

This model provides a common framework for understanding multichain immune 

recognition receptor signaling in the context of both soluble and surface-associated 

antigens and identifies the extent of receptor oligomerization as the controlling force 

underlying receptor mobility, activity, and internalization. 
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3.7 MATERIALS AND METHODS 

3.7.1 Reagents   

Mouse monoclonal IgEanti-DNP was prepared as described in (Liu, Bohn et al. 1980).  

Mouse monoclonal IgEanti-dansyl was from BD Biosciences (San Jose, CA).  Latrunculin B 

was from Sigma-Aldrich (St. Louis, MO).  DNP-BSA was from Invitrogen (Carlsbad, 

CA).  PP2 was from Calbiochem (La Jolla, CA).  Antiphosphotyrosine antibodies 

(PY20/PY99) were from Santa Cruz Biotechnology (Santa Cruz, CA).  HRP-conjugated 

secondary antibodies and SuperSignal® West Pico Chemiluminescent Substrate kit were 

from Pierce Protein Research Products (Rockford, IL).  QD-IgE was prepared as 

described in (Andrews, Lidke et al. 2008).  Stock solutions of QD-IgE were stored at 4°C 

and used within four weeks.  Alexa-labeled derivatives of IgE were prepared according to 

the instructions provided with the Alexa Fluor® 488 or Alexa Fluor® 633 Microscale 

Protein Labeling Kits (Invitrogen, Carlsbad, CA).  To facilitate comparisons between 

unlabeled and QD-labeled reagents, 5 nM IgE or 14 nM DNP-BSA is equivalent to 1 

µg/ml. 

3.7.1.1 Synthesis of DNP-QD 

A 1 mM biotin-DNP stock solution was prepared by dissolving 1 mg DNP-X-biocytin-X 

succinimidyl ester (Molecular probes) in 100 µl dimethylsulfoxide (Sigma) followed by 

reaction with ammonium bicarbonate (Sigma) in a 1:10 stoichiometric ratio in water for 

30 minutes to quench the succinimidyl ester group.  The stock solution was stored at 4°C.  

DNP-QD was prepared by reacting biotin-DNP with the indicated Qdot® Streptavidin 

conjugate (Invitrogen) in a 50:1 ratio in PBS + 1% BSA for four hours at 4°C.  DNP-QD 
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was then purified by dialysis against PBS and the final concentration determined by 

absorption at 532 nm.  Stock solutions were stored at 4°C and used within four weeks.   

3.7.1.2 Synthesis of dansyl-BSA 

Dansyl-BSA was prepared by slight modification of the protocol provided with Dansyl-

X, SE (Invitrogen, Carlsbad, CA) to yield a dansyl:BSA ratio of 69.3 as measured by 

absorbance at 335 and 280 nm.  Dansyl-BSA was stored in 30 µl aliquots at -20°C and 

thawed immediately before use.   

3.7.2 Cell culture  

Rat basophilic leukemia (RBL-2H3) cells were grown as adherent monolayers in 

minimum essential medium with 10% fetal calf serum (MEM/FBS) (Invitrogen, 

Carlsbad, CA) as described in (Wilson, Pfeiffer et al. 2000).  For microscopy, cell 

monolayers were cultured in 8-well Lab-Tek chambers (Nunc, Rochester, NY) 24 hours 

before experiments.   

3.7.3 Degranulation assay 

Cell monolayers were grown in 24-well tissue culture plates for 24 hours.  FcεRI were 

primed by adding 5 nM IgEanti-DNP or IgEanti-dansyl to cultures overnight.  After washing 

away excess IgE, cells were either pre-incubated or not with 10 µM PP2 for 10 min and 

then activated with DNP-BSA ± 10 µM PP2, dansyl-BSA, or DNP-QD at the indicated 

doses.  Release of β-hexosaminidase was measured as described in (Ortega, Schweitzer-

Stenner et al. 1988).  

3.7.4 IP and Western Blotting 
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Cells were grown to confluency in TC-60 dishes in MEM/FBS, washed with HBSS, and 

then stimulated in HBSS at 37°C for the indicated times and with the indicated doses of 

DNP-BSA.  After a PBS rinse, cells were solubilized in cold NP-40 lysis buffer (150 mM 

NaCl, 50 mM Tris/HCl pH 7.2, 1% NP-40, 5 µg/ml leupeptin, 5 µg/ml antipain, 1 mM 

NaVO4, 1 mM PMSF).  Lysates were clarified by centrifugation.  Supernatants were 

mixed with 5x sample buffer for SDS-PAGE and subsequent transfer to nitrocellulose 

membranes. Blocked membranes were probed with primary and HRP-conjugated 

secondary antibodies, followed by detection of bands by ECL (Pierce, Rockford, IL).  

3.7.5 Wide-field imaging 

All single particle tracking was performed using an Olympus IX71 inverted microscope 

equipped with a 60× 1.3 N.A. water objective.  Wide field excitation was provided by a 

mercury lamp with the indicated excitation filters.  Emission was collected by an electron 

multiplying CCD camera (Andor iXon 887).  A two-color (Cairn Research OptoSplit II, 

Kent, U.K.) or four-color (MAG Biosystems Quad-View) image splitter was used to 

simultaneously image multiple spectral channels.  Each channel was projected onto the 

CCD as a 128x128 pixel image.  When required, registration of the images was achieved 

using an image of fluorescent beads (0.2 µm Tetraspeck, Invitrogen) which have an 

emission spectrum covering the two spectral windows.  For details, see (Andrews, Lidke 

et al. 2008).  The sample temperature was maintained at 34-36 °C by an objective heater 

(Bioscience Tools, San Diego, CA).   

3.7.5.1 SPT of QD-IgE 
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RBL-2H3 cells in 8-well Lab-Tek chambers were labeled with 500 pM QD655-IgEanti-DNP 

in HBSS for 10 min at 37°C prior to imaging.  Where indicated, cells were then 

incubated with 50 nM IgEanti-DNP or IgEanti-dansyl for 30 min at 37°C in MEM/FBS, 

washed, and then stimulated during imaging with the indicated doses of DNP-BSA ± 10 

µM PP2 or dansyl-BSA while imaging at 5 to 33 frames/s at 35°C. Images were acquired 

using a 436/10 nm BP excitation filter and emission collected by a 600 nm dichroic 

mirror and a 655/40 nm BP emission filter.  The resulting image series were analyzed and 

diffusion coefficients obtained using previously described single particle tracking 

algorithms (Andrews, Lidke et al. 2008).  PP2 had no measureable effect on IgE binding 

(data not shown). 

3.7.5.2 SPT of DNP-QD 

RBL-2H3 cells in 8-well chambers were primed by 30 min incubation with 50 nM IgEanti-

DNP at 37°C in MEM/FBS, washed with HBSS and then imaged in HBSS at 35°C.  One 

pM DNP-QD655 was added at the microscope and images acquired at 33 frames/s.  Cells 

then received 500 pM DNP-QD585 for 2 min and images again acquired at 33 frames/s. 

Images were acquired using a 436/10 nm BP excitation filter and emission was collected 

through a 500 nm LP filter, which sent light to the two-color image splitter equipped with 

a 600 nm dichroic mirror and 655/40 nm and 585/20 BP emission filters.  The resulting 

image series were analyzed and diffusion coefficients calculated using previously 

described single particle tracking algorithms (Andrews, Lidke et al. 2008). 

3.7.5.3 Kinetics of immobilization assay 
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RBL-2H3 cells were labeled with a 1:1 mixture of 500 pM QD625- and QD705-IgEanti-

DNP for 10 min at 37°C in HBSS, washed, and then incubated at 37°C for 30 min with 140 

nM IgEanti-DNP.  Cells were washed and imaged at 20 frames/s at 35°C in 200 µl HBSS for 

~10 seconds, at which point 100 µl of 3X DNP-BSA was added at the indicated 

concentrations. Images were acquired with a 436/10 nm BP excitation filter, and a 500 

nm LP emission filter which sent light to a two-color image splitter equipped with a 655 

nm dichroic mirror and 625/26 nm and 710/40 nm BP emission filters.  Instantaneous 

diffusion coefficients were calculated as described in (Andrews, Lidke et al. 2008) and 

the traces from multiple cells (resting, n=51; 10 μg/ml, n=11; 1 μg/ml, n=9; 0.1 μg/ml, 

n=10; 0.01 μg/ml, n=10; 0.001 μg/ml, n=16) averaged to generate the final plot. 

3.7.6 Confocal imaging of IgEanti-DNP and IgEanti-dansyl 

RBL-2H3 cells were grown overnight on 15 mm round glass coverslips in MEM +10% 

FBS containing 0.5 µg/ml each Alexa488-IgEanti-DNP and Alexa647-IgEanti-dansyl.  Cells 

were then washed with HBSS and stimulated with either 0.1 µg/ml DNP-BSA, dansyl-

BSA or both (0.05 µg/ml each) in HBSS for 1 min.  After stimulation, cells were washed 

in HBSS and fixed by 20 min incubation in 2% paraformaldehyde.  After fixation, cells 

were mounted in ProLong AntiFade Gold® and imaged on an LSM510 META imaging 

system equipped with a 63× 1.4 N.A. oil objective.  Excitation was provided by a 488 nm 

Argon laser alternated with a 633 nm HeNe laser for independent excitation of Alexa 488 

and Alexa 633, respectively.  Emission was collected through a 545 nm dichroic mirror 

and 505-530 nm BP or 650 nm LP emission filters for Alexa 488 and Alexa 633, 

respectively.  The confocal slice thickness was 1 µm. 
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3.7.7 Hyperspectral imaging microscopy 

Cells were grown by overnight culture on 15 mm diameter round coverslips.  Cells were 

labeled by 15 min incubation at 22°C with a mixture of QD655-, QD625-, QD585-, 

QD565-, and QD525-IgE at 400 pM each in HBSS.  Cells were then washed with HBSS 

before mounting in HBSS +/- 0.1 µg/ml DNP-BSA on 25x75 mm glass slides using a 2 

mm rubber spacer.  Samples were then imaged by hyperspectral microscopy as described 

in (Sinclair, Haaland et al. 2006).  Within two minutes of mounting the sample, confocal 

image series consisting of 60 frames at a rate of 0.25 Hz were acquired.  The resulting 

images series were then subtracted for dark current and despiked (Sinclair, Haaland et al. 

2006) and displayed using a custom image analysis program (Sinclair, Haaland et al. 

2006).  Regions of interest could then be manually selected and the spectra from these 

regions obtained. 

3.7.8 Electron microscopy 

RBL-2H3 cell monolayers on glass coverslips were primed by overnight incubation with 

5 nM IgEanti-DNP.  Cells were then washed with PBS and stimulated with the indicated 

doses of DNP-BSA for the indicated times.  Cells were fixed for seven min in 0.5% 

paraformaldehyde and membrane sheets prepared as described in (Wilson, Pfeiffer et al. 

2000).  Electron micrographs were acquired using a transmission electron microscope 

(Hitachi H600).  Probe identification and statistical analyses were performed as described 

in (Zhang, Leiderman et al. 2006).  For plotting cluster size as a function of time and 

antigen dose, we employed a cut-off distance of 50 pixels (43 nm), such that any 
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receptors within the cutoff distance of each other were considered part of the same 

cluster. 

3.7.9 Flow cytometry 

RBL-2H3 cells were primed in suspension by 2 hour incubation at 37°C with 2 µg/ml 

Alexa488-IgE in MEM + 10% FBS.  Cells were then pelleted and washed once with 

HBSS.  After washing, cells were incubated in the presence or absence of 10 µM PP2 for 

10 min in HBSS, followed by stimulation for 2 or 10 min with the indicated doses of 

DNP-BSA, in the presence or absence of 10 µM PP2 in HBSS.  Samples were then split  

into two and one sample for each condition was subjected to a light acid strip by 10 min 

incubation at 4°C in 0.5 M NaCl and 0.2 M acetic acid (pH 2.7) to remove any surface-

accessible Alexa488-IgE.  All samples were then fixed by 20 min incubation in 2% 

Paraformaldehyde at 25°C in PBS, and Alexa488 fluorescence read by flow cytometry.  

The ratio of the acid-stripped and non-stripped samples for each condition was then used 

to calculate the percentage of internalized IgE-FcεRI.   

3.7.10 Statistical analysis 

Due to the wide range of values and nonparametric distribution of D1-3, values are 

reported as medians and interquartile range is provided as a measure of statistical 

dispersion.  Statistical comparisons between data sets were made using the Kolmogorov-

Smirnov test unless otherwise noted and significance was defined as p<0.05. 

3.7.11 Image Processing   
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All image processing was performed using Matlab (The MathWorks, Inc., Natick, MA) 

in conjunction with the image processing library DIPImage (Delft University of 

Technology).  Descriptions of specific analysis routines has been reported previously 

(Andrews, Lidke et al. 2008). 

3.8 ACKNOWLEDGEMENTS 

This work was supported by NIH grants R01 GM49814, R01 AI051575 and P20 GM 

67594, the Oxnard Foundation, ACS IRG 192, and by the Sandia SURP program.  Sandia 

is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin 

Company, for the United States Department of Energy under contract DE-AC04-

94AL85000.  Nicholas Andrews was supported by NSF IGERT DGE-0549500 and the 

UNM-SOM MD/PhD Program.  We thank Sheli Ryan for cell culture assistance. The 

UNM Cancer Center Fluorescence Microscopy Facility received support from NIH grants 

S10 RR14668, S10 RR19287, S10 RR016918, P20 RR11830 and P30 CA118100 and 

from NSF grant MCB9982161.  Electron micrographs were generated in the University 

of New Mexico Electron Microscopy Facility, which received support from NIH grants 

P20 GM067594, S10 RRI5734 and RR022493.   



   

 87

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4:  SUMMARY, IMPLICATIONS, AND FUTURE 

STUDIES 
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4.1 SUMMARY 

 The preceding studies were designed to address the hypothesis that 

immobilization of FcεRI was the inciting event that triggered a cellular response and 

induced downstream signaling and large-scale reorganization of FcεRI into large 

aggregates on the cell surface.  To address this hypothesis, we developed QD based 

probes for use in single molecule tracking experiments that enabled us to rigorously 

assess the diffusion and topography of FcεRI in the context of signal initiation.  From 

these experiments, we not only characterized the diffusion of FcεRI, but also uncovered a 

new role for the actin cytoskeleton in influencing diffusion of transmembrane proteins on 

micron length scales.  Our experiments demonstrate that receptor immobilization is not 

required for antigen-induced FcεRI signaling, yet appears to be required for receptor 

internalization.  The processes of receptor aggregation, immobilization, and 

internalization did not appear to require downstream signaling.  In light of the 

experiments described here, aggregation and immobilization can be best explained by 

extensive cross-linking of receptors that occurs at high doses of multivalent antigen.  

However, the mechanism by which IgE-FcεRI internalization occurs merits further study. 

4.1.1 Chapter 2 summary 

While there had been multiple studies examining the diffusion of FcεRI, only a 

handful had done so at the level of individual receptors (Feder, Brust-Mascher et al. 

1996; Barisas, Smith et al. 2007).  However, these prior studies were hindered by either 

large probes (Feder, Brust-Mascher et al. 1996), known to significantly alter membrane 

protein diffusion (Saxton and Jacobson 1997) or labeling at non-physiological 
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temperatures (Barisas, Smith et al. 2007), which has since been shown to markedly 

reduce membrane protein diffusion (Suzuki, Ritchie et al. 2005).  We therefore developed 

a QD-based probe, QD-IgE, which would not significantly affect FcεRI diffusion due to 

its small size (Dahan, Levi et al. 2003), yet would enable rapid acquisition of images over 

long time periods due to its brightness and photostability (Dahan, Levi et al. 2003; Lidke, 

Lidke et al. 2005).  We performed our labeling and measurements at physiological 

temperatures (37°C).  In characterizing our QD-IgE probe, we determined that it was 

functionally monovalent (Figure 2.1, S2.1) and still able to bind antigen and activate cells 

(Figure 2.1 and Video 2.1).  We were able to calculate diffusion coefficients under a 

variety of conditions (Table 2.1) and detected the expected four modes of diffusion:  free, 

restricted, directed, and immobile (Figure S2.3).   

During our measurements of FcεRI diffusion, we noted what appeared to be 

evidence of attraction between FcεRI (Video 2.2).  Taking advantage of multi-color 

imaging, we examined this behavior more closely and determined that it was consistent 

with co-confinement of multiple FcεRI in the same sub-region of the plasma membrane; 

not attractive forces between receptors (Figures 2.2, 2.3 and S2.4).  Since the actin 

cytoskeleton had previously been implicated in restricting diffusion of plasma membrane 

components (Jacobson, Sheets et al. 1995; Kusumi, Nakada et al. 2005), we transfected 

RBL-2H3 cells with GFP-actin in order to simultaneously visualize FcεRI diffusion and 

actin dynamics.  We observed that actin filament bundles defined dynamic, micron-sized 

domains that reorganized on the time scale of seconds, transiently confining mobile 

receptors (Figure 2.4 and Videos 2.3, 2.4, and 2.5).  Our analyses indicated this 
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confinement was due to actin acting as a physical barrier to diffusing receptors (Figure 

2.5).   

To determine if this transient receptor co-confinement played a role in antigen-

induced immobilization of FcεRI, we developed an assay that enabled us to follow the 

kinetics of this process in real time.  Using this assay, we showed that receptors become 

immobilized within seconds of cross-linking and that disruption of the actin cytoskeleton 

results in delayed immobilization kinetics and an increased diffusion rate of cross-linked 

clusters (Figure 2.6). These results implicated actin in membrane partitioning that not 

only restricts diffusion of membrane proteins, but also dynamically influences their long-

range mobility, sequestration, and response to ligand binding. 

4.1.2 Chapter 3 summary 

It had long been observed that treatment with multivalent antigen lead to a rapid 

immobilization of IgE-FcεRI (Menon, Holowka et al. 1986; Mao, Varin-Blank et al. 

1991; Pecht, Ortega et al. 1991; Pyenta, Schwille et al. 2003).  Given that several studies 

had demonstrated a link between a cross-linking agent’s ability to induce receptor 

immobilization and its ability to trigger degranulation, it was believed that the two were 

causally related (Menon, Holowka et al. 1986; Mao, Varin-Blank et al. 1991; Pecht, 

Ortega et al. 1991; Pyenta, Schwille et al. 2003).  To directly address the causal 

relationship between antigen-induced FcεRI immobilization, signal initiation, and 

internalization, we again turned to QD based probes and single molecule tracking.   

Using the kinetics of immobilization assay we had developed previously 

(Andrews, Lidke et al. 2008), we demonstrated that the kinetics and extent of 
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immobilization are highly dependent on antigen concentration and that the extent of 

immobilization does not appear to correlate with degranulation (Figure 3.1).  Using TEM, 

we were able to quantify receptor clustering as a function of antigen dose and 

demonstrated a very close correlation between the extent of clustering (Figure 3.2) and 

the kinetics and extent of immobilization (Figure 3.1).   

Early reports had suggested that IgE dimers were capable of eliciting large-scale 

reorganization of FcεRI into very large aggregates, leading to speculation that initial 

signaling by small oligomers of receptors signaled a larger reorganization of receptors 

into aggregates (Menon, Holowka et al. 1984).  To examine this possibility, we used the 

Src-family kinase inhibitor PP2, which inhibits the earliest steps in FcεRI signaling 

(Figure 3.3C and D).  We found that PP2 treatment did not significantly affect antigen-

induced immobilization, aggregation, or internalization of FcεRI (Figures 3.3E, F and 

S3.3), indicating that none of these processes are dependent upon downstream signaling.   

While the vast majority of experiments are performed by priming cells with a 

single specificity of IgE, in the physiological state, it is estimated that <10% of FcεRI on 

a cell are specific for the same antigen (Johansson, Oman et al. 2006).  Consistent with 

this, it has been shown in the laboratory that only ~5% of surface FcεRI need to be 

engaged to produce a secretory response (Ortega, Schweitzer-Stenner et al. 1988).  

Together, these observations raise the possibility of signal amplification between engaged 

and non-engaged FcεRI as has been described in other receptor systems (Verveer, 

Wouters et al. 2000; Irvine, Purbhoo et al. 2002).  By employing two different 

specificities of IgE, we showed that each specificity forms clusters independently and 
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that cross-linking one subset of receptors does not significantly affect the diffusion or 

distribution of non-cross-linked receptors (Figure 3.4).   

Our observations that IgE-FcεRI did not appear to markedly slow its diffusion 

upon exposure to low, activating doses of multivalent antigen led us to attempt to directly 

visualize these small clusters using hyperspectral microscopy.  The hyperspectral 

microscope designed and built by our collaborators at Sandia National Laboratories, 

enabled us to simultaneously excite and spectrally discriminate individual QDs, even 

when they were from the same “class” of QDs (e.g. Qdot® 565) (Lidke, Andrews et al. 

2007). We labeled RBL-2H3 cells with a mixture of QD525-, QD565-, QD605-, QD625-, 

and QD655-IgE, and imaged the cells in the presence and absence of a low, activating 

dose of multivalent antigen.  We observed that small, antigen-induced clusters of at least 

three IgE-FcεRI remain freely mobile on the cell surface under conditions in which 

activation is occurring (Figures 3.5 and S3.5). 

To corroborate these findings, we developed a second QD-based probe to enable 

us to monitor the diffusion of multivalent antigen upon binding to IgE-FcεRI on the cell 

surface.  Using this DNP-QD we observed that it too remains mobile on the cell surface 

at activating doses (Figure 3.6).  In further support of the signaling competence of small, 

mobile IgE-FcεRI clusters, we also performed simultaneous tracking of QD-IgE and Ca2+ 

ratio imaging at various doses of multivalent antigen.  These experiments showed Ca2+ 

oscillations in response to low doses of DNP-BSA while QD-IgE-FcεRI remained highly 

mobile (Figure S3.2).  Altogether, our results demonstrate that antigen-induced 

immobilization is due solely to formation of large receptor clusters and is required for 

FcεRI internalization; not signal initiation. 
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4.2 IMPLICATIONS 

4.2.1 Implications for FcεRI diffusion and plasma membrane structure 

 The results presented in Chapter 2 have significant implications for both the 

diffusion of FcεRI, and for our understanding of plasma membrane structure.  In the case 

of FcεRI, our results provide rigorous quantification of receptor diffusion under 

physiological labeling and imaging conditions.  In addition, the experiments detailing the 

kinetics of antigen-induced immobilization provide a unique dataset for following 

receptor activation in real time.  All of these data can be used to facilitate mathematical 

simulations that will enable us to further probe the complex process of FcεRI activation 

on spatiotemporal scales that remain inaccessible to modern biological techniques. 

Perhaps most striking are the insights into membrane organization provided by 

the data presented in Chapter 2.  It is true that actin has long been implicated in 

modulating receptor diffusion over time scales of milliseconds and distances of 

nanometers (Kusumi, Sako et al. 1993; Jacobson, Sheets et al. 1995; Kusumi, Nakada et 

al. 2005).  These previous studies have provided an explanation for the phenomenon that 

diffusion of transmembrane proteins is typically about 50-fold slower when measured in 

actual cell membranes compared to measurements made in artificial bilayers (Kusumi, 

Nakada et al. 2005).  This is believed to be due to rapid diffusion within nanometer scale 

actin-defined domains coupled with an occasional “hop diffusion” event in which the 

membrane protein (or lipid) crosses into an adjacent actin-defined domain (Kusumi, 

Nakada et al. 2005).  Since the diffusion within actin-defined domains consists of many 

rapid, short displacements, measurements acquired at slower frame rates only detect the 
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hops between compartments and therefore return an apparently slower diffusion rate.  

These actin-defined domains are generally considered to exist as a static meshwork and 

have only been directly visualized in fixed samples by EM (Morone, Fujiwara et al. 

2006).  Since nanometer scale features are currently unable to be resolved in live 

samples, the dynamic behavior of these structures remains unclear.  However, given that 

the micron-scale confinement we observed appeared to be due to actin acting as a 

physical barrier, and that this physical barrier explanation is also believed to underly 

nanometer scale confinement (Kusumi, Nakada et al. 2005), it is intriguing to consider 

that the highly dynamic behavior of micron scale actin structures may also extend to 

nanometer scale structures.   

Regardless of nanometer scale membrane dynamics, that seemingly similar 

processes are at work over micron distances adds an additional layer of complexity to our 

evolving understanding of membrane architecture.  While this level of organization has 

only so far been described in our work, it is our expectation that micron-scale 

confinement by dynamic actin structures will prove to be at work in a wide variety of cell 

types and receptor systems.  As for its functional role, we speculate that this co-

confinement may facilitate productive encounters between receptors in the context of 

multivalent antigen binding.  Our results indicating that the kinetics and extent of 

antigen-inuced immobilization are dependent on an intact actin cytoskeleton (Figure 2.6) 

suggest that this may in fact be the case.  However, it is true that a wide variety of 

cellular processes rely on actin, and it could very-well be that actin facilitates antigen-

induced receptor clustering by some as yet unclear mechanism.  At a minimum, the 

results described in Chapter 2 describe a heretofore unappreciated role for the actin 
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cytoskeleton in dynamically modulating diffusion of transmembrane proteins over 

micron-length scales.   

4.2.2 Implications for multichain immune recognition receptor activation 

 The results presented in Chapter 3 serve to directly address the main aim of our 

overall hypothesis; namely that antigen-induced immobilization of FcεRI serves as the 

inciting event that initializes signaling, reorganization into large receptor clusters, and 

internalization.  Given the results presented in Chapter 3, the initial hypothesis clearly 

requires some refinements.  This hypothesis seemed quite plausible given the bulk of 

studies which showed a clear link between extent of immobilization and extent of 

degranulation (Menon, Holowka et al. 1986; Mao, Varin-Blank et al. 1991; Pecht, Ortega 

et al. 1991; Pyenta, Schwille et al. 2003).  However, nearly all of the studies of FcεRI 

diffusion to date have employed relatively high doses of cross-linking agent, with one 

notable exception.  The early work by Schlessinger, et al. indicated that when FITC-IgE-

FcεRI was crosslinked with low, activating levels of anti-FITC antibodies, the receptors 

remained mobile on the cell surface (Schlessinger, Webb et al. 1976).  This result is in 

accordance with our rigorous examination of the relationship between diffusion and 

signal initiation, which calls for a new paradigm for FcεRI signaling. 

Our results definitively eliminate a role for downstream signaling in clustering, 

immobilization, and internalization of FcεRI and place control of these processes solely 

on antigen concentration and valency.  At low concentrations and/or valency, antigen 

binding induces the formation of small oligomers of IgE-FcεRI, which remain stably 

associated as they continue diffusing in the membrane.  These small, mobile clusters 
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actively signal.  As cross-linking continues with higher concentrations of antigen, these 

small oligomers coalesce into large aggregates which, due solely to their large size, 

become effectively immobilized on the cell surface.  The signaling state of these large 

aggregates remains to be definitively determined, however our data suggests that they do 

not signal effectively.  The mere presence of these large, immobile aggregates is 

sufficient to trigger their internalization through an as yet undefined mechanism. 

This “cluster-size centric” model of FcεRI signaling also appears to be consistent 

with observations of TCR signaling in the context of the immune synapse.  When 

encountering surface-associated antigen, T-cells form a highly organized, radially 

symmetric contact with the surface or antigen presenting cell (Grakoui, Bromley et al. 

1999).  This organization greatly facilitates study of TCR signaling by providing micron-

scale segregation of receptors in various states of activation.  Studies of the T-cell 

immune synapse have revealed that microclusters of TCR form in the periphery of the 

cell-surface contact and signal actively as they migrate toward the center of the contact 

where the mircoclusters coalesce, immobilize, cease signaling and are internalized 

(Kaizuka, Douglass et al. 2007).  The striking organization of the immune synapse would 

lead one to speculate that it is this cellular-level organization that dictates the signaling 

activity, mobility, and internalization of ligand-bound TCR.  However, given the 

aforementioned similarities between TCR and FcεRI signaling, and our results 

demonstrating that cluster size appears to be the primary driver of these processes in the 

FcεRI system, it seems reasonable to speculate that cluster size is also dictating activation 

state and mobility of the TCR. 

4.3 FUTURE STUDIES 
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4.3.1 Future Study 1:  Probing the dynamics of non-IgE-bound FcεRI 

 While the studies detailed here have provided a wealth of insight into the 

dynamics of IgE-FcεRI, there has been very little work on the behavior of FcεRI when it 

is not bound to IgE.  Labeling IgE with fluorescent molecules ex-vivo and then adding 

these fluorescent derivates to cells expressing FcεRI has provided a highly convenient 

method of probing FcεRI behavior.  However, due to this convenience, very few 

investigators have developed methods to label FcεRI without the use of IgE.  Indeed, 

until recently it was assumed that IgE had no effect on FcεRI other than to confer the 

receptor with the ability to bind antigen.  Recent studies have shown that IgE binding 

alone mediates a wide range of effects, including stabilization of FcεRI at the cell 

surface, enhanced proliferation, cytokine secretion, and, in some cases, degranulation 

(Kitaura, Song et al. 2003; Kawakami and Kitaura 2005).  Perhaps the most intriguing of 

these is the stabilization of FcεRI at the cell surface.  In the presence of IgE, the number 

of FcεRI on the cell surface increases dramatically (Yamaguchi, Lantz et al. 1997).  This 

increase is not dependent upon protein synthesis and is therefore believed to be due to a 

decrease in the rate of receptor internalization (Yamaguchi, Lantz et al. 1997).  Exactly 

how IgE mediates this effect is not known, due in large part to the dearth of knowledge 

about the behavior of the non-IgE-bound FcεRI. 

 To address the behavior of non-IgE-bound FcεRI, we propose using a genetically 

encoded tag fused to the amino terminus of the α-subunit.  An 11 amino acid tag 

(DSLEFIASKLA) can serve as a target sequence for phosphopantetheinyl transferase 

(PPT) (Yin, Straight et al. 2005).  The endogenous function of this enzyme is to transfer 

acyl chains from acyl-CoA to the serine residue in the target sequence within certain 
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proteins.  This system can be adapted by engineering organic molecules with a 

fluorescent tag or biotin linked to CoA.  When these CoA derivatives are added to cells 

containing a protein with the DSLEFIASKLA sequence in the presence of PPT, the 

fluorescent tag is transferred from CoA to the target sequence, covalently linking the 

organic dye to the protein of interest (Yin, Straight et al. 2005). 

 This so-called acyl carrier protein (ACP) labeling system could be used to 

covalently label the non-IgE-bound FcεRI and its dynamics and recycling could be 

monitored by fluorescence microcopy.  By double-transfecting cells with 

DSLEFIASKLA-FcεRIα and GFP-clathrin, cells could be partially loaded with 

fluorescent IgE and the extent of association of IgE-FcεRI and FcεRI alone with clathrin 

coated pits could be quantified, revealing any potential differences in clathrin-mediated 

endocytosis of the two forms of the receptor. 

4.3.2 Future Study 2:  Dose dependent temporal regulation of FcεRI signaling 

 The studies detailed in Chapter 3 showed a clear relationship between antigen 

dose and the size of clusters formed.  In the cluster-centric model we proposed, small 

oligomers signal actively and larger aggregates do not signal efficiently.  It would be 

useful to examine this aspect of the model through western blot studies.  RBL-2H3 cells 

would be stimulated with various doses of DNP-BSA (0.001 to 10 µg/ml) and the cells 

lysed at several timepoints (0.5, 1, 2, 5, 10, 20, and 30 min).  From these lysates, FcεRI 

would be immunoprecipitated and analyzed by SDS-PAGE.  The resulting blots could 

then be probed with antiphosphotyrosine antibodies and a time course of FcεRI 

phosphorylation could therefore be obtained for each dose of antigen.  If the model is 
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correct, one would expect the lowest antigen doses to produce somewhat lower levels of 

phosphorylation that would persist out to the longer time points.  In contrast, the higher 

levels of antigen, which elicit slightly less secretion, would be expected to show rapid 

receptor phosphorylation followed by a rapid decline in phosphorylation, indicating 

signal termination.  The differences in signal duration elicited by the various antigen 

doses may underlie the associated differences in degranulation, with lower doses 

producing robust degranulation and higher doses resulting in an attenuated secretory 

response. 

4.3.3 Future Study 3:  Mechanism of FcεRI internalization 

 In the EM studies of FcεRI signal initiation, multivalent antigen treatment results 

in receptors localizing to structures that strongly resemble clathrin coated pits (Pfeiffer, 

Seagrave et al. 1985; Wilson, Pfeiffer et al. 2000).  However, studies attempting to 

specifically address the role of clathrin coated pits in FcεRI internalization have yielded 

results that appear to conflict with the EM data.  One study using confocal microscopy 

and surface-immobilized antigen failed to detect a recruitment of clathrin to sites of 

FcεRI clustering (Santini and Keen 1996).  Additionally, when siRNA was used to knock 

down clathrin and AP-2, no appreciable differences in antigen-induced internalization of 

FcεRI were observed (Fattakhova, Masilamani et al. 2006).  Further clouding the issue 

was a study in which various truncation mutants of FcεRI were assessed for their ability 

to be internalized and it was discovered that internalization was not dependent upon the 

bulk of the cytoplasmic domains of FcεRI (Mao, Varin-Blank et al. 1991).  Add to this 

our own data from Chapter 3 which showed that internalization was not at all dependent 
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on downstream signaling (Figure 3.3), and one is left with a clear sense that this is a 

process that warrants further investigation. 

 To further investigate the role played by clathrin in FcεRI internalization, we 

could again turn to cells transfected with GFP-clathrin.  By loading these cells with 

fluorescent IgE and then stimulating them with various doses of multivalent antigen 

(possibly DNP-QD for three-color experiments) and imaging by confocal microscopy, 

the extent of colocalization between aggregated IgE-FcεRI and GFP-clathrin could be 

quantified.   

 To follow up on the siRNA studies which knocked down clathrin, other 

components of the internalization machinery, such as caveolin and dynamin could be 

systematically knocked out and their effects on FcεRI internalization evaluated.   

4.4 CONCLUDING REMARKS 

 In this study, we have rigorously quantified the dynamics and topography of 

FcεRI in the context of signal initiation.  In the process, we identified previously 

unrecognized co-confinement of FcεRI by dynamic, micron-scale features of the actin 

cytoskeleton and provided a model by which this new spatiotemporal level of membrane 

organization dovetails with existing conceptions of membrane architecture on the 

nanometer scale.  Using state-of-the-art live cell imaging techniques, QD-based probes, 

and hyperspectral microscopy, we have systematically and thoroughly examined the role 

of receptor clustering, mobility, and internalization in the regulation of FcεRI signaling.  

These studies have provided definitive answers to long-standing questions in the field of 
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FcεRI signal initation and have formed the basis for a new cluster-centric paradigm for 

regulation of multichain immune recognition receptor signaling. 
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APPENDIX A. SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

A.1 Supplementary Figures for Chapter 2 

Figure S2.1 QD-IgE is 
predominantly monovalent. A 
number of analyses were performed 
to assess the valency of QD-IgE.  In 
addition to the degranulation and 
biotinylation assays described in the 
main text, we carried out EM 
experiments (see Supplementary 
Methods for more detail) as shown 
here. (a) Representative electron 
micrograph of QD-IgE + DNP-BSA-
gold.  Gold particles (5 nm) are 
marked with white circles. Scale bar 
represents 100 nm. (b) Graph 
showing the distribution of the number of DNP-BSA-gold probes within 60 nm of QD-IgE (n = 107).  We 
reason that if QD-IgE were predominantly monovalent, then each complex would have a maximum of two 
available binding sites for DNP-BSA-gold (IgE valency for DNP = 2).  In fact, we find that the majority of 
the QDs have only one gold particle nearby, further supporting the monovalent nature of QD-IgE.  

Figure S2.2 Influence of temperature on
diffusion.  Log-log plot of diffusion coefficient
(D) versus restricted region size (L) for
trajectories the restricted diffusion model at 22°C
(filled squares) and 35°C (open circles). The
plotted D and L values were determined by
fitting the restricted diffusion equation MSD =
offset + (L2/3)(1-exp(-Δt / τ)) (ref (Destainville
and Salome 2006)), where D=L2/12τ to the first
10% of the data points in each MSD plot. It is
apparent that at physiological temperature, D is
faster and L is larger than at ambient
temperature. 

Figure S2.3 QD-IgE-FcεRI exhibits four 
motional modes.  Representative trajectories 
of QD-IgE-FcεRI are shown. We observed four 
types of diffusion for FcεRI in resting cells at 
35°C: free (65%), restricted (23%), immobile 
(4%) and directed (8%).  Trajectories were 
classified by a slight modification of the 
method described in (Kusumi, Sako et al. 
1993). 
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Figure S2.4 Analysis of simulated receptor dimerization or co-confinement.  Particles 
undergoing free Brownian diffusion (D = 0.07 μm2/s) were tracked under dimerising (a) and non-
dimerising (b) conditions. Parameters for the simulation included probability of binding (0.5), binding 
interaction distance (25 nm), localization accuracy (15 nm) and QD blinking. (a) Left: Schematic showing 
the displacement vectors of two receptors that form a transient (up to 200 ms) dimer and undergo correlated 
motion. Right: Analysis of simulations of transient dimer formation.  Note the pronounced decrease in the 
uncorrelated jump distance as diffusing particles approach each other to within the interaction distance.  (b) 
Left: Schematic depicting the displacement vectors of two particles that maintain proximity due to 
confinement in a region (black square) but do not show correlated motion.  Right: Analysis of simulations 
under the same conditions as a, except that the probability of binding was set to zero.  Note that the 
uncorrelated jump distance does not vary significantly as a function of separation distance.  Thus, even 
when these particles are close enough to show emission overlap, the analysis shows that their motion is not 
correlated.  Given that the mechanism of decreased diffusion rate upon oligomerization is poorly 
characterized in live cells, we did not attempt to include this phenomenon in our simulations and therefore 
the jump magnitude does not vary in these analyses. 
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Figure S2.5 Membrane-coverslip distance does not dictate QD-IgE-FcεRI diffusion.  (a-c) 
TEM image of an adherent RBL-2H3 cell taken perpendicular to the plane of adhesion (see Supplementary 
Methods).  Images in b and c are the left and right half, respectively, of the region depicted in a.  (d) TIRF 
image of GFP-actin (green) overlayed with trajectories of free QDs diffusing under the cell (magenta).  (e) 
TIRF image of cytoplasmic GFP (green) overlayed with QD655-IgE-FcεRI trajectories (magenta) (see 
Supplementary Methods).  Even regions closest to the coverslip (brightest GFP signal) do not exclude QD-
IgE-FcεRI.  Also note the highly disimilar patterns of GFP fluorescence in d and e; indicating that GFP-
actin intensity does not correlate with membrane-coverslip distance as measured by cytoplasmic GFP 
intensity.  (f-q) TIRF images of adherent, RBL-2H3 cells expressing GFP-actin (f, g, j, k, n, and o) or 
cytoplasmic GFP (h, i, l, m, p, and q) in the presence of a soluble, extracellular dye.  First and third 
columns show images of GFP-actin (f, j, and n) and cytoplasmic GFP (h, l, and p) signal, respectively.  
Second and fourth columns (g, i, k, m, o, and q) show signal from a soluble fluorophore which diffuses 
underneath the cells and is brighter in regions where there is more space between the coverslip and cell 
membrane and dimmer in regions of close contact.  Images are a mean of 50 time frames.  A cell mask was 
generated from the GFP image and applied to f-i to remove the high background dye fluorescence 
surrounding the cell.  Note that the large (~300kD) fluorophore has access to nearly all of the area 
underneath the cell.  Selected GFP-actin structures (f, j, and n) or regions of cytoplasmic GFP intensity (l-
q) are outlined in white and superimposed on both the GFP image and the image of the soluble fluorophore 
to facilitate comparisons between the two images.  All images have been background subtracted.  (r-w) 
Confocal images of fixed RBL-2H3 cells expressing GFP-actin enabling comparison of GFP-actin 
fluorescence (r, u, and green in t and w) with β3 or VLA4 (α4) integrin staining (s, v, and magenta in t and 
w) at the adherent surface.  Confocal slice thickness is 1 µm.  Images have been Gaussian filtered.  Scale 
bars represent 1 µm in a-d and r-w, 2 µm in e, and j-q and 5 µm in f-i. 
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Figure S2.5 continued 
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Figure S2.6 GFP-actin structure is visibly disrupted by latrunculin treatment.  Deconvolved 
TIRF image of an RBL GFP-actin cell after 10 minute incubation with 500 nM latrunculin B.  Note that 
less structure is apparent than in untreated cells (Figure S2.5a; Figure 4c in main text, and Supplementary 
Video 2. 4).  Scale bar represents 2 µm.  
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Figure S2.7 Electron microscopy of membrane sheets. Membrane sheets from the adherent surface 
of RBL cells (prepared as in reference (Pfeiffer and Oliver 1994) with the exception that cells were grown 
on EM grids) expressing GFP-actin.  Gold particles label GFP-actin (arrowheads in a-c), which is located 
primarily at cytoskeletal junctions in the untreated (a) and PMA treated (50 nM for 30 min) (c, d) cells. 
This pattern is consistent with earlier observations(Wilson, Pfeiffer et al. 2001).  Large actin bundles 
(arrows in d) likely correspond to GFP-actin structures visible by fluorescence micrsoscopy.  After 
treatment with latrunculin B (10 µg/ml for 60 min), GFP labeling is dramatically decreased (indicating a 
disruption of the actin filaments), but cable-like structures are still present (presumably composed of an 
intermediate filament protein) (b).  Scale bars represent 100 nm in a-c and 500 nm in d.  
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Figure S2.8 Cartoon model of receptor movement through the membrane architecture.  
Large actin bundles (green filaments), as observed in fluorescence microscopy, partition the membrane into 
large, micron-sized regions.  Within this larger structure is a fine meshwork of cytoskeleton composed of 
intermediate filaments (dark grey) with actin at the junctions (as seen in EM) that form nano-scale domains.  
Additionally, membrane rafts (lipid rafts/protein islands, light grey) form specialized domains.  Sample 
receptor trajectories (red, orange) are overlayed on this landscape, to demonstrate ways that these various 
components can restrict diffusion. Though a single snapshot of the membrane landscape is depicted here, in 
reality it is dynamically changing.    
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A.2 Supplementary Video Legends 

Video 2.1 RBL-2H3 cell activation through QD-IgE. RBL-2H3 cell stably expressing 

FcεRIγ-mCFP (left panel), primed with 1 nM QD-IgE (middle panel) and stimulated with 

14 nM DNP-BSA.  Receptor aggregation and internalization are readily apparent in the 

fluorescence channels, and cell ruffling and spreading can be seen in the DIC image 

(right panel).  Images acquired at 37°C at 2 frames/min; playback is 5 frames/s.  

Fluorescence channels have been Gaussian filtered.  Scale bar represents 10 μm.  

 

Video 2.2 Co-confinement of multiple QD-IgE-FcεRI.  RBL-2H3 cell labelled with 

100pM QD655-IgE for 10 min at 37°C.  Images acquired at 35°C at 33 frames/s, 

playback is 33 frames/s.  Scale bar represents 5 μm.  

 

Video 2.3 RBL-2H3 cells were transfected with GFP-actin, labelled with QD655-IgE and 

treated with PMA.  Images of the two spectral channels were collected simultaneously on 

the same CCD camera at 33 frames/s and the two channels were made coincident by 

shifting the GFP-actin channel (green) using a Fourier based shift algorithm.  SPT was 

performed on the QD-IgE images as described in the text.  A small ~ 4x4 micron area 

centered on the region containing a QD-IgE trajectory was selected for further 

processing.  The “green” channel containing the GFP-actin signal was de-noised and 

deconvolved as described.  For improved visual clarity, the found positions of the tracked 

QD-IgE were used to generate a 2D Gaussian representation of the particle (magenta) and 
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were combined as a color overlay with the actin time series to generate a two-color 

movie.  Playback is 10 frames/s.  Scale bar represents 1 micron. 

 

Video 2.4 Restricted receptor diffusion on untreated RBL-GFP-actin cells.  Same image 

processing details as in Video 2.3.  Playback is 10 frames/s.  Scale bar represents 1 

micron. 

 

Video 2.5 As described in the text, a 100 frame time series image was collected by 

imaging the top of the cell with a Zeiss 510 confocal microscope.  RBL-2H3 cells were 

transected with GFP-actin (green) and labelled with QD-IgE (magenta) and were 

otherwise untreated.  Emission was collected with a 545 nm dichroic mirror splitting 

emission to a 505 LP emission filter for GFP and the META detector was used as a 

bandpass filter (625-689 nm) to collect QD655 emission.  Images were taken with 2× 

averaging, giving a final rate of 1 frame/s.  Each frame of the GFP-actin image was de-

noised using a wavelet based filter as described for the initial de-noise step in(Rooms, 

Philips et al. 2005).  SPT was performed on the QD-IgE images as described in the text.  

For improved visual clarity, the found positions of the tracked QD-IgE were used to 

generate a 2D Gaussian representation of the particle (magenta) and were combined as a 

color overlay with the actin time series to generate a two-color movie.  Playback is 10 

frames/s.  Scale bar represents 5 μm.  
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A.3 Supplementary Methods 

A.3.1 EM analysis of QD-IgE valency   

Solutions of 1nM QD-IgE or QD were prepared in PBS, 1% BSA and incubated on EM 

grids (formvar and carbon coated, then glow-discharged) for 15 min at room temperature. 

Grids were rinsed with PBS, then incubated with DNP-BSA-5nM gold (in PBS, 1% 

BSA) for 30 min at room temperature, followed by a PBS wash and fixation with 2% 

glutaraldehyde.  Electron micrographs were acquired using a transmission electron 

microscope (Hitachi H600).  From these images, we calculated averages of 1.3 and 6.5 

DNP-BSA-gold particles per µm2 for QD only (43.5 µm2 total area) and QD-IgE (12.8 

µm2 total area) samples, respectively; indicating 20% non-specific binding of the DNP-

BSA-gold probe.  The average distances between each gold particle and the nearest QD 

were 92.7 and 51.4 nm for QD (n=57 gold particles) and QD-IgE (n=83 gold particles) 

samples, respectively.   

A.3.2 TIRF controls 

To ensure that interactions with the coverslip were not dictating QD-IgE-FcεRI motion, 

we performed several control experiments.  We monitored diffusion of unbound 

streptavidin QD underneath GFP-actin cells (Fig. S2.6a), acquired cross-sectional EM 

images of adherent RBL-2H3 cells (Fig. S2.5), tracked QD-IgE-FcεRI complexes on the 

top (non-adherent) surface of RBL GFP-actin cells using confocal microscopy (Fig. 2.4 

in main text) and on the bottom of RBL-GFP cells using TIRF microscopy (Fig. S2.6b), 

imaged RBL-GFPactin and RBL-GFP cells in the presence of soluble fluorophore (Fig. 

S2.7 and S2.8, respectively) using TIRF microscopy, and acquired confocal images of the 
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adherent surface of fixed GFP-actin cells stained for the α4 and β3 integrins (Fig. S2.9).  

All of these experiments indicate that there is enough room for diffusion of the QD-IgE-

FcεRI complex on the adherent cell surface and that the observed restriction of diffusion 

by actin structures is not merely a result of streic limitations due to membrane-coverslip 

proximity.   

A.3.2.1 Free QD diffusion. SPT conditions were the same as for QD-IgE-FcεRI, 

except that unlabelled QDs that diffused between the cell and coverslip were tracked. 

A.3.2.2 EM sections.  Cells were grown as monolayers on plastic tissue culture dishes, 

and fixed with 2% glutaraldehyde in 0.1 M sodium cacodylate buffer.  Cells were 

embedded in EPON and allowed to harden.  The EPON-embedded cells were separated 

from the plastic surface and then mounted perpendicular to the plane of adhesion for 

sectioning.  Sections were then processed and imaged as described previously(Pfeiffer, 

Seagrave et al. 1985). 

A.3.2.3 RBL-GFP cells.  RBL-GFP cells provided a means to visualize the 

topography of the adherent cell surface.  Regions of the cell closer to the coverslip would 

have a larger volume within the TIRF field and therefore appear brighter, whereas 

regions further from the coverslip would have less volume within the TIRF field and 

appear dimmer.  These cells were then labelled with 1 nM QD655-IgE and the QDs were 

tracked at 10 frames per second while simultaneously acquiring the cytoplasmic GFP 

signal. 

A.3.2.4 Free dye.  RBL-GFPactin or RBL-GFP cells were imaged at 5 frames/s in the 

presence of 20 nM Alexa Fluor® 647-R-phycoerythrin streptavidin (Invitrogen, 
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Carlsbad, CA) in the imaging buffer.  Regions of close contact between the cell and the 

coverslip exclude more of the soluble fluorophore and therefore have less fluorescence 

compared to regions which were further from the coverslip.  By simultaneously acquiring 

the GFP-actin signal and the soluble fluorophore signal, we could compare the 

distribution of GFP-actin with the distance between the membrane and the coverslip. 

A.3.2.5 Integrin staining.  RBL-2H3 cells expressing GFP-actin were grown on 15 

mm round glass coverslips and fixed with 2% paraformaldehyde for 20 minutes at room 

temperature.  Cells were then permeabilized by 10 minute incubation in 1% Triton and 

stained with anti-VLA4 (anti-α4; Endogen, Boston, MA) or anti-β3 (H-96; Santa Cruz 

Biotchnology, Inc., Santa Cruz, CA) primary antibodies, followed by incubation with 

Alexa555-conjugated secondary antibodies (Alexa Fluor® 555 F(ab’)2 fragment of goat 

anti-mouse IgG (Invitrogen, Carlsbad, CA) for anti-VLA4 and Alexa Fluor® 555 donkey 

anti-rabbit IgG (Invitrogen, Carlsbad, CA) for anti-β3).  Coverslips were then mounted in 

ProLong Gold® anti-fade reagent (Invitrogen, Carlsbad, CA) and imaged on a Zeiss 

LSM510 META confocal imaging system. 

A.3.3 Gene constructs and transfection 

The γ subunit of human FcεRI (Accession number NM 004106; GI 4758343) was 

initially cloned into the EcoRI/SalI site of pCMV6-XL5 (OriGene, Rockville, MD), 

followed by restriction digest-mediated transfer, in frame with mCFP, into pEF-DEST51 

expression vector (Invitrogen, Carlsbad, CA).  The pmaxGFP vector was supplied as part 

of the Cell Line Nucleofector Kit L (Amaxa, Gaithersburg, MD).  Transfection was 

accomplished by introduction of the vector into early passage RBL-2H3 cells using the 
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Amaxa Nucleofector II with Solution L and Program T-20 (Amaxa, Gaithersburg, MD).  

RBL-2H3 cells transiently transfected with pmaxGFP were imaged within 24 hours.  

Cells stably transfected with pEF-FcεRIγ-mCFP were selected with 2.5 µg/ml Blasticidin 

(Invitrogen, Carlsbad, CA), followed by fluorescence associated cell sorting (FACS) for 

CFP emission.  

A.3.4 Image Registration 

For two color imaging, fluorescence was separated into two spectrally distinct images by 

a dual color image splitter (OptoSplit II, Cairn Research, UK), which were captured 

simultaneously and side-by-side on a single CCD camera (iXon 897 or Luca, Andor UK). 

The spectral windows of the captured images were defined by a dichroic filter and two 

emission filters in the image splitter (565DXCR, D510/40m, D655/40m, respectively, 

Chroma, Rockingham, VT).  The relative translation of one image with respect to the 

other on the CCD camera was calibrated by imaging multi–fluorophore fluorescent beads 

(0.2 μm Tetraspeck, Invitrogen, Carlsbad, CA) that have an emission spectrum covering 

the two spectral windows.  The translation vector was found using an iterative cross-

correlation routine providing sub-pixel accuracy(Pham, Bezuijen et al. 2005).  The 

quality of the alignment (merging) of the two images was limited only by small 

aberrations present in one or both of the channels that lead to a typical 10 nm error 

towards the center of the image (where the alignment routine was biased) to a 30 nm 

error towards the edges of the images. 

A.3.5 Image Processing 
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All data analysis and image processing was performed within the MATLAB (The 

Mathworks Inc.) environment, including the DIPImage(Luengo Hendriks, Rieger et al. 

1999) image processing library.  Single particle tracking algorithms were coded in the c 

language and called from within MATLAB through a mex interface.  For essential speed 

optimization (~20 X speedup over a MATLAB implementation), the Richardson-Lucy 

deconvolution code was written using the CUDA toolkit(NVIDIA 2007) (NVIDIA, Santa 

Clara, CA) to allow calculation using a graphics processing unit (NVIDIA 8800 GTS), 

and was called from within the MATLAB environment through a mex interface.  

Confocal images were de-noised using a two dimensional wavelet based filter(Sendur 

and Selesnick 2002; Rooms, Philips et al. 2005).   

A.3.6 Single Particle Tracking 

Single particle trajectories were determined from the raw data sets using a three step 

process:  (1) identification of areas of interest; (2) Gaussian fitting; (3) building 

trajectories from coordinates.  This approach is similar to those described 

previously(Dahan, Levi et al. 2003; Bonneau, Dahan et al. 2005; Arndt-Jovin, Lopez-

Quintela et al. 2006; Hagen, Lidke et al. In Press). 

 A.3.6.1. Identification of areas of interest.  Each 2D image from a 3D data set was 

processed independently to find QD coordinates.  Areas of interest were contiguous 

regions of pixels that met two criteria:  (a) pixels had intensities greater than three times 

the standard deviation of pixel intensities from areas defined as background 

(backgroundoffset algorithm, (Luengo Hendriks, Rieger et al. 1999)) and (b) pixels were 

above a threshold, (threshold, (Luengo Hendriks, Rieger et al. 1999)).  Afterwards, a high 
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pass filtering of the image was performed by subtracting from the image a 2D Gaussian 

filter with σ= 5.  The result is a binary image of pixels that passed both criteria.  

 A.3.6.2. Gaussian fitting.  The center of mass of each contiguous region in the 

binary image was used as a starting point in a Gaussian fitting routine.  The raw 2D 

images were used being offset to zero.  The highest intensity pixel in a small region 

around the starting point (typically 5 pixels square) was used as an updated starting point 

to the iterative “Gaussian mask”(Thompson, Larson et al. 2002) fitting routine.  Fits were 

performed in a square region, of size ~ 2 x σpsf, around the updated starting point, where 

σpsf defines the size of 2D Gaussian approximation to the point spread function.  After 

convergence of the fitting routine, defined as a change in location of less than 10-5 pixels, 

a normalized cross-correlation was calculated using the data and a 2D Gaussian with 

center given by the result of the fit.  The found coordinates were only considered as 

positions of QDs and used in further analysis if they exceeded a cross-correlation value of 

0.7.    

 A.3.6.3. Building trajectories from coordinates.  The probability of finding a 

diffusing particle in two dimensions at a distance greater than r from its starting point 

after a time Δt is given by(Saxton 1993) 

 P(r,Δt)=exp[ -r2/(4DΔt) ]    eq. 1 

Trajectories were built from the set of 3D coordinates in two steps.  First, coordinates 

identified at time t were compared with coordinates at time t+Δt using eq. 1 where Δt is 

the inverse frame rate of data acquisition.  If P(r,Δt) was found to be greater than .05, the 

coordinate at t+Δt is associated with the coordinate at t in a trajectory.  This process 
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builds short,un-interrupted trajectories.  Due to the blinking of QDs, temporally separated 

trajectories may correspond to the movement of the same QD.  The end coordinate of all 

trajectories are compared with all later starting coordinates of other trajectories using eq. 

1, where Δt is now the time interval between the end of the first trajectory and the 

beginning of the second.  The later trajectory with the smallest Δt that has a P(r,Δt)>.01 

is connected with the first trajectory.  This process is continued until there are no 

remaining pairs of trajectories that satisfy the criteria.  If a trajectory contains more than 

four coordinates, a diffusion coefficient is estimated from the trajectory as  

 Dest=MSD(Δt) / 4Δt    eq. 2. 

where MSD is the mean square displacement and Δt is the inverse frame rate.  The 

diffusion coefficient, D, used in eq. 1 is then the mean diffusion coefficient from the two 

trajectories.  If the diffusion coefficient of the two trajectories varies by more than a 

factor of ten, trajectories are not combined.   

A.3.7 Short range interaction analyses 

RBL-2H3 cells were labeled with 200 pM each QD655-IgE and QD585-IgE for 10 min at 

37°C.  TIRF imaging was performed on these cells at 100 frames/s at 35°C and the 

resulting QD-IgE-FcεRI time series were then tracked as described (see Supplementary 

Methods, Single Particle Tracking section) to generate sets of trajectories for each color 

QD.  All trajectories from one color of QD were compared with all trajectories of the 

other color.  If QDs of different color were within a cutoff distance (500 nm) in the same 

time frame, a set of parameters was calculated based on the found positions of the QDs in 

the next time frame.  All calculated parameters were recorded as a function of initial 
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separation.  Uncorrelated jump distance and jump magnitude were calculated to 

determine if coordinated movement or transient dimerization existed between the tracked 

QD-IgE-FcεRI complexes.  These parameters were averaged over all frames and QD 

pairs into 50 nm separation bins and then plotted, with the error given as the standard 

error of the mean in each bin.  The degree of correlation between the motions of two 

particles was obtained by determing the amount of uncorrelated motion between two 

nearby particles:  Di = |Ji- Ji(Ji·Jj)/(|Jj||Ji|)|, where J1i=r1i+1-r1i, J2i=r2i+1-r2i, and ri is the 

position of a particle in frame i.  The magnitude of single time step displacements, |Ji|, 

was calculated in a similar manner.   Parameters without a particle index (1,2) are 

calculated for both QDs. 

A.3.8 Deconvolution 

Deconvolution of time series images involved several steps.  First, the pixel regions in 

each three dimensional data stack that corresponded to actin regions were cropped to 

form smaller three dimensional data sets and filtered in the time dimension with a 

Gaussian filter with σ = 10 frames (0.3 seconds).  For manageable processing of several 

hundred data sets, each data set containing 2,000 images, only 1 of 10 time filtered 

images were deconvolved, starting with frame 5 and ending with frame 1,995.  These 200 

images first had a pixel-wise camera offset subtracted from them and then were 

independently de-noised using a two dimensional wavelet based filter(Sendur and 

Selesnick 2002; Rooms, Philips et al. 2005).  To prevent edge related artifacts during 

deconvolution, each image was mirrored along each edge by 16 pixels that were then 

multiplied by a cosine function that went to zero at the outermost pixel.  A two 

dimensional Gaussian was used to represent the microscope point spread function (PSF).  
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The width of the PSF was determined by a fit to a high signal to noise image of a 100 nm 

bead (Tetraspeck, Invitrogen, Carlsbad, CA).  Two hundred iterations of a Richardson-

Lucy deconvolution(Richards.Wh 1972; Lucy 1974) were performed on each image with 

an entropy regularization(de Monvel, Le Calvez et al. 2001) after each iteration with 

regularization parameter of 0.05.  After deconvolution, images were cropped to their 

original size.  

A.3.9 Binary Segmentation of Actin Structures 

The deconvolved time series images were used for actin segmentation.  Each image was 

filtered, and segmented using a four step process.  First, a top hat filter (DIPImage 

function ‘tophat’) selects regions that are above a local minimum.  Second, the top hat 

filtered image is eroded using grey scale erosion (DIPImage ‘erosion’) to better define 

the brightest regions.  Third, the image is locally contrast stretched by dividing each pixel 

by the maximum value found in a 10 pixel (0.67 micron) radius around each pixel. 

Finally, the resulting image is thresholded (DIPImage function ‘threshold’) to create a 

binary image representing the location of actin structures.  

A.3.10 Actin Trajectory Overlap 

Coordinates found from single particle tracking were used to build binary trajectory 

images that were compared with actin structures.  If a coordinate was valid (QD has not 

‘blinked’ off) in both a time frame t and the next time frame at t+1, a binary image was 

created of this single time frame jump by drawing a pixelized line from the starting point 

to the end point.  The linear pixel size used is the back-projected pixel size of the 

collected CCD images, which was 67 nm.  For all valid single frame jumps in each 
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trajectory found by single particle tracking, the total length of the linearized trajectory, as 

well as the number of pixels in the trajectory that overlapped with the binary actin image 

at time t were recorded.  For each trajectory, the same calculation was made using 10 

simulated particles that had the same starting coordinate, diffusion coefficient, trajectory 

length, and blinking behavior as that of the single particle trajectory, but were otherwise 

unrestricted. 

  To test if the found trajectories had behavior with respect to actin that was 

significantly different from the unrestricted, simulated particles with the same diffusion 

coefficient, we treated the system using a binomial model as follows.  Within groupings 

for each cell treatment, all trajectories were combined to give a total trajectory length n, 

and a total actin overlap k.  The simulated particle trajectories were used to define a 

probability for overlap p for the unrestricted case.  We make the simplification that all 

pixels in a trajectory can be treated independently with respect to actin overlap in order to 

use the well defined binomial model.  The cumulative distribution function of the 

binomial distribution is F(k;n,p)=I1-p(n-k,k+1) where I is the regularized incomplete beta 

function.  F gives the probability that a randomly generated data set created from the 

binomial model with parameters n and p would have a value less than or equal to k.  We 

reject the hypothesis that our trajectories can be modeled with unrestricted diffusion with 

respect to actin when F is less than .01.  In all three cases, F<<<0.01, with F = 2.35x10-

286, 2.35x10-264 and 2.42x10-154 in the resting, latrunculin-treated, and PMA-treated cells, 

respectively. 

A.3.11 Diffusion in proximity to actin  
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A pixelated distance map to the nearest actin structure was found by a distance transform 

(DIPImage function ‘dt’) of the inverse of the binary images created by the binary 

segmentation of the actin images.  The mean square jump distance of single time step 

jumps was recorded as function of distance from actin for all SPT trajectories in cells 

treated with PMA.          

An offset term was calculated by fitting individual particle trajectories to Eq.(1) using 

the first 3 data points of the MSD.  This value is equivalent to the first point of a 

calculated MSD plot and can be related to the diffusion coefficient.  

The mean observed jump size over some time interval of a freely diffusing particle 

(and thereby calculated diffusion coefficient) will appear to be reduced near a reflecting 

boundary due to the particle’s inability to make large jumps in the direction of the 

boundary (Ritchie, Shan et al. 2005).  In order to estimate the magnitude of this effect, 

simulations of a diffusing particle near a reflecting half space boundary were performed 

using the pixel size and frame rate of the experiment with parameters that correspond to 

the median experimentally observed D1-3 diffusion coefficient found as described above.  

To represent detector time averaging, 10 sub-frames at 10 times the frame rate were 

added together to form one simulated observed frame.  If a particle’s position after a 

jump in one of the sub-frames was beyond the reflecting boundary (x = 0), its x-

coordinate was multiplied by -1 and the next frame was calculated as a jump from the 

corrected position.  The resulting time series were analysed with the same routines used 

for experimental data.  
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APPENDIX B.  SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

B.1 Supplementary Figures for Chapter 3 

 

Figure S3.1 Instantaneous diffusion coefficient as a function of time for a single cell after 
treatment with 0.001 μg/ml DNP-BSA.  Experiment conducted as described in main text 
(Methods, Kinetics of Immobilization Assay section), but in this case multiple time series were 
acquired sequentially from a single cell after stimulation with 0.001 μg/ml DNP-BSA.  Gaps in 
data are due to finite memory limitations on the length of a single image series and represent the 
time required to save the previous image series and initiate the next.  No changes in diffusion are 
apparent even after nearly 800 s of stimulation. 
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Figure S3.2 Simultaneous measurements of QD-IgE diffusion and Ca2+ responses.  Cells 
were prepared and imaged as described in Appendix B, Supplementary Methods (below).  Ten 
seconds into imaging, cells were stimulated with 10 μg/ml (A) or 0.001 μg/ml (B) DNP-BSA.  
Instantaneous diffusion coefficients (left axis, black lines) and the 405/485 emission ratio of the 
Ca2+ sensitive dye Indo-1 (right axis, blue lines) were calculated as a function of time.  Note that 
10 μg/ml DNP-BSA produces a rapid peak and then slow decline in the Ca2+ signal (A, blue line) 
and the instantaneous diffusion coefficient rapidly decreases to a minimum around 0.02 μm2/s (A, 
black line).  In contrast, 0.001 µg/ml DNP-BSA induces Ca2+ oscillations (B, blue line) while the 
instantaneous diffusion coefficient remains largely unchanged at ~0.075 μm2/s (B, black line). 



   

 126

 

Figure S3.3 Antigen-induced clustering occurs in the absence of downstream signaling.  
RBL-2H3 cell primed with Alexa488-IgEanti-dansyl, pre-incubated for 30 min with 10 µM PP2, and 
then stimulated with 1 µg/ml DNP-BSA for 5 min.  Image is a sum-projection of a Z-series of 
wide-field images.  Note the presence of clusters of Alexa488-IgEanti-dansyl.  Scale bar 
represents 5 µm. 
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Figure S3.4 IgEanti-dansyl and IgEanti-DNP are specific for their designated antigens.  RBL-2H3 
cells were primed with either IgEanti-DNP or IgEanti-dansyl and then stimulated with the indicated 
doses of either DNP-BSA or dansyl-BSA.  β-hexosaminidase was measured as described in main 
text (Methods, Degranulation assay section) and reported as % of total.  No cross-reactivity was 
seen between IgEanti-dansyl and DNP-BSA or IgEanti-DNP and dansyl-BSA.  Dansyl-BSA was able to 
elicit a secretory response from IgEanti-dansyl primed cells that was comparable to the response of 
IgEanti-DNP primed cells to DNP-BSA (main text, Figure 3.1B). 
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Figure S3.5 Degranulation occurs under the same conditions as the hyperspectral 
microscopy experiment.  Cells primed by 15 min incubation with 2 nM QD-IgE at room 
temperature, washed, and then stimulated with the indicated doses of DNP-BSA.  β-
hexosaminidase release assay performed as described in main text (see Methods, Degranulation 
assay section).  This shows that the highly mobile clusters of three QD-IgE-FcεRI complexes 
shown in the main text, Figure 3.5 are occurring under conditions which cause degranulation. 
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B.2 Supplementary Video Legend 

Video 3.1 Non-crosslinked receptors do not significantly associate with cross-linked 

receptor aggregates.  RBL-2H3 cells were labeled with SPT levels of QD655-IgEanti-

DNP and then primed with Alexa488-IgEanti-dansyl.  Cells were then exposed to 1 

µg/ml dansyl-BSA and imaged at 20 frames/s by wide-field microscopy.  Magenta is 

QD655-IgEanti-DNP, green is Alexa488-IgEanti-dansyl.  Images have been gauss-

filtered.  Playback is 40 frames/s.  Scale bar represents 5 µm. 

B.3 Supplementary Methods for Chapter 2 

B.3.1 Simultaneous Ca2+ Ratio Imaging and SPT 

RBL-2H3 cells were labeled in an 8-well chamber with QD655-IgEanti-DNP as described in 

the main text, washed, and then incubated with 1 µM Indo-1 (Invitrogen, Carlsbad, CA) 

in MEM/FBS in the presence of 50 nM IgEanti-DNP for 20 min at RT under a 5% CO2 

atmosphere.  Cells were then washed and 200 µl HBSS added to each well for imaging.  

Cells were then imaged at a rate of five frames/s using a mercury lamp with a 365/10 nm 

BP excitation filter.  Emission was collected using a 380 nm dichroic mirror which sent 

light through a Quad-View image splitter (MAG Biosystems, Pleasanton, CA) equipped 

with 440 nm and 515 nm dichroic mirrors mounted in series, which reflected the emitted 

light through a 405/30 nm BP filter for the calcium bound state of Indo-1, a 485/25 nm 

BP filter for the calcium free state of Indo-1, and a 655/40 nm BP filter for QD655 

emission.  The three spectral channels were projected onto a 256x256 pixel region on the 

center of the CCD, enabling simultaneous collection.  The channels collecting emission 

from the Ca2+-free and Ca2+-bound states of Indo-1 were background subtracted, 
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averaged, and ratioed, and single particle tracking analysis was performed on the QD655 

emission channel as described previously (Andrews, 2008.  Nat Cell Biol). 
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