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Abstract 
Forested ecosystems in the American Southwest are experiencing change at 

an unprecedented rate, largely due to mortality events triggered by increased 
temperatures, drought, and insect infestations. Large-scale changes in the 
distributions of these ecosystems can potentially alter regional-scale carbon, water 
and energy dynamics. One biome in particular that has experienced increased 
mortality and altered forest composition over the past 30 years are Piñon-Juniper 
woodlands (Pinus edulis, Juniperus spp.) in the American Southwest. New fields of 
study, in particular, Remote Sensing, are applying and adapting traditional methods 
for ecological monitoring of these woodlands. Remote sensing offers the potential to 
synoptically classify and quantify specific tree species within mixed communities 
such as Piñon-Juniper (PJ) woodlands. This thesis tests the utility and reliability of 
an Object-Based Image Analysis (OBIA) classification applied to Very-High 
Resolution (VHR) imagery fused with historical National Agricultural Imagery 
Program (NAIP) imagery for detecting and quantifying piñon-pine mortality trends 
on a plateau of PJ woodland in Central New Mexico. Specifically, the research seeks 
to determine: (1) the accuracy of OBIA applied to VHR imagery for quantifying live 
PJ and dead piñon; and (2) the potential of NAIP data for creating an ecological 
timeline of forest mortality from 2005-2014. The OBIA process generated an overall 
classification accuracy of over 70%, whereas the time-series analysis using NAIP 
resulted in an overestimation of piñon mortality when compared to two sample-plots 
at the region. 
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Chapter 1 Introduction 

Forested ecosystems in the American Southwest are experiencing change at an 

unprecedented rate, largely due to mortality events triggered by increased temperatures, 

drought, and insect infestations (Allen et al. 2010). Higher temperatures and extended 

droughts over the last two decades provided longer time periods that are favorable for 

insect infestations of forest systems (Gaylord et al. 2013). Since the late 1890’s, there 

have been six significant drought periods in the American Southwest; with the longest 

occurring from 1943 to 1957 and the most severe occurring in 2011-2013 over 80% of 

the contiguous United States (US), including the Southwest (Breshears et al. 2009; 

Williams et al. 2010; South Central Climate Science Center 2013; Ortiz, Breidenbach, 

and Kändler 2013). Die-off of piñon-pine (Pinus edulis), a critical component of piñon-

juniper (PJ) woodlands (the fourth largest biome in the US), is a result of these periods of 

drought, rising temperatures, and pine beetle infestation (Williams et al. 2010; Gaylord et 

al. 2013). Quantifying the changes PJ woodlands experience in response to climate at a 

local scale may increase our understanding of the changes occurring across this biome at 

more of a regional scale.   

Recent research into these woodlands at a regional scale used remotely sensed 

imagery to classify and quantify woodland distributions and mortality (Clifford, Cobb, 

and Buenemann 2011); while other research focused on more localized areas to compare 

with in-field ecological data (Eitel et al. 2011; Krofcheck et al.  2014; Brewer et al. 

2017). Remote sensing offers several advantages over traditional ecological monitoring 

methods: it provides a synoptic view, is generally unobtrusive to the environment, and 

can provide a temporal catalogue of change over time. With these advantages, the ability 
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to accurately classify and quantify specific tree species within mixed communities such 

as PJ woodlands is challenging (Clifford, Cobb, and Buenemann 2011). Beyond the 

communities themselves, differentiating between piñon and juniper is challenging using 

remotely sensed imagery, as the two species have similar spectral profiles, and are 

distributed in mixed patches (Brewer et al. 2017). It’s the mixed nature of this community 

type that limits the classification of these woodlands; even with a fine spatial resolution, 

mixed PJ patches are what can be derived (Eitel et al. 2011; Brewer et al. 2017). 

 Accurately classifying these mixed patches requires imagery at finer scales 

defined as Very High Resolution (VHR) (Clifford, Cobb, and Buenemann 2011; 

Colomina and Molina 2014). VHR, being a more recent paradigm in the field of remote 

sensing, currently allows for only one viable classification methodology: Object-Based 

Image Analysis (OBIA) (Blaschke 2010; Colomina and Molina 2014). OBIA is a multi-

step classification method where high-resolution images are segmented into object 

specific features based on characteristics such as location, proximity, and spectral 

homogeneity (Strahler, Woodcock, and Smith 1986; Blaschke et al. 2014). OBIA differs 

from traditional classification methods by describing scene phenomena as discrete objects 

(h-resolution), rather than individual spectral values contained within single pixels 

(Strahler, Woodcock, and Smith 1986; Blaschke 2010). 

 Using the high-resolution boundaries of PJ provided by the OBIA classification 

allows for identification of these patches in data with coarser spatial resolution but with a 

higher temporal resolution (Maxwell 2011). By applying a Normalized Difference 

Vegetation Index (NDVI) (Rouse et al. 1973) transformation constrained to the 

boundaries set by the OBIA classification, an evaluation of PJ health can be made over 
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many years (Gandhi et al. 2015). This evaluation can then be used to draw upon spatial 

distributions of mortality over many years of data with respect climatological events 

(Stoyan and Penttinen 2000). 

 It’s through these lenses that this thesis seeks to test the utility and reliability of 

using high spatial resolution remotely sensed imagery for detecting piñon mortality in 

Central New Mexico. An OBIA-based image classification of VHR imagery was used in 

conjunction with historical National Agricultural Imagery Program (NAIP) imagery to 

track mortality related to a recent drought period. Specifically, the research determines: 

(1) the accuracy of OBIA applied to VHR imagery for quantifying live PJ and dead 

piñon; and (2) the potential of NAIP data for creating an ecological timeline of forest 

mortality from 2005-2014. 

 

Chapter 2 Background 

2.1 Piñon-Juniper Woodlands 

PJ Woodlands are one of the most commonly found vegetation types in the American 

Southwest, are and are distributed from northern Utah to south-central New Mexico at 

elevations ranging from 1,370 to 2,290 meters above mean sea level (National Park 

Service 2017). PJ woodlands are heavily studied because of their widespread distribution 

throughout the Southwest, cultural significance, utility as a food and wood resource, and 

patterns of mortality in response to periods of drought (Evans and USDA Forest Serivce 

1988; Allen et al. 2010). Current mortality in PJ woodlands throughout the Southwest is 

related to a combination of increased temperatures, insect infestations, and recent drought 
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events in the early 2000’s (Shaw, Steed, and DeBlander 2005; Mueller et al. 2005), and 

more recently from 2009-2011 (Williams et al. 2012; Meddens et al. 2015).   

 Williams et al. 2010 forecasted that previous weather and drought conditions can 

be used as a proxy to model future trends in response to predicted climate scenarios.  

Vegetation communities, like PJ woodlands can be used as a proxy to better understand 

the severity of droughts at a regional/local level (Allen et al. 2010). On a more localized 

level, the two most recent drought events in the Middle Rio Grande region of New 

Mexico triggered mortality (average rate of 54% for piñon during the first event) and 

stressed piñons to a state that allowed beetle infestation during the second event (Gaylord 

et al. 2013; Meddens et al. 2015). Current predictions suggest that frequency and duration 

of these climate events are accelerating (IPCC 2014), prompting techniques and models  

that aid in a better understanding of potential future changes in climate and vegetation. 

 

2.2 Remote Sensing of Vegetation 

Beyond visualization, remote sensing analysis is used to record and transmit information 

beyond the capacity of the human eye and allows for a temporal record of change (Jensen 

2005). The ability to sense wavelengths beyond the visible portion of the electromagnetic 

spectrum (EMS) offers a distinct advantage in the detection and classification of certain 

vegetation types over traditional vegetation mapping methods. Healthy vegetation reflects 

very little in the visible portion of the EMS, but has a peak in the green region due to 

chlorophyll content, (Roberts, Smith, and Adams 1993). As leaves become 

physiologically stressed, less able to photosynthesize, and chlorophyll content reduces, 

reflectance increases in the blue and red regions and decreases in the green region (Jensen 
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2005). Even with this dynamic reflectance in the visible spectrum, vegetation has peak 

reflectance in the near-infrared (NIR) indicating when vegetation are healthy, diseased, 

stressed, or entering senescence (Knipling 1970). Being the main tool for the remote 

sensing of vegetation, the ability to record and quantify the NIR portion of the EMS also 

constitutes the building blocks for vegetation indices (Jensen 2005). 

 

2.2.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is one of the most widely employed spectral vegetation indices used by remote 

sensing scientists. Vegetation indices are dimensionless, radiometric measures. NDVI 

indicates the abundance and activity of green vegetation (Jensen 2005), and only requires 

two spectral bands: red and NIR (Rouse et al. 1973). Healthy vegetation absorbs most 

visible light for photosynthesis and reflects NIR wavelengths due to the turbid, water 

filled cells of its spongy mesophyll (Knipling 1970). The difference between these two 

spectral regions indicates photosynthetic activity or stress status of vegetation in imagery. 

NDVI was first used by Rouse et al. (1973) and outputs pixel values ranging from -1 to 1, 

with higher values implying a higher concentration of photosynthetically active 

vegetation. 

NDVI is given below (eq. 1):  

NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑅𝑅𝑅𝑅

        eq. 1 

 

NDVI values can change between species based on physiological stress, resulting 

from the percent of NIR energy reflected by the specimen (Knipling 1970). Changes in 

NDVI can be used to create threshold values to better quantify vegetation health (Gandhi 
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et al. 2015). NDVI thresholding was successfully used for studying vegetation change 

(Gandhi et al. 2015) and to model vegetation mortality (Sonwalkar, Fang, and Sun 2010). 

NDVI is one of the most widely used applications of imagery gathered by the National 

Agriculture Imagery Program (NAIP). 

The primary directive of NAIP is to acquire aerial imagery during the agricultural 

growing seasons and make orthophotos available to governmental agencies and the 

public within a year of acquisition within the continental US (USDA Farm Service 

Agency 2006). This data is acquired at a one meter spatial resolution in four spectral 

bands: near-infrared, red, green, and blue, and is output in digital ortho quarter quad 

(DOQQ) tiles (USDA Farm Service Agency 2006). Currently acquired on a three-year 

cycle, NAIP has been leveraged for a wide variety of applications. Davies et al. (2010) 

used NAIP data to relate juniper cover to environmental variables and (Moskal, Styers, 

and Halabisky 2011) for monitoring urban tree coverage. Hayes, Miller, and Murphy 

(2014) reported high accuracy land cover classifications using NAIP data; and Hulet et al. 

(2014) found success using NAIP data for mapping distribution and biomass of piñon-

juniper woodlands. 

 

2.4 Object-Based Image Analysis 

Spatial resolutions ranging from sub-centimeter to one-meter are considered to be VHR. 

In most cases, VHR imagery analysis employs the H-resolution scene model, where 

objects are represented by many pixels (Strahler, Woodcock, and Smith 1986; Lippitt 

2015). This differs from the traditional paradigm of remote sensing, which traditionally 

relied on L-resolution scene models where one pixel may represent a mixture of discrete 
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objects (Strahler, Woodcock, and Smith 1986; Lippitt 2015). OBIA is a non-traditional 

paradigm of remote sensing, and the only current commercially available processing 

technique that can be leveraged to interpret and classify an H-resolution scene model 

(Lippitt 2015). 

OBIA uses groups of pixels, or segments, to form objects to classify a scene. In 

contrast, traditional pixel-based classifiers use spectral values of individual pixels 

(Ryherd and Woodcock 1996). The OBIA process begins by creating machine-defined 

segments based on the spectral homogeneity of pixels. From the segmented image, a user 

then creates a classification model to define how segments will be classified either by 

defining rules through a decision tree or by choosing example segments for objects. The 

OBIA workflow is an iterative process of defining classes from objects to yield a final 

classification of the image (Blaschke et al. 2014). 

While VHR imagery is typically limited to visible and near-infrared bands, the 

inclusion of textural and spatial information in addition to spectral information lets OBIA 

classify this imagery more efficiently than traditional pixel-based approaches, which rely 

solely on spectral data (Laliberte et al. 2007). Several studies (Kamal, Phinn, and 

Johansen 2015; Lehmann et al. 2015; Knoth et al. 2013) report high classification 

accuracies using OBIA applied to VHR imagery.  

 Utilizing the resolutions of VHR imagery, OBIA can be employed to monitor and 

classify specific vegetation types. Specifically, Laliberte et al. (2011) recorded high 

accuracies when compared to commercially available satellite options for rangeland 

vegetation in southern New Mexico. Knoth et al. (2013) recorded accuracies over 91% 

for specific species when measuring and quantifying vegetation health in response to 
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restoration efforts following deforestation in northwest Germany. Finally, Lehmann et al. 

(2015) used OBIA and VHR with great success to classify beetle infested trees in western 

Germany. 

 Using OBIA to classify at this resolution creates discrete boundaries of the 

vegetation types being studied. These boundaries can subsequently be applied to datasets 

at a coarser resolution than the VHR imagery they were derived from (Maxwell 2011). 

NAIP has a coarser spatial resolution but a greater temporal frequency than VHR 

imagery, and thus, can be used to create a timeline of vegetation health and mortality 

(Davies et al. 2010). 

 

2.6 Assessing Patterns of Mortality 

Recent trends for detecting change in woodland composition and mortality use methods 

that convert individual stand or patch level data collected from the field to vector 

polygons (Stoyan and Penttinen 2000; Liu et al. 2007). Patch level NDVI data allows for 

generation of thresholds to distinguish live and dead vegetation (Gandhi et al. 2015).  

NDVI thresholds are used to describe structural changes in woodland composition related 

to increasing or decreasing vegetation health (Gandhi et al. 2015). By using NDVI 

thresholds to quantify a ratio of live to dead, a patch level assessment of mortality can be 

derived (Liu et al. 2007). When applied to datasets from prior years, changes in 

vegetation health can be modeled, providing a temporal record of vegetation change 

(Gandhi et al. 2015). 

These patch level data can be further evaluated with a variety of spatial statistical 

tests (Stoyan and Penttinen 2000). Specifically, the Moran’s I test, a measurement of 
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spatial autocorrelation in relation to neighbors (Moran 1950), is used to describe 

woodland mortality on a neighborhood basis (Stoyan and Penttinen 2000; Liu et al. 

2007). By way of comparing decreasing values in NDVI on a neighborhood basis, 

inferences about mortality beyond drought and temperature (pine beetle infestation, water 

uptake, etc.) in woodland systems can be made (Stoyan and Penttinen 2000; Meddens et 

al. 2015; Morillas et al. 2017). 

 

Chapter 3 Methodology 

An OBIA classification was applied to VHR color-infrared (CIR) imagery acquired in 

2014 over the Deer Creek Plateau (DCP) to classify dominant vegetation community-

types into five classes: live piñon-juniper, dead piñon-juniper, shrub, herbaceous, and 

bare ground. From this classification, a vector layer of live and dead piñon-juniper 

segments was extracted. A multi-step python toolbox was created to apply the vector 

layer of live PJ and dead piñon segments to the 2005, 2009, 2011, and 2014 NAIP 

imagery. NDVI thresholding of mean segment NDVI values from NAIP was used to 

generate an ecological timeline of piñon mortality for the plateau.  

 

3.1 Study Area 

The study area for this research is located on a plateau approximately 8 km south of the 

town of Mountainair, New Mexico (Figure 1). The Litvak lab is running two eddy 

covariance towers here, one of which is an Ameriflux core site (34º 26ʹ 55” N, 106º 14’ 

44” W). The other flux tower is 5 km away, installed through DOE funded research to 
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examine the consequences of piñon mortality on ecosystem scale fluxes (Krofcheck et al. 

2014; Morillas et al. 2017). The region is dominated by piñon-juniper woodlands and 

ranges in elevation from 2,000 to 2,200 meters. The study region has a mean annual 

precipitation of 37.2 cm and a mean temperature of 67.6 °F (1984-2014) (PRISM Climate 

Group). 

 

 
Figure 1.  Map showing the Study Area (outlined in red) and DCP in reference to New 
Mexico and the United States.  
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3.2 Data 

3.2.1 Image Data 

The VHR imagery used in this study was acquired on September 2, 2014 using a GT500 

ultralight aircraft (courtesy of the University of New Mexico Litvak & GIScience for 

Environmental Management (GEM) Labs). Two Canon 5D Mark II cameras were used to 

acquire the imagery; one camera recorded reflectance in red, green, and blue 

wavelengths, while the other camera recorded blue green, and NIR (800-900 nm) 

wavelengths. Together, these two cameras were used to acquire imagery for the entire 

Deer Creek Plateau at a nominal GSD of 7 cm. Four-band (B, G, R, NIR) NAIP data (1 m 

spatial resolution) for 2009, 2011, and 2014 were acquired from the Earth Data Analysis 

Center (EDAC) at The University of New Mexico (UNM). 

 

3.2.2 Calibration and Validation Data 

Classification calibration and validation data used in this study comes from multiple 

sources. Field-based reference data of dominant vegetation species were geo-located 

using a Trimble R10 RTK unit and a Garmin eTrex 20 hand-held receiver. These field-

based reference points were used to select appropriate segments of live PJ and dead piñon 

within the imagery rather than using these points in a raw fashion; thereby reducing 

effects of spatial error. Image-based reference data were collected for herbaceous, bare 

ground and vegetation shade classes; these shade classes were included but are only 

applicable for the calibration data. Following classification, shade classes were merged 

with non-shade classes. A list of classes and the number of calibration and validation 
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points are shown in Table 1. A map showing the distribution of calibration and validation 

points in shown in Figure 2. 

Table 1 . Number of pixels per class selected for calibration/validation. 
Class Name Number of Calibration pixels Number of Validation pixels 
Live PJ 50 70 
Dead Piñon 50 50 
Herbaceous 50 70 
Shrub 15 15 
Bare Ground 35 55 
Shaded Live PJ 20 N/A 
Shaded Herbaceous 20 N/A 
Shaded Bare Ground 20 N/A 
Total 260 260 

 

 
Figure 2 . Map showing the distribution of calibration and validation data.  
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3.2.3 Climate Data 

Climate data provided by the Litvak Lab at The University of New Mexico was used for 

the years 2008-2014. This data included mean daily precipitation and the mean daily 

temperatures for the study area as reported by the two flux towers at the plateau. This 

climate data was used for comparison with OBIA/NDVI based estimates of species 

decline and mortality with regards to changes in precipitation and temperature prior to, 

during, and following the 2009-2013 drought period. 

 

3.3 Preprocessing 

3.3.1 VHR Imagery 

Several steps were required to process raw imagery into a format that could be used as an 

input for OBIA. Following image acquisition, images were converted from a raw to .jpg 

format by the GEM lab. In order to geometrically correct, reconstruct and mosaic 

imagery of the DCP from the 4,242 individual images, a structure-from-motion–multi-

view stereo (SFM-MVS) process was used. To aid in the process of scene reconstruction, 

16 GPS/GNSS points collected using a Trimble R10 RTK unit were introduced as control 

to the NIR,G,B pointcloud. These points were collected at the same time as the cal/val 

data. Following acquisition, these points had a post-differential correction applied (OPUS 

National Geodetic Survey), and were output with a combined root mean square error 

(RMSE) of less than 16 mm. 

A pointcloud for the R,G,B images was then generated and aligned to the 

resultant NIR,G,B pointcloud. The NIR,G,B pointcloud was then used to create a digital 

surface model (DSM) at a spatial resolution of 27.8 cm. An NIR,G,B ortho-mosaic at a 
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spatial resolution of 7 cm with an overall RMSE of 16 cm (measured using independent 

ground control points) was generated using the DSM for terrain correction. The process 

was then repeated for the R,G,B pointcloud aligned to the NIR,G,B pointcloud. Finally, a 

4-band orthophoto of NIR,R,G,B using a layer stack function was generated. Following 

the layer stack function, a forward principal component analysis (PCA) rotation was 

performed producing four PCA bands. An inverse PCA was performed using the first 

three PCA bands in order to transform the PCA bands back to the original imagery. The 

goal of the PCA was to reduce the effects of bidirectional reflectance distribution formula 

(BDRF) on the imagery. The final four-band VHR imagery is show in Figure 3.  

 
Figure 3 . Color-Infrared orthophoto generated from VHR imagery.  
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3.3.2 NAIP Data 

Geometric corrections were applied to the 2014 NAIP dataset using a second order 

polynomial transformation. This transformation was done using control points to align 

the dataset to the VHR imagery at an RMSE of 10 cm (measured using 10 check points). 

NAIP datasets for the years of 2005, 2009 and 2011 were referenced to the corrected 

2014 dataset using a second order polynomial transformation at an RMSE of 50 cm. 

 

3.4 OBIA Workflow 

The 4-Band DCP orthomosaic was imported into Environment for Visualizing Images 

(ENVI)’s Feature Extraction (FX) module (Harris Geospatial 2008) for OBIA.  Users 

have the option of using Rule or Example-based feature extraction methods, as shown in 

the workflow in Figure 4. The Example-based (Supervised) feature extraction method 

was selected for this study. 
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Figure 4 . OBIA Workflow for ENVI Feature  
Extraction Module (Harris Geospatial 2008).  
 

Roads were manually classified and masked out to reduce the effects of human-

made changes to the environment prior to input into FX. An additional mask was created 

to remove areas affected by image blur. The mask was generated by exploring the 

imagery to identify areas of low-texture and manually classify these areas to prevent 

under-segmentation. These areas occur towards the center, but also in riparian areas, and 

in the south-east corner of the imagery. These areas are the byproducts of cameras losing 

focus during image acquisition. 

The masked subset was input into FX for the first step in the OBIA process, 

image segmentation. Scale level, merge level, and texture kernel size were tested based 
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on analyzing specific areas of the study area, and by running example classifications. A 

Scale level (using the edge option) of 35% was ideal for deriving sharp boundaries 

between differing classes while maintaining computational efficiency. A full lambda 

schedule algorithm was used for the Merge level at a factor of 85% to merge together 

larger textured areas such as trees. The 85% merge factor provided the most complete 

segments between the woodland classes while preserving the boundaries between the 

other classes. Finally, a texture kernel size of 5 was implemented based on the size of 

pixels in comparison to the size of objects.  

 Following segmentation, “example” segments for each of the eight classes were 

selected using the calibration data as reference. Mean spectral profiles were generated for 

calibration and validation data to evaluate separability between classes (Figure 5).  

 

  
Figure 5 . Mean spectral profiles of training segments used during image classification. 

 
After selection of training data, a support vector machine (SVM) classifier was 

implemented. The SVM  has been found to provide accurate results for complex data sets 

with little separability between classes (Harris Geospatial 2008). Along with the 

classification algorithm, input features for the classification were selected (Table 2). The 
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spectral attributes relate to the statistics of individual pixel values within each segment 

for each band of the VHR imagery. The texture attributes used are similar to the spectral 

attributes but relate to the statistics of the groupings of pixels within each example 

segment. The spatial attributes are geometric measurements of each example segment. 

These attributes were selected based on the complex nature of PJ canopies and were 

found to add the greatest amount of distinction between each class located in the study 

area based on trial and error. Further spatial attributes such as length, direction, etc. were 

available, but did not improve classification. 

Table 2. Description of Classification Attributes used in OBIA (Harris Geospatial 2008). 
Attribute                    Description  
Spectral  
Mean Mean value of pixels for each band 
Maximum Maximum value of pixels for each band 
Minimum Minimum value of pixels for each band 
Standard Deviation Standard deviation of pixels for each band 
Texture  
Range Average data range of pixels comprising the region inside the kernel 
Mean Average value of pixels comprising the region inside the kernel 
Variance Average variance of pixels comprising the region inside the kernel 
Entropy Average entropy value of pixels comprising the region inside the kernel 
Spatial  
Area Total area of the polygon, minus the area of the holes. 
Compactness A shape measure that indicates the compactness of the polygon. 
Convexity A measure of the convexity of the polygon. 
Solidity A shape measure that compares the area of the polygon to the area of a convex 

hull surrounding the polygon. 
Roundness A shape measure that compares the area of the polygon to the square of the 

maximum diameter of the polygon. 
Form Factor A shape measure that compares the area of the polygon to the square of the total 

perimeter. 
Elongation A shape measure that indicates the ratio of the major axis of the polygon to the 

minor axis of the polygon. 
Rectangular Fit A shape measure that indicates how well the shape is described by a rectangle. 
Number of Holes The number of holes in the polygon. 
Hole Area/Solid 
Area 

The ratio of the total area of the polygon to the area of the outer contour of the 
polygon 
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3.5 Accuracy Assessment 

Using the validation points, a confusion matrix was generated to assess the overall 

accuracy, user’s/producer’s accuracy, as well as a kappa coefficient of each classification. 

Overall accuracy is a measure of the number of validation pixels classified correctly 

divided by the total number of validation pixels; user’s accuracy is the degree of 

commission (error of inclusion), and producer’s accuracy is the degree of omission (error 

of exclusion) (Jensen 2005). Kappa coefficient within the matrix is a degree of agreement 

similar to overall accuracy, but differs by accounting for the probability of correct 

classification by chance based on training samples (Jensen 2005). 

 

3.6 NDVI Thresholding  

The one-meter resolution of the NAIP imagery makes it difficult to identify individual 

patches of piñon-juniper. To aid in the discrimination of live and dead patches, NDVI 

images were generated for each NAIP dataset using a multi-step python toolbox. The 

purpose of the toolbox is to subset rasters to a region, perform NDVI, extract mean 

values of NDVI at specific segments across multiple image datasets, and create a binary 

decision tree to label segments as live or dead based on these mean values. The “steps” 

for the python toolbox are individual modules, each module produces specific outputs.   

The first module, hereafter referred to as Module 1, subsets the input rasters by a 

vector boundary, or “study area”, and then performs an NDVI operation on each input 

raster layer. The process steps for Module 1 are shown in Figure 6. For this project, the 

input rasters included the NAIP data for 2005, 2009, 2011 and 2014, and the input vector 
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boundary was the study area for this project. From Module 1, NDVI rasters were output 

for each input year. 

 

 
Figure 6 .  Workflow for Module 1.  
  

The second step, Module 2, intersects the outputs from Module 1 with a vector 

boundary layer delineating live and dead segments. The input vector boundary was 

derived from the OBIA classification by taking the classification output, converting it to a 

vector format, selecting only live and dead PJ patches, and removing any artifacts from 

the layer.  

Module 2 (Figure 7) was developed to convert NDVI pixels to point-vector 

values, and then perform a spatial join with the input polygon layer to generate NDVI 

values for live and dead PJ patches. After the spatial join is performed, cell values are 

then averaged within each patch, creating a vector layer of composite NDVI values. The 

second step in Module 2 uses the composite NDVI values for the first input year (2014) 

to define live and dead NDVI values for the other image dates.  

Module 2 performs this process by creating a decision tree as shown in Figure 8. 

Module 2 uses this decision tree to make a binary decision creating class values of live 
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and dead for the years of data prior to the original input year, whereby positive NDVI is 

live and negative NDVI is dead. The OBIA outputs of live PJ and dead piñon were used 

to determine live and dead segments within the NAIP imagery. Using these locations, it 

would only select dead segments to determine if they were live for each prior year of 

data. For this project, Module 2 was used to output both a vector layer highlighting live 

and dead and a raster layer of composite NDVI values for individual PJ patches for the 

2014 NAIP dataset, the same products were also output for the years of 2011, 2009 and 

2005. 

 

 

 
Figure 7 . Workflow for Module 2.  
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Figure 8 .  Decision Tree Workflow for labeling of Live/Dead PJ patches.  
 

3.7 Piñon-Juniper Mortality and Change 

To visualize a timeline of mortality across the plateau, the third step of the python 

toolbox was created, referred to as Module 3 (Figure 9). Following NDVI thresholding, a 

mask is applied to the vector layers output from Module 2 to display only ‘new’ dead PJ 

patches for each year. The module then generates a layer that combines all of the new 

dead patches for each image year. Image differencing (where the older NDVI dataset is 

subtracted from the more recent NDVI dataset) is then used to visualize and highlight 

NDVI changes between the study years. The final step of Module 3 computes a local 

Moran’s I for each year of ‘new’ dead patches, to visualize neighborhoods of mortality 

for each year across the study area by testing for spatial autocorrelation. 
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Figure 9 . Workflow for Module 3.  
 

 Using Module 3, a single layer denoting dead patches of piñon specific to each 

year of NAIP data was output. Image differenced NDVI raster layers between 2005 and 

2009, 2009 and 2011, 2011 and 2014, and throughout the study period (2005 to 2014) 

were also output.  Finally, a local Moran’s I for the new patches of dead piñon within 

each dataset was output. 

In order to quantify change over time, these outputs from Module 3 were used to 

calculate the percentage of conversion from live to dead PJ for each year of the study 

period. Finally, a comparison of mortality and changes in vegetation distribution to daily 

readings of precipitation and mean temperature as collected by the Litvak Lab for the 

Deer Creek Plateau was performed. 
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Chapter 4 Results 

Results are organized in three sections: 1) OBIA-based classification accuracy and 2014 

vegetation distribution at the DCP, 2) an evaluation of mortality based on NDVI 

Thresholding, and 3) piñon mortality and change with respect to climate.  

 

4.1 OBIA Classification Results 

The outputs from OBIA included segmented and classified images. These were used to 

generate an accuracy assessment and classified maps. The classified maps were created 

for both the entire study area as well as over long-term research plots. 

 

4.1.1 Accuracy Assessment 

Results from the accuracy assessment are shown in confusion matrices (Table 3). 

Overall classification accuracy was 71.92%, and Kappa was 0.63. Producer’s accuracy 

ranged from 91.43% (live PJ) to 26.67% (shrub) while user’s accuracy ranged from 

87.15% (dead piñon) to 57.14% (shrub). The classes with the highest accuracies were 

both live PJ and dead piñon. In some areas, live PJ was confused with both herbaceous 

and bare ground, and dead piñon was confused with herbaceous, bare ground and even 

live PJ at times. 

Herbaceous and bare ground were difficult to distinguish, where based on 

omission error, 32.72% of the bare ground class was classified as herbaceous, and 

14.28% of the herbaceous class was classified as bare ground. Herbaceous was also 

misclassified as live PJ (14.28%) and misclassification within the shrub class occurred 

most often with the live PJ class (33.33%). 
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Table 3 .  Confusion Matrix generated from the Validation Data 
Class  Live PJ Dead 

Piñon 
Herbaceous Shrub Bare 

Ground 
Total User’s 

Acc 
Commission 

Error 
Live PJ  64 3 10 5 1 83 77.12 22.88 
Dead Piñon 0 42 4 2 1 49 85.71 14.29 
Herbaceous 5 2 45 2 18 72 62.50 37.50 
Shrub 0 0 1 4 2 7 57.14 52.86 
Bare 
Ground 

1 3 10 2 33 52 67.31 32.69 

Total 70 50 70 15 55 260   
Producer’s 
Acc 

91.43 84 64.29 26.67 63.64    

Omission 
Error 

8.57 16 35.71 73.33 36.36    

Overall 
Accuracy 

=  
71.92% 

 Kappa 
Coefficient 

=    0.63     

 

4.1.2 Evaluation of OBIA Classified Maps 

The vegetation map generated from OBIA classification is shown in Figure 10. Two 

well-known areas were selected for evaluating classification results: 1) the girdled site 

(PJG) in the eastern portion of the DCP, and 2) the control site (PJC) located in the south-

central portion of the DCP (Figure 11). 



 
 

26 

 
Figure 10 .  Map of the OBIA-based image vegetation classification for the Deer Creek 
Plateau.  
 

Visually, the distribution of classes across the study area is similar to that of the 

input imagery where vegetation classes are distributed in expected locations. The 

distribution patterns modeled by the classification appear representative of the patterns of 

vegetation communities at the DCP. The masked areas defined by poor texture make up 

close to one-eighth of the classification. These areas can largely be defined by what 

seems to be two flight lines of the imagery but were also identified in other portions of 

the imagery, specifically the south-east corner and some riparian areas. 

Areal estimates (percent cover) output from OBIA for each vegetation class were 

calculated to evaluate the distribution of classes across the DCP (Table 4). Live PJ and 
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herbaceous vegetation are the dominant vegetation cover types, covering 44.06% and 

22.30% of the DCP in 2014, respectively. The amount of dead piñon modeled by the 

OBIA for 2014 was 21.09%. This estimation of dead piñon cover is incongruous to the 

results of (Brewer et al. 2017) for this region where fractional estimates of dead piñon 

were close to 70% for the year of 2014. 

 

Table 4 .  Area and over percentages for OBIA-based  
Vegetation Classes.  
Class Area (ha)  Percent of Total Area 
Live PJ 461.37 44.06% 
Dead Piñon 220.80 21.09% 
Herbaceous 233.49 22.30% 
Shrub 19.04 1.82% 
Bare Ground 112.44 10.74% 
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Figure 11 .  Deer Creek Plateau Evaluation Areas. VHR imagery and classified maps shown 
for the Girdled Site (A and B), and Control Site (C and D). 
 

The PJG and PJC locations provide a visual comparison of classification results 

(Figure 11). At this scale, it is easier to evaluate vegetation distributions. A visual 

evaluation of locations near these sites indicates that at the PJC (insets C and D), both 

live PJ and dead piñon appear to be accurately classified in terms of location, size and 

shape. In contrast, at the PJG (insets A and B) both patches of live PJ and dead piñon are 

over classified and mixed with herbaceous/bare ground in several instances (likely due to 

herbaceous green-up). The PJG represents a location where there was potentially under 

segmentation and inaccurate classification due to low-textural contrast. 
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4.2 NDVI Thresholding 

 
Figure 12 . Normalized Difference Vegetation Index (NDVI) images for the DCP study 
area for: a) 2005, b) 2009, c) 2011, and d) 2014. 
 

Evaluation of the PJG and PJC sites (Figure 13) for the NAIP image dates 

demonstrate that the NAIP NDVI output was sensitive to the changes observed on the 

ground at these sites. Insets A through C show the PJG with the 4-ha site boundary 

overlaid (Krofcheck et al. 2014). In 2009 (inset A) low-values of NDVI are associated 

with low-lying herbaceous and bare ground areas, while higher values are associated with 

woodland areas. For 2011 (inset B), there is a stark decrease in NDVI for these woodland 
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areas relating to the girdling of piñon at this site (Eitel et al. 2011). By 2014 (inset C) 

there is a further decrease in NDVI (resulting from mortality) among certain woodland 

areas due to the drought from 2011-2013 (Krofcheck et al. 2016). For the PJC, insets D 

through F, a similar 4-ha boundary was drawn over the site with the covariance tower 

located in the center. At the PJC there is little change in NDVI between 2009 (inset D) 

and 2011 (inset E) but there is a decrease in NDVI in low-lying herbaceous and bare 

ground areas. In 2014 (inset F), there is a decrease in NDVI in woodland areas.  

 
Figure 13. NDVI images for the PJG for the years of a) 2009, b) 2011, and c) 2014, and 
for the PJC for the years of d) 2009, e) 2011, and f) 2014. 
 

Changes in the distribution of live PJ to dead piñon (output from Module 2) as 

modeled by OBIA and derived from NAIP are documented in Figure 14. These changes 
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were derived from threshold values where an NDVI above 0 constituted live, and below 

zero constituted dead. The proportion of Live PJ to dead piñon was calculated for each 

image date (Figure 15). There was a small percentage of mortality that was modeled in 

the 2005 (7.06 ha), which increased slightly in 2009 (8.31 ha), with large increases in 

mortality modeled in 2011 (206.45 ha) and in 2014 (220.80 ha). While the degree of 

accuracy surrounding these areal estimates is unknown, the timing of these estimates 

largely contrast both estimates by the Litvak Lab, but also in previous studies (Krofcheck 

et al. 2014; Brewer et al. 2017). While mortality did occur at unprecedented rates during 

the drought period, these changes only occurred at the PJG in 2011, and not until 2013 

for the remainder of the plateau. Therefore, while PJ may not have experienced dramatic 

mortality in 2011, low-lying herbaceous could have representing negative NDVI values. 

These values would cause confusion in the thresholding process allowing for ‘dead’ 

patches to be derived in locations of otherwise healthy PJ.  
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Figure 14. Map of the entire plateau showing live/dead vector boundaries for a) 2005, b) 
2009, c) 2011, and d) 2014. 
 

 
Figure 15. Proportion of live and dead PJ derived from NDVI thresholded NAIP  
images. 
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4.3 Piñon Mortality 

The results from Module 3 were compiled into three sections, 1) the quantification of 

change over time based on NDVI thresholded NAIP images; 2) assessment of mortality 

patterns from Moran’s I test; and 3) the evaluation of piñon-juniper mortality with respect 

to climate during the study period. 

 

4.3.1 Quantification of Change 

Estimates for areal coverage (for the total area of the plateau covered by PJ) as modeled 

by OBIA derived from NDVI thresholded NAIP images are provided in Table 4. There 

was a slight decrease in live PJ from 2005 (98.97% of total PJ area) to 98.82% in 2009, 

with a substantial decrease in live PJ to 68.64% in 2011. From 2011 to 2014 this trend 

continued where live PJ decreased to cover only 67.60% of the total are covered by PJ. 

For the entire study period as modeled by OBIA and NAIP the overall change was 

decrease in live PJ by 31.37% for the total area covered by live PJ.  

 

Table 4 . Estimates of Percent Change (in PJ area) from Live to Dead 
Image Date Live PJ Area (ha)  Dead Piñon 

Area (ha)  
Mortality Increase from 
Previous Image Date (%) 

2005 98.97% 1.03% N/A 

2009 98.82% 1.18% 14.28% 

2011 68.64% 31.36% 247.5% 

2014 67.60% 32.40% 6.96% 

 

 The timing and distribution of piñon mortality across the study area, and in the 

PJG and PJC sites is visualized in Figure 16. Similar to the outputs from Module 2, the 

most substantial decrease in live PJ across the entirety of the DCP as modeled by OBIA 
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and NAIP is 2011. More than the incongruous timing of mortality compared to previous 

studies, a further evaluation of the OBIA classification can be made.  

Specifically, at PJC, the fine resolution boundaries for PJ still persist after being 

fused with the NAIP data. Similarly, the under segmented areas at the PJG also persist. 

Compared to the overview of increasing and decreasing NDVI values at PJG and PJC 

(Figure 13) an association between under segmentation and over estimation of dead piñon 

can be inferred. When compared to the work of the Litvak Lab, this association becomes 

stronger. For PJG, the OBIA classification applied to NAIP found the total PJ area to be 

66.59 ha in 2009, when the Litvak in-field measurement was 29.3 for total basal area 

(Morillas et al. 2017). For the PJC, the OBIA measurement was 54.47 ha, when the 

Litvak measurement was 31.3 ha for total basal area (Morillas et al. 2017). While basal 

area is not a perfect metric for quantifying this difference as the imagery measurements 

would come from canopy measurements; it is unlikely that PJ canopies alone would 

represent these dramatic areal differences. Therefore, even with finer boundaries for PJG 

at the PJC, it is a reasonable assumption that overestimation of PJ area occurred. This 

overestimation would allow for low-lying herbaceous die-off and the negative NDVI 

values associated with it to create an over-estimation of mortality. 



 
 

35 

 
Figure 16 . Map showing the location and date for mortality of PJ patches across the 
plateau with insets for the PJG and PJC (outlined in red).  
 

Maps generated from image differencing the composite NDVI values (Figure 17) 

depict increase and decrease in PJ from one image date to the next. These maps provide a 

way to track the rate and distribution of change in NDVI values in PJ across the study 

period. Changes in NDVI for the entire study area, and within PJ segmented NDVI 

patches are shown in Figure 18. Both maps (Figures 17 and 18) highlight similar trends 

of decreasing NDVI throughout the study period with the starkest change occurring 

between 2009 and 2011. While this change cannot be directly attributed to mortality, it 

does highlight physiological stress between PJ cover and in the study region. 
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Figure 17 .  Map showing the results from the image differencing for a) 2005-2009, b) 
2009-2011, c) 2011-2014, and d) 2005-2014. 
 

  
Figure 18 . Box and whisker plot for values of NDVI for both the study area and 
patches of PJ throughout the study period 
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4.3.2 Spatial Patterns of Mortality 

A map derived from the Moran’s I test results visualizes areas of clustering of PJ 

mortality (Figure 19). High-high cluster areas indicate a high degree of spatial 

autocorrelation of negative NDVI values, which is assumed to represent dead trees. Low-

Low clusters indicate the lowest degree of spatial autocorrelation of negative values; and 

High-Low/Low-High clusters indicate a moderate degree of spatial autocorrelation. All 

of these cluster distinctions present a case for spatial dependency in neighborhoods of 

negative NDVI values and mortality (Li, Calder, and Cressie 2007). High-High clusters 

have a p-value of < .01, High-Low and Low-High have a p-value between .01 and .05, 

and Low-Low clusters have a p-value of < .05. P-value is a measurement of probability, 

the values with the lowest p-values contain the highest probability of spatial 

autocorrelation. 
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Figure 19 .  Map showing the locations of high (red) and low (blue) Moran’s I clusters 
across the entire plateau. High values represent areas of high statistical significance, while 
low values represent areas of low statistical significance 
 

There were no significant clusters within the dead patches for 2005 and 2009. For 

2011, which would be the dead segments derived from 2009-2011, the highest degree of 

spatial autocorrelation among dead piñon patches occurred on the more northern portions 

of the study area, with some in the south-eastern portion as well. The clusters on the 

northern portion of the study area are located close to riparian areas of the plateau, on 

more northern facing aspects. In 2014, the clusters represent dead segments derived from 

2011-2014, and occur in similar areas. The clusters for both 2011 and 2014 are 

distributed across the DCP similarly and are related by having inverse degrees of 
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significance, whereby locations of high clustering for 2011 were areas of low clustering 

for 2014. 

 

4.3.3 Climate and Mortality Evaluation 

 
Figure 20 .  Climate Data for the PJG and PJC gathered by the Litvak Lab. 
 

  Precipitation and temperature data collected by the Litvak Lab at the Control and 

Girdled sites are shown in Figure 21. The results gathered from the NDVI thresholded 

maps indicated that there was an increase in NDVI for 2009 and a sharp decline in 2011. 

These results are gathered from NAIP data which is acquired at only one point of the year 

and is not representative of biomass for the entire year. For the 2009 NAIP dataset, there 

was 1.131 mm of average daily precipitation in the month before acquisition. In 2011, 

there was 0.008 mm average daily precipitation in the month before acquisition. For the 

entire year before the 2009 image acquisition, there was a maximum of 23 days where 

there was less than 1 mm of precipitation for any day in that period. Precipitation in 2011 

contrasts substantially from 2009, where there was a maximum of 116 days with less than 
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1 mm of precipitation recorded. Both of these dry periods occur in the spring directly 

before the summer acquisition dates of the NAIP imagery. 

 Daily temperature data for 2011 depicts a climatic event that may have triggered 

mortality. During the first three days of February in 2011 there was a freeze that 

occurred. Temperatures for all three days were below 15 degrees Fahrenheit with one day 

being below 0. There is a possibility that temperatures this low could trigger mortality in 

already stressed PJ as described by Meddens et al. (2015). This mortality could be 

associated with the lower NDVI values recorded in the 2011 NAIP dataset. A more 

reasonable association that can be drawn between these NDVI values is the die-off of 

low-lying herbaceous cover. The minimal rainfall prior to the acquisition of the 2011 

NAIP dataset would not allow for a subsequent “greening up” period by these herbaceous 

cover in the PJ understory (Krofcheck et al. 2016). With the lack of this herbaceous 

understory, there is the possibility of misclassification using NDVI due to low understory 

values in PJ canopies. 

 

Chapter 5 Discussion 

 The results of the OBIA classification yielded two main results: a vegetation map 

of the DCP and estimates of piñon mortality across the DCP for previous years. While the 

OBIA classification did not yield high accuracies across all classes, individual accuracies 

for live PJ and dead piñon were high (91.43% and 84%). Accuracies for herbaceous and 

bare ground were relatively high (64.29% and 63.64%) with a tendency for herbaceous to 

be overclassified in areas where bare ground was mixed with herbaceous. The difficulty 

at distinguishing between low-statured vegetation types is similar to issues recorded by 

Laliberte et al. (2007). However, in Laliberte et al. (2007) the research goal was to yield a 
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high accuracy with all vegetation classes, while this study aimed to distinguish between 

live PJ and dead piñon (and the surrounding background) with high classification 

accuracy.  

 The shrub class was the most difficult class to accurately model. In contrast to the 

other classes used in this study, the shrub class was represented by multiple vegetation 

species. Some of the species in the shrub class were non-photosynthetic at the time of 

image acquisition (August, post-monsoon). Spectral heterogeneity in the shrub class 

resulted in confusion with the herbaceous class and the dead piñon class. Even with 

refinements made to the shrub class to try to improve classification accuracy, the addition 

of more shrub training samples did not increase accuracy. Individual shrub samples were 

assessed to ensure that all shrub samples were “pure” and not mixed with other classes 

like herbaceous or bare ground; however, leaf abscission by some shrub species during 

warmer drier periods make it difficult to avoid spectral confusion between shrubs and 

understory vegetation. Given the scale of the imagery, and the complexity of this class, it 

may need to be merged with the herbaceous class in future work focused on PJ mortality. 

 The process of creating a segmentation representative of the study area proved to 

be a difficult step in the OBIA procedure. The parameters used in segmentation: scale 

level, merge level and texture kernel size, are perhaps the most subjective portion of the 

OBIA process and settings are unique to each dataset. Optimal parameters for the VHR 

imagery used in this study were set to 35%, 85% and 5 for scale, merge, and texture 

kernel, respectively. The level for kernel size could be adjusted without changing the 

segmentation result dramatically and did not seem to affect the segmentation as much as 

scale and merge level. The selection of segmentation parameters is largely dependent on 
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the land cover patterns of the area and the target features being segmented. During 

preliminary trial and error efforts to derive optimal segmentation results, it was found that 

a higher scale level and a lower merge level could be implemented to achieve the similar 

segmentation results.  

Between the values of scale and merge, scale largely determined the complexity 

of the segmentation. To appropriately segment the entire study area at a level that would 

allow for accurate segmentation of ‘blurred’ areas (instead of having to mask them out) 

as well as areas with lower textural variation required processing at a scale level close to 

5%. Using such a low scale level generated an acceptable segmentation result, though it 

did not generate a satisfactory classification result. Although a high level of 

computational power was available for this project, the ENVI FX module would 

inaccurately classify and leave much of (approximately 50%) the image unclassified. 

This could be a residual effect of the selected scale factor, or it could be a byproduct of 

the size of the imagery. The PCA applied to the VHR generated a large image file size. 

Therefore, using a 35% scale level was the lowest computationally viable threshold that 

could be derived for this project. This scale level required that ‘blurred’ areas be masked 

out to avoid areas of under-segmentation and misclassification. Even after blurred areas 

were masked, there were still areas that seemed to be under segmented, such as the 

pattern shown at the PJG site. This phenomenon did not appear to persist throughout the 

entire study area, as shown in the segmentation in the PJC site. While scale and merge 

tend to play a cohesive role in segmentation, merge could largely be changed without 

effecting the scale factor of the segmentation. It was found that using an 85% merge level 

allowed for creation of segments that were representative of the target classes in regions 
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of high texture for the majority of the study area. Using this merge level to produce a 

higher accuracy classification in FX is similar to results recorded by (Meehan 2016).  

 To reduce under segmentation of the imagery, there is the option of creating 

image subsets to segment smaller areas. While this would produce smaller segments 

using the same parameters; it is likely that it would produce dissimilar classification 

outputs due to slight dissimilarities in classification inputs. In FX, the inputs for 

classification, example segments, are tied to specific geographic locations held within the 

imagery. The details for classification are derived from the segments specific to that 

image and cannot be extrapolated for processing on other datasets. Therefore, when 

performing FX on many different datasets across the same area, dissimilar results are 

easily produced. This problem in FX is specific to the example-based version of the 

module. It’s hypothesized that using a rule-based classifier similar to eCognition 

(Trimble Navigation Limited 2012) would allow for the extrapolation of attributes across 

many different scenes within the same study area. While FX does have a rule-based 

classifier option, it would require further research to judge how well this could be 

implemented. As rule-based classifiers seemingly dominate the field of OBIA, there is a 

lot of literature surrounding the technique and how it could be implemented (Blaschke et 

al. 2014). Using a rule-based classified would require the user to have a seemingly 

explicit knowledge of the environment they are working with and how each class can be 

described through a certain set of rules. This process of simply defining rules can take 

substantial amounts of time to develop and may not even be viable during 

implementation. The example-based version of FX offers distinct advantages to a rule-
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based classifier in certain situations; allowing the user to generate a similar product at an 

expedited rate by creating rules from the characteristics of selected examples. 

Following initial exploration of the classifiers available in FX, the SVM classifier 

was selected as having the highest accuracy for classifying this dataset. Within FX there 

are two other options: k-means nearest neighbor or principal component analysis. The 

higher accuracies generated using the SVM classifier may be due to the computations 

SVM performs to account for posterior probabilities; these allow for a better-informed 

decision as to which classification attributes are most useful (Awad and Khanna 2015). 

This means that the user won’t be penalized for the inclusion of superfluous classification 

attributes. Similar to the findings from this study, Meehan (2016) also reported higher 

classification accuracies using a support vector machine classifier in FX. 

Inaccuracies in this classification could be attributed to the imagery used in this 

study. The imagery used in this study was flown for non-commercial education/research 

purposes. While this imagery was processed, it was not captured with the same 

requirements as many available commercial options. The imagery did contain some 

issues related to BDRF and are not uniform across the entire image. While the PCA 

transformation reduced these effects, issues related to BDRF are still persistent in some 

areas of the imagery. BDRF is most pronounced in the NIR band of the imagery, 

reducing reflectance in otherwise ‘healthy’ vegetation. It is unclear to what degree these 

issues had an effect on the vegetation classification, but are similar to issues documented 

by Laliberte et al. (2011). Laliberte et al. (2011) found that using aerial VHR imagery 

without proper radiometric calibration based on in-situ data allows for ‘blurring’ of 
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objects; whereby the radiometric values of neighbors could be interpolated to correct this 

phenomenon. 

In addition to image inputs, the ENVI FX module allows for ancillary data layers 

and/or normalized-difference datasets to be included as additional input layers to 

segmentation and/or classification. For this research, including additional data layers did 

not produce satisfactory results. The inclusion of an NDVI layer in both classification and 

segmentation stalled the FX program and did not yield a full classification product. When 

the DSM was included, PJ segments were overgeneralized, likely due to the resolution 

differences between the VHR imagery and the DSM. Another assumption is that the 

DSM could only be considered as raw values instead of a canopy height model within 

FX. FX was not able to attribute this raw value of elevation to the specifics of any class 

as the study region varies in elevation by almost 200 meters, and contrasts to results 

reported by (Ke, Quackenbush, and Im 2010) who implemented a DSM during 

segmentation with success. The differences from that study are that PJ tend to grow in 

shorter, tight interlocking canopies, rather than as discrete individuals that would be 

easier to distinguish from surrounding lower-statured vegetation. Ke, Quackenbush, and 

Im (2010) used a smaller study site with limited terrain change where elevation could be 

considered a unique attribute to segment and classify target classes. An ancillary layer 

that could be added to this workflow to improve segmentation and classification is a 

canopy height model; which would allow for FX to use an object’s above ground height 

as an attribute for segmentation and classification. Producing a canopy height model for 

this study area would require a digital terrain model (DTM) created either through labor 

intensive field work or by having Light Detection and Ranging (LiDAR) data captured 
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over the region. By having a DTM, it could be subtracted from the DSM to constructing a 

canopy height model. 

OBIA applied to VHR produced maps of PJ mortality with high accuracy. Areas 

of PJ mortality mapped by the OBIA in conjunction with a time series of NDVI NAIP 

imagery proved to be a practical method for constructing a timeline of mortality. The 

Module 1 tool is a simple subset and NDVI calculation routine. NDVI was sensitive to 

changes observed on the ground at the PJG and PJC during the study period, 

demonstrating that this method can serve as a baseline of vegetation health for the entire 

study area. The products output from Modules 2 and 3 provide multiple ways to evaluate 

the utility of OBIA in estimating piñon mortality at the DCP. The outputs from Module 2 

provided estimations of live and dead coverage but were at an earlier date and at a higher 

rate, likely due to under segmentation. If segments were too large there could be NDVI 

values from accompanying open-area herbaceous and bare ground regions causing 

negative NDVI values to be averaged into the composite values. Should too many of 

these negative values be added into the equation it would cause the composite value to 

read as negative and would subsequently be labeled as ‘dead.’  

 This assumption that under segmentation contributed to an over estimation of 

dead piñon in 2011 may explain the difference in mortality recorded by (Brewer et al. 

2017). While the results from (Brewer et al. 2017) were generated from a subpixel 

analysis applied to coarser resolution data, they strongly agree with the results gathered at 

both the PJC and the PJG and the results of (Eitel et al. 2011; Krofcheck et al. 2014; 

Krofcheck et al. 2016). The long trajectory of research at the PJG and PJC sites act as 

useful proxies to estimate the accuracy of OBIA beyond the accuracy assessment for the 
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rest of the study area. These sites further provided useful proxies to judge the accuracy of 

the NAIP analysis. While the results of the NAIP analysis differed from the estimations 

gathered at those sites, to fully judge its accuracy would require either further validation 

sites or ecological plots. 

The final output from the Module 3 tool was a spatial autocorrelation test. 

Performing a spatial autocorrelation test on the new segments of dead PJ for each year 

does offer some further insight into the utility of the OBIA approach. In areas where 

piñon mortality was recorded prior to drought and located in understudied regions, bark 

beetle activity could be an agent for mortality (Degomez and Celaya 2013). Stressed 

piñon are more susceptible to attack by these beetles, creating a clustering pattern of 

beetle attacks among neighboring piñon (Meddens et al. 2015). To test this hypothesis 

would require a post mortem analysis to determine where this occurred at the DCP; 

therefore, it serves as an inference that could be drawn from this research. 

While the specifics of land cover change provided by this study cannot be taken 

as literal changes, a very generalized estimation of when and where piñon mortality 

occurred can be derived. These generalizations further provide themselves as ancillary 

inferences and visualizations to very thorough research objectives located at the DCP; 

specifically the research of (Eitel et al. 2011; Krofcheck et al. 2014; Krofcheck et al. 

2016; Morillas et al. 2017). 

 

Chapter 6 Conclusion 

This study showed that OBIA applied to VHR imagery is a viable method for 

classification of piñon-juniper woodlands. While a total classification accuracy of higher 
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than 75% was not achieved, there was individual accuracies of over 90% for live PJ and 

over 80% dead piñon. These segments were then used to further describe and visualize 

mortality in Piñon-Pine across the DCP from 2005-2014. The ecological timeline of 

mortality provides a generalization of more complex vegetation changes, and this dataset 

provides a synoptic record that compliments and enhances past and future research 

throughout the region. This timeline and its association to the dynamic climate of the 

region further supports previous estimates of mortality at the Deer Creek Plateau.  
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