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ABSTRACT 

 Moderate prenatal alcohol exposure (PAE) in humans leads to learning and 

memory impairments later in life.  The range of physical, behavioral, emotional, and 

social dysfunctions that are associated with PAE are collectively termed fetal alcohol 

spectrum disorder (FASD).  It is estimated that approximately 12% of women consume 

alcohol at some time during their pregnancy and as many as 5% of children born in the 

United States are impacted by PAE.  Extensive research has shown that even moderate 

maternal drinking (1-2 drinks per day) is, in some individuals, associated with cognitive 

and behavioral deficits.   

Existing models for PAE have been useful in studying the effects of moderate 

exposure, including its effect on hippocampal learning and memory; however, these 

models often include factors, such as stress or malnutrition issues, that can confound 

results.  To date, most studies on the behavioral consequences of PAE have focused on 

overall hippocampal-dependent behavioral deficits, withouth attempting to determine 

whether the impairment may be attributed to altered functioning of a subregion (e.g. the 
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dentate gyrus) of the hippocampus.  In contrast, biochemical and electrophysiological 

studies have identified dysfunctions in the hippocampal subregions.  In the dentate gyrus, 

long term potentiation (LTP), which is considered to be a cellular mechanism of learning, 

is impaired in animals prenatally exposed to alcohol, as is N-methyl-D-aspartate (NMDA) 

receptor (NMDAR)-dependent activation of extracellular signal-regulated kinase 1/2 

(ERK 1/2), which is important for LTP.  This dissertation tested the hypothesis that PAE 

leads to impairments in dentate gyrus-dependent learning and memory, which is 

associated with NMDA receptor – dependent LTP deficits and NMDA receptor subunit 

composition alterations in the dentate gyrus.   

A limited access PAE model in mice was developed, producing moderate ethanol 

intake in dams with no evident effect on litter size, pup weight, dam food and water 

intake, maternal weight gain, or maternal care.  In addition, although PAE mice exhibited 

no differences in spontaneous locomotor activity compared to controls, they did 

demonstrate hippocampal-dependent fear conditioned learning deficits, similar to those 

seen previously in the literature.  They also exhibited deficits in a delayed non-match to 

place (DNMP) task that was dentate gyrus-dependent, indicating that PAE does produce 

dentate gyrus impairments.  Further studies using electrophysiological techniques found 

that PAE mice had deficits in NMDAR-dependent LTP in the dentate gyrus, as well as a 

reduced contribution of GluN2B-containing receptors to NMDAR-dependent field 

recordings.  Biochemical subcellular fractionation and immunoblotting experiments 

found that, compared to controls, PAE mice had increased C2´-containing GluN1 and 

GluN3A subunits and decreased GluN2B subunit levels in the synaptic membrane 

fraction isolated from the dentate gyrus.  These results indicate that PAE does indeed 
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produce a dentate gyrus-dependent deficits in learning and memory, and this deficit is 

likely due to alterations in synaptic plasticity that result from changes in the NMDAR 

subunit composition at the synaptic membrane.  These studies provide the basis for 

several future studies that aim to explore the impact of PAE on the control of NMDAR 

levels, trafficking, and function. 
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1. Prenatal alcohol exposure and the Dentate Gyrus 

1.1 Prenatal alcohol: incidence in human populations 

In both humans and laboratory animal models, exposure to alcohol during 

development has been shown to cause a multitude of dose-dependent effects on the 

structure and function of the central nervous system, with the extent of damage being 

dependent on the pattern and chronicity of the exposure and the stage(s) of development 

during which it occurs (Queen et al., 1993; Miller, 1996; Goodlett and Johnson, 1997; 

Kelly and Richards, 1998; Sood et al., 2001; Savage et al., 2002; Mooney and Miller, 

2009).  Additionally, the effects of prenatal alcohol exposure (PAE) on the brain display 

regional variability (Guerri, 1998; Willford et al., 2004), with the hippocampus being 

particularly sensitive to the damaging effects of the exposure (Berman and Hannigan, 

2000; Hamilton et al., 2003; Sakata-Haga et al., 2003; Sluyter et al., 2005).  The range of 

physical, behavioral, emotional and social dysfunctions that are associated with PAE are 

collectively termed fetal alcohol spectrum disorder (FASD) (Kelly et al., 2000; 

Streissguth and O'Malley, 2000).  It is estimated that use of any alcohol during pregnancy 

is about 12% (Floyd et al., 2009), with the incidence of newborns displaying prenatal 

alcohol-related damage as high as 5% in the United States (May et al., 2009).  While 

heavy and binge (five or more drinks in a single episode) patterns of drinking during 

pregnancy are associated with the development of the most severe form of PAE, termed 

Fetal Alcohol Syndrome (FAS) (Jones and Smith, 1973; Clarren and Smith, 1978), 

extensive research shows that even moderate maternal drinking (1-2 drinks per day) is, in 

some individuals, associated with cognitive and behavioral deficits, often revealed only 
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under stressful or challenging conditions (Streissguth et al., 1990; Streissguth et al., 1994; 

Willford et al., 2004). 

1.1.1 Effects of PAE in humans 

As mentioned above, the effect of PAE on humans depends on the amount and the 

timing of the exposure.  Children diagnosed with FAS must have confirmed maternal 

alcohol exposure, evidence of a characteristic pattern of minor facial anomalies, evidence 

of prenatal and/or postnatal growth retardation, and evidence of deficient brain growth or 

abnormal morphogenesis (Hoyme et al., 2005).  However, as implied by the term 

spectrum disorder, there is a range of deficits, and severity, for those with PAE, which 

are classified as partial FAS and alcohol-related neurodevelopmental disorder (ARND) 

(Mattson et al., 2011).  These diagnoses, which typically involve moderate PAE (MPAE), 

often also exhibit neurodevelopmental abnormalities, although not as severe as those seen 

in FAS.  Studies on children and adolescents have found moderate PAE may lead to 

decreased IQ scores, attention deficits, verbal and non-verbal learning and memory 

impairments, working memory deficits, and executive function impairments (Streissguth 

et al., 1994; Richardson et al., 2002b; Willford et al., 2004; Mattson et al., 2011).  In 

addition, one study using MRI to study the corpus callosum in PAE adults and controls 

found higher variability in the size, volume, and shape in PAE adults (reviewed in (Chen 

et al., 2003)).  These, and other studies, indicate that PAE can have long-lasting effects 

on brain structure and function in humans, even when exposure is considered moderate. 
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1.1.2 Effects in animal models 

1.1.2.1 Animal models of prenatal alcohol exposure 

Animal models are useful tools to determine the mechanisms and outcomes of 

PAE, given that their physiological responses to alcohol are similar to those seen in 

humans (Hannigan and Abel, 1996).  When designing an animal model of PAE, several 

factors need to be taken into consideration, including the age of exposure, the species 

used, the frequency and duration of exposure, and the method of administration 

(Thompson et al 2009).  Existing rodent models for PAE employ various lengths and 

routes of administration, as well as a range of ethanol doses (Costa et al., 2000; Cudd, 

2005).  One of the more widely used PAE models uses ethanol-containing liquid diets, 

which limits food and water consumption (Berman and Hannigan, 2000).  Ethanol is 

added to the diet, typically accounting for either 18% or 35% of the total caloric intake.  

Another commonly used method of administration is intragastric gavage, where the 

dams, or occasionally the pups, are intubated with ethanol solution (Berman and 

Hannigan, 2000).  These methods commonly target the first and second trimester 

equivalent of human pregnancy in the rodents, although gavage can also target the third 

trimester equivalent.  Although these methods often achieve moderate to high blood 

ethanol concentrations (BECs), they often elicit maternal stress and malnutrition, which 

may confound the results (Ward and Wainwright, 1989a; Slone and Redei, 2002).  A 

newer model of PAE, which involves voluntary oral consumption of a sweetened ethanol 

solution, limits maternal stress and malnutrition issues (Allan et al., 2003).   

 Another important consideration when interpreting results from PAE studies are 

the BEC levels achieved.  As mentioned above, intragastric gavage and liquid diet 
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achieve moderate-to-high BECs, whereas voluntary oral consumption reaches low-to-

moderate BECs.  Studies have shown that the timing during gestation of PAE, the level 

of BECs reached, and the chronicity of exposure influences the severity the damage that 

is produced (Goodlett and Johnson, 1997; Guerri, 1998; Sood et al., 2001; Mooney and 

Miller, 2009).  These factors must be considered when comparing results from different 

PAE paradigms. 

1.1.2.2 Behavioral effects of PAE in animal models 

Similar to the clinical presentation of PAE in humans, PAE causes a wide range 

of impairments in animal models, where PAE has been shown to be associated with 

increased learned helplessness, depression (Carneiro et al., 2005; Caldwell et al., 2008), 

increased seizure activity (Bonthius et al., 2001), increased ethanol consumption and 

preference (Barbier et al., 2009), and decreased sensitivity to the sedative effects of 

ethanol (Boehm et al., 2008; Barbier et al., 2009) in the offspring.  In addition, PAE has 

been shown to produce spatial learning deficits in several tasks, including spatial 

alternation tasks (Incerti et al., 2010), Morris water maze (Richardson et al., 2002a; 

Christie et al., 2005; Savage et al., 2010), trace fear conditioning (Hunt et al., 2009), and 

contextual fear conditioning (Allan et al., 2003; Savage et al., 2010), all of which are 

hippocampal-dependent. 

1.2 Prenatal alcohol exposure affects the dentate gyrus of the hippocampus 

Although it was initially believed that in utero exposure to alcohol damaged all 

portions of the brain equally, later studies showed that certain regions of the brain, 

especially the hippocampal formation, are more vulnerable to the effects of prenatal 
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alcohol(Guerri, 1998; Berman and Hannigan, 2000; Chen et al., 2003).  Previous studies 

have shown that pre- and post-natal alcohol exposure can reduce cell numbers (Guerri, 

1998), alter receptor levels and binding (Savage et al., 1991; Galindo et al., 2004; 

Samudio-Ruiz et al., 2010), affect neurotropic factors essential for normal brain 

development (Caldwell et al., 2008; Miki et al., 2008), and impair hippocampal-

dependent learning and memory (see above).   

 The hippocampal formation, which is considered part of the limbic system, 

consists of the hippocampus, dentate gyrus, subiculum, presubiculum, parasubiculum, 

and entorhinal cortex (reference).  The hippocampus is divided into regions that are 

classified as the cornu ammonis (CA) fields (CA1, CA2, CA3); many investigators also 

include the dentate gyrus as part of the hippocampus.  The hippocampus is generally 

considered a trisynaptic circuit, with the major input received from the entorhinal cortex, 

synapsing onto the dentate gyrus via the perforant path.  The dentate gyrus sends 

afferents to the CA3 region via the mossy fiber pathway, and the CA3 synapses onto the 

CA1 region via the Schaffer collaterals.  The CA1, in turn, sends the main hippocampal 

output back to the subiculum and entorhinal cortex, thus forming a loop (Figure 1.1). 
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Figure 1.1  The hippocampus and associated pathways. 

  

 Although considerable attention has focused on the function of the Schaffer 

collaterals – CA1 pathway in learning, and the effects of PAE on this region of the 

hippocampus, less research has focused on the effect of PAE on the dentate gyrus, which 

plays an important role in hippocampal function. 

1.2.1 The Dentate gyrus – Anatomy and function 

The dentate gyrus is the site of efferent input into the hippocampus.  It consists of 

three major layers – the molecular layer, the granule cell layer, and the hilus, or 

polymorphic layer (Figure 1.2).  The hilus consists of several cell types, including the 

mossy cells, which are glutamatergic and form the commissural/associational connections 

(commissural projections not found in the primate brain), and the pyramidal basket cell, 

which are GABAergic interneurons that play a role in feedback inhibition.  The granule 

cell layer primarily contains the dentate granule cells, which are the primary cells of the 
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dentate gyrus.  These cells have an elliptical cell body, and are densely packed into this 

layer (Amaral et al., 2007b).  These cells form the blades of the dentate gyrus, the 

suprapyramidal and infrapyramidal blades, located above and below the pyramidal cell 

layer of the CA3, respectively (Amaral et al., 2007b).   

 

Figure 1.2  The Dentate Gyrus 

 

The granule cells project their dendrites into the molecular layer, receiving the 

major excitatory input of the dentate gyrus, and the hippocampus, from the entorhinal 

cortex.  The molecular layer consists of three subsections – the inner molecular layer, the 

middle molecular layer, and the outer molecular layer.  The outer two molecular layers 

receive inputs primarily from layer II of the entorhinal cortex, with the medial entorhinal 

cortex extending to the middle molecular layer to form the medial perforant path (MPP), 

and the lateral entorhinal cortex extending to the outer molecular layer to form the lateral 
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perforant path (LPP) (Witter, 2007).  These  pathways, while both generally considered 

glutamatergic, have other distinct receptor expression and electrophysiological properties, 

allowing them to signal differently to the granule cell layer (Witter, 2007).  The inner 

third molecular layer receives its inputs from cells located in the hilus, primarily the 

mossy cell, which are immunoreactive for glutamate (Soriano and Frotscher, 1994).  

Although the molecular layer primarily consists of dendrites from the granule cells and 

hilus cells, as well as axon projections from the entorhinal cortex, the molecular layer 

also contains neurons, primarily the molecular layer perforant path-associated cell 

(MOPP), which are immunoreactive for GABAergic markers and likely provide 

inhibitory control of granule cells (Amaral et al., 2007a). 

 The dentate gyrus is believed to play several roles in the hippocampus, one of 

which is pattern separation, or the ability to produce separate representations of different, 

but similar, places (Kesner, 2007).  The idea that the dentate gyrus plays a role in this 

function comes from its anatomy.  Pattern separation may be facilitated by the sparse 

connections that the dentate gyrus granule cells make with the CA3 pyramidal cells via 

the mossy fibers.  There is a low probability that any two CA3 neurons will receive 

mossy fiber inputs from a similar subset of dentate gyrus cells (Rolls, 1996).  A critical 

role for the dentate gyrus in spatial learning has been demonstrated in studies showing 

that lesions of the dentate gyrus result in deficits similar to those produced by complete 

hippocampal lesions in spatial tasks (Walsh et al., 1986; Tilson et al., 1988).  To 

determine the dentate gyrus’ more specific role in pattern separation, a delayed non-

match to sample task was designed to test discrimination between two similar spatial 

locations (Gilbert et al., 2001).  Animals with dentate gyrus-specific lesions showed 
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impairments in this task compared to controls, implicating the dentate gyrus in pattern 

separation.  Another study found that minimal changes in the shape of an environment 

can alter correlated activity patterns among place-modulated granule cells in the dentate 

gyrus, implicating the role of the dentate gyrus in pattern separation (Leutgeb et al., 

2007). 

 The dentate gyrus is also one of two locations in the adult brain that exhibit adult 

neurogenesis, which occurs in the subgranular zone (SGZ), at the border of the hilus and 

dentate granule cell layer.  This region contains stem cells that can proliferate and 

differentiate to give rise to new neurons.  These neurons migrate into the granule cell 

layer and integrate into the existing circuitry, extending axons to the CA3 region 

(Stanfield and Trice, 1988) and initially having lower thresholds for long-term 

potentiation (LTP) and long-term depression (LTD) (Schmidt-Hieber et al., 2004), 

considered to be important for learning and memory.  Neurogenesis is regulated by a 

number of factors, including hormones, neurotransmitters, age, and exercise (reviewed in 

Parent, 2007).  Although the functions of adult neurogenesis in the dentate gyrus are 

unclear, several studies have shown that it plays a role in learning and memory.  

Disruption of neurogenesis via irradiation has been shown to disrupt learning in a dentate 

gyrus-specific delayed non-match to place radial arm maze pattern separation task 

(Clelland et al., 2009).  In addition, stimulation of adult neurogenesis, either by 

environmental enrichment or by genetic manipulation, has been shown to improve 

learning (Bruel-Jungerman et al., 2005; Sahay et al., 2011) 
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1.2.2 Development of the Dentate Gyrus  

In humans, the dentate gyrus, similar to the rest of the hippocampus, begins 

development in the 13
th

-14
th

 weeks of gestation, and continues after birth (Seress et al., 

2001); in the rodent, development begins around embryonic day 13.5 (E13.5) and 

continues into the postnatal period (Li and Pleasure, 2007).  At about E13.5, precursors 

migrate from the ventricular zone to the dentate notch, where they then form the 

suprapyramidal, then the infrapyramidal, blades of the dentate gyrus by about postnatal 

day 4 (PD4) (Frotscher et al., 2007; Li and Pleasure, 2007).  Precursors also remain in a 

secondary proliferation zone which will later become the subgranular zone and the site of 

adult neurogenesis.  Interestingly, afferents from the entorhinal cortex arrive in the region 

before the dentate granule cells form laminations, indicating that these afferents act 

independently of the target. 

1.2.3 Effects of prenatal alcohol exposure on the dentate gyrus   

As mentioned above, PAE has been shown to have severe consequences on the 

function of the hippocampus, with most studies having focused on either the 

hippocampus as a whole or the CA1 region of the hippocampus.  However, some studies 

have examined the effects of prenatal alcohol on the dentate gyrus.  Impairments in adult 

neurogenesis after pre- or post-natal alcohol exposure have been reported.  Choi et al. 

(2005) reported that moderate PAE reduced the neurogenic response to an enriched 

environment, but diod not alter the initial number of proliferating progenitors.  Klintsova 

et al. (2007) showed that an early postnatal binge alcohol exposure (PD 4-9) reduced the 

number of mature neurons in the adult dentate gyrus.  Similarly, several, but not all, 

studies have reported pre- and postnatal alcohol exposure decreases in overall cell 
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number in the dentate gyrus (reviewed in Gil-Mohapel et al., 2010).  LTP has also been 

shown to be impaired in the dentate gyrus in vivo in rodents prenatally exposed to alcohol 

(Sutherland et al., 1997; Titterness and Christie, 2010; Varaschin et al., 2010).  PAE has 

been associated with reductions in mGluR5 receptor number and function in adult rats 

(Galindo et al., 2004) and decreased extracellular signal-regulated kinase 1/2 (ERK 1/2) 

phosphorylation after N-methyl-D-aspartate (NMDA) receptor activation in adult mice 

(Samudio-Ruiz et al., 2009).   

1.3 Summary 

PAE has a relatively high incidence in the US population, with estimates as high as 5%, 

and can cause significant deficiencies in offspring, even at moderate exposure levels.  

The dentate gyrus, which is important for pattern separation learning and is the site of 

adult neurogenesis, is particularly vulnerable to PAE, with studies showing 

neurophysiological and neurochemical alterations in dentate gyrus after in utero ethanol 

exposure.  The mechanism behind these alterations, however, has yet to be determined, 

and is the focus of study for this dissertation. 
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2. NMDA Receptors and LTP in the Dentate Gyrus 

2.1 Long term potentiation (LTP) is the cellular mechanism for learning and 

memory 

LTP is the long-lasting, activity dependent increase in synaptic strength (Santos et 

al., 2009).  The traditional form of LTP, or classical LTP, is N-methyl-D-aspartate 

(NMDA) receptor-dependent, occurs postsynaptically, and can be elicited throughout the 

brain, including in the dentate gyrus.  LTP undergoes three main stages:  LTP induction, 

LTP expression, and LTP maintenance (reviewed in Malenka and Bear, 2004).  LTP 

induction occurs immediately after the stimulation protocol.  Activation of the α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor by glutamate leads to 

postsynaptic depolarization, relieving the Mg
2+

 block of the NMDA receptor and 

allowing for the influx of Ca
2+

 into the cell.  This Ca
2+

 acts as a second messenger,via 

regulation of the levls/activity of a number of downstream signaling molecules, such as 

protein kinase A (PKA), protein kinase C (PKC), cAMP, and calcium-calmodulin 

activated kinase II (CaMKII), which allows for the next stage of LTP, LTP expression.  

Signaling molecules generated during LTP induction lead to increased AMPA receptor 

trafficking to the surface, as well as phosphorylation of AMPA receptors already present; 

these events, in turn, lead to an increase in postsynaptic response to glutamate and, thus, 

potentiation.  These changes would be short lived, however, if not for the third stage of 

LTP, LTP maintenance.  During LTP maintenance, PKA, PKC, cAMP, and CaMKII go 

on to activate other signaling molecules, such as extracellular signal-regulated kinase 1/2 

(ERK1/2) and cAMP response element binding protein (CREB), which, in turn, 

translocate into the nucleus to regulate gene transcription.  In addition, these signaling 

molecules may regulate localized protein translation in the dendrite.  New protein 
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synthesis and gene transcription are required for LTP maintenance, and result in a 

number of long-lasting changes to the spine, including cytoskeletal reorganization 

(Malenka and Bear, 2004). 

 As mentioned, LTP is believed to be the cellular basis for learning and memory, 

and several recent studies have supported this notion.  Studies have demonstrated that 

inhibition of the signaling cascades that are necessary for LTP result in learning 

impairment.  For example, when a dominant-negative form of PKA is expressed in 

mouse hippocampus, LTP is impaired, as is memory consolidation in a one trial per day 

water maze task (Malleret et al., 2010).  α-CaMKII autophosphorylation has been shown 

to be increased by learning paradigms (Rodrigues et al., 2004).  Similarly, mutant mice 

that have α-CaMKII subunits that are unable to undergo autophosphorylation experience 

deficits in passive avoidance learning (Irvine et al., 2005).  A role for PKC in LTP is 

supported by the demonstration that PKC is activated in hippocampal cells during 

associative learning (Olds et al., 1989), transfection of a constitutively active catalytic 

domain of PKC in the dentate gyrus of aged rats improved performance in the Morris 

water maze relative to controls (Zhang et al., 2009), and PKCγ knockout mice exhibit 

deficits in fear conditioning (Weeber et al., 2000).  Further studies have tried to relate 

LTP directly to the process of learning.  LTP induction in the dentate gyrus has been 

shown to disrupt acquisition of new spatial memories, but not of already-established 

memories (McNaughton et al., 1986; Moser et al., 1998); evoked potentials recorded in 

vivo from the dentate gyrus during an operant training protocol found a significant 

increase in population spikes over the course of training compared to non-training 

controls (Skelton et al., 1987); and in vivo recordings of field extracellular postsynaptic 
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potentials (fEPSPs) in the CA1 demonstrated an increase in slope after inhibitory 

avoidance training but not in controls (Whitlock et al., 2006).  These data indicate that 

synaptic plasticity, particularly LTP, is an important aspect of learning and memory; 

however, there is some evidence that spatial learning may occur without LTP (Saucier 

and Cain, 1995). 

2.2 The NMDA Receptor 

2.2.1 The NMDA receptor: general information 

As mentioned above, activation of the NMDA receptor is important for classical 

LTP, at least in part due to its Ca
2+

-permeability, which allows for activation of the 

downstream signaling molecules responsible for LTP.  NMDA receptors are critical 

components of excitatory neurotransmission and plasticity in the mammalian central 

nervous system (Cull-Candy et al., 2001).  NMDA receptors are cation channels, which 

in addition to being permeable to Ca
2+

 are permeable to Na
+
 and K

+
; opening of the 

channel leads to membrane depolarization (Hardingham and Bading, 2003).  Additional 

features of NMDA receptors include the presence of a voltage-sensitive Mg
2+

 block of 

the ion channel, the requirement of a co-agonist, glycine, their sensitivity to endogenous 

ligands and modulators (e.g., Zn
2+

 and polyamines), relatively slow 

activation/deactivation kinetics, and the ability to interact with various intracellular 

signaling molecules (Cull-Candy et al., 2001). 

Functional NMDA receptors are heteromeric tetramers composed of two 

obligatory GluN1 subunits along with modulatory GluN2 (A-D) or GluN3 (A-B) subunits 

(Cull-Candy et al., 2001; Ron, 2004; Paoletti and Neyton, 2007).  Each subunit consists 

of a large extracellular N-terminus; three hydrophobic transmembrane domains (TM1, 
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TM3, and TM4) and a transmembrane segment (TM2) making a loop within the 

membrane and which contribute to the formation of the channel pore; and an intracellular 

C-terminal tail, which plays a role in intracellular signaling (Cull-Candy et al., 2001).  

Eight isoforms of the GluN1 subunit have been identified, arising from alternative 

splicing of a single gene.  These splice variants arise from three different splice sites, 

producing three different cassette inserts: the N1 cassette, located in the N-terminus, and 

the C1 and C2/C2' cassettes, located in the C-terminal tail (Al-Hallaq et al., 2001).  In 

contrast, GluN2 and GluN3 subunits are encoded by six separate genes (Paoletti and 

Neyton, 2007). Although NMDA receptors are conventionally believed to form 

diheterotetramers (e.g., GluN1/GluN2A), there is evidence that NMDA receptors can 

exist as triheterotetramers incorporating two types of NR2 subunits- i.e., 

GluN1/GluN2A/GluN2B (Thomas et al., 2006; Paoletti and Neyton, 2007).  Initially, it 

was estimated that approximately two-thirds of the GluN2A-containing and GluN2B-

containing NMDA receptors on the surface of hippocampal cells are associated as 

GluN1/GluN2A or GluN1/GluN2B diheterotetrameric complexes and the remaining one-

third are associated as triheterotetrameric complexes of GluN1/GluN2A/GluN2B (Al-

Hallaq et al., 2007); however, a recent study, using electrophysiological techniques, 

determined that triheterotetramers may constitute the primary NMDAR subtype at adult 

hippocampal synapses (Rauner and Kohr, 2011).  This difference in diheterotetrameric 

vs. triheterotetrameric may play a large role in determining the functionality of the 

receptor at the synapse. 
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2.2.2 NMDA receptor expression during development 

The expressions of the different NMDAR subunits vary throughout development, 

and have been primarily characterized in rodents.  GluN1 subunit expression begins 

around E14, peaking in the third postnatal week and then decreases to adult levels (Laurie 

and Seeburg, 1994; Paupard et al., 1997).  The expression of the different splice variants, 

although exhibiting variations across different brain regions, generally does not change 

through development.  The GluN1-1a (corresponding to the splice variant containing the 

N1, C1, and C2 cassettes), GluN1-2a (corresponding to the splice variant containing the 

N1 and C2 cassettes), and GluN1-4a (corresponding to the splice variant containing the 

N1 and C2’ cassettes) are the most abundantly expressed GluN1 splice variants in the 

hippocampus (Paupard et al., 1997). 

 The GluN2 subunits exhibit differential expression in the brain throughout 

development (Ewald and Cline, 2009).  At about E14, GluN2B and GluN2D expression 

begins at low levels, peaking at around PD7, with GluN2B expressed at higher levels 

than GluN2D in the hippocampus.  GluN2D expression eventually decreases to very low 

levels in the adult hippocampus.  Around the first postnatal week, expression of GluN2A 

in the hippocampus begins, peaking in the third postnatal week and gradually declining to 

adult levels.  GluN2C is primarily expressed in the cerebellum, peaking at PD12 and is 

expressed at high levels throughout adulthood.  

 Electrophysiological recordings have also confirmed developmental changes to 

GluN2 subunit levels, focusing primarily on the developmental switch between GluN2B 

and GluN2A subunits.  The GluN2A subunit confers lower glutamate sensitivity, faster 

decay times, and lower open probabilities to the NMDA receptor compared to the 
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GluN2B subunit, while GluN2B has been shown to have a longer current duration and 

contribute more to the Ca
2+

 load (Lau and Zukin, 2007).  During development, the 

expression of primarily GluN2B-containing NMDARs leads to longer decay kinetics in 

electrophysiological recordings, which gradually shorten with age due to the increased 

expression of GluN2A (Cull-Candy et al., 2001; Ewald and Cline, 2009). 

 GluN3 subunit levels change dramatically over development.  GluN3A is 

expressed at low levels in the embryo, peaking early in the postnatal period and 

decreasing into adulthood, while GluN3B levels are low postnatally and increase into 

adulthood (Henson et al., 2010).  These expression profiles are seen in many regions of 

the brain, including the hippocampus.  Interestingly, the GluN3A subunit has been shown 

to form heterotrimers with GluN1 and GluN2 subunits, leading to reduced Mg
2+ 

 

sensitivity, reduced Ca
2+

 permeability, and alterations in open probabilities and decay 

kinetics (Henson et al., 2010), which may alter the function of NMDARs during 

development. 

2.2.3 Localization and trafficking of the NMDA receptor 

The NMDA receptor is trafficked to the surface in several different manners, 

typically dependent on the subunit composition of the receptor.  Initially, it was believed 

that each GluN1 splice variant expresses an endoplasmic reticulum (ER) retention (ERR) 

signal, keeping it in the ER until it combines with a GluN2 or GluN3 subunit, which 

covers the ERR and allows for forward trafficking (Hall and Soderling, 1997).  However, 

several papers have demonstrated that only GluN1-1 is primarily retained intracellularly, 

while other GluN1 splice variants have been shown to reach the surface when expressed 
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in heterologous systems (Okabe et al., 1999; Standley et al., 2000).  Furthermore, Horak 

and Wenthold (2009) showed that there are two independent ERR motifs present in the 

C1 cassette, and C2 has an additional inhibitory effect on forward trafficking, while the 

C0 (the portion of the GluN1 C-terminus found in all splice variants) and C2' cassettes 

enhance trafficking to the surface.  Thus, the specific expression of GluN1 splice variants 

can alter the trafficking of the NMDA receptor.  ERR signals have been identified in both 

GluN2A (Qiu et al., 2009) and GluN2B (Horak et al., 2008), although these signals are 

masked when the subunit is complexed with GluN1.  GluN2/GluN3 heterodimers are also 

retained in the ER until combining with GluN1 (Perez-Otano et al., 2001).  

The NMDA receptor is trafficked to the surface in endosomes from the trans-

Golgi network (TGN) via kinesin motor proteins on polarized microtubules and 

exocytosed to the cell surface via the SNARE machinery (reviewed in Petralia et al., 

2009).  Typically, the receptor is accompanied by a chaperone protein, typically a PDZ 

domain-containing protein that binds primarily to the GluN2 subunit.  SAP97 and CASK, 

two PDZ-containing proteins, have been shown act together to use an alternative 

secretory pathway to traffic the NMDA receptor to the surface quicker than the 

traditional secretory pathway (Jeyifous et al., 2009).  SAP102, another PDZ domain-

containing protein, has also been shown to play a role in NMDA receptor trafficking 

(Sans et al., 2003; Sans et al., 2005).   

Once at the surface, the NMDA receptor can be localized either within or outside 

of the synapse.  The receptors are primarily inserted into the extrasynaptic membrane, 

and can then travel laterally within the cell membrane into the synapse (Lau and Zukin, 

2007), although there is some evidence that they can directly enter the post-synaptic 
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density (PSD) or perisynaptic membrane (Petralia et al., 2009).  The localization of the 

NMDAR is important because it may determine the downstream signaling to which the 

receptor can couple, and thus affect the role that the receptor plays.  Synaptic NMDA 

receptors have been associated with ERK1/2 and CREB activation (Hardingham et al., 

2002; Ivanov et al., 2006; Mulholland et al., 2008), which are associated both with cell 

survival and LTP.  Conversely, extrasynaptic NMDA receptors have been associated with 

ERK1/2 and CREB deactivation, and may result in excitotoxicity (Hardingham et al., 

2002; Ivanov et al., 2006; Mulholland et al., 2008).  It has been shown that a number of 

factors dictate whether the NMDA receptor remains in the extrasynaptic membrane or 

translocates to the synaptic membrane.  Some studies have suggested that GluN2B-

containing receptors are more likely to be retained in the extrasynaptic membrane, while 

GluN2A-containing receptors are more likely to move to the synaptic membrane (Tovar 

and Westbrook, 1999); however, recent evidence indicates that levels of both subunits are 

equally distributed in both fractions (Harris and Pettit, 2007).  In addition, the 

extracellular matrix protein Reelin (Groc et al., 2007) and the adhesion protein EphB2 

(Nolt et al., 2011), among others, have been shown to affect NMDA receptor subunit 

mobility, thereby controlling the localization.   

Once the NMDA receptor is localized to the synaptic fraction, it is incorporated 

into a large, macromolecular signaling complex composed of synaptic scaffolding 

proteins and adaptor proteins, which help to link the receptor to downstream signaling 

molecules and maintain the receptor in the synapse (Lau and Zukin, 2007).  The 

scaffolding proteins primarily consist of the PDZ domain-containing proteins PSD-95, 

PSD-93, and SAP102, which anchor the receptors to the synaptic membrane.  PSD-95 
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has been shown to target GluN2B subunits to the synaptic membrane (Sans et al., 2003; 

Prybylowski et al., 2005).  It has been shown, however, that GluN1 splice variants 

containing the C2' cassette also contain a PDZ binding domain, although whether it plays 

a role in trafficking and localization has yet to be determined (Standley et al., 2000). 

 Endocytosis of the NMDA receptor primarily occurs for receptors residing in the 

extrasynaptic membrane, via clathrin-coated pits.  Endocytosis occurs both through the 

constitutive and the regulated pathway.  Regulated endocytosis can be activated either by 

agonist binding to  the NMDA receptor or indirectly via metabotropic glutatmate receptor 

(mGluR) activation (Snyder et al., 2001a; Nong et al., 2003).  The internalization of the 

GluN2 subunits appears to occur by different pathways (reviewed in Petralia et al., 2009).  

Generally, internalization of the GluN2B subunit occurs by the AP-2 adaptor protein 

binding to a specific internalization motif on the C-terminus.  Although the GluN2A C-

terminus has a similar internalization motif, it does not appear to interact with AP-2 .  

This leads to more robust internalization of GluN2B subunits compared to GluN2A 

subunits.  The different GluN2 subunits also follow different endocytic pathways.  While 

both enter early endosomes, GluN2A subunits are processed through late endosomes and 

are degraded, while GluN2B subunits are recycled back to the surface .   

 Phosphorylation also plays a role in NMDA receptor trafficking and localization.  

Casein kinase II (CK2) has been shown to phosphorylate GluN2B at Ser1480 on the C-

terminus, which disrupts the association of GluN2B with PSD-95, leading to decreased 

surface expression (Chung et al., 2004).  Conversely, phosphorylation of Tyr1472 by 

Fyn, a Src family kinase (Prybylowski et al., 2005), on the GluN2B subunit promotes 

surface expression and prevents endocytosis (Goebel-Goody et al., 2009).  
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Dephosphorylation, via protein tyrosine phosphatases (PTPs), also plays a role in 

NMDAR assembly.  The phosphatase striatal–enriched tyrosine phosphatase (STEP) can 

directly dephosphorylate the Tyr1472 residue on GluN2B (Kurup et al., 2010), or 

dephosphorylate Fyn (Nguyen et al., 2002), also resulting in decreased phosphorylation at 

Tyr1472 on GluN2B , both leading to increased endocytosis.  Surprisingly, inhibition of 

PTPs led to disassembly of GluN1, GluN2A, and GluN2B subunits of the NMDA 

receptor complex (Ferrani-Kile and Leslie, 2005), indicating that a balance of 

phosphorylation and desphosphorylation is required to maintain the NMDAR complex at 

the surface.   

Phosphorylation has also been shown to play a role in NMDA receptor function 

(reviewed in Salter et al., 2009).  PKC phosphorylates the GluN1 (Ser890 and Ser896), 

the GluN2A (Ser1416), and GluN2B (Ser 1303 and Ser1323) subunits, all of which may 

lead to enhancement of NMDAR currents, possibly by potentiating channel activity.  

PKA has also been shown to indirectly potentiate NMDAR currents by stimulation of G-

protein coupled receptors and directly via phosphorylation of GluN1, 2A, and 2B.  

Phosphorylation of NMDAR subunits by PKA and PKC has also been shown to inhibit 

the ERR signal retention, regulating forward trafficking.  In addition, Src family kinases 

(SFKs) have been shown to play a large role in phosphorylation of NMDARs leading to 

potentiation.  Application of exogenous Src or Fyn, or peptides that activate Src or Fyn, 

increases both NMDA-evoked currents and NMDA receptor-dependent excitatory 

postsynaptic currents (EPSCs) by directly phosphorylating GluN2A and/or GluN2B.  

SFKs are believed to be activated downstream of mGluR activation and PKC signaling 
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(Heidinger et al., 2002), and have been found to be necessary for LTP induction (Lu et 

al., 1998). 

2.3 NMDAR, learning and memory, and LTP 

2.3.1 NMDAR and learning 

Several studies have shown that NMDARs are critical for learning and memory 

(reviewed in Riedel et al., 2003).  Most studies have focused on the role of the NMDAR 

in spatial memory.  Blockage of NMDAR function by the antagonist MK-801 has been 

shown to impair contextual fear conditioning in rats when infused either into the dorsal or 

ventral hippocampus (Zhang et al., 2001; Bast et al., 2003).  In addition, contextual fear 

conditioning was impaired in mice with an inducible CA1-specific NR1 knockout 

(Shimizu et al., 2000).  Conversely, transgenic mice with overexpression of the NR2B 

subunit show an improvement in contextual fear conditioning as compared to wild type 

(Tang et al., 1999).  Spatial memory has been shown to be impaired in the Morris water 

maze and an eight-arm radial arm maze task upon application of an NMDA antagonist,  

(Morris et al., 1986; Bischoff and Tiedtke, 1992), as well as in a spatial delayed 

alternation task (Watson et al., 2009).  Some studies have shown NMDAR involvement 

in non-spatial learning tasks.  NMDA infusion into the dorsal or ventral hippocampus 

also blocks auditory fear conditioning in addition to contextual fear conditioning (Zhang 

et al., 2001; Bast et al., 2003).  Ro 25-6981, an NMDAR antagonist specific to those 

receptors containing the NR2B subunit, has been shown to impair learning in a trace 

conditioning paradigm (Valenzuela-Harrington et al., 2007), a procedure requiring 

temporal processing.  Similarly, an inducible CA1-specific NR1 knockout in mice is 

associated with an impairment in trace fear conditioning (Huerta et al., 2000) and in a 
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nonspatial transverse patterning task (Rondi-Reig et al., 2001).  Knockdown of the NR1 

subunit using siRNA results in impaired performance in a passive avoidance task, 

whereas overexpression of the subunit results in better performance in the same task as 

compared to wild type (Kalev-Zylinska et al., 2009). 

Many studies involving NMDARs’ role in learning and memory have tried to 

determine at which time point during learning and memory formation NMDARs have a 

role, with conflicting results.  It is generally agreed that there are three major stages of 

memory – acquisition or encoding, consolidation, and retrieval.  Mice with the inducible 

CA1-specific GluN1 knockout have shown an inability to learn in several different tasks, 

implicating NMDAR’s role in acquisition (Tsien et al., 1996; Shimizu et al., 2000; 

Rondi-Reig et al., 2001).  Supporting this, application of NMDAR antagonists during the 

Morris water maze at time points just prior to either acquisition learning or retrieval 

demonstrated only acquisition impairments (Morris et al., 1986; Woodside et al., 2004).  

However, some studies implicate its role in both acquisition and retrieval (Ahlander et al., 

1999; Shimizu et al., 2000; Yoshihara and Ichitani, 2004), while a recent study implicates 

it in retrieval, but not acquisition, in weanling rats (Watson and Stanton, 2009).  Although 

some studies have shown no role for the NMDAR in consolidation (Yoshihara and 

Ichitani, 2004), one study has shown that NMDAR reactiviation is necessary for 

consolidation (Shimizu et al., 2000), although the uncertain time period for consolidation 

may limit the interpretations of these results.  The reason for these differences in results is 

unclear.  The timing of the pharmacological intervention may play a role – if not 

administered at the appropriate time, the window of opportunity to interfere with a certain 

aspect of memory may be missed.  In addition, there may be differences in the role of 
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NMDARs in the timing of these stages in different types of learning; spatial memory may 

require the involvement of NMDARs at one specific stage, whereas non-spatial learning 

may require its involvement at another.  In addition, NMDARs’ interactions with other 

receptors, such as the AMPA receptor and mGluRs, may influence the extent of 

NMDAR’s role in these processes.  Further research is needed to determine NMDAR’s 

precise role. 

2.3.2 NMDAR and LTP 

Given the role of NMDA receptors in some types of learning, it is not surprising 

that the NMDA receptor plays an important role in LTP.  As mentioned previously, 

classical LTP, which has primarily been characterized at the Schaffer collaterals-CA1 

pathway but is also present at the perforant path-dentate gyrus molecular layer pathway, 

is dependent on the NMDA receptor.  Early studies showed that NMDA receptor 

antagonists, such as 2-amino-5-phosphonopentanoate (AP5) or MK-801, prevent the 

induction of LTP in the CA1 region in vitro and the dentate gyrus in vivo in rodents 

(Collingridge et al., 1983; Morris et al., 1986; Coan et al., 1987; Davis et al., 1992).  In 

addition, mice lacking the GluN1 subunit exhibit reduced hippocampal LTP compared to 

control littermates (Sakimura et al., 1995). Given that the NMDA receptor requires both 

agonist activation, via presynaptic glutamate release, and release of the Mg
2+

 block, via 

postsynaptic depolarization, it functions well as a coincidence detector (Bliss and 

Collingridge, 1993).   
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2.3.2.1 Downstream signaling of the NMDA receptor important for LTP 

One of the primary reasons that NMDA receptors are important for LTP is the 

receptor’s permeability to Ca
2+

.  An important initial study showed that LTP could be 

prevented by postsynaptic intracellular injection of EGTA, a Ca
2+

 chelator (Lynch et al., 

1983).  Tetanic stimulation has also been shown to increase Ca
2+

 levels in dendritic 

spines (Muller and Connor, 1991), and a rise in Ca
2+

 lasting less than 3 seconds has been 

shown to be sufficient for LTP induction (Malenka et al., 1992).  A study done by the 

Clapham lab showed that mimicking pre- and postsynaptic activation by pairing 

extracellular glutamate uncaging and postsynaptic depolarization resulted in a large 

residual Ca
2+

 influx that was not blocked by Cd
2+

, a blocker of voltage-gated calcium 

channels (VGCCs), but was blocked by AP5, implicating NMDA receptors as a primary 

source of Ca
2+

 during LTP (Schiller et al., 1998).  However, it is quite possible that other 

sources of Ca
2+

, such as from intracellular stores or VGCCs, play a role in NMDA 

receptor-dependent LTP, since NMDA receptor activation can lead to mobilization of 

Ca
2+

 from these sources (Schiller et al., 1998; Emptage et al., 1999). 

As mentioned earlier, Ca
2+

 influx is important because of its role as a second 

messenger, activating such downstream molecules such as CaMKII, PKA, and PKC.  The 

NMDA receptor has also been linked to the activation of these molecules, likely though 

its role in Ca
2+

 influx.  NMDA receptor-dependent activation of these molecules are 

important for the expression of LTP, with CaMKII and PKC implicated primarily with 

LTP induction, and PKA implicated in LTP maintenance (Malinow et al., 1989; Klann et 

al., 1991; Frey et al., 1993; Fukunaga et al., 1993; Matthies and Reymann, 1993; Ahmed 

and Frey, 2005).  CaMKII has been shown to translocate to the PSD and incorporate 



 26 

itself into the NMDA receptor signaling complex, where it can stay active even after 

Ca
2+

/calmodulin disassociation and can interact with other proteins located in the PSD 

(reviewed in Lisman et al., 2002).  It has been shown to phosphorylate Ser891 on the 

GluR1 subunit of the AMPA receptor, leading to increased channel conductance (Benke 

et al., 1998; Lee et al., 2000).  It may also be involved in AMPA receptor trafficking to 

the surface, although the mechanism has not been elucidated (Lisman et al., 2002).  In 

addition, CaMKII may lead to ERK1/2 activation, which is important for LTP expression 

(Sweatt, 2001; Thomas and Huganir, 2004).  PKC activation can also activate ERK1/2  

via the small G-protein Ras-Raf-MEK pathway (Sweatt et al., 1998; Impey et al., 1999; 

Levenson et al., 2004), and PKC-dependent AMPA receptor phosphorylation at Ser818 

may lead to increased expression at the surface (Boehm et al., 2006).  In addition, a 

particular atypical isozyme of PKC, protein kinase M zeta (PKM), has been shown to be 

important in LTP maintenance, possibly by directing AMPA receptor trafficking (Sacktor 

et al., 1993; Yao et al., 2008).  PKA, which is activated via cAMP, is implicated in the 

activation of several downstream substrates, including CREB and the AMPA receptor 

(reviewed in Nguyen and Woo, 2003); however, there is evidence that PKA activation 

may inhibit the Ras/Raf pathway, thus inhibiting ERK1/2  activity (Sweatt, 2001).  The 

activation of ERK1/2 and CREB are important because of their roles in activation of 

immediate early genes (IEGs), which are important for LTP maintenance (reviewed in 

Bozon et al., 2003).  ERK1/2 can directly activate Elk-1 and indirectly activate CREB, 

two transcription factors that can induce transcription of zip268, which has been shown to 

be necessary in LTP maintenance.  In addition, CREB has been shown to lead to 

increases in brain-derived neurotropic factor (BDNF), cfos, and arc expression, which 
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have also been shown to be important in LTP maintenance (Czerniawski et al., 2011; 

Peng et al., 2011). 

2.3.2.2 Other factors involved in NMDA receptor-dependent LTP 

Although classical LTP is dependent on NMDA receptor activation, there are 

modulators that may affect the extent of LTP expressed.  Group I mGluRs, which consist 

of mGluR1 and mGluR5 and are coupled to the Gq pathway, have been shown to 

potentiate NMDA receptor currents by activating PKC, which can then phosphorylate the 

NMDA receptor leading to current potentiation (Skeberdis et al., 2001; Heidinger et al., 

2002).  In addition, co-activation of mGluR5 and NMDA receptors has been shown to 

synergistically activate ERK1/2, which may also affect LTP (Yang et al., 2004).  Acute 

nicotine has been shown to enhance LTP in vitro in the dentate gyrus via α7 nicotinic 

acetylcholine receptors (nAChRs).  Naloxone, a µ-opioid receptor antagonist, and 

norbinaltorphimine (NBNI), a -opioid receptor antagonist, enhanced LTP in the dentate 

gyrus in rodents (Terman et al., 1994; Xie and Lewis, 1995), indicating that endogenous 

opioids play an inhibitory role in NMDA receptor-dependent LTP.  Agonists of D1 

receptors have been shown to upregulate NMDA receptor-mediated LTP in a CaMKII-

dependent manner in hippocampal primary cultures (Nai et al., 2010); lead to increased 

phosphorylation of GluN1 Ser897 and GluN2B Ser1303 in hippocampal slices, which 

may lead to increased expression of the subunits at the surface; and synergistically 

activate the ERK1/2 pathway (Sarantis et al., 2009).  Histamine may interact directly with 

the NMDA receptor to potentiate NMDA receptor currents (Burban et al., 2010).  In 

addition, presynaptic histamine H3 receptors may inhibit glutamate release in the dentate 

gyrus in vitro (Brown and Reymann, 1996), thereby affecting the activation of AMPA 
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and NMDA receptors.  Besides neurotransmitters, cell adhesion and repulsion molecules 

have been shown to affect LTP, and NMDA receptor interactions with the extracellular 

matrix protein Reelin and the receptor tyrosine kinase EphB has been shown to alter 

NMDA receptor levels as the surface, having an effect on NMDA receptor function 

(Groc et al., 2007; Nolt et al., 2011). 

2.3.2.3 NMDA receptor subunit composition may alter the NMDA receptor’s role in 

LTP 

Although the NMDA receptor has been shown to be necessary for classical LTP, 

the importance of the individual subunits present is much less clear.  Given that LTP is 

easier to elicit early in development, when the GluN2B receptor is highly expressed, and 

becomes more difficult to induce later into adulthood when the GluN2A subunit is 

predominant, implicates the GluN2B subunit as important for LTP expression (Flint et 

al., 1997).  Several lines of work have supported this theory.  Pharmacological blockade 

of GluN2B-containing receptors with Ro 25-6981 prevented increases in the slope of 

fEPSPs recorded in vivo in the perforant path-dentate gyrus pathway seen during 

conditioning in a trace conditioning paradigm (Valenzuela-Harrington et al., 2007).  

GluN2B has also been shown to interact with CaMKII, and this interaction has been 

shown to be necessary for LTP induction (Barria and Malinow, 2005; Zhou et al., 2007).  

GluN2B has also been shown to couple directly to RasGRF1, which activates the 

Ras/Raf/ERK1/2 signaling pathway, necessary for LTP and learning (Krapivinsky et al., 

2003).  In addition, disruption of GluN2B levels at the synapse, either with genetic 

(Brigman et al., 2010) or molecular (Gardoni et al., 2009) techniques, also resulted in 

reduction of LTP in the hippocampus.   
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However, other studies have supported a primary role of GluN2A, rather than 

GluN2B, in LTP expression.  Electrophysiological studies in rodent hippocampal or 

perirhinal cortex slices using NVP-AAM077 to pharmacologically block GluN2A-

containing NMDA receptors found that LTP was reduced compared to controls (Liu et 

al., 2004; Massey et al., 2004).  Interestingly, both studies found no inhibition of LTP 

using GluN2B blockers.  NVP-AAM077 has also been shown to block dendritic 

translation, necessary for LTP maintenance, in primary hippocampal neuron cultures 

using GFP as a reporter (Tran et al., 2007).  However, the specificity of NVP-AAM077 

in rodents has recently come under question (Neyton and Paoletti, 2006).  It has also been 

shown that mutant mice expressing C-terminally truncated GluN2A subunits exhibit 

reductions in LTP expression (Kohr et al., 2003), which would support a role of GluN2A 

in LTP.  Furthermore, some studies have shown either no inherent specificity for the 

subunit composition for LTP (Berberich et al., 2005) or involvement of both subunits, but 

with different roles in LTP (Foster et al., 2010).  In addition, although most LTP research 

has focused on the different roles of the GluN2 subunits, overexpression of the GluN3A 

subunit in adulthood in the hippocampus has been shown to impair LTP (Roberts et al., 

2009), further complicating the precise role of the NMDA receptor in LTP. 

2.4 The Effects of PAE on LTP and the NMDA Receptor 

2.4.1 The Effects of PAE on the NMDA Receptor 

Several studies have attempted to evaluate the effect of PAE on NMDA receptor 

subunit expression.  Real-time polymerase chain reaction (RT-PCR) analysis of adult 

whole brain mouse tissue after a 25% ethanol solution i.p. injection on gestational day 8 

(GD8) found a significant decrease in GluN2B mRNA expression and a significant 



 30 

increase in GluN2A mRNA expression compared to controls (Toso et al., 2005).  In rat 

pups from mothers offered a 10% ethanol solution as their sole drinking source during 

pregnancy, the developmental expression profile of the GluN1 splice variants GluN1a 

and GluN1-1b, GluN2C, and GluN2D mRNAs in the hippocampus are altered by ethanol 

exposure (Naassila and Daoust, 2002).  In a pair-fed liquid diet paradigm, no difference 

in GluN2A, GluN2B, or GluN2C mRNA levels were found in forebrain samples from 

PD1 (Hughes et al., 2001).  The same study found no alteration in PSD-95 and GluN2A 

or GluN2B association as measure by immunoprecipitation, although they did find an 

alteration in GluN1 association with calnexin, a chaperone protein in the ER. 

Studies have also examined protein levels of NMDA receptor subunits after pre- 

and postnatal alcohol exposure.  In the cerebral cortex, GluN2B levels have been shown 

to be decreased at PD61 in an oral administration model of PAE in guinea pigs (Dettmer 

et al., 2003).  Another study found decreased association of PSD-95 with GluN2A and 

GluN1 splice variants containing the C2' cassette at PD21 in the cortex after a pair-fed 

liquid diet PAE paradigm (Honse et al., 2003).  In the hippocampus, the same pair-fed 

liquid diet paradigm produced decreased GluN2B subunit levels at PD7(Hughes et al., 

1998).  Prenatal exposure via pair-fed gavage in combination with postnatal exposure via 

artificial rearing resulted in an increase in GluN2A subunit levels at PD 10 in the 

hippocampus (Nixon et al., 2004), while the same postnatal exposure resulted in an 

increase in GluN2A levels in the cortex (Nixon et al., 2002).  Prenatal ethanol exposure 

by a voluntary two-bottle choice paradigm found a decrease in PSD-95 association with 

GluN2B in the hippocampus (Samudio-Ruiz et al., 2010). 
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Analysis and comparison of these studies become difficult for several reasons.  

First, the differences in PAE administration could alter the effects of ethanol.  As 

mentioned in the previous chapter, paradigms involving gavage or liquid diet may elicit a 

stress response in the mother, which may have adverse effects on the offspring 

independent of, and perhaps interacting with, the alcohol exposure.  In addition, the 

timing of the exposure also is important, with prenatal and postnatal exposure, as well as 

selective daily exposure during gestation, possibly targeting different developmental time 

periods and therefore may have differential effects.  The BECs reached in these models 

also vary greatly, ranging from 80 mg/dL to as high as 330 mg/dL, with some BECs 

referencing the mother’s levels and some referencing the offspring’s levels.  Differences 

in BECs will also greatly affect the interpretation of the outcomes.  Finally, many of 

these studies are done early in development, often before PD21, while many studies of 

behavioral deficits occur in older animals, making it difficult to relate neurochemical 

alterations with behavioral alterations. 

2.4.2 Effects of PAE on LTP 

Although the effect of PAE on learning has been studied in great detail, the effect 

of PAE on LTP has not been as thoroughly explored.  An initial study examined the 

effects of two i.p. injections of 2.9 g/kg ethanol on GD8 and found that rats prenatally 

exposed to ethanol showed lower high frequency stimulation (HFS) threshold for LTP in 

the granule cell layer of the dentate gyrus (Gomez et al., 1992).  However, later studies 

found deficits in LTP in the dentate gyrus measured in vivo in adult rats (Sutherland et 

al., 1997; Varaschin et al., 2010) using either a pair-fed liquid diet or a limited access 

paradigm.  In the adult guinea pig, LTP deficits were also observed in the CA1 after oral 
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administration of 4g/kg ethanol throughout gestation (Richardson et al., 2002a).  It is 

unknown why the initial study found an LTP enhancement after prenatal alcohol 

compared to the later studies, although the difference in exposure (one day of exposure 

vs. exposure throughout the entire gestation) may account for the difference.  The 

agreement of the later studies on LTP deficits, despite the differences in ethanol 

administration and species differences, is intriguing, as LTP deficits may account for 

learning deficits seen after PAE. 

2.5 Summary 

 LTP, considered by many to be the cellular mechanism of learning, is dependent 

on the NMDA receptor in many regions of the brain, including the dentate gyrus.  

Regulation of the NMDA receptor, including the subunit composition and trafficking of 

the receptor, is important in maintaining proper cellular function, including LTP.  

Although both the NMDA receptor and LTP have been shown to be altered by prenatal 

alcohol exposure, no studies have determined whether alterations in NMDA receptor 

expression is associated with LTP deficits seen in the dentate gyrus, despite the 

importance of the NMDA receptor in LTP induction and maintenance.   
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3. Research rationale, hypothesis, specific aims 

In both humans and laboratory animal models, exposure to alcohol during 

development has been shown to cause a multitude of dose-dependent effects on the 

structure and function of the central nervous system, with the extent of damage being 

dependent on the pattern and chronicity of the exposure and the stage(s) of development 

during which it occurs (Queen et al., 1993; Goodlett and Johnson, 1997; Kelly et 

al.,2000; Soodet al., 2001; Savage et al., 2002; Mooney and Miller, 2009). The incidence 

of FASD has been estimated to be 0.2-5% in the United States (Sampson et al., 1997; 

May et al., 2009).  Several studies have found that 10-20% of women report drinking 

low-to-moderate amounts of alcohol during pregnancy, with the prevalence of drinking 

decreasing as the pregnancy progresses (Flynn et al., 2003; Caetano et al., 2006). In 

animal models, this type of voluntary, intermittent drinking has been modeled in rhesus 

monkeys (Schneider et al., 2009), whereas, in rodent models, it is typically accomplished 

through injection or gavage (Bonthius et al., 2001; Carneiro et al., 2005). However, these 

routes of administration may induce stress in the mother, confounding the effects of 

ethanol, and may not be appropriately modeling human behavior.  

The hippocampal formation, including the dentate gyrus, is one of the brain 

regions most vulnerable to the damaging effects of PAE (Gil-Mohapel et al., 2010).  

Effects of PAE on the dentate gyrus may have far-reaching consequences since this 

structure serves as a major cortical input pathway for the hippocampus (O'Reilly and 

McClelland, 1994; Leutgeb et al., 2007; Witter, 2007).  Adult mice that were exposed to 

moderate levels of alcohol throughout gestation display deficits in hippocampal-

dependent (Allan et al., 2003) learning and memory tasks, as well as impaired survival of 
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newly generated dentate granule neurons in response to an enriched environment in adult 

mice (Choi et al., 2005).  In addition, PAE is associated with decreased NMDA receptor-

dependent activation of mitogen-activated protein kinase/extracellular signal regulated 

kinase 1/2 (ERK1/2) in the adult mouse dentate gyrus (Samudio-Ruiz et al., 2009).  

Numerous other effects of PAE on hippocampal functioning have been reported, 

including deficits in NMDA-dependent long-term potentiation (LTP) in the dentate gyrus 

(Sutherland et al., 1997; Varaschin et al., 2010).   

Studies thus far have not investigated the effect of PAE on behavior that is 

dependent on the functioning of the dentate gyrus, nor have they fully evaluated the 

reason for the LTP deficits in the dentate gyrus.  Although the work done in our lab 

previously implicates the NMDA receptor, the association between LTP deficits and 

NMDA receptor alterations after PAE has not been explored.  The goal of this 

dissertation was, first, to design a more appropriate PAE animal model that produced 

learning deficits in a paradigm that had been shown to be dependent on the dentate gyrus; 

second, to determine whether the model displayed alterations in synaptic transmission in 

the dentate gyrus; and third, to determine if there were corresponding changes in 

NMDAR subunit composition and/or localization in the dentate gyrus. 

3.1 Hypothesis 

The hypothesis tested in this dissertation was that a limited access prenatal alcohol 

exposure model produces dentate gyrus-dependent learning impairments that are 

associated with NMDAR-dependent synaptic plasticity deficits and altered NMDAR 

subunit composition. 
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Specific Aims 

 Specific Aim 1 – Development and characterization of a limited access, voluntary 

consumption model of PAE in mice 

- Characterize the effect of maternal ethanol consumption on dam behavior and 

pregnancy outcomes 

- Characterize the effect of PAE in hippocampal-dependent learning tasks, 

including contextual fear conditioning and trace fear conditioning 

- Characterize the effect of PAE in a dentate gyrus-dependent pattern separation 

task 

Specific Aim 2 – Evaluate alterations in NMDA receptor-dependent functions in the 

dentate gyrus of PAE animals 

- Determine if basal glutamatergic synaptic transmission is altered in PAE 

animals 

- Determine if NMDAR-dependent LTP is altered in PAE animals 

- Determine if functional GluN2B-containing NMDA receptors are affected in 

PAE animals 

Specific Aim 3 – Evaluate alterations in NMDA receptor subunit number and 

composition in the dentate gyrus in PAE animals 

- Determine if PAE alters synaptic membrane NMDA receptor subunit 

populations 
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- Determine if PAE alters extrasynaptic membrane NMDA receptor subunit 

populations  
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ABSTRACT 

Background:  It is estimated that approximately 12% of women consume alcohol 

at some time during their pregnancy and as many as 5% of children born in the United 

States are impacted by prenatal alcohol exposure (PAE).  The range of physical, 

behavioral, emotional and social dysfunctions that are associated with PAE are 

collectively termed fetal alcohol spectrum disorder (FASD). 

Methods:  Using a saccharin-sweetened ethanol solution, we developed a limited 

access model of PAE.  C57BL/6J mice were provided access to a 10% (w/v) ethanol in 

0.066% (w/v) saccharin solution for 4 hours per day, with 0.066% (w/v) saccharin 

solution serving as control.  After establishing consistent drinking, mice were mated, and 

continued drinking during gestation.  Following parturition, ethanol solutions were 

decreased to 0% in a step-wise fashion over a period of 6 days.  Characterization of the 

model included measurements of maternal consumption patterns, blood ethanol levels, 

litter size, pup weight, maternal care, and the effects of PAE on fear-conditioned and 

spatial learning, and locomotor activity. 

Results:  The mothers had mean daily ethanol intake of 7.17  0.17 g ethanol/kg 

body weight/day, with average blood ethanol concentrations (BECs) of 68.5 ± 9.2 mg/dL 

after two hours of drinking and 88.3  11.5 mg/dL after 4 hrs of drinking.  There was no 

difference in food or water consumption, maternal weight gain, litter size, pup weight, 

pup retrieval times, or time on nest, between the alcohol-exposed animals and the control 

dams.  The animals that were exposed to ethanol prenatally displayed no difference from 

control offspring in spontaneous locomotor activity but demonstrated learning deficits 
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compared to controls in three hippocampal-dependent tasks: delay fear conditioning, 

trace fear conditioning, and the delay non-match to place radial arm maze task.   

Conclusions:  These results indicate that this model appropriately mimics the 

human condition of PAE, and will be a useful tool in studying the learning deficits seen 

in FASD.  
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4.1 Introduction 

In both humans and laboratory animal models, exposure to alcohol during 

development causes a multitude of dose-dependent effects on the structure and function 

of the central nervous system, with the extent of damage being dependent on the pattern 

and chronicity of the exposure and the stage(s) of development during which it occurs 

(Riley and McGee, 2005).  Additionally, the effects of prenatal alcohol exposure (PAE) 

on the brain display regional variability (Guerri, 1998), with the hippocampus being 

particularly sensitive to the damaging effects of the exposure (Berman and Hannigan, 

2000).  The dysfunctions that are associated with PAE are collectively termed fetal 

alcohol spectrum disorder (FASD) (Streissguth and O'Malley, 2000).  It is estimated that 

use of any alcohol during pregnancy is about 12% (Floyd et al., 2009), with the incidence 

of newborns displaying prenatal alcohol-related damage as high as 5% in the United 

States (May et al., 2009).  While heavy and binge (five or more drinks in a single 

episode) patterns of drinking during pregnancy are associated with the development of 

Fetal Alcohol Syndrome (FAS) (Jones and Smith, 1973; Clarren and Smith, 1978), 

extensive research shows that even moderate maternal drinking (1-2 drinks per day) is, in 

some individuals, associated with cognitive and behavioral deficits, often revealed only 

under stressful or challenging conditions (Streissguth et al., 1999). 

 Existing rodent models for PAE employ various lengths and routes of 

administration, as well as various concentrations of ethanol (Costa et al., 2000; Cudd, 

2005).  Each model has its advantages and disadvantages.  For example, although liquid 

diets and intragastric intubation are capable of producing moderate-to-high blood ethanol 
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concentrations (BECs), they often induce maternal stress and malnutrition, which may 

confound the results (Ward and Wainwright, 1989b; Slone and Redei, 2002).  Voluntary 

oral consumption can reduce stress and malnutrition issues, but it may be difficult to 

reach moderate-to-high BECs with this paradigm (Finn et al., 2005).  However, limiting 

access to ethanol in voluntary consumption paradigms has been shown to increase the 

amount of self-administration (Finn et al., 2005; Rhodes et al., 2005; Rhodes et al., 

2007).  A recent study (Boehm et al., 2008) employed this method to develop a PAE 

model using C57BL/6J mice, in which pregnant dams were given access to 20% ethanol 

for two hours during the dark cycle.  These mice reached BECs ranging from 100-200 

mg/dL, and the offspring exhibited motor deficits at postnatal day (PD) 33. 

 We sought to expand upon the model originally developed by Boehm et al. (2008) 

to determine its impact on hippocampal-dependent learning tasks.  Significant deficits in 

both delay- and trace-conditioned learning and a delayed non-matching to place radial 

arm maze (RAM) task in adult PAE mice were observed.  The model will likely be an 

important tool in the study of molecular mechanisms underlying cognitive dysfunction 

associated with PAE. 

4.2 Methods and Materials 

4.2.1 Animals 

All of the procedures used in the current studies were approved by the University 

of New Mexico Health Sciences Center Institutional Animal Care and Use Committee. 

 Sixty day-old C57BL/6J male and female mice (Jackson Laboratory, Bar Harbor, 

ME) were acclimated for one week in the vivarium [kept at 22C on a reverse 12 hr dark / 
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12 hr light schedule (lights on at 2000)] in group-housed cages.  After this acclimation 

period, animals were then individually housed for one week before the start of the alcohol 

(or control) drinking procedure.  Standard chow was available ad libitum in all cages.  

Water was available at all times except during the ethanol exposure period for female 

mice.  Offspring were group-housed in same-sex, littermate cages with free access to tap 

water and chow and maintained on a reverse light-dark cycle, as described above.  All 

behavioral measurements were conducted during the dark period between 0900 and 1400 

in a behavioral room lit with red lighting. 

4.2.2 Prenatal alcohol exposure procedure 

Prenatal exposure of mice to ethanol was performed using a modification of our 

previously published method employing saccharin-sweetened solutions (Allan et al., 

2003).  Two hours into the dark cycle, female mice were offered access to either 0.066% 

(w/v) saccharin (Sigma-Aldrich, St. Louis, MO) or an ethanol (DLI, King of Prussia, PA) 

solution sweetened with 0.066% (w/v) saccharin for four hours (from 1000 to 1400 hr.).  

Research has shown that saccharin may increase ethanol intake without affecting blood 

alcohol concentrations (Czachowski et al., 1999; Roberts et al., 1999). The concentration 

(w/v) of ethanol was increased in two, 2-day steps from 0% to 5%, then from 5% to 10%.  

After one week of drinking 10% ethanol, or the saccharin control solution, individual 

females were placed into the cage of singly housed males for two hours immediately after 

the drinking period (from 1400 to 1600 hr.).  Water and food were available ad libitum in 

the males’ cages.  Females continued to consume ethanol and saccharin solutions 

throughout the five-day mating period, with consumption amounts measured daily.  Five 

days was chosen for the length of the mating period based on the average estrous cycle 
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length of 4-5 days in C57BL/6J mice (Jemiolo et al., 1986; Walf et al., 2009).  Pregnancy 

was positively determined by monitoring weight gain.  The length of gestation in 

C57BL/6J mice is approximately 19.5 days and is not affected by maternal consumption 

of alcohol (Murray et al., 2010; Kleiber et al., 2011).  Thus, we identified gestational day 

1 as 20-days prior to the day of parturition.  Food and water consumptions were 

determined both before mating and during the last week of pregnancy.  Weight 

determinations were made every 3-4 days during pregnancy.  Within one day of birth, the 

alcohol and saccharin concentrations were halved every two days, until the animals were 

drinking only water. 

4.2.3 Blood ethanol concentration measurements 

Maternal BECs were determined in the last week of pregnancy, based on a 

method described previously (Smolen et al., 1987).  Briefly, blood samples (40 µL) were 

collected from the submandibular vein at both the two hour (1200 hr) and four hour 

(1400 hr) time points, with only a single sample being collected from an animal.  The 

samples were treated with 2 mL of 3.5% (v/v; 0.58 M) perchloric acid (Mallinckrodt 

Baker, Inc., Phillipsburg, NJ) and centrifuged (300 x g) for 10 min at 4 C to obtain 

serum.  Eighty microliters of serum, or known ethanol standard ranging from 0-400 

mg/dL, were incubated in 2 mL of reaction buffer [10 units alcohol dehydrogenase 

(Sigma Aldrich, St. Louis, MO), 2.0 mM NAD (Sigma Aldrich), 0.5 M Tris-HCl, pH 8.8] 

for 15 minutes at 30 C.  The optical density of the sample was measured at 340 nm using 

a Beckman DU 380 Spectrophotometer. Sample blood ethanol values were determined by 

regression analysis.  Blood alcohol was determined for three separate breeding rounds of 
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PAE animals.  The offspring of the dams used for determination of BECs were not used 

in the present studies. 

4.2.4 Litter size and offspring weight 

Litters were left undisturbed for seven days (except for those used for pup 

retrieval test) at which time litter size was determined.  Litters were not culled.  Offspring 

were weighed on PD 7, 14, and at weaning (approximately PD 23).  Weights of the entire 

litter were collected, and average pup weight was determined by dividing the total weight 

of the litter by the number of pups present in each litter. 

4.2.5 Characterization of maternal care 

The percentage of time spent on nest in a one hour period was evaluated at PD 5 

or 6 between 1000 and 1400 hr.  Pup retrieval time was performed in the home cage on 

PD 8.  A pup was removed from the nest and placed in the farthest corner away from the 

nest (approximately 30 cm away), and latency to retrieve the pup was measured. 

4.2.6 Locomotor activity 

Male offspring 90-150-days old were tested for their spontaneous locomotor 

activity, as described previously (Caldwell et al., 2008).  Briefly, mice were placed in a 

dim red light-illuminated open field apparatus (102.5 x 102.5 x 47.5 cm; Opto-Varimex, 

Columbus Instruments, Columbus, OH, USA) for 15 min on two consecutive days.  The 

first day examined locomotor activity in a novel environment, and the second day 

examined locomotor activity in a familiar environment.  Open field locomotor 

(horizontal) activity was measured as the number of photo beam interruptions recorded 
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on both days.  All equipment was cleaned thoroughly with 70% (v/v) isopropanol 

between uses.  

4.2.7 Delay fear conditioning 

Delay fear conditioning was conducted with 90-150-days old male offspring using 

a procedure previously described (Allan et al., 2003).  Briefly, animals were placed into a 

Coulbourn Instruments (Allentown, PA) Habitest® System for 90 sec of habituation.  

Subsequently, they received the conditioned stimulus (CS), an 80dB, 6Hz clicker, for 30 

sec.  The unconditioned stimulus (US), an electric foot shock (0.7mA), was delivered 

during the last 2 sec of the CS.  This sequence was repeated one time, providing a total of 

two CS-US pairings.  Thirty seconds after co-termination of the second CS/US pairing, 

the animal was removed from the conditioning context and returned to its home cage.  

Approximately 24 hr later, the mouse was placed back into the training context, and the 

animal’s behavior was videotaped.  Freezing (the absence of movements other than those 

necessary for respiration) during the first two minutes in the context was measured, and 

expressed as a percentage of the total time.  Neither the CS nor the US was delivered 

during the testing period.  The subject’s behavior was scored by two individuals, one of 

whom was blind to the prenatal exposure history of the animal. 

4.2.8 Trace fear conditioning 

Trace conditioning was conducted with 90-150-days old male offspring in the 

same apparatus used for delay conditioning.  The trace conditioning procedure was a 

modification of a procedure described previously (Huerta et al., 2000).  Briefly, after 90 

seconds of habituation in the chamber, male offspring experienced seven trials each 
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consisting of the CS (10 sec 80 dB 6 Hz clicker), a 30 second trace, the US (1 sec 0.8 mA 

scrambled foot shock), and a 210 second intertrial interval; the animal experienced this 

sequence 7 times total, and was removed from the chamber 60 seconds following the 

delivery of the seventh US.  The equipment was cleaned thoroughly with 70% (v/v) 

isopropanol between uses.  A separate “untrained” group of mice was exposed to all of 

the same conditions except for delivery of the US.  

Approximately 24 hours after completion of the training session, freezing to the 

CS delivered while the subject was in the novel context (a standard, clean mouse cage 

with minimal bedding) was assessed.  Five minutes after being placed in the novel 

environment, the 10-sec CS was sounded; four minutes later another 10-sec CS was 

sounded.  The test subject remained in the cage for 3 minutes after the second CS and 

then was returned to its home cage.  The animal’s behavior was recorded using a camera 

and video recorder, and the amount of time spent freezing during the tone and 30 sec 

after the tone (40 sec total duration) was scored for each CS.  The average for the two 

measures for each mouse was calculated, and expressed as a percentage of time spent 

freezing.  Untrained animals (cage mates from the same litters) also experienced the CS 

in the novel context, and the percentage of time spent freezing was similarly determined. 

4.2.9 Delay non-match to place spatial memory 

A delay non-match to place (DNMP) spatial memory test was performed with 90-

150-days old male offspring based on a published method with modification (Clelland et 

al., 2009) using a radial arm maze purchased from Coulbourn Instruments.  The maze 

consisted of an octagonal-shaped center arena (28 cm diameter x 25.5 cm height) with 8 
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arms (68.5 x 9.5 x 12.1 cm, l x w x h) radiating out from the center arena. The arms were 

made of clear Plexiglas with a wire grid floor and a clear Plexiglas top.  Mice were on a 

caloric restricted diet beginning 2-3 days prior to testing and maintained at 80-85% of 

starting body weight throughout the testing period.  On the first day, mice were placed 

into one of the arms of the maze that was baited with mouse chow and Honey Nut 

Cheerios
TM

.  The central exit of the arm was blocked and the animal was left for 30 

minutes prior to return to its home cage.  Subsequently, testing was conducted over the 

next five days with two trials in the morning and two trials in the afternoon.  The order of 

the arm separations – two different separations (see below), two trials per separation per 

day – was randomized across the days of the procedure.  On the first two days of testing, 

mice were permitted to self-correct.  Mice received one trial (each trial consisting of a 

sample phase + choice phase) and were returned to their home cages, and all other mice 

were tested before the second round of testing began.  

In the delay non-match to place paradigm, mice were presented with a choice 

between a familiar and a novel arm where the correct choice was the novel arm.  In the 

sample phase, only the start and sample arms were accessible to the mouse and the 

sample arm was baited.  Mice were removed from the maze and placed in a holding cage 

if they had either spent 60s in the sample arm or had left the sample arm.  During the 

choice phase, a new arm was open and baited with food while the start and sample arms 

were open but not baited.  The correct choice arm varied in distance from the sample arm 

by either 2 (separation 2 or Sep 2) or 4 arms (separation 4 or Sep 4).  Mice that entered 

the choice (food-baited) arm were scored as correct, while those who entered into the 
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sample arm or returned to the start arm after exiting were scored as incorrect.  Failure to 

make a selection in 3 minutes was also scored as incorrect, although this happened rarely.  

The radial arm maze was rotated between sample and choice presentations such 

that the exact spatial location within the room for the start and sample arms were held 

constant during the trials but the arms themselves changed to reduce the possibility that  

odor cues were being utilized.  The rotation took approximately 15 seconds.  

4.2.10 Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 5 (San Diego, CA, 

USA).  Measurements for model characterization were obtained from at least two 

different breeding rounds; for maternal measures, the reported n corresponds to the 

number of dams, while for offspring measures, the reported n represents the number of 

litters.  Food and water consumption, maternal weights, litter size, pup weights, pup 

retrieval time, time on nest, delay fear conditioning, and locomotor activity were 

analyzed using a Student’s two-tailed t-test.  BECs were calculated using a linear 

regression and Pearson’s correlation analysis was used to determine if the correlation was 

significant.  Trace fear conditioning data were analyzed using a two-way ANOVA 

followed by Student’s t-test with Bonferroni correction.  Radial arm maze data were 

analyzed using two-way ANOVA and post hoc Student's t-tests.  For the delay fear 

conditioning task, two animals from a litter were averaged and used as a single data 

point.  For the trace fear conditioning task, two animals were used from a litter, one 

trained and one untrained.  For the radial arm maze task, two animals from each litter 

were trained in the task and their data were averaged together.  The number of correct 
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arm entries for each trial per day across three days were determined and expressed as a 

percentage, and the number of correct arm choices for each day was analyzed for Sep 2 

and Sep 4.  In all cases, data are presented as mean ± SEM. 

4.3 Results 

4.3.1 Ethanol consumption and BEC levels 

Ethanol consumption was monitored before and during mating, as well as 

throughout gestation, from three different breeding rounds (Fig. 1).  Ethanol intake 

reached moderate – to – high levels before mating (8.36 ± 0.47 g ethanol/kg body 

weight/day), and continued throughout the mating period (7.47 ± 0.43 g ethanol/kg body 

weight/day). 

 

Figure 4.1.  Average ethanol consumption 

Average ethanol consumption (g ethanol/kg body weight/day) for C57Bl/6J mice before mating (A; n=23), 

during mating (B; n=21), and during gestation (C; n=30). 

 

During gestation, ethanol consumption remained relatively constant with an average 

consumption of 7.17 ± 0.17 g ethanol/kg body weight/day.  BECs of pregnant dams were 

measured during the last week of pregnancy, both two hours and four hours after ethanol 

access was initiated.  After two hours drinking, BECs were 68.5  9.2 mg/dL, and after 

four hours drinking, BECs reached 88.3 ± 11.5 mg/dL.  Consumption of ethanol over 



 50 

both a 2-hr period and a 4-hr period significantly predicted BEC levels (2 hr period: 

Pearson’s r = 0.57, p0.05, 4 hr period: Pearson’s r = 0.48, p0.05; Fig. 2A and 2B).  

 

Figure 4.2.  Correlation of blood alcohol concentrations (BECs) to the amount of ethanol consumed 

by female mice 

(A) BEC levels significantly correlate with the amount of ethanol consumed at 2 hrs (n=15; r = 0.57, 

p0.05).  (B) BEC levels significantly correlate with the amount of ethanol consumed at 4 hrs (n=22; r = 

0.48, p0.05).  BEC levels were determined from blood taken in a separate cohort of female mice after 2 or 

4 hrs of drinking, using an enzymatic method described in the Materials and Methods. 

 

4.3.2 Food and water consumption 

We measured intake of standard chow and water both during the week of 

introduction of the solutions and during the last week of pregnancy for both the ethanol 

and control groups in three separate rounds of breeding (Fig. 3).  Water consumption 

before mating did not differ significantly between the saccharin group (3.28 ± 0.22 

mL/day) or the ethanol group (3.10 ± 0.11 mL/day) (t[17] = 0.74, n.s.) (Fig. 3A).  

Similarly, there was not a significant difference in water consumption between the 

saccharin group (3.81 ± 0.11 mL/day) or the ethanol group (4.16 ± 0.23 mL/day) in the 

last week of pregnancy (t[14] = 1.47, n.s.) (Fig. 3A).  Before mating, there was no 

significant difference in food intake between the saccharin group (3.32 ± 0.2 g/day) and 

the ethanol group (3.70 ± 0.12 g/day) (t[18] = 1.66, n.s.) (Fig. 3B).  Food consumption in 
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the last week of pregnancy also did not significantly differ between the saccharin group 

(3.99 ± 0.07 g/day) and ethanol group (3.89 ± 0.16 g/day) (t[12] = 0.58, n.s.) (Fig. 3B).   

 

Figure 4.3.  Food and water consumption by saccharin (SAC) control group and ethanol (EtOH) 

drinking group before and during pregnancy 

(A) Amount of water consumed (mL) per day (20-hr access) before pregnancy (n=10) and during the last 

week of pregnancy (n=7).  (B) Amount of food consumed (g) per day before pregnancy (n=9) and during 

last week of pregnancy (n=9 for SAC, n=7 for EtOH).  No significant difference was found between SAC 

and EtOH groups at any time point for either food and water consumption. 

 

The average caloric intake during the last week of pregnancy did not differ significantly 

between the saccharin group and the ethanol group (13.98 ± 0.25 kcal/day and 15.21 ± 

0.53 kcal/day, respectively; t[12] = 2.10, n.s.), and the calorie equivalent of ethanol 

consumed was about 10% of the daily diet intake.  The lack of a difference in food and 

caloric intake corresponded with no significant difference between the two groups for the 

change of maternal weight that occurred during pregnancy (Table 1). 
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4.3.3 Offspring weight and litter size 

Litter size was determined for four separate breeding rounds at PD 7.  The 

average litter size for the prenatal saccharin and prenatal ethanol groups were not 

significantly different (t[62]=1.473, n.s.; Table 1).  Offspring weight was also 

determined at PD 7, 14, and at weaning (approximately PD 23) (Table 1).  At PD 7 and 

14 these were not significantly different between groups (PD 7: t[11]=0.4517, n.s.; PD14: 

t[11]=0.3054, n.s.)  A similar result was obtained at weaning (t[47]=1.641, n.s.; Table 1). 

4.3.4 Maternal care 

Although pup weights and early postnatal growth are good indicators of maternal care, 

we also directly assessed maternal care.  There was no significant difference in the 

amount of time taken for pup retrieval between saccharin-drinking and ethanol-drinking 

mothers (t[19]=0.6804, n.s.; Table 1), nor was there a difference in the amount of time 

mothers spent on the nest  (t[12]=0.07633, n.s.). 

4.3.5 Locomotor activity 

Since locomotor activity could influence the level of activity of the mice, and 

therefore performance in the learning tasks we used, we determined the basal level of 

locomotor activity in PAE and saccharin control (SAC) control mice.  In either a novel 

environment (day 1) or a familiar environment (day 2), PAE mice did not display 

differences in locomotor activity (measured as counts of beam interruptions) compared to 

SAC offspring (Day 1 – SAC 651.4  63.02, PAE 768.7  28.77; t[10]=1.480, n.s.; Day 2 

– SAC 492.1  53.27, PAE 514.6  64.83; t[10]=0.2681, n.s.; Fig. 4). 
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Figure 4.4.  Effect of prenatal ethanol exposure on locomotor activity 

Locomotor activity, measured as counts (beam interruptions), over two 15-min periods approximately 24 

hrs apart, was determined in saccharin control (SAC) and prenatal alcohol exposure (PAE) mice, as 

described in Materials and Methods. (A) Locomotor activity for SAC (n=7) and PAE (n=5) mice on day 

one.  (B)  Locomotor activity for SAC (n=6) and PAE (n=6) mice on day two.  No significant difference 

was found between SAC and PAE mice at either time point. 

4.3.6 Delay fear conditioning 

PAE models employing continuous access to ethanol throughout gestation have 

shown that the offspring display deficits in hippocampal-dependent tasks (Reyes et al., 

1989; Savage et al., 2002; Allan et al., 2003).  To determine if the offspring of our limited 

access model displayed similar behavioral deficits, we analyzed delay fear conditioned 

learning and memory in offspring from both groups.  PAE and SAC control offspring 

were reared to adulthood and trained using a delay conditioning paradigm.  Twenty-four 

hours later, mice were assessed for their conditioned responses to the training context by 

measuring freezing behavior following reintroduction into the training context (Fig. 5).  

PAE mice froze significantly less than did SAC controls (SAC 47.12 ± 4.89%, PAE 

31.50  4.94%; t[17]=2.243, p0.05) when reintroduced into the context. 
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Figure 4.5.  Effect of prenatal ethanol exposure on contextual fear learning and memory 

Adult male saccharin control (SAC) and prenatal alcohol exposure (PAE) mice were trained in a delay fear 

conditioning paradigm as described in the Methods and Materials section.  Approximately 24 hours later, 

the amount of time spent freezing in a 2 minute period after re-exposure to the training context was 

measured and expressed as a percentage (n=10 for SAC, n=9 for PAE;).  Unpaired Student’s t-test found a 

significant difference in percent freezing to the context between SAC and PAE offspring (t[17]=2.243, 

p0.05).  

4.3.7 Trace fear conditioning 

 Although PAE-associated deficits in delay fear conditioning have been previously 

reported in both rats (Weeber et al., 2001) and in mice (Allan et al., 2003), we were 

unaware of any reports examining the effects of PAE on trace fear conditioning, a 

hippocampal-dependent task that is temporally dependent (McEchron et al., 1998), in a 

murine model.  Thus, we determined if our model produced a deficit in trace fear 

conditioning.  Twenty-four hours following conditioning, mice were assessed for their 

responses to the CS by measuring freezing behavior (Fig. 6) during the 10 sec tone and 

the subsequent 30 sec, corresponding to the trace interval in the training procedure.  In 

addition, a group of untrained mice were assessed for their response to the tone by 

measuring freezing behavior during the same interval.  Two-way ANOVA indicated a  
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Figure 4.6.  Effect of prenatal ethanol exposure paradigm on trace fear learning and memory 

Adult male saccharin control (SAC) and prenatal alcohol exposure (PAE) mice were trained in a trace fear 

conditioning paradigm as described in the Methods and Materials.  Approximately 24 hours. later, mice 

were placed in a novel context and the amount of time spent freezing during the 40 seconds after initiation 

of a 10 second tone, corresponding to the tone and trace periods in the training procedure, was measured 

and expressed as a percentage (mean ± SEM, n=7 for SAC, n=8 for PAE).  A second (untrained) set of 

animals was exposed to all of the same conditions as the trained animals except for delivery of the 

unconditioned stimulus.  Approximately 24 hours later, their freezing during the 40 seconds after initiation 

of the 10 second tone was recorded, similar to the trained animals.  Two-way ANOVA indicated a 

significant main effect of training (F[1,25]=186.3, p0.001) and prenatal exposure (F[1,25]=4.670, 

p0.05), as well as an interaction of these factors (F[1,25]=4.878, p0.05).  Post hoc Student’s t-test with 

Bonferroni correction revealed no significant difference between the untrained SAC and untrained PAE 

groups but a significant difference between the SAC and PAE animals that had undergone trace 

conditioning: t[13]=3.141, p<0.01. 

significant main effect of training (F[1,25]=186.3, p0.001) and prenatal exposure 

(F[1,25]=4.670, p0.05), as well as an interaction of these factors (F[1,25]=4.878, 

p0.05).  Post hoc analysis using a Student’s t-test with Bonferroni correction revealed a 

significant deficit in freezing in the trace-conditioned PAE animals compared to control 

animals (t[13]=3.141, p0.01), but no difference between PAE and SAC offspring in the 

untrained group. 

4.3.8 Radial Arm Maze 

Since previous studies have demonstrated deficits in the dentate gyrus in PAE 

offspring (Sutherland et al., 1997; Samudio-Ruiz et al., 2009; Varaschin et al., 2010), we 
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assessed dentate gyrus-dependent behavior in our PAE model.  A recent study developed 

a delayed non-matching to place RAM task that is dentate gyrus-dependent (Clelland et 

al., 2009).  Mice were tested for their ability to distinguish between two spatially 

separated locations, one of which was recently visited (the sample arm) and a second (the 

choice arm) which was previously unavailable, in an eight-way radial arm maze.  Two-

way ANOVA indicated a significant interaction of prenatal treatment and arm separation 

(F[1,20]=5.924, p0.05).  Post-hoc Student’s t-test indicated that PAE offspring made 

significantly fewer correct arm entries in the dentate gyrus-dependent form of the task, 

Sep 2 (SAC 59.00 ± 3.18%, PAE 48.67 ± 2.86%; t[10]=2.415, p0.05; Fig. 7), but no 

difference in performance (correct arm entries) for Sep 4 (SAC 48.83  3.34%, PAE 

54.33 ± 3.58%; t[10]=1.123, n.s.; Fig. 7), which does not require a functional dentate 

gyrus (Clelland et al., 2009). 

 

 

Figure 4.7. Effect of prenatal ethanol exposure paradigm on a delayed non-matching to place radial 

arm maze (RAM) task   

Adult male saccharin control (SAC) and prenatal alcohol exposure (PAE) mice were trained in a RAM 

paradigm as described in the Methods and Materials section.  The number of correct arm entries for each 

trial per day across three days were determined and expressed as a percentage (n=6).  Two-way ANOVA 

indicated a significant interaction between prenatal treatment and separation (F[1,20]=5.924, p0.05), and a 
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post-hoc Student’s t-test indicated a significant difference in correct arm entries for Sep 2 (t[10]=2.415, 

p0.05), but not for Sep 4, between SAC and PAE animals. 

 

4.4 Discussion 

Prenatal exposure to alcohol is estimated to affect up to 5% of children born in the 

United States (May et al., 2009).  Animal models are needed to help characterize the 

effects of prenatal ethanol exposure.  We utilized a chronic, PAE paradigm, in which 

dams had access to a saccharin-sweetened 10% ethanol solution for four hours a day prior 

to and throughout the gestational period, to characterize the effects of PAE on 

hippocampal-dependent learning and memory.  The model produced consistent drinking 

levels, averaging 7.17 ± 0.17 g ethanol/kg body weight/day, with BECs reaching 68.54  

9.24 mg/dL after 2 hrs of drinking and 88.32 ± 11.55 mg/dL after 4 hrs.  The model 

allowed us to reach relevant BECs, with no apparent sign of malnutrition.  We found no 

significant difference in either food or water consumption between dams offered 

saccharin-sweetened ethanol and dams offered saccharin-sweetened water.  In addition, 

there was no significant difference in the overall weight gain of dams or in litter size, 

indicating that malnutrition is not a factor in our model.  The limited access model 

yielded less variability in daily drinking than we previously observed (Caldwell et al., 

2008) using a continuous access model: C57BL/6J dams given 22-hours / day access 

consumed 9.55 + 2.57 g ethanol / kg body weight / day.  Although the ethanol intake of 

the dams was significantly correlated with the BECs reached after 2 hours and 4 hours of 

drinking, inspection of the data shows that there is sufficient variability to necessitate 

measurements of BECs as the model is employed in the future. 
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 A confound in some PAE paradigms is that continued drinking during the 

postnatal period, or withdrawal symptoms during this period, may interfere with maternal 

care, leading to alterations in the offspring not directly due to PAE (Liu et al., 2000).  

However, we found no difference in pup weight (PD 7, PD 14, or at weaning), in pup 

retrieval times, or in time spent on the nest, indicating that tapering the nursing mothers 

off of the ethanol solution had minimal impact on maternal care. 

A recent paper (Boehm et al., 2008) developed a similar model in C57Bl/6J mice, 

offering a 20% unsweetened ethanol solution for two hours a day, three hours into the 

dark cycle during pregnancy.  Although there are some similarities, our model has key 

differences.  We chose a 10% solution, rather than the 20% solution used by Boehm et al. 

(2008), in order to a) achieve moderate ethanol BECs in the dams and b) avoid 

malnutrition that may accompany higher doses of ethanol.  By reducing the ethanol 

concentration to 10%, we found lower BECs than Boehm and colleagues (88.32 ± 11.55 

mg/dL after 4 hrs drinking vs. approximately 130-170 mg/dL after 2 hrs drinking).  In 

addition, malnutrition may be a confound in the Boehm et al. (2008) paper, since the 

model yielded a decrease in pup weight at PD 21, which we did not find at a similar time 

point (PD 23).  Although other studies have shown decreases in pup weight, the lack of 

an impact on pup weight in our model may be due both to similar caloric intake between 

our control dams and our ethanol dams and to gradually reducing ethanol consumption 

after birth in the dams. 

 Boehm et al (2008) did not examine the effect of PAE on hippocampal-dependent 

learning and memory.  The hippocampus is especially vulnerable to the effects of PAE, 

and previous studies have shown that prenatal ethanol-exposed offspring exhibit deficits 
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in spatial tasks, similar to those seen in animals with hippocampal lesions (Berman and 

Hannigan, 2000).  In our model, we observed behavioral deficits in PAE animals in a 

contextual delay fear conditioning task, which is hippocampal-dependent (McEchron et 

al., 1998; Quinn et al., 2002; Weitemier and Ryabinin, 2004).  Prenatal ethanol-exposed 

offspring exhibited a decrease in the time spent freezing during the test period, when 

placed back into the training context, indicating a failure to learn the association between 

the context and the US shock.  An important consideration in using an aversive 

conditioning paradigm to assess learning and memory deficits in PAE animals is the 

influence of pain perception on fear-conditioned learning, as studies have shown that 

animals prenatally exposed to alcohol exhibit hyperalgesia and increased analgesic 

response to morphine (Markel et al., 1986; Nelson et al., 1986).  Young and Fanselow 

(1992) have described a negative-feedback model involving opioid-dependent analgesia 

that mediates, in part, the relationships between the perception of the intensity of a 

nociceptive US and the formation of the US-CS association.  This mechanism is observed 

under conditions of low-to-moderate US intensity and becomes most apparent following 

more than one training session.  We believe that the contribution of the feedback 

mechanism to conditioning in our animals would be minimal under the conditions that we 

used (moderate-to-high shock intensity and a single training session).  In contrast to the 

study of Young and Fanselow (1992), Lehner et al. (2010) have shown that reactivity to 

the US foot shock is not correlated with conditioned responding (freezing) in the training 

context.  Thus, our finding of reduced freezing upon return to the training context is 

likely to be due to learning and/or memory deficits in PAE offspring, rather than altered 

pain perception or analgesic responses.  The identification of a learning / memory deficit 
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in adult offspring demonstrates that our model produces learning and memory deficits 

that persist into adulthood, similar to FASD.  

 In addition to deficits in delay fear conditioning, studies in rats have shown a 

deficit in trace-conditioned learning and memory in animals exposed to alcohol 

prenatally (Wagner and Hunt, 2006; Hunt et al., 2009).  In trace conditioning, an interval 

of time between the CS and the US creates a temporally non-contiguous relationship 

between the two stimuli.  Learning the relationship between the CS and the US requires 

the hippocampus (McEchron et al., 1998; Quinn et al., 2002; Weitemier and Ryabinin, 

2003, 2004).  We found a deficit in freezing to the CS tone in prenatally-exposed mice as 

compared to saccharin controls, which appeared to be entirely dependent on learning the 

association between the CS and the US, since freezing to the CS tone in untrained 

animals was not different between the two groups.  This novel result demonstrates that 

the PAE mouse model exhibits a deficit in learning and memory in the hippocampal-

dependent trace conditioning task. 

 Recently, a study showed that irradiation to the dentate gyrus, which ablated 

neurogenesis, impaired performance in the Separation 2, but not Separation 4, version of 

the RAM, thus implicating the dentate gyrus in the former task (Clelland et al., 2009).  

Although several studies have examined the effects of PAE on performance in other 

versions of the RAM task (Reyes et al., 1989; Stone et al., 1996; Sluyter et al., 2005), to 

our knowledge, no one has demonstrated a behavioral deficit in PAE offspring directly 

attributed to the dentate gyrus; we therefore decided to examine the effects of PAE on 

performance in this modified RAM.  We found that PAE offspring were selectively 

impaired in the Separation 2 version of the RAM, where the sample and choice arms are 
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separated by 90
o
, with no apparent deficits in the Separation 4 task, where the sample and 

choice arm are 180
o
 apart and an intact dentate gyrus function is not required.  These 

results indicate that dentate gyrus function is impaired in PAE offspring in this model.  It 

is believed that the dentate gyrus is important in spatial learning, especially more difficult 

pattern separations (Acsady and Kali, 2007; Hsu, 2007; Kesner, 2007; Leutgeb et al., 

2007), and is also of interest because it is one of the two major sites of neurogenesis in 

the adult brain (Parent, 2007; Deng et al., 2010a).  Studies examining the effects of PAE 

on the dentate gyrus have shown deficits in long-term potentiation (LTP), an 

electrophysiological model of the synaptic changes that underlie learning and memory, in 

prenatally-exposed rodents (Sutherland et al., 1997; Christie et al., 2005; Varaschin et al., 

2010), impaired survival of newly generated dentate granule neurons in response to an 

enriched environment in adult mice (Choi et al., 2005), and decreased NMDA receptor-

dependent activation of mitogen-activated protein kinase/extracellular signal regulated 

kinase 1/2 (ERK1/2) in the adult mouse dentate gyrus (Samudio-Ruiz et al., 2009).  ERK 

activation has been shown to be necessary in learning tasks (Blum et al., 1999; Selcher et 

al., 1999), and alterations in adult neurogenesis in the dentate gyrus have been shown to 

affect performance in pattern separation tasks (Clelland et al., 2009; Sahay et al., 2011).  

Our findings provide a connection between dentate gyrus-specific biochemical and 

electrophysiological findings (Sutherland et al., 1997; Samudio-Ruiz et al., 2009; 

Varaschin et al., 2010) and dentate gyrus-specific behavioral deficits in PAE. 

Although the paradigm that we detail appears to be a useful tool to study the 

effects of PAE, there is an important caveat that needs to be acknowledged.  Studies have 

shown that the timing during gestation of PAE, as well as the chronicity of exposure, 
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influences the severity the damage that is produced (Goodlett and Johnson, 1997; Sood et 

al., 2001; Mooney and Miller, 2009).  Because the gestational period in mice is the 

equivalent of the first and second trimesters in humans, our model, by primarily targeting 

these two trimesters combined with reduced exposure during the initial half of the third 

trimester equivalent postnatally through breast milk, does not fully mimic PAE occurring 

throughout pregnancy in humans  However, a recent study indicated that, from a cohort 

of about 95,000 women, most reported drinking in the first and second trimesters, with 

the levels of drinking, and particularly binge drinking (defined as more than 5 drinks in 

one sitting), decreasing greatly by the third trimester (Muhuri and Gfroerer, 2009).  

Therefore, the paradigm that we employed does model the most common pattern of PAE 

occurring in human populations. 

In this study, we have described and characterized a mouse model of PAE.  Dams 

exhibited moderate ethanol consumption during a 4hr. ethanol exposure period, achieving 

pharmacologically relevant BECs.  This pattern of consumption produced learning 

deficits associated with hippocampal disruption in the offspring without any apparent 

influences from other confounds, such as malnutrition or alterations in maternal care.  

This model will facilitate the study of PAE, particularly in examining the preclinical 

efficacy of potential treatments that could ameliorate the long-lasting alterations in 

hippocampal function that are associated with FASD. 
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Abstract 

Although it is well documented that heavy alcohol consumption during pregnancy 

impairs brain development, it is still controversial whether moderate alcohol consumption 

produces significant effects.  Using a limited access, voluntary drinking paradigm, our 

laboratory recently demonstrated that moderate prenatal alcohol exposure (MPAE) 

results in long-lasting deficits in dentate gyrus-dependent learning and memory in adult 

offspring.  Here, we identified a novel mechanism that may underlie this effect of MPAE.  

We found that MPAE mice exhibit deficits in GluN2B-containing N-methyl-D-aspartate 

receptor (NMDAR)-dependent long-term potentiation (LTP) in the dentate gyrus, with an 

associated reduced contribution of GluN2B-containing receptors to NMDAR-dependent 

field recordings.  Using semi-quantitative immunoblotting techniques to characterize the 

levels and subcellular distribution of NMDAR subunits in the dentate gyrus, we found 

that the levels of C2´-containing GluN1 and GluN3A were increased in the synaptic 

membrane, while levels of GluN2B were decreased, in MPAE mice. These data suggest 

that MPAE results in profound alterations in the subunit composition of synaptic 

NMDARs, leading to impaired NMDAR-dependent LTP in the dentate gyrus. 
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5.1 Introduction 

The range of physical, cognitive, behavioral, and social dysfunctions that are 

associated with prenatal alcohol exposure (PAE) are collectively termed fetal alcohol 

spectrum disorders (FASDs), which have an estimated prevalence as high as 5% 

(Streissguth and O'Malley, 2000; May et al., 2009).  The prevalence of FASDs is high, as 

many women and health care professionals erroneously believe that it is safe to drink in 

moderation during pregnancy (Valenzuela et al., 2012).  However, a large body of 

experimental evidence suggests that the developing brain can be significantly altered by 

moderate PAE (MPAE) (Valenzuela et al., 2012).  Notably, studies suggest that MPAE 

significantly impairs hippocampal-dependent learning and memory (Savage et al., 2002; 

Brady et al., 2011).  Currently, there are no effective treatments for MPAE-induced 

learning and memory deficits; this is a consequence of our limited understanding of the 

mechanisms responsible for these effects of MPAE.  The dentate gyrus (DG), the primary 

site of efferent inputs into the hippocampus, has been shown to be an important target of 

MPAE (Valenzuela et al., 2012).  We recently showed that MPAE produces deficits in a 

DG-dependent delayed non-match to place task in adult offspring (Brady et al., 2011).  

We hypothesized that this could be a consequence of alterations in synaptic plasticity in 

the DG secondary to impairments in the function of N-methyl-D-aspartate receptors 

(NMDARs), which play a central role in DG synaptic plasticity and have been shown to 

be affected by MPAE  (Costa et al., 2000; Malenka and Bear, 2004).  Results of slice 

electrophysiological and biochemical techniques support this hypothesis, indicating that 

MPAE significantly impairs DG LTP, an effect that could be caused by changes in the 

subunit composition of synaptic NMDARs. 
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5.2  Materials and Methods 

5.2.1 Prenatal alcohol exposure paradigm 

All of the procedures used in the current studies were approved by the University 

of New Mexico Health Sciences Center Institutional Animal Care and Use Committee. 

 C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) were maintained on a 

reverse 12-hour dark/12-hour light schedule (lights on at 20:00 hours) in group-housed 

cages.  The MPAE paradigm has been previously described (Brady et al., 2011).  All 

measurements were conducted on adult (2-5 months of age) offspring.  For the MPAE 

paradigm, prior to and throughout gestation, dams voluntarily consumed either 0.066% 

(w/v) saccharin (SAC; Sigma-Aldrich, St. Louis, MO) or a 10% (w/v) ethanol (EtOH; 

DLI, King of Prussia, PA) solution sweetened with 0.066% (w/v) SAC for four hours 

(from 10:00 to 14:00 hours).   

5.2.2 Electrophysiological Recordings 

SAC and MPAE offspring were anesthetized with 250mg ketamine/kg body 

weight and coronal brain slices (400 m) were prepared, as previously described 

(Samudio-Ruiz et al., 2009)  Slices were allowed to recover in artificial cerebrospinal 

fluid (ACSF), containing (in mM) 119 NaCl, 4 KCl, 1.5 MgSO4, 2.5 CaCl2, 26.2 

NaHCO3, 1 NaH2PO4, and 11 glucose, equilibrated with 95% O2/5% CO2 at  28-30C for 

at least 90 min.  When indicated, ACSF containing low magnesium (0.1 mM MgSO4) 

was used.  Extracellular recordings from the medial perforant path (MPP) of the DG were 

made in slices maintained at 28-30C perfused at 3.6 mL/min using an Axopatch 200B 

amplifier (Molecular Devices, Sunnyvale, CA).  MPP recordings were confirmed by the 



 68 

observation of paired pulse depression in ionotropic receptor-dependent fEPSP 

recordings.  Stimulation intensity was set to elicit 40% of the maximal response based on 

input/output curves.  Stimulation duration was 75 s and stimuli were delivered at 0.033 

Hz, except when indicated.  All recordings were done in the presence of 50 M 

picrotoxin (Tocris, Ellisville, MO). 

 For NMDAR-mediated fEPSPs, recordings were done in the presence of low 

Mg
2+

, 10 µM 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide 

(NBQX) (Tocris), and 10 µM glycine (Bio-Rad, Hercules, CA).  To determine GluN2B 

contribution to NMDAR-mediated fEPSPs, a 10 min baseline of NMDAR-mediated 

fEPSPs was recorded, and 10 M ifenprodil (Tocris) was applied for 10 min and washed 

out.  For LTP, recordings were performed as described previously (Malleret et al., 2010).  

Briefly, after a 10 min stable baseline was recorded in normal ACSF, four trains of theta 

burst stimulation (TBS; nine bursts of four pulses at 100 Hz, 200 ms interburst interval, 5 

min intertrain interval) was delivered to the MPP.  Recordings following TBS were made 

for 45 minutes.  The fEPSP slope was measured as the response between the time points 

at which the response amplitude was 20 and 50% of the maximal amplitude for each 

fEPSP.  In SAC animals, TBS stimulation was also recorded in in the presence of 

NMDAR antagonists [10M MK-801 and 25M DL-2-amino-5-phosphonovaleric acid 

(AP-5); Tocris] or 10µM ifenprodil. 

5.2.3 Synaptic and extrasynaptic fraction preparation and immunoblotting of NMDA 

receptor subunits 

Mice were anesthetized with ketamine (250 mg/kg body weight).  The brain was 

rapidly removed and the DG was quickly microdissected and sonicated in 
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homogenization buffer (Samudio-Ruiz et al., 2010) prior to storage at -80C. Subcellular 

fractionation was performed as described by Goebel-Goody and colleagues (2009) with 

minor modifications as summarized in Fig 2A.   

Protein concentrations of the TxP and TxS fractions were determined using the 

Bio-Rad (Hercules, CA) DC Protein Assay Kit with bovine albumin serum as a standard.  

Approximately 80% of the total homogenate protein was accounted for in the various 

subcellular fractions (data not shown). 

Immunoblotting was performed as described in Samudio-Ruiz et al. (2010)  using 

one of the following antibodies: anti-NR2A rabbit polyclonal antibody (1:1000 synaptic, 

1:500 extrasynaptic, Phosphosolutions, Aurora, CO), anti-NR2B rabbit polyclonal 

antibody (1:1000 synaptic, 1:250 extrasynaptic, Phosphosolutions), anti-GluN1 C1, C2, 

or C2´ rabbit polyclonal antibody (1:500, a generous gift from Dr. Michael Browning), 

anti-NR3A rabbit polyclonal antibody (1:500, Santa Cruz Biotechnology Inc., Santa 

Cruz, CA), anti-PSD-95 rabbit polyclonal antibody (1:1000, Cell Signaling, Danvers, 

MA), anti--actin rabbit polyclonal antibody (1:2000, Cell Signaling) or anti-GABAAR 

4 rabbit polyclonal antibody (1:500, Santa Cruz Biotechnology, Inc.).  For each sample, 

the anti-NMDAR subunit immunoreactivity was normalized to either anti-PSD-95 or 

anti-β-actin immunoreactivity.  Optical density values were obtained using Image J 

(NIH).   

5.2.4 Sample collection and data analysis 

For electrophysiological recordings, male offspring were used, with only one 

animal used from a litter to eliminate litter effects.  For subcellular fractionation and 
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subsequent immunoblotting experiments, tissue from two males and two females from 

each litter were pooled, with the reported number of determination (n) designating one 

litter; no significant gender differences were noted.   

 Electrophysiological data were acquired and analyzed with pClamp9/10 

(Molecular Devices) and either GraphPad 4.0/5.0 (GraphPad software, San Diego, CA) 

or SPSS (SPSS Inc., Chicago, IL).  For the ifenprodil block experiment, the area under 

the curve was calculated for baseline and ifenprodil recordings, and the percentage 

change was calculated for each recording.  Electrophysiology data were analyzed by 

unpaired t-test (ifenprodil block experiments,), two-way ANOVA (input/output (I/O) 

curves), or repeated measures two-way ANOVA (LTP experiments).  To compare 

immunoreactivities across multiple gels, each gel contained both SAC and MPAE 

samples, and optical densities of all bands were normalized to the average optical density 

of the SAC samples on that gel (presented in figures).  Immunoblotting data were 

analyzed using a one sample t-test by comparing the data for the MPAE samples to a 

SAC population mean value of 1.  Data are presented as mean  SEM. 

5.3 Results 

We employed a limited access paradigm that we have shown to yield moderate 

alcohol intake in dams (Brady et al., 2011).  In the present study, animals were derived 

from litters born to dams having an average consumption of 6.89  1.27 g EtOH/kg body 

weight/day (n=18); blood ethanol concentrations measured in dams whose litters were 

not used for experiments were 90.5 11.61 mg/dL (n=11).  In agreement with our 

previous study, we found no significant differences between SAC and MPAE maternal 
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weight gain (maternal weight gain: SAC 9.4 ± 0.6 g, MPAE 10.0 ± 0.6 g, n.s.) or litter 

size: (SAC 7.1 ± 0.3 pups, MPAE 6.7 ± 0.3 pups, n.s). 

 Initial characterization of synaptic transmission in SAC and MPAE animals found 

no significant difference between SAC and MPAE input-output (I/O) curves for either 

ionotropic glutamatergic receptor-mediated fEPSPs (Two-way ANOVA, effect of 

treatment F[1, 60] = 0.0993, n.s., effect of input F[7, 60] = 16.53, p0.0001, interaction 

F[7, 60] = 0.3175, n.s.) or NMDAR-mediated fEPSPs (Two-way ANOVA, effect of 

treatment F[1, 72] = 2.248, n.s., effect of input F[8, 72] = 16.19, p0.0001, interaction 

F[8, 72] = 0.2677, n.s.), nor was a difference detected in ionotropic glutamatergic 

receptor-mediated fEPSP paired-pulse ratio between SAC and MPAE animals (SAC 0.95 

± 0.03, MPAE 0.90 ± 0.05, n.s; Figure A10, Appendix A.).   

We examined whether MPAE altered NMDAR-dependent LTP in the DG.  TBS 

elicited LTP in slices from the SAC group (Fig 1A).  We confirmed that this LTP was 

NMDAR-dependent by blocking it with 10µM MK-801 and 25µM AP-5 (repeated 

measures two-way ANOVA: effect of time F[36,360] = 2.489, p=0.0001; effect of 

treatment F[1,10] = 6.010, p0.05; interaction F[36, 360] = 3.174, p=0.0001; Fig 1B vs. 

Fig 1A).  We also found that ifenprodil, a GluN2B subunit-specific antagonist, impaired 

LTP induction (repeated measures two-way ANOVA effect of time F[36, 360] = 2.876, 

p=0.001, effect of treatment F[1,10] = 5.780, p0.05, interaction F[36, 360] = 2.987, 

p=0.0001), indicating that the TBS-elicited LTP was GluN2B subunit-dependent (Fig 1C 

vs. Fig 1A).  Finally, we examined LTP in SAC and MPAE animals; repeated measures 

ANOVA found a significant effect of time (F[36, 432] = 4.655, p=0.0001), treatment 
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(F[1, 12] = 5.365, p0.05), and an interaction (F[36, 432] = 2.754, p=0.0001; Fig 1D vs. 

Fig 1A), thus suggesting  that MPAE animals have GluN2B NMDAR-dependent LTP 

deficits. 

 

Figure 5.1Moderate prenatal alcohol exposure (MPAE) impairs N-methyl-D-aspartate receptor 

(NMDAR)-dependent long term potentiation (LTP) and reduces GluN2B-containing NMDAR 

contribution to fEPSPs in the dentate gyrus. 
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A-C.  LTP is elicited in the dentate gyrus in saccharin (SAC) mice (A.), and can be blocked using 10µM 

MK-801 and 25µM AP-5 (B.) and the GluN2B-specific antagonist ifenprodil (C.)  D.  LTP is impaired in 

MPAE mice.  E.  In the presence of ifenprodil, the change in area under the curve measured from 

NMDAR-dependent fEPSPs was significantly decreased in MPAE mice compared to SAC (n=7, *p0.05) 

 

 Having observed a deficit in GluN2B-dependent LTP, we assessed the 

contribution of GluN2B-containing NMDARs to basal synaptic transmission in SAC and 

MPAE mice by measuring NMDAR-mediated fEPSPs in the absence and presence of 

ifenprodil.  fEPSPs were blocked by 10 M AP-5, confirming that they were NMDAR-

dependent (Fig 1E).  The amount of the first fEPSP blocked by ifenprodil (determined by 

measuring area under the curve) was significantly decreased in MPAE compared to SAC 

animals (SAC 11.19 ±2.51%, MPAE 3.01 ±2.47%, t[12] = 2.326, p0.05; Fig 1E).  No 

change in paired pulse ratio, either between SAC and MPAE or before and after 

ifenprodil, was observed (SAC without ifenprodil 2.54 ± 0.36, SAC with ifenprodil 2.62 

± 0.28, MPAE without ifenprodil 2.34 ± 0.21, MPAE with ifenprodil 2.53 ± 0.30). 

 We next determined whether the observed deficit in NMDAR-dependent synaptic 

plasticity was associated with alterations in NMDAR levels and/or synaptic localization 

in the DG.  Toward this goal, subcellular fractions enriched in synaptic and extrasynaptic 

protein markers were prepared from control DG tissue.  Postsynaptic density-protein 95 

(PSD-95) was used as the synaptic fraction marker and the GABAAR 4 subunit was 

used as the extrasynaptic fraction marker (Chandra et al., 2006).  As shown in Fig 2B and 

2C, PSD-95 was found only in the synaptic fraction and GABAAR 4 was enriched in 

the extrasynaptic fraction, indicating appropriate subcellular fractionation.  Further 

evaluation found that PSD-95 and GABAAR 4 were found to be distributed similarly in 
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both the SAC and MPAE tissue (Fig 2D and 2E), demonstrating that MPAE does not 

lead to altered subcellular fractionation of these marker 

proteins.

 

Figure 5.2.  Method and characterization of subcellular fractionation technique. 

A.  Method used for obtaining synaptic and extrasynaptic fractions.  B-E.  Characterization of synaptic and 

extrasynaptic fractions in control (SAC) and moderate prenatal alcohol exposure (MPAE) tissue.  B – In 

control tissue, PSD-95 is enriched in the synaptic (TxP) fraction, present about 3-fold higher than in 

extrasynaptic (TxS) fraction (n=4).  C – In control tissue, GABAAR 4 subunit is enriched in the TxS 

fraction, present about 2-fold higher than in the TxP fraction (n=4).  D and E – In saccharin (SAC) vs. 

MPAE tissue, the level of PSD-95 in the TxP fraction (D) and GABAAR 4 in the TxS fraction (E), 

normalized to the amount present in total homogenate, is not different, indicating no alteration in 

fractionation. 
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The NMDAR is a tetramer composed of two obligatory GluN1 subunits and two 

modulatory GluN2 or GluN3 subunits (Prybylowski and Wenthold, 2004).  Eight splice 

variants of the GluN1 subunit exist, four of which arise from alternate splice sites in the 

C-terminus (GluN1-1:  C1 and C2 cassettes, GluN1-2:  C2 cassette, GluN1-3:  C1 and 

C2´ cassettes, GluN1-4:  C2´ cassette); these C-terminal variants influence NMDAR 

trafficking (Horak and Wenthold, 2009).  GluN2 subunits consist of four subtypes (A-D), 

which determine receptor kinetics and coupling to downstream signaling systems, while 

GluN3 subunits consist of two subtypes (A and B), which can convert the NMDAR into 

an excitatory glycine receptor (Smothers and Woodward, 2009).  NMDAR GluN1, 

GluN2A, GluN2B, and GluN3A subunit protein levels in the TxP synaptic fraction and 

the TxS extrasynaptic fraction from DG tissue were determined by semi-quantitative 

immunoblotting.  In initial studies, we found a significant increase in synaptic GluN1 

subunit levels in MPAE DG (MPAE 1.87 ± 0.19, one sample t-test vs. 1 t[4]=4.65, 

p<0.05), leading us to examine the expression of the different GluN1 C-terminal splice 

variants by determining the levels of the C-terminal cassettes.  We found an increase in 

C2´-containing GluN1 subunits (MPAE 1.48 ± 0.10; one sample t-test vs. 1 t[8] = 4.698, 

p0.01), with no change in C1- or C2-containing GluN1 subunits (n=9, n.s., Fig 3A).  

When we assessed the levels of the GluN2 subunits, we found that GluN2B subunit 

levels were decreased (MPAE 0.65 ± 0.06; one sample t-test vs. 1 t[6]=5.418, p0.01; 

Fig 3C) and GluN2A subunit levels were unchanged (n=6 SAC, 7 MPAE, ns; Fig 3B) in 

MPAE relative to SAC.  Given that there was an increase in C2´ -containing GluN1 

subunit expression with no associated increase in either GluN2A or GluN2B subunits, we 

examined GluN3A subunit levels in the synaptic fraction.  In MPAE animals, GluN3A 
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levels were found to be increased compared to SAC (MPAE 1.47 ± 0.18; one sample t-

test vs. 1 t[7]=2.5843, p0.05; Fig 3C).  We found no significant differences in the levels 

of GluN1, GluN2A, or GluN2B in the extrasynaptic fraction in MPAE animals compared 

to SAC (Fig A11, Appendix A).  Attempts to measure the expression of GluN3A 

expression in the extrasynaptic fraction were unsuccessful, presumably due to the very 

low, or absence of, expression of this subunit in this compartment. 

 

Figure 5.3.  Moderate prenatal alcohol exposure (MPAE) leads to alterations of N-methyl-D-

aspartate receptor (NMDAR) subunit levels in the synaptic fraction of the dentate gyrus. 

A.  C2´-containing GluN1 subunit levels are significantly increased in MPAE mice compared to saccharin 

(SAC; n=9, **p0.01), with no changes in C1- or C2-containing GluN1 subunits.  B.  GluN2A subunit 

levels are unchanged in MPAE mice compared to SAC.  C.  GluN2B subunit levels are significantly 

decreased in MPAE mice compared to SAC (n=7, *p0.05).  D.  GluN3A subunit levels are significantly 

increased in MPAE mice compared to SAC (n=7, *p0.05). 

5.4 Discussion 

We have shown that MPAE produces neurophysiological and neurochemical 

alterations in the adult mouse DG.  While MPAE did not affect basal transmission, it was 
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associated with impaired NMDAR-dependent LTP and decreased contribution of 

GluN2B-containing NMDARs to fEPSPs.  To our knowledge, although other studies 

have examined the effect of MPAE on LTP in the DG (Sutherland et al., 1997; Varaschin 

et al., 2010), none determined if observed deficits were NMDAR-dependent.  Using 

immunoblotting techniques, we found that GluN2B levels were decreased, while C2´-

containing GluN1 and GluN3A levels were increased, in an enriched synaptic fraction.   

The decrease in synaptic localization of GluN2B in MPAE animals, seen both in 

immunoblotting studies and in electrophysiological recordings, is likely to be a 

contributing factor to the LTP deficits, as previous research has implicated GluN2B as 

important for LTP expression in the DG (Vasuta et al., 2007).  Further, emerging research 

has implicated downstream signaling from GluN2B as being important for LTP.  While 

alterations to the GluN2B C-terminal tail disrupted LTP, conversions of the GluN2A C-

terminal tail to the GluN2B C-terminal tail restored LTP (Barria and Malinow, 2005; 

Foster et al., 2010).  In addition, disruption of GluN2B levels at the synapse, either 

through dissociation from PSD-95 (Gardoni et al., 2009) or through genetic manipulation 

(Brigman et al., 2010), impairs LTP.  A recent study found that early in development, 

switching the GluN2B subunit with the GluN2A subunit to restore NMDAR-mediated 

currents did not rescue GluN2B loss of function, primarily due to loss of signaling 

downstream of GluN2B (Wang et al., 2011).  A decrease in GluN2B receptor levels in 

MPAE animals may alter downstream signaling in these animals, leading to the observed 

LTP deficits.  Our earlier study (Samudio-Ruiz et al. 2009), demonstrating reduced 

NMDAR-dependent activation of extracellular signal-regulated kinase 1/2 in the DG of 

MPAE mice, supports this possibility, 
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Another mechanism by which the GluN2B deficit may affect LTP in MPAE 

animals is through its role in metaplasticity.  Several papers have indicated that the ratio 

of GluN2A to GluN2B may play a role in determining the threshold for LTP or LTD 

induction, with an increase in the GluN2A/GluN2B ratio resulting in an increase in the 

threshold for LTP induction (Xu et al., 2009; Lee et al., 2010).  In vivo studies examining 

the effects of MPAE on LTP in the DG have found that LTP is impaired in lower 

stimulus tetanization protocols, similar to our results, but is intact under high stimulus 

tetanization protocols (Varaschin et al., 2010).  Further examination of the 

immunoblotting shows that the GluN2A/GluN2B ratio in the synaptic fraction is 

significantly increased in MPAE animals compared to SAC controls (Fig A7, Appendix 

A), which may shift the threshold for LTP in these animals and, thus, account for the 

observed electrophysiological deficit.   

 The increases in GluN1 and GluN3A subunits may also affect LTP expression in 

MPAE animals.  The increase in synaptic C2´-containing GluN1 subunit levels, with no 

associated change in C1-containing subunits, suggests that the GluN1-4 splice variant, 

one of the two predominant splice variants in the hippocampus (Laurie and Seeburg, 

1994), is increased in MPAE mouse DG.  The GluN1-4 splice variant lacks the C1 

cassette, which contains two endoplasmic reticulum retention signals that impede forward 

trafficking, and contains the C2´ cassette, which has an enhancing effect on forward 

trafficking (Horak and Wenthold, 2009).  Thus, an increase in C2´-containing GluN1 

subunits may account for the observed increase in synaptic, total GluN1subunit levels.  

GluN3A subunits have been shown to preferentially traffic to the surface with GluN1-4 
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(Smothers and Woodward, 2009), potentially leading to the increase in synaptic GluN3A 

levels in these animals. 

Diheterotetrameric GluN1/GluN3A NMDARs are excitatory glycine receptors, 

generally considered to be impermeable to Ca
2+

.  Alterations in the levels of 

GluN1/GluN3A-containing NMDARs may modify the Ca
2+

 load in a cell after 

glutamatergic stimulation, having effects on downstream signaling of NMDARs.  

However, although GluN1/GluN3A receptors have been found to traffic to the surface in 

transfected Xenopus oocytes, GluN3A requires the presence of either GluN3B or GluN2 

to traffic to the surface in HEK293 cells (Low and Wee, 2010), indicating that 

GluN1/GluN3A diheterotetrameric receptors may not be present at the surface in 

mammalian cells.  Unfortunately, we were unable to immunoblot for GluN3B using 

commercially available antibodies in our system, and could not determine whether 

GluN3B levels were increased.  GluN3A incorporation into GluN1/GluN2-containing 

receptors would alter the function of the receptor by decreasing Ca
2+

 permeability and 

Mg
2+

 blockade (Perez-Otano et al., 2001).  GluN3A levels are high soon after birth, and 

quickly decrease during the first 21 days, corresponding to the time of synaptic 

maturation (Perez-Otano et al., 2001). Although the role of GluN3A in synaptic 

maturation and plasticity has not been fully examined, overexpression of GluN3A in the 

CA1 of the hippocampus into adulthood has been reported to limit synapse potentiation 

(Roberts et al., 2009), which is of note given that animals prenatally exposed to ethanol 

have synaptic plasticity impairments.   

 Although other factors may be involved in the LTP deficits seen in adult MPAE 

animals, our study implicates MPAE alterations in NMDAR subunit composition at the 
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synaptic membrane as a contributor to LTP deficits.  Given the role that NMDARs play 

in LTP, it is likely that the GluN2B deficit and/or the C2´-containing GluN1 and GluN3A 

increases contribute to the LTP deficits seen in MPAE animals, and may be an avenue of 

exploration for therapeutic intervention. 
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6. General Discussion 

6.1 Summary of Findings 

The research detailed in this dissertation was conducted in order to test the 

hypothesis that a limited access, PAE model produces dentate gyrus-specific learning 

deficits that are associated with NMDA receptor-dependent LTP deficits and NMDAR 

subunit composition alterations..  This hypothesis was based on literature indicating that 

the dentate gyrus is a target for the damaging effects of PAE, exhibiting LTP deficits in 

vivo and NMDA receptor-dependent ERK 1/2 activation impairment in vitro (Sutherland 

et al., 1997; Samudio-Ruiz et al., 2009; Titterness and Christie, 2010; Varaschin et al., 

2010). 

 The first portion of the hypothesis states that a limited access PAE model 

produces dentate gyrus-specific learning deficits.  Although neurochemical and 

neurophysiological alterations in the dentate gyrus had been observed in other PAE 

models, a dentate gyrus-dependent behavioral correlate had not been reported.  In order 

to test this hypothesis, a limited access model of PAE was developed and characterized.  

The limited access model was chosen in order to more closely mimic human behavior 

(discussed further below) than the voluntary, two-bottle choice paradigm previously used 

in the lab.  The studies detailed in Chapter 4 show that four hour access to a 10% (w/v) 

ethanol solution sweetened with 0.066% (w/v) saccharin yielded dams with a mean daily 

ethanol intake of 7.17 ± 0.17 g ethanol/kg body weight/day and an average BEC of 88.3 

± 11.5 mg/dL at the end of the four hour exposure.  Compared to SAC, there were no 

differences in gross measures of offspring health (e.g., litter size) and no alterations in 

measures of maternal care (e.g., pup retrieval time), which can confound interpretation of 
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results obtained in the offspring.  Differences between SAC and PAE adult mice were 

found in contextual and trace fear conditioning, two hippocampal-dependent learning 

tasks.  These behavioral deficits have been observed in other PAE models with similar 

BECs (Weeber et al., 2001; Allan et al., 2003; Hunt et al., 2009), and correlate with 

hippocampal-dependent deficits seen in human studies with moderate BECs (Willford et 

al., 2004).  Additionally, in a dentate gyrus-dependent, delayed non-match to place 

(DNMP) radial arm maze (RAM) task (Clelland et al., 2009), performance impairment 

was observed in PAE offspring in the limited access model, implicating PAE as having a 

deleterious effect on the dentate gyrus. 

The second portion of the hypothesis states that NMDAR-dependent LTP in the 

dentate gyrus is impaired in PAE mice compared to controls.  Although other studies 

have shown that LTP is impaired in PAE animals, to my knowledge none have provided 

evidence that links this deficit to NMDAR functioning.  Initially, synaptic transmission 

was examined in SAC and PAE animals using in vitro slice electrophysiology.  Analyses 

of fEPSPs revealed that there were no alterations in glutamate ionotropic receptor-

dependent input/output (I/O) curves, indicating no overall change in glutamate ionotropic 

receptor levels and/or function, nor was there any change in NMDAR-dependent I/O 

curves, indicating no overall change in NMDAR levels and/or function.  LTP was then 

elicited using a sub-maximal theta-burst stimulation (TBS), which has been shown to 

produce moderate LTP in the dentate gyrus in vitro (Malleret et al., 2010).  The use of 

sub-maximal LTP was chosen because previous in vivo studies had shown that moderate 

PAE leads to deficits in LTP elicited by sub-maximal, but not maximal, stimulation 

(Sutherland et al., 1997; Varaschin et al., 2010).  Application of AP-5 and MK-801 
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prevented LTP in control animals, confirming that LTP was NMDAR-dependent.  In 

addition, ifenprodil blocked LTP induction, indicating that the GluN2B subunit was 

important for this LTP paradigm in the dentate gyrus.  Importantly, LTP induction was 

impaired in PAE mice compared to SAC mice.  Ifenprodil blocked a lower percentage of 

NMDAR-dependent fEPSPs in PAE animals compared to controls, indicating that fewer 

NMDARs present at the synapse contained the GluN2B subunit.  This is consistent with 

the observed deficit in LTP which, as noted above, was shown to be GluN2B-dependent.   

 The third portion of the hypothesis states that PAE alters NMDA receptor subunit 

composition in the dentate gyrus.  To examine this question, NMDA receptor subunit 

levels were measured in subcellular fractions prepared from microdissected dentate gyrus 

tissue from control and PAE animals.  A previous paper showed that synaptic and 

extrasynaptic fractions can be isolated from a synaptosomal membrane preparation based 

on solubility in a nonionic detergent, such as Triton X-100 (Goebel-Goody et al., 2009).  

As shown in chapter 5, I was able to confirm this separation by immunoblotting each 

fraction for a protein marker characteristic of that fraction: PSD-95 for the synaptic 

fraction, GABAA receptor α4 subunit for the extrasynaptic fraction.  Further, I 

demonstrated that PAE does not alter the distribution of these markers after subcellular 

fractionation.  Although no differences in NMDAR subunit levels in the extrasynaptic 

fraction were found in the present studies, it was determined that, in the synaptic fraction, 

there was an increase in the levels of the C2´-containing GluN1 and the GluN3A 

subunits, with a decrease in GluN2B subunit levels.   
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6.2 Interpretation and Significance of Results 

6.2.1 Significance of PAE model 

As mentioned in the Introduction, the development of an animal model for PAE 

must try to mimic human behavior as much as possible without introducing confounds 

that may interfere with the results and analyses of the results.  Early PAE studies focused 

on fetal alcohol syndrome (FAS), a medical diagnosis in which there is a confirmation of 

maternal alcohol consumption and the child exhibits: 1) evidence of a characteristic 

pattern of minor facial anomalies, 2) evidence of prenatal and/or postnatal growth 

retardation, and 3) evidence of deficient brain growth (May et al., 2009).  Although FAS 

is the most severe result of PAE, it may not be the most common.  Children who have 

less severe manifestations of FASD are often less likely to be diagnosed and are rarely 

presented to those capable of making such diagnoses (May et al., 2009).  As a 

consequence, these less severe cases are often estimated, based on reports of maternal 

drinking.  A recent report of pregnant women showed that use of any alcohol during 

pregnancy is about 12% (Floyd et al., 2009), with the prevalence of FASD estimated as 

high as 5% of school children (May et al., 2009).  Another problem encountered in 

human studies examining the effects of moderate ethanol exposure is that it is difficult to 

correlate the levels of ethanol intake with behavioral effects.  Some studies have 

suggested that low amounts of maternal ethanol intake result in no discernible deficits in 

offspring (O'Leary et al., 2010), while maternal ethanol intake as low as 1 drink per week 

has been implicated in adverse child outcomes (Sood et al., 2001). 

One of the goals of the present studies was to develop a PAE paradigm that 

modeled low-to-moderate ethanol intake, resulting in moderate BECs, and yielded 
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offspring exhibiting hippocampal-dependent learning deficits, as seen in human offspring 

exposed to moderate levels of ethanol in utero (Willford et al., 2004; Mattson et al., 

2011).  One of the initial considerations was to determine the most appropriate timing 

and route of ethanol administration.  Some studies have linked first trimester exposure to 

ethanol in humans with learning and memory deficits (Richardson et al., 2002b; Willford 

et al., 2004), indicating that this may be a time to target intervention for treating PAE.  

Interestingly, at this time period, the hippocampus, including the dentate gyrus, has not 

begun formation, indicating that dysregulation of these regions originates before 

migration of granule cells into this region.  As mentioned before, the gestational period of 

the rodent, in our case the mouse, is the equivalent of the human first and second 

trimesters, with the early postnatal period of the mouse being the third trimester 

equivalent (Gil-Mohapel et al., 2010).  Thus, while human maternal ethanol consumption 

may continue throughout the entire gestational period, this is difficult to model in 

rodents, because of this fundamental difference in the rodent third trimester equivalent 

compared to the third trimester in humans- i.e., in rodents it occurs postpartum, whereas 

in humans it occurs in utero.  Consequently, it was decided to limit ethanol exposure to 

gestational stages and model first and second trimester exposure in humans.  This 

decision is supported by a recent study showing that, of a cohort of about 95,000 women, 

most reported drinking in the first and second trimesters, with the levels of drinking 

decreasing greatly by the third trimester (Muhuri and Gfroerer, 2009) 

Another factor to be considered was the mode of administration in the model.  

Previous models used various methods of administration, including liquid diet, 

intragastric intubation or gavage, and vapor inhalation.  However, each model has its own 
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pitfalls (reviewed in Gil-Mohapel et al., 2010).  Although liquid diets are effective for 

self-administration, mimicking the normal route of administration in humans, there may 

be large variations in consumption between mice, they may produce alterations in 

maternal behaviors, and they may elicit stress responses which may confound results.  

Gavage, while ensuring similar levels of consumption, elicits high BECs and significant 

stress responses that question its utility for studying moderate exposures, which can be 

achieved with less stressful paradigms.  Although vapor inhalation may not elicit as great 

of a stress response as gavage, it does not mimic the oral route of administration used by 

humans.  A recent model, previously used in our lab, used a voluntary, two-bottle choice 

paradigm where the dams were offered both water and either a 10% (w/v) ethanol 

solution (5% w/v in later studies) sweetened with 0.066% (w/v) saccharin or the 0.066% 

(w/v) saccharin solution alone (Allan et al., 2003).  Although this was an improvement 

over previous models, my studies sought to update this paradigm to better model human 

behavior.  First, the solutions were always available in the previously used model, thus 

allowing the dam to drink at any time during the day.  Although this may give consistent 

BECs throughout the day, it may not mimic human behavior, where pregnant mothers 

consuming low-to-moderate levels of ethanol do so in a shorter time period:  a recent 

study found that 38.8% of women who were pregnant in the last year reported consuming 

fewer than 4 drinks in one sitting (Caetano et al., 2006).  It was decided, instead, to offer 

the ethanol solution [10% (w/v)] or saccharin control over a four hour time period during 

the dark cycle.  Indeed, the previous model found that most of the ethanol consumption 

occurred during the dark period (Allan et al., 2003).  By switching to a limited access 

paradigm, similar BECs [78 mg/dL with 5% (w/v) ethanol (Caldwell et al., 2008) vs. 88 
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mg/dL in the limited access model] were achieved, while more appropriately modeling 

human drinking behavior.  In addition, there was greater variability in drinking among 

dams in the previous model compared to the limited access model [9.55 ±2.57 g EtOH/kg 

body weight/day (Caldwell et al., 2008) vs. 7.17 ± 0.17 g EtOH/kg body weight/day], 

which should allow for less variability in offspring measures. 

Similar to hippocampal-dependent learning and memory deficits that have been 

shown to be produced by other models of PAE, the offspring of mothers who had limited 

access to alcohol prior to and throughout gestation exhibited deficits in hippocampal-

dependent contextual and trace fear conditioning.  This correlates well with the 

hippocampal-dependent spatial learning deficits that have been recorded in children that 

were exposed to alcohol in utero (discussed above), demonstrating the face validity of the 

model.  One of the more interesting aspects of the model, however, is the demonstration 

of PAE deficits in the DNMP RAM task, which has been shown to be dentate gyrus-

dependent (Clelland et al., 2009).  Although this was not entirely unsurprising, based on 

other neurochemical and electrophysiological data implicating this region in PAE effects, 

to my knowledge there is no evidence in the literature indicating dentate gyrus-specific 

effects of PAE in humans.  Although imaging data has shown volume reductions in the 

hippocampal formation (Chen et al., 2003), and behavioral studies have shown 

hippocampal-dependent deficits, none of these studies has attempted to isolate the dentate 

gyrus as a precise target of PAE in humans.  The role of pattern separation as a dentate 

gyrus-dependent task was based primarily on computer models and animal studies, 

(Treves et al., 2008), limiting studies on the effects of PAE on pattern separation in 

humans.  However, a recent study set out to examine whether a pattern separation task 
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was correlated with activity of the dentate gyrus/CA3 pathway using fMRI (Bakker et al., 

2008).  The researchers found a strong bias toward pattern separation was observed in the 

dentate gyrus/CA3, lending support to the dentate gyrus’ role in pattern separation in 

humans.  In addition, humans with mild cognitive impairment and who scored poorly on 

pattern separation tasks exhibited altered BOLD fMRI signals in the dentate gyrus/CA3 

region during those tasks (Yassa et al., 2010).  Based on the findings in the mouse FASD 

model and these human studies, I predict that children with FASD may exhibit deficits in 

pattern separation.  The deficit in pattern separation seen in the mouse PAE model may 

also be the behavioral correlate of the LTP and ERK1/2 deficits seen in the dentate gyrus 

in other PAE models (Sutherland et al., 1997; Samudio-Ruiz et al., 2009; Varaschin et al., 

2010), further strengthening the need to examine this region of the brain. 

6.2.2 Significance of the NMDA receptor subunit alterations and LTP deficit 

The alterations in synaptic membrane NMDAR subunit composition combined 

with the associated LTP deficits may help to explain the learning and memory deficits 

seen in the PAE mouse model.  The NMDAR-dependent I/O curves were unchanged in 

PAE mice compared to SAC controls, indicating no gross alterations in NMDAR number 

and/or function.  However, there were alterations in NMDAR subunit expression in 

immunoblotting experiments, specifically increases in C2´-containing GluN1 subunits 

and GluN3A subunits, with a corresponding decrease in GluN2B subunit levels.  

NMDAR-dependent fEPSPs also exhibited a decreased contribution of GluN2B subunits 

in PAE mice.  Together, these alterations in subunit expression, with no change in 

NMDAR-dependent I/O curves, suggest a shift in subunit composition, rather than a shift 



 89 

in overall NMDAR levels.  It is this shift in subunit composition that may be responsible 

for the LTP deficits seen in PAE animals (summarized in Figure 6A).   
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6.2.2.1 Changes seen in the GluN1 splice variants and GluN3A subunit levels in the 

synaptic membrane 

Although the increases seen in the levels of C2´-containing GluN1 subunits, as 

well as the increase in GluN3A subunits, were surprising, the current literature supports a 

potential role in producing LTP deficits in PAE mice.  Studies have shown that GluN3A 

surface expression is increased with expression of C2´-containing GluN1 subunits 

(Smothers and Woodward, 2009), and so it is likely that these two subunits are 

complexed together at the synaptic membrane in the dentate gyrus, although their precise 

location (i.e., inner, middle or outer molecular layer or in the hilus), or whether they form 

diheterotetramers or triheterotetramers with GluN2 subunits, cannot be determined from 

these studies.  Predicting the consequence of increased surface expression of GluN3A-

containing NMDARS is somewhat limited, since the exact role of these receptors is not 

entirely clear.  Studies in heterologous systems have shown that diheterotetramers 

(consisting of GluN1 and GluN3A) are excitatory glycine receptors, exhibiting low Mg
2+

 

sensitivity and little Ca
2+

 permeability (Low and Wee, 2010), which would indicate that 

their presence may alter the signaling profile.  A shift from GluN2- to GluN3-containing 

NMDARs, therefore, would lead to a decreased Ca
2+

 load, but because these receptors 

remain permeable to Na
+
 and K

+
, they contribute to the excitability of the cell.  The low 

Mg
2+

 block would also allow these receptors to activate upon release of glycine from the 

presynaptic terminal without prior membrane depolarization.  Consequently, these 

receptors would no longer act as a coincidence detector, as other non-GluN3-containing 

NMDARs would, but may contribute to overall depolarization of the membrane, similar 

to AMPARs, although perhaps not a significant amount, depending on the level of 
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receptor increase compared to AMPAR levels.  However, there are several reasons why 

these subunit increases may not lead to alterations in NMDAR fEPSPs in PAE animals.  

First, the measured Kd of rodent GluN3A NMDARs for glycine is 40nM, and therefore 

GluN3A is likely saturated by glycine in vivo (Yao and Mayer, 2006), which may mean it 

keeps the cell in a more depolarized state rather than responding to synaptic transmission 

(Henson et al., 2010)  Release of further glycine may then bind to the GluN1 subunit, 

which has been shown to increase desensitization and thus have an antagonistic effect on 

the receptor (Pachernegg et al., 2012).  In addition, and perhaps more importantly, 

although GluN1/GluN3A diheterotetrameric currents have been measured in Xenopus 

oocytes, there is controversy as to whether they exist endogenously. Studies have shown 

that GluN3A-dependent currents do not occur in HEK293 cell unless also co-transfected 

with GluN3B or GluN2 subunits, (Chatterton et al., 2002; Smothers and Woodward, 

2009), and studies examining excitatory glycine receptors endogenously have thus far 

failed to detect currents (Tong et al., 2008), indicating that mammalian cells may not 

express functional GluN1/GluN3A heterodimers.  However, a recent study, using 

electrophysiological recordings and Ca
2+

 imaging, detected the presence of GluN1/GluN3 

receptors in mature optic nerve myelin (Pina-Crespo et al., 2010).  This may indicate that 

the increase in GluN1 and GluN3A results in GluN1/GluN3A receptors, possibly 

occurring with a concomitant increase in GluN3B, which couldn’t be measured in the 

present studies using the commercially available antibodies, or that GluN3A is 

incorporating itself into GluN1/GluN2 complexes. 

The presence of GluN3A in GluN1/GluN2/GluN3A triheterotetramers imparts 

different functional and pharmacological characteristics in these receptors compared to 
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GluN1/GluN2-containing receptors (reviewed in Henson et al., 2010).  Single channel 

recordings in heterologous systems co-expressing GluN1, GluN2A, and GluN3A show 

two distinct populations of NMDA-evoked currents– the typical GluN1/GluN2A 

currents, characterized by a large conductance, and currents that have much smaller 

conductances, likely due to the inclusion of GluN3A subunit.  In GluN3A knockout mice, 

early postnatal cortical neurons exhibit enhanced NMDA responses and increased 

dendritic spine (Das et al., 1998), indicating that the presence of GluN3A produces a 

dominant negative effect on NMDARs.  Another study has shown that overexpression of 

GluN3A in the forebrain of juvenile mice, which would produce higher expression of 

GluN3A later in development than normal, produces functional GluN1/GluN2/GluN3 

receptors at the synaptic membrane, as well as decreased spine densities, fewer synapses, 

and impaired LTP (Roberts et al., 2009).  Although spine densities and synapse number 

were not measured in the present studies, an LTP deficit was found in PAE mice, perhaps 

related to the increase in GluN3A.  If PAE induces higher expression of GluN3A later in 

life, and leads to incorporation of GluN3A into NMDARs , it may be altering synapse 

development, and thus playing a role in LTP and learning and memory deficits.   

If the GluN3A subunit is incorporated into GluN1/GluN2 NMDA receptors, it 

may be taking the place of the GluN2B subunits, which would explain why GluN2B 

subunit levels are decreased without a corresponding decrease in GluN1 subunit levels or 

increase in GluN2A levels.  However, if this is the case, then the observed increase in 

GluN1 subunit levels would be unaccounted for.  Studies have shown that in 

heterologous systems, GluN1-2, GluN1-3, and GluN1-4 splice variants are able to traffic 

to the surface without the presence of GluN2 or GluN3 subunits (Okabe et al., 1999; 
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Horak and Wenthold, 2009), indicating that it is possible that the increased expression of 

C2´-containing GluN1 subunits is due to non-complexed GluN1-4 subunits.  Whether 

these subunits would exist solo or as homodimers, or whether this is actually possible in 

an endogenous system, is unknown. 

6.2.2.2 Significance of the decreases in GluN2B subunit levels and its possible effect on 

LTP in PAE animals 

In contrast to the paucity of information about the GluN3A subunit, the role of, and 

potential effect of decreased levels of, synaptic GluN2B subunits is much more 

established in the literature.  In Chapter 2 it was noted that GluN2B antagonists, as well 

as genetic deletion of the GluN2B receptor, block LTP induction in various regions of the 

brain (Barria and Malinow, 2005; Zhao et al., 2005; Brigman et al., 2010).  Studies 

employing receptor mutants have shown that the C-terminal tail of the GluN2B subunit is 

critical for its role in LTP (Kohr et al., 2003; Gardoni et al., 2009; Foster et al., 2010), 

particularly its interaction with CaMKII (Barria and Malinow, 2005; Zhou et al., 2007).  

Therefore, it stands to reason that reductions in GluN2B levels in the PAE mouse dentate 

gyrus, measured both in immunoblotting and electrophysiological studies, are a strong 

candidate for the mechanism underlying the LTP deficits that were recorded in these 

animals. 

 Another interesting possibility is that the GluN2B deficit exerts an effect on 

metaplasticity, rather than LTP itself.  Metaplasticity has been defined as “the plasticity 

of plasticity”, or the ability of neural circuits to alter the expression of LTP and long-term 

depression (LTD) after a subsequent bout of activity (Abraham, 2008).  Metaplasticity 

could result in a sliding threshold for LTP or LTD induction, depending on previous 
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activity at that synapse.  LTP inhibition, a form of metaplasticity, occurs when a stimulus 

frequency that is known to induce LTP no longer does, probably due to untimely 

NMDAR activation (Zorumski and Izumi, 2012).  Low concentrations of NMDA prior to 

LTP induction, as well as weak tetanic stimulation, have been shown to inhibit LTP, with 

no overall change in basal synaptic transmission (reviewed in Zorumski and Izumi, 2012)  

This inhibition has been shown to be dependent on NMDARs, adenosine A2 receptors, 

p38 MAPKs, and the protein phosphatases 1A, 2A, and calcineurin (Abraham, 2008).   

Although the precise role of the NMDARs in metaplasticity is unknown, many 

studies have implicated the GluN2A/GluN2B ratio as important for bidirectional synaptic 

plasticity, or the threshold at which LTP or LTD is induced, possibly due to the 

differences in open probabilities and decay times between GluN2A and GluN2B 

receptors, leading to different Ca
2+

 profiles (Lau and Zukin, 2007).  The 

GluN2A/GluN2B ratio can be altered in a number of ways following neuronal activity 

(reviewed in Yashiro and Philpot, 2008).  Early in development, there is an increase in 

GluN2A transcription, possibly due to NMDAR/PKA/CREB pathway activation, while 

older cortical cultures exhibit an increase in GluN2B protein after AP5 blockade.  In 

addition, as discussed in Chapter 2, synaptic activity may lead to GluN2A accumulation 

in the synapse, and may alter the phosphorylation levels of the subunits, leading to either 

increased retention in the synaptic membrane or increased endocytosis, depending on the 

site of subunit phosphorylation.  These activity-dependent changes may alter the ratio of 

GluN2A/GluN2B, thus changing the synaptic threshold for LTP or LTD.   

Whole cell recordings from CA1 pyramidal cells found that priming stimuli that 

produce one-fifth maximal fEPSPs were able to shift the threshold for LTP/LTD (Xu et 
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al., 2009).  After determining a stimulation protocol, termed the threshold protocol, that 

did not produce either LTP or LTD, the investigators found that priming stimuli of low 

frequencies (1 and 5 Hz for 600 pulses) triggered LTP at the threshold protocol, while 

priming stimuli of high frequencies (50 and 100 Hz) led to LTD at the threshold protocol, 

confirming that previous stimulation at a synapse can alter the subsequent synaptic 

plasticity.  These priming stimuli altered the GluN2A/GluN2B ratio, with low frequency 

priming decreasing the GluN2A/GluN2B ratio and high frequency priming increasing the 

GluN2A/GluN2B ratio, indicating that a low GluN2A/GluN2B ratio lowers the threshold 

for LTP, while a high GluN2A/GluN2B ratio lowers the threshold for LTD.  Xu and 

colleagues (2009) also found that low dose ifenprodil block, which increases the 

GluN2A/GluN2B ratio, elicits LTD, rather than LTP, at the threshold protocol.  Another 

study also found that prolonged suppression of transmitter release, which in effect would 

create a “silent” postsynaptic synapse, resulted in increased GluN2B-containing NMDA 

receptors (and thereby a decreased GluN2A/GluN2B ratio) on the dendritic spine, as well 

as a lowered threshold for potentiation of the synapse (Lee et al., 2010). 

PAE animals exhibited a decreased level of GluN2B subunits in the synaptic 

fraction, and further analysis determined that the GluN2A/GluN2B ratio is increased in 

these animals (Figure A7 in Appendix A; t[12]=2.196, p0.05; n=7).  This indicates that, 

in PAE animals, a stronger stimulus may be required in order to produce LTP, since the 

increased GluN2A/GluN2B ratio would slide the threshold towards LTD rather than LTP.  

This would also indicate that NMDAR-dependent LTD may be easier to elicit in PAE 

animals.  This is supported by the fact that in dentate gyrus recordings in vivo, Sutherland 

and colleagues (1997) found LTP deficits in PAE animals at submaximal, but not at 
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maximal, LTP stimuli.  Neither the Sutherland et al. (1997) nor the studies detailed in this 

dissertation examined the ability to induce LTD in PAE animals.  In the dentate gyrus, 

homosynaptic LTD has been shown to be independent of the NMDAR; however, 

heterosynaptic LTD is NMDAR-dependent (Poschel and Stanton, 2007).  Heterosynaptic 

LTD occurs when LTP that is induced in one perforant pathway, such as the medial 

perforant pathway, results in LTD in the other pathways (in this example, the lateral 

perforant pathway).  This interplay of LTP and LTD in these pathways may help the 

dentate gyrus to encode pattern separation information: when one pathway is activated, 

the resulting inhibitory effect on the other pathway may prevent the activity in this 

second pathway from eliciting synaptic strengthening.  Based on the results of this 

dissertation, I would predict that heterosynaptic LTD may be elicited at a lower threshold 

in PAE mice.  If GluN2B levels in the dentate gyrus are altering the LTP and LTD 

thresholds, this may have profound effects on the ability of the dentate gyrus to encode 

information for pattern separation in the proper way. 

The NMDAR also has a role in regulating adult neurogenesis, an important 

function of the dentate gyrus (reviewed in Parent, 2007; von Bohlen und Halbach, 2011).  

Dentate gyrus neural stem cells reside in the subgranular zone (SGZ), on the border of the 

granule cell layer and the hilus.  There are three classes of neurogenic cells: Type 1, Type 

2, and Type 3.  Type 1 cells exist as radial glial-like astrocytes, and express glial 

fibrillary acidic protein (GFAP) and nestin.  These cells give rise to fast proliferating 

intermediate precursors called transient amplifying precursor cells (TAPs).  TAPS exist 

as two types, Type 2a and 2b.  Type 2 cells express the stem cell marker Sox2, and may 

or may not express doublecortin (DCX; type 2a and 2b, respectively).  These cells 
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transition into Type 3 cells, which at first are able to slowly proliferate, but soon 

differentiate into postmitotic immature neurons and then slowly migrate into the granule 

cell layer.  Within this time period, usually about a week after birth, these cells are 

tonically activated by ambient GABA, which results in neuronal depolarization, rather 

than hyperpolarization (Deng et al., 2010b).  During the second week, they begin to 

extend processes, with dendrites extending into the molecular layer and axons extending 

via the mossy fiber pathway to the CA3 region.  In the third week, they begin to integrate 

into the existing neural circuitry, and respond to glutamatergic inputs.  However, they are 

still quite different than mature neurons– they exhibit high membrane resistance and high 

resting potentials, which may contribute to increased excitability.  Adult-born granule 

cells, at 4-6 weeks of age, exhibit a lower threshold for LTP than do older granule cells 

(Wang et al., 2000). 

Several studies have implicated a role of adult neurogenesis in learning and 

memory.  Enriched environment or exercise, both of which have been shown to increase 

adult neurogenesis, enhance performance on certain hippocampal-dependent tasks 

(Bruel-Jungerman et al., 2005; van Praag et al., 2005), whereas ablation and/or depletion 

of adult-born neurons disrupts certain forms on learning (Shors et al., 2001; Shors et al., 

2002), suggesting a connection between neurogenesis in the dentate gyrus and 

hippocampal-dependent learning/memory.  Given the hypothesized role of the dentate 

gyrus in pattern separation, there is a particular interest in the role of neurogenesis in 

pattern separation.  As described in Chapter 4, (Clelland et al., 2009) reported that 

ablation of neurogenesis by irradiation of the dentate gyrus impaired radial maze 

performance of mice trained to differentiate between an initial sample arm and a 
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subsequent test arm that were closely separated but had no effect on performance when 

the mice were trained in a version of the task in which the arms were further apart in 

space.  The same study also assessed performance in a touch screen spatial discrimination 

task, which required the mice to identify the correct location of an illuminated box, when 

provided with two choices, with the spatial location of the incorrect location varying in 

distance from the correct location.  Similar to the DNMP task, mice with neurogenesis 

ablation were impaired in the tasks when the incorrect location was close to the correct 

location.  Sahay and colleagues (2011) have shown that irradiation of the dentate gyrus, 

with consequent reduction in neurogenesis, impaired context discrimination: while 

control mice were able to discriminate between a context paired with an aversive 

stimulus (a footshock) and a similar context that was not paired with the aversive 

stimulus, as evidenced by reduced freezing (fear responding) in the second context, mice 

in whom the dentate gyrus had been irradiated displayed similar levels of freezing in the 

two contexts.  However, by genetically increasing the level of neurogenesis, animals 

were better able to distinguish these two contexts.  These studies implicate a role for 

neurogenesis in learning, specifically in pattern separation tasks that may be dependent 

on the dentate gyrus. 

The NMDAR has been implicated in neurogenesis, as well as the incorporation of 

new neurons into an existing network, although its downstream effects may depend on 

the timing of activation.  Some studies have found that NMDAR antagonism increases 

precursor cell proliferation (Cameron et al., 1995; Hu et al., 2008; Petrus et al., 2009).  

The mechanism by which this occurs, however, is unknown, since several studies have 

found that NMDAR subunits are not present on young granule cells or in precursor cells 
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until differentiation occurs (Nacher and McEwen, 2006; Muth-Kohne et al., 2010), 

although there is a possibility that they are expressed on the radial glial-like precursors 

(Nacher et al., 2007).  A possible explanation is that the NMDAR is acting via indirect 

means, such as controlling GABA release from interneurons that may act on the 

excitatory GABA receptors present on these precursor cells. 

Approximately two weeks following integration into the circuitry of the dentate 

gyrus, immature granule cells begin to receive glutamatergic inputs and have a lower 

threshold to elicit LTP.  NMDARs are expressed by this point, and studies suggest that 

NMDAR activation is important for regulating circuit integration.  Ifenprodil inhibits 

LTP in immature granule cells, indicating that LTP is GluN2B-dependent (Snyder et al., 

2001b), and inhibition of NMDARs prevented LTP-dependent progenitor cell 

proliferation (Chun et al., 2006) and precursor differentiation (Babu et al., 2009).  These 

studies indicate that the NMDAR is important for functional roles in immature granule 

cells, particularly in a positive feedback role after LTP induction.  Similarly, NMDAR 

antagonist infusion into the lateral ventricles of rats during the training period of a 

delayed match to place (DMP) Morris water maze task resulted in learning impairments, 

associated with decreased cell survival, cell proliferation, and dendritic arborization of 

immature neurons compared to controls, indicating that the NMDAR is important for 

learning-induced changes in neurogenesis (Tronel et al., 2010).  The inconsistencies with 

previous studies, which found that NMDARs played an inhibitory role in cell 

proliferation, may be the activation signal of the NMDAR; those studies that found an 

inhibitory role of the NMDAR simply blocked the receptor, with no other activation of 
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the circuitry, whereas the latter studies were examining the role of the NMDAR after 

LTP and/or learning.   

PAE has been shown to affect neurogenesis in the adult dentate gyrus in animal 

models, although the results of the studies have not been consistent, possibly due to the 

use of differing paradigms of alcohol exposure.  Choi and colleagues (2005), using a 

moderate voluntary PAE model, found no change in the number of proliferating 

progenitors, but did find an impaired response to an enriched environment compared to 

controls, whereas other investigators (Redila et al., 2006; Boehme et al., 2011), who have 

employed a liquid diet paradigm, have reported that PAE was associated with decreased 

proliferation and neurogenesis.  Klintsova and colleagues (2007) demonstrated that 

postnatal exposure to alcohol on PD 4-9 resulted in a reduced survival rate for new 

neurons in the rat dentate gyrus.  In regards to this dissertation, alterations in NMDAR 

subunit composition at the synaptic membrane may help to account for these changes.  A 

decrease in GluN2B-containing NMDARs, leading to decreased LTP in the dentate 

gyrus, may impair activity-dependent increases in neurogenesis and cell proliferation, 

similar to effects seen in several studies (Snyder et al., 2001b; Chun et al., 2006; Babu et 

al., 2009; Tronel et al., 2010), and lead to the impaired response in enriched environment 

reported by Choi and colleagues (2005).  However, this would not account for the other 

studies that saw basal decreases in proliferation and neurogenesis.  Overall decreases in 

NMDAR levels would presumably lead to increases in proliferation, since previous 

studies have shown NMDAR antagonism under basal conditions also lead to increases.  

However, PAE has also been shown to affect the GABAergic system, and since these 

cells are primarily GABA responsive, this may account for these changes.  
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A final consideration is whether alterations in the NMDAR subunits would lead to 

alterations in circuit incorporation, and thus contribute to LTP and learning deficits.  If 

GluN2B subunit levels are decreased in a population of cells, including newborn neurons 

that are incorporating into the circuitry, this decrease (possibly combined with an 

increase in GluN3A) may increase the threshold for LTP, causing these cells to be pruned 

because they never get activated and incorporated into the existing circuitry.  If this were 

the case, this would not only account for the observed decrease in LTP, but also for the 

impairment in pattern separation, since these newborn cells would no longer be able 

incorporate and provide new cells for encoding.  However, whether the decrease in 

GluN2B (and increase in GluN3A) exists in the entire dentate gyrus, or whether it exists 

in a subset of cells, is unknown from these studies.  It is unlikely that it would be limited 

to newborn neurons, since they only account for approximately 6% of granule cells in the 

dentate gyrus (Parent, 2007), but alterations to that 6% may have a profound impact on 

dentate gyrus function. 

6.3 Future Directions 

Analyses of the studies in this dissertation indicate that several avenues of 

research deserve further investigation, some of which have been discussed already.  One 

drawback of the current studies is that the association between NMDAR subunit 

alterations, LTP deficits, and dentate gyrus-dependent learning deficits are corroborative, 

rather than definitive.  Further investigation is needed to determine whether the LTP 

deficits are directly due to the observed NMDAR subunits changes, and are responsible 

for the learning deficits.  There are several ways that this could be examined.  First, 

restoration of NMDAR subunits to normal levels in PAE animals would determine 
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whether these changes are responsible for the LTP deficits.  Short interfering RNA 

(siRNA) directed against C2´-containing GluN1 and/or GluN3A could be stereotaxically 

injected into the dentate gyrus of PAE mice to decrease these levels.  Electrophysiology 

could then determine if LTP is recovered.  It would be necessary to perform preliminary 

studies to determine exactly how much siRNA would need to be injected to restore 

normal levels.  Restoration of GluN2B levels in the dentate gyrus at the synapse would 

also be important to determine the contribution of these reductions to LTP deficits in 

PAE mice.  Transgenic mice containing a Cre-Lox GluN2B receptor could restore 

GluN2B receptor levels in PAE mice.  This method, however, would have several 

pitfalls.  First, since the current studies were performed in young adult animals, the 

increased expression of GluN2B would also need to occur at this point.  The levels would 

also need to be expressed at specific levels, and therefore the promoter for the transgene 

would need to be considered carefully.  In addition, an increase in GluN2B transcription 

may not necessarily result in increased expression at the synaptic membrane, since there 

are multiple levels of regulation for surface expression, including both at translational 

and trafficking levels.  Another mechanism to increase GluN2B level expression would 

be to stereotaxically inject a vector, such as adeno-associated virus (AAV) or lentivirus, 

to overexpress GluN2B levels.  This method would also encounter difficulties similar to 

transgenic mice, but the method would not be as complex.  Restoration of GluN1, 

GluN2B, and GluN3A subunit levels in PAE to SAC levels would help confirm that the 

alterations in NMDAR subunit levels at the synapse are, at least partly, responsible for 

the LTP deficits in PAE mice.  It is important to note, however, that altering levels of 

these subunits at the time points studied in this dissertation (2-5 months) would not adjust 
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for any alterations that the GluN2B deficits may cause at earlier time points in 

development, such as synaptic maturation and circuit integration, which may also 

contribute to later deficits.   

 Another mechanism that may underlie changes in receptor subunit levels at the 

synaptic membrane would be alterations in the phosphorylation states of the different 

subunits.  As discussed in Chapter 2, there are a number of serine/threonine and tyrosine 

sites on the C-terminals of GluN1, 2A, and 2B that are responsible for regulating synaptic 

targeting and endocytosis.  Previous analysis of tyrosine phosphorylation levels in 

synaptic and extrasynaptic fractions found that phosphorylation of Tyr1472 on GluN2B 

was associated with synaptic membrane localization, while Tyr1336 phosphorylation on 

GluN2B was associated with extrasynaptic membrane localization (Goebel-Goody et al., 

2009).  Analysis of these phosphorylation sites would help determine if alterations in 

phosphorylation are consistent with the observed decrease in GluN2B in the synaptic 

membrane, with an expectation that Tyr1472 phosphorylation would be decreased in 

PAE animals.  Tyr1472 has been shown to be phosphorylated by Src family kinases 

(SFKs); thus analysis of SFK levels, both total and activated, would be useful.  

Reductions in Tyr1472 phosphorylation could also (or alternatively) be due to an increase 

in phosphatase activity. Although the phosphatase that would be responsible for this is 

currently unknown, the striatal-enriched protein tyrosine phosphatase (STEP) is a strong 

candidate (Kurup et al., 2010).  There are also several other pathways that may account 

for a decrease in Tyr1472.  Inhibition of Cdk5, a proline-directed serine/threonine kinase, 

leads to increased Src association with PSD-95 and increased Tyr1472 phosphorylation, 

indicating a role of Ckd5 in negative regulation of GluN2B phosphorylation (Zhang et 
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al., 2008).  In addition, mice deficient in protein tyrosine phosphatase alpha (PTPα) show 

decreases in SFK activity, as well as decreased autophosphorylation of proline-rich 

tyrosine kinase 2 (Pyk2), which is responsible for phosporylating and activating SFKs 

(Le et al., 2006).  PAE alterations in any of these pathways could result in decreases in 

GluN2B Tyr1472 phosphorylation, thereby decreasing levels in the synaptic membrane.  

If Tyr1472 phosphorylation levels were decreased in PAE animals, an analysis of protein 

levels and activity levels of these kinases and phosphatases in SAC vs. PAE animals may 

indicate the cause of the decrease.  In addition, rescue of these pathways using 

pharmacological methods in vitro may also show an increase in both Tyr1472 and 

GluN2B levels in PAE animals: for example, pharmacological inhibition of Ckd5 in PAE 

mice may lead to increased Tyr1472 phosphorylation and increased GluN2B expression 

in the synaptic membrane in these mice, and may lead to recovery of LTP deficits. 

 Another avenue to be researched further is the association of subunits at the 

surface.  Although the current studies suggest that there is an increase in C2´-containing 

GluN1/GluN3A receptors, with a decrease in GluN2B-containing receptors, the exact 

stoichiometry of subunits in the receptors are unknown.  There are several ways to 

examine this question.  First, co-immunoprecipitation could determine if GluN3A was 

present with C2´-containing GluN1 alone or in combination with GluN1/GluN2A.  Also, 

to determine whether the loss of GluN2B is from triheterotetrameric or diheterotetrameric 

receptors, a series of serial co-immunoprecipitations could be performed, as described by 

Al-Hallaq and colleagues (Al-Hallaq et al., 2007).  For this method, an initial 

immunoprecipitation would be performed; for example, GluN2A would be 

immunoprecipitated (IP1).  The unbound fraction would then be subjected to another 
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immunoprecipitation by anti-GluN2A (IP2) antibody.  These two immunoprecipitations 

have been shown to remove the majority of GluN2A from the sample (Al-Hallaq et al., 

2007).  The unbound fraction from this step would be subjected to yet another 

immunoprecipitation (IP3), but this immunoprecipitation would be for another protein, 

for example GluN2B.  Anything associated with this last fraction would then likely be 

receptors that do not contain GluN2A, but would contain GluN2B.  The initial two IPs 

(IP1 and IP2) would likely contain GluN1/GluN2A diheterotetrameric and 

GluN1/GluN2A/GluN2B triheterotetrameric NMDARs.  Using this method, the levels of 

GluN2B-containing triheterotetrameric and diheterotetrameric NMDARs could be 

determined in both SAC and PAE tissue, and this may elucidate whether the decrease in 

GluN2B is specific to an NMDA receptor complex type or simply an overall decrease. 

 It is not known whether the effects of PAE on GluN2B levels, and the apparent 

increase in the GluN2A/GluN2B ratio, exert an effect on thresholds for LTP and LTD in 

these animals.  It has been suggested that there is a limit to the extent that changes in the 

GluN2A/GluN2B ratio can exert an effect on subsequent plasticity (Xu et al., 2009), with 

any increase in the GluN2A/GluN2B ratio higher than a 77% increase showing no effect.  

Based on the immunoblotting data, we found about a 65% increase in the 

GluN2A/GluN2B ratio, which would be in the appropriate range to exert an effect.  To 

determine if the ratio is playing a role in the LTP deficits, it would be possible to attempt 

a preferential blockade of GluN2A to lower the GluN2A/GluN2B ratio, and then test the 

effects on LTP.  Although NVP-AAM077, when used at higher concentrations, has been 

shown to be non-specific for the GluN2A receptor (Berberich et al., 2005; Neyton and 

Paoletti, 2006), lower concentrations have been shown to elicit a partial block of GluN2A 
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with no effect on GluN2B (Berberich et al., 2005; Xu et al., 2009).  Using NVP to elicit a 

partial block of GluN2A would therefore decrease the GluN2A/GluN2B ratio, and 

consequently may lower the threshold for LTP in PAE animals.  Whole cell recordings 

could be used to determine the appropriate GluN2A block to normalize the ratio, and 

field recordings could be used to examine LTP in treated and non-treated PAE animals. 

 As discussed earlier, the decrease in GluN2B subunits, as well as the increase in 

GluN3A subunits, specifically on newly born neurons may decrease the ability of these 

cells to incorporate into the existing circuitry, thereby altering the ability of the dentate 

gyrus to undergo LTP and/or learning.  A new strain of mice described by Lagace and 

colleagues (2007) would allow for examination of newly born neurons and their 

incorporation into the circuitry in SAC and PAE mice.  Briefly, Nestin-CreER
T2

 founder 

mice, containing a Cre recombinase linked to the estrogen receptor, were bred with 

R26R-YFP mice, which contain a STOP codon between two loxP sites next to YFP.  

Upon tamoxifen (TAM) administration, CreER
T2

, which is under control of the Nestin 

promoter, can dimerize and enter the nucleus, where the Cre recombinase can interact 

with the loxP site to generate DNA recombination and remove the STOP codon, leading 

to expression of YFP.  Since CreER
T2

 is under the control of the Nestin promoter, only 

cells that are actively expressing Nestin at the time of TAM injections (i.e., dividing 

cells) would undergo recombination and express YFP.  YFP expression would continue 

throughout the life of the cell.  Therefore, 4-6 weeks after TAM injections, 

immunohistochemistry (IHC) and electrophysiological recordings can assess cells 

expressing YFP, which can help to characterize these cells in SAC and PAE mice.  Using 

IHC, the levels of GluN2B and GluN3A can be examined and co-localized with cells 
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expressing YFP, giving an indication as to whether these cells also exhibit subunit 

alterations.  Whole cell recordings, using YFP to locate newborn neurons can determine 

whether GluN2B currents are altered in the cells, and can also determine if these cells 

have altered thresholds for LTP. 

6.4 Critique of the Current Studies 

Although every study is planned carefully, retrospective analysis often shows 

either limitations to the study or alternative methods to approach the study.  In the case of 

my dissertation studies, one of the biggest limitations is the use of an animal model, and 

trying to compare data across animal models.  An animal model is very useful for 

studying molecular mechanisms related to a human condition or disorder, such as FASD; 

however, at this point, no animal model can fully encompass all aspects of FASD seen in 

humans.  Although similarities occur, allowing for limited study, there are a number of 

areas of the human disorder difficult to mimic in an animal model.  For example, 

gestational exposure in our mouse model only covers the first and second trimester 

equivalent of a human gestational period.  As noted, it has been reported in a recent study 

that, from a cohort of about 95,000 women, most reported drinking in the first and second 

trimesters, with the levels of drinking decreasing greatly by the third trimester (Muhuri 

and Gfroerer, 2009), allowing our model to encompass a large percentage of PAE cases; 

however, there are still instances in which women drink into the third trimester, which 

could not be assessed without modifying the model to include a postnatal exposure 

paradigm (e.g., inhalation chamber exposure).  In addition, typically women who drink 

during pregnancy also have other factors present that could influence outcomes, such as 

other substance abuse or stress (Rubio et al., 2008; Muhuri and Gfroerer, 2009).  
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Although isolating the effect of prenatal ethanol exposure is important, these factors may 

also play a role in prenatal development, and may need to be considered and studied in a 

future model. 

 Another limitation of this study is the focus on young adult offspring.  Many 

studies have demonstrated that PAE causes effects in humans into adolescence and young 

adulthood, providing the rationale for conducting our studies in mice that were the 2-5 

month range.  However, a drawback to this is that we don’t know the developmental 

timeline for the changes seen.  GluN2B levels decrease during development, as do 

GluN3A levels.  It is possible that GluN2B levels are at normal expression throughout the 

beginning of development, and they decrease to below normal levels, or that they start 

out at lower levels, and undergo normal reduction.  Similarly, during development, 

GluN3A could begin higher than normal, and reduce its subunit numbers by the same 

proportion, or it could begin at normal levels, and the mechanism for subunit level 

reduction is impaired, leading to later increased expression.  The differences between 

these two scenarios could have a profound effect on development and regulation of the 

system.  Further studies of subunit levels throughout the course of development would 

help to answer these questions. 

 The present studies were largely focused on PAE effects on the NMDAR, and did 

not take into account NMDAR effects on other receptors, or those receptors’ effects on 

the NMDAR.  As mentioned in Chapter 2, a number of receptors, including dopamine, 

histamine, opioid, and metabotropic glutamate receptors, are able to modulate NMDAR 

function.  Alterations in these receptors by PAE could, therefore, have an influence on 

NMDARs, in addition to that done by PAE.  For example, mGluR5 has been shown to 



 110 

activate PKC and lead to NMDAR phosphorylation, and may be physically connected via 

scaffolding proteins (Skeberdis et al., 2001; Heidinger et al., 2002).  PAE has been shown 

to decrease mGluR5 levels in the dentate gyrus (Galindo et al., 2004), and preliminary 

studies in Appendix A.1 show that mGluR5 association with PSD-95 is significantly 

decreased in PAE offspring compared to controls in the whole hippocampus, which may 

alter it role in modulating NMDAR function.  Further studies on this may not only help 

elucidate the full effect of PAE on the glutamatergic system, but may also provide 

another target for therapeutic intervention.  

 Another consideration in evaluating the current studies is the technique of in vitro 

hippocampal slice preparation.  Although slice preparation can be very useful in isolating 

the hippocampus to perform electrophysiological studies, the process of preparing the 

slices may be quite damaging, which may influence the studies.  Previous studies have 

shown that in vitro slice preparation results in very rapid spine retraction in dendrites, 

which then recover in an hour or so, typically during the slice recovery period (Kirov et 

al., 2004).  The faithful recovery of the synaptic connections, however, is unknown.  It is 

possible that alterations in spine recovery may give an inaccurate picture of LTP in 

hippocampal slices.  When comparing SAC and PAE slice preparations, this may have 

two major implications that would influence the interpretation of results.  First, both sets 

of slices undergo similar spine retraction and recovery; thus, if any alterations in synaptic 

connections do occur during recovery, they are similar between the two groups, and 

therefore LTP comparisons between the two groups are not compromised.  However, it is 

possible the PAE may result in spine recovery different than that seen in SAC slices, and 



 111 

it is this that account for the difference between LTP, rather than PAE effects on LTP 

induction itself.   

 Lastly, our studies did not examine the effect of PAE on the hypothalamic-

pituitary-adrenal (HPA) axis, which is a key component of the stress response system.  

The HPA axis regulates a number of endocrine changes, including cortisol 

(corticosterone in rodents; CORT) release, which has been implicated in learning and 

memory mechanisms in the hippocampus.  Chronic CORT exposure has been shown to 

lead to GluN2B subunit reductions in rats (Gourley et al., 2009), inhibition of NMDAR 

currents (Liu et al., 2007), and reduced neurogenesis.  Studies have shown that PAE 

causes HPA tone to be increased throughout life, and is associated with higher basal and 

post-stress cortisol in humans, as well as higher post-stress corticosterone levels in 

animal studies (Weinberg et al., 2008).  This may indicate that PAE effects on CORT 

may have a direct and/or indirect impact on the effects of PAE on NMDARs, and that the 

effect of PAE on both factors may interact to induce the phenotype seen in FASD. 

6.5 Summary 

 In summary, this dissertation was designed and carried out to uncover a potential 

mechanism that may explain dentate gyrus-dependent learning deficits seen in PAE 

animals.  These studies initially focused on developing and characterizing a moderate, 

limited access PAE model, in an attempt to both better mimic human drinking patterns 

during pregnancy and to determine whether dentate gyrus-dependent deficits do exist, 

which would be consistent with the literature.  As shown in Chapter 4, animals achieved 

moderate BECs with no alterations in maternal care, and their offspring displayed 
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impairments in hippocampal-dependent learning tasks, similar to those seen in previous 

models.  Prior literature has found electrophysiological and biochemical alterations in the 

dentate gyrus that would support deficits in dentate-gyrus dependent learning, and our 

model confirms that these deficits are present.  Further studies set out to determine a 

cellular mechanism for the observed learning deficits in the dentate gyrus.  Previous 

literature has implicated a role of the NMDAR in these alterations.  Examination of 

NMDAR subunit levels in the synaptic and extrasynaptic membrane in the dentate gyrus 

found an increase in C2´-containing GluN1 subunits, an increase in GluN3A subunits, 

and a decrease in GluN2B subunits in the synaptic fraction, with no differences in the 

extrasynaptic fraction.  The deficit in GluN2B subunits was confirmed by 

electrophysiological recording using pharmacological blockade, and NMDAR-dependent 

LTP was found to be impaired in the dentate gyrus of PAE animals, suggesting that the 

deficit in GluN2B may be responsible.  These alterations may underlie the dentate gyrus-

dependent learning deficits seen in our model.  Further, these studies provide a basis for 

later studies that may help to delineate the role of PAE in alterations in the NMDAR and 

its subsequent effects on metaplasticity and neurogenesis. 
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Appendix A: Supplemental Data 

 

Figure A1: 

 

Figure A1.  PAE alters the association of mGluR5 and GluN2B with PSD-95 in the hippocampus. 

The hippocampus was dissected from SAC and PAE animals and homogenized.  A P2 fraction was 

obtained as described in (Samudio-Ruiz et al., 2010), solubilized with 1% DOC, and incubated with Protein 

A Sepharose beads and antibodies directed against PSD-95.  Immuno-complexes were processed as 

described by Samudio-Ruiz et al.(2010) and immunoblotting for levels of GluN2B, mGluR5, and PSD-95 

was performed.  A)PAE animals have decreased association of GluN2B with PSD-95 compared to controls, 

consistent with results seen in the lab’s previous model. t[13]=2.193, p0.05, n=8 SAC, 7 PAE.  B)PAE 

animals have decreased association of mGluR5 with PSD-95 compared to controls. t[13]=2.690, p0.05, 

n=8 SAC, 7 PAE.  C)A comparison of the ratio of mGluR5/PSD-95 to the GluN2B/PSD-95 ratio shows 

that there is no significant difference in mGluR5/GluN2B ratio, indicating that although both exhibit 

decreased association with PSD-95, their relative levels coupled together via scaffolding are unaltered. 
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Figure A2: 

 

Figure A2.  Dose response of mGluR5/GluN2B association as measured by co-immunoprecipitation 

following hippocampal slice activation with 0, 25, 50, and 100µM NMDA. 

300µM slices were prepared as described in Chapter 5, and incubated with the appropriate NMDA dose for 

3 min before the hippocampus was dissected out and homogenized.  A P2 fraction was prepared, the 

membrane was solubilized in 1% deoxycholate (DOC), and the sample was then incubated with Protein G 

microbeads and antibodies directed against GluN2B were used to immunoprecipitate the protein.  After 

eluting the protein from the beads, a Western blot was performed and the levels of mGluR5 and GluN2B 

were determined.  n=2 for 0, 25, and 50 µM NMDA and n=1 for 100µM NMDA.  
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Figure A3: 

 

Figure A3.  Semiquantitative immunoblotting analysis for mGluR5 levels in the dentate gyrus from 

SAC and PAE animals. 

Microdissection and Western blot analysis was performed as described in Chapter 5.  After 

immunoblotting, two distinct bands were observed, one at the predicted molecular weight (130 kD) and one 

at twice the predicted molecular weight (260 kD).  Further research indicated that mGluR5 forms dimers 

that may not completely dissociate upon SDS solubilization.  A) Analysis of monomer band of mGluR5.  

t[10]=4.282, **p0.01 SAC n=7 PAE n=5.  B) Analysis of dimer band of mGluR5.  t[6]=4.222, **p0.01 

n=4 
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Figure A4: 

 

Figure A4.  Linear range determination in TxP fractions for GluN1, GluN2A, GluN2B, and PSD-95. 

Subcellular fractionation was performed on naïve tissue as described in Chapter 5, and the TxP fraction was 

loaded onto a gel in increasing protein concentrations and immunoblotted for the appropriate protein.  The 

optimum total protein concenntration was determined to be 3µg for GluN1, 2A, 2B, and PSD-95 and was 

used for TxP immunoblotting experiments. 
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Figure A5: 

 

Figure A5.  LTP protocols 

A number of LTP protocols were tested in in vitro slices from naïve animals to determine the protocol 

which would produce the most consistent results in the medial perforant path-dentate gyrus pathway.  A) 

LTP was elicited using 5 trains of 4 bursts  of 4 pulses at 100Hz, with an interburst interval (IBI) of 200ms 

and an intertrain interval of 30s (n=5).  B) 1 train of 100Hz for 1s (n=1).  C)The LTP protocol chosen for 

use in the experiments in Chapter 5: 4 trains of 9 bursts of 4 pulses at 100Hz, IBI 200ms, ITI 5 min (n=4). 
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Figure A6: 

 

Figure A6.  A number of LTD protocols were tested in in vitro slices from naïve animals in the MPP-

DG pathway.   

A) Stimulation protocol of 5Hz for 120s (n=1).  B) Stimulation protocol of 2Hz for 600s (n=1).  C.  

Stimulation protocol of 1 Hz for 900s (n=2).  Further research found that homosynaptic LTD was not 

NMDAR-dependent (see Chapter 6), so these studies were not pursued. 
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Figure A7 
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Figure A7.  The ratio of GluN2A/GluN2B in the synaptic membrane in PAE animals in increased. 

The levels of GluN2A and GluN2B were determined in the synaptic membrane using immunoblotting, and 

were normalized to PSD-95 levels, as described in Chapter 5.  The ratio of GluN2A to GluN2B was then 

determining, normalized to control levels.  t[12] = 2.196,* p0.05, n=7 
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Figure A8 

Table A8.1 – Primers used for RT-PCR study 

Target Forward Primer Reverse Primer 

Grin1-1 GCCCGACCCTAAAAAGAAAG TGCTCGTGTCTTTGGAGGAC 

Grin1-2 ACGTGTGGAGGAAGAACAGC CTCTCCCTATGACGGGAACA 

Grin1-3 CCCGACCCTAAAAAGAAAGC TGGTACTGCGTGTCTTTGGA 

Grin1-4 AGATCGCCTACAAGCGACAC TGGTACTGCTGCAGGTTCTTC 

Grin2A ACGTGACAGAACGCGAACTT ATCTCCAAACACCAAGCCAT 

Grin2B GCCATGAACGAGACTGACCC CCATTATCATAGATGAGCCC 

Grin3A TCAGAATCCCCTGCACCTAC GACTCGAGGTGGAACTTGGA 

HPRT1 GCCGAGGATTTGGAAAAAGT ATCCAGCAGGTCAGCAAAGAA 

Cyclophilin A TGCTGGACCAAACACAAACG GCCTTCTTTCACCTTCCCAAA 

 

A. 
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B. 

 

Figure A8.  PAE does not alter NMDAR subunit mRNA levels in the dentate gyrus of the 

hippocampus. 

The dentate gyrus was microdissected from each animal [approximately 5-10µg of tissue, prepped with 

RNAlater (Life Technologies, Grand Island, NY) per manufacturer’s instructions] and was transferred to a 

QIAshredder™ homogenizer (Qiagen, Valencia CA) for thorough lysis and used according to 

manufacturer’s protocol.  RNA was extracted using an RNeasy® Plus Mini Kit (Qiagen) exactly as 

described by manufacturer.  The mRNA concentration was determined (OD 260 nm) using a NanoDrop® 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE).  Isolated mRNA was stored at -

80°C.  Reverse transcription was performed using a QuantiTect Reverse Transcription Kit according to the 

manufacturer’s protocol (Qiagen) and a PTC-200 Peltier Thermal Cycler.  Primers for the different 

NMDAR subunit mRNAs (Table A8.1) were designed as follows:  Grin1-1, Grin1-2, and Grin1-4 based on 

sequences from GenBank and Hollmann and colleagues (1993), Grin1-3 from Manta and colleagues 

(2011), and Grin2A, Grin2B, and Grin3A from GenBank.  PCR products for each primer were confirmed 

both with DNA gel electrophoresis and DNA sequencing.  Primer efficiencies were validated.  RT-PCR 

was performed using a QuantiFast SYBR Green PCR Kit (Qiagen) on a 7300 Real-Time PCR System 

(Applied Biosystems).  Proper controls, i.e. no template controls and reverse transcription controls, were 

used and a dissociation curve was evaluated.  Results were assessed using the CT method (n=7 for all 

mRNAs tested).  A.)  No significant difference was found between SAC and PAE mice for Grin1 splice 

variant mRNA levels.  B.)  No significant difference was found between SAC and PAE mice for Grin 2A, 

2B, or 3A mRNA levels. 
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Figure A9 

 

Figure A9.  NMDAR subunit levels are altered in a crude synaptosomal membrane fraction from the 

dentate gyrus of PAE animals. 

The dentate gyrus from SAC and PAE mice was microdissected, and a P2 fraction was obtained as 

described in (Samudio-Ruiz et al., 2010).  Western blot analysis was performed and analyzed as described 

in Chapter 5.  A.)  GluN1 subunit levels are increased in PAE animals compared to SAC (SAC 1.00, PAE 

3.10 ± 0.78; t[9] = 2.6982, p0.05).  B.)  GluN2A levels are increased in PAE animals compared to SAC 

(SAC 1.00, PAE 4.48 ± 0.59; t[5] = 5.9053, p0.01).  C.)  GluN2B levels are not significantly different in 

PAE animals vs. SAC (n=7). 

 

Discussion/Interpretation of results from Appendices 8 and 9: 

The data from Chapter 5 indicate that there is an alteration of NMDAR subunit 

levels at the synaptic membrane.  These alterations could arise for several reasons; 

alterations in subunit transcription, translation, and/or trafficking would all possibly lead 

to altered surface expression.  Appendix 8 examined mRNA levels for the different 

NMDAR subunits, and no significant differences were found between SAC and PAE 

animals, indicating that the dysregulation does not occur at the transcriptional level.  It 

should be noted, however, that these values had a large amount of variability associated 

with them, which may interfere with interpretation of the results.  Examination of the P2 

fraction shows an increase in GluN1 subunit levels and GluN2A subunit levels, with no 

change in GluN2B subunit levels.  This information leads to several different 

conclusions.  First, the increase in GluN1 levels seen at both the P2 fraction and the 
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synaptic membrane fraction would indicate that the increased synaptic membrane levels 

in PAE animals may be due to overall increases in GluN1 expression, possibly though 

altered GluN1 translation.  If the increase in GluN1 P2 subunit levels mimics the increase 

seen at the synaptic membrane and is GluN1-4 specific (C2´-containing GluN1), then the 

increase at the P2 fraction level may allow for increased trafficking to the surface, since 

this splice variant does not have the ERR signal found in the C1 cassette.  In addition, if 

GluN3A subunit levels are increased at the P2 fraction (not determined in this study), this 

may also aid in forward trafficking of the GluN1 subunit.  The GluN2A subunit increase 

in the P2 fraction, with no concurrent increase either mRNA levels or subunit levels in 

the synaptic or extrasynaptic membranes, is intriguing.  This would imply that GluN2A 

translation is increased in the endoplasmic reticulum (which is also fractionated with the 

P2 fraction), but is not forward trafficked to the synaptic membrane.  The likelihood of 

this is unknown.  GluN2A forward trafficking is activity dependent (Barria and Malinow, 

2002; Storey et al., 2011), so it is possible that while GluN2A translation is increased in 

PAE animals, they do not reach the surface due to overall decreased synaptic activity in 

PAE animals, possibly due to the observed decreased GluN2B synaptic levels.  The 

required activation for GluN2A incorporation is unknown; most studies examine activity-

dependent incorporation by blocking all NMDAR activity using AP5.  The decrease in 

GluN2B synaptic levels, with no associated decrease in mRNA or P2 levels, would 

indicate that the decrease is due to altered trafficking of the GluN2B subunit.  GluN2B 

synaptic incorporation is constitutive, indicating that alterations to the constitutive 

exocytic pathway may occur in PAE animals.  Recently, an N-glcosylation site in the M3-

M4 loop of the GluN2B N-terminus, which is not present in the GluN2A subunit, has 
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been shown to be responsible for the constitutive trafficking of the GluN2B subunit 

(Storey et al., 2011).  Alterations to glycosylation could alter forward trafficking of the 

GluN2B subunit.  Further studies are needed to determine the level of dysregulation for 

the NMDAR subunits.  
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Figure A10 

 

Figure A10.  Basal synaptic transmission is unaltered in PAE mice. 

A.  Input/Output (I/O) curves for ionotropic receptors in SAC and PAE mice.  Two-way ANOVA indicated 

no significant difference between I/O curves.  B.  NMDAR-mediated I/O curves in SAC and PAE mice.  

Two-way ANOVA indicated no significant difference. 
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Figure A11. 

 

Figure A11.  Prenatal alcohol exposure does not significantly alter NMDAR subunit levels in the 

extrasynaptic fraction. 

A.  GluN1 (n=10), B. GluN2A (n=7), and C. GluN2B (n=7) subunit levels are unaltered in PAE mice 

compared to SAC.  No significant difference was found for any subunits. 
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Abbreviations Used 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

AP5 2-amino-5-phsophonopentanoate 

ARND alcohol-related neurodevelopmental disorder 

AUC area under the curve 

BDNF brain derived neurotrophic factor 

BEC blood ethanol concentration 

CA cornu ammonis 

Ca
2+

 calcium ion 

CASK calcium/calmodulin-dependent serine protein kinase 

CaMKII calcium/calmodulin activated kinase II 

cAMP cyclic adenosine monophosphate 

Cd
2+

 cadmium ion 

CK2 casein kinase II 

CREB cAMP response element binding protein 

CS conditioned stimulus 

D1 dopamine 1 

DNMP delayed non-match to place 

DPC deoxycholate 

E embryonic day 

EDTA ethylene diaminetetraacetic acid 

EGTA ethylene glycol tetraacetic acid 

EPSC excitatory postsynaptic current 

ERK 1/2  extracellular signal-regulated kinase 1/2  

ER endoplasmic reticulum 

ERR endoplasmic reticulum retention 

EtOH ethanol 

FAS fetal alcohol syndrome 

FASD fetal alcohol spectrum disorder 

fEPSP field excitatory postsynaptic potential 

GABA γ-aminobutyric acid 
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GABAR γ-aminobutyric acid receptor 

GD gestational day 

HB homogenization buffer 

HEK293 human embryonic kidney cells 293 

HFS high frequency stimulation 

IBI interburst interval 

I/O input/output 

ITI intertrain interval 

LPP lateral perforant pathway 

LTP long term potentiation 

LTD long term depression 

MEK MAP kinase/ERK kinase 

Mg
2+

 magnesium ion 

mGluR metabotropic glutamate receptor 

MOPP molecular layer perforant path-associated cell 

MPAE moderate prenatal alcohol exposure 

MPP medial perforant pathway 

MRI magnetic resonance imaging 

mRNA messenger ribonucleic acid 

nAChR nicotinic acetylcholine receptor 

NAD nicotinamide adenine dinucleotide 

NBNI norbinaltorphimine 

NMDA N-methyl-D-aspartate 

NMDAR N-methyl-D-aspartate receptor 

PAE prenatal alcohol exposure 

PD postnatal day 

PDZ PSD-95/Dlg1/zo-1 protein 

PKA protein kinase A 

PKC protein kinase C 

PKM protein kinase M 

PSD postsynaptic density 
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PTP protein tyrosine phosphatase 

RAM radial arm maze 

RT-PCR real time polymerase chain reaction 

SAC saccharin 

SAP synapse associated protein 

SFK Src family kinase 

SGZ subgranular zone 

SNARE soluble NSF attachment protein receptor 

STEP striatal-enriched tyrosine phosphatase 

TBS theta burst stimulation 

TGN trans-Golgi network 

TM transmembrane 

TxP triton pellet fraction (synaptic fraction) 

TxS triton soluble fraction (extrasynaptic fraction) 

US unconditioned stimulus 

VGCC voltage gated calcium channel 

Zn
2+

  zinc ion 
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