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ABSTRACT 

A fundamental process in construction cost estimation is the appropriate adjustment of 

costs to reflect project location. Unfortunately, location adjustment factors are not 

available for all locations. To overcome this lack of data, cost estimators in the United 

States often use adjustment factors from adjacent locations, referred to as the nearest 

neighbor (NN) method. However, these adjacent locations may not have similar 

economic conditions which limit the accuracy of the NN method. This research proposes 

a new method of using nighttime light satellite imagery (NLSI) to estimate location 

adjustment factors where they do not exist. The NLSI method for estimating location 

adjustment factors was evaluated against an established cost index database and results 

show that NLSI can be used to effectively estimate location adjustment factors. When 

compared with NN and other alternative location adjustment methods, the proposed NLSI 

method leads to a 25-40% reduction of the median absolute error. This work contributes 

to the body of knowledge by introducing a more accurate method for estimating location 

adjustment factors which can improve cost estimates for construction projects where 

location adjustment factors do not currently exist. 
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Chapter 1: Introduction  
 

The construction industry in the United States is one of the largest industry sectors 

delivering projects with substantial budgets. Therefore, cost estimating is a one of the 

most critical processes in a construction project development (Gould and Joyce 2009). 

Because project costs vary by location, an essential process in cost estimation is the 

appropriate cost adjustment to reflect project location influence. Unfortunately, location 

adjustment factors are not available for all locations (i.e. populated areas) across the 

United States.  

Subsequently, in order to overcome this lack of data, cost estimators often use 

adjustment factors from adjacent locations, referred to as the nearest neighbor (NN) 

method. A key limitation of the NN method is the assumption that nearby locations share 

similar economic conditions, such as median household income, unemployment rate, 

inflation rate, and interest rate. Other proximity-based interpolation methods (Migliaccio 

et al. 2012; Migliaccio et al. 2013; Zhang et al. 2014) suffer from this same limitation. 

Existing location adjustment factors are surveyed, compound indices of material, labor, 

and equipment costs for a specific location, which consider local economic conditions. 

Hence, it is important to incorporate local economic conditions when estimating location 

adjustment factors for locations that are not surveyed. 

Research has shown that nighttime light satellite imagery (NLSI) can be 

effectively used as a proxy measure of economic activities (Sutton et al. 2006). In an 

attempt to improve the  process of developing location adjustment factors for locations 

that have not been surveyed, this research integrates luminance values extracted from 

NLSI, as a proxy for economic condition, into the cost estimation process. The NLSI-
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based location adjustment factor estimating method was evaluated using an established 

and widely adopted cost index database for location adjustment – RSMeans City Cost 

Index (CCI). Empirical comparison was performed to compare the NLSI-based method 

with alternative interpolation-based methods using established metrics, including 

comparison of patterns of overestimation and underestimation, comparison of absolute 

errors, and formal hypothesis testing of the error differences (Zhang et al. 2014).  

Chapter 2: Background 

2.1 Cost Estimates and Location Adjustment Factors 

Multiple cost estimates are required for various purposes throughout the lifecycle of a 

construction project. These estimates can be classified into two groups: 1) the conceptual 

or preliminary cost estimate, which is the basis of successive cost estimates, is used for 

programming and budgeting and is based on minimal amounts of formal project design, 

and 2) the detailed or definitive cost estimate, which is used for bidding and is based on 

nearly complete formal project design. The accuracy of construction project cost 

estimates is fundamental to its success (Gould and Joyce 2009). From an owners’ 

perspective, both overestimates and underestimates are detrimental. Overestimates push 

owners to allocate more funding than is actually needed for a specific construction 

project, which limits the number of projects that owners can pursue. In contrast, 

underestimates put an owner in the awkward position of having to seek additional 

funding, decrease the project scope, or even terminate the project which results in lost 

capital and, frequently, litigation. 

Construction project owners often deal with the expected inaccuracy of cost 

estimates by including contingencies to alleviate the risk of a budget bust. However, 
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using contingencies will reduce financial efficiency through inefficient funding 

allocations, which is a major issue for project owners, especially public owners or 

governmental agencies. While inaccurate estimates may be more tolerable during periods 

of stable economic growth, most governmental agencies struggle to meet capital 

requirements for new construction and/or renovation of buildings and infrastructures 

while being subjected to continuous budget cuts. This economic environment makes the 

accuracy of cost estimates critical to project success, making even slight improvements in 

the accuracy of location adjustment factors a substantial contribution to the construction 

industry at large (Layer et al. 2002) . 

Three factors greatly affect the accuracy of cost estimates (Gould 1997): 1) 

Construction cost databases; 2) definition of project scope; and 3) cost adjustment 

methods. Owners often lack enough completed construction projects or manpower to 

develop in-house cost databases, so oftentimes they use a published construction cost 

index from commercial suppliers such as RSMeans. In contrast, large nationwide 

agencies or international companies have extensive facilities, and thus, enough past 

construction projects to develop a complete in-house cost database. It is a widespread 

belief that the cost estimates developed from in-house databases are more accurate than 

those developed from independent supplier’s databases. For most owners, it is impossible 

to develop precise project scope at the pre-design phase since they only have general 

ideas about the intended projects. The final critical factor is the method used for adjusting 

cost estimates. Cost estimates are developed based on historical cost data and adjustment 

factors, which include location, time, size, and complexity, and thus the accuracy of those 

adjustments factors directly affect the accuracy of cost estimates.  
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The most common practice for estimating project costs for various locations is to 

adjust standardized (e.g., national) costs by applying location factors. The concept of 

“location adjustment factors” as an input decision for location adjustment was introduced 

by Johannes et al. (1985) as the construction cost in an area relative to the cost in another 

area. However, the reality is that only a few location adjustment factor datasets are 

available. In the United States, the most widely used location adjustment factor dataset is 

the RSMeans City Cost Index (CCI).  

None of the commercial or governmental location adjustment factor datasets 

include values for all locations in the United States. Even larger commercial suppliers 

such as RSMeans cannot perform surveys for all cities and towns. In the conterminous 

United States (excluding the States of Hawaii and Alaska), RSMeans routinely surveys 

649 cities out of the over 19,000 incorporated municipalities listed by the U.S. Census 

Bureau; meaning that less than four percent of municipalities are surveyed. Cost 

information regarding material, labor, and equipment is collected quarterly in the United 

States and Canada through a telephone survey and then composed into an index for each 

of the surveyed cities and then this information is published by RSMeans annually 

(Waier 2006).  

Currently, construction practitioners use the NN method to estimate location 

adjustment factors for locations where adjustment factors do not exist. NN is a simple, 

geographical proximity-based interpolation method that adopts the geographically nearest 

city’s location adjustment factor for an unknown city. When compared with alternative 

interpolation-based methods, however, the NN method has been shown to be less 

accurate (Zhang et al. 2014).  Interpolation-based methods such as conditional nearest 
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neighbor (CNN) and inverse distance weighted (IDW) outperformed the NN method in 

side-by-side comparisons. Of these two alternative methods, CNN is listed as the most 

simple to apply (Zhang et al. 2014). CNN is similar to NN, but uses state boundaries in 

conjunction with geographic proximity to select the nearest neighbor, and thus, selects 

the nearest neighbor within the same state as the unknown location. IDW is an 

interpolation method that is commonly used in spatial interpolation. IDW assumes that 

the value at an unknown location is the weighted average of known location factors 

within the neighborhood. The weights are inversely related to the distances between the 

known and unknown sample locations (Lu and Wong 2008). 

All of the aforementioned methods rely on the assumption that geographic 

proximity provides a reasonable proxy for similarity in economic conditions and are 

ignorant of actual economic factors such as median household income, interest rates, and 

labor rates. Because the published location adjustment factors are influenced by local 

economic conditions, it would be reasonable to assume that a method for developing 

location adjustment factors that includes information on economic conditions would 

provide a better estimate than a method purely based on proximity. In order to 

incorporate the influence of local economic conditions, this study proposes and examines 

a NLSI-based method to improve the process of developing location adjustment factors 

for locations that have not been surveyed. 

2.2 Nighttime Light Satellite Imagery (NLSI) 

NLSI is a class of satellite nighttime observations and derived products through the 

detection of anthropogenic lighting presented on the Earth’s surface (Elvidge et al. 2013). 

It is produced by spaceborne sensors that can collect low light imaging data in spectral 
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bands covering emissions generated by electric lights (Elvidge et al. 2013). The majority 

of the nighttime light images are derived from nighttime satellite imagery provided by the 

Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) 

and have become a recognizable spatially explicit global icon of human presence on the 

planet (Ghosh et al. 2013). Although in 2011 the National Aeronautics and Space 

Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) 

launched the Suomi National Polar Partnership (SNPP) satellite carrying the first Visible 

Infrared Imaging Radiometer Suite (VIIRS) instrument to collect low light imaging data, 

the DMSP-OLS is still widely used because, for more than 40 years, the DMSP-OLS has 

been the only system collecting global low light imaging data. 

NLSI has been used in studies in various fields, such as to estimate global 

population (e.g., Sutton et al. 2001), to estimate the pattern and impact of urbanization 

(e.g., Zhang and Seto 2011; Ma et al. 2012), and as a surrogate to estimate economic 

activities such as gross domestic product (GDP) and income per capita (Ebener et al. 

2005; Levin and Duke 2012). NLSI has also been used to investigate and explain 

biological patterns. For example, Bharti et al. (2011) used NLSI to explain the seasonal 

fluctuations of measles in Niger.  

Evidenced by various studies, NLSI can be effectively used as a proxy measure of 

economic activities and development, such as GDP or distribution of income in society 

(Doll et al. 2006; Chen and Nordhaus 2011; Ghosh et al. 2013). As mentioned previously, 

CCI is a compound index of material, labor, and equipment costs for a location which 

reflects the relative relationship of construction costs at that location to the national level 

average. Because the labor, material, and equipment costs are highly correlated to 
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economic activities (Arora and Blackley 1996; Adriaanse et al. 1997; De Long and 

Summers 1990) and NLSI is a proxy measure of economic activities, we postulate that 

the NLSI is also a proxy measure of CCI. Specifically, the research proposed here is 

focused on analyzing the luminance values of NLSI to examine if CCI could be estimated 

for locations where they have not been surveyed, and if so, how well the estimation is 

when compared with currently adopted estimation methods. 

Chapter 3: Methodology 

The research methodology for this study included identification of an appropriate study 

area and dataset, image processing of the NLSI datasets, regression analysis, and 

performance evaluation. 

3.1 Study Area and Dataset 

RSMeans CCI was selected for this study because it is the most widely used location 

adjustment factor dataset, especially for commercial building construction projects. The 

2009, 2011, and 2013 CCI datasets were obtained from RSMeans while the 2009, 2011, 

and2013 city boundary datasets were obtained from the U.S. Census Bureau or a city’s 

GIS data clearinghouse website to match the CCI datasets. In order to make the proposed 

method comparable to the NN, CNN, and IDW estimation approaches studied by Zhang 

et al. (2014), the study area for this research is also the conterminous United States.  

Among the 649 cities in the conterminous United States that have CCI values, we 

excluded 236 cities because there is no distinct boundary (cities interconnect with each 

other) on the NLSI. Therefore, only 413 cities were selected for analysis, and assigned an 

exclusive identification number (EID). These cities are shown in Figure 1.  
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Figure 1. Conterminous Untied States and CCI Cities 2009 

The 2009, 2011, and 2013 global NLSI datasets were acquired from the NOAA 

National Geophysical Data Center. The 2013 global NLSI dataset is the latest publically-

available dataset that has been released by NOAA, and therefore, 2014 or 2015 datasets 

were not used in this study. Global NLSI is collected by the DMSP-OLS sensor and it 

provides average visible, stable lights, and cloud free coverages. The digital number 

(DN) values for this imagery range from 0 to 63. The lower the DN value is, the lower 

luminance value is. The spatial resolution for NLSI is approximately 1 km (0.62 miles).   

3.2 Image Processing 
 

The 2009, 2011, and 2013 global NLSI datasets were clipped by the boundary of the 

conterminous United States and then projected to the USA Contiguous Lambert 

Conformal Conic coordinate system (Figure 2). The boundaries of the 413 CCI cities 
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were projected to the same coordinate system as the clipped nighttime light satellite 

imagery and then overlaid with it.   

 

Figure 2. Conterminous United States and Nighttime Light Satellite Imagery 2009 

Only the luminance values within the city boundary are useful for this research. 

This is because the areas outside of these boundaries are not included in the RSMeans 

survey. Therefore, summary statistics (mean, median, standard deviation, variety [number 

of unique values for all pixel cells within the boundary of a city], majority, minority, 

maximum, minimum, range, and sum) of the nighttime light satellite luminance values 

were extracted for each city and limited to its boundaries as shown in Figure 3, which 

uses the City of Santa Fe as an example. As shown in Figure 3, varied luminance values 

exhibit across the boundary, and similar pattern can be found within other cities’ limits. 
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Figure 3. Conterminous United States and Example City Boundary 

3.3 Regression Analysis 

The dependent variable (i.e., response variable) used in this study is the RS Means CCI 

values. Choosing the most appropriate independent variables from the statistics available 

from the nighttime light luminance values is necessary as a precursor to developing the 

regression model. According to Ghosh et al. (2013), mean brightness of NLSI pixels, 

which is a measure of the overall brightness, has a significant positive relationship with 

economic activities such as GDP. Therefore, we postulate that mean brightness of 

nightlight light pixels could be used as a significant predictor for CCI. In this research 

context, image texture metrics may also provide significant predictors of CCI. 

Theoretically, a city with a lower CCI value will have lower economic activity that may 
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lead to heterogeneity in illumination condition throughout its administration boundary. 

Pearson’s correlation analyses were performed and are shown in Table 1.  

Table 1. Pearson’s Correlation Results between CCI and Luminance Summary Statistics 

Year 
Pearson’s 

Correlation 
CCI Mean STD Range Variety 

2009 

CCI 1.0000     

Mean 
0.8970 

(0.0001*) 
1.0000    

STD 
0.0128 

(0.7949) 

-0.0315 

(0.5227) 
1.0000   

Range 
0.0952 

(0.0533) 

0.0477 

(0.3332) 

0.8211 

(0.0001*) 
1.0000  

Variety 
0.1283 

(0.0091) 

0.0523 

(0.2889) 

0.6460 

(0.0001*) 

0.8177 

(0.0001*) 
1.0000 

2011 

CCI 1.0000     

Mean 
0.8812 

(0.0001*) 
1.0000    

STD 
0.0468 

(0.3432) 

0.0017 

(0.9721) 
1.0000   

Range 
0.0664 

(0.1782) 

0.0032 

(0.9490) 

0.7618 

(0.0001*) 
1.0000  

Variety 
0.1240 

(0.0117) 

0.0172 

(0.7277) 

0.4839 

(0.0001*) 

0.7685 

(0.0001*) 
1.0000 

2013 

CCI 1.0000     

Mean 
0.8704 

(0.0001*) 
1.0000    

STD 
0.0857 

(0.0819) 

0.0369 

(0.4551) 
1.0000   

Range 
0.0844 

(0.0868) 

0.0160 

(0.7453) 

0.7427 

(0.0001*) 
1.0000  

Variety 
0.1454 

(0.0031) 

0.0371 

(0.4516) 

0.4819 

(0.0001*) 

0.7432 

(0.0001*) 
1.0000 

Note: * indicates Pearson correlation coefficient is significant at p = 0.05 level. 

 

Results revealed that texture measures, including standard deviation, range, and 

variety, are significantly correlated with each other, but are not significantly correlated 

with CCI.  Therefore, standard deviation, range, and variety were not included as 
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independent variables in the subsequent analyses. Mean brightness of NLSI pixels instead 

was significantly correlated with CCI, and therefore, was the only independent variable 

included in subsequent analyses.  

Plotting results revealed that the relationship between CCI and the mean 

brightness of NLSI pixels is not linear. Therefore, several regression models were 

investigated to identify the best-fit model. R-squared (R
2
) values together with the root 

mean squared error (RMSE) were used to choose the best-fit regression model. 

3.4 Evaluation of Performance of Each Method  

To ensure the comparability against previous work (Zhang et al 2014), the performance 

of each method was assessed in the form of an “error” value, which is the difference 

between the estimated value and the exact value (Ito 1987). In this study, error is defined 

as the difference between predicted and actual location factor value. The following 

equations were used to calculate relative errors and absolute errors for each method. 

𝐸 𝑖 = 𝑃𝑖 − 𝐴𝑖 (1) 

𝐸𝐴𝑖 = |𝐸𝑖| (2) 

Where 𝑖 denotes the EID for CCI cities from 1 to 413. 𝑃𝑖 denotes the predicted 

value for location 𝑖  while 𝐴𝑖  denotes the actual value for location 𝑖 . 𝐸𝑖  denotes the 

relative error for location 𝑖, while 𝐸𝐴𝑖 denotes the absolute error for location 𝑖. 

3.5 Empirical Comparison 

The empirical performance assessment of the NLSI-based method for estimating location 

adjustment factors was performed against NN, CNN, and IDW. These three methods 

were selected due to the following reasons. NN is the most widely used method, CNN is 

the best rough surface interpolation method, and IDW is the best smooth surface 
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interpolation method (Zhang et al. 2014). Again, to ensure the comparability of previous 

work (Zhang et al 2014), comparison of the performance of the four interpolation 

methods was based on the following three established metrics: 

Comparison of patterns of overestimation and underestimation: overestimation 

occurs when the difference between estimated CCI value and actual CCI value is positive 

(𝐸 𝑖 > 0), whereas underestimation occurs when such difference is negative (𝐸 𝑖 < 0). An 

estimate is considered accurate when the corresponding relative error is within a +/-1% 

range. Pearson chi-squared (X
2
) test was used to examine if the observed underestimation, 

overestimation, and accurate estimation pattern for each method are not significantly 

different over time. 

Pairwise comparison of absolute errors: a method is considered to be better than 

another one if it has a lower absolute error ( 𝐸𝐴 𝑖 ). For each study site, EAs were 

calculated for each of these four methods (NN, CNN, IDW, and NLSI). A pairwise 

comparison was performed between NLSI and the other three methods (NLSI vs. NN, 

NLSI vs. NN, and NLSI vs. IDW). Pearson chi-squared (X
2
) test was used to examine if 

the patterns of the observed method comparison results for each pairwise comparison are 

not significantly different over time. 

Formal hypothesis testing of the error differences: for each method, the 

distribution of the absolute errors (EAs) for all study cities was summarized by their 

means, medians and standard deviations. A pairwise Wilcoxon Signed Rank Test was 

performed between NLSI-based method and the other three methods (NLSI vs. NN, 

NLSI vs. CNN, and NLSI vs. IDW) to examine if NLSI-based method yielded absolute 

errors that were significantly different from the other three methods, and if so, their 
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means were compared to determine which method had the lowest mean, and therefore 

was considered to be outperforming the other.  

3.6 Error Causation Analysis 

Environmental factors, including trees canopy and waterbodies, could affect the 

brightness of NLSI. Tree canopy will obstruct the nighttime light reflection which 

eventually reduces the luminance values that can be detected by the DMSP-OLS sensor. 

Water bodies, on the other hand, will increase the luminance values that can be detected 

by the DMSP-OLS sensor because of ambient light reelection (waterbodies work like 

mirrors).  

The 2011 Tree Canopy dataset was obtained from U.S. Forest Service. This 

dataset presents a percent tree canopy cover image layer for the conterminous United 

States, with each pixel’s size being 30 x 30 m.  Each pixel’s value represents the 

percentage that a pixel is covered by tree canopy. With the help of this dataset, each 

city’s tree coverage percentage was calculated. Pearson’s correlation analysis was 

performed between absolute errors and tree coverage percentage to investigate if the 

errors of NLSI-based method are caused by tree coverage. 

The 2011 National Land Cover Dataset (NLCD) was obtained from U.S. 

Geological Survey. This dataset presents a land cover type image layer for the 

conterminous Untied States, with each pixel’s size also being 30 x 30 m. Each pixel’s 

value represents the type land cover type that a pixel is covered. Waterbody is a specific 

land cover type and therefore, each city’s waterbody percentage was calculated. 

Pearson’s correlation analysis was performed between absolute errors and waterbody 

percentage to examine if the errors of NLSI-based method are caused by water reelection. 
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Chapter 4: Results and Discussion 

4.1 Regression Model Selection 

The candidate regression models included linear, exponential, logarithmic, polynomial, 

and power models (Table 2). Linear regression model was selected for comparison due to 

its fundament ability and generality, although the plotting results revealed that the 

relationship between CCI and the mean brightness of NLSI pixels is not linear.  

Table 2. Regression Models and Corresponding R-squared Value and RMSE 

Year Regression Model Equation R2 RMSE 

2009 

Linear Least 

Squares 
Y = 1.11X + 32.06 0.8046 3.73 

Exponential Y = 46.292e0.0126X 0.8393 3.67 

Power Y = 9.2524X0.5745 0.7971 4.07 

Logarithmic Y = 50.118ln(X) – 108.08 0.7554 4.32 

Quadratic 

Polynomial 
Y = 0.0291X2 – 1.6976X + 97.898 0.8536 3.34 

Cubic Polynomial Y = 0.0007X3 – 0.0631X2 + 2.526X + 35.125 0.8560 7.18 

Quartic Polynomial Y = -0.000008X4 + 0.0021X3 – 0.1612X2 + 5.4156X + 3.9774 0.8561 3.74 

2011 

Linear Least 

Squares 
Y = 1.2583X + 23.205 0.7764 4.49 

Exponential Y = 41.924e0.0143X 0.8123 4.25 

Power Y = 6.4378X0.6637 0.7661 4.68 

Logarithmic Y = 58.118ln(X) – 140.5 0.7242 4.99 

Quadratic 

Polynomial 
Y = 0.0376X2 – 2.4357X + 112.03 0.8374 3.83 

Cubic Polynomial Y = 0.0001X3 + 0.018X2 – 1.15216X + 98.117 0.8375 7.64 

Quartic Polynomial Y = -0.0002X4 + 0.0334X3 – 2.3128X2 + 69.622X – 698.34 0.8470 4.13 

2013 

Linear Least 

Squares 
Y = 1.1099X + 31.215 0.7577 4.45 

Exponential Y = 46.5e0.0126X 0.7933 4.35 

Power Y = 9.3757X0.5696 0.7378 4.70 

Logarithmic Y = 49.969ln(X) – 107.97 0.6965 4.32 

Quadratic 

Polynomial 
Y = 0.0291X2 – 1.7203X + 98.3 0.8157 3.89 

Cubic Polynomial Y = -0.0004X3 + 0.0927X2 – 4.6436X + 141.58 0.8175 8.05 

Quartic Polynomial Y = -0.0001X4 + 0.0229X3 – 1.4948X2 + 41.929X – 354.13 0.8457 4.03 

Note: Y indicates CCI values; X indicates mean brightness of nightlight pixels. 

For 2009, 2011, and 2013, as shown in Table 2, the linear, exponential, power, 

logarithmic, cubic, and quartic polynomial models were not selected for regression 

analysis because they all have high RMSE values despite high R
2
 values. The quadratic 
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model was selected because it shows the second highest R
2
 value (good model fit) as well 

as the lowest RMSE value (low error value). 

4.2 Empirical Comparison  

Overestimations are more frequent than underestimations in each method, 

particularly for the NLSI-based method. The comparison of the frequency of 

approximately accurate estimates (within a +/-1% range) suggests the NLSI-based 

method is more reliable when compared with other methods, as it more frequently 

produces approximately accurate results (Table 3). Pearson chi-squared (X
2
) test revealed 

that the observed underestimation, overestimation, and accurate estimation pattern for 

each method are not significantly different over time. 

Table 3. Frequency of overestimations and underestimations in the 2009, 2011, and 2013 

CCI  

Method 

Error Classification 
Pearson’s X2 Test 

(DF =4) 

Underestimates Overestimates Accurate Estimates  

X2 

Statistics 

p-value 

2009 2011 2013 2009 2011 2013 2009 2011 2013 

CNN 139 133 131 162 161 168 112 119 114 0.66 0.9563 

NN 150 144 146 160 165 159 103 104 108 0.39 0.9834 

IDW 127 121 125 185 187 179 101 105 109 0.64 0.9581 

NLSI 99 102 103 199 188 191 115 123 119 0.69 0.9525 

Note: DF indicates degree of freedom. The null hypothesis for this Pearson chi-squared test is that the 

observed underestimation, overestimation, and accurate estimation pattern for each method are not 

significantly different over time.  

 

Absolute errors of the NLSI-based method were compared pairwise to those of 

the three established methods (NN, CNN, and IDW). Results are shown in Table 4. The 

two competing methods were considered to be equal if their absolute errors were within a 

+/-1% range. A better method has a lower absolute error. Pearson chi-squared (X
2
) test 
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revealed that the patterns of the observed results for each pairwise comparison are not 

significantly different over time. 

Table 4. National Level Pairwise Comparison of Absolute Errors for 2009, 2011, and 

2013 CCI  

Method 

Comparison 

Error Classification 
Pearson’s X2 Test 

(DF =4) 

NLSI Weaker NLSI Better Equal (+/-1%)  

X2 

Statistics 

p-value 

2009 2011 2013 2009 2011 2013 2009 2011 2013 

CNN vs.  

NLSI 
107 105 109 177 172 165 129 136 139 0.89 0.9260 

NN vs. 

NLSI 
95 91 98 199 205 196 119 117 119 0.49 0.9742 

IDW vs. 

NLSI 
112 119 116 178 163 167 123 131 130 1.22 0.8743 

CNN vs.  

NLSI 
107 105 109 177 172 165 129 136 139 0.89 0.9260 

Note: DF indicates degree of freedom. The null hypothesis for this Pearson chi-squared test is that the 

patterns of the observed method comparison results for each pairwise comparison are not significantly 

different over time.  

 

A pairwise Wilcoxon Signed Rank Test, which can be used as a robust alternative 

to the parametric t-test (Wilcoxon 1945), was used to examine if the median absolute 

errors of NLSI-based were significantly different from the other three methods. As shown 

in Table 5, at the 5% significance level, there are statistically significant differences 

between all pairs. Further inspection of the mean absolute error shows that NLSI-based 

method always has a lower mean absolute error than CNN, NN, and IDW (Table 6). 

Because the mean absolute errors associated with NLSI were significantly less than those 

of CNN, NN, and IDW, it can be concluded that NLSI-based method outperformed the 

other three proximity-based methods to estimate CCI location adjustment factors.  

 



18 
 

 

Table 5. National Level Pairwise Wilcoxon Signed Rank Test for Each Method 

Year Pairwise Comparison P-Value 

2009 

CNN vs. NLSI <0.0001* 

NN vs. NLSI <0.0001* 

IDW vs. NLSI <0.0001* 

2011 

CNN vs. NLSI <0.0001* 

NN vs. NLSI <0.0001* 

IDW vs. NLSI <0.0001* 

2013 

CNN vs. NLSI <0.0001* 

NN vs. NLSI <0.0001* 

IDW vs. NLSI <0.0001* 

       Note: * indicates pairwise comparison result is significant at p = 0.05 level. 

 

Table 6. Descriptive Statistics for Each Method 

Year Methods Mean Median Standard Deviation 

2009 

CNN 3.01 2.00 3.16 

NN 3.66 2.50 3.92 

IDW 2.89 2.14 2.89 

NLSI 2.42 1.50 2.84 

2011 

CNN 3.42 2.34 3.61 

NN 3.99 3.10 3.91 

IDW 2.74 1.96 2.72 

NLSI 2.38 1.87 2.68 

2013 

CNN 3.48 2.45 3.67 

NN 3.89 2.90 3.77 

IDW 2.84 2.00 2.83 

NLSI 2.29 1.71 2.38 

 

 

Error causation analysis showed that tree coverage is not significantly correlated 

with absolute errors of the NLSI-based method (correlation coefficient = 0.0983; p-value 

= 0.0459). In addition, waterbody is not correlated with absolute errors of the NLSI-based 

method (correlation coefficient = -0.0145; p-value = 0.7686). These results revealed that 

s environmental factors, including coverage of trees and water reflection, did not affect 
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the performance of the NLSI-based method. One explanation is that the NLSI used in this 

study is an annual average daily stable nighttime light image which has already reduced 

the effects of tree coverage (less tree leaves in fall and no tree leaves in winter) and water 

reflection. That being said, the errors of NLSI-based method might be caused by other 

factors such as the sensors used to collect NLSI or the inherent errors of CCI produced 

during survey. 

The direct users of the proposed method are commercial and governmental 

suppliers of location adjustment factors, such as RSMeans and the U.S. Department of 

Defense. Since there are only a few major suppliers for location adjustment factors, 

running a survey would not be very effective practice to collect location adjustment 

factors. This proposed method has the potential to reduce the number of survey cities 

required to characterize location adjustment factors, and then essentially reduce the 

associated cost and time. However, it should be noted that the proposed NLSI-based 

method is not intended for direct use by construction practitioners such as designers, 

general contractors, or individual project owners. These construction practitioners will 

benefit from the ease of computing location adjustment factors from NLSI, which can be 

automatized instead of undergoing annual time-consuming and labor-intensive surveys. 

Construction practitioners will also benefit from the effectiveness of the proposed method 

in the form of more accurate cost estimate results.  

Chapter 5: Case Study Example 

To illustrate the application of the research results to support cost estimating in a real 

world setting, it is useful to validate it through a case study. For this case study, we will 

assume that a large retail chain plans to build a new supermarket in the City of Hannibal, 
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Missouri and there is no location adjustment factor for the City of Hannibal. In reality, 

Hannibal has a published CCI location adjustment factor, but for illustration purposes we 

will assume that it does not. The retailer initially develops a preliminary cost estimate 

based on historical costs for their supermarkets in other U.S. locations and would like to 

use the CCI dataset to adjust the preliminary estimate for Hannibal, Missouri.  The 

estimated construction cost is $100 million prior to adjusting for project location. Since 

we are assuming there is no CCI adjustment factor for Hannibal, the company must 

estimate an adjustment factor.  For this case study, we compare the results of using the 

NN, CNN, IDW, and NLSI methods to estimate the location adjustment factor for 

Hannibal, Missouri. Using the CNN method, the City of Hannibal’s nearest neighbor 

within Missouri is Bowling Green, Missouri with a CCI of 94.2. Using the NN method, 

the City of Hannibal’s nearest neighbor within conterminous U.S. is Quincy, Illinois with 

a CCI of 94.9. Using the IDW interpolation tool in ArcMap, the estimated CCI factor for 

Hannibal, Missouri is 94.5. Using the NLSI approach with the help of the quadratic 

polynomial regression function, the estimated CCI factor for Hannibal is 91.6. To analyze 

the accuracy of these methods, we compare the estimated location adjustment factors to 

the published CCI value for Hannibal, Missouri.   

Different interpolation methods will predict different location factors.  All of the 

estimation methods overestimate the adjustment factor, but the NLSI-based method 

produces a more accurate adjustment factor than the other three methods. Considering the 

estimated $100 million construction cost (non-adjusted for location), Table 7 shows that 

the NLSI-based method has the smallest estimate error, overestimating the cost by $2.5 

million when compared to RSMeans CCI values collected by direct survey of market 
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conditions. It should be noted that the improved accuracy in this cost estimate is only an 

improvement in the location adjustment and is relative to the RSMeans CCI estimate. It 

does not address any uncertainties in the original cost estimate or consider the realized 

cost of the hypothetical construction project, but does produce significantly improved 

location adjustment estimates of CCI and, subsequently, construction cost estimates when 

compared to existing methods.  

Table 7. Case Study Results Summary 

Location 

Adjustment 

Factor Type 

Hannibal Location 

Adjustment Factor 

Value in 2009 

Error 
Error 

Percentage 

Estimate 

Error 

(millions) 

Actual 89.3    

CNN 94.2 4.9 5.5% $5.5 

NN 94.9 5.6 6.3% $6.3 

IDW 94.5 5.2 5.8% $5.8 

NLSI 91.6 2.2 2.5 % $2.5 

 

Chapter 6: Conclusions 

The results of this research support the use of NLSI as a data source for developing 

location adjustment factors for locations where no adjustment factors currently exist. The 

analysis shows that the NLSI-based method outperforms proximity-based interpolation 

methods including NN, CNN, and IDW. One key advantage of the NLSI-based method 

over purely proximity-based interpolation methods is that it indirectly incorporates local 

economic conditions, as previous research has shown NLSI to be a proxy measure of 

economic activities. 

A practical advantage of the NLSI-based method for estimating location 

adjustment factors is that it potentially reduces the amount of costly data collection 

activities required to develop CCI. A routine annual data collection for a minimum 
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number of survey cities could be used to produce CCI for additional cities. The level of 

accuracy demonstrated by the NLSI-based method should be sufficient to produce 

realistic cost estimates for a variety of project locations, especially since it results in more 

accurate estimates when compared to existing proximity-based interpolation methods, 

including NN, CNN, and IDW.  

Tree coverage and water reflection do not correlate with the errors of the NLSI-

based method, and therefore, further studies should be performed to investigate the 

causation of errors. Other factors that warrant further study include sensitivity analysis 

and time series analysis to ensure that changes in brightness of NLSI corresponds to the 

change in CCI values through time. 

The overall contribution of this study to the body of knowledge is a preliminary 

understanding of the relationship between NLSI and CCI location adjustment factors. 

Although the NN proximity-based location adjustment method is widely used in the 

construction industry, when compared to alternative proximity-based interpolation 

methods, the NN method does not perform well. A previous study suggests that CNN and 

IDW should be used to predict location factors for unknown locations (Zhang et al. 

2014). This work found that the NLSI-based location adjustment factor estimation 

method outperforms all other proximity-based interpolation methods, including NN, CN, 

and IDW.  

The uniqueness of this research is proposing a NLSI-based method which can 

improve the process of developing location adjustment factors for locations that have not 

been surveyed. This proposed method can rapidly and accurately predict location 

adjustment factors for unknown locations. When prediction models are established, cost 
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estimators can estimate the location factors for any inhabited location in the U.S. These 

findings are highly relevant to construction industry location adjustment factor 

commercial suppliers because it allows them to improve the process of developing 

location adjustment factors and ultimately improve the accuracy of cost estimates. As a 

more accurate method for inferring location adjustment factors, the NLSI-based method 

has the potential to improve the performance of the construction industry through more 

accurate and therefore efficient, cost estimates. 
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