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ABSTRACT 

In order to successfully traverse an actively complex environment, an agent is required to 

learn from the consequences of their actions. For over a century, models of behavior have 

been developed demonstrating these consequence-based learning systems. More recently, 

underlying biological systems have been found to adhere to these constructs of learning. 

The electroencephalographic signal known as the Reward Positivity (RewP) is thought to 

reflect a dopamine-dependent cortical signal specific to reward receipt. Importantly, this 

signal has been shown to adhere to an axiomatic (rule-like) positive reward prediction 

error, whereby it is evoked following outcomes that are better than expected. These 

features of the RewP make it a candidate marker for clinical populations, such as major 

depressive disorder, substance use disorder, and Parkinson’s disease. Although recent 

experimental endeavors have highlighted key characteristics of the generation and 

modulation of the RewP, a major understudied feature of the RewP in humans is the link 

between hedonic experiences and reward processes, and how these interact to modulate 

learning. This dissertation aims to probe this overlooked hedonic aspect of RewP 

generation through the use of emotionally evocative image rewards. The first aim 

addresses methodological issues relating to the use of complex, ecologically valid stimuli 
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in EEG experimentation. The second aim investigated techniques for rectifying these 

methodological issues. Lastly, the third aim investigated the use of emotionally salient 

images as rewards in a reinforcement learning paradigm.  
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Chapter 1 

INTRODUCTION 

Learning from the consequences of past events is essential for successful survival. 

Numerous neural imaging methodologies have highlighted specific neural phenomena 

that appear active during positive and negative outcomes that lend themselves to the 

optimization of behavior. Due to its near perfect temporal resolution, 

electroencephalogram (EEG) in particular is well suited to assess these early outcome 

phenomena and how these signals relate to learning and decision-making. Recently, the 

EEG signal known as the reward positivity (RewP) has gained a great deal of attention as 

a signal of early reward processing. However, a major understudied feature of the RewP 

in humans is the link between hedonic experiences and reward processes, and how these 

interact to modulate learning. A better understanding of these features can offer important 

insights into value-based decision-making, detailed models of learning, and clinical 

practices for affect related disorders such as substance use disorder, Parkinson’s disease, 

and depression. In the current report, I explored how these complex reward types may 

influence the RewP, and how these signals operate in reinforcement learning paradigms. 

Reinforcement Learning: Theories and Biological Systems 

In order to successfully traverse an actively complex environment, an agent is 

required to learn from the consequences of their actions. The successful utilization of this 

consequence-based learning system would require an agent to maximize positive 

outcomes while simultaneously minimizing negative outcomes. For over a century, 

animal models have been developed demonstrating these consequence-based learning 

systems (Thorndike, 1898). Thorndike coined these early behavioral effects as the Law of 
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Effect, whereby, once the appropriate action-effect association has been made, behaviors 

that led to pleasant or rewarding outcomes are repeated, while negative outcomes or 

punishments are lessened or stopped. More recently, underlying biological systems have 

been found to adhere to these constructs of learning. Research investigating midbrain 

dopamine projections has revealed specific trends in its activation that directly relate to 

feedback learning (O’doherty et al., 2004; Schultz, Dayan, & Montague, 1997). In these 

models, dopaminergic projections from the ventral tegmental area (VTA) and substantia 

nigra transport information related to an outcome and its deviation from what was 

expected to happen. These signals have become known as signals of reward prediction 

error (RPE).  

RPE signals have been shown to influence activation in neural sites such as 

midbrain regions (Zaghloul et al., 2009), striatum (Delgado, 2007; Mcclure et al., 2004; 

O’Doherty, 2004), and cortex (Gehring & Willoughby, 2002; Smith et al., 2009; Xue et 

al., 2008). These systems of reward processing appear to be especially sensitive to 

specific features of reward, such as its value, the likelihood that it was the expected 

outcome, the reward’s valence (good or bad), how motivated the agent was to receive it, 

and the agency employed to receive the reward (Caplin & Dean, 2008; Holroyd & Coles, 

2002; Schultz et al., 1997; Talmi, Fuentemilla, Litvak, Duzel, & Dolan, 2012).  

Much of our understanding of these reward-related learning systems are derived 

from animal models (Schultz, 2015), where some specific behavior leads to the animal 

receiving food (Pavlov, 2010; Thorndike, 1898) or juice (Schultz et al., 1997) or some 

other hedonic outcome. These early animal models demonstrate how the mammalian 

brain learns to predict positive outcomes and to form associations between behaviors and 

these outcomes. However, although Pavlov’s dog or Thorndyke’s cat were able to 
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successfully learn these associations, it is important to note the obvious: that animals 

cannot inform the experimenter on the degree to which the reward was enjoyed. Indeed, 

many models of reinforcement learning ignore (or simply cannot probe) these underlying 

emotion-related processes, because most emotional states can only be inferred, not 

confirmed in animals (Mendl, Burman, & Paul, 2010). Although what might be thought 

of as minutia in models of behavior, gaining an understanding of how these underlying 

emotional responses influence reward systems and signals could lead to greater 

understandings of clinical groups found to possess aberrant reward processing. For 

example, people with major depressive disorder show decreased neural signals in reward 

learning tasks, yet have no problem learning from them (Cavanagh, Bismark, Frank, & 

Allen, 2019), suggesting some underlying emotional-motivational modulation in these 

signals. An important research direction for gaining an understanding of these 

motivational state-trait aspects of reward would be to use highly emotional stimuli as 

rewards. One study in particular utilizing functional magnetic resonance imaging 

(Sabatinelli, Bradley, Lang, Costa, & Versace, 2007) found that neurological reward 

processing centers were activated for positively valenced pictures but not for aversive 

pictures. Indeed, other imaging methodologies would benefit from using complex 

emotional stimuli as rewards. EEG is an excellent tool for the study of these reward-

emotion interactions due to its sensitivity to real-time canonical neural computations 

(Cavanagh et al., 2019). A component of EEG called the RewP appears to represent an 

EEG signal of positive RPE. Investigations utilizing emotional stimuli to elicit the RewP 

would further the understanding of these time-sensitive motivational processes. 
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The Reward Positivity 

 The generation of the RewP appears to adhere to an axiomatic (rule-like) function 

of +RPE, in that it is evoked when outcomes are better than expected (Baker & Holroyd, 

2011; Holroyd & Umemoto, 2016). The RewP has been shown to reach maximal 

amplitudes over frontal-central sites usually 200 – 350ms following reward receipt (see 

Figure 1). The established occurrence of the RewP is in the exact time window where the 

N2 ERP component otherwise exists (Holroyd & Umemoto, 2016). Similar to other 

feedback-related signals (e.g. the feedback-related negativity or the error-related 

negativity), the RewP appears to reflect modulation of a control function from anterior 

cingulate cortex (ACC) signals (Baker & Holroyd, 2011; Holroyd & Umemoto, 2016). 

This specific feature of the RewP has been postulated to be the product of the inhibition 

of apical dendrites of motor neurons in the ACC by midbrain dopaminergic projections 

following an outcome that was better than expected. Although this theory of its 

generation has yet to be formally investigated, there is some evidence for this theory. 

First, similar to phasic dopamine firing, the RewP conforms to an axiomatic +RPE (Ait 

Oumeziane & Foti, 2016; Holroyd & Coles, 2002; Holroyd, Krigolson, & Lee, 2011; 

Proudfit, 2015). The timing of midbrain dopamine firing coincides with the time of the 

RewP activation (Luque, López, & Marco-pallares, 2012; Sambrook & Goslin, 2015; 

Talmi et al., 2012). Structural MRI studies have also shown that grey matter volume in 

the brain region of the dopamine nuclei is positively correlated with RewP amplitudes 

(Sambrook & Goslin, 2015; Zaghloul et al., 2009). Another piece of evidence for this 

theory is that individual differences in RewP amplitude are associated with individual 

differences in the expression of the D4 receptor (Carlson, Foti, Harmon-Jones, & 

Proudfit, 2015). Also, RewP amplitudes, but not the amplitudes for other potentials 
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evoked during a virtual T-maze task were selectively blocked by a D2/D3 agonist (Baker, 

Stockwell, Barnes, Haesevoets, & Holroyd, 2016). Similarly, animal studies have shown 

that primates that receive a dopamine antagonist produce attenuated RewP-type 

waveforms (Santesso et al., 2009). Lastly, RewP amplitudes appear to be positively 

correlated with BOLD signals in the striatum (a signal believed to represent an axiomatic 

RPE; Vezoli, Procyk, Cell, & Lyon, 2009). Taken together, there appears to be quite a 

large amount of converging evidence endorsing this theory of RewP generation. 

 The RewP has been shown to be sensitive to experimental and individual factors, 

such as if the subject is motivated (Threadgill & Gable, 2016), angry (Angus, Kemkes, 

Schutter, & Harmon-Jones, 2015), or if the feedback is presented with a pleasant picture 

(Brown & Cavanagh, 2018). RewP amplitudes have been shown to be diminished in 

people with depression (Foti, Kotov, Klein, & Hajcak, 2011) or in people who adhere to 

authoritarian parenting styles (Nelson, Perlman, Klein, Kotov, & Hajcak, 2016; Proudfit, 

2015). Surprisingly, RewP amplitudes appear to remain stable throughout development, 

suggesting that reward systems occur early in human development (Levinson, Speed, 

Nelson, Bress, & Hajcak, 2017). Importantly, the RewP appears to be sensitive to 

contextual factors that motivate behavior, suggesting that this signal is sensitive to global 

and not local reward context. In order to test this, Kujawa and colleagues (2013) had 

participants perform a simple gambling task where the value of the null condition 

differed between experimental blocks (win or lose). They discovered that evoked 

potentials for the null condition remained stable regardless of the block it was in. This 

suggests that the RewP is sensitive to all possible outcomes in a given policy state (Lukie, 

Montazer-Hojat, & Holroyd, 2014). Taken together, the evidence suggests that 

investigations of these reward signals using complex emotionally-salient rewards may 
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offer important insights into learning paradigms and clinical populations (Cavanagh et 

al., 2019). 

In addition, EEG investigations of reward signals have revealed a strong 

relationship between the RewP and underlying delta band activity (Bernat, Nelson, & 

Baskin-Sommers, 2016; Bernat, Nelson, Holroyd, Gehring, & Patrick, 2008). Indeed, 

many common ERP components reflect the summation of multiple frequency 

components (Bernat et al., 2008; Cohen, 2014). Two frequency bands in particular have 

received a great deal of attention regarding feedback-related neural electrical signals: 

theta band power (for losses) and delta band power (for wins). Importantly, delta band 

power has been shown to adhere to characteristics of positive RPE (Cavanagh, 2015). 

Furthermore, a recent study examining local field potentials sampled from the substantia 

nigra pars compacta in non-human primates revealed response patterns of dopamine 

neurons correlated with delta band frequency oscillations (Pasquereau, Tremblay, & 

Turner, 2019). These local field potentials were tuned only to reward-related processes 

and were unaffected by other events in the study such as movement. Indeed, a major 

benefit of spectral decompositions is its ability to identify separable overlapping neural 

activity. 
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Figure 1. ERP and temporal decomposition plots following task feedback. The 
grey box (TOP ROW) highlights the general morphology of the RewP (in red) at 
electrode site Cz. The RewP is characterized by a “shelf-like” morphology 
connecting the P2 and P3 ERP components following better than expected 
feedback. Loss feedback (in blue) typically contains an enhanced N2 component. 
This feature is what characteristically disassociates these two feedback-related 
neural computational signals. Topographic maps for win minus lose feedback 
(scaled: ± 2.5 µV) highlight voltage distribution topographies for the RewP, which 
are maximal at central dorsal electrode sites. The time frequency plot (BOTTOM 
ROW) displays frequency power at electrode site Cz for win feedback minus lose 
feedback. Importantly, delta band power (~1 – 4 Hz) is more pronounced following 
feedback signifying a win (highlighted in red) while theta power (~5 – 7 Hz) is more 
pronounced following feedback related to a loss (highlighted in blue). 
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Clinical Applications 

A recent review (Holroyd & Umemoto, 2016) has suggested that many aberrant 

behaviors and psychological disorders can be traced to maladaptive ACC activation. In 

this review, the authors provide detailed evidence for the role the ACC plays in disorders 

such as Parkinson’s disease, depression, anxiety, schizophrenia, and substance use 

disorder. Recent directions by the United States National Institute of Mental Health have 

led to approaching mental disorders from a Research Domain Criteria framework, aimed 

to “develop, for research purposes, new ways of classifying mental disorders based on 

behavioral dimensions and neurobiological measures” (Insel et al., 2010; National 

Institute of Mental Health, 2015). This approach is aimed to highlight basic components 

of symptomology that are present across disorders. Due to its relationship with 

dopaminergic tone, the RewP may be a strong candidate for such an approach.  

Recent investigations of the RewP in clinical populations have already shown that 

this signal responds meaningfully across disorders. Schizophrenia, for example, has been 

associated with aberrant ACC function that may be due in part to deregulated dopamine 

expression (Seeman & Kapur, 2000). Past research has provided evidence that people 

suffering from schizophrenia have maladaptive associative learning rates when compared 

to healthy controls (Nestor et al., 2014), yet respond normally to rewards (Gold, Waltz, 

Prentice, Morris, & Heerey, 2008). Indeed, during a probabilistic learning task, RewP 

amplitudes remained stable between those with schizophrenia and normal healthy 

controls (Morris, Heerey, Gold, & Holroyd, 2008), suggesting that this clinical group has 

difficulty making associations between a reward’s value and motivated behavior. In 

contrast, people with major depressive disorder have been shown to have blunted RewP 

signals (Proudfit, 2015; Proudfit, Bress, Foti, Kujawa, & Klein, 2015) yet are able to 
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learn from reward presentations (Cavanagh et al., 2019; Kumar et al., 2008), suggesting a 

maladaptive hedonic appreciation of the rewarding stimuli in this clinical group. 

 The RewP may also be useful as a diagnostic tool in diseased populations. Indeed, 

a recent study showed that early stage Parkinson’s disease correlates with blunted RewP 

amplitudes; however, RewP amplitudes normalized during the progression of the disease 

(Brown, Pirio-Richardson, & Cavanagh, in review). This signal blunting during early 

stages of the disease might suggest an early indicator of disease onset. However, future 

longitudinal studies must be conducted to further unpack this effect. Another recent study 

revealed that blunted RewPs were associated with maternal major depression (a major 

risk factor for depression development: Kujawaa, Proudfit, Laptook, & Klein, 2016). 

Additionally, blunted RewP amplitudes have been suggested to be a major predictor of 

major depressive disorder (Proudfit, 2015). This feature of the RewP may have more to 

do with emotion-related hedonic aspects of reward receipt (Cavanagh et al., 2019) in that 

the blunted RewP seen in major depression is specifically related to anhedonia (Bress, 

Foti, Kotov, Klein, & Hajcak, 2013). Again, emotional processes appear to modulate this 

signal. 

 Recent studies have revealed that the RewP is sensitive to emotional manipulation 

(Brown & Cavanagh, 2018; Threadgill & Gable, 2016). These studies suggest that 

hedonic aspects of reward processing can influence the generation of this signal, 

motivating future studies to use emotional rewards for clinically depressed individuals or 

drug-specific rewards (for example pictures of alcohol) for people with substance use 

disorders (Verdejo-Garcia, Perez-Garcia, & Bechara, 2005). However, an important 

limitation in the RewP literature is its over-reliance on one specific class of reward. Much 

of what is known about RewP dynamics relates to a participant winning or losing 
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conditional types of extrinsic rewards (i.e., money or points). Studies using animal 

models and fMRI, on the other hand, have made great strides in investing reward signals 

by utilizing both primary rewards (e.g., food and liquid rewards) and secondary rewards 

(e.g., points and money). One fMRI study in particular (Beck, Locke, Savine, Jimura, & 

Braver, 2010) revealed differing neural pattern activation between these two reward 

types, whereby transient BOLD activation effects were revealed for primary rewards but 

not for secondary rewards. The results of this study also revealed that reward processing 

centers were dissociable between reward types: secondary rewards were processed in 

cognitive control centers, such as the ACC and posterior cingulate cortex, and primary 

rewards were associated with sustained activation in sub-cortical regions such as the 

striatum and amygdala. EEG studies have historically employed only a single type of 

rewarding feedback (e.g., money or points) in order to investigate reward-related neural 

dynamics (Delgado, Locke, Stenger, & Fiez, 2003; Foti & Hajcak, 2009). Needless to 

say, this over-reliance on a single class of reward greatly limits the understanding of the 

boundary conditions and generalizability of these studies. The current series of studies 

aims to investigate the RewP and its underlying frequency components using complex, 

emotionally salient rewards. 

The Present Studies  

The present series of studies aimed to investigate the generation of the RewP for 

complex emotional rewards. A recent report revealed that the RewP evoked for emotional 

images is occluded by a signal of novelty (Brown & Cavanagh, 2018). The first two 

studies in the current series aimed to address and provide solutions to this methodological 

issue by utilizing spectral decomposition techniques. The third study in the series aimed 
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to leverage RPE characteristics present in the RewP as an additional workaround. The 

final two studies aimed to investigate learning rates for differing types of rewards.  
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Chapter 2 

NOVEL REWARDS OCCLUDE THE REWARD POSITIVITY, AND WHAT TO 

DO ABOUT IT  
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Abstract 

The EEG response known as the Reward Positivity (RewP) appears to faithfully signal an 

axiomatic positive reward prediction error.  This quality suggests that it reflects a core 

computational process in reinforcement valuation. Yet the RewP is also modulated by 

state and trait affect, suggesting that it has a more complex computational role than 

simple prediction error signaling.  Here I conducted a series of experiments designed to 

disentangle the emotional aspects of reward processing, the nature of the interaction with 

control signals, and the culmination of these phenomena in the RewP. In the first two 

experiments I successfully occluded the RewP with an enhanced N2 component by 

presenting novel visual stimuli alongside rewards. This enhanced N2 and accompanying 

frontal midline theta power suggest that signals of control-evoking surprise occlude the 

RewP.  In a third study, I parsed reward predictability, novelty, and the experience of 

affective valence using a fully informative outcome indicator prior to reward receipt.  

Participants were able to win pleasant novel images or points, but before the onset of the 

rewarding stimulus they were presented with a colored shape indicating whether or not 

they won, and what type of reward they would receive. The RewP successfully migrated 

to the first indication of reward (the colored shape), without the confound of novelty-

induced N2 responses. Comparisons between win conditions revealed a larger RewP for 

cues that predicted pleasant images over points. Taken together, these findings suggest 

that the RewP reflects a combination of computational evaluation and affective valuation 

in the evaluation of reinforcement, and that novel stimuli can be used to modulate the 

RewP if appropriate methodological constraints are taken into account. 
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Experiment 1 

A fundamental feature of reward is the intrinsic motivational value of hedonic 

pleasure (Berridge & Robinson, 1998; Schultz, 2000, 2015). Yet many aspects of reward 

are studied using probabilistic or deterministic reinforcement learning paradigms, which 

may be good for investigating anticipation or expectation but don’t address other aspects 

of reward such as hedonic value or liking. Although prior research has identified neural 

signatures relating to  varied aspects of reward processing in humans ((Berridge, 1996; 

Bunzeck, Doeller, Dolan, & Duzel, 2012; Finlayson, King, & Blundell, 2007; Kakade & 

Dayan, 2002; Smith & Berridge, 2005), electroencephalogram (EEG) experiments have 

suffered from confounding methodological issues due to novel, visually complex 

rewards. In our recent report, I detailed how novel pleasant images evoked an N2 instead 

of a Reward Positivity (RewP), yet with appropriate controls they appeared to enhance an 

underlying process suggestive of a RewP (Brown & Cavanagh, 2018). This 

methodological confound of novelty vs. reward responsivity hinders our understanding of 

how reward signals may be modulated by ecologically relevant stimuli. The use of 

idiosyncratic rewarding stimuli can assist in research on aberrant valuation in clinical 

populations, for example presenting alcohol (George et al., 2001) or cigarette cues (David 

et al., 2005) to people with substance use disorders, or emotionally evocative images to 

people who are depressed (Tremblay et al., 2005).  These complex, ecologically relevant 

stimuli are necessary for a sophisticated understanding of motivational drives in learning 

and decision-making. In the current series of studies, I aimed to probe this 

methodological issue by formally investigating the interaction between reward and 

novelty in the EEG.  
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The RewP is a positive going EEG deflection appearing roughly 250ms following 

reward receipt over fronto-central sites. Recently, the RewP has received a great deal of 

attention as a neural signal of axiomatic (rule-based) positive reward prediction error 

(RPE), a signal representing a special case of surprise evoked when an outcome is better 

than expected (Brown & Cavanagh, 2018; Cavanagh, 2015; Cockburn & Holroyd, 2018; 

Heydari & Holroyd, 2016; Holroyd, Krigolson, & Lee, 2011; Meadows, Gable, Lohse, & 

Miller, 2016; Proudfit, 2015). Typically, the RewP has been evoked with point (Brown & 

Cavanagh, 2018), money (Bellebaum & Daum, 2008; Talmi, Atkinson, & El-Deredy, 

2013), abstract icon (Angus, Kemkes, Schutter, & Harmon-Jones, 2015; Proudfit, 2015), 

or linguistic feedback  (Cavanagh et al., 2019) indicating a successful decision. In fact, 

with very few exceptions (Angus et al., 2015; Heydari & Holroyd, 2016; Talmi, 

Atkinson, & El-Deredy, 2013), research involving the RewP has not explored its 

sensitivity to other forms of rewarding feedback. Unfortunately, the over-reliance on a 

single type of trial feedback greatly limits the understanding of the boundary conditions 

of the RewP.  

The canonical occurrence of a RewP is in the exact time window where an N2 

otherwise exists (Holroyd, Pakzad-Vaezi, & Krigolson, 2008).  This specific feature of 

the RewP has been postulated to be the product of the inhibition of apical dendrites of 

motor neurons in the anterior cingulate cortex by midbrain dopaminergic projections 

following an outcome that was better than expected. Although the dopaminergic aspect of 

this theory has not been formally tested, numerous studies have shown that N2 

amplitudes are evoked for novelty-induced control, including negative outcomes but also 

positive outcomes if they are rare or control-demanding (Baker & Holroyd, 2011; 

Oliveira, McDonald, & Goodman, 2007; Cavanagh, Figueroa, Cohen, & Frank, 2012). 
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This feature of the N2 explains why novel images evoked an enhanced N2 component for 

pleasant picture rewards in our previous study. The current study aimed to investigate if 

the induction of irrelevant novel stimuli during reward receipt will affect the morphology 

of the RewP by the N2 component. 

There are numerous methodological techniques that may be useful for isolating 

overlapping spatio-temporal signals. The RewP and the N2 component don’t only appear 

within the same temporal window, but also over the same fronto-central spatial locations 

on the scalp. However, these different components have different frequency 

representations in the delta (1-4 Hz) and theta (4-8 Hz) bands, respectively (Bernat et al., 

2008).  Spectral decomposition may be a fruitful technique for the isolation and 

examination of these overlapping frequency bands during novel rewards.  

In the current report, I conducted a series of studies aimed to modulate the RewP 

through the pairing of rewarding stimuli with novel shapes and images. I hypothesized 

that the simple inclusion of irrelevant novel images would occlude the typical 

morphology of the RewP signal due to an enhanced N2. Then I tested two potential 

solutions to this methodological confound: first by leveraging spectral decomposition in 

order to parse condition-specific frequency bands that are sensitive to novelty vs. reward, 

and second, with a methodological manipulation of reward expectation.   

Method 

Participants 

In all experiments, participants were recruited from the University of New 

Mexico subject pool. Students received class credits for participation. Participants were 

excluded from participation if they had a history of head injury that resulted in loss of 

consciousness for more than five minutes, had a history of epilepsy, had a history of any 
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psychiatric or neurological disorder, or was currently on any psychiatric or neurological 

drugs. The Institutional Review Board of the University of New Mexico approved the 

study protocol. In Experiment 1 I recruited 30 participants (17 females) with a mean age 

of 20.47 (SD = 6.13). 

Procedure 

During the experiment participants played a simple forced choice task. The task 

was programmed in Matlab using Psychtoolbox (Brainard, 1997). On each trial, 

participants were presented three doors and were asked to guess which door they believe 

a reward was behind (Figure 2). Participants made a choice using an appropriate button 

press on the keyboard. A fixation cross was then displayed for a duration selected from a 

uniform distribution of 550 to 1050ms. Finally, participants received their win feedback 

(+1) or no-win feedback (a yellow bar). During half of the trials, the point feedback was 

presented in front of a novel shape. The participants were informed that the shape didn’t 

mean anything, and that they should only focus their attention on the points. A new trial 

started automatically following a 1000ms inter-trial interval. Together, there was 80 trials 

total (20 point-only wins, 20 point-only no-wins, 20 point-shape wins, 20 point-shape no-

wins). The average time for task completion was 10 minutes.  
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Data acquisition and preprocessing  

Electrophysiological data were collected with a 64Ag–AgCl electrodes embedded 

in a stretch-lycra cap with a sampling rate of 500Hz with low and high cutoffs at .01-100 

Hz. CPz served as the reference electrode and FPz as the ground electrode. Data was 

recorded with a Brain Vision system (Brain Products GmbH, Munich, Germany). 

Vertical electrooculogram (VEOG) activity generated by blinks was recorded by two 

auxiliary electrodes placed superior and inferior to the left pupil.   

All EEG processing was conducted in EEGlab (Delorme & Makeig, 2004). First, 

CPz was re-created via computation of the average reference (EEGlab function 

Figure 2. Task 1 description. On each 
trial, participants chose one of three 
doors. After a short (550-1500ms) 
presentation of a fixation cross they 
received their win (+1) or no-win (-) 
feedback. On half of the trials, point 
feedback appeared in front of a novel 
colored shape.  
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pop_reref.m). Very ventral electrodes (FT9, FT10, TP9, and TP10) were then removed, 

as they tended to be unreliable. The average reference was then recomputed for the 

remaining 60 electrodes. ERPs were filtered between .01 to 20 Hz prior to averaging. In 

order to capture all trial events, data was epoched around feedback screen onset (-1000 to 

3,000ms). Using statistical deviations from the mean for each EEG channel, FASTER 

(Nolan, Whelan, & Reilly, 2010) identified artifacts in each epoch for later rejection. Eye 

blink activities were removed following ICA (runica; Makeig, Bell, Jung, & Sejnowski, 

1996). Epochs were then baseline corrected (-200 to 0 ms before feedback onset) and 

averaged to calculate event related potentials (ERP). The RewP was quantified at 

electrode site Cz and was measured between conditions within a 200 – 350ms window 

post feedback onset. 

Time-frequency measures were computed using custom-written MATLAB 

functions (Cavanagh, Cohen, & Allen, 2009) by multiplying the fast Fourier transformed 

(FFT) power spectrum of single trial EEG data with the FFT power spectrum of a set of 

complex Morlet wavelets (defined as a Gaussian-windowed complex sine wave: ei2πtfe-

t^2/(2xs^2), where t is time, f is frequency (which increase from 1–50 Hz in 50 

logarithmically spaced steps) and defines the cycles of each frequency band, set 

according to 4/(2πƒ)), and taking the inverse FFT. The end result of this process is 

identical to time-domain signal convolution, and it resulted in estimates of instantaneous 

power (the magnitude of the analytic signal), defined as Z[t] (power time series: 

p(t)=real[z (t)]2 + imag[z(t)]2). Each epoch was then cut in lengths (-500 to 1,500ms). 

Power was normalized by conversion to a decibel scale (10 x 

log10[power(t)/power(baseline)]), allowing a direct comparison of effects across 
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frequency bands. To account for spectral smearing (Cohen, 2014) frequency power plots 

was measured between conditions within a 200 – 400ms window post feedback onset. 

Statistical Analyses 

Greenhouse-Geisser adjusted ANOVAs and planned comparison decompositions 

were used for data analyses. Reports of effect size for ANOVA are partial-η2, while 

planned comparison effect sized are reported as Cohen’s d. 

Results 

ERP Results  

Figure 3 reveals the grand average waveforms for stimulus locked ERPs. The 

2(VALENCE: win vs. no-win) × 2(NOVELTY: point-only vs. point-shape) ANOVA 

revealed a significant VALENCE (win > no-win) main effect (F(1,29) = 8.195, p = .008, 

η2 = .220) but no NOVELTY main effect (F(1,29) = 0.033, p = .856, η2 = .001). The 

ANOVA revealed a significant interaction (F(1,29) = 6.985, p = .013, η2 = .194). 

Bonferoni protected multiple comparison t-tests revealed a significant win > no-win 

difference in point-only condition (t(29) = 4.244, p < .001, d = .723) but not in the point-

shape condition (t(29) = .327, p = .746, d = .056).  
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I also employed a spatial filter (surface Laplacian) to investigate if this filtering 

technique could isolate these signals (see Figure 4). Generated ERPs after applying a 

Surface Laplacian spatial filter was not able to disseminate valence or novelty effects. 

Surface Laplacian is commonly conducted to emphasize electrical activity while filtering 

out noise related to spatial distribution of the signal (Carvalhaes & De Barros, 2015; 

Cohen, 2014). The 2(VALENCE: win vs. no-win) × 2(NOVELTY: point-only vs. point-

shape) ANOVA failed to reveal a main effect for either VALENCE (F(1,29) = .029, p = 

.866, η2 = .001), NOVELTY (F(1,29) = 1.090, p = .305, η2 = .036), or an interaction 

(F(1,29) = 2.174, p = .151, η2 = .070). Taken together, it appears that the surface 

Laplacian is ill-equipped for isolating the reward-specific component in the RewP. 

Figure 3. Feedback evoked ERPs for Experiment 1. These reveal statistical differences 
between win and no-win outcomes when participants were presented point-only feedback, 
but these were wiped out when feedback was paired with novel shapes. Topographic maps 
for win minus no-win feedback (scaled: ± 2.5 µV) reveal similar distributions of voltage 
differences during the RewP time window between the point-only and shape-point 
conditions. Line graphs represent averaged voltage over the RewP time window (200-
350ms) and reveal a significant outcome by valence interaction. 
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Time Frequency Analysis Results 

Figure 5 depicts the grand averages for feedback-locked time frequency 

decompositions. A 2(VALENCE) x 2(NOVELTY) repeated measures ANOVA was 

conducted on delta power (1–4 Hz) over the time frequency time window of 200 – 

400ms. This analysis revealed a main effect for VALENCE (win > no-win: F(1,29) = 

7.446, p = .011, η2 = .204). The ANOVA failed to reveal a significant NOVELTY main 

effect (point-shape > point-only; F(1,29) = 3.478, p = .072, η2 = .107) or an interaction 

(F(1,29) = .218, p = .644, η2 = .007).  

The 2(VALENCE) x 2(NOVELTY) repeated measures ANOVA on theta power 

(4–7 Hz) revealed a significant NOVELTY main effect (point-shape > point-only; 

Figure 4. Experiment 1 ERP and topographic maps plots 
following voltage and surface Laplacian filtering. Voltage ERPs 
(TOP ROW) for trial feedback reveal a significant differentiation 
between win and no-win feedback in the point-only condition 
but not in the point-shape condition. Generated ERPs after 
applying a Surface Laplacian spatial filter (BOTTOM ROW) was 
not able to disseminate these effects.  



 

 23 

F(1,29) = 10.118, p = .003, η2 = .259) but no main effect for VALENCE (F(1,29) = 

1.518, p = .228, η2 = .050), or interaction (F(1,29) = .144, p = .707, η2 = .005). 

 

 
 
 
 

 

 
 

Figure 5. Experiment 1 Time-Frequency power plots. (TOP ROW) Time-frequency power for 
win minus no-win conditions (panel 1 and 2). The black boxes outline the time and 
frequency range used for analysis (solid box = delta; dotted box = theta). Increased delta 
band power (1–4 Hz) is evident for win conditions over that of no-win condition. (MIDDLE 
ROW) Delta band power envelopes and line plots display main effects for valence and 
novelty. (BOTTOM ROW) Theta band power envelopes and line plots display only a main 
effect for novelty  
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Experiment 1 Discussion 

These results revealed that the inclusion of novel stimuli interfered with the 

detection or generation of the RewP, but reward-locked delta power was unaffected. 

Furthermore, there was increased theta power, an index of general surprise (Cavanagh & 

Frank, 2014), for win feedback paired with novel shapes, demonstrating a double 

dissociation between the two frequency ranges. Taken together, these results support our 

hypothesis that signals of novelty occlude the detection of EEG signals of the RewP and 

that spectral decomposition is a viable technique for isolating these separable neural 

signatures.  

Experiment 2 

In Experiment 1 it was revealed that novel shapes evoked an enhanced N2 

component which occluded the RewP, and frequency decompositions were able to isolate 

these distinct processes. I suspect this effect was produced by the outcome-specific 

surprise evoked for the inclusion of novel shapes with rewarding feedback. However, in 

that task there were two levels of surprise: (1) the trial-specific novelty surprise evoked 

for the novel shapes, and (2) the trial-to-trial outcome surprise of points-only vs. point-

shape presentations. This additional level of surprise may have further enhanced this 

signal of novelty. To replicate this finding as well as extend it by isolating the effect to a 

single type of surprise, I designed a second experiment eliminating the trial-to-trial 

outcome surprise while still maintaining the trial-specific novelty by presenting the type 

of feedback (point-only and point-shape) in separate blocks.   

Method 

In Experiment 2 30 participants (20 female) were recruited with a mean age of 

20.67 (SD = 3.77). Experiment 2 was the same as Experiment 1, but outcome conditions 
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(point-only and point-shape) were blocked together so that participants would only be 

presented with a block of point-only feedback, and then after a short break, they would 

receive a block of feedback in the point-shape condition. The order of the outcome blocks 

was counter balanced in order to avoid primacy effects. All experimental protocols and 

data processing procedures were similar between Experiment 2 and Experiment 1.  

Results 

ERP Results 

Figure 6 shows the grand average waveforms for stimulus locked ERPs. First, I 

examined if the ordering of the experimental blocks affected RewP amplitudes. There 

was no block order main effect for participants who received the point only condition 

first (n=19) versus those who received the point-shape condition first (n=11; F(1,28) = 

.246, p = .624, η2 = .009) suggesting that block order effects did not affect the amplitude 

of the RewP. The 2(VALENCE: win vs. no-win) × 2(NOVELTY: point-only vs. point-

shape) revealed a significant VALENCE (win > no-win) main effect (F(1,29) = 22.598, p 

< .001, η2 = .438) as well as a NOVELTY (point-only > point-shape) main effect 

(F(1,29) = 4.782, p = .037, η2 = .142), but not an interaction (F(1,29) = .467, p = .500, η2 

= .016) suggesting that the RewP was sensitive to  trial-specific novelty. However, a 

post-hoc analysis comparing RewP amplitudes between the two win conditions (point-

only and point-shape) revealed a significant difference between the RewP evoked in these 

conditions (t(29) = 2.230, p = .034, d = .423), whereby RewPs evoked in the point-only 

condition were significantly larger than those evoked in the point-shape condition. Visual 

inspection of these signals reveals that the RewP for point-shape pairs had an enhanced 

N2 component. This suggests that the removal of the trial-to-trial outcome surprise in this 
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task was not enough to completely remove the N2 component from overlapping the 

RewP.   

 
 
 
 
 
 
 
 
 
 
 
 
Time Frequency Analysis Results 

The ANOVA (Figure 7) results conducted on delta power replicated the effects 

from Experiment 1, whereby there was a main effect for VALENCE (win > no-win: 

F(1,29) = 5.384, p = .028, η2 = .157 but no main effect for NOVELTY (point-shape > 

point-only; F(1,29) = .568, p = .457, η2 = .019) or an interaction (F(1,29) = .218, p = 

.644, η2 = .007). Surprisingly, the ANOVA on theta power did not reveal a significant 

NOVELTY main effect (F(1,29) = 2.721, p = .110, η2 = .086) or VALENCE main effect 

Figure 6. Feedback evoked ERPs when outcome types (point-only and point-shape) 
were blocked. Here we modified the degree of feedback novelty by keeping the outcome 
type consistent within blocks. This blocked designed reveal win vs. no-win differentiations 
were present for both point-only and point-shape outcomes. Topographic maps for win 
minus no-win feedback (scaled: ± 2.5 µV) reveal voltage distribution differences between 
the two outcome types, whereby win minus no-win voltage distribution was more anterior 
in the point-only condition while voltage distribution was more posterior in the point-
shape conditions. This difference in voltage distributions is most likely a product of the 
visual gain involved in the processing of the colored shapes in the novel conditions. 
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(F(1,29) = .004, p = .952, η2 < .001), nor was there an interaction (F(1,29) = .056, p = 

.815, η2 = .002).  

 
 
 
 
 

 

 

 

 

 

Figure 7. Experiment 2 Time-frequency power plots. (TOP ROW) Time-frequency power for 
win minus no-win conditions (panel 1 and 2). The black boxes outline the time and frequency 
range used for analysis (solid box = delta; dotted box = theta). Increased delta band power 
(1–4 Hz) is evident for win conditions over that of no-win condition. (MIDDLE ROW) Delta 
band power envelopes and line plots display main effects for valence and novelty. (BOTTOM 
ROW) Theta band power envelopes and line plots display no main effects or interactions.  
. 
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Experiment 2 Discussion 

In Experiment 2 the type of feedback received by the participants was differed by 

blocks in order to diminish trial-to-trial outcome surprise. The results reveal that the 

signal generated for novel shapes did not completely occlude the RewP after removing 

the trial-to-trial surprise and thus the signal for novel win feedback could be 

differentiated from the signal for novel no-win. However, in Experiment 2, I did see an 

enhanced N2 component in the point+shape win condition that was different from the 

point-only win condition. Spectral decomposition replicated Experiment 1 whereby delta 

power was larger for wins than no-wins. However, the increased theta power for novel 

condition disassociation I saw in Experiment 1 did not replicate in Experiment 2, likely 

due to the reduction of trial-to-trial outcome surprise. Taken together, it appears that the 

manipulation of surprise can lessen, but not eliminate this overlap between neural signals.  

Experiment 3 

In Experiment 1 I successfully occluded the RewP with the inclusion of novel 

shapes. I partially ameliorated this effect in Experiment 2 by presenting the feedback 

(standard and novel) in experimental blocks, thus limiting the trial-by-trial surprise in the 

viewing of novel rewarding stimuli. Even though the RewP evoked for novel rewards 

was not completely occluded by the novel shape pairings, I did see an enhanced N2 

component in the novel reward conditions that was different from the RewP evoked for 

point-only rewards. These results suggest an inherent methodological limitation relating 

to the use of complex stimuli as reinforcing stimuli. Our earlier report suggested that 

intrinsically motivating rewards can still modulate the underlying RewP (Brown & 

Cavanagh, 2018), but I did not identify a way to isolate this variance to reward-related 

processing. However, by leveraging principles of reinforcement learning there may be 
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options for the use of these complex rewards in experiments aimed to investigate the 

RewP. 

A foundational feature of reinforcement learning is the migration of the RPE to 

the first reliable predictor of reinforcement (Sutton & Barto, 2018). A neural instantiation 

of this phenomenon is illustrated by the seminal work by Schultz and colleagues, where 

midbrain dopamine firing propagates back in time to the presentation of a cue predicting 

reward receipt without a response to the actual reinforcement itself (Schultz, Dayan, & 

Montague, 1997). The migration of signals to cues predicting reward receipt has also 

been documented in ERP experiments (Angus et al., 2015; Holroyd et al., 2011; Potts, 

Martin, Burton, & Montague, 2006), but not with hedonically meaningful stimuli. In this 

third experiment, I aimed to investigate if this signal of positive RPE would migrate to a 

predictive cue for different types of rewarding stimuli (points vs. pleasant pictures). I 

hypothesized that the RewP would be evoked for cues predicting point or picture 

rewards, and that it would be larger for preferred picture rewards. Additionally, I 

hypothesized that frontal midline delta would also migrate to the reward predicting cues 

while frontal midline theta would migrate to cues predicting no-win outcomes.   

Method 

 Participants were 30 students (17 female) recruited from the University of New 

Mexico subject pool, with a mean age of 21.02 (SD = 3.52). Inclusion and exclusion 

criteria were the same as Experiments 1 and 2. First, in order to choose idiosyncratic 

picture rewards for the main task, participants completed a short image-rating task. On 

each trial participants were presented with an image and asked to rate how pleasant they 

found it from 1(not pleasant at all) to 9(extremely pleasant). Pictures were drawn from 1 

of 5 affective image categories: male models, puppies, nature scenes, nude women, and 
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babies (Brown & Cavanagh, 2018). The picture class that was rated as most pleasant was 

used as picture rewards in the following task. Picture classes were based on images that 

were rated as highly pleasurable from the International Affective Picture System (IAPS: 

Lang, Bradley, & Cuthbert, 1997). Standardized ratings of valence (1=negative to 

9=positive) from the IAPS technical manual were compared by gender. The reward 

classes used for the current study were chosen from the most occurring image themes. All 

images were selected from internet searches. All images were inspected in task-

presentation conditions in order to assess no image appeared blurry and that sizing was 

equal for all images. In order to assess if a participant’s top picture selection was truly 

pleasant, an additional 6th category was made up of affectively neutral images (e.g. 

lightbulb, door knob, etc.) from the IAPS. All participants rated their top choice as more 

pleasant than the neutral picture class. 

Following the image rating task, participants performed forced choice task similar 

to that of Experiment 1 and 2 (Figure 8). This iteration of the task differed in two ways: 

(1) participants would either receive point win (+1), picture win (1st choice from the 

image rating task) or no-win (-) feedback, and (2) before the presentation of the trial 

feedback, participants would receive a colored cue (either a star or a square) indicating 

what type of reward (point of picture) and whether they won or lost (green cue = win, red 

cue = no-win). Colored cues were presented to the participant for 1000ms followed by a 

second fixation screen. The second fixation screen remained on the screen for 550 to 

1050ms and afterwards participants received their trial feedback. The task took an 

average of 22 minutes to complete. 
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After the forced choice task, participants completed a third task in order to assess 

feedback preferences between picture and point rewards. This image preference task was 

similar to our prior study (Brown & Cavanagh, 2018) where two pictures (one from each 

picture class) were presented on either side of the screen. Participants were instructed to 

choose the object that “would have been the better feedback” during the door task. 

Participants were also presented point feedback along with the picture feedback. The 

point feedback presented was the same point outcomes that was presented during the 

forced choice task (+1 and a yellow bar). Additionally, participants were also presented a 

Figure 8. Experiment 3 task. After choosing a door, participants were presented with a one of 
two-colored cues. The shape of the cue indicated the type of reward the participant earned 
while the color indicated the whether they would receive win or no-win feedback. After a short 
delay, participants received the feedback. 
.  
. 
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large point feedback (+5) that not presented to them during the forced choice task to act 

as a manipulation check. In the image preference task, all image classes and point 

feedback types were compared with each other 4 times each for a total of 112 trials and 

took about 7 minutes to complete. 

Results 

Picture Rating Task and Image Preference Task Results 

Figure 9a depicts the bar plots for mean pleasant ratings for the image rating task. 

I conducted a one-way ANOVA comparing the pleasant ratings across the six levels of 

image class (1st Choice, 2nd Choice, 3rd Choice, 4th Choice, 5th Choice, and neutral). The 

ANOVA revealed a significant effect across the image classes (F(2.850, 82.656) = 

104.516, p < .001, η2 = .783). Multiple comparisons revealed pleasant ratings across all 

image classes were significantly different from each other (all p < .001) except the ratings 

made for the participant’s 5th choice and neutral image classes (p = .081). These findings 

verify that our participants consistently found their top choice more pleasant than 

emotionally neutral images.   

Next, I conducted an analysis comparing the feedback preferences from the 

choice task. Here, I conducted a 3(POINT: +5, +1, Null) x 5(CLASS CHOICE: 1st 

Choice, 2nd Choice, 3rd Choice, 4th Choice, 5th Choice) ANOVA. The ANOVA revealed a 

significant POINT main effect (F(1.496, 43.395) = 60.670, p < .001, η2 = .677), whereby 

+5 was chosen more than +1 (p < .001) and null (p < .001), and +1 was chosen more than 

null (p < .001). There was also a CLASS CHOICE main effect (F(3.265, 94.680) = 

58.972, p < .001, η2 = .670), whereby a participant’s picture choices all significantly 

differed from their top choice (all p < .005) except for the participants 2nd choice (p = 

.068). Importantly, there was a significant interaction (F(6.510, 188.798) =  6.936, p < 
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.001, η2 = .193). Figure 9b depicts these preference trends. Importantly, >80% of 

participants preferences were for the 1st choice picture class over +1 point (which was 

used in the main task). This suggests that participants preferred receiving the images in 

their first choice set more than receiving the +1 feedback. 

 
 
 
 

 

 

 

Figure 9. Results from the Picture Rating Task and Image Preference Task. Picture 
reward class was chosen based on the pleasantness scores rated by the 
participants. Top panel (a) displays the mean ratings of pleasantness across 
participants ranked image classes. The image class that was rated the most pleasant 
was later used in the forced choice task. Importantly, all images classes (except for 
the fifth-choice class) was rated as significantly more pleasant than the emotionally 
neutral class of images. (b) Displays results for the Image Preference Task. The 
majority (>80%) of participants preferred receiving their first-choice picture than the 
point feedback (+1) in the forced choice task.   
. 
 



 

 34 

ERPs Results for Predictive Cues 

Figure 10 shows the grand average waveforms for ERP activities locked to the 

predictive cues. The 2(VALENCE: win vs. no-win) × 2(REWARD TYPE: point vs. 

picture) ANOVA revealed a significant VALENCE (win > no-win) main effect (F(1,29) 

= 6.752, p = .015, η2 = .189) as well as an REWARD TYPE (picture > point) main effect 

(F(1,29) = 6.010, p = .020, η2 = .172) without a significant interaction (F(1,29) = 1.621, p 

= .213, η2 = .053). Taken together these results support our hypothesis in that the RewP 

successfully migrated to the first instance of trial feedback and correctly differentially 

win from no-win feedback for both points and picture.  
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Experiment 3 ERP Results for Trial Feedback 

The ANOVA examining ERP amplitudes during the RewP time window (200-

350ms) for trial feedback failed to reveal a main effect for VALENCE (F(1,29) = 2.980, 

p = .095, η2 = .093), however there was an REWARD TYPE main effect(point > picture: 

F(1,29) = 20.286, p < .001, η2 = .412) as well as an interaction (F(1,29) = 18.426, p < 

.001, η2 = .389). Bonferoni protected multiple comparisons revealed significant ERP 

Figure 10. ERPs for reward cues (left) and trial feedback (right). In adherence with our 
hypothesis, the RewP migrated to the first instance of reward receipt, the predictive cue. This 
effect was true for both point and picture feedback. Interestingly, once striped of the 
expectation of reward, the ERP’s for point reward exhibited an enhance P2 but no RewP, 
while the picture reward exhibited an enhanced negativity. Topographic maps for win minus 
no-win cue and feedback (scaled: ± 2.5 µV) reveal similar distributions of voltage differences 
during the RewP time window between the cues and point feedback. The voltage distribution 
for the picture feedback were greatest over occipital sites most likely due to the visual 
complexity of the images; with an average reference this posterior effect caused the large dip 
(green) at Cz in the time window here.  
. 
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difference between win feedback (point > picture: (t(29) = 5.012, p < .001, d = .973)  but 

not for no-win feedback (t(29) = .148, p = .883, d = .028). Visual inspection of the ERPs 

evoked for trial feedback (Figure 10) reveal an enhanced voltage negativity for picture 

rewards, mirroring the ERPs from a previous study involving picture feedback (Brown & 

Cavanagh, 2018). As hypothesized, ERPs evoked by the feedback did not have a RewP.  

Time Frequency Analysis Results for Predictive Cues 

Figure 11 depicts the grand averages for time frequency decompositions locked to 

the predictive cue. A 2(VALENCE) x 2(REWARD TYPE) repeated measures ANOVA 

was conducted on frontal midline delta power and revealed a significant main effect for 

VALENCE (win > no-win; F(1,29) = 9.140, p = .005, η2 = .240), but no REWARD 

TYPE main effect (F(1,29) = 1.241, p = .274, η2 = .041) or interaction (F(1,29) = .001, p 

= .980, η2 < .001). The 2(VALENCE) x 2(REWARD TYPE) repeated measures ANOVA 

conducted on frontal midline theta power failed to reveal either a VALENCE or 

REWARD TYPE main effect (F(1,29) = .578, p = .453, η2 = .020; F(1,29) = 1.972, p = 

.171, η2 = .064, respectively), or an interaction (F(1,29) = .771, p = .387, η2 = .026).  
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General Discussion 

In the current study I investigated if the RewP would be occluded by signals of 

novelty. In the first experiment, trial feedback (+1 and -) was presented by itself or in 

front of a novel shape. These reward-shape pairings evoked an enhanced N2 component 

thus occluding the RewP. In a follow up experiment, I aimed to remove the trial-to-trial 

outcome surprise between the conditions of interest (point vs. point+shape), while still 

Figure 11. Time-frequency power plots for reward cues. Time-frequency power for win 
minus no-win conditions Increased delta band power, outlined by the black boxes, is 
evident for win conditions over that of no-win condition, yet these did not differ between 
cues predicting different reward types in delta power plots (MIDDLE ROW). There were 
no differences in the theta power for cues predicting rewards (BOTTOM ROW). 
. 
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maintaining the trial-specific novelty of the shapes by presenting feedback (point only, 

point+shape) in a blocked design. In this experiment, win and no-win ERPs were able to 

be disassociated in the novel feedback condition following the removal of the trial-to-trial 

outcome surprise. However, the novel point+shape rewards still evoked an enhanced N2 

component that differed from the point only rewards. Taken together these results reveal 

a major methodological complication for examining the RewP in experimental paradigms 

using complex, ecologically valid rewards.  In a third experiment I rectified this issue by 

leveraging principles of reinforcement learning and presented a colored cue indicating a 

win or no-win outcome before presenting participants with novel, idiosyncratically 

chosen positive images. As hypothesized, the RewP as well as frontal midline delta 

migrated to the colored cue, whereas the N2 and theta power did not, thus revealing a 

solution to this methodological complication.  

The application of spectral decomposition was able to isolate frequency bands 

(delta and theta) related to distinct information content in these interacting outcomes. In 

Experiment 1, I saw a double dissociation between our two frequency bands of interest; 

where delta power was able to disassociate outcome valences (win > no-win), and theta 

was able to disassociate novelty conditions (point+shape > point-only). Taken together, 

both analytic (time frequency analysis) and methodological (the migration of the reward 

signal to the cue) solutions were able to address this issue of novelty occluding the RewP 

signal. I also employed a spatial filter (surface Laplacian) in order to asses if this filtering 

technique would be able to differentiate these signals. I saw that this filtering technique 

was not only unable to disentangle novelty-reward interactions, but it was unable to 

distinguish win from no-win outcomes for the point-only condition, suggesting this 
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technique is not ideal for examining the RewP. These findings suggest new directions for 

EEG-related reward experimentation utilizing novel ecologically valid rewards.    

Novelty can be thought of a special type of surprise (Barto, Mirolli, & 

Baldassarre, 2013; Ferrari, Bradley, Codispoti, & Lang, 2010) that relies on a system of 

comparing the context and content of a set of expectations that have been violated. A 

leading hypothesis describing novelty-reward interactions centers around the theory that 

novel environments promote reward searching circuitry in the brain (Bunzeck et al., 

2012; Kakade & Dayan, 2002), leading to intrinsic motivational behaviors of an agent. 

The promotion of exploratory behaviors is supported by computational models and 

theories that relate to reinforcement learning paradigms (Sutton & Barto, 2018). 

Similarly, signals of RPE can also be thought of as a special type of surprise whereby 

outcomes that are better or worse than expected evoke such signals. Functional 

neuroimaging studies have implicated specific neural structures as key-players in the 

maintenance of these prediction errors such as the orbitofrontal cortex, the amygdala, and 

the striatum (O’Doherty, 2004). Activation of these same neural areas appear sensitive to 

the processing of novel stimuli as well (Bunzeck, Dayan, Dolan, & Duzel, 2010; Bunzeck 

& Düzel, 2006) suggesting a neural cross-talk during the processing of rewarding stimuli 

and stimuli that are new.  

By leveraging principles of reinforcement learning and pairing the attainment of 

reward with a cue predicting its receipt, I was able to examine RewP in the context of 

emotionally informative rewards, without the signal being superseded by neural signals 

of surprise and novelty. These findings open up the possibility for new testable 

hypotheses relating to complex rewards that promote intrinsic motivational states. In 

Experiment 3 ERPs were larger for cues predicting images than for cues predicting 
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points. Although this effect wasn’t specific to win conditions only, I suspect the main 

effect to this type of outcome was a product of the recruitment additional motivational 

circuitry in their processing. These findings suggest an important direction for 

investigations utilizing motivationally relevant stimuli as rewards. Research investigating 

substance use disorder and major depression have found imagery relating to these clinical 

population (i.e. alcohol cues or emotional images) recruit distinct motivational processes 

(David et al., 2005; George et al., 2001; Tremblay et al., 2005). Recent evidence suggests 

that depressed symptomology predicted a smaller RewP yet this did not affect the ability 

to learn from reward (Cavanagh et al., 2019; Kumar et al., 2008). The authors suggest 

this diminishment of the RewP may reflect aberrant valuation (e.g. liking) in the context 

of maintained prediction error signaling for learning. Future investigations may adopt the 

use of these complex rewards in order to further identify interactions of motivational 

states and reward signals in order to gain a better understanding of how reinforcement 

and valuation systems are aberrant in clinical populations. 
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Chapter 3 
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Abstract 

Investigations of motivational aspects of emotion and how it relates to reward learning 

can offer important insights into both healthy and diseased population. Recent accounts 

have shown specific clinical groups evoked blunted neurological reward signals yet are 

still able to learn from rewards. This suggests an emotional feature of rewards which 

responds to hedonic aspects of reward attainment. The reward positivity (RewP) and 

delta band activity have been shown to be reliably evoked following outcomes that are 

better than expected. Although studies have revealed that the use of ecologically-relevant 

rewards, such as pleasant images, tend to produce signals that occlude the RewP, 

underlying delta band power has been shown to be free of these methodological 

confounds. The present series of studies aimed to address how individuals learn when 

provided differing types of rewarding feedback. During these tasks, participants 

performed a reinforcement learning (RL) task, where they had to learn to win rewards 

while avoiding punishments. During each trial participants received either points or 

pictures as feedback. Following the RL task, participants performed a BuyBack task were 

given the chance to trade in the points they earned in order to see positive instead of 

negative pictures. RewP and delta band power activation was also investigated. The 

results revealed that female participants were worse than males at learning from picture 

types of rewards, and these trends were also seen in the EEG data. A follow up study was 

conducted on only female participants which replicated the effects from Experiment 1. In 

both tasks, a major predictor of a participants learning accuracy for picture rewards was 

the amount of points traded in during the BuyBack task, suggesting that learning from 

rewards relies on hedonic motivational processes related to the actual reward. 
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Experiment 1 

Signals of reward prediction error (RPE) are evoked for a special case of surprise 

following outcomes that are both more surprising than expected (Krigolson, 2017; 

Rescorla & Wagner, 1972; Schultz et al., 1997) and also coded as either better or worse 

than expected. These signals appear sensitive to trial-and-error outcomes, making them 

candidate biological markers for reinforcement learning (RL) paradigms. The reward 

positivity (RewP) in particular has gained a great deal of attention as a signal of positive 

RPE, in that it is only evoked to rewards and it is larger when outcomes are better than 

expected. Over the past decade, numerous studies have elucidated important features of 

the RewP and its utility as a clinical tool (Cavanagh et al., 2019; Proudfit, 2015). 

However, many experimental paradigms used to evoke the RewP have relied on a single 

type of reward indicating good-versus-bad outcomes. This overreliance on a single type 

of simple rewarding outcome limits the understanding of the boundary conditions of the 

RewP and ignores additional motivational processes, which may modulate this signal 

independent of expectation violation, as is seen in disorders like depression (Cavanagh et 

al., 2019), schizophrenia (Schneider, Gur, Gur, & Shtasel, 1995), or Parkinson’s disease 

(Benke, Bosch, & Andree, 1998). Here, I aimed to investigate specific features of the 

RewP in an RL paradigm where participants could earn visually complex, ecologically-

valid reward types—emotional pictures.    

 The RewP is a positive going deflection appearing ~200ms over frontal central 

sites following reward receipt. Spectral decomposition of this signal has revealed that 

delta band frequency power (Bernat, et al., 2008) underlies its generation. Numerous 

studies have shown that the RewP is sensitive to the acquisition of simple forms of 

reward such as points (Bellebaum, Polezzi, & Daum, 2010; Wu & Zhou, 2009; Yeung & 
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Sanfey, 2004), or abstract icons such as fruit or colored arrows (Angus et al., 2015; 

Holroyd et al., 2008; Proudfit, 2015) . However, very few studies have attempted to 

examine how the RewP responds to stimuli closer to real world outcomes. A recent study 

attempted to evoke a RewP to pleasant images (Brown & Cavanagh, 2018) and found 

that pleasant images did not evoke a RewP but an enhanced N2 component instead. The 

researchers concluded that the RewP might be hidden by a signal of novelty (the N2). 

This methodological complication further hinders our understanding of temporally 

precise reward processing for these motivationally salient stimuli types. 

Investigations of motivational aspects of emotion and how it relates to reward 

learning can offer important insights into aberrant processes in clinical populations. 

Indeed, recent investigations of hedonic types of reward have further added to the 

growing understanding of clinical phenomena such as autism spectrum disorder 

(Sabatino, Richey, Bodfish, Dichter, & Rittenberg, 2011), depression (Kumar et al., 

2008), and alcohol use disorder (Schacht, Anton, & Myrick, 2014). EEG is an excellent 

tool for the study of these reward-emotion interactions due to its sensitivity to real-time 

canonical neural computations (Cavanagh et al., 2019; Fries, 2009). However, as 

mentioned above, there are numerous methodological issues to take into account when 

designing EEG experiments that utilize these ecologically relevant rewards. 

 Although a move towards real-world-like rewarding stimuli would expand our 

understanding of hedonic aspects of the RewP, there are several methodological 

complications for the use of this type of rewarding stimuli in EEG experiments. First, 

using complex emotional imagery as rewarding feedback presents a novelty-induced 

masking of the RewP signals (Brown & Cavanagh, 2018). Additionally, the use of 

emotional stimuli must also be appropriate for the subject. Much of the work relating to 
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emotional processes in neuroscience has utilized images from the International Affective 

Picture System (Lang, et al., 1997). Although the IAPS is a well-established tool in the 

field, individual differences for emotional stimuli processing adds an additional layer of 

complexity in its use as reinforcing stimuli (Hamann & Canli, 2004). Finally, recent 

accounts have demonstrated gender differences in the perception and processing of 

emotional stimuli (Bradley, Codispoti, Sabatinelli, & Lang, 2001). These gender 

differences relating to emotional image processing may also present a complication for 

the use of this emotional picture types of reward. 

In a simple image rating task, Bradley and collogues (2001) demonstrated that 

females tend to show a greater sensitivity towards negative stimuli, while males tend to 

be highly sensitive to appetitive positive images. Other researchers have replicated these 

findings (Calvo & Avero, 2009; Kemp, Silberstein, Armstrong, & Nathan, 2004; Wrase 

et al., 2003). These gender effects are further supported by results from an 

electrophysiological study (Kemp et al., 2004), whereby females showed greater steady 

state visually-evoked potentials to negative images than males. These gender differences 

in emotional processing may further complicate how males and females learn from 

rewards in emotion induction experimental paradigms. Indeed, a recent study revealed 

that during a risky decision-making task, stress induction led to better reward related 

decision making in male participants, and worse performance in females (Lighthall et al., 

2012). Magnetic resonance imaging in these participants revealed increased activation in 

reward centers (dorsal striatum and anterior insula) in male participants during stress 

induction, while females showed decreased BOLD signals in these same neural areas. 

Taken together, males appear to perform better for outcomes related to learning to 
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approach rewards, whereas females tend to perform better in situations that require the 

avoidance of punishment.    

In the current study, I examined learning rates in a RL paradigm for differing 

types of rewarding feedback: points and pictures. Participants were required to learn the 

optimal response to a colored cue resulting in winning points (each amounting to 5 cents) 

or pleasant images. Additionally, participants had to learn to avoid punishing feedback 

(losing points or viewing disturbing negative images). It was predicted that the accuracy 

for learning from picture rewards would relate to how motivated a person was to obtain 

it. To this end, participants performed a task following the learning task where they were 

given the opportunity to trade actual money in order to see positive images instead of 

negative images. I predicted that the amount of points (money) a participant was willing 

to trade would relate to their accuracy to learn from cues predicting pleasant picture 

rewards. Based on previous findings demonstrating RewPs evoked for emotional pictures 

are blocked enhanced N2 component (Brown & Cavanagh, 2018) I also hypothesized that 

ERPs evoked for the emotional feedback will be blocked in the same manner. However, 

prior evidence has revealed that delta band power is unaffected by visually complex 

reward stimuli (Brown & Cavanagh, in prep). Here, I hypothesized that delta band power 

will be unaffected by this constraint and will provide us a neural measure of reward 

processing for these reward types. Finally, due to the observed gender differences in 

emotional processing, I predicted that males would learn the optimal response to cues 

predicting the winning of rewards better than females, while females would learn the 

optimal response to cues predicting avoidance of punishment better than males. 
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Method 

Participants 

In Experiment 1, I recruited 84 participants (48 females) with a mean age of 20.47 

(SD = 6.13). In all experiments, participants were recruited from the University of New 

Mexico subject pool. Students received class credits for participation. Participants were 

excluded from participation if they had a history of head injury that resulted in loss of 

consciousness for more than five minutes, had a history of epilepsy, had a history of any 

psychiatric or neurological disorder, or were currently on any psychiatric or neurological 

drugs. The Institutional Review Board of the University of New Mexico approved the 

study protocol. 

Procedure 

Affective reward preference task 

In order to choose idiosyncratically preferred images for picture rewards, a reward 

preference task was performed prior to the RL tasks. The task was programmed in Matlab 

using Psychtoolbox (Brainard, 1997). During this short two-alternative forced choice 

task, participants were presented two images drawn from 1 of 5 affective reward 

categories: male models, nude women, puppies, babies, or nature scenes. Image classes 

were based on images that were rated as highly pleasurable from the IAPS (Lang et al., 

1997). Standardized ratings of valence (1=negative to 9=positive) from the IAPS 

technical manual were compared by gender. The reward classes used for the current study 

were chosen from the most occurring image themes. All images were selected from 

Internet searches (i.e. “Hi-Definition Puppy Images”). All images were inspected in task-

presentation conditions in order to assess that no image appeared blurry and that sizing 

was equal among images. During the choice task, an image from one of the affective 
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reward categories was presented on the left side of the screen while another image from a 

different affective reward category was presented on the right side. Participants were 

instructed to choose with a left or right button press which image of the two they 

preferred. There were 16 images in each category; each category was paired against each 

of the other categories four times (total of 40 trials). If two classes were chosen the same 

amount of times, a special “tie-breaker” trial was conducted which presented two never-

before-seen images from the tied classes.  The participant's top choice was selected for 

the RL task. 

Reinforcement learning task 

Figure 12 displays the sequence of events in an individual trial of the RL task. 

This consisted of a forced choice training phase followed by a subsequent testing phase. 

During the training phase, the participants were presented with a cue shape and were 

instructed to use an appropriate button press (left button or right button) in order to learn 

how to earn rewards. Each cue shape was associated with a different reward outcome 

(win-point, avoid-point, win-picture, avoid-picture). Participants were instructed that 

point feedback (green +1, yellow bar, red -1) would be calculated and after the task was 

complete, would be traded in for actual money (5 cents USD). Participants were informed 

that picture feedback would not affect the money they earned. Each cue had a 70% 

probability of reward. All training trials began with a jittered inter-trial interval between 

300 and 700ms. The stimuli then appeared for a maximum of 4000ms and disappeared 

immediately after the choice was made. If the participant failed to make a choice within 

the 4000ms, “No Response Detected” was presented. Following a correct button press, 

participants would receive a green +1(correct win point condition), a yellow bar (correct 

avoid point condition), a pleasant picture selected from the participant’s top choice 
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(correct win picture condition), or a picture of a chair (correct avoid picture condition). 

Incorrect button presses were followed by either a yellow bar (incorrect win point 

condition), a red -1(incorrect avoid point condition), a chair (incorrect win picture 

condition), or a negative picture feature mutilation (incorrect avoid picture condition). 

Note that the use of the terms “correct” and “incorrect” throughout refer to the feedback, 

not to the optimal or accurate response. All trial feedback was presented for 2000ms. 

During the testing phase, all possible cue shape pairs were presented eight times (120 

trials total) and no feedback was provided. For the testing phase, participants were 

instructed to choose (with a left or right button press) the cue that led to the most 

rewarding outcome. After completing the testing phase, participants were informed of 

their point winnings. Critically, all participants were told that they won 66 points (equal 

to $3.30 USD) regardless of their actual performance. The task took ~28 minutes on 

average to complete. 

BuyBack Task 

Following the reinforcement learning task, participants performed an image rating 

task. Participants were informed that they would be exposed to 50 emotionally negative 

images. Critically, participants were informed that they would be able to swap a negative 

image out for a positive image, however, this swap would cost them 1 point (5 cents). 

Participants were informed that they could trade as much or as little of their points (up to 

50) to see positive pictures. The task began once participants made their decision 

regarding how many points to swap out and took ~9 minutes to complete.   
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Data acquisition and preprocessing 

Electrophysiological data were collected with a 64Ag–AgCl electrodes embedded 

in a stretch-lycra cap with a sampling rate of 500Hz with low and high cutoffs at .01-100 

Hz. CPz served as the reference electrode and FPz as the ground electrode. Data was 

recorded with a Brain Vision system (Brain Products GmbH, Munich, Germany). 

Vertical electrooculogram (VEOG) activity generated by blinks was recorded by two 

Figure 12. Reinforcement Learning Task. During the task, participants were presented with 
a cue (a) predicting a specific reward type (points or pictures) and outcome (win or avoid). 
Participants would make a button press (left or right) for each cue and would be presented 
feedback (b). (d) Display of typical experimental trials leading to point or picture feedback. 
Pie graphs (d) display the percentage of each reward type chosen by the participants for 
each gender group. Bar plots (e) display accuracy scores across picture reward types. 
There were no significant accuracy differences between the picture types. 
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auxiliary electrodes placed superior and inferior to the left pupil.   

All EEG processing was conducted in EEGlab (Delorme & Makeig, 2004). First, 

CPz was re-created via computation of the average reference (EEGlab function 

pop_reref.m). Very ventral electrodes (FT9, FT10, TP9, and TP10) were then removed, 

as they tended to be unreliable. The average reference was then recomputed for the 

remaining 60 electrodes. EEG data for ERPs was filtered between .01 to 20 Hz. Data was 

epoched around feedback screen onset (-1000 to 3,000ms). Using statistical deviations 

from the mean for each EEG channel, FASTER (Nolan et al., 2010) identified artifacts in 

each epoch for later rejection. Eye blink activities were removed following ICA (runica; 

Makeig, Bell, Jung, & Sejnowski, 1996). Epochs were then baseline corrected (-200 to 

0ms before feedback onset) and averaged to calculate event related potentials (ERP). The 

RewP was quantified at electrode site Cz and was measured between conditions within a 

200 – 350ms window post feedback onset. 

Time-frequency measures were computed using custom-written MATLAB 

functions (Cohen, 2014) by multiplying the fast Fourier transformed (FFT) power 

spectrum of single trial EEG data with the FFT power spectrum of a set of complex 

Morlet wavelets (defined as a Gaussian-windowed complex sine wave: ei2πtfe-t^2/(2xs^2), 

where t is time, f is frequency (which increases from 1–50 Hz in 50 logarithmically 

spaced steps) and defines the cycles of each frequency band, set according to 4/(2πƒ)), 

and taking the inverse FFT. The end result of this process is identical to time-domain 

signal convolution, and it resulted in estimates of instantaneous power (the magnitude of 

the analytic signal), defined as Z[t] (power time series: p(t)=real[z (t)]2 + imag[z(t)]2). 

Each epoch was then cut in lengths (-500 to 1,500ms). Power was normalized by 

conversion to a decibel scale (10 x log10[power(t)/power(baseline)]), allowing a direct 
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comparison of effects across frequency bands. To account for spectral smearing (Cohen, 

2014) frequency power plots were measured between conditions within a 200 – 400ms 

window post feedback onset. 

Statistical Analyses 

Greenhouse-Geisser adjusted ANOVAs and planned comparison decompositions 

were used for data analyses. Reports of effect sizes for ANOVA are partial-η2, while 

planned comparison effect sizes are reported as d.  Due to the non-normality of the 

distributions of traded points during the BuyBack task, correlations were conducted using 

Spearman’s Rho (rho). Differences between correlation coefficients were compared using 

Fishers r-to-z transform and z-test. 

Results 

Behavioral Analysis 

Figure 13 depicts accuracy scores across the all trials. A participant’s response 

accuracy score was calculated using the average accuracy scores (correct button 

selection) from all the trials across experimental conditions in the RL task. I first assessed 

if participants' performance differed between image classes. I conducted a one- way 

ANOVA comparing response accuracy across the five image class conditions. This 

analysis failed to reveal a significant effect between the image classes (F(4,79) = .955, p 

= .437, η2 = .046). Additionally, I compared points traded during the BuyBack task 

across image classes. This analysis also revealed no significant differences between the 

image classes (F(4,79) = 1.029, p = .398, η2 = .050). Taken together, these results suggest 

that learning rates or the motivation to learn from image feedback did not differ between 

image classes. 
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The 2 (REWARD TYPE: point vs. picture) × 2(OUTCOME: win vs. avoid) × 

2(GENDER: male vs. female) ANOVA for response accuracy revealed a significant 

REWARD TYPE (point > picture) main effect (F(1,82) = 10.055, p = .002, η2 = .109), as 

well as a GENDER (male > female) main effect (F(1,82) = 4.046, p = .048, η2 = .047), 

but no OUTCOME main effect (F(1,82) = 1.602, p = .209, η2 = .019). The ANOVA also 

revealed a REWARD TYPE × GENDER interaction (F(1,82) = 4.559, p = .036, η2 = 

.019), whereby response accuracy for males did not significantly differ between point and 

picture types of reward (t(35) = .899, p = .375, d = .145); however, there was a significant 

response accuracy difference (point > picture) for female participants (t(47) = 3.538, p = 

.001, d = .560). Lastly, in order to test if optimal response accuracies were above chance, 

I conducted a one-samples t-test comparing accuracy for cues predicting pleasant pictures 

against a baseline of 50% in female participants. This analysis revealed a non-significant 

effect (t(47) = 1.926, p= .060, d = .505), suggesting females accuracy scores were not 

better than chance. Taken together, it appears that females did not learn from the picture 

rewards. There were no other significant interactions in the ANOVA (all p’s > .127). 
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Figure 13: Behavioral results for the RL 
task. Overall trial accuracy (a) was the 
same across conditions except males 
out-performed females when learning 
from pleasant images. The boxplots and 
lines of best fit in (b) further reveal that 
the accuracy for cues predicting picture 
rewards did not improve throughout the 
experimental trials for female participants. 
Results from the testing phase from the 
RL task (c) reveal that females preferred 
point rewards (+1) to pleasant picture 
rewards more so than male participants. 
*p < .01 
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To further unpack this gender effect, a 2(OUTCOME) × 2(GENDER) ANOVA 

was conducted comparing point > picture cue preference from the testing accuracy phase 

of the RL task (Figure 13c). There was no OUTCOME main effect (F(1,82) = 2.992, p = 

.087, η2 = .035), suggesting that cues predicting points and cues predicting pictures were 

seen as equally rewarding. However, there was an interaction (F(1,82) = 5.896, p = .017, 

η2 = .067), whereby females preferred cues predicting winning points over cues 

predicting winning pictures more than males (t(82) = 2.890, p = .005, d = .618). The two 

gender groups did not differ in the preferences for cues predicting avoiding punishment 

(t(82) = 1.058, p = .293, d = .225). 

As a final test to unpack this gender effect I examined relationships between 

response accuracy scores for winning picture rewards and the number of points 

participants were willing to trade during the BuyBack task between the two gender 

groups. This analysis revealed a significant correlation for females (rho(48) = .305, p = 

.035) but not for males (rho(36) = -.107, p = .535). An r-to-z transform was applied in 

order to compare the correlation coefficients revealing a trending to significance effect (Z 

= 1.834, p = .066). Figure 14 depicts these relationships. 
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EEG Analysis 

Figure 15 depicts ERPs and spectral decompositions plots to point and picture 

feedback. An analysis conducted comparing ERPs for reward feedback: +1 (correct win 

point), yellow bar (correct avoid point), pleasant picture (correct win picture), and chair 

image (correct avoid picture). This 2(REWARD TYPE: point vs. picture) × 

2(OUTCOME: win vs. avoid) × 2(GENDER: male vs. female) ANOVA revealed a 

significant 3-way interaction (F(1,82) = 6.563, p = .012, η2 = .074). In order to 

investigate this interaction, two 2-way ANOVA were conducted on the gender groups 

separately. The ANOVA for males revealed a significant REWARD TYPE main effect 

(point > picture: F(1,35) = 7.613, p = .009, η2 = .179). There was no OUTCOME main 

Figure 14. Correlations between accuracy for winning pictures in the RL 
task and points traded in during the BuyBack task. During the BuyBack 
task, participants were given the opportunity to trade in actual money (1 
point = 5 cents) to see a positive image instead of a negative image. 
Female participants accuracy in the RL task for winning pictures was 
strongly related to the amount of money they were willing to trade in. This 
effect was not seen in male participants, whose accuracy scores were 
significantly higher than the female participants.  
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effect (F(1,35) = .438, p = .512, η2 = .012), or interaction (F(1,35) = 2.150, p = .152, η2 = 

.058). The ANOVA for female participants revealed significant REWARD TYPE (point 

> picture) and OUTCOME (win > avoid) main effects (F(1,47) = 140.891, p < .001, η2 = 

.750; F(1,47) = 8.440, p = .006, η2 = .152, respectively). There was also a significant 

interaction (F(1,47) = 29.917, p < .001, η2 = .389). In order to investigate this interaction, 

post-hoc t-test were conducted comparing ERPs for OUTCOME (win vs. avoid) 

condition across REWARD TYPE (point vs. picture) separately. These tests failed to 

reveal a significant difference for point rewards (t(47) = 1.704, p = .095, d = .243), 

however, there was a significant difference for picture reward (avoid > win: t(47) = 

5.761, p < .001, d = .811).  

The ANOVA for delta band power (300 – 1000ms) revealed a significant 3-way 

interaction (F(1,47) = 8.440, p = .006, η2 = .152). In order to unpack this, two 2-way 

ANOVAs were analyzed on gender groups separately, however, this separation of gender 

groups failed to reveal any significant effects (all p’s > .132). Although there were no 

significant delta band effects, examination of the line plots for time frequency (Figure 15) 

reveal these effects are going in the expected direction, whereby delta band power was 

larger for pictures than points in male participants, yet smaller in female participants.  
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Investigations of confounding variables 

 There may be underlying confounds influencing the ERP data due to the content 

of the images. To this end RewPs were compared across the picture types. This analysis 

revealed a significant difference in the RewP evoked for the different classes (F(4,79) = 

5.515, p = .001, η2 = .218), whereby ERPs evoked for puppies and scenery were 

significantly smaller than those evoked for nude women ( vs. puppies p <.001 ; vs. scenes 

Figure 15. EEG dynamics for point and picture rewards. ERPs (TOP ROW) for reward 
outcomes reveal a significant smaller ERPs for picture rewards. (BOTTOM ROW) Although 
delta-band activity did not significantly differ between reward types, the effects are trending in 
the hypothesized direction, whereby there was more delta band power for picture rewards 
than point rewards in males, yet less delta band power for pictures in female participants.  
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p = .001) and babies (vs. puppies p = .008 ; vs. scenes p = .029). From this effect, it may 

be a reasonable assumption that certain picture types were more rewarding than others. 

However, our analysis comparing accuracy and points traded during the BuyBack task 

revealed no significant differences, suggesting no one picture type was more rewarding 

than any other and that the picture type did not influence a participant’s ability to learn 

from them. Indeed, comparisons of the underlying frequency band activity revealed no 

significant delta band power differences across picture types (F(4,79) = .394, p = .812, η2 

= .020). It was suspected that the differences revealed in the ERPs across the picture 

types related to differences of image content, not reward processing. To this end, I 

conducted a series of analyses probing these potential underlying variables. First, the 

individually selected picture types used for picture rewards were made up of images with 

humans (male models, nude women, and babies), puppies, and nature scenes. 

Interestingly, the differences seen in the ERPs across trials were significantly larger for 

images of nude women and babies. A well-studied ERP component, the N170, has been 

shown to be reliably evoked when viewing human faces and bodies (Blau, Maurer, 

Tottenham, & McCandliss, 2007; Hietanen & Nummenmaa, 2011; Rossion et al., 2000). 

The larger ERPs seen for images with human faces than non-humans may have been a 

product of an underlying N170 during image viewing. In order to address this, I tested the 

N170 component (at temporal electrode sites T7 and T8, between 150 - 190ms) between 

the picture classes. I found no N170 difference across class conditions (F(4,79) = 1.385, p 

= .247, η2 = .066). Additionally, I examined the late positive potential (LPP) across the 

image classes. The LPP is a well-studied ERP component which is reliably evoked during 

the viewing of emotional images (Brown & Cavanagh, 2017; Gable & Harmon-Jones, 

2010; Hajcak, Macnamara, & Olvet, 2010; Hajcak & Olvet, 2008). A recent study found 



 

 60 

that LPP amplitudes were larger for motivationally salient images (Weinberg & Hajcak, 

2010). Here, I leverage the sensitivity of the LPP to motivationally salient stimuli to 

examine potentially content inducing salience difference across the picture types. This 

analysis (at parietal electrode site Pz, between 300 - 1000ms) revealed no difference 

across the image classes (F(4,79) = .908, p = .464, η2 = .044). Taken together, there does 

not appear to be any electrophysiological differences across the picture types used in the 

study.  

 Another potential confounding variable in the study relates to the suboptimal 

learning rates of picture rewards in the female participants. Importantly, before I are able 

to suggest female participants were not motivated by the picture rewards, I must rule out 

an additional interpretation of these result. Indeed, one potential explanation for this 

effect may be that pleasant pictures were not motivating enough for the female 

participants to learn the optimal response to cues predicting them. A second explanation 

may be that female participants were unable to distinguish the win and no-win feedback 

in the picture condition. In this way they viewed the lose feedback in this condition 

(chairs) as equally pleasant as the positive emotion pictures. In order to address this issue, 

I conducted a second experiment with only female participants. 

Experiment 2 

In a second study I recruited only female participants (N=36). All experimental 

procedures were the exact same as Experiment 1, except participants were informed what 

to expect from the picture feedback. All participants received a scripted instruction from 

the experimenter saying “Positive feedback will be your favorite positive picture from the 

last task. Neutral feedback will be standard chairs. Negative feedback will be disturbing 

or graphic images”. This single manipulation in the instructions was done in order to 
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make sure the participants knew that positive images were better outcomes than the 

neutral images.  

 Figure 16 depicts behavioral results for Experiment 2. The statistical analysis used 

for Experiment 1 was also used for Experiment 2 except gender was not used as a 

variable. The 2(REWARD TYPE: point vs. picture) × 2(OUTCOME: win vs. avoid) 

ANOVA for response accuracy failed to reveal a REWARD TYPE main effect (point > 

picture: F(1,35) = 3.893, p = .056, η2 = .100), or an OUTCOME main effect (F(1,35) = 

2.943, p = .095, η2 = .078). There was a significant interaction (F(1,35) = 4.637, p = .038, 

η2 = .117). Post hoc comparisons comparing ERPs for OUTCOME across REWARD 

TYPE failed to reveal a significant accuracy differences for point (t(35) = .330, p = .743, 

d = .044) but there was an OUTCOME accuracy difference for picture rewards (avoid > 

win: t(35) = 2.390, p = .022, d = .310). A one-samples t-test comparing accuracy for cues 

predicting pleasant pictures to a baseline of 50% revealed a non-significant effect (t(35) = 

1.453, p= .155, d = .242), thus replicating the effects in Experiment 1 suggesting that the 

female participants in Experiment 2 did not learn from picture feedback (Figure 16a). I 

conducted a paired samples t-test comparing point > picture cue preference scores 

obtained during the testing phase of the RL task. This analysis revealed a significant 

effect (t(35) = 2.1335, p = .040, d = .594), whereby participants preferred cues which 

predicted winning points over cues predicting winning . Finally, accuracy scores were 

compared to the magnitude of BuyBack points, and similar to Experiment 1, a significant 

relationship was again revealed between the two measures (rho (37) = .368, p = .027).  
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Figure 17 depicts ERPs and spectral decompositions plots to point and picture 

feedback. This 2(REWARD TYPE: point vs. picture) × 2(OUTCOME: win vs. avoid) 

ANOVA replicated the ERP effects seen in Experiment 1, whereby there was a 

REWARD TYPE main effect (point > picture; F(1,35) = 80.789, p < .001, η2 = .698) and 

an OUTCOME main effect (avoid > win: F(1,35) = 8.123, p = .007, η2 = .188). There 

was significant interaction (F(1,35) = 86.790, p < .001, η2 = .713). In order to investigate 

this interaction, post-hoc t-test were conducted comparing ERPs for OUTCOME across 

Figure 16. Behavioral results from Experiment 2. Accuracy scores (a) reveal that the 
participants learned the optimal response to all cues except those that predicted pleasant 
images. (b) Displays mean preference scores between cues during the testing phase of the 
RL task. There was a significance effect between point feedback preferences, whereby 
participants preferred cues predicting winning points over pleasant picture, yet preferred 
cues predicting neutral images over neutral points. The boxplots and lines of best fit in (b) 
further reveal that the accuracy for cues predicting picture rewards did not improve for 
female participants even after being told what the correct feedback for this cue was. (d) 
Depicts the scatterplot comparing points traded during the BuyBack task and response 
accuracy for cues predicting pleasant pictures. Replicating the effects form Experiment 1, 
there was a significant positive relationship. *p < .05 
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different types of rewards (points or pictures) and different outcomes (win reward or 

avoid punishment). Additionally, motivated by the observed gender differences for 

emotional image processing, a variable of gender was added into the analyses. The results 

REWARD TYPE separately. These tests 

revealed a significant difference for point 

rewards (win > avoid: t(35) = 2.889, p = .007, 

d = .440), as well as a significant difference 

for picture reward (avoid > win: t(35) = 

7.683, p < .001, d = 1.297). 

 The ANOVA for delta band power 

(300 – 1000ms) revealed a significant 

REWARD TYPE main effect (point > 

picture: F(1,35) = 7.828, p = .008, η2 = .698). 

There was no OUTCOME main effect or 

interaction (F(1,35) = .062, p = .804, η2 = 

.002; F(1,35) = .414, p = .524, η2 = .012, 

respectively). 

Discussion  

In the current study, we examined 

learning and reward signals for differing 

types of rewards in a RL experimental 

paradigm. During the experiment, 

participants had to learn, through trial-and-

error, to respond to shapes predicting 

Figure 17. Experiment 2 EEG dynamics 
for point and picture rewards. ERPs (a) 
for reward outcomes reveal significantly 
smaller ERPs for picture rewards. 
Replicating the effects in Experiment 1, 
delta band power (b & c) mirrors 
accuracy rates, whereby there is larger 
point evoked delta band power than 
picture evoked delta band power. *p < 
.05 
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revealed that although there was no difference between the gender groups for learning 

from point rewards, male participants were better at learning from picture rewards than 

females. Results from the testing phase revealed that females found cues predicting 

winning points more rewarding than cues predicting winning pictures than males, 

suggesting that female participants were not as motivated by picture types of feedback as 

they were for points. This finding may explain why female participants did worse at 

learning the optimal response to pleasant picture rewards than males. To further support 

this interpretation, a correlation comparing accuracy and points traded during the 

BuyBack task revealed a significant positive relationship between the accuracy rates for 

winning pleasant pictures and points traded only in female participants. Additionally, a 

second experiment was conducted with only female participants. In this second study, 

participants were informed of the picture types they would potentially be viewing. This 

manipulation was conducted in order to assess that the participants knew the feedback 

they would be receiving so that reward types (positive picture and chairs) would not be 

confounded. The results of the second experiment replicated the effect from Experiment 

1, whereby female participants failed to learn from pleasant images, however, the 

accuracy to learn from this type of reward was again correlated with the amount of points 

traded during the BuyBack task. Taken together, these behavioral results suggest that the 

motivation to obtain rewards in a trial-and-error learning paradigm relies heavily on an 

agent’s hedonic appraisal of the reward. 

The ERP results revealed gender differences as well. Although the ERPs differed 

between the types of reward (point > picture) for both gender groups, only in female 

participants was there a significant REWARD TYPE×OUTCOME interaction. Critically, 

in the unpacking of this interaction it was revealed that picture feedback for avoiding 
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punishment (chairs) evoked significantly larger ERPs than picture feedback for winning 

rewards (pleasant pictures), suggesting that a gender-based difference in motivation 

played a role in the generation of this signal. Interestingly, delta power was larger for 

picture than for points rewards for males, yet smaller for pictures than for points for 

females. Although this effect was not statistically significant, the findings were in the 

expected direction.  

The results of the current study suggest an important aspect of reward learning 

that is overlooked in human experiments examining these phenomena—an aspect of 

hedonic liking. To date, investigations of the RewP have mainly focused on information 

content of the generation of this reward signal, in that aspects of this signal relate to 

outcomes indicating some sort of win-over-lose signal. Although these studies have 

elucidated numerous factors which influence this signal, such as the size of reward 

magnitude (Bellebaum, Polezzi, & Daum, 2010; Wu & Zhou, 2009), the probability of 

reward occurrences (Bellebaum & Daum, 2008; Cohen & Ranganath, 2007), and the 

emotional state of the individual receiving the rewards (Angus et al., 2015), the over 

reliance on simple win-lose outcomes ignores a whole dimension of reward processing. 

In the current study it was revealed that emotional imagery has the potential to change a 

person’s motivational states towards rewards, and thus their ability to learn from these 

outcomes. Indeed, the results of the current studies are a first step towards addressing 

how emotion influences hedonic aspects of reward and not just the probability of 

occurrence.  

There were some limitations in the current studies. First, the ERPs evoked for 

picture feedback were visually different than those evoked for points, suggesting a 

separate process in their modulation. However, this effect was not surprising. In an earlier 
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report, researchers attempted to utilize pleasant imagery in order to evoke the RewP 

(Brown & Cavanagh, 2018) and found that the ERPs evoked for this type of reward 

contained an enhanced N2 component. The authors suggested that this feature of the ERP 

was a product of novelty. This effect was demonstrated in a later report (Brown & 

Cavanagh, in prep) where the inclusion of novel shapes with rewarding feedback evoked 

an enhanced N2, thus blocking the RewP. Here, it was revealed that picture feedback, 

both pleasant and neutral images, evoked enhanced N2 components. However, spectral 

band decomposition was able to isolate the reward signal without interference from other 

aspects of the rewarding picture. Additionally, a future study may aim to work around 

this complication by leveraging principles of RPE and presenting a cue predicting the 

oncoming rewarding image. A well-observed characteristic of RPE signals is their 

migration to the first instance of reward (Angus et al., 2015; Schultz et al., 1997). 

Critically, a study employing this type of experimental design would be able to leverage 

measures common for emotion processing (i.e., valence and arousal ratings) for the 

reward stimuli. These measures, along with other measures of potential hedonic liking 

(e.g., BuyBack scores, preference scores, etc.) would allow researchers to isolate 

components of the RewP relating to prediction error from those relating to liking.   

A second limitation relates to internal-external validity trade-offs due to the use of 

differing classes of rewarding imagery. Figure 12c illustrates how the class of image 

chosen for reward feedback varied between and within gender groups. Although I 

ultimately aim to utilize this line of experimentation in specific clinical populations (e.g., 

displaying alcohol cues to people with alcohol use disorder, or emotional imagery to 

people with major depressive disorder), the use of these varying types of imagery may 

have influenced the results. Indeed, when comparing the RewP across classes I saw 
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significantly different RewP. Importantly, image classes not containing humans evoked 

smaller ERPs than those that did contain humans. It may be that aspects of these images 

evoke separate neural systems or motivational processes which in turn affect the RewP. 

This limitation was addressed in two ways. First, it has been demonstrated that images 

containing humans evoke higher rates of motivational significance than images not 

containing humans (Weinberg & Hajcak, 2010). To account for this potential 

motivational confound, I compared accuracy and BuyBack scores across the five picture 

classes and found no difference between the image groups. Second, in order to 

investigate if the presence of humans produced signals which interfered with the reward 

signals of interest, I investigated two ERPs shown to be sensitive to images containing 

humans. For one, a well-known ERP component called the N170 has been shown to be 

sensitive to face processing (Eimer & Holmes, 2002). The generation of this signal to 

images containing human faces (i.e., male models, nude women, and babies) may have 

had an influence on the reward signals for these image classes that was not present in 

image classes without human faces (i.e. puppies and scenery). Similarly, larger 

amplitudes of an ERP component related to an emotional process known as the late 

positive potential have been demonstrated in images containing humans (Weinberg & 

Hajcak, 2010). Again, the differences in the content of emotional image stimuli may have 

been influenced by these confounding signals. In order to address this, I tested the N170 

component and the late positive potential and found no difference across the image 

classes. Taken together, there does not appear to be any differences in the motivational 

aspects, accuracy, or brain mechanisms between the image classes used. This potential 

issue can be rectified in a future study that would utilize a single class of emotional 

stimuli across all participants. However, this may cause additional motivational issues if 
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the participant, as I saw in the current study, is not motivated to learn from the image 

reward. 

In the current study, I investigated how differing reward types (points and 

pictures) can influence learning. I found important interactions between how well a 

person performs on a reinforcement learning paradigm and their motivation to receive 

rewards. These findings open up the possibility for new testable hypotheses relating to 

hedonic aspects of reward processing for intrinsic reward states. Future studies may aim 

to probe these underlying, understudied aspects of reward processing in order to gain a 

better understanding of aberrant reward processing conditions. 

.  
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Chapter 4 

CONCLUSION 

Recent scientific endeavors have revealed an interactional relationship between 

emotion and reward processing (Murray, 2007; Pessoa, 2009; Phillips, Drevets, Rauch, & 

Lane, 2003). Indeed, the hedonic appraisal of some types of feedback can either inhibit 

(Foti & Hajcak, 2009) or boost (Brown & Cavanagh, 2018) a reward signal. However, 

EEG investigations of these complex reward-emotion signals have remained scarce. The 

goal of this dissertation was to begin addressing these shortcomings and to hopefully lay 

the foundation for numerous hypothesis-driven approaches to be tested. This dissertation 

accomplished these aims by addressing a major overlooked phenomenon in reward 

processing, providing approaches to address methodological issues, and lastly, providing 

a novel test of these intrinsic motivation signals.  

 The first study was designed to address a methodological issue revealed in a 

previous report (Brown & Cavanagh, 2018). In this past study, researchers aimed to 

investigate the RewP evoked for pleasant images. However, these signals appeared 

blocked or hidden beneath another ERP component, the N2. I hypothesized that this 

effect was a product of a signal of novelty that was evoked for the pleasant images. In the 

first experiment, participants were presented rewarding feedback paired with novel 

shapes. It was revealed that the inclusion of novel stimuli occluded the RewP with an 

enhanced N2. This finding suggests a major limitation for future studies aimed to 

investigate ecologically-valid types of feedback with EEG, whether that is complex 

images, food (Harmon-Jones, Gable, & Price, 2013), painful shocks (Talmi, Dayan, 

Kiebel, Frith, & Dolan, 2009), or genital stimulation (Prause, Siegle, Deblieck, Wu, & 

Iacoboni, 2016). Although this issue greatly limits the understanding of these reward 



 

 70 

processes, there are additional methodological strategies that may be utilized to 

successfully rectify this complication. 

  In the first experiment it was revealed that employing spectral decomposition was 

successful in separating the underlying frequencies of the novelty-contaminated RewP. 

Here, frequency bands relating to reward processing (delta) could be separated from the 

signal of novelty (theta). This effect was then replicated in the follow-up experiment. 

Additionally, a third experiment leveraged principles of RPE by presenting participants 

with a cue, which predicted the upcoming point or picture feedback. Here, it was revealed 

that the RewP and delta band activity migrated to the predictive cue. This is an important 

feature of this signal, as it appears to mimic the propagation of phasic midbrain 

dopaminergic projections (Schultz et al., 1997). A recent report revealed that people with 

Parkinson’s disease display blunted RewP (Brown, Pirio-Richardson, & Cavanagh, in 

review). However, the blunted RewP normalized as the disease progressed, suggesting 

that this signal may be an indicator of early disease severity. A future study may aim to 

employ this experimental paradigm in order to investigate if Parkinsonian medication 

influences the migration of the RewP to cues predicting rewards in this clinical 

population. Due to the RewP’s relationship to dopaminergic tone, and the ease to which it 

is elicited, future investigations could uncover important clinical applications for this 

signal as a candidate biomarker for early stage Parkinson’s disease. 

 In a second series of studies, I used emotional imagery in order to manipulate 

learning rates in a RL task paradigm. The major aim of these studies was to investigate if 

intrinsically motivating stimuli (self-chosen pleasant images) would boost learning rates 

in the participants. Future application of this paradigm could investigate how clinical 

populations (e.g., individuals with substance use disorder or depression) learn from 
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situational-specific rewards. However, the results revealed that female participants did 

not learn from rewarding images above chance unless they were willing to pay actual 

money to see them. In this study, female participants’ accuracy to learn the optimal 

response to cues predicting pleasant picture rewards significantly correlated with how 

much money (or points) they were willing to trade in to see these positive pictures instead 

of negative pictures. This effect was then replicated in a second study where female 

participants were told the types of rewards they would expect to see. In the first RL 

experiment, participants were not informed of the picture content they would view, the 

theory here being that a participant would intrinsically place value on the image (since it 

was chosen in the preceding task), and that would motivate them to learn the optimal 

response. By informing the participants of the type of pictures they would see in the 

second RL experiment, I theoretically limited the degree to which intrinsic motivation 

would influence learning rate, thus making the self-selected pleasant picture “conditioned 

stimuli” (similar to the point rewards). Surprisingly, even after employing this 

manipulation, female participants did not learn the optimal responses for these types of 

reward. Again, this experiment revealed a strong relationship between a participant’s 

accuracy scores and their willingness to trade actual money to see pleasant images. This 

finding reveals an important aspect of reward learning: that an agent must be motivated 

by the reward in order to learn to receive it. A future study could further unpack this 

effect by using positive imagery as rewards that have differing degrees of reward salience 

to an individual.  

The major aim of this series of studies was to investigate the modulation of the 

RewP to differing types of rewarding feedback. Although employing complex emotional 

images as trial feedback in Experiments 4 and 5 resulted in a novel motivation-dependent 
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learning effect, I was not able to conclusively suggest this idiosyncratic reward type had 

any modulatory effects on reward related aspects of the RewP. This limitation is in part 

due to a theorized novelty enhanced N2 component that occluded the RewP generation. 

Although in the current series of studies there was no evidence for this modulation, future 

investigations employing the techniques presented in Experiment 3 (presentation of a 

predictive cue preceding reward feedback) may allow this effect to come through. 

Future EEG investigations may move toward employing complex rewarding 

stimuli in order to assess how hedonic appraisal, or liking, interacts with the RewP. 

Indeed, a recent report proposed that the blunted reward signals seen in major depressive 

disorder may not relate to dysfunctional reward processes per se, but instead could be a 

product of aberrant hedonic appraisal (Cavanagh et al., 2019). This suggests that some 

sort of emotion-based dynamics is contained in the RewP. Indeed, the progression of 

RPE signals in RL tasks faces a type of tug-of-war between expectation and hedonic 

appraisal, whereby as an agent learns how to optimally operate in an environment, the 

RPE signal is reduced because the rewarding outcomes are less surprising. However, 

recent studies have shown that the RewP can be enhanced through positive emotional 

modulation (Brown & Cavanagh, 2018; Threadgill & Gable, 2016), suggesting that this 

signal may also be manipulated by the magnitude of reward liking. A future study may 

aim to disentangle these competing systems. Furthermore, the dissemination of prediction 

error from hedonic appraisal in the RewP may offer important insights for substance use 

disorder investigations. This line of work may coincide with the Incentive-Sensitization 

Theory of addiction (Robinson & Berridge, 2008) that posits that neural systems of 

wanting and liking change throughout addiction. A future investigation may opt to use 

situational-specific feedback cues (e.g., pictures related to drug craving) in order to 
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investigate how hedonic aspects of this signal change throughout addiction. Due to its 

sensitivity to reward expectation and emotional modulation, the RewP may make a 

candidate biological signal worth investigating for this and many other clinical 

populations.  
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