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ABSTRACT 

 

 The process of sequencing a genome involves many steps, and accordingly, this 

project contains work from each of those steps.  Genome sequencing begins with 

acquisition of sequence data, therefore, a novel biochemistry was utilized and optimized 

for the Sequencing By Ligation (SBL) process.  A cyclic SBL protocol was created that 

could be utilized to extend sequencing reads in both the 5’ and 3’ directions, for an increase 

in read length and thru-put.   

After sequence acquisition, there is the process of data analysis, and the focus 

shifted to creating software that could take sequence information and match up the 

individual reads to a reference genome with greater speed and efficiency than other 

commonly-used software.  The Sequence Analysis Workbench Tool, SAWTooth, was 

written and shown to outperform contemporaries NOVOAlign and BOWTIE.   

 Finally, the last aspect of genome sequencing is de novo assembly, prompting a 

comparative analysis of three assemblers: CLC Genomics Workbench, Velvet Assembler, 

and MIRA.  Results were generated using Mauve to assess the general effects of different 

sequencing platforms on the final assembly. 
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Chapter 1 

Introduction 

 Next-generation sequencing is broad in both its potential applications as well as the 

component parts, requiring a wide expanse of expertise and background to accomplish.  

Genome sequencing is a versatile tool, and its most fundamental use is to simply gain the 

sequence information of genes and genome, though even such a simple endeavor is still a 

complicated affair to achieve.  The completion of the Human Genome Project did not signal 

the end or the apex of sequencing technology, but only its beginnings.  Though it was a 

monumental achievement, it was not sufficient to categorize and pinpoint molecular 

pathways of disease (1,2).  Certain diseases were easy enough, monogenic diseases such 

as cystic fibrosis, those determined by single alleles, and work to track those genes were 

already underway without using sequencing technology (3-5).  Sequencing technology in 

these cases could give a very clear diagnosis by seeking and sequencing the allele in 

question.  However, sequencing technology is ideal for the categorization and diagnosis of 

complicated, multi-genic diseases, and the identification of genetic markers for 

predisposition to diseases states (6-12).   

 One application of next-generation sequencing is to sequence cancer genomes with 

the intention to identify oncogenes, whether they were inherited genes that increased cancer 

susceptibility or somatic mutations that led to the development of tumor tissue.  Cancer 

presents a different and interesting problem than other polygenic diseases, though they 

share many overlaps from the angle of genetic analysis.  Polygenic diseases can include 

heart disease or Alzheimer’s, and along with cancer, have potentially inherited genetic 
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traits that can affect predisposition to these disease states (3-5,13).  BRCA1 and BRCA2 

were both discovered to be inherited traits that increased breast cancer rates, whereas 

mutations in p53 or the Rb gene seemed to increase general cancer susceptibility.  These 

inherited traits could be detected by sequencing germline genomes from individuals (14-

16).  Cancer provides the interesting case of somatic mutations which are as determinative 

in risk and susceptibility.  This results in the need, in addition to having a reference human 

genome, to sequence multiple genomes from a single patient in order to provide a more 

complete assessment of disease risk (7,14,17-19).  This complication is layered on top of 

the more usual genetic aspects of interest: mutated genes, specific SNPs, translocations, or 

copy number variations (19,20).  All of these can have varying effects on disease states, 

which is further convoluted by environmental impacts and penetrance of the observed 

genetic abnormalities.  This leads to constant demand for greater sequencing standards in 

sequencing speeds, fidelity, and read lengths (21-25). 

 In the acquisition of sequencing information, various biochemistries and 

methodologies are employed, that all have aspects that can be improved and further 

optimized (26-28).  The sequencing medium can vary, utilizing beads that are either iron 

and therefore magnetic, or comprised of polystyrene, making them non-magnetic (29,30).  

These methods can be performed in real-time or in cycles (31,32).  The genetic template 

can be amplified or not, relying on single-molecule sequencing (2,33,34).  Detection 

methods can involve fluorophore-coupled oligomers, or the detection of liberated hydrogen 

ions during synthesis, or luciferase (32,35).  Sequencing can involve different enzymes, 

such as ligases for Sequencing By Ligation (SBL), polymerases for Sequencing By 
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Synthesis (SBS), or can involve no enzymes, such as in Sequencing By Hybridization 

(SBH) (26,27,29,36).   

 SBL in particular, has a limitation in read-lengths, though it can provide bi-

directional reads (30) unlike traditional SBL approaches.  One project of this dissertation 

focused on increasing the read lengths of traditional SBL by utilizing a non-proprietary 

method that involved using deoxyinosine as both a universal base and a substrate to be 

recognized by Endonuclease V (37).  This method could be performed with off-the-shelf 

reagents and increased read-lengths through cyclic digestion and re-ligation.  Results 

increased traditional SBL results from approximately seven bases or so to thirteen 

contiguous bases in the 3’ to 5’ direction.  Using mate-paired tags with this cyclic SBL 

variation would enable > 95% coverage of the genome.  The potential gains of this cyclic 

SBL variation were calculated using in-house developed software, the Sequence Analysis 

Workbench Tool (SAWTooth) (38). 

 Once the sequence information has been generated and gathered, many steps of 

analysis must be performed, depending on the desired information.  In the case of cancer 

genome sequencing, variations in the genome would yield the most interest; whether 

differences between patient germline and reference genomes for hereditary factors, or  

between germline and tumor tissue for somatic variations (14-16,39,40).  One of the first 

steps is simply matching these tags to the reference genome, filtering out those that match 

perfectly and identifying SNPs and Indels (41-43).  SAWTooth’s capability in this regard, 

and ability to simulate potential gains from the cyclic SBL variation is not unique (44-47), 

however, SAWTooth was able to perform this task far more efficiently than other existing 

codes.  This is important because the sizes of datasets being generated to adequately 
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sequence the human genome, which is three gigabases long, have become extremely large, 

and an efficient algorithm to perform this mapping was necessary (46,48).  SAWTooth 

uses a pre-compiled hash-indexing algorithm to achieve faster mapping times, and even 

with the time required to compile and generate the hash indexes, still demonstrated faster 

match times for short mate-paired tags.    

 The last component of the dissertation is meta-analytical in nature, comparing a 

selection of de novo assemblers and assessing their ability to assemble a known genome 

given real and simulated mate-paired and single tag data.  There is currently a large 

selection of de novo assemblers to choose from.  Many assemblers support reference 

mapping as well, since it is a less complex computational task (25,49,50).  There are 

commercial, free, and open-source assemblers and they each utilize different algorithms.  

Many of them have been used in the publication of draft genomes, though predicting 

accuracy of a draft genome that has been assembled de novo is difficult (41,49,51).  There 

is no real verification, and often re-sequencing efforts reveal errors with rearrangements 

and translocations in the assembly.  Therefore, it seemed prudent to analyze a few of the 

most used and popular assemblers in widespread use today.   

 All these topics are separated by both subject and field, but are all necessary to 

collectively form the steps of next-generation sequencing.  Each of these steps is obviously 

complex, and this dissertation only explores one small facet of each, whether dealing with 

sequencing biochemistry, cancer biology, reference mapping or de novo assembly.   
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I.  Introduction  

 The Human Genome Project (HGP) was one the greatest achievements of the 20th 

Century, and the publication of the full human genome sequence in 2001 ushered in the 

new century by starting the post-genome era in human biology.  The great success of the 

HGP has paved the way to many future discoveries. The human genome sequence 

represents just the beginning of the payoffs for the biomedical community, and many future 

benefits are promised and expected in the near future.  Specifically, the HGP has enabled 

the rapid sequencing of more genomes, such as cancer genomes, and this holds the potential 

to transform cancer research and treatment. Therefore, it is more appropriate to look at the 

completion of the human genome as the end-of-the-beginning, rather than the beginning-

of-the-end of the era of human genome sequencing.  “Next generation” sequencing 

technologies are providing fast, cheap and high quality sequence.  As these technologies 

become less expensive and easier to operate, they will become more widely available.  

However, the bottleneck in the process will quickly shift to the analysis phases.  In other 

words, making sense of the vast amount of sequence data will be a challenging task, and it 

will require bioinformatics and systems biology.  The analysis of sequencing data will 

likely have a tremendous impact on many areas of medicine and biomedical research.  

 The sequencing and publication of the human genome was performed 

simultaneously by two competing groups, one was publicly funded and the other was 

privately funded.  The publicly funded sequencing project was led by Dr. Francis Collins 

and was performed in the classical clone-by-clone approach using traditional Sanger 

sequencing.  The private sequencing project was based at Celera and was led by Dr. J. 

Craig Venter. The Celera group sequenced the human genome using the shotgun 
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sequencing approach, which was made possible for three main reasons: (a) they developed 

novel assembly algorithms, (b) they utilized data from the public project, and (c) they 

sequenced a very homogeneous sample, as opposed to a sample representative of a large 

number of individuals. (1) 

 The HGP’s impact on future human genome sequencing has two broad 

implications.  First, the HGP has now established a reference human genome sequence, 

allowing for relatively rapid sequencing of future genomes while using the reference 

sequence to align reads.  Additionally, a major impact of the HGP has been spin-off 

technologies and bioinformatics tools, which have led to what is now known as “next-

generation” sequencing technology. (2) 

II.  Next Generation Sequencing Technologies 

 During the HGP, a number of technologies were developed with the goal of 

increasing sequencing throughput to allow for cheap and rapid human genome sequencing.  

The first phases of the improvements were essentially advances in instrumentation and 

miniaturization of the traditional Sanger sequencing approach.  However, a number of true 

next generation technologies were also developed and have become widely available. 

 

 

 

Sequencing Template Preparation  
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The first step of the next generation sequencing pipeline is the construction of the 

sequencing library.  The library preparation step essentially takes a genomic DNA sample, 

and converts it into DNA molecules that can be sequenced by a given sequencing 

technology (see Figure 1).  For example, sequencing using the Illumina system, fragments 

the genomic DNA into ~300 bp fragments, amplifies these fragments via PCR and ligates 

sequencing primer sites to the ends of the fragments.(3-5) These protocols vary in 

complexity depending on the sequencing platform.  

 Additionally, genome libraries can be constructed to contain mate-pair sequences.  

This means that the genome tags will be adjacent in the library molecule, but will have a 

kilobase or more separation in the genome. The mate-pair approach complicates library 

preparation, but assists in genome assembly/mapping, especially when dealing with very 
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short read lengths, as is typical in most next generation sequencing technologies (see Figure 

2). (3-5)   

 

 There are many ways to sequence DNA, and because of this, there are many ways 

in which to prepare the DNA libraries for sequencing.  First, the template can be clonally 

amplified unless sequencing can be performed on single molecules without the need for 

amplification.  Methods that do not rely on an amplification step are known as single-

molecule sequencing methods.  Amplification is necessary for many sequencing 

approaches because a signal, whether it is light or electrical, must be amplified or would 

be too weak to identify otherwise.  This amplification can occur through an emulsion PCR 

(ePCR)(6) step or through solid phase PCR as in the Illumina Inc. system.  Additionally, 



14 
 

rolling circle amplification (RCA) can be utilized to amplify the DNA into a ball, which 

may itself be coupled to an array (see Figure 1). (7)  Clonal amplification may make certain 

sequencing approaches possible, however, when clonal amplicons are being sequenced, the 

issue of phasing arises.  For example, when a clonal population of DNA molecules is being 

sequenced, the initial signals for sequencing each base are near identical for all molecules.  

However, as sequencing progresses, inefficiencies in biochemistry, enzymatic activity, 

chemical cleavage steps, or incomplete washing causes the signal to become noisy and may 

contain an earlier (lag phasing) or later (lead phasing) position.   

 Single-molecule sequencing template preparation is greatly simplified, as there is 

no need for amplification, and there are no amplification biases that may occur.  Some 

single-molecule sequencing methods also make real-time sequencing possible, though 

there are obstacles to single-molecule sequencing that methods must take into account, 

such as being able to recognize the signal of a single molecule, which requires more 

expensive and larger sequencing equipment. (8) 

Sequencing By Synthesis  

 

 

 

 

Fluorescent Methods 
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 The most popular next generation sequencing approach is known as Sequencing-

By-Synthesis (SBS). In SBS, a DNA polymerase is used to extend a primer on the template 

strand (see Figure 3). (3-5)  The DNA template to be sequenced must contain a known 

region at its 3’ end to hybridize a primer.  Once hybridized, synthesis is allowed to occur 

under controlled conditions with specific reagents.  The goal is to allow only the 

incorporation of a single nucleotide onto this growing strand and to visualize the base that 

was incorporated.  The key is to modify (block) the nucleotides in some fashion that not 

only allows termination of synthesis once incorporated, but also can be reversible.  These 

can, for example, involve a blocking group on the 3’ OH of the growing DNA strand that 

can be removed enzymatically or by a chemical cleavage reaction.(3-5) The second 
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element is to attach unique fluorophores onto each of the four different nucleotides to allow 

visualization.  After imaging, and storing this data, the termination must be reversed by 

removing this blocking group, to allow the addition of another single nucleotide, and then 

the fluorophores must be cleaved to visualize the signal of the newly incorporated 

nucleotide.  This process is repeated to sequencing up to ~150 bases. SBS can be performed 

on clonal amplicons from an amplification step (i.e. sequencing being carried out on beads 

or a clonal cluster of DNA), or SBS can be performed on a single molecule.  (3-5,7) 

SBS can also be performed in real-time with single-molecule visualization.  Real-

time SBS methods are faster, but constrained to the viewing area limitations of a camera 

mounted microscope.  Real-time sequencing approaches will likely have a significant 

impact on cancer systems biology.  This is because real-time sequencing has the potential 

for very long reads, requires a very simple library preparation, and can readout epigenetic 

markers, such as methylation and hydroxymethylation (9). 

Non-fluorescent Methods 

 In addition to using fluorophores to identify incorporated bases, there are other 

methods to measure and quantify DNA polymerase extension, such as detecting the H+ or 

pyrophosphate released during polymerase extension.  Since all bases give the same 

pyrophosphate or H+ signal this sequencing approach requires cycles of extending with 

each of the individual nucleotides. This sequencing approach has the advantage of using 

natural nucleotides; however, this introduces the homopolymer repeat problem.  Namely, 

these types of sequencing methods must record the intensity of such a signal to deduce how 

many bases of the same type were incorporated in homopolymer repeats.  While 
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distinguishing the difference in signal between single or double nucleotide incorporation 

events is straight-forward, it is harder to discern the difference between five or six 

incorporated nucleotides in a homopolymer repeat. (3-5) 

The measured signal can be pH changes, as induced by the release of hydrogen 

atoms when incorporating a nucleotide during synthesis, or there can be other enzymes 

involved such as luciferase and sulphurylase that create a flash of light when a phosphate 

is released during the same process.  Due to the nature of this method, sequencing is 

performed in real-time, and tends to have lower throughput than fluorescent, sequential 

array methods. 

Sequencing By Ligation  

 Sequencing By Ligation (SBL) uses a ligase and a series of query primers to 

sequence a template strand.  The template DNA to be sequenced will contain the unknown 

genomic tag, flanked by a known region.  The main disadvantage of this sequencing 

approach is that the read lengths are very short. Therefore, to obtain a reasonable read 

length, a complicated library preparation is required. The sequencing strategy is to 

hybridize an anchor primer onto a known region, and ligate a query primer to the anchor 

primer to sequence the unknown genomic tag.  Ligation is determined by hybridization of 

that query primer next to the anchor primer, meaning it must be complementary for the 

unknown tag region.  The query primers are degenerate, a mix that contains all possible 

combinations for every position except for one.  For example, when determining the 

identity of the first base next to the anchor primer, the query primer set will be degenerate 

for all positions, however, in this set, all query primers that have an adenine in that first 
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position will have a specific fluorophore attached to the other end of the query primer (see 

Figure 4). (3-5)  The clonal features (i.e. beads) will then be imaged, in a manner similarly 

to fluorescent SBS, and each specific fluorescent signal corresponds with specific bases.  

This is repeated to obtain the identity of the second base, however, now the fluorophores 

are specifically linked to bases in the second position of that query primer.  This is repeated, 

generally to a length of 7 nucleotides.   

 

The reason for this read-length limitation is that base pairing is specific closer to 

the site of ligation and less so further out.  To get longer reads, cleavage of the ligated 

query primer is performed, resulting in loss of the fluorophore and effectively, extending 

the anchor primer into unknown regions of the genomic tag (see Figure 4).  For example, 
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after sequencing the 2nd base of a tag, and imaging the array, the signal and query primer 

can be cleaved after the 5th base.  The anchor primer will be extended five bases.  Now 

when using same query primer that sequenced the 2nd base, it will now sequence the 7th 

base.  Repeat the process, extend the anchor primer by another five bases, and sequence 

the 12th base with the same query primer.  This is repeated to get longer reads.  When signal 

becomes too weak to continue, the growing ligated template is removed and the sequencing 

can be repeated to sequence further, for instance, the 3rd, 8th, 13th … positions.  This is 

repeated overall to obtain a contiguous sequence for the genomic tag.   

The read-lengths of SBL are shorter than those obtainable from SBS, however, SBL 

can be performed in both 5’ to 3’ as well as 3’ to 5’ directions, whereas SBS must be 

performed in the direction of DNA synthesis.  Similarly to SBS, SBL can be performed on 

DNA amplified on beads or DNA clusters, and many different types of enzymes or 

chemicals can be used to cleave the query primer.  SBL can suffer from phasing errors as 

well through repeated ligation and cleavage, but the problem is reduced through changing 

anchor primers, the entire array is “reset” by washing with a buffer that strips and single-

strands the DNA. 

Sequencing Through DNA Observation  

 In addition to methods that involve sequencing a template strand by building a 

complementary sequencing strand through SBS or SBL, there are emerging methods of 

sequencing that focus on observing certain traits of the DNA itself.  These methods are 

always single-molecule sequencing methods, and as of this writing, are not commercially 

available. (10)    
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 A key to observing DNA is to make the DNA single-stranded and pulling this 

single-stranded DNA through a detector or a nanopore.  As the DNA passes through the 

nanopore, a detector must measure the electrical current which is different for each of the 

individual nucleotides as they pass through the nanopore. (11) 

 In addition there is also a method to sequence DNA by directly visualizing it using 

electron microscopy.  This involves stretching the DNA on a surface and visualizing the 

DNA by conjugating metal ions to specific nucleotides, which are read out in the respective 

order using electron microscopy. (12) 

III.  Analysis of Sequencing Information  

Sequencing the genome was a monumental task in of itself, but deciphering the data 

is critical and complicated.  The human genome is three billion base pairs long, and humans 

are diploid, and thus each individual carries two homologous chromosomes.  Furthermore 

the genome is not simply a random arrangement of the four bases.  If it were random, 

sequencing it would be a lot easier.  However, when Mother Nature finds a motif or a 

protein shape that functions well, she will use it again and again.  While this conservation 

of form and function is elegant and pragmatic, it makes sequencing difficult.  These motifs, 

and regions of similarities may span hundreds of bases and may be located far apart.  There 

are also regions of extreme redundancy called microsatellites, where short patterns, one to 

six bases in length, will repeat over and over again.  These traits make the genome difficult 

to sequence, but there are sequencing methods to mitigate these obstacles. (13) 

Various sequencing technologies have varying read lengths and the longer the read 

length, the easier it is to sequence redundant regions of the genome since many sequencing 
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reads will contain part of the redundant region as well as more uniquely identifying 

adjacent regions.  Long read length assists greatly in allowing one to align, or put together, 

the sequences obtained from a sequencing run.  Another important trait to consider is how 

many reads one can obtain from the genome The number of reads multiplied by the average 

read length gives the total number of bases sequenced, and this product divided by the 

genome’s size (three billion for humans) gives us the coverage.  Coverage is important for 

identifying Single Nucleotide Variations (SNVs), since an altered base pair will not align 

to a reference genome, it is necessary to re-sequence that difference to gain confidence. 

(13)  It is estimated that to identify a large percentage of SNVs would require a coverage 

of 30x, or at least 100 gigabases of sequence. Lastly, the raw accuracy of the sequencing 

method must be taken into account.  Most current next generation sequencing methods can 

generate sequence with 98-99% raw accuracy.  

 These factors impact the ability to assemble the sequencing information into a 

genome.  It takes much more information with longer reads to assemble a genome without 

a reference, or de novo sequencing.  When a reference sequence is available, shorter reads 

can be tolerated, since these reads can be aligned to a completed reference genome.  This 

is the most common method for human genome sequencing today, however, information 

is lost with this approach, namely, information regarding structural variation cannot be 

resolved from these sequencing studies. Additionally, phasing the SNVs are also not 

determined, in other words, which of the two homologous chromosomes contain which 

variant cannot be determined. 

 The goal of genome sequencing is to ultimately use this information and improve 

medical treatment for various disease states that are influenced by genetic factors, such as 
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heart disease and of course, cancer. (14,15)  The strategy is to catalogue genetic differences 

that had led to the development of cancer, as well as use this information to engineer 

specifically targeted therapeutic measures.  The sequence information and what can be 

inferred varies on the nature of the information, how the sequence was obtained, and what 

it was compared to. 

 The practice of associating disease states with specific genome information is 

Genome-Wide Association Studies (GWAS).  GWAS were initially performed with 

microarrays that targeted specific candidate genes and known SNPs across the genome. 

However, in cancer the problem is much more difficult. Namely, it is unlikely that a single 

SNV that may be the direct cause of a disease, such as a single base difference in a chloride 

ion channel that leads to Cystic Fibrosis.  There are a myriad of genes that contribute and 

protect against tumor progression, all of which interact in a manifold of ways.  GWAS 

therefore require significant sample sizes, and detailed genomic information to determine 

the nature of the SNVs as they pertain to cancer.  Each SNV confers a small percentage of 

increased or decreased protection to cancer, whether they act in DNA repair pathways, cell 

growth, or metastasis.  However, as genome sequencing technology has advanced, it’s not 

simply a matter of categorizing SNVs in patient samples and determining novel cancer 

genes, but also genome rearrangements or copy number arrangements. (16,17) 

Single Nucleotide Variations  

 Complete genome sequencing can reveal information about SNVs, which in turn, 

can provide information about the resulting protein after translation if the SNV resides in 

an exon. Even if a SNV is not located within an exon, changes to promoter regions for 
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example, may impact the transcription of a gene and the subsequent amount of protein 

product which may then affect cancer development. (18) 

 These SNVs can be substitutions from one base pair to another, which may result 

in the usual gamut of synonymous, non-synonymous, or non-sense mutations, which may 

or may not change the amino acid and the protein produced.  In addition, there could be 

insertions or deletions (sometimes collectively referred to as indels), which can also result 

in a frame-shift that completely alters the protein product made.  

 Cancer sequencing requires a high coverage to accurately detect SNVs. Therefore, 

high coverage, or repeatedly sequencing the same SNV containing region many times will 

allow the SNV to be called with confidence.  Without high coverage, the sequence 

information may simply be thrown out, incorrectly labeled an inaccuracy in the sequence 

acquisition itself. 

Structural Variations  

 Chromosomal rearrangements may be caused by a number of factors, and there is 

a range in consequences for these events.  Even between healthy individuals, genome 

structure will vary without observable detrimental effects.  However, it is also clear that 

rearrangements can have effects on disease states. (19-21) 

 To obtain information about rearrangements, translocations, insertions, and 

deletions genome sequence over a wide range must be obtained, even if that entire range 

isn’t sequenced directly.  In other words, mate-pair sequencing is crucial for discerning 

structural variations. In mate-pair sequencing, two short reads are obtained, but in addition 

to the sequence, the relative position of these two reads is known.  This knowledge of how 
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these two reads are connected is critical for uncovering structural variation. For example, 

if one cannot map the two short reads to an area in the reference genome, but find that the 

mate-pairs map too close or too far, it is possible to make inferences about whether a large 

indel is involved or if that region was rearranged completely.  The key is having a library 

that is constructed with the mate pair design, as well as having an adequate coverage to 

increase the confidence of found structural changes. 

Copy Number Variations (CNVs) are another type of structural variation which is 

similar to indels, involving either the deletion or duplication of large parts of the genome, 

which results in increased or decreased, or even deleted copies of genes. (22,23)  CNVs 

can effectively result in the under expression of key tumor suppressors or over expression 

of oncogenes, resulting in cancer development.  CNVs are obtainable from genome 

sequencing, although there are optimized protocols to specifically identify these.  

Identification of CNVs with genome sequencing can be difficult, and special attention 

during the sequencing and library preparation must be made if this information is desired.   

Somatic Mutations and Inheritance  

 A cancer genome will contain more sequence variants than a “normal” germline 

genome.  Specifically, in addition to the natural SNPs in the individual, the tumor will also 

contain a number of somatic mutations and structural changes. (24-26) Therefore, 

sequencing a genome that comes from a cancer patient’s tumor will identify many more 

alterations in the genome than sequencing a genome from non-tumor tissue.  It is assumed 

that an individual develops cancer due to mutations occurring in cells that results in those 

cells being positively selected for in terms of growth.  There are many key areas in cell 
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growth and regulation that need to be perturbed to allow tumor development; DNA repair 

pathways, cell growth and division, apoptosis, etc.  Therefore, the differences between the 

tumor genome and the germline genome are considered somatic mutations.  These somatic 

mutations are considered important because a subset of these mutations gave rise to 

tumorigenesis.   

 This gives researchers options when comparing cancer genomes in order to obtain 

the information they consider relevant.  Comparison of a patient’s germline genome with 

reference genomes will assist in finding inherited genes that may have contributed or 

increased a patient’s risk for cancer.  On the other hand, comparison of a patient’s germline 

and tumor genome will reveal a list of somatic mutations that may have lead to the 

development of cancer.  There is a risk however, in identifying somatic mutations because 

one of the hallmarks of cancer development is lax DNA repair and reduced apoptosis.  

Therefore, a cancer genome will have many mutations that have nothing to do with cancer 

development because pathways that would normally stop further mutations have already 

been damaged.   

Drivers and Passengers  

 The difference between a mutation that leads to cancer development and those 

mutations that are merely the result of a cancerous cell allowing other mutations to 

randomly arise are the difference between so-called driver and passenger mutations.  

Drivers are present due to selection during cancer development, whereas passengers have 

been mutated and have no functional consequence. (27,28)  Consequently, on top of 

analyzing data and statistically determining what mutations are even real, one must 
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determine what mutations are important.  Experimental verification of a potential driver 

mutation would be time consuming, requiring careful bench science experiments with 

observations of knockouts and knockdowns of the candidate genes.  Depending on the 

organism used, results may or may not even be relevant.  Experimental verification would 

also run counter to how data from genome sequencing is generated, which is a discovery-

based approach to research.  There are other potential methods reliant upon pre-existing 

knowledge about genes and their function, where mutation driver or passenger status can 

be verified with a literature search.  However, this still falls in the same trap of requiring 

time-consuming experimental verification. 

 To discover and classify driver and passenger mutations and genes through genome 

sequencing alone would require a much larger sample size.  Only through a large database 

of high-quality genome sequences will true driver mutations be made evident.  Different 

cancer types most likely have different somatic evolution, creating a need for a large 

sample size of human genomes, but also for patient genome information for each specific 

cancer. (27,28) 

There are computational approaches that have been developed to look at the 

complete set of somatic mutations and identify putative cancer genes, or basically separate 

out the driver and passenger mutations (see Figure 5).  To identify somatic mutations, 

complete genome sequencing on a patient’s germline and tumor tissue must be carried out.  

Comparisons between the two will yield a list of differences that must be processed 

thoroughly.  SNVs that, for example are in introns or are synonymous, are eliminated and 

classified as passenger somatic mutations.  Once driver and passenger mutations are 
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identified, a validation must ultimately be performed to confirm whether these somatic 

mutations had an effect on cancer development.  

 

IV. Cancer Genome Sequencing Strategies  

SNP Profiling  

 Single Nucleotide Polymorphism (SNP) profiling is not actually sequencing, 

however, it is a useful, and relatively low cost, genotyping tool for analyzing a large sample 

size. (29-32)  In fact, it is the ability to perform a study with a large sample size that is SNP 

profiling’s greatest strength. SNP profiling is performed with SNP arrays, which have been 

following similar trajectories as next-generation sequencing in terms of throughput, 
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increased number of SNPs investigated per array, etc.  The SNPs on the array may not have 

anything to do with cancer, but with large sample sizes, regions of the genome can be 

identified and these regions can be studied in great detail using targeted resequencing 

strategies on a very large sample size (a sample size much too large for full genome 

sequencing). In addition, SNP profiling can provide CNV information that will also be very 

useful in tracking down cancer causing genes. 

Paired-End Mapping  

 Paired-End mapping is a type of genome sequencing strategy that can more 

effectively provide information about genome structure and variation (33,34).  Variations 

in structure can cause varying expression in cancer developmental pathways by altering 

expression.  Similar to SNPs, even healthy individuals will differ greatly in terms of 

genome structure, (35) but there are obviously variations that can lead to an increased risk 

of cancer.  Genomic structural changes may also impact other factors, such as by disrupting 

exon and intron organization, leading to altered proteins.  Additionally, CNV may be 

affected as well as gene synteny or order. 

Paired-end mapping can be performed on many different sequencing methods, 

whether it is various SBS or SBL methods.  Paired-End mapping requires a library that has 

been mate-paired, where two reads are separated by a known distance.  For the specific 

applications of pair-end mapping, a larger separation distance is often required, due to the 

fact that indels may be several kilobases in length.  Genome structural variations may be 

investigated with arrays, but next generation sequencing methods allow higher resolution 

mapping. 
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Targeted Resequencing  

 The human genome is very large, and researchers may be more interested in 

obtaining more focused information, such as focusing purely on the exome (all exons), (36-

38) or even epigenetic changes such as the methylome (all methylated genes) (39,40) or 

the kinome (all kinased genes). (38,41)  For example, the exome, in addition to being about 

2% of the entire genome, is focused on only the expressed regions of the genome where 

many (if not most) of the important somatic driver mutations will lie.  Additionally, 

targeted resequencing could focus on the transcriptome, where sequencing the 

transcriptome provides information about variation in the expressed exons as well as 

important information regarding the gene expression level and splice variants. Splice 

variants as well as expression information on these variants can provide valuable insight 

into how genomic sequences translate into protein products.  

Exome sequencing is the targeted sequencing of all known exons.  Exome 

sequencing has advantages and disadvantages with respect to transcriptome sequencing.  

First, the advantages of exon sequencing are that all exons are equally represented so the 

coverage is essentially equal, minus stochastic effects, across all exons, whereas in 

transcriptome sequencing the highly expressed exons are present in large excess and hence, 

over sampled and the lowly expressed exons are often not adequately covered.  Also, 

information is gathered about all exons, not only the expressed exons as in transcriptome 

sequencing.  As in transcriptome sequencing, findings are consolidated into areas of the 

genome that are translated. (42,43)  The disadvantage to exon sequencing is the complexity 

associated with isolating all exons from the genome, however, there are currently “kits” 
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available to enrich for all exons and these approaches are becoming easier and cheaper.  

The most common methods for exon enrichment are PCR and capture-based approaches.   

The first complete exon sequencing study was undertaken by Sjoblom et al (44) in 

a study focused on colorectal and breast cancer.  A total of eleven colorectal cancer 

samples, along with eleven breast cancer samples, and their corresponding normal tissues 

were sequenced.  The entire exome was sequenced with over thirteen-thousand genes.  The 

identified variations were narrowed down to identify cancer related mutations by 

eliminating synonymous mutations, as well as SNVs that were present in the germline 

normal. This approach has the added benefit of consolidating their findings into exons, 

which focuses the found changes into actual translated sequence. 

Whole Genome Sequencing  

 Whole genome sequencing is self-explanatory, sequencing is performed on the 

entire genome in its entirety with its introns, exons, non-coding regions, repetitive regions, 

telomeric regions, etc. (45-48)  Everything is obtained and in effect, will provide all the 

information that the above methods can give and more, with the exception of expression 

based data.  In addition to SNVs, no matter whether they reside in introns, exons, and 

uniquely, non-coding regions will be discovered, as well as structural changes and copy 

number variations.  These differences can all be discovered using just whole genome 

sequencing, as opposed to performing different sequencing methods to get various 

information. (3,13)  Additionally, chromosomal rearrangements are detectable through 

whole genome sequencing, as opposed to other methods, which seek to parse down the 

information.  The drawback of whole genome sequencing is the massive and redundant 
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human genome, making whole genome sequencing expensive and laborious.  This often 

results in greatly reduced sample sizes, making statistically significant observations 

difficult.  Not only is the acquisition of sequence data more stringent in its requirement, 

but the alignment and assembly of information, even with the aide of a reference, is still 

problematic.  This significant obstacle must be tackled from a computation angle.  

Regardless, the high quality information of whole genome sequencing is the most detailed, 

and therefore has the most potential to be useful. 

 The first full cancer genome sequencing study was performed by Ley et al. (49)  

They used the Illumina sequencing platform, which is SBS based.  They were able to 

identify a complete set of somatic mutations that resulted during tumor progression, and 

were able to identify ten potential cancer genes with acquired mutations, only two of which 

were previously described.   Large parsing of the data was necessary to find the cancer 

genes, as the original analysis found 2,647,695 single nucleotide variations (SNVs) after 

quality control checks.  2,584,418 were also found in the patients’ germline which had to 

be eliminated.  Of the remaining 63,277 genetic variations, 31,645 were previously 

described in SNP databases, and 20,440 were in the intra-genic regions.  This left a total of 

11,192 variants. 10,735 were found were in introns, and 216 were in untranslated regions.  

This left 241 variants, 60 of which were synonymous.  The final 181 variants were non-

synonymous mutations, which were then actually investigated further using traditional 

PCR and Sanger methods.  Further extension of this vigorous elimination process yielded 

ten genes with mutations, eight of which were present in nearly all tumor tissue, but whose 

functions had not previously been described. 
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 Since this first foray into whole cancer genome sequencing, next-generation 

sequencing methods have continued to be improved and have become even cheaper, 

allowing more groups to utilize this methodology.  The Ley et al paper, for example, 

focused primarily on somatic mutations, and categorizing SNVs, insertions, and deletions 

as passengers and drivers.  Cancer genomes sequenced today can also be investigated for 

chromosomal rearrangements, translocations, and copy number variations.  In the near 

future, we hope to focus on the functional characteristics in the non-coding regions of the 

genome and the role somatic mutations in these regions have on cancer. 

Conclusion 

 The ability to cheaply generate genome sequences very rapidly will undoubtedly 

have many medical implications.  Ultimately, the value of next generation sequencing 

technologies will be in the sequencing of large numbers of samples.  For example, the 

ability to sequence hundreds of tumor samples will provide important information toward 

understanding the microscale evolution that leads to tumor development and will be used 

to design treatment protocols in the future.  Furthermore, sequencing technology is rapidly 

evolving and will soon allow for large scale sequencing projects to study thousands of 

human genomes.  Currently, having a personal genome project may be of minimal medical 

value; however, once many genomes are available, we will have a very powerful tool for 

uncovering the associations between the genotype and the cancer.   

Figure Legends 

Figure 1a.  Emulsion PCR – Template DNA and beads are mixed and then put into an 

emulsion mixture consisting of an oil phase and an aqueous phase of PCR reagents.  These 
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beads have primers complementary to the ends of the template strands coupled to them, 

allowing the PCR reaction to extend these primers and cover the bead in copies of the 

template DNA. Template DNA is diluted to maximize the number of emulsions having 

exactly one template strand and one bead.  Proceed with PCR temperature cycling.  

Sequencing is performed on beads with only clones of a single template DNA, as beads 

with no DNA and beads with more than one template DNA do not provide usable data.  

These beads can then be fixed onto an array for sequencing and imaging. 

Figure 1b.  Solid Phase PCR – Very similar to ePCR, but without beads.  Template DNA 

is diluted and then added to a slide with primers complementary to end regions of the 

template DNA coupled to the slide, which allows hybridization and priming.  Through a 

series of PCR temperature cycling, a slide is covered in clonal patches of DNA to be 

sequenced. 

Figure 1c.  Rolling Circle Amplification – A piece of linear DNA is circularized 

enzymatically.  Once circularized, RCA is performed with a polymerase that has 

displacement activity.  This results in a ball of clonal DNA, effectively amplifying the 

DNA but without the need for emulsions or beads.  These balls of DNA are then coupled 

to an array and sequenced. 

 

Figure 2. Mate-Paired Libraries – Mate-paired libraries can provide alignment information 

that is very valuable, especially when trying to sequence large redundant regions with short 

reads.  The most ideal way to sequence a large redundant region is to simply get a single 

contiguous read of the entire region, however that may not be technologically possible, 
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which is why this mate-paired strategy is key. Because the mate-paired reads come from 

two different regions, a set distance apart, it is possible, even with short reads, that one half 

of the mate-pair will be in a uniquely identifiable region, and even though the other will be 

in the redundant, difficult to map region, that read will still provide useful alignment data. 

Figure 3.  Sequencing By Synthesis with Fluorophores – A primer is hybridized onto the 

template DNA onto a universal region to allow extension by a polymerase.  A single 

nucleotide will incorporate due to a blocking group on the nucleotides, and the DNA will 

be able to be visualized by the fluorophores attached to each nucleotide type. If there is a 

saturation step, as is often the case when dealing with amplified DNA template, it would 

be performed following the first extension step (not shown).  A saturation step is identical 

to the first step except that there is no fluorophores, though there are still blockers on the 

nucleotides, and the nucleotides at usually at a very high concentration to saturate.  The 

fluorophores are then cleaved chemically, and then the blocking group is removed so 

extension can continue another base.  This cycle then repeats. 

Figure 4.  Sequencing By Ligation – A template strand of DNA is exposed to a population 

of query primers after hybridizing an anchor primer onto a universal region.  These are 

degenerate for all positions except for the position of interest (2nd shown).  The nucleotide 

in the position of interest will determine what fluorophore is attached to this query primer.  

The query primer will ligate on, allowing imaging to decode the base at the position of 

interest.  This query primer is then cleaved, either enzymatically or chemically, releasing 

the fluorophores and exposing a new ligation site.  Ligation is repeated to obtain further 

positions. 
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Figure 5 – Processing SNVs and filtering into somatic mutations – Comparison between 

germline and tumor genomes provide somatic mutations, whereas comparison between 

germline and reference genomes can offer information on inherited factors that may have 

been involved in cancer risk.  SNVs that are in non-genic regions, introns, etc. are filtered 

out, since they either have no effect or don’t alter protein function.  Validation must follow 

a highly processed and shortened list of SNVs. 
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Abstract 

Background 

Sequencing-by-ligation (SBL) is one of several next-generation sequencing 

methods that has been developed for massive sequencing of DNA immobilized on arrayed 

beads (or other clonal amplicons). SBL has the advantage of being easy to implement and 

accessible to all because it can be performed with off-the-shelf reagents. However, SBL 

has the limitation of very short read lengths. 

Results 

To overcome the read length limitation, research groups have developed complex 

library preparation processes, which can be time-consuming, difficult, and result in low 

complexity libraries. Herein we describe a variation on traditional SBL protocols that 

extends the number of sequential bases that can be sequenced by using Endonuclease V to 

nick a query primer, thus leaving a ligatable end extended into the unknown sequence for 

further SBL cycles. To demonstrate the protocol, we constructed a known DNA sequence 

and utilized our SBL variation, cyclic SBL (cSBL), to resequence this region. Using our 

method, we were able to read thirteen contiguous bases in the 3' - 5' direction. 

Conclusions 

Combining this read length with sequencing in the 5' - 3' direction would allow a 

read length of over twenty bases on a single tag. Implementing mate-paired tags and this 

SBL variation could enable > 95% coverage of the genome. 
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Background 

Following the completion of the human genome project it is anticipated that 

genome sequencing of an individual will be an aspect of routine treatment for a number of 

diseases and illnesses, truly ushering in the era of personalized medicine. However, the 

reality of implementing genome sequencing as a medical tool depends on the cost of 

sequencing technology [1]. The price tag on the human genome project was $2.7 billion, 

requiring the labor of hundreds of scientists, and a decade's worth of time [2]. By contrast, 

sequencing and analyzing a human genome can now be performed for under $50,000 in 

about four months' time with the labor of a few individuals [3-5]. This advance was made 

possible by progressing from traditional Sanger sequencing methods to so-called "next-

generation" methods that focused on miniaturization of the sequencing reactions, massive 

parallelization of data acquisition, and computational analysis. This not only resulted in 

increased sequencing speeds, but also significantly reduced the cost of genome sequencing 

[6]. However, in order to expand the use of genomic analysis to the clinic, price, quality, 

and speed must all be advanced further [7-14]. 

Sanger sequencing remains the gold standard today for accurate DNA sequencing. 

Sanger sequencing can reach read lengths of up to roughly 1,000 base pairs, dwarfing most 

current next-generation methods that average fewer than 100 base pairs [15]. What next-

generation methods accomplish is massive parallelization, resulting in throughputs that are 

orders of magnitude greater than Sanger sequencing. However, the throughput gains come 

at a cost of a reduced read length [1,16,17]. Therefore, Sanger sequencing will remain an 

essential laboratory tool for years to come; although, for the purposes of large sequencing 
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projects (i.e. whole genome sequencing, exome sequencing, RNAseq, ChipSeq, etc.), next-

generation methods are the new standard [18]. 

There are multiple sequencing methods that are utilized in next-generation 

methods. The two most common can be broadly categorized as Sequencing By Synthesis 

(SBS) [19-21] and Sequencing By Ligation (SBL) [22,23]. SBS is a method of sequencing 

which utilizes a DNA Polymerase enzyme to incorporate a single fluorescently labeled 

nucleotide that contains a reversible terminator. This allows a period of data acquisition 

before removal of the fluorophore, reversal of the terminator, and continuation of 

sequencing [24]. Additionally, there are single molecule and real-time SBS approaches 

[25,26], which, as their names imply, are performed without template amplification and 

sequenced in real-time using some indicator of nucleotide incorporation. In the present 

work, we have focused on increasing the read length of SBL. 

SBL is a straightforward enzymatic method of sequencing DNA. SBL uses known, 

universal sequences that flank an unknown genomic tag as anchor primer sites [22]. An 

anchor primer is hybridized to one of these known regions, and a ligatable end (3' or 5' 

depending on the direction of desired sequencing) is available. An oligo, called a query 

primer, is then ligated to the end of the anchor primer. The query primer is a mix of oligos 

that are degenerate for all positions except a single position that is being sequenced, which 

allows the sequencing of a single position based on the design of the query primer. After 

sequencing a single position, the query primer and anchor primer are stripped from the 

DNA template, effectively resetting the sequencing. The process begins again, sequencing 

a different position by using a different query primer, and repeating until the entire 

sequence of the tag has been determined [23]. Increased read length can be accomplished 
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either by increasing the distance SBL can be performed in a single direction, or by 

incorporating additional universal regions for more anchor primer sites [5,22]. 

Currently, the number of sequential bases that SBL-based approaches can sequence 

is limited by loss of specificity of base pair hybridization at any distance away from the 

site of ligation. Errors in the first six base pairs adjacent to the site of ligation are rare due 

to the destabilizing effect of mismatches. However, at a distance of about seven base pairs, 

the specificity of the SBL reaction is reduced (Figure 1). Therefore it is not possible to 

simply use longer and longer query primers in order to increase SBL read lengths [27]. 

 

Figure 1. Errors and Error Rate versus Position. Unpublished results in a traditional 

SBL sequencing run. These reads are separated into two parts, A and B, and are designed 

either M or P for Minus or Plus, away or towards the site of attachment on the bead. These 

AM and AP reads are obtained using different hybridized primers. Error and error rates, 

when not using a cyclic or digestion method, results in loss of specificity the further away 

a base is from the site of ligation. 
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In this manuscript, we describe a variation on SBL that utilizes a deoxyinosine in 

the query primer that can be cleaved by Endonuclease V [28] to increase the read length 

through successive cycles, which we refer to as cyclic SBL or cSBL. Our approach is 

conceptually similar to the ABI SOLiD method of SBL, which uses a chemical cleavage 

of the query primer to get extensions of read lengths. However, in contrast, our method 

utilizes an enzymatic cleavage using completely off-the-shelf reagents. Deoxyinosine is a 

universal base [29] that is recognized by Endonuclease V, which cleaves between the 2nd 

and 3rd phosphodiester bond 3' from the deoxyinosine site [28]. Cyclic SBL is thus 

identical to standard SBL except that there is a deoxyinosine incorporated in the query 

primers that is used for cleavage. Therefore, after ligation of a query primer onto an anchor 

primer, one can use Endonuclease V to cleave off the end of the query primer. This 

cleavage results in a ligatable end with a portion of the query primer is still ligated to the 

anchor primer, effectively lengthening the anchor primer for an SBL reaction to increase 

the SBL read length. The cycles of ligation and Endonuclease V digestion can be repeated 

to further increase the read length. We have used this approach to extend the read length 

of SBL to thirteen base pairs in the 3' - 5' direction. 

Results 

Cyclic SBH 

Three cycles of cSBL were performed, giving accurate signal for the first 13 

positions of the Test Template. There was a slight increase in non-specific signal with each 

cycle, but the third cycle still had clearly correct signal with an acceptable signal to noise 

ratio (Figure 2). 
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Figure 2. Fluorescent Intensity plotted versus position for each channel, for the Test 

Template sequence. Sequenced area is underlined. 5' TCT ATG GGC AGT CGG TGA 

TANGCG CTT GCA AGA GAA TGA GGA AAA CGA AGA 3'. 

We were unable to sequence the 14th position and beyond using the cSBL strategy. 

In order to determine the possible cause of this, we performed a series of tests to explore 

whether the template DNA had been digested by the Endonuclease V treatment, since this 

seemed the most likely problem. After the beads had undergone cSBL and stripping of the 

sequencing strand of DNA, we hybridized a fluorescent probe to the 3' end of the DNA 

loaded onto the beads and confirmed that the Test Template was still present on the bead. 

We also ruled out the issue of secondary structure causing the 3' end of our Test 

Template to become inaccessible. We performed folding calculations using IDTDNA's 

Oligo Analyzer software (29) when constructing our Test Template specifically in order to 
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avoid secondary-structure problems. Calculations for melting temperatures (TM) of 

secondary structures were performed assuming 50 mM Na+ and 10 mM Mg++. This 

simulated the highest folding TM at 31.5 degrees, and the fold as modeled by the software 

was not located near the 14th base pair. 

We additionally performed ligation at 50°C using Taq DNA Ligase (NEB), which 

has a higher optimal temperature, but could not obtain the 14th position or further. We have 

been unsuccessful in identifying a definitive reason for the observed sequencing limit of 

13 continuous bases. However, based on the results from Figure 2, our cSBL strategy does 

consistently provide at least thirteen base-pair reads in the 3' - 5' direction, and can easily 

reach twenty-three bases with the addition of a flanking anchor primer site and 5' - 3' 

sequencing of 10 bases. 

Read Length Versus Genome Coverage 

To demonstrate the feasibility of a cSBL approach to genome sequencing and 

calculate gains in using cSBL over traditional SBL methods, we utilized the SawTooth 

resequencing code developed at the University of New Mexico (M. Murphy et al., to be 

submitted, 2011). Human genome coverage was simulated using mate-paired data ranging 

from twenty-six bases to (limit of traditional SBL) to forty bases (theoretical gain from 

cSBL implementation). 

 

A set of simulated mate-paired tags, each separated by a range of 300-700 bases, 

was created, ranging in size from 13 paired tags to 20 paired tags. A sufficient number of 

tags were computationally generated to simulate 10 × coverage. The tags were all generated 

from chromosome 1, mapped back to the entire genome, and calculations of chromosome 
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1 coverage were performed. Mapping tags back to the whole genome, instead of just 

chromosome 1, provided a more realistic comparison to how human genome sequencing 

is typically performed [30,31]. Tags that mapped to multiple locations, whether in the 

entire human genome or chromosome 1, were discarded. A tag that maps uniquely or maps 

back to the reference genome in a single location provides useful data. If a tag maps 

uniquely to the reference sequence, the loci where it maps are said to be covered by that 

tag. For a given locus, the number of all such unique mappings when all tags are considered 

is called the depth of coverage for that locus. SAWTooth uses a general hash index, perhaps 

the fastest data retrieval structure. Although there are some limitations to general hash 

indexes, the nature of genomic data and the specialized task of mapping paired end reads 

to a reference genome, allows the use of hash indexes that circumvent these limitations. 

The SawTooth mapping analysis yielded the results summarized in Figures 3, 4, 5. 

Figure 3 shows raw coverage of chromosome 1 as a function of tag length. Increasing tag 

lengths from thirteen to twenty, or twenty-six to forty total bases while mate-paired, results 

in an increased coverage of chromosome 1 from 96% to 97.5%. Gains of coverage are 

significant when the read lengths are small, but suffer from diminishing returns as read 

length increases. Also, as expected, depth of coverage increases with tag length (Figure 4). 
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Figure 3. Percent of sequenced regions on chromosome 1 covered by at least one 

unique mapping, as a function of tag length. 

 

Figure 4. Depth of unique coverage of sequenced regions on chromosome 1 at various tag 

lengths. 
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Figure 5. Simulated percentage of reads and the number of perfect matches as a 

function of tag length. 

Next, we performed an analysis of how many times each tag mapped to the genome. 

One of the more significant benefits gained by increasing tag length from 13 to 20 bases is 

that far fewer tags must be discarded because they do not map uniquely (see Figure 5). At 

a tag length of 13 bases, only 57.2% of the tags are used, compared to 85.6% at a tag length 

of 20, thus effectively increasing throughput. 

Discussion 

The cSBL protocol described here is a variation on traditional SBL that can increase 

the read lengths by increasing the number of contiguous bases sequenced. Implementation 

of the cSBL approach could potentially increase reads to twenty-three base pairs, or forty-

six total base pairs with a mate-paired constructed library. In this manuscript, we performed 

the sequencing on a test DNA template rather than a genome library. however, we expect 

that any biases or mismatches in our cSBL will be exactly the same as general SBL. These 
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issues include increased mismatches in specific positions of the query primer [32], or 

general drops in efficiency when dealing with A or T rich regions of the genome [27]. 

Additionally, our experiments were performed on beads suspended in solution rather than 

on beads immobilized on a surface. Therefore, to implement our sequencing strategy in a 

next generation sequencing platform, the methods would need to be optimized on 

immobilized beads. 

Our cSBL strategy is not truly bi-directional. This is because Endonuclease V cuts 

in the 3' direction relative to the deoxyinosine position. Therefore, using Endonuclease V 

for cSBL in the 5' to 3' direction would result in the deoxyinosine remaining in the extended 

anchor primer. This would limit the number of cSBL cycles in the 5' to 3' direction to two, 

as attempts to go further will recognize the first incorporated deoxyinosine and limit the 

extended reads in the 5' to 3' direction. 

Conclusions 

In summary, we have demonstrated that next-generation sequencing approaches 

applying the cSBL variation will be able to produce longer read lengths relative to standard 

SBL. Additionally, cSBL is compatible with and further increases the sequence gains from 

methods that incorporate additional anchor primer sites. Also, cSBL can complement 

traditional SBS approaches as cSBL can sequence in the 3' to 5' direction. This variation 

of traditional SBL approaches has useful applications in many next-generation sequencing 

methods that are in active use today. 

Methods 

We have applied cSBL to sequence a known test DNA fragment (Test Template, 

see Table 1) immobilized on 1.0 um beads (MyOne Beads, Invitrogen) in solution. All 
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DNA primers used were synthesized by Integrated DNA Technologies. The Test Template 

was constructed not to have significant secondary structure. The 5' end of the Test Template 

is modified with a dual biotin on the 5' end to couple to streptavidin-coated beads. The 

anchor primers (Anchor Primer, see Table 1) were designed to hybridize onto the 5' end of 

the Test Template, and provide a free 5' phosphate to ligate the query primers (Extension 

Primers, see Table 1). Multiple anchor primers that were identical except that each 

progressive primer was shorter by one nucleotide were used. The multiple anchor primers 

allowed multiple positions to be sequenced with the same set of query. In addition to the 

query primers, we used a Saturation Primer. The purpose of this was to fully saturate all 

available ligatable sites, therefore combating drops in signal efficiency and phasing in 

further cycles. In addition, a standard query primer that did not contain a deoxyinosine was 

used to sequence the 5th and 10th positions. The 10th position was obtained following a 

single cycle of cSBL. 

Template and Anchor 

Primers 

DNA Sequence 

Test Template 5’ (Dual Biotin) TCT ATG GGC AGT CGG TGA TAN GCG CTT GCA AGA 

GAA TGA GGA AAA CGA AGA 3’ 

Anchor Primer  5’ (Phosphate) A TCA CCG ACT GCC CAT AGA 3’ 

-1 Anchor Primer  5’ (Phosphate)   TCA CCG ACT GCC CAT AGA 3’ 

-2 Anchor Primer  5’ (Phosphate)    CA CCG ACT GCC CAT AGA 3’ 

-3 Anchor Primer  5’ (Phosphate)     A CCG ACT GCC CAT AGA 3’ 

 

Extension Sequence  Query 

Primers 

DNA Sequence 

ExSeq4 – A 5’ Cy3 - NNINNANNN  3’ 

ExSeq4 – T 5’ TYE 665 (Cy5 Analog)- NNINNTNNN  3’ 

ExSeq4 – C 5’ 6-FAM (FITC Analog)- NNINNCNNN 3’ 

ExSeq4 – G 5’ TEX 615 (Texas Red Analog)- NNINNGNNN 3’ 

Saturation Primer 5’ NNINNNNNN  3’ 

Table 1. Sequences of the Test Template, various Anchor Primers, and Query 

Primers. 
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Binding DNA to Beads 

The dual-biotin on the test template was bound to the streptavidin-coated beads 

(MyOne Beads, Invitrogen, Carlsbad, CA). 30 uL of beads were washed three times in 

Bind and Wash Buffer (10 mM Tris-HCl, 1 mM EDTA, 2.0 M NaCL) and collected using 

a magnetic particle collector. The beads were then resuspended in 120 uL of BW Buffer 

and 1.2 uL of 1 mM Test Template sequence (10 uM final concentration) was added 

incubated at room temperature in a rotisserie for forty-five minutes. Finally, the beads were 

washed times and resuspended in 60 ul of Wash 1E (10 mM Tris, 50 mM KCl, 2 mM 

EDTA, and .01% Triton X-100). 

Hybridize Anchor Primer onto Template DNA 

The beads were washed in Wash 1E (10 mM Tris, 50 mM KCl, 2 mM EDTA, and 

.01% Triton X-100), then washed once in a 1 × SSPE (150 mM NaCl, 10 mM NaH2PO4, 

and 1 mM EDTA pH 7.4). The beads were then resuspended in 150 uL 1 × SSPE with 2 

uL of 1 mM anchor primer (13 uM final concentration). The solution was incubated at 

50°C for 15 minutes and then cooled to room temperature for ten minutes. Lastly, the beads 

were washed in Wash 1E three times and immediately used in the Query Primer Ligation. 

Query Primer Ligation 

The beads were collected in resuspended in the ligation buffer (66 mM Tris-HCL, 

10 mM MgCl2, 1 mM dithiothreitol, 1 mM ATP, 7.5% Polyethylene glycol [PEG6000]), 

with a query primer concentration of 3 uM each, and T4 DNA Ligase (2 U/ml, NEB). The 

ligation reaction was incubated at 30°C for 45 minutes on a rotisserie. Following the 

reaction the beads were washed three times in Wash 1E and resuspended in Wash 1E. The 

fluorescent signal was verified using a fluorescent microscope. 
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Microscope Fluorescent Calibration 

The exposure and gain for each fluorescent filter was adjusted with all positions 

present for each cycle. Camera settings were optimized each cycle of cSBL as signal 

dropped from one cycle to the next. The individual populations of beads were examined 

separately with the same settings, and then scored using NIS-Elements Basic Research 

imaging software (Nikon Instruments Inc, Melville, NY) (Figure 6). 

 

Figure 6. An overlay of three channels of fluorescence. In practice, there are four 

fluorescent channels, one corresponding to each base. Only three channels and the 

corresponding overlay are shown here for clarity. NIS-Elements Basic Research 3.0 (Nikon 

Instruments Inc, Melville, N.Y) software was used to generate this image and analyze the 

data. Pixel values are taken from beads in each channel to ascertain sequencing accuracy. 

The pixel values of brightness in each channel are used as a gauge of nucleotide identity. 
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The pixel values of the brightest channel for a given bead and the values of other channels, 

provide the signal to noise ratio for comparison. 

Pixel Intensity Evaluation as a Measure of Sequencing Accuracy 

NIS-Elements Basic Research 3.0 (Nikon Instruments Inc, Melville, NY) was used 

to determine the pixel intensities in the Cy3, Cy5, FITC, and TxRed channels. Individual 

channel intensity values ranged from 1-16,383. One-hundred pixels were averaged in each 

channel and compared. This gave a metric for estimating sequencing accuracy, as the 

correct signal was known for each position. 

Saturation Ligation 

A saturation step was performed to fully saturate all Anchor Primers sites not 

extended during the Query Primer ligation cycle. The ligation was performed in a 1 × T4 

DNA Ligase Buffer, with a Saturation Primer concentration of 10 uM and T4 DNA Ligase 

(2 U/mL), at 30°C for forty-five minutes on a rotisserie. 

Endonuclease V Digestion 

The beads were washed three times and resuspended in 1 × NEB4 (50 mM 

Potassium Acetate, 20 mM Tris-Acetate, 10 mM Magnesium Acetate, 1 mM 

Dithiothreitol) with 100 ug/mL BSA and Endonuclease V at a 2 U/mL concentration. The 

endonuclease V digestion was incubated at 37 degrees on a rotisserie for ten minutes. 

Removal of the fluorescence was confirmed visually using a fluorescent microscope. 

Specific digestion and negligible non-specific Endonuclease V digestion was confirmed by 

an overnight incubation with Endonuclease V with test-template bound beads. The 

overnight digestion resulted in no detectable non-specific endonuclease activity when 

gauged by hybridizing a probe to the distal region of the Test Template. 
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Endonuclease V Deactivation 

Following the Endonuclease V digestion, the beads were extensively washed to 

remove all Endonuclease V. Enzyme carry forward could cause phasing problems, 

therefore, a guanidine wash was also performed to inactivate residual enzyme. The bead 

solution was washed in a 3 M Guanidine solution at room temperature. Following the 

guanidine wash, the beads were washed three time and resuspended in Wash 1E. 

Cyclic Ligation 

After Endonuclease V deactivation, the template DNA has been sequenced in one 

position, but now the anchor primer is effectively lengthened. In traditional SBL, the 

sequencing strand would be stripped to repeat the sequencing process for a different 

position. With cSBL, the sequencing of additional bases is dependent upon the preservation 

of the hybridized sequencing strand of DNA. The process therefore begins again with query 

primer ligation, and is repeated until the signal to noise ratio is too low to effectively 

continue sequencing by SBL. At that point, the entire sequencing strand can be stripped 

and a different length anchor primer can be used to sequence different bases, as in 

traditional SBL (Figure 7). 



57 
 

 

Figure 7. Sequencing By Ligation with Endonuclease V Digestion. 1) Sequencing 

the fourth base in the template tag, by using standard SBL with a Query Oligo that contains 

a Deoxyinosine (I). 2) Endonuclease V will recognize the Deoxyinosine and cleave the 

second phosphate bond towards the 3' end. The picture has white light background to make 

the bead visible as all fluorescence is ablated. 3) Repeat SBL to obtain the next positions. 
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ABSTRACT 

Current sequencing technologies produce RNA and DNA sequence data at very 

high rates. Generally, downstream analysis requires the intermediate step of mapping of 

reads to a reference genome. Virtually all next-generation (post-Sanger) sequencing 

platforms generate giga-base-pairs (Gbp) of data per run, often in the form of mate-paired 

short–reads (1).  We anticipate the daily need to sequence, and subsequently align (map) 

to a reference genome, several billion mate-pair reads, or single sequence reads, in whole-

genome sequencing of human samples.  These reads may need to be aligned to a large 

reference genome, itself comprising several Gbp, e.g. human (~3.0 Gbp), mouse (~ 2.5 

Gbp), frog (~ 1.5 Gbp) or zebrafish (~ 1.5 Gbp). An efficient algorithm to perform this 

mapping is essential given these large dataset sizes. Here we present the SawTooth suite 

of software applications whose core functionality is the efficient mapping of short-read 

sequencing data to a reference genome. SawTooth also implements several ancillary 

applications for validation and statistical analysis of mapping results.  
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INTRODUCTION 

Our initial motivation for developing the SawTooth mapping algorithm was to map 

data generated on the Polonator polony sequencing platform (http://www.polonator.org). 

This platform produces data for short-read (typically 13 or 14 bp per tag) paired-end tags 

(PETs) whose approximate tag separation is known a priori, but only to within a broad 

range of values. Plausible separation intervals may be several hundred or several thousand 

bp. For example, a Polonator run may produce data where a single read consists of two 

13bp tags with a plausible separation range between 700bp and 1200bp. Our target 

computational platform was a Linux supercomputer consisting of Infiniband-coupled 8-

core nodes with 16GB RAM/node. (See Materials and Methods for greater detail.) The 

resulting algorithm and its implementation were optimized for this core problem, mapping 

13mer and 14mer PETs on the targeted computational clusters whose multi-processor 

nodes provide a minimum of 16GB RAM.  

For the core problem, we were able to realize speed-ups on the order of 400x over 

other currently available and supported mapping software, in particular Bowtie (2), 

Novoalign (http://www.novocraft.com), and SOAP2(3) . All fast contemporary mapping 

algorithms, including those just mentioned, rely on indexes. These auxiliary data structures 

facilitate the alignment of sample sequences to a reference genome, which we refer to as 

RefG in much of the discussion below. These indexes fall generally into two broad 

categories, suffix-trees and hash indexes (4). Historically, hash-based approaches were the 

first class of methods to be implemented and are still being used and developed. The well-

known BLAST (5) algorithm, developed in 1990, is one example, as are SOAP (6), the 

more recent Novoalign, and SawTooth, the algorithm that is the subject of this paper. We 

http://www.polonator.org/
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first discuss suffix-trees, and their performance, to motivate our reasons for using a hash-

based approach. 

Traditionally, the construction and use of suffix-trees imposed prohibitive memory 

requirements, even when represented as suffix-arrays which contain the same information 

in a more memory-efficient form (7). In recent years, however, innovations in the field of 

compressed text indexes and associated search methods have rendered suffix-based 

methods feasible for whole-genome indexing. (Sequence data is a special case of text and 

is therefore amenable to text-based methods.) Notable examples of compressed-text 

indexes are based on the Burrows-Wheeler Transform (BWT) (8) of the original text, with 

subsequent compression and construction of an FM index (9) to enable in-place searching 

of the compressed text. These form the basis for more recent mapping software such as 

BWA (10), SOAP2 (3), and Bowtie (2). 

A hash index is a well-known referencing data structure which allows key-based 

data retrieval in constant, O(1), time, making it perhaps the fastest of all data retrieval 

structures. It comprises three elements, a hash function, a hash table, and a data-store. The 

hash table is an array of pointers to data elements held in the data-store. This array is 

accessed directly via an integer offset into the array. As input the hash function takes a key, 

such as a name or social security number in traditional databases, and returns the integer 

offset into the hash array which contains a pointer the corresponding data.  This integer 

offset is often called simply the “hash” of the key. Thus, the process of locating the data 

may be as fast as two memory access operations. 

There are some limitations of general hash indexes that may limit their performance 

or impair their usefulness  (11). In the general case, keys are not ordered so sorted lists and 
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range searches are not intrinsic operations on the data structures.  Also, a hash function 

may generate the same hash for multiple keys. These cases, known as collisions, must 

somehow be resolved, requiring extra processing and access to the original keys within the 

index. However, the special nature of genomic data, and our limited purpose of mapping 

PETs to a reference genome, allow us to create hash indexes that are free from these 

limitations. In SawTooth, the key is the sequence comprising a tag and the data to be 

retrieved is an exhaustive list of loci where the tag maps in the reference genome. 

Importantly, this list is ordered by locus. The hash index and retrieval process is described 

in greater detail below. 

The SawTooth algorithm for mapping a single mate-pair to the reference genome 

proceeds in two steps:  

  

1. Retrieve two exhaustive lists of loci in the reference genome where each of the two 

paired-end tags, TAG1 and TAG2, map to the reference genome. 

 

2. Examine all possible combinations of m TAG1 candidates and n TAG2 candidates. 

Retain only those that fall within the plausible separation interval. 

 

SawTooth can perform Step 1 in O(1) time and Step 2 in O(m+n) average time, and in 

O(m*n) worst-case time. The justification for these computational complexity estimates is 

provided below. 
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Step 1 – Retrieving lists of loci 

SawTooth accomplishes Step 1 in O(1) time by means of a pre-compiled hash index 

of RefG. 

This hash index consists simply of two (4-byte unsigned) integer arrays, one being 

the hash array (which we refer to as OFFSET_ARRAY in the discussion below), and the 

other containing the data, i.e. the ordered, exhaustive list of loci (which we refer to as 

LOCI_ARRAY in the discussion below). It is built for the reference genome (as opposed 

to the target data) and has these and characteristics and components. 

The hash index is based on a pre-defined tag length, 12, 13, or 14 bp.  The hash 

function is defined as simply the binary encoding of the tag sequence. We arbitrarily code 

the individual nucleotides as follows: A=00, C=01, G=10, T=11. We then create a coding 

for oligonucleotides by appending the individual codes, e.g. GCAT is coded as 10010011. 

As well as being an unambiguous binary coding for an oligo, this representation can be 

directly treated as an integer and consequently as a direct-reference, i.e. as an offset into 

an array. Tags up to length 16 can be coded into a 4-byte integer hash. Current single –

node memory constraints limit the size of the tags used to construct the hash table, i.e. the 

seed-tags, to a maximum length of 14. This is a “perfect hash function” i.e. there are no 

collisions and there is no need in the algorithm for collision resolution. It is invertible, i.e., 

given a hash, the original tag can be uniquely reconstructed.  

The data array, LOCI_ARRAY, contains of 4-byte unsigned integers which are the 

loci where every occurrence of every tag in the reference genome is listed. The hash array 

OFFSET_ARRAY of 4-byte unsigned integers are the offsets into LOCI_ARRAY where 
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the first locus in RefG of every possible tag occurs. If the tag occurs nowhere in RefG, then 

the offset is set to 0xFFFFFFFF, which we use as a “not found marker”, NFM. 

The complete list of loci where a particular tag occurs is found as follows. The tag 

is translated into an integer, TAG_HASH, via the hash function, and the element 

OFFSET_ARRAY[ TAG_HASH] is obtained. This is the offset into LOCI_ARRAY 

where the list of loci for this tag begins.  The next tag that occurs in RefG is obtained as 

TAG_HASH _NEXT. This is usually simply OFFSET_ARRAY[TAG_HASH +1] but is 

inspected and incremented if it contains a “not found marker”. Thus 

OFFSET_ARRAY[TAG_HASH _NEXT] - OFFSET_ARRAY[TAG_HASH]. This is the 

number of loci in the reference genome where the tag occurs. The requirements that we 

have the location in memory where the list of the loci begins, and how many loci there are 

for this tag, are now completely satisfied. 

An example of these data structures for 3-mers appears in Table 1. 
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AAA 0 0 
 
140 
 

AAA 1 0 150 
AAA 2 0 162 

AAA 3 0 
 
143 
 

. . . . 

. . . . 

. . . . 
AAA 74 0 205 

AAA 75 0 206 

AAA 80 0 5307 

AAC 81 1 1208 

AAC 82 1 1509 

AAC 83 1 2210 

. .   

. .   

. .   
AAC 102 1 2884 
AAC 103 1 3085 
AAC 104 1 3803 
AAT 105 2 87 
AAT 106 2 981 

. . . . 

. . . . 
 
 

 

 

Because the hash code is translated directly to the index of a tag in OFFSET_ARRAY there 

is no need to store either the hash codes or the original tags; only the list of offsets is 

required. Thus memory usage is calculated as follows: Memory to store LOCI_ARRAY ≈ 

4*|RefG|    

Memory to store OFFSET_ARRAY = 4*(4^SeedSize). The calculation for 

LOCI_ARRAY storage is approximate because tags can begin on any base of RefG except 

for those less that the hash seed size distance from either end of a contig. For the Human 
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0 AAA 0 

1 AAC 81 
3 AAG 105 

4 AAT 258 
5 ACA 266 

6 ACC 283 

7 ACG 303 

8 ACT 499 

9 AGA 513 

10 AGC 560 

11 AGG 585 

12 AGT 645 

13 ATA 693 

14 ATC 838 
15 ATG 900 
16 ATT 953 
17 CAA 969 
18 CAC 1016 
19 CAG 1049 

. . . 

. . . 

Table 1b. Offset Array 

Table 1a. Loci Array 
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Reference Sequence b36.3 with 2,858,018,193 bases this comes to 11,432,072,772 bytes 

and is independent of hash seed size.  

 

 

 

 

Hash 

Seed 

Size 

Number of 

Possible 

Distinct 

Tags 

(4*4^SeedSize) 

Average 

Loci 

Per Tag 

Memory 

Required By 

OFFSET_ARRAY 

Total 

Memory 

Required 

11 4,194,304 715 16,777,216 11,444,777,216 

12 16,777,216 179 67,108,864 11,495,108,864 

13 67,108,864 45 268,435,456 11,696,435,456 

14 268,435,456 11 1,073,741,824 12,501,741,824 

15 1,073,741,824 2.794 4,294,967,296 15,722,967,296 

16 4,294,967,296 0.698 17,179,869,184 28,607,869,184 

17 17,179,869,184 0.175 68,719,476,736 80,147,476,736 

 

    

     

      

      

 

 

 

 

 

Table 2.  Memory Required for Hashing Data Structures for the 

Human Reference Sequence b36.3 
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Step 2 – Filtering pairs with plausible separation 

A naïve approach to filtering tag-pairs with plausible separation would be to actually 

examine every one of the m*n combinations. This, however, is unnecessary. SawTooth 

accomplishes Step 2 in O(m+n) average time by exploiting the fact that the two lists of loci 

are both ordered by locus. This ordering has two consequences. 

 

1- When looking for the mates for particular TAG1 locus, there is no need to 

examine any TAG2 loci after encountering the first TAG2 locus that exceeds the 

maximum separation.  Because they are ordered, all subsequent TAG2 loci in the 

TAG2 locus list are greater still, and must also exceed the maximum separation. 

 

2- Once the plausible TAG2 mates for a particular TAG1, say TAG1 locus(i), have 

been found, the search for mates to the next TAG1 locus , TAG1 locus(i+1)  may 

begin with the first TAG2 locus hat was a mate for TAG1 locus(i). In the case where 

TAG1 locus(i) had no mates, the search can begin with the last TAG2 locus 

examined which was the first which exceeded the maximum separation from TAG1 

locus(i) . 

 

These two constraints allow, in the case of typical tags, for a single traversal of each 

the two loci lists, with occasional re-examination of TAG2 loci, and requiring O(m+n)  

comparisons. The worst case O(m*n) occurs when every TAG2 is a plausible mate for 

every TAG1 as would happen in a long sequence of replicated monomers. This situation is 
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easily handled by terminating the search when a maximum number of matches have been 

found. 

 

Extension of Paired-End Mapping to the Mapping of Longer Tags 

 

The algorithm described above has been extended in SawTooth to handle tags of 

arbitrary length, whether as single tags or paired-end tags of length greater than 14. The 

extension based on the fact that the result of pair separation filtering is an ordered list of 

loci, just as is the result of a search in the hash-index. With that in mind, the extension to 

longer tags is obvious and direct. Longer single tags are simply split into sub-tags with the 

same length as the seed, and treated as mate-pairs with a separation of 0 for contiguous 

sub-tags, or negative separation for overlapping sub-tags. For example, using an index seed 

length of 14, a longer tag of length 35 is split into 3 sub-tags beginning at positions in the 

original tag of 1, 15, and 21 as in the representation below.  

Tag: ACGTACGTACGTACGTACGTACGTACGTACGTAC 

T01: ACGTACGTACGTAC 

T15:               GTACGTACGTACGT 

T21:                      CGTACGTACGTAC 

 

The lists of loci for T15 and T21 are filtered for a separation of exactly -7.  The 

resulting list of loci is filtered with the T01 list for a separation of exactly 0. For longer 

tags yet, the process is repeatedly applied. 

The list of loci for single tags produced this way are de-referenced and reported as 

mapping results.  For paired-end tags, the lists of loci are then submitted to the pair 

separation filtering algorithm. 
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Other Tools in the SawTooth Toolkit 

In addition to the core functionality described above, SawTooth implements several 

other tools for the processing, validation and analysis of mapping results. These include: 

 Building, saving and loading hash indexes based on multiple FASTA files and 

multiple-section FASTA files whether genomic or transcriptomic. 

 Generating sample tags and tag-pairs from a reference sequence 

 Validating results for correctness against the reference genome 

 Comparison of results generated by different mapping software 

 Analysis of mapping results to determine depth of coverage 

 Translation between various formats of input and results files  

 

 

 

MATERIALS AND METHODS 

ANSI C/C++ was chosen as the core development computer language for 

SawTooth for several reasons. It is available in the Microsoft Visual Studio environment, 

which provides a convenient development platform and is portable to our target Linux 

production architecture. Second, the language modularity and the availability of stubs for 

the Message Passing Interface (MPI) specification (12) led to code that is easily extensible 

with respect to its algorithmic and parallel (multi-node) capabilities. Third, C++ provides 

intrinsic high level data-structures such as vectors, lists, maps, and strings, along with fast 

and reliable algorithms that operate on them, through the Standard Template Library 

(STL). Finally, strict adherence to the ANSI language standard ensures that that SawTooth 
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will be portable across a great variety of platforms. SawTooth is currently implemented on 

both Intel and PowerPC hardware architectures. It runs under the Linux, Windows, and 

AIX operating systems; and has been successfully compiled with Microsoft Visual Studio, 

the GNU G++ compiler, the Cygwin G++ compiler, the Intel ICC compiler, and the IBM 

XLC compiler. 

On-node multi-processor performance was implemented through the OpenMP 

multi-threading library. Multi-node, distributed computing enhancements, primarily for 

segmented hash tables, are under development using the MPI.  

Performance benchmarking was performed on a 1792 node/14,336-processor-core, 

172 TFlop SGI/Intel Altix ICE 8200 supercomputer (Intel Xeon 3.0 GHz, 64-bit 

architecture; 8 cores/node, 16 GB RAM/node; high-speed InfiniBand and IPC networks). 

Code validation was performed on a smaller version of this architecture (22 nodes). 

Timings for all benchmarks reported below are based on elapsed wall-time, expressed in 

seconds. All tests were performed via batch submission on dedicated nodes, with no 

processes running other than the mapping software and system processes. 
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RESULTS 

Benchmarks for the purpose comparison of search times among SawTooth, Bowtie, 

and Novoalign were performed in identical execution environments. Except for the 

benchmarking with respect to number of processors each application was run 

simultaneously on 8 nodes, utilizing all 8 processors (cores) on each node. 

 

Validation Test 1: checked 2 million mappings, exact correspondence with Novo some 

differences with Bowtie. 

Benchmark Test 1: search times to map 10M paired-end tags of various sizes 13-20 

Tag 

Size 

(bp) 

SawTooth 

(sec.) 

Novoalign 

 (sec.) 

Bowtie 

(Seconds) 

Speedup 

Relative 

to 

Novoalign 

Speedup 

Relative to 

 Bowtie 

14 463  152588 0 329 

15 558  135556 0 243 

16 519 184003 100919 355 194 

17 479 153142 70849 319 148 

18 448 126530 51069 282 114 

19 428 103814 38754 242 90 

20 409 86302 31236 211 76 

Table 1.  Bowtie and SawTooth search times (sec.) to map 10M paired-end tags of 

various tag sizes. The SawTooth index was built with seed size 14. 
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Benchmark Test 2:  Search times to map 10M single tags various sizes 20-120 

 

Single 

Tag Size 

(bp) 

SawTooth 

(sec.) 

Novoalign 

 (sec.) 

Bowtie 

(sec.) 

Speedup 

Relative to 

Novoalign 

Speedup 

Relative 

to 

 Bowtie 

20       240  45792         77  190.8 0.32 

25       250  22141         73  88.6 0.29 

30       286  11861         73  41.4 0.26 

35       272  7195         74  26.4 0.27 

40       258  2979         76  11.5 0.30 

45       269  1763         78  6.6 0.29 

50       261  1763         81  6.8 0.31 

60       262  1556         87  5.9 0.33 

70       256  1644         93  6.4 0.36 

80       262  1519        100  5.8 0.38 

90       263  1907        107  7.2 0.41 

100       265  1330        114  5.0 0.43 

110       264  1866        121  7.1 0.46 

120       268  2501        129  9.3 0.48 
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Benchmark Test 3: Search times to map 1M paired-end tags size 16 using 1-8 cores 
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p

Number of Cores

Sawtooth
Speedup

Bowtie Speedup

Novo Speedup

Cores 

Sawtooth 

Speedup 

Bowtie 

Speedup 

Novo 

Speedup 

1      1.0      1.0         1.0  

2      2.0      1.9         1.8  

3      2.9      2.9         2.7  

4      3.9      3.7         3.5  

5      4.6      4.5         4.6  

6      5.1      5.2         5.4  

7      5.3      5.8         6.0  

8      5.5      6.4         6.6  
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Benchmark Test 4: search times to map 10M paired-end tags size 16 to various sized 

genomes, where maps are known to exist a priori (adding successive subsets of 

chromosomes that add up 300Mbp increments to chr1) 

         

Chromosomes 

in Reference 

Sequence 

Reference 

Genome 

Size in 

Mbp 

SawTooth 

(sec.) 

Bowtie 

(sec.) 

Novoalign 

 (sec.) 

SawTooth 

Slowdown 

Factor 

Bowtie 

Slowdown 

Factor 

Novoalign 

Slowdown 

Factor 

 

1 to 1 225  86  5418  14731      1.0      1.0       1.0   

1 to 2 463  97  11526  26861      2.1      1.1       2.1   

1 to 5 1022  135  26953  55601      4.5      1.6       5.0   

1 to 8 1487  190  42766  83436      6.6      2.2       7.9   

1 to 12 2000  260  62652  117471      8.9      3.0      11.6   

1 to 17 2422  331  81854  151096     10.8      3.9      15.1   

1 to 24 2858  399  101009  184003     12.7      4.7      18.6   
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Benchmark Test 5: search times to map 1M paired-end tags sizes 13 to 20 to the 

chimpanzee genome, ~3Gbp also. 

Tag 

Size (bp) 

SawTooth 

(sec.) 

Novoalign 

 (sec.) 

Bowtie 

(sec.) 

Speedup 

Relative to 

Novoalign 

Speedup 

Relative 

to 

 Bowtie 

13       64.8   95084.0   1466.6  

14       54.2   102877.7   1896.9  

15       60.6   88469.3   1459.1  

16       53.2   63629.7   1195.3  

17       49.7   42897.0   862.5  

18       45.6   29075.7   638.1  

19       43.7   21675.0   495.6  



80 
 

20       42.6   17267.3   405.3  
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DISCUSSION 

While much recent work is devoted to developing suffix-tree based mappers, hash-

based mappers still have the potential for superior performance. SawTooth is one such 

application that provides a significant speed up over current suffix-tree based mappers and 

previous hash-based mappers.  

In addressing the core problem for which SawTooth was developed, i.e. the exact 

mapping of short (13mer to 20mer) paired end tags to a large (~3Gbp) reference sequence, 

it provides speedups of 76 to several hundred over other popular mapping software 

packages (Bowtie and Novoalign) 

Spaced-seed indexing (14) can greatly increase the specificity of mapping longer 

tags and improve performance in that area where SawTooth lags. (15)(16)(17). The seed 

sequences on which the hash index is based need not be contiguous. In the simplest 

implementation of a spaced-seed index the seeds are composed of every nth base in the 

reference sequence, perhaps every third or fourth. A spaced-seed index based on every 

fourth base and of net seed length 14 would span a region of 43 (4*13 +1) bases in the 

reference sequence. 

The next phase of development will be to implement SNP/SNV discovery. This 

may be accomplished by one of several different methods. SawTooth is still in an early 

stage of development and these directions for future development seem very promising. 

We believe that the SawTooth algorithm may be improved. We further believe that the 

methodology is so powerful that it may serve as the kernel of hybrid algorithms 

incorporating various other methods and concepts. Possible areas of future efforts are as 

follows. 
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SNP discovery can be accomplished immediately by simply permuting each base 

in the target tags and repeatedly applying the existing algorithm. This brute force approach 

is computationally intensive; permuting each base through three alternates in paired-end 

14mers requires 84 (3x28) iterations of the algorithm. However the speed of SawTooth 

makes this approach feasible. 

In a more promising approach, the very fast exact mapping of 14-mer pairs could 

be used to provide small sets of candidate sequence alignments which may then be 

analyzed by more comprehensive yet much slower homology scoring algorithms such as 

Smith–Waterman which requires O(mn) time and space. This is an approach similar to that 

used by the BLAST algorithm for generalized sequence alignments. This approach would 

lead directly to the detection of  indels, (insertions and deletions (18) as well as 

polymorphisms. 
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Chapter 5 

Paired-End Library Construction 

Introduction 

 The initial goal of the project described in this chapter, focused on sequencing the 

bacteria, Actinomyces kibdesporangium, culminating in a finished de novo draft assembly.  

Sequencing was performed using an IonTorrent Personal Genome Machine (PGM).  The 

project subsequently shifted focus to the library construction and optimizing a library 

construction protocol that would allow first paired-end and then mate-paired reads to be 

obtained with the IonTorrent PGM, making de novo draft assembly more accurate and 

complete (1-7). 

 Actinomyces kibdesporangium does not have a complete reference genome 

available yet, with only a single gene cluster having been sequenced thus far.  The 

laboratory was approached by a chemistry lab, interested in biochemical pathways the 

bacteria is capable of.   

 Library construction is an important precursor to sequencing, not only to produce 

the DNA templates to be sequenced.  Additionally, this process can dictate what 

sequencing data will be gained.  Sequencing By Synthesis (SBS) must proceed in the 5’ to 

3’ direction due to the usage of the enzyme DNA polymerase (8-10).  Therefore, even with 

the most straightforward sequence library construction methods, one can only obtain 

sequence data at one end of a DNA tag (11-13).  The limits of most next-generation 

sequencing methods that utilize SBS reach around 200 hundred bases due to the multi-

parallelization that occurs (9,11,14), resulting in loss of chemical efficiency for each 
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individual step.  Traditional Sanger sequencing, considered the “original” SBS method, has 

much lower throughput and can produce reads on the order of roughly one kilobase (9,15-

17).  Miniaturization reduces the efficiency of the biochemistry, resulting in a significant 

loss of read length, however, there is an exponential increase in the number of reads that 

can be sequenced, vastly increasing overall throughput (17,18).  Different library 

construction methods can consider these limitations and be tailored to obtain the most 

useful data possible. 

 Sequencing data can be either non-paired or mate-paired.  A non-paired library 

provides only a single read from each tag, while a mate-paired library produces tags that 

are paired, but separated in the genome by a known range of distances (9,14,17).  This 

distance makes it possible, using computational methods, to assemble large genomes that 

may have redundant regions, and offers a greater potential for resolving ambiguous 

matches (19). Though mate-paired reads are always more useful in the assembly of large 

genomes, there are still reasons not to use mate pairs.  Most re-sequencing of human 

genomes can still provide very valuable data without mate-pairs because a reference 

genome can be used to determine SNPs or indels (20).  Even for de novo sequencing 

projects, the genome may be small enough to be assembled without using mate-pairs 

(11,20,21).  The amount of labor and optimization that goes into mate-paired library 

construction can be deterring factors for making a mate-paired library, especially if one is 

not necessary.   

  This project sought to optimize a library construction method that would make it 

possible to obtain paired-end reads on the IonTorrent, a next-generation sequencing 

machine that utilizes SBS.  This would potentially allow optimization and application of a 
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mate-paired sequencing approach in the future.  In this chapter, we describe the procedures 

used and preliminary results from this work.  However, preliminary paired Ion Torrent data 

suggested our current protocol is not usable for generating paired-end data, as only a 

percentage of the supposedly paired reads were actually paired, making utilization of the 

data problematic.     

Paired-Library Assessment 

 The paired-end library was constructed in a small number of runs (in Methodology 

below).  A paired-end run actually consists of two runs, a forward run followed by a reverse 

run.  In all cases, the reverse run contained fewer beads, or reads, than the forward run.  

This was to be expected due to lack of efficiency in various enzymatic steps to prepare the 

template DNA for the run.  The IonTorrent PGM has millions of wells that the machine 

can track between runs.  Therefore, it is simply a matter of connecting reads obtained in 

the first forward run, and pair each with the read from the corresponding well in the reverse 

sequencing run.  The main issue was was whether every pair of reads from a single well 

would actually be paired, and therefore verification of the data needed to be performed. 

 Initial verification of successful paired-end sequencing was performed by using a 

simple perl script (M. Murphy) that checked for overlap in the two supposedly paired 

sequences.  A pair of runs, a forward and a reverse sequencing run, was performed on a 

bacterial genome, Actinomyces kibdesporangium.  Template DNA had been size-selected 

via gel electrophoresis prior to ligation of adaptors, therefore confidence that the fragment 

size was in the 200-250 base range was high.  For our sequencing run, we used the Ion 

PGM™ 200 Xpress™ Template Kit (Cat 4474280), which creates reads roughly 200 bases 
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long.  Therefore, we expected to obtain paired-end reads that would be overlapping. The 

data is output into three files; one forward, one reverse, and one unpaired file.  We only 

analyzed the first two, which contained roughly 100,000 reads.  We performed a simple 

check for paired-end reads by taking the last twelve bases of the forward read, and then 

looking for a reverse-complement match in the supposedly paired-read in the second file.  

We obtained a match roughly a quarter of the time (Table 1). 

Total Pairs of Reads 96,102 

Pairs with Overlapping Sequence  

(Paired) 

21,039 (22.02%) 

Pairs with No Overlapping Sequence 

(Unpaired) 

74,521 (77.54%) 

Table 1 – Reads evaluated with perl script for overlapping sequence as an indicator of paired reads. 

 We then decided to follow up and check to see if there were any paired-end reads 

we did not catch due to the fact that the paired-end reads were too short to overlap, although 

we predicted that this would be a fairly low percentage of our reads.  We used Bowtie 2 

(22) and a very rough draft genome of Actinomyces kibdesporangium, that had been 

assembled by collaborators with over 2 gigabases worth of IonTorrent sequencing 

information from another assembler, CLC Bio.  Bowtie 2 is an assembler that can match 

paired-end reads to a reference and then output statistics on what percentage of the reads 

were paired-end.  Bowtie 2 also distinguishes between cases where the paired reads were 

concordant or discordant, meaning that they were separated or overlapped, respectively.  

Using the same dataset as our initial perl script check, we were able to obtain the following 

results, which somewhat affirms our quick perl script results, that only a percentage of the 

paired reads were truly providing paired data (Table 2). 
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Unpaired Reads  

(From Unpaired Pairs above) 

149042 

Did Not Align to Reference 90,266 (60.56%) 

Aligned Once 57,389 (38.51%) 

Aligned More than Once 1387 (0.93%) 

Table 2 – Bowtie 2 results, using rough draft as reference and mapping paired-end reads to verify paired-end 

status. 

However, in this particular dataset, we also discovered that the reads themselves 

were not aligning properly to our reference genome (Did Not Align to Reference).  Ideally, 

the reads would map only once (Aligned Once), making evaluation possible as reads that 

mapped ambiguously in multiple areas (Aligned More Than Once) cannot be used 

regardless.  Given the read lengths, we expected a majority of the reads to map once, given 

a reliable reference genome. If anything, these results gives more insight into the current 

draft and sequencing methods than it does the paired-end library.  However, as seen from 

Table 2, 61% of the dataset was unusable because it did not even match in the reference, 

meaning Bowtie 2 could not be used to actually determine the rate of paired-end reads.  

Therefore, it was determined that only reads that aligned to the genome once would be 

used.  The percentage of paired reads to eligible reads that actually matched to the rough 

draft genome was roughly 41.8% of the reads paired (Table 3). 

Total Reads that Aligned Once 101,938 

Paired Pairs 42,078 (41.8%) 

Unpaired Pairs 58,776 (57.6%) 

Table 3 – A subset of only reads that aligned exactly once according to Bowtie 2, evaluated for 

overlap, indicating paired-end reads. 
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 The initial expectation for this paired-end library was that most of the reads present 

in the reverse run would be truly paired, instead, less than half of the reads ended up being 

paired.  This shortfall (Table 3) is problematic because in any de novo sequencing effort, 

there is no way to ascertain which reads in the reverse run are truly paired .  Even with 

resequencing efforts, where a reference genome would be available, information involving 

structural variations or rearrangements would be lost because none of the supposedly 

paired-end data is reliable. 

 Future work on this project will require further optimization of the paired-end 

library construction method, as it will be vital in enhancing a mate-paired library 

construction method.   

Methodology 

Paired-End Library Construction 

All protocols were adapted from IonTorrent’s Demonstrated Protocol: Paired-End 

Sequencing on the PGM™ System (23). 

 The IonTorrent is a next-generation sequencing machine from Life Technologies 

(24).  It utilizes an SBS method that obtains data in real-time by using pH sensors to detect 

the incorporation of nucleotides.  General library construction involves shearing double-

stranded DNA, and then ligating adaptors onto both ends of the DNA.  The DNA template 

is then single-stranded and put through an emulsion PCR (ePCR) method, that will clonally 

cover polystyrene beads with the DNA template.  These beads are then put into wells in a 

specialized chip that is covered in pH sensors.  After this, SBS will proceed from the 5’ to 
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3’ end, obtaining a single read from each well – resulting in millions of beads, each 

providing 150-250 bases of data.   

 One of the biggest changes in protocol from single-end reads to paired-end reads 

involves adding an Nt.BbvCI site onto the Sequencing Primer.  After sequencing the 

forward reads routinely, the Nt.BbvCI enzyme is added along with T7 Endonuclease.  

Nt.BbvCI will nick the recognition site, while T7 Endonuclease digests all DNA that is 3’ 

of the nick.  This results in the original template strand being digested away while the 

newly synthesized sequencing strand remains.  The nick is far enough 3’ to spare the 5’ 

side DNA, which can then prime a follow-up SBS run, but now running in the opposite 

direction, creating a paired-end read. 

 

Figure 1 – A general summary of the paired-end sequencing strategy from (23). 
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Primer Construction 

 The primers themselves are essentially identical the default primers used however, 

there is a Nt.BbvCI site incorporated in the Adaptors and the Sequencing Primer was 

altered to compensate for this.  Phosphorothioate bonds are used to prevent digestion.  P1 

adaptors will be adhered to the bead, whereas the P2 adaptors will be free end of the DNA, 

that will later prime with the Paired-End Sequencing Primer. 

Oligo Name Sequence 

Paired-End 

Sequencing 

Primer 

5’ – C*C*A*T* CTC ATC CCT GCG TGT CTC CGA C – 3’ 

* = Phosphorothioate bond. 

P1 Adaptor 1 5’—CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATCCTCAGC —3’ 

P1 Adaptor 2 5’— GCTGAGGATCACCGACTGCCCATAGAGAGGAAAGCGGAGGCGTAGTGG*T*T —3' 

P2 Adaptor 1 5’— CCATCTCATCCCTGCGTGTCTCCGACTCAG —3' 

P2 Adaptor 2 5’— CTGAGTCGGAGACACGCAGGGATGAGATGG*T*T —3' 

Table 1- Primer construction. 

DNA Template Preparation 

 The genomic DNA was first fragmented, and adaptor ligated.  A 200 base-read 

library was prepared using Ion Xpress™ Plus Fragment Library Kit (Life Technologies.  

Cat - 4471269).  The only alteration was ligating the above P1 and P2 adaptors instead of 

the default adaptors.   
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 Next, this template was clonally amplified to cover polystyrene beads via an 

emulsion PCR method.  This was performed with a Ion Xpress™ Template 200 Kit (Cat -  

4471253).  This was completed with no alterations to the written protocol. 

Forward Sequencing 

 Reagents and the protocol used for forward sequencing were performed as in the 

Ion Sequencing 200 Kit (Cat - 4471258).  The only change to the protocol was substituting 

in the Paired-End Sequencing primer, as dicussed above. Forward sequencing was 

performed as usual. 

Reverse Sequencing 

 Reagents and the protocol used for reverse sequencing were as in the Demonstrated 

Protocol: Paired-End Sequencing on the PGM™ System (Part Number – MAN0006191).   
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Chapter 6 

De Novo Assembler Comparison 

Introduction 

 The process of de novo genome assembly is a complicated affair.  There is a lack 

of true verification of published draft genomes that will inevitably see many revisions (1-

3).  There are many programs available for assembly, all of which vary in their algorithms, 

efficiencies, and effectiveness for various next-generation sequencing technologies, and 

the list of assemblers is still growing every day (3).  The process of choosing an assembler 

and optimizing is a challenge that has growing complications by the day.   

 De novo assembly and mapping assembly are two distinct tasks.  De novo, as the 

term implies, is from nothing, and refers to the assembly of a genome utterly from scratch 

(1,3-6).  On the other hand, mapping assembly takes next-generation sequencing data and 

compares it to an available reference genome (1,7,8).  The information gained from each 

endeavor varies as well.  De novo assembly culminates in the completion of a draft genome, 

providing basic genome structure, gene synteny, and protein information (2,5,9).  A 

mapping assembly requires a reference genome, but can provide insight into differences 

between sample genomes and the reference genome.  These differences can be structural 

variations, Single Nucleotide Variations and Indels, expression differences, epigenetic 

factors, or copy number variations (10-14).  These variations, in turn, can be potential 

contributing factors of phenotypes or disease states of interest. 

 Preliminary data regarding the de novo assembly of Actinomyces kibdesporangium, 

as described in chapter 5, prompted a need to evaluate assemblers.  An issue complicating 
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the generation of a de novo draft quality genome is the lack of verification.  One can provide 

evidence of a strong dataset, provide quality control data regarding the acquired sequence 

data, but there is no method to directly verify the accuracy of a draft genome (15,16).  

Often, published draft genomes undergo multiple revisions as the genome is re-sequenced 

and reassembled, gaining more detailed annotations as further painstaking work is 

performed to verify the genome (17,18).  Therefore, one cannot simply generate a draft 

genome using multiple assemblers and determine from those results which draft genome 

is the most accurate.  Granted, many programs include internal checks that can provide 

various relevant metrics such as contig sizes and coverage, but there is no way to measure 

mistakes in alignment or base calling.   

 This work attempts to evaluate the capabilities of three popular de novo assemblers 

by assembling a well-characterized reference genome: Escherichia coli K12 MG1655.  The 

assemblers tested are MIRA (Mimicking Intelligent Read Assembly), CLC Genomics 

Workbench, and Velvet Assembler (19,20).  In addition to testing the assemblers, 

experimental data from Ion Torrent, Illumina / Solexa, and Roche 454 were obtained for 

E. coli K12 MG1655.  These sequencing data were put through the various packages to 

create multiple de novo assemblies.  These assemblies were then compared to the reference 

genome using the Mauve Multiple Genome Alignment program (21), which gave data 

regarding contig length, percentage of genome covered, as well as misalignments, gaps in 

alignment, and incorrect base calls (22).  Using a reference genome provided an 

opportunity to evaluate de novo assemblies, which would not be possible when comparing 

true de novo sequencing efforts (21,23,24). 
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Results 

 As expected, there was no clear, undisputed best performing assembler.  Choice of 

assembler will depend on largely on the data on hand to be assembled.  Generally speaking, 

relying purely on contig length, Roche 454 data is best assembled on CLC Genomic 

Workbench, Ion Torrent is best assembled on MIRA, and Illumina / Solexa data generates 

the longest contigs using Velvet Assembler.   

 MIRA seemed to perform very poorly with Solexa reads, which are mate-paired.  

However, when given longer reads, as in the case of Roche 454 and Ion Torrent data, Mira 

did much better, and was best in assembling Ion Torrent data, which provided 300-500 

base read lengths.  This is in spite of the fact that the data is prone to homopolymer errors, 

where there are multiples of the same base in a row.  In general, yields lower quality reads 

than Solexa, though there are typically a greater number of reads.   This implies that with 

MIRA, the size of read lengths, assuming adequate data quality, is an important factor for 

obtaining higher quality assemblies. 

 Velvet Assembler, in contrast, performed very poorly with longer reads, especially 

if the accuracy of the reads were lower.  Roche 454 data available was of higher quality, 

but shorter than Ion Torrent data. Velvet assembled 454 data poorly, but when given Ion 

Torrent data, Velvet Assembler could not even complete an assembly, running out of 

memory even on a machine with 16 GB of RAM, implying that the algorithms that Velvet 

Assembler used created too many contigs that were very small in size, and overly taxed the 

computer system.  However, when given very accurate, shorter data from Solexa, Velvet 

was able to create the longest contigs out of any of the datasets.  It seems that the most 
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important factor for Velvet Assembler is the accuracy of reads, and that the algorithms 

Velvet Assembler employs for dealing with less accurate reads are ineffective.    

 CLC Genomics Workbench seems to fall somewhere in between the niche 

specialties of Velvet Assembler and MIRA.  CLC was able to generate the longest contigs 

with 454 data, which are longer than Solexa reads, but shorter than the Ion Torrent reads.  

CLC Bio was still able to assemble any of the data types adequately, but was outperformed 

by Ion Torrent data on MIRA and Solexa data on Velvet Assembler. 

Initial Mapping of Sequence Data 

 Prior to using Mauve to compare the de novo assemblies that the various programs 

would create, a mapping was performed using the respective experimental data.  The reason 

for this was that there was concern that the individual E. coli K12 MG1655 strains may 

have SNPs, indels, or rearrangements that may have inflated the perceived errors rates of 

the assemblers.  The mapping was performed using CLC Bio with the experimental data 

that was also used in the de novo assemblies. 

 Fortunately, as predicted, the number of SNPs observed from the mapping was very 

low, numbering about a dozen (Table 1).  Considering the number of SNPs found from the 

assembly numbered in the hundreds, it was concluded that SNPs from the individual strains 

from the specific sequencing runs did not result in significant differences (Table 1). 

 Additionally, the variants detected in the CLC Bio mapping are most likely not all 

real variants.  One must consider the frequencies of the SNP detected, the coverage, and 

the type of error that was detected.  For example, both Ion Torrent and Roche 454 

sequencing are prone to producing Indel errors.  The developers of mappers, such as CLC 
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Bio, are well aware of this issue, therefore, the software has options to filter out 

homopolymer errors.  Despite this built-in filter effect, there were still Indel errors that 

were detected by CLC Bio (see Table 1) and especially Ion Torrent (see Supplementary 

Table 4).   

 There seemed to be a correlation between the frequencies of detected mapping 

variants and the presence of that same SNV or Indel in the de novo assembly and genome 

comparisons performed by Mauve.  In general, if a variant was detected with 100% 

frequency, the SNP would be present in the Mauve assembled genome as well.   Any 

detected variant with a frequency lower than roughly 90%, seemed to be the result of a 

sequencing error, particularly if it was an Indel variant with Roche 454 or Ion Torrent 

technology.    

 Therefore, given that the lists of variants detected was short, and that even in these 

short lists, that most of the variants detected are probably not real variants, but rather 

products of sequencing error, it is safe to assume that mutation rates for the separate E. coli 

K12 MG1655 strains in the different labs had very similar genomes.  

Reference 

Position 

Consensus 

Position 

Variant 

type Length Reference Variants 

Allele 

variants Frequencies Counts Coverage 

19780 18829 SNV 1 A 2 A/T 59.3/40.7 16/11 27 

19796 18845 InDel 0 - 2 -/C 60.7/39.3 17/11 28 

257847 254494 InDel 0 - 2 -/G 59.4/40.6 19/13 32 

257869 254516 SNV 1 A 1 C 55.6 15 27 

257911 254556 InDel 2 GC 2 GC/- 63.6/36.4 21/12 33 

3364777 3338479 SNV 1 T 2 T/C 59.3/40.7 16/11 27 

3558478 3528742 InDel 1 G 1 - 100 20 20 

3957957 3921226 SNV 1 C 1 T 100 15 15 

Table 1 – Variants detected from Roche 454 mapping data to reference genome 

Bases Covered and Contig n50 
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 One significant finding was that despite the variation in assembly performance, the 

number of missed bases remained relatively constant.  The best performing assemblies 

were both from MIRA, missed roughly 1.6% (454) and 1.2% (Ion Torrent) of the genome, 

but the worst assembly (454 on Velvet), that contained the shortest contig sizes, only 

missed 3.3% of the genome.  While this might not seem like a large difference in 

percentage, but when assembling genomes de novo, it gets exponentially more difficult to 

obtain the last repetitive regions that are impossible to identify without longer reads or 

extremely long mate pairs (Figure 1). 

 

Figure 1 – Bases covered and added when comparing the various assemblies against the reference 

genome.   

 The number of extra bases incorrectly added to the assembly, varied across our 

computed experiments, and roughly corresponded to the aggressiveness of an assembly.  

For example, when comparing Solexa Single and Solexa Paired, which is the same data, 

with the paired data either taken into account or not, the base calls and quality scores do 

not change.  What does change is that the assemblers use the paired status and separation 
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in order to improve the assembly.  This improves contig size, but also results in extra bases 

being added to the assembly. 

 Contig sizes are one of the primary statistics used as a quick, though overly 

simplified indicator of an assembly’s quality (Figure 2).  It is true that assemblies are 

always looking for longer contigs, with the theoretically final goal of having a contig that 

encapsulates the entire genome. 

 

Figure 2 – Contig n50.  The n50 is defined as the contig size at which half the bases in all the sequences are 

shorter than.  Longer is indicative of a more complete assembly. 

 For all computational experiments performed here, Solexa data was used as a 

control.  Realistically, there is no reason to utilize unpaired Solexa data for assembly 

purposes because the reads are mate-paired, and that inherently provides more information 

than single reads.  For the purposes of our comparison, Solexa Single and Solexa Paired 
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0

20000

40000

60000

80000

100000

120000

140000

Contig N50:



103 
 

single or paired Solexa data, though this was most likely due to the fact MIRA was not 

optimized to handle such reads without access to a supercomputer.  CLC Genomics 

Workbench and Velvet Assembler did much better with the paired data, increasing contig 

size many times over, though Velvet was more efficient, even if both CLC Bio and Velvet 

have similar Solexa Single contig sizes.   

 We further found the contig sizes show that CLC Bio, which seemed to be the most 

versatile overall, best handled 454 datasets.  Ion Torrent data looked excellent in MIRA, 

whereas Velvet was unable to use it at all, and CLC created a poor assembly.   

Mistakes in Assembly 

 SNPs found with Mauve were not actually SNPs, but reflect missed base calls 

because all three sequencing platforms should have been sequencing the same genomes 

(Figure 3).  Counter-intuitively, the number of errors increased when trying to utilize 

Solexa Paired data instead of just the Solexa Single, but this was perhaps due to trying to 

create a longer assembly. Velvet seems to have very sensitive SNP detection, calling 

positions of uncertain sequencing SNPs, whereas other software relies on a clear alternate 

“allele variant”.   
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Figure 3 – Number of SNPs in each assembly, an indicator of incorrect base calls.  The specific SNPs 

found are available in the supplementary information. 

 In addition to SNPs, there may be gaps in the assembly when compared to the 

reference (Figure 4).  The Ion Torrent data seemed to create more gaps, but definitely a 

much greater amount on CLC Bio than on Mira.   

 

Figure 4 – Gaps in assembly.   
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Finally, we examined the number of Inter-LCB Boundaries (Locally Collinear 

Blocks) (Figure 5).  An LCB is a region that does not contain any rearrangements. For the 

purposes of our genome comparison, which is the same genome in all cases, an inter-LCB 

Boundary can be thought of as a misalignment.  Mauve is normally used to compare 

different genomes, and in those cases, regions of the genomes may be moved around due 

to recombination.   

 

Figure 5 – Number of Inter-Linear Colocalized Blocks (LCBs), or misalignments.  A LCB is a block 

of correctly assembled sequence, however, to align a draft genome to a reference, it may become 

necessary to break these blocks of correctly assembled sequence into smaller blocks because the 

assembler has placed it in a different location than the proper spot in the reference genome. 

 

Discussion 

Assembler Comparison 

 Choosing the proper assembler for the data on hand is very important, and as the 

CLC / Velvet comparison demonstrated, contig size cannot be the only factor that is 

considered.  There is no denying, however, that longer contig size is a desirable metric in 
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the de novo assembly of a genome.  It is interesting to observe how the different assemblers 

dealt with, or failed to deal with the variantions in the data.  The various next-generation 

sequencing technologies each have certain quirks, which are either less or more compatible 

with the different assemblers.  Homopolymer mistakes by the Ion Torrent or 454, for 

example, caused computational problems for Velvet Assembler, although it was able to 

take advantage of Solexa’s data, despite the shorter reads.  

When comparing de novo assemblers, one cannot just consider n50 contig size 

alone though it is a logical statistic to begin with, since it still remains a useful metric to 

gauge an assembly’s effectiveness.  The mistakes that the assemblers make, are another 

consideration.  CLC Bio, although creating shorter contigs than Mira with Ion Torrent data, 

or Velvet with Solexa data made fewer misalignments, even making none with 454 and 

Ion Torrent data.  Seemingly, CLC Bio is a more conservative assembler that produces less 

mistakes at the cost of shorter n50 contig lengths. 

 As new sequencing technologies emerge, correspondingly, new software will be 

developed to utilize the data.  Any paradigm shifts in next-generation data will provoke a 

reactionary creation of software leading to entirely different computational issues that arise 

with the shape of the new data.  Conversely, new sequencing technology will render 

irrelevant many of the issues that current software has taken pains to address and adapt to 

obsolete.  This is not to say that new sequencing technologies will necessarily render every 

current technology moot.  Sanger Sequencing is still capable of generating longer reads, 

though the method has largely fallen out of use due to low throughput, and still has potential 

applications.  Benchmarking and comparison of software will continue to be a necessary 
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part of de novo or assembly mapping, because even if the shape of data and the algorithms 

of software changes, finding compatible pairings will remain a relevant endeavor.   

SNV Locations Within Assemblies 

 As a general trend, it seems that the SNVs, often falsely, detected by the various 

assemblers clustered around certain positions, roughly finding a dozen mistakes in a range 

of a hundred bases in many cases for example.  There did not seem to be regions in common 

between the three different datasets, though there was often overlap in regions that gave 

the individual assemblers the most problem.  This implies that false SNV detection arose 

due to using specific genomic samples prepared by the individual laboratories. 

Comparison of SNVS from 454 Mapping and Assembled Genomes 

 Within the 454 results, only a single SNP (Position 3957957) from the mapping 

was found in the Mira and CLCBio assemblies, implying that this is a real SNP.  Velvet 

failed to detect the same SNP. 

Comparison of SNVs from Ion Torrent Mapping and Assembled Genomes 

 There were many SNVs detected, though many were falsely detected due to the 

technology used.  Therefore, only SNPs were examined in-depth.  SNPs found in the 

mapping with 100% presence and consequently detected in at least the MIRA assembly 

were found at (57694, 2143337, and 3957957).  CLCBio failed to detect any of these SNPs 

that were observed in the mapping and was corroborated by the MIRA assembly. 

Comparison of SNVs from Solexa Mapping and Assembled Genomes 
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 There were two sets of Solexa data, due to the fact that the data was analyzed both 

correctly assuming and utilizing the paired information, and incorrectly assuming and 

ignoring paired data in a ‘Single’ run.  There were thirteen SNPs found in the Single 

mapping (257911, 547694, 547836, 1773495, 2171387, 3364777, 3421312, 3558478, 

3957957, 4038792, 4169912, and 4294405).  Of these, only six were found in the Paired 

run (547694, 1773495, 3421312, 3957957, 4038792, and 4169912).  This seems intuitive 

that within a mapping context, the paired data would lead to more accurate SNV calling, 

as opposed to assemblies where using paired data gave longer contigs, but resulted in more 

false SNVs being called.   

SNP 

Position 

CLCBio MIRA Velvet 

547694 Yes No Yes 

1773495 Yes No No 

3421312 No No No 

3957957 Yes No Yes 

4038792 No No No 

4169912 No No Yes 

 

SNP at Position 547694 

 Interestingly, there was a SNP found in the Ion Torrent, Single, and Paired Solexa 

Mappings, though not the 454 Mapping.  However, using the same 454 data, all three 

assemblers, CLCBio, MIRA, and Velvet, detected the same SNV at that exact location.  

This implies that this detected SNP, across three different laboratory specimens, may be an 
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actual SNV of the strain.  The three sequencing runs were performed from the same E. coli 

K12, MG1655 strain, but they were performed by different laboratories.  Additionally, no 

other SNP is detected in common besides this particular one. 

Methodology 

Data Sets 

 All sequencing information was obtained from sequencing runs of Escherichia coli 

K12 (NC_010473), strain MG1655.  The Roche 454 dataset was downloaded from CLC 

Bio’s publically available dataset (http://www.clcbio.com/support/downloads/).  The Illumina 

Solexa data was obtained from the company website 

(http://www.illumina.com/systems/miseq/scientific_data.ilmn).  The Ion Torrent dataset was 

obtained from the company’s main page (http://ioncommunity.lifetechnologies.com/docs/DOC-

2265) (See Table 2). 

Sequencing Platform Coverage Read Structure 

Roche 454 21.7 Single ~ 225 bases 

Solexa 37.9 Paired 35 bases 

Separated by 150-300 

Ion Torrent 47.1 Single ~ 430 bases 

Table 2 – Sequencing platforms and dataset coverage. 

CLC Genomics Workbench 

 CLC Genomics Workbench is a commercial, licensed product, and as such, 

required the least amount of optimization and effort to run.  All sequencing data was 

http://www.clcbio.com/support/downloads/
http://www.illumina.com/systems/miseq/scientific_data.ilmn
http://ioncommunity.lifetechnologies.com/docs/DOC-2265
http://ioncommunity.lifetechnologies.com/docs/DOC-2265
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imported with default options, required no additional pre- or post-processing, and were all 

assembled with specialized settings that were developer-recommended.  The only option 

that had to be selected was the homopolymer filter when dealing with Roche 454 and Ion 

Torrent data, to prevent the homopolymer miscalls from being called Indels.   

Velvet Assembler 

Roche 454 

Data came as two files, a fasta file and a .qual file.  Pre-processing was performed 

with Galaxy 101 (https://main.g2.bx.psu.edu/root), to combine both files into a single fastq 

file.   

The command lines used to run Velvet were: 

./velveth 454Galaxy53 53 –fastq –short data/454EColiGalaxy.fastq 

./velvetg 454Galaxy53/ -cov_cutoff auto –exp_cov auto  

–min_contig_lgth 300 

 

 The first command line created the directory 454Galaxy53 with a 53 k-mer size, 

and designated the merged fastq file as input.  53 k-mer size was chosen based on running 

all possible k-mer sizes from 15 to 61, and choosing the run that yielded the largest n50.   

 The second command performed the actual assembly, with automatically-chosen 

coverage cutoffs and expected coverage.  A minimum contig length of 300 was chosen to 

filter out contigs too short to be useful. 

Ion Torrent 

https://main.g2.bx.psu.edu/root


111 
 

 None of the Ion Torrent runs finished on Velvet due to memory limitations.  No 

pre-processing was necessary.   

The command lines were as follows: 

./velveth IonTorEColi 21 21 –short –fastq data/EColi_in.iontor.fastq 

./velvetg IonTorEColi21 –cov_cutoff auto –exp_cov auto  

–min_contig_lgth 200 

Solexa Single 

The command lines were as follows: 

./velveth SolexaEColiSingle21 21 –short –fastq  

data/s_1_1sequence.fastq data/s_1_2sequence.fastq 

 

./velvetg SolexaEColiSingle21 –cut_off auto –exp_cov auto  

–min_contig_lgth 100 

Solexa Paired 

 Pre-processing was necessary to reformat the two fastq files, which contained each 

half of the mate-paired reads, however Velvet Assembler assumes that the paired reads are 

next to their mate pair.  A perl script, bundled in with the software package was able to 

shuffle the sequences (shuffleSequences_fasta.pl), but otherwise, quality scores and bases 

were unaltered. 

Command lines: 

./velveth SolexaPaired25 25 –shortPaired –fastq data/paired_1.fastq 

./velvetg SolexaPaired25 –cov_cutoff auto –exp_cov 35 
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 Note the –shortPaired flag in the first command line, and the use of single new fastq 

file generated by the pre-processing perl script. 

MIRA 

Roche 454 

 As in the case of Velvet Assembler, the 454 data was separated into two files: an 

.fna sequence file and an accompanying .qual quality file.  Galaxy 101 was used to generate 

a single .fastq file for MIRA. 

The command line was: 

mira --project=454EColiGalaxy --job=denovo,genome,accurate,454 –notraceinfo 

 The job flags indicate that the task was a de novo assembly of a genome.  The 

accurate flag was used instead of draft, and the 454 flag indicates the sequence data type.  

The –notraceinfo flag indicates that the original .sff file, recommended by MIRA 

developers to be included in Roche 454 assembly, was not available, and therefore would 

not be used to assist in assembly.   

Ion Torrent 

 Ion Torrent data was extracted from the original .sff data files using a third-party 

script entitled sff_extract (http://bioinf.comav.upv.es/sff_extract/index.html).   

The command line was: 

mira --project=EColi --job=denovo,genome,accurate,iontor 

Solexa Single 

http://bioinf.comav.upv.es/sff_extract/index.html


113 
 

 Solexa files required pre-processing to be run on MIRA due to the fact that the files 

were from an earlier version of the Illumina / Solexa pipeline that is no longer used.  Galaxy 

101 was used to convert the discontinued Solexa format into a standard Sanger .fastq 

format. 

The command line was: 

mira --project=EColiGalaxy2 --job=denovo,genome,accurate,solexa 

Solexa Paired 

 Running Solexa Paired data was very similar to running the single version. 

The command line was: 

mira --project=EColiGalaxy2 --job=denovo,genome,accurate,solexa  

SOLEXA_SETTINGS -GE:tismin=150:tismax=300 

 

 The above stipulates that there are paired reads, and that the minimum and 

maximum separation is 150 and 300 bases, respectively. 

Mauve Genome Alignment Software 

 All assemblies created a .fasta file, containing a list of contigs.  These contigs were 

then analyzed using the Move Contigs option of Mauve.  The reference file chosen was the 

E. coli K12 genome, and the experimental chosen was the appropriate fasta file from each 

assembly. 

 Mauve, broadly speaking, aligns the draft genomes created from the various 

assemblers and compares it to the designated reference genome.  From this, Mauve is 
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capable of outputting metrics such as SNPs, rearrangements, extra or missing bases, as 

indicated in previous figures in this chapter. 

 

Figure 6 – Mauve comparison of E. coli K12 MG1655 reference genome and Ion Torrent assembly as 

performed by Mira. 

 

Figure 7 – Mauve comparison of E. coli K12 MG1655 reference genome and Solexa assembly as 

performed by Velvet. 
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Figure 8 – Mauve comparison of E. coli K12 MG1655 reference genome and 454 assembly as 

performed by CLC Bio. 
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Supplementary Information 

 Included below are the various data tables generated by Mauve following reference 

and experimental genome comparisons.   

 454CLCBio 454Mira 454Vel 

Number of Contigs: 204 257 765 

Number reference replicons: 1 1 1 

Number of assembly bases: 4582488 4640522 4532481 

Number of reference bases: 4639675 4639675 4639675 

Number of LCBs: 2 10 16 

Number of Blocks: 106 180 734 

Breakpoint Distance: 106 180 734 

DCJ Distance: 106 180 734 

SCJ Distance: 212 360 1468 

Number of Complete Coding 

Sequences: 0 0 0 

Number of Broken Coding Sequences: 0 0 0 

Number of SNPs: 53 41 190 

Number of Gaps in Reference: 112 204 766 

Number of Gaps in Assembly: 161 186 379 

Total bases missed in reference: 97243 76813 153855 

Percent bases missed: 2.0959 % 1.6556 % 3.3161 % 

Total bases extra in assembly: 1308 24692 46654 

Percent bases extra: 0.0285 % 0.5321 % 1.0293 % 

Number of missing chromosomes: 0 0 0 

Number of extra contigs: 99 82 37 

Number of Shared Boundaries: 1 1 1 

Number of Inter-LCB Boundaries: 0 4 8 

Contig N50: 71127 40837 10773 

Contig N90: 23313 13039 3140 

Min contig length: 124 193 203 

Max contig length: 222256 110514 41423 
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 IonCLCBio IonMira IonVelvet 

Number of Contigs: 2439 906 NA 

Number reference replicons: 1 1  

Number of assembly bases: 5608622 4963063  

Number of reference bases: 4639675 4639675  

Number of LCBs: 2 23  

Number of Blocks: 287 81  

Breakpoint Distance: 287 81  

DCJ Distance: 287 81  

SCJ Distance: 574 162  

Number of Complete Coding 

Sequences: 0 0  

Number of Broken Coding 

Sequences: 0 0  

Number of SNPs: 119 98  

Number of Gaps in Reference: 284 193  

Number of Gaps in Assembly: 2714 586  

Total bases missed in reference: 139421 58793  

Percent bases missed: 3.005 % 1.2672 %  

Total bases extra in assembly: 12101 6884  

Percent bases extra: 0.2158 % 0.1387 %  

Number of missing 

chromosomes: 0 0  

Number of extra contigs: 2153 837  

Number of Shared Boundaries: 2 1  

Number of Inter-LCB 

Boundaries: 0 10  

Contig N50: 26417 105851  

Contig N90: 508 4473  

Min contig length: 51 66  

Max contig length: 100830 357573  
 

               

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               



118 
 

 

 

 SolSinMira SolPairMira 

Number of Contigs: 168 115 

Number reference replicons: 1 1 

Number of assembly bases: 4605123 4597867 

Number of reference bases: 4639675 4639675 

Number of LCBs: 8 32 

Number of Blocks: 105 85 

Breakpoint Distance: 105 85 

DCJ Distance: 105 84 

SCJ Distance: 210 170 

Number of Complete Coding 

Sequences: 0 0 

Number of Broken Coding Sequences: 0 0 

Number of SNPs: 123 82 

Number of Gaps in Reference: 108 81 

Number of Gaps in Assembly: 109 86 

Total bases missed in reference: 88282 72138 

Percent bases missed: 1.90% 1.55% 

Total bases extra in assembly: 6172 10726 

Percent bases extra: 0.13% 0.23% 

Number of missing chromosomes: 0 0 

Number of extra contigs: 67 44 

Number of Shared Boundaries: 1 1 

Number of Inter-LCB Boundaries: 3 17 

Contig N50: 94363 97697 

Contig N90: 23671 31742 

Min contig length: 161 185 

Max contig length: 174248 233168 
 

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               

               



119 
 

               

 

 

 SolSinCLCBio SolPairCLC 

Number of Contigs: 243 756 

Number reference replicons: 1 1 

Number of assembly bases: 4591999 4747382 

Number of reference bases: 4639675 4639675 

Number of LCBs: 4 11 

Number of Blocks: 120 95 

Breakpoint Distance: 120 95 

DCJ Distance: 120 94 

SCJ Distance: 240 190 

Number of Complete Coding 

Sequences: 0 0 

Number of Broken Coding Sequences: 0 0 

Number of SNPs: 70 151 

Number of Gaps in Reference: 115 107 

Number of Gaps in Assembly: 108 105 

Total bases missed in reference: 150526 95024 

Percent bases missed: 3.2443 % 2.0481 % 

Total bases extra in assembly: 1162 3563 

Percent bases extra: 0.0253 % 0.0751 % 

Number of missing chromosomes: 0 0 

Number of extra contigs: 124 667 

Number of Shared Boundaries: 1 1 

Number of Inter-LCB Boundaries: 2 4 

Contig N50: 63634 105511 

Contig N90: 17186 14826 

Min contig length: 153 107 

Max contig length: 183879 204893 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               



120 
 

 

 

 

 

 

 SolSinVel SolPairVel 

Number of Contigs: 231 138 

Number reference replicons: 1 1 

Number of assembly bases: 4571703 4578906 

Number of reference bases: 4639675 4639675 

Number of LCBs: 8 14 

Number of Blocks: 127 73 

Breakpoint Distance: 127 73 

DCJ Distance: 127 73 

SCJ Distance: 254 146 

Number of Complete Coding 

Sequences: 0 0 

Number of Broken Coding Sequences: 0 0 

Number of SNPs: 114 435 

Number of Gaps in Reference: 135 135 

Number of Gaps in Assembly: 131 133 

Total bases missed in reference: 107034 97615 

Percent bases missed: 2.3069 % 2.1039 % 

Total bases extra in assembly: 2833 10125 

Percent bases extra: 0.062 % 0.2211 % 

Number of missing chromosomes: 0 0 

Number of extra contigs: 107 73 

Number of Shared Boundaries: 1 1 

Number of Inter-LCB Boundaries: 4 5 

Contig N50: 72848 132727 

Contig N90: 19239 33502 

Min contig length: 121 121 

Max contig length: 174094 390878 
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Single Nucleotide Variation Mapping Information 

Reference 

Position 

Consensus 

Position 

Variant 

type Length Reference Variants 

Allele 

variants Frequencies Counts 

547694 542071 SNV 1 A 1 G 100 207 

1773495 1762314 SNV 1 T 2 C/T 56.8/40.5 21/15 

3421312 3401828 SNV 1 A 2 C/A 51.5/45.5 17/15 

3957957 3930210 SNV 1 C 1 T 100 151 

4038792 4009478 SNV 1 T 2 T/G 58.1/41.9 25/18 

4169912 4137318 SNV 1 T 2 T/G 62.8/37.2 27/16 

Supplementary Table 1 – Illumina Paired SNVs 

Reference 

Position 

Consensus 

Position 

Variant 

type Length Reference Variants 

Allele 

variants Frequencies Counts Coverage 

257911 253956 InDel 2 GC 2 GC/- 63.0/37.0 51/30 81 

547694 537927 SNV 1 A 1 G 100 100 100 

547836 538069 InDel 0 - 1 G 93.2 82 88 

1773495 1754290 SNV 1 T 2 C/T 53.3/46.7 8/7 15 

2171387 2148528 InDel 0 - 1 CC 86.4 51 59 

3364777 3332422 SNV 1 T 2 T/C 63.7/36.3 86/49 135 

3421312 3388957 SNV 1 A 1 C 50 7 14 

3558478 3522267 InDel 1 G 1 - 98.9 88 89 

3957957 3912982 SNV 1 C 1 T 100 70 70 

4038792 3990504 SNV 1 T 2 T/G 57.7/42.3 15/11 26 

4169912 4117421 SNV 1 T 2 T/G 64.7/35.3 11/6 17 

4294405 4237561 InDel 0 - 1 GC 90.9 40 44 

Supplementary Table 2 – Illumina Single SNVs 

Reference 

Position 

Consensus 

Position 

Variant 

type Length Reference Variants 

Allele 

variants Frequencies Counts Coverage 

19780 18829 SNV 1 A 2 A/T 59.3/40.7 16/11 27 

19796 18845 InDel 0 - 2 -/C 60.7/39.3 17/11 28 

257847 254494 InDel 0 - 2 -/G 59.4/40.6 19/13 32 

257869 254516 SNV 1 A 1 C 55.6 15 27 

257911 254556 InDel 2 GC 2 GC/- 63.6/36.4 21/12 33 

3364777 3338479 SNV 1 T 2 T/C 59.3/40.7 16/11 27 

3558478 3528742 InDel 1 G 1 - 100 20 20 
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3957957 3921226 SNV 1 C 1 T 100 15 15 

Supplementary Table 3 – Roche 454 SNVs 

Reference 
Position 

Consensus 
Position 

Variant 
type Length Reference Variants 

Allele 
variants Frequencies Counts Coverage 

183790 183379 InDel 1 G 2 G/- 58.6/37.9 17/11 29 

475972 473903 InDel 1 C 2 C/- 64.7/35.3 22/12 34 

478029 475960 InDel 1 G 2 -/G 52.8/47.2 19/17 36 

543644 541571 InDel 1 G 1 - 53.7 29 54 

547694 545621 SNV 1 A 1 G 93.5 43 46 

579799 577214 InDel 1 C 2 C/- 55.6/44.4 15/12 27 

664654 661731 InDel 1 C 1 - 37.2 16 43 

668151 665227 InDel 1 T 2 -/T 59.1/40.9 13/9 22 

668152 665228 InDel 1 G 2 G/- 58.3/41.7 7/5 12 

730122 726896 InDel 1 C 2 C/- 50.0/50.0 9/9 18 

754652 751424 InDel 1 G 1 - 43.6 17 39 

780499 777269 InDel 1 C 1 - 35.5 11 31 

780720 777490 InDel 1 C 1 - 60 12 20 

855494 852249 InDel 1 T 1 - 35.9 14 39 

926825 923573 InDel 1 G 2 G/- 62.9/37.1 39/23 62 

1052542 1049268 InDel 1 G 2 G/- 62.3/37.7 38/23 61 

1086867 1083591 InDel 1 G 2 G/- 61.8/35.3 21/12 34 

1286188 1282713 InDel 1 A 2 A/- 50.0/46.2 13/12 26 

1286636 1283161 InDel 1 G 2 G/- 52.4/42.9 11/9 21 

1323138 1319653 InDel 1 G 1 - 81.8 18 22 

1350393 1346905 InDel 1 C 2 -/C 51.5/48.5 34/32 66 

1405778 1402047 InDel 1 A 2 A/- 65.0/35.0 26/14 40 

1538768 1534559 InDel 1 C 2 C/- 58.1/41.9 25/18 43 

1588907 1584690 InDel 1 G 2 G/- 63.6/36.4 28/16 44 

1770219 1765973 InDel 1 C 2 -/C 56.3/43.8 18/14 32 

1787705 1783453 InDel 1 G 1 - 37.9 22 58 

1974813 1970535 InDel 1 G 1 - 41.7 15 36 

1976527 1972249 SNV 1 G 1 T 93.3 14 15 

1976560 1972279 InDel 1 G 1 - 90 9 10 

2143337 2138718 SNV 1 C 1 A 100 71 71 

2210248 2205391 InDel 1 G 2 G/- 54.8/38.7 17/12 31 

2378039 2373054 InDel 1 C 2 C/- 59.6/40.4 28/19 47 

2469665 2464669 InDel 1 G 2 G/- 48.5/48.5 16/16 33 

2475051 2470055 InDel 1 G 1 - 40.9 9 22 

2622901 2617544 InDel 1 C 2 C/- 62.5/37.5 25/15 40 
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2674489 2669128 InDel 1 G 2 G/- 58.3/41.7 28/20 48 

2687610 2682247 InDel 1 G 1 - 39 16 41 

2752151 2745441 InDel 1 C 2 C/- 59.0/41.0 23/16 39 

3151608 3144402 InDel 1 C 1 - 36.6 15 41 

3263011 3255607 InDel 1 C 2 C/- 63.6/36.4 28/16 44 

3373843 3366109 InDel 1 C 2 -/C 52.9/47.1 9/8 17 

3390890 3383153 InDel 1 C 1 - 36.5 19 52 

3439905 3430872 InDel 1 G 2 G/- 62.5/37.5 25/15 40 

3445805 3436769 InDel 1 G 2 G/- 63.6/36.4 35/20 55 

3476168 3467127 InDel 1 C 2 C/- 62.2/37.8 23/14 37 

3498858 3489811 InDel 1 G 2 G/- 61.9/35.7 26/15 42 

3597163 3588103 InDel 1 G 2 G/- 52.4/40.5 22/17 42 

3645036 3634970 InDel 1 G 2 G/- 63.8/36.2 30/17 47 

3857922 3846406 InDel 1 A 2 A/- 53.8/46.2 21/18 39 

3957957 3945536 SNV 1 C 1 T 96.8 30 31 

3994039 3981615 InDel 1 G 2 G/- 55.6/44.4 15/12 27 

4016754 4004326 InDel 1 G 2 G/- 60.4/39.6 29/19 48 

4073620 4060662 InDel 1 C 2 C/- 51.5/48.5 17/16 33 

4083065 4070107 InDel 1 G 1 - 42.9 18 42 

4093467 4080506 InDel 1 G 2 G/- 57.6/42.4 34/25 59 

4526301 4507791 InDel 1 C 2 -/C 57.9/42.1 11/8 19 
Supplementary Table 4 – IonTorrent SNVs.  Note, many are believed to be false positives.  Despite CLC 

Bio’s built-in homopolymer filter setting for 454 or Ion Torrent reads, it is assumed most of these are false 

positives. 
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Chapter 7 

Conclusion 

 The projects undertaken have evolved significantly during the course of its 

completion; however, the main aims have always involved next-generation sequencing.  

Each completed aim held a tangible goal that was reached, and they all related to next-

generation sequencing. 

 First, the cSBL variation involving deoxyinosine and endonuclease V was a project 

to develop and improve an aspect of next-generation sequencing, specifically, the 

acquisition of sequence data.  This new biochemistry was successfully demonstrated, and 

provides an alternative to other proprietary methods.  A lesson learned from this project 

was recognizing the sheer speed of the field.  There are significant commercial pressures, 

and subsequently, a powerful and large private sector presence.  The cSBL variation, while 

demonstrated to viable, could not compete with contemporary methods offered by private 

companies such as Roche 454, Illumina / Solexa, or ABI Solid in terms of pure read length.  

ABI Solid uses a similar methodology, employing SBL but utilizing a chemical, as opposed 

to enzymatic, cleavage.  Nevertheless, although this cSBL variation may not become a 

mainstream technique in a field that advances as quickly as Moore’s Law for computer 

processors, this particular cSBL variation was later used in a paper that came out in August 

of this year (Endonuclease V-assisted accurate cleavage of oligonucleotide probes 

controlled by deoxyinosine and deoxynucleoside phosphorothioate for sequencing-by-

ligation (1)).  Despite the accomplishments in developing and optimizing such an cSBL 

variation, while more evolutionary than transformative, still provides a useful alternative 

and may have niche practical uses in any application that involves cycles of DNA digestion. 
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 In a standard sequencing pipeline, after the sequences are acquired, they must be 

analyzed, and our work focus shifted to this step.  The amount of data being generated by 

next-generation sequencing technologies were growing, especially in the context of 

discovering meaningful insight into the human genome.  The development of SAWTooth 

(Sequence Analysis Workbench Tool) was an attempt to address this problem.  The 

“shape” of the data varied, depending on the platform used to obtain the sequencing 

information.  For example, the data could be mate-paired or singled, and there were 

tendencies toward different error types in the different codes used for analysis.  Software 

algorithms vary, making different codes more or less useful for each type of sequencing 

project.  At the time, there was a potential need in the laboratory to accumulate many 

Polonator reads, which were mate-paired with a sizable separation and contained short 

reads.  The SAWTooth code was developed to specifically take reads in this configuration, 

and match them up to a reference genome as efficiently and accurately as possible.  The 

results were a success, as SAWTooth outperformed its more popular contemporaries at the 

time, NovaAlign and Bowtie 2.  Further work on the SAWTooth project to needed, because 

while the demonstrated ability to map to a reference more quickly was impressive, the code 

cannot yet generate SNP or Indel information for downstream biological analysis.  

Currently, SAWTooth can provide only re-sequencing metrics, or reveal copy number 

variations.  As mentioned earlier regarding the cSBL biochemistry, the field moves 

extremely fast and the shape of the data being generated for use by the code changed within 

the course of a year.  Nevertheless, the basic algorithms that form the basis of SAWTooth 

proved highly efficient, and clearly powerful, when utilized for the specific purpose of 
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mapping short, mate-paired reads.  They have the potential to be adapted to analyze reads 

from other technologies should this prove useful. 

 The last project in this work was one of meta-analysis; to compare the tools that 

can be used to generate a de novo assembly.  The concept of a de novo assembler 

comparison is not new.  Next-generation sequencing is a large and diverse field, and while 

this is often a strength as a whole, it leads to numerous and diverging options when it comes 

to acquisition, analysis, and assembly.  Every step has multiple valid options, depending 

on the scientific application, therefore, testing and assessment of which software package 

should be paired with which sequencing platform for a given application becomes 

extremely important.  Overall, this work may serve as a useful guide for other individuals 

in the field to consider when choosing assemblers for their bacterial de novo sequencing 

projects.  Unfortunately, the relevancy of such findings may be limited, due to the quick 

speed of the field.  

 With that in mind, perhaps it would be prudent for next-generation sequencing work 

within an academic lab to consider the large private sector presence and rapid evolution of 

the technology.  This is reflected in the shift in this dissertation’s projects from optimizing 

biochemisties and developing software, to using available data from tested methods and 

analyzing the manner in which draft genomes are created.   

 The work required to create a brand new method or a new biochemistry for 

sequencing relies upon a series of intelligent guesses, and a process of elimination that does 

not guarantee success.  Completion of such a task is a manner of diligence, laboratory 

competence, and time.  Time can be shortened by utilizing larger and larger staff, 
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something which academic laboratories must consider in evaluating competitiveness with 

the private sector.  The same principles, to a lesser extent, apply to the development of 

software for the field, though the private sector presence in such endeavors is smaller.   

 In the course of this work, the quickest path was to take already tried and tested 

methodologies and generate data.  The data is of great interest and can be specialized for 

academic labs, looking to investigate specific organisms.  This reduces competition that 

may be present from trying to wholesale improve aspects of the entire field, and creates 

data where publication can be more certain.   

 This is not to slight any of the previous accomplishments described in this 

dissertation, which were hard-fought and well-earned.  It is, of course, easier to utilize 

useful tools, rather than attempting to improve the tools themselves.  It is for this reason 

that some focus in the Edwards laboratory changed from improving the tools to generating 

or just obtaining data and using Genome-Wide Association studies to analyze interesting 

biological questions.   

 However, the development of this particular cSBL biochemistry or the SAWTooth 

software was still worth the effort despite the seemingly modest impact of these advances 

in the field.  From a personal and localized level, the efforts of creating these methods are 

learning experiences that instructed those involved and gave valuable understanding.  

Additionally, these advances still contribute to the growing body of knowledge that exists 

in these fields.  These tools exist for future scientists to use, which are a simple Pubmed 

search away.  Seemingly minor biochemistries or apparently niche and overly specialized 

code may be useful with the right adjustments, tweaks, or the right application.  
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Philosophically speaking, trying to use the best tool available may be the easiest option; 

perhaps what is right, though not necessarily most expedient, is to create an optimized tool.   

 Genome sequencing holds great potential for altering lives in real and tangible 

ways, particularly in healthcare.  This has fostered a very fertile ground for private sector 

presence, causing the technologies to improve and change.  It is only a matter of time before 

a new technology or method, whether nanopore technologies or Transmission Electron 

Microscopy methods, changes the field.  This will render current “next-generation” 

sequencing technologies obsolete, and industrial goals will shift from improving read 

lengths to increasing electric field sensitivity.  The entire game will change, and it is only 

a matter of time, but the possibilities are as exciting as they are difficult to predict. 
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