
University of New Mexico
UNM Digital Repository

Psychology ETDs Electronic Theses and Dissertations

1-31-2013

Topological dynamics of spike-timing dependent
plastic neural networks
David Stone

Follow this and additional works at: https://digitalrepository.unm.edu/psy_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Psychology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Stone, David. "Topological dynamics of spike-timing dependent plastic neural networks." (2013). https://digitalrepository.unm.edu/
psy_etds/136

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/psy_etds?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/psy_etds?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/psy_etds/136?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/psy_etds/136?utm_source=digitalrepository.unm.edu%2Fpsy_etds%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


 

 

     David B. Stone 
       Candidate

 

 

     Psychology 

     
Department

 

 

 

     This dissertation is approved, and it is acceptable in quality 

     and form for publication: 

 

     Approved by the Dissertation Committee: 

 

 

Claudia D. Tesche, Chairperson 

 

 

Thomas P. Caudell 

 

 

Vincent P. Clark 

 

 

Derek A. Hamilton 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

TOPOLOGICAL DYNAMICS OF SPIKE-TIMING DEPENDENT PLASTIC 

NEURAL NETWORKS 

 

 

By 

 

 

David B. Stone 

 

B.S., Psychology, The University of New Mexico, 2000 

M.S., Psychology, The University of New Mexico, 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISSERTATION 

 

Submitted in Partial Fulfillment of the  

Requirements for the Degree of  

 

Doctor of Philosophy 

Psychology 

 

The University of New Mexico 

Albuquerque, New Mexico 

 

December 2012 



iii 

 

Dedication 

 

I dedicate this work to Claudia, who gave me a chance when no one else would. 

 



iv 

 

TOPOLOGICAL DYNAMICS OF SPIKE-TIMING DEPENDENT PLASTIC 

NEURAL NETWORKS 

By 

 

 

DAVID B. STONE 

 

B.S., Psychology, The University of New Mexico, 2000 

M.S., Psychology, The University of New Mexico, 2009 

Ph.D., Psychology, The University of New Mexico, 2012 

 

 

ABSTRACT 

 

 

The effects of continual spike-timing dependent plasticity (STDP) on the topology of 

evolving neural networks were assessed. After a period of stabilization, a number of 

topological features were monitored periodically throughout simulations of network activity 

to quantify changes in network structure. Under a range of different input regimes and initial 

network configurations, each network maintained a robust and highly stable global structure. 

At the same time, a substantial set of small three-neuron subgraphs (triads) continued to 

undergo an array of changes and revealed a dynamic local topology. These findings suggest 

that on-going STDP provides an efficient means of selecting and maintaining a stable yet 

flexible network organization. 
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Chapter 1  

Introduction 

Determining how populations of interacting neurons self-organize in the presence of 

noisy, rapidly changing stimuli and variable temporal and physical constraints remains a 

major challenge in neuroscience. In addition to the complex unfolding of developmental 

programs and environmentally driven modifications which occur early in life, neural 

networks continue to evolve throughout the lifespan. This on-going process of self-

organization among interacting neurons is the central concern of this report.  

One form of self-organization that has been extensively explored is spike-timing 

dependent plasticity, or STDP. As the name implies, STDP is a form of synaptic plasticity 

where changes in synaptic strength are determined by the timing of pre-synaptic and post-

synaptic spikes: When the pre-synaptic neuron fires before the post-synaptic neuron, the 

synapse is potentiated, and when the post-synaptic neuron fires prior to the pre-synaptic 

neuron, the synapse is depressed. Since it was first characterized (Markram et al., 1997), 

STDP has been observed in a wide-range of neural systems, from mammalian cortical and 

sub-cortical networks to invertebrate nervous systems.  

A number of models have been employed to explain some of the basic properties and 

consequences of STDP (e.g. Song et al., 2000). One approach that has been fruitful in 

characterizing the potential functionality of STDP has been to explore how it influences the 

structure (topology) of self-organizing neural networks. Graph theoretic measures borrowed 

from network science have revealed a number of adaptive topological features which emerge 

from STDP governed networks. For example, Shin and Kim (2006) demonstrated that a 

model network of excitatory and inhibitory neurons which employed STDP synaptic 
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modification developed small-world properties and power-law degree distributions. Small-

world characteristics (i.e. high clustering and short average path lengths; Watts and Strogatz, 

1998) have been detected in macaque and cat cortical networks, and the human reticular 

formation, and neuroimaging has revealed both small-world properties and power-law degree 

distributions in human functional brain networks (for a review of graph theoretical analyses 

of brain networks, see Reijneveld et al., 2007; Bullmore and Sporns, 2009). More recently, 

Ren et al. (2010) compared the local topological characteristics of the earthworm, C. elegans 

to a biologically inspired model STDP network. They found that the residual network 

evolved by STDP produced specific three-neuron connectivity patterns (motifs) in 

significantly greater frequencies than observed in comparable random networks. The profile 

of significant motifs types detected in their model network was qualitatively similar to those 

observed in the earthworm connectome. These studies suggest that STDP may be an 

underlying mechanism in evolving the neuronal topologies observed in some neurobiological 

systems. 

While these and other studies have been informative regarding the role of STDP in 

developing adaptive topologies, they have failed to address the continual, experience 

dependent changes in network architecture which are likely influenced by on-going STDP. 

Several recent reports suggest that, in addition to its role in guiding cortical and subcortical 

structure during development, STDP continues to modify synaptic connectivity in mature 

neural networks. Yu et al. (2009) demonstrated that neurons in the superior colliculus of 

adult cats adapted their responses to cross-modal sensory stimuli over short time scales in a 

manner that was consistent with STDP governed synaptic modification. The authors suggest 

that, although not conclusive, STDP may remain a viable mechanism for rapid structural 
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modification well into adulthood. These results support a previous report of spike-timing 

dependent synaptic depression elicited in the primary somatosensory cortex of anesthetized 

adult rats by pairing whisker deflections with spontaneously emitted postsynaptic spikes or 

spikes generated by current injection (Jacob et al., 2007). 

To date, there are only a few of studies that address the on-going topological 

dynamics of neural and brain systems. Robinson et al., (2009) tested the robustness and 

stability of different model network topologies during dynamic restructuring; however, their 

restructuring scheme was arbitrary, and analysis focused on properties of the emergent rather 

than the evolving architecture.  In another study, Grindrod and Higham (2010) used a 

functional brain network to demonstrate the effectiveness of new algorithms in characterizing 

evolving graphs. Although interesting, the network used as an example was derived from a 

short sample of time-series EEG data and the algorithm was used to assess transient 

functional connectivity over a brief period of time.  

The goal of this study was to explore the evolving topology of networks of neurons as 

they were modified by a biologically meaningful mechanism, on-going STDP. The outcome 

of this investigation revealed unique dynamic features of neural network topology that have 

not been observed in networks with static architectures and yielded new insights into the 

organizing principles of STDP that can only be captured during active network restructuring 

in the presence of continuous external input.  
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Chapter 2  

Methods 

Model Neural Networks 

The model neural networks used in all simulations consisted of 400 regular-spiking 

excitatory (RSE) neurons and 100 fast-spiking inhibitory (FSI) interneurons. The neurons of 

each network were initially connected at random. The in-degrees and out-degrees (i.e. the 

number of pre- and post-synaptic connections) of each neuron were selected such that there 

were approximately 50 pre-synaptic and 50 post-synaptic synapses for each neuron (means = 

50, s.d.’s  = 5, normally distributed). Thus, there were approximately 25,000 synapses in each 

initial network (~10 % of full connectivity).  

Izhikevich-type neurons were used in all network simulations (Izhikevich, 2004). The 

neuronal dynamics of both neuron types (RSE and FSI) were modeled by a system of 

differential equations: 

Eq. 1  
20.04 5 140

dV
V V u I

dt
      

Eq. 2   
du

a bV u
dt

  , 

where V is the neuronal membrane voltage (in millivolts, mV), u is a membrane relaxation 

variable, and I is the total input to the neuron (in mV). An action potential (spike) occurred 

when V ≥ 30 mV, after which the voltage and relaxation variables were reset according to the 

equation: 

Eq. 3    30 : ;V V c u u d     
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Eq. 1, 2, and 3, together with a range of values for parameters a, b, c, and d, allow a 

great variety of neuronal types and dynamics to be modeled. Based on previous work which 

explored different values (Izhikevich, 2004), the parameters for the RSE neurons were set to: 

a = 0.02, b = 0.2, c = -65 mV, and d = 8. For FSI neurons, the parameters were set to: a = 0.1, 

b = 0.2, c = -65 mV and d = 2. Note that parameters affecting the relaxation variable, u, are 

modified for FSI neurons to shorten post-firing recovery which gives these neurons their fast-

spiking behavior. The values of u and V were approximated using a fourth-order Runge-

Kutta numerical method to evaluate Eq. 1, 2, and 3 (h = 0.5 timesteps for Eq. 1, and one 

timestep for Eq. 2 and 3). The simulation timestep was selected to approximate one 

millisecond (msec) of real time. 

The excitatory post-synaptic weights were initially uniformly distributed between 0 

and 8 mV (RSE→RSE synapses and RSE→FSI synapses), while initial inhibitory post-

synaptic weights were distributed between -8 and 0 mV (FSI→RSE synapses and FSI→FSI 

synapses).  

Network Input 

Each network received five different types of external input in separate simulations. 

External stimulation varied in degree of regularity (periodicity) and synchrony and was 

qualitatively similar to the unique types of spiking network dynamics outlined by Brunel 

(2000). Under the regular, synchronous input regime (RS), a randomly selected subset of all 

neurons (mean = 100 neurons, s.d. = 1, normally distributed) received 16 mV input 

simultaneously every 20 timesteps (20 msec intervals, 50 Hz input rate). The subset of 

neurons receiving input changed on every input cycle (i.e. every 20 timesteps). The input 

parameters of the regular but asynchronous regime (RA) were the same as RS input except 
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that the input timing to each neuron was jittered around a mean of 20 msec with a 6 msec 

standard deviation. The third input regime simulated irregular (i.e. non-periodic), 

synchronous input (IS). Similar to RS input, a randomly selected subset of approximately 

100 neurons received simultaneous input; however, input was delivered at a Poissonian 

distributed rate with a mean of 50 Hz. In the final two input regimes, input was delivered 

irregularly and asynchronously such that every neuron in the network received 16 mV input 

independently at a Poissonian distributed mean rate of either 50 Hz or 12 Hz (IA50 and 

IA12).  

In addition to external input, every neuron in the network received a constant small 

subthreshold input at each timestep throughout the simulations. The value of this noisy input 

was picked each at each timestep from a Gaussian distribution with mean of 1.3 mV and 

standard deviation of 0.5 mV.  

In addition to external input and subthreshold input, neurons in the network received 

input from their presynaptic neurons whenever the presynaptic neuron fired with a one msec 

delay. The magnitude of synaptic input was simply the weight of the synapse from the pre-

synaptic neuron. The value of I in Eq. 1 is the linear sum of these three input terms for each 

neuron at every timestep.  

Spike-Timing Dependent Plasticity 

The weights of the RSE→RSE synapses in the network were modified for the 

duration of the simulation according to an asymmetric STDP learning rule. The STDP rule 

was implemented such that, when a pre-synaptic neuron fired before the post-synaptic 

neuron, the synapse connecting them was potentiated according to the equation: 
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Eq. 4   
 /

1 ,
tpost tpre

t t A e


 
 

         

and when the post-synaptic neuron fired before the pre-synaptic neuron, the synapse was 

depressed according to the equation:  

Eq. 5   
 /

1
tpost tpre

t t A e


 
 

      

In Eq. 4 and 5, Δωt is the additive (+/-) change in synaptic weight, tpost and tpre are 

the post-synaptic and pre-synaptic firing times, respectively, Δω t - 1 is the value of Δω from 

the preceding timestep, and τ is a time constant set to 20 msec which determines the width of 

the time window. The values of A+ and A- determine the maximum or minimum weight 

change for a given synaptic event (learning rate). The value of  A+ was set to 0.044 which is 

0.55% of the maximal weight attainable by any synapse (8 mV). The value of A- was set to -

0.0462 to produce an asymmetry (bias toward synaptic depression) in the STDP rule. The 

values of τ, A+, and A- were selected based on the empirically derived STDP model outlined 

in Song et al., 2000.  

The STDP rule was applied at all excitatory-to-excitatory synapses (RSE→RSE). Δω  

was initially set to zero and Eq. 4 and 5 were evaluated during each timestep (each msec) of 

the simulation; however, the synapse was updated only once every 1000 timesteps (once per 

second) by adding the current value of Δω at that timepoint to the current weight. Synaptic 

weights were bounded so that when the sum of the synaptic weight and Δω was  8 mV or  

0 mV, the weight was set to 8 mV or 0 mV, respectively.  

To simulate on-going STDP and permit re-potentiation of zero-weight synapses, 

synapses with 0 mV weights were not removed from the network. Instead, the value of Δω 
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continued to be modified by Eq. 4 and 5 at each timestep and was added to the weight after 

every 1000 timesteps. Thus, re-potentiation could occur if Δω possessed a positive value 

when it was added to the current weight.  

Simulations and Analysis 

The dynamic effects of STDP on network topology were examined in ten separate 

model networks. Each network received each of the five external input regimes (RS, RA, IS, 

IA50, and IA12) in separate simulations resulting in 50 simulations total. Each simulation 

consisted of 7.2 million timesteps, or two hours of activity. Measures of global and local 

topological features were sampled once every 60,000 timesteps (every minute) during the last 

half of each simulation (The analysis interval; timesteps 3,600,001 to 7,200,000).  

Global measures included the total number of excitatory-to-excitatory synapses in the 

network, the average weight of these synapses, and the average synaptic degree (the total pre-

synaptic and post-synaptic excitatory-to-excitatory connections) per neuron at each sampling 

point.  

In order to assess the stability of each of these measures across time, the coefficient of 

variation was also calculated for each measure, where the coefficient equals the standard 

deviation of the measure across the analysis interval divided by its mean. A smaller 

coefficient indicates more stability (i.e. less variation) across time. The coefficient of 

variation is a dimensionless quantity that permits direct comparisons of temporal stability 

between networks/simulations in circumstances where comparisons of means would be 

uninformative. 

The potential small-world characteristics of the networks were also evaluated at by 

calculating the average clustering coefficients and path lengths across all excitatory neurons 
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at each sampling point in the analysis interval. The clustering coefficient is a measure that 

reflects the likelihood that two connected neurons (neighbors) would share a common 

neighbor. The clustering coefficient was determined in a manner which took into account 

both the strengths and directions of the synapses involved in each cluster and was based on a 

method presented in Fagiolo (2007).  The clustering coefficient of each neuron was evaluated 

by the equation 

Eq. 6   
 

 
1

3

,

2

1 2
i ij im jm

j m
i i i

C w w w
k k k

 
 

, 

where Ci is the clustering coefficient of neuron i and ki  is the total number of  in-degrees and 

out-degrees of that neuron. 
i

k is the sum of bi-directional synapses of neuron i and its 

neighbors (i.e. where neuron i  is both a pre-synaptic and post-synaptic neuron with its 

neighbor). wij , wim , and wjm  are the synaptic weights between neuron i and its neighbor j, 

neuron i and its neighbor m, and the weight between the two neighbors, respectively. Note 

that Eq. 6 only takes into account those clusters that are purely directional (that contain no 

reciprocal synapses) and scales these clusters by the geometric mean of their synapses.  

Path lengths were also determined in a manner that accounted for directionality and 

synaptic strength by employing Dijkstra's Algorithm (Dijkstra, 1959). This algorithm 

assumes that shortest distance between neuron i and neuron j is the directed distance between 

them containing the fewest synapses of the lowest magnitude. In the networks considered 

here, greater synaptic strengths should decrease distance (i.e. shorten paths).Since Dijkstra's 

Algorithm ‘punishes’ synapses of greater magnitude and rewards synapses of lower 

magnitude, the inverses of synaptic weights were used to assess path length.    
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Clustering coefficients and path lengths were averaged across all neurons at each 

sampling timepoint. The averages from each simulation were compared to the values from 

the initial randomly connected network. Higher clustering values and shorter path lengths 

than in the initial networks indicated an improved small-world topology. Both measures were 

calculated using functions included in the Brain Connectivity Toolbox (Rubinov and Sporns, 

2010). 

In order to quantify the local topological dynamics of each network, all three-neuron 

connected subgraphs (triads) present in each network at initialization were identified and 

changes in their synaptic connectivites were monitored during the analysis interval. There are 

13 possible unique connectivity patterns in three-neuron subgraphs (Fig 1). The distributions 

of these 13 triad types in each network and their synaptic weights were assessed. Since only 

RSE  RSE synapses were subjected to the STDP learning rule, only triads comprised 

exclusively of excitatory neurons were considered in the analysis. Although on-going STDP 

permits the depression and repotentiation of existing synaptic connections, new synapses 

cannot be formed. Therefore, all of the triads identified in each of the ten initial networks 

may undergo state changes, but new triads cannot appear. 

To determine the strength and stability of each triad, the synaptic intensities and 

coherences of the triad were measured during the analysis interval according to a method 

outlined by Onnela et al., 2005. The synaptic intensity of a triad is equivalent to the 

geometric mean of its synapses: 

Eq. 7    
 

1

,

( ) ,
s

s

N

ij
i j N

I s w
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where I(s) is the intensity of triad s, Ns represents the number of synapses in s, and wij refers 

to the synaptic strength of neuron i onto neuron j. In the present scheme, intensities could 

range from 0 mV (non-connected) to 8 mV (the maximum allowable synaptic weight 

attainable). In addition, triad coherence is defined as the intensity of the triad (geometric 

mean) divided by its arithmetic mean: 

Eq. 8    

 ,

( )
( ) ,

s

ij
i j N

I s
H s

w





 

where H(s) is the coherence of triad s. The coherence of a triad is bounded between 0 and 1, 

and values approaching 1 occur when the synapses of the triad have nearly equal weights. 

Thus, coherence is a measure of triad synaptic stability. 

Additional measures were calculated to evaluate the dynamics of individual triads 

across time. Potentially, a triad can ‘disappear’ when one or more of the synapses connecting 

the triad are lost and can re-emerge if the synapse(s) regain non-zero weights. Triads can also 

change triad type due to the loss or regain of their synapses (e.g. a type 5 triad could become 

a type 1, 2, or 3 triad due to the loss of one of its synapses). The total duration that a triad 

existed as one or more type during the interval was assessed. The value of triad duration was 

calculated as the percentage of sampling points in the analysis interval in which the triad 

appeared. The total number of state changes, including disappearances, re-emergences and 

type changes, was also assessed for each triad. An additional measure included each triad’s 

repertoire size, i.e. the total number of triad types that the triad assumed during the analysis 

interval. As a final measure of triad dynamics, the total number of triads that re-emerged at a 

sampling point (triads gained), the total number that disappeared at that sampling point 
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(triads lost), and the net change in the total number of triads from one sampling point to the 

next were calculated.   

For each of the measures mentioned, the effects of external input were assessed by 

performing a univariate analysis-of-variance (ANOVA) test on the measure where external 

input type was the fixed factor. When this test yielded a significance value of p ≤ 0, separate 

t-tests were performed which contrasted the effects of synchronous vs asynchronous input 

(RS and IS vs RA, IA50, and IA 12) and regular vs irregular input (RS and RA vs IS, IA50, 

and IA 12) on the measure. These tests were Bonferroni corrected.  

Motif analysis 

Different types of small connected subgraphs present in complex networks are 

frequently referred to as “motifs”. The original definition of network motifs provided by 

Milo et al., (2002) defined motifs as those subgraph types that occur in a network of interest 

at significantly greater frequencies than observed in equivalent, randomly connected 

networks of the same size. The significance of occurrences of each of the 13 possible 

different triad types was tested in the final organizations of the networks investigated (i.e. at 

the final timestep of each simulation). Final networks were compared to randomly connected 

networks where the random networks were generated by switching synapses between 

neurons in the final network while preserving the same number of incoming, outgoing, and 

mutual synapses of each neuron (mfinder, version 1.2, 

http://www.weizmann.ac.il/mcb/UriAlon). Between 50,000 and 100,000 switches were 

performed for each graph and 100 random graphs were generated for comparison. Details of 

the edge switching algorithm can be found in Milo et al., 2003. 
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For each of the 13 triad types, the number of occurrences of the type in the final 

network was compared to the number of occurrences of the type in 100 random networks by 

calculating a Z-score test statistic as follows: 

Eq. 9    
,

final random

random

F F
Z






 

where Ffinal is the number of occurrences of the type in the final network and Frandom and 

σrandom are the mean and standard deviation of the occurrences in the 100 random networks. 

If the Z-score was greater than 1.96 or less than -1.96, the type was considered to have 

occurred at significantly greater or fewer numbers than in the distribution of random 

networks (at the 95% confidence level) and therefore represented a significant motif in the 

final network. 

Variations of STDP and Network Parameters 

Several parameters of the STDP learning rule (Eq. 4 and 5) were modified to assess 

the effects upon network stability and dynamics. In the first modification, the values of  A+ 

and  A- were reduced to one tenth of their original values (0.0044 and  - 0.0046, respectively; 

reduced STDP rate condition). In the second modification, the STDP time constant, τ, was 

reduced from 20 msec to 10 msec (reduced STDP window condition). In the final 

modification the asymmetry of the learning rule was removed such that A+ =  A- = 0.044 

(symmetric STDP condition).  One simulation of each condition was conducted using each of 

the five external input regimes, resulting in 15 separate simulations. The same initial network 

was used for each simulation and was selected from the initial networks employed in the 
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original simulations. During the STDP modified simulations, all other parameters remained 

the same as in the original simulations. 

Several measures were used to assess the effects of the STDP parameter 

modifications. The stabilities of global measures across time were evaluated by calculating 

the coefficient of variation of the number of RSE  RSE synapses remaining, the coefficient 

of variation of the average synaptic weight of these synapses, and the coefficient of variation 

of the average neuronal degree. Characteristics of triad dynamics were also evaluated for 

each modification, such as the percentage of triads remaining during the analysis interval, 

their dynamics, and their intensities and coherences. Changes in the number of triads and 

triad types across the analysis interval were also charted. 

To assess the magnitude of the effects of these variations upon global and local 

network stability, direct comparisons were made between the original and parameter 

modified simulations by performing significance tests. These tests compared the coefficients 

of variation of synaptic number, synaptic weight, and neuronal degree from the original and 

modified simulations. The ratios of triad gains to net changes in triad counts (gained-to-net 

ratios) were also compared. T-scores were used as the test statistic and calculated as follows:  

Eq. 10   
,

modified original

original

V V
t

n






 

Vmodified is the value of the measure resulting from the modified simulation and V original  

and σoriginal are the mean and standard deviation of the value from the original simulations, 

respectively, and n is the sample size (10 in all cases examined). T-scores greater than 3.25 or 
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less than -3.25 were considered to be indications of a significant deviation in the measure 

from values obtained in the original simulations (at the 99% confidence interval). 

Comparisons were only made between simulations employing the same type of external input 

(e.g. STDP modified networks receiving RS type stimulation were only compared to the ten 

original simulations where RS stimulation was used).  

In addition to modifications in the STDP learning rule, several modifications were 

also made to the configuration of the initial networks. In the first condition, the permissible 

range of synaptic weights was reduced from -8 to 8 mV to -4 to 4 mV while all other 

parameters remained the same (reduced synaptic weight condition). In the second condition, 

an asymmetry was introduced in the excitatory-to-inhibitory synaptic weight ratio such that 

the range of excitatory synaptic weights remained from 0 to 8 mV while the inhibitory range 

was increased from 0 to -8 mV to 0 to -9.6 mV (the asymmetric weight condition). In the 

third condition, the number of initial synapses was decreased from 25,000 to 12,500 (from 

10% of full connectivity to 5% of full connectivity; the sparse connectivity condition). In the 

final modification, a subset of 100 neurons was randomly selected prior to the simulations, 

and only these neurons received external input (the stationary input condition). This 

condition contrasted with the original simulations where the subset of neurons receiving 

input changed during every input event. Each of these four modified networks received each 

of the five types of external input resulting in 20 additional simulations.  

The global and local stabilities and dynamics of these configuration modified 

simulations were assessed using the same measures as above and the same test statistic (Eq. 

10). 
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As a final test of the effects of on-going STDP on network topology, a simulation 

involving a different learning rule was implemented while network topology was assessed. 

This Hebbian-like learning rule was based on firing rate correlations between pre-synaptic 

and post-synaptic neurons and therefore served to contrast the timing dependence of STDP. 

Details of the implementation and results are presented in Appendix A. 
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Chapter 3  

Results 

Input Dependent Steady-State Network Activity Emerges During On-Going STDP 

A pattern of steady-state synchronous firing activity emerged shortly after the 

beginning of each simulation. During this state, fluctuations in the average neuronal firing 

rates across time were marginal. Average neural firing rates for excitatory neurons are 

reported in Table I. Rates were determined by external stimulus type (F(1,4) = 703.33, p < 

0.001) where irregular input patterns (IS, IA50, IA12) significantly increased firings of 

excitatory neurons (t(48) = 3.52, p  = 0.001). Firing rates for RSE neurons from all 

simulations remained between 12 and 15 Hz. FSI neurons fired at almost twice that rate 

(overall mean = 29.68 Hz) owing to parameter differences in Eq. 2 and 3. Fig 2 shows 

exemplar network activity for each of the external input regimes. 

A Stable Global Network Structure Emerges From On-Going STDP 

Global topological features including the total number of synapses and their average 

synaptic weight, and average neuronal degree (number of synapses) were collected 

throughout the simulations and evaluated across the analysis interval. Table I and Fig 3 

present the values of these global measures for each type of external input. 

Each network initially possessed approximately 16,000 excitatory synapses of which 

an average of 9253.9 (s.d. = 207.30) or 57.8% (across all simulations) remained during 

analysis (i.e. these synapses possessed a strength greater than zero at least once during the 

analysis interval). For each simulation, the total number of synapses participating in the 

network remained highly stable across the interval (average coefficient of variation across all 
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simulations = 0.002, s.d. < 0.001). External input type had no significant effect on the 

number of remaining synapses or their stability across time (p > 0.9).  

The overall average weight of excitatory synapses across all simulations was 4.48 mV 

(s.d. = 0.071), and the average coefficient of variation of these weights was 0.001 (s.d. < 

0.001), revealing highly stable average synaptic strengths across time. A significant effect of 

input type on the average synaptic weight was detected (F(1,4) = 222.42, p < 0.001). 

Contrasts of the different input types revealed that synchronous input regimes (RS and IS) 

resulted in a significantly lower average synaptic weights than asynchronous input (t(48) = 

13.32, p < 0.001). Despite these differences, there was no significant difference in the 

stability of synaptic weight across time as a consequence of input type (coefficient of 

variation comparisons, p > 0.2). The distribution of excitatory synaptic weights was also 

similar across all simulations. Weights tended to cluster near maximal and minimal values. 

This pattern is typical of networks where an additive STDP learning rule is applied (Song et 

al, 2000). Fig 4 shows example weight distributions at the end of simulations for each input 

regime. Since the STDP rule was only applied at RSE → RSE synapses, weights on 

inhibitory synapses remained constant. 

The average neuronal synaptic degree for excitatory neurons showed a similar pattern 

to that of the average synaptic weights. In this analysis, only synapses to and from excitatory 

neurons were counted. For all simulations, the average synaptic degree per excitatory neuron 

was 46.27 synapses (s.d. = 1.04). The stability of average neuronal degree across time was 

high (average coefficient of variation across simulations = 0.002; s.d. < 0.001). External 

input type exerted a significant effect on synaptic degrees (F(1,4) = 229.79, p < 0.001) where 

synchronous input regimes resulted in lower average neuronal degrees than asynchronous 
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regimes (t(48) = 13.87, p < 0.001). Input type also significantly affected the stability of 

average neuronal degrees across time (i.e. the average coefficient of variation; F(1,4) = 11.47, 

p < 0.001). Networks receiving synchronous input were more stable (t(48) = 3.92, p < 0.001). 

The distributions of pre-synaptic connections and post-synaptic connections (the in-degrees 

and out-degrees, respectively) were highly similar across simulations for a given input type. 

Fig 5 shows example degree distributions for each input regime. 

Small-world topology was also evaluated across the analysis interval. The overall 

average clustering coefficient for RSE → RSE neurons across the analysis window for all 

simulations was 0.435 (s.d. = 0.006). In every simulation, the clustering coefficient was 

greater during the analysis interval than at initialization (mean across all 10 initial networks = 

0.3368, s.d. = 0.0022), suggesting increased clustering due to on-going STDP and external 

input. Clustering coefficients varied little across the analysis interval (coefficient of variation 

of clustering, mean = 0.004, s.d. < 0.001). Further, clustering was significantly affected by 

external input type (F(1,4) = 30.62, p < 0.001), as was the coefficient of variation (F(1,4) = 

10.29, p < 0.001) such that synchronous input decreased clustering (t(48) = 8.67, p = 0.003) 

and increased variability ( t(48) = 3.10, p = 0.009). In contrast, the average shortest path 

length increased almost an order of magnitude over its value at initialization (path length 

mean at initialization = 0.3537, s.d. < 0.001; mean of overall path length during analysis 

interval = 3.196, s.d. = 2.03). Path length was also much more variable during the analysis 

interval as is apparent in by the coefficient of variation across time (mean = 1.91, s.d. = 

1.34). Unlike clustering, external input type did not significantly affect path length or its 

temporal variability.  
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Three Neuron Subgraphs (Triads) Reveal Local Topological Dynamics 

In the ten original random networks formed at initialization, an average of 1,002,498 

unique triads were present (s.d. = 7216.74). In general, the number of these triads that 

remained in each network (i.e. that were detected at least once during the analysis interval) 

was a small fraction of those present at initialization. The percentage of total triads that 

remained varied significantly according to input type (F(1,4) = 275.83, p < 0.001), where 

synchronous input regimes resulted in significantly smaller percentages of remaining triads 

(t(48) = 13.47, p < 0.001).  

In all of the simulations, the set of remaining triads was divided between core triads, 

which showed no change in their connectivity pattern throughout the analysis interval, and 

dynamic triads, which disappeared, re-emerged, or changed triad type at least once during 

analysis. The percentages of the core triads and dynamic triads present in each network 

depended upon the external input type each received (F(1,4) = 54.52, p < 0.001) such that 

synchronous input significantly increased the proportion of core triads (t(48) = 9.31, p < 

0.001).Table II displays demographics for the core and dynamic triads for each input regime. 

Core Triads Consist of Strong and Stable Synapses 

The strength and stability of core triads were determined by assessing their triad 

intensities and coherences. Core triad intensities from all simulations approached maximal 

values (overall mean = 7.99 mV) as did core triad coherences in all simulations (overall mean 

> 0.999). The high values of core intensities and coherences suggest that these triads 

consisted of strong, symmetric synapses. The values of intensities and coherences from all of 

the simulations were very similar (overall s.d., intensity = 0.005; s.d., coherence < 0.001). 

Nevertheless, a significant effect of external input type was detected (intensity, F(1,4) = 
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221.61; coherence, F(1,4) = 7.68; p < 0.001 both). Regular regimes reduced the coherences 

of core triads (t(48) = 2.46, p = 0.017) while synchronous regimes slightly increased both 

core intensities (t(48) = 14.26, p < 0.001) and core coherences (t(48) = 3.33, p = 0.002). 

Fig 6 and Table III display the distributions of the different types of core triads 

averaged across the different input regimes. Two-synapse core triad types (types 1, 2, and 3) 

occurred in every simulation, as did core triads of type 5. Type 7 core triads were observed in 

several of the simulations involving asynchronous input (IS, IA50, IA12). No other core triad 

types were observed in any of the simulations.  

Dynamic Triads Enhance the Diversity of Local Topologies 

Dynamic triads are those triads which were detected during analysis but which 

changed connectivity pattern at least once during the analysis interval. Whereas synchrony 

significantly increased the proportion of core triads observed, asynchronous input increased 

the proportion of dynamic triads.  

Example distributions of the average intensities and coherences of dynamic triad 

types for each external input regime are shown in Fig 7. Intensities and coherences from all 

simulations displayed a bimodal and skewed distribution. The bimodal and negatively 

skewed distributions suggests that a large proportion of these triads possessed relatively 

strong, stable synapses despite on-going state changes while a smaller proportion were more 

unstable. Alternatively, this distribution pattern may reflect high frequencies of individual 

triads which possessed both strong-stable, and weak-unstable states. The intensities and 

coherences of synapses forming dynamic triads varied according to input type (intensity, 

F(1,4) = 34.84; coherence, F(1,4) = 28.58; p < 0.001 both). Similar to core triads, regular 

input regimes (RS, RA) significantly reduced both the intensity (t(48) = 2.72, p = 0.009) and 
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coherence (t(48) = 3.18, p = 0.003) of dynamic triads. Synchronous input significantly 

increased both measures (intensity, t(48) = 4.98; coherence, t(48) = 4.11; p < 0.001 both). 

The number of state changes, the repertoire sizes, and the durations of each dynamic 

triad were also evaluated. All of these measures were influenced by the external input that the 

network received. The average number of state changes across all simulations was 7.74 

changes (s.d. = 0.795 changes) per triad and depended on external stimulus type (F(1,4) = 

49.57, p < 0.001) such that synchronous input significantly reduced the number of changes 

(t(48) = 8.46, p < 0.001). Some dynamic triads consisting of more than two synapses could 

appear as multiple triad types during the analysis interval. The repertoire sizes and triad 

durations were quantified for all dynamic triads in the network under each of the separate 

input regimes. The majority of triad types in the networks were composed of two synapses 

(types 1, 2, and 3), and dynamic triads of this type could only exist in two states (either as 

non-triads or as the original triad type). Therefore, the overall distribution of triad repertoires 

was heavily skewed toward single triad repertoires. The average repertoire size of the 

dynamic triads was 1.13 types (s.d., 0.15 types), and the average triad duration was 44.35 % 

(s.d., 1.47 %). Similar to the number of state changes, both the repertoire sizes and triad 

durations were influenced by input regime (repertoire size, F(1,4) = 72.09; duration F(1,4) = 

22.36; p < 0.001 both). Synchronous regimes significantly reduced repertoire sizes (t(48) = 

11.17, p < 0.001) and regular input regimes significantly increased triad durations (t(48) = 

8.36, p < 0.001). 

Similar to core triad distributions, dynamic triad types consisting of two synapses 

(types 1, 2, and 3) and triad type 5 occurred most frequently; however, dynamic triads were 

more diverse and all triad types were detected at least once during the simulations. Because 
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dynamic triads can change type, distributions represent the average number of types across 

the analysis interval rather than sums of individual triads. Despite the dynamic range of these 

triads, the distribution of triad types remained highly stable across time (overall coefficient of 

variation across all triad types = 0.865). Fig 6 displays the distributions of dynamic triad 

types and Table III displays means and coefficients of variation. 

To fully assess the dynamics of the local topology, the numbers of individual triads 

which disappeared and re-emerged across each sampling interval was calculated. The 

average number of individual triads which were lost from one sampling point to the next was 

15459.25 (s.d. = 3765.55), while the number that were gained (re-emerging as either as the 

same type or as a different type) was 15444.37 (s.d. = 3762.79). Interestingly, nearly as many 

triads were gained as lost at each timepoint, keeping the overall number of triads across time 

negligible. For all simulations, the average change in the total number of triads from one 

sampling point to the next was +/- 1676.47 triads (s.d. = +/- 378.78). To better quantify the 

disparity between the numbers of individual triads which disappeared and re-emerged and the 

overall changes in triad counts, the ratio of the number of triads which re-appeared at each 

sampling point to the absolute net change in triad counts was calculated. The overall gained-

to-net ratio was 9.26 (s.d. = 1.54) across all simulations, almost a tenfold increase. This 

implies that the total number of triads (and the distribution of triad types) barely changed 

while the composition of participating triads was changing at nearly ten times the rate. 

External stimulus type influenced triad losses, gains, net changes, and gained-to-net ratios 

(F(1,4) = 275.68, 275.22, 35.64, and 7.61, respectively; p < 0.001, all cases). In every case, 

synchronous input significantly reduced these values (t(48) = 13.09, 13.06, 6.79, and 2.95, 

respectively; p < 0.001 for first three measures; p =  0.005 for gain-to-net ratio). Fig 8 and 
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Table IV display the average number of individual triads that were gained and lost at each 

sampling point, as well as net changes in total number of triads.  

The Final Networks Possess Significant Motif Types 

When specific triad types occur more frequently than would occur by chance, they are 

considered to be significant motifs. Triad type distributions were monitored throughout the 

analysis interval, and the types present in the final networks were subjected to motif analysis. 

Table V displays the number of significant triad types (motifs) found in the final networks for 

each input regime. In every simulation, triad types 2 and 5 were found to be significant 

motifs, occurring more frequently than in random networks. Triad type 8 also occurred 

significantly more frequently across all input regimes. Triad types 1, 3, and 7 occurred 

significantly less frequently in all simulations, while types 4, 6, 10 and 11 occurred 

significantly more in some simulations and significantly less in others depending on the type 

of external input the networks received. 

Variations in STDP Learning Parameters and Network Configurations Have Mixed 

Effects on Stability and Dynamics 

Several changes were made to STDP and network parameters to evaluate their effects 

on topological stability and dynamics. To this end, networks employing parameter variations 

were directly compared to standard networks on the coefficients of variation of global 

variables across time, on percentages of core triads and dynamic triads, and on the gained-to-

net ratios of triads. All of these measures are dimensionless and are thus suitable for 

comparisons across networks where quantitative differences are likely to occur. Further, they 

capture qualities of topological change that direct comparisons of means may not. Tables VI 
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and VII report values of topological features obtained from each parameter variation 

condition.  

Overall, each of the STDP rule modifications had only marginal effects on network 

stability. The global measures remained highly stable across time in each condition (mean 

coefficient of variation across all measures = 0.002; s.d. = 0.002), comparable to the stability 

seen in these measures in the original simulations. Nevertheless, the reduced STDP window 

condition resulted in a significant decrease in neuronal degree variability across time when 

compared to the original simulations (coefficient of variation of neuronal degree; t(9) ≤ -3.35, 

p ≤ 0.01). 

The largest differences observed from the STDP modified simulations were in the 

percentages of core and dynamic triads. The proportion of core-to-dynamic triads was 

significantly increased in almost every simulation involving an STDP parameter modification 

(t(9) ≥ 3.35, p ≤ 0.01), indicating that the composition of core and dynamic triads remaining 

in the network was sensitive to changes in STDP potency.  

The gained-to-net ratios of triads across time were significantly reduced by the 

symmetric STDP condition during exposure to asynchronous input regimes (IS, IA50, IA12) 

and by the reduced STDP window condition during RA stimulation (t(9) ≤ -3.35, p ≤ 0.01); 

however, the ratios still remained high in the STDP modification conditions, suggesting that 

large ratios is a robust effect. 

Changes in network configuration parameters included a reduced synaptic weight 

condition, an asymmetric weight condition, a sparse connectivity condition, and a stationary 

input layer condition. 
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In the reduced synaptic weight condition, global measures remained highly stable 

across time; however, significant increases in the coefficients of variation of the average 

weights and number of synapses were observed when compared to networks with the original 

weight range (t(9) ≥ 3.35, p ≤ 0.01). In every simulation involving the reduced weight 

condition, percentages of the core triads were reduced (t(9) ≤ -3.35, p ≤ 0.01). This effect was 

so great in the IA50 and IA12 simulations that no core triads were observed during the 

analysis interval. An effect of this parameter variation was also observed in the triad turn-

over rates. This condition significantly increased gained-to-net ratios in almost all 

simulations (t(9) ≥ -3.35, p ≤ 0.01), sometimes achieving values of over 30 triads gained for 

each net change in triad count. 

The asymmetric weight condition did not significantly alter the temporal stability of 

any of the global measures with the exception of an increase in the coefficient of variation of 

the number of synapses during the IA12 input regime (t(9) ≥ 3.35, p ≤ 0.01). Additionally, the 

core-to-dynamic triad ratio was significantly reduced following RA input (t(9) ≤ -3.35, p ≤ 

0.01); however, all other input types resulted in increases in the ratio (t(9) ≥ 3.35, p ≤ 0.01). 

The gained-to-net ratio of triads decreased in this network in every input regime except 

during RS input. Nevertheless, values remained high, suggesting that substantial triad turn-

over continued to occur. 

Reducing network connectivity resulted in several significant differences. Although 

they remained low, the sparse connectivity condition increased the coefficients of variation of 

all of the global measures (decreased global network stability) in almost all of the simulations 

(t(9) ≥ 3.35, p ≤ 0.01). This condition also significantly decreased the core-to-dynamic triad 

ratios in every simulation (t(9) ≤ -3.35, p ≤ 0.01). Effects of sparse connectivity on gained-to-
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net ratios varied according to input regime: RA, RS, and IS input decreased the ratio while 

IA12 input increased the ratio (t(9) ≤ -3.35; t(9) ≥ 3.35; p ≤ 0.01, all).  

During the stationary input condition, global stability was not significantly altered 

except for an increase in the stability of the average neuronal degree across time (i.e. 

decreased coefficient of variation of degree; t(9) ≤ -3.35, p ≤ 0.01). This condition also 

significantly increased the core-to-dynamic triad ratios in all simulations (t(9) ≥ 3.35, p ≤ 

0.01). The gained-to-net triad change ratio was also decreased in every simulation (t(9) ≤ -

3.35, p ≤ 0.01). 

Qualitative comparisons between triad type distributions from parameter modified 

networks and standard networks suggest that these modifications did not substantially alter 

the distributions of different triad types. Coefficients of variation of the 13 types across time 

were marginal (mean coefficient of variation across types = 0.707) and comparable to those 

from the unaltered simulations, indicating a stable distribution across time. 
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Chapter 4  

Discussion 

Previous theoretical and empirical work has demonstrated that STDP is capable of 

selecting unique and presumably advantageous topological features, such as small-world 

properties and specific mosaics of motifs (Shin and Kim, 2006; Ren et al., 2009). This report 

demonstrates that not only does STDP select these features, but it also maintains them across 

a broad range of input regimes and parameter values. The low variability in measures such as 

synapse count, clustering, degree distributions and frequencies of motif types across time 

reveals that STDP-driven networks are highly stable even in the presence of noisy and 

unpredictable input. However, this global stability belies a dynamic local topology which 

remains flexible and responsive. This balance of stability and flexibility is critical for 

unsupervised learning and underscores the viability of STDP as a powerful tool not only 

during neurobiological development but throughout the lifespan.  

One of the key features of the evolving STDP networks examined was the presence of 

both persistent core triads and transient dynamic triads. Because the proportions of core and 

dynamic triads varied considerably under different input regimes, both presumably play a 

role in network responses to external input. Core triads were composed of strong and stable 

synapses, similar to a pattern that has been observed in vitro. Song et al., (2005) found a core 

network of strongly connected triads among layer V neurons in rat visual cortex. The authors 

described this local cortical network structure as “a skeleton of stronger connections in a sea 

of weaker ones.” Although speculative, they suggest that these triads drive network activity 

and are responsible for the stereotypical firing patterns observed in cortical slices. Consistent 

with this hypothesis was the occurrence of more consistent firing activity patterns in 
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networks which received synchronous input. Synchronous regimes increased triad strength 

and stability and resulted in networks of more core triads. Dynamic triads were less dynamic, 

as evidenced by reduced numbers of state changes and repertoire sizes, and increased 

durations in the network. Consequently, the turn-over in triad participation was also reduced. 

Asynchronous input had opposite effects. It would appear that synchrony promotes networks 

composed of fewer but stronger and more stable triads. One might speculate that this occurs 

because synchronous input results in fewer but stronger synapses. However, this is not the 

case. Synchronous input had no significant effect on the number of synapses in the network 

and actually resulted in significantly lower synaptic weights than asynchronous input. This 

would suggest that the pairing of synchronous external input and STDP operates at the level 

of the triad rather than the individual synapse. Numerous studies have documented increased 

synchrony in recurrent networks which employ STDP (e.g. Masuda and Kori, 2007; 

Takahashi et al., 2009). The presence of core triads in these networks may contribute to this 

phenomenon. Indeed, Song and colleagues suggested that STDP may be a key mechanism 

leading to the emergence of a “skeleton” of core triads.  

The presence of dynamic triads in these networks may have larger consequences. 

After exploring a range of brain and neural networks from several species, Sporns and Kotter 

(2004) proposed a distinction between structural and functional motifs (triads). According to 

their interpretation, the physical connections between neurons or brain regions form 

structural motifs and functional motifs are transient activations upon these structural motifs 

recruited during on-going information processing. Some structural motifs possess a repertoire 

of functional motifs because distinct subsets of connections can be selectively activated. 

Motif types composed of more connections, such as type 10, possess larger repertoires 
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because of the number of functional motifs that can be formed from them. The authors have 

argued that topologies comprised of a small set of structural motifs with large repertoires of 

functional motifs are highly efficient because they increase computational capacity with low 

wiring costs. In the present report, dynamic triads are analogous to the functional motifs that 

Sporns and Kotter describe. Their presence illustrates how a simple and biologically realistic 

mechanism, STDP, provides a viable means for recruiting functional motifs to accommodate 

on-going demands. Further, the set of the functional motifs which are employed at a given 

moment can be modified by synaptic potentiations and depressions. Since a single synapse 

invariably participates in a multitude of motifs, subtle changes in the weights of just a few 

synapses can lead to network-wide changes in motif activity. Thus, STDP increases network 

efficiency even further by adding another dimension to computational capacity (the mosaic 

of active functional motifs) with relatively low metabolic costs. The work of Sporns and 

Kotter primarily addresses motifs formed between different cortical areas rather than between 

individual neurons. It has been demonstrated that learning can modify features of both 

structural and functional cortical networks in humans and other species (e.g. Buchel et al., 

1999; Mcintosh et al., 2003). It will be interesting to see if STDP or some other mechanism is 

governing these changes. 

Another interesting finding concerns the degree of “small-worldness” observed 

during the network simulations. The appearance of increased neural clustering coupled with 

increased distances between neurons suggests a much more localized network than would be 

expected in a small-world topology. However, the highly dynamic nature of the path lengths 

during the simulations must be considered. Widely fluctuating distances between neurons 

throughout the analysis interval suggests that there were moments of greater small-worldness 
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intermixed with moments of more localization and restriction. Here, distance is not merely 

interpreted by the number of synapses between neurons but also reflects the strengths of the 

synapses separating them. In this case, a path formed by several strong synapses may be of 

more advantage than a path consisting of a single weak synapse. Again, STDP may enhance 

the functional capacity of these networks by varying the strengths of key synapses rather than 

through forming new pathways. The modulating path lengths may act as a functional gating 

mechanism which could significantly enhance the computational properties of network. 

Incorporating synaptic weights and directionality into the evaluation of path lengths may also 

explain why this study did not find the emergence of a consistent small-world topology while 

similar studies did (Suzuki and Ikeguchi, 2005; Shin and Kim, 2006). Indeed, when path 

lengths were evaluated without consideration of direction or weight in the present 

simulations, values dropped considerably and practically no temporal variability was 

observed (unpublished data).  

One of the more important findings in this report was the large amount of triad turn-

over observed despite negligible changes in the total number of triads or in the distribution of 

triad types. This scenario is analogous to a busy train terminal. Throughout the day people 

are busy coming and going, although the total number of people in the station at any given 

point in time may stay about the same. The make-up of the different types of people in the 

terminal, for example the number of men, women, and children could also remain constant 

even though specific people are continuing to arrive and depart. The highly dynamic 

behavior and shifting participation of individual triads suggests that they may play an 

important computational role in the networks. As a caveat, researchers should be cautious in 
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assessing the activity of any complex network without taking into account the unique 

participations of individual network constituents.  

Hinting at a potential role that these triads may play, it should be noted that the 

patterns of significant motifs detected in the final networks from these simulations were 

similar to patterns detected by Ren et al., (2009) in similar STDP model networks. This 

suggests that these motifs may be a general consequence of STDP. Types 5 and 8 were found 

to occur significantly more frequently in STDP models from both studies (compared to 

random networks), and type 2 was also significantly more frequent in the simulations 

presented here. These types have also been found to be significant in the nervous systems of 

living organisms, such as C. elegans, bolstering the claim that these systems may develop in 

the presence of STDP (Ren et al., 2009). Motif types 2, 5, and 8 are related and belong to a 

motif “super family” due to their common feed-forward nature (Milo et al., 2004). It has been 

reasoned that STDP favors the potentiation of feed-forward patterns and discourages circular 

patterns (like type 7, which occurred significantly less frequently) due to the phasic nature of 

pre- and post-synaptic firings (Kozloski and Cecchi, 2010). It has also been asserted that this 

phenomenon underlies the promotion of network synchrony, although not all findings support 

this claim (e.g. Kunkel et al., 2011). At any rate, the emergence of local feed-forward 

topologies likely contributes to the ability of STDP to maintain stability in recurrent networks 

(Diesmann et al., 1999; Reyes, 2003). Although not tested directly, given the extremely low 

variability in the frequencies of these feed-forward triad types across time and input regimes, 

it seems reasonable to conclude that their presence remained significant throughout the 

simulations. It may be the case that STDP is required to actively maintain this topological 
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profile in the face of on-going, unpredictable input rather than serving to merely “hard-wire” 

an invariant final topology. 

Changes in STDP and network parameters have revealed the robustness of some 

topological features and the sensitivity of others. Although significant differences did occur 

because of parameter changes; synaptic numbers, strengths, and neuronal degrees remained 

highly stable across time and high triad turn-over continued to occur. However, the ratios of 

core and dynamic triads present in the networks deviated substantially. Decreases in either 

the number of synapses or their weights resulted in networks with significantly more 

dynamic triads. This may be a consequence of maintaining the same amount of external input 

as in the standard simulations. By reducing the number of synapses, input becomes more 

concentrated and gives STDP more events per synapse to operate upon. Along the same lines, 

reducing the synaptic weight range while keeping the same learning rate gives STDP more 

‘bang for its buck’ during each synaptic event. With each parameter change, synaptic 

modification is either more frequent or more pronounced which reduces the number stable 

synapses available to form core triads. Consistent with this interpretation, when the learning 

rate was reduced while the weight range remained the same, more core triads emerged, 

perhaps because each synapse was less sensitive to STDP.  Modelers have long known that 

the difference between the maximal synaptic potential achievable (maximum weight) and the 

maximum impact a synaptic event can have (learning rate) is an important measure in 

maintaining network stability. It appears that it is also an important measure in controlling 

the dynamics of network topology.  

Other parameter variations also significantly affected the numbers of core and 

dynamic triads. Increasing the overall strengths of inhibitory neurons or defining a fixed 
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layer of input neurons led to increases in the numbers of core triads. Both of these variations 

are related in that they define an ‘elite’ set of synapses which have a disproportionate impact 

on the network. One might surmise that it is these elite synapses which form the core triads; 

however, some or all of these synapses were inhibitory, and inhibitory synapses were not 

included in the core triad counts. As with external synchronous input, it may be the case that 

core triads emerging from these parameter changes are promoting stereotypical network 

activity, although the underlying mechanisms aren’t clear.  

One of the important conclusions that may be drawn from this report is that complex 

networks can appear static at one level of analysis and yet be highly dynamic at another 

level. The explorations here provide some insight into how to assess evolving neural 

networks and other types of networks which change over time. It appears that an important 

and thus far overlooked metric is motif turn-over rates, and perhaps the turn-over rates of 

other network constituents. The ubiquity and significance of these metrics in other networks 

remain to be seen.    

As with any model, the simulations presented here represent an idealized version of 

real world phenomena, and it is possible that critical features or parameter values which 

could profoundly impact the results were inadvertently left out. As such, the results presented 

will need to be evaluated empirically. In addition, there are a number of outstanding 

questions that remain to be addressed. For example, inhibitory synapses were not modified in 

these simulations although it is likely that these synapses change the functionality of triads 

(Li, 2008). What influence would inhibitory plasticity have? The spike-timing mechanisms at 

these synapses appear to be governed by different rules than at excitatory synapses (Haas et 

al., 2006), and unique behaviors occur in predominantly inhibitory networks where STDP is 
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at play (Fino and Venance, 2010; Fino et al., 2010). Additionally, STDP represents only one 

form of synaptic modification. The formation of new synapses, fast and transient synaptic 

changes, on-going synaptic decay, and the role of neuromodulators in plasticity undoubtedly 

add to the complexity of topological dynamics and bear further investigation. Finally, a 

number of other metrics and modifications remain to be explored both theoretically and 

empirically. 

Over the past decade, network science has provided a number of insights into an array 

of complex systems such as social, biological, and technological networks, as well as real 

and modeled neural and cortical networks. As a consequence, network scientists have 

developed new ways of approaching complex systems and have uncovered a number of 

common features shared by many different types of systems. Nevertheless, despite general 

agreement that the topology of many of these systems continually evolves, only a handful of 

studies have begun to explore their on-going structural dynamics. New measures and 

methodologies are being developed to capture the unique properties of evolving graphs (e.g. 

Acer et al., 2011; Starnini et al., 2012), and a better understanding of the temporal 

characteristics of specific systems, such as human contact networks and technological 

networks, is beginning to emerge (Scherrer, et al., 2008; Kim et al., 2012). However, to date, 

research into the on-going topological dynamics of neural and cortical networks is almost 

non-existent. In addition, although there is a spate of theoretical and empirical work 

addressing the functionality of STDP, the role it plays in shaping network organization 

beyond early development is underexplored. Hopefully, this work sheds light onto the 

evolving topology of neural networks and the role that STDP plays shaping and maintaining 

this topology. It remains to be seen whether the discoveries made here are unique to STDP-
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driven neural networks or whether they represent general features of broader classes of 

complex systems. 



37 

 

Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Triad Types 

Configurations of the thirteen possible unique 3-neuron subgraphs (triad types). Numbering 

scheme taken from Sporns and Kotter, 2004. 
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Figure 2 – Network Firing Activity 

Exemplar rastergrams of two seconds of network firing activity in response to different input 

regimes. All examples are from the same initial network. Red datapoints are FSI firings, 

black datapoints are RSE firings. 
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Figure 3 – Global Variables 

Trajectories of total number of excitatory synapses (top), average synaptic weight (middle), 

and average total neuronal degrees (bottom) across the entire simulation duration. Colored 

lines represent responses to separate external input regimes averaged across 10 simulations. 

Shaded area represents analysis interval. 
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Figure 4 – Final Weight Distributions 

Exemplar weight distributions in response to separate external input regimes taken from the 

last simulation timepoint. All examples are from the same initial network. Bars of the 

minimum (0 mV) and maximum (8 mV) values are truncated to show intermediate values. 

Inhibitory weights are not shown. 
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Figure 5 – Degree Distributions 

Exemplar in-degree (left) and out-degree (right) distributions in response to separate external 

input regimes taken from the last simulation timepoint. All examples are from the same 

initial network. Only RSE  RSE degrees are included. Note that neuron counts (ordinate 

axes) are not on the same scale for all input regimes. 
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Figure 6 – Core and Dynamic Triad Type Distributions 

Triad type distributions for Core (left) and dynamic (right) triads in response to each external 

input regime averaged across 10 simulations. Dynamic triad distributions are averaged across 

the analysis interval for each network and then across simulations. Triad counts (ordinate 

axes) are presented on a logarithmic (base 10) scale. Averages less than one are not shown. 
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Figure 7 – Dynamic Triad Intensities and Coherences 

Exemplar dynamic triad intensity (left) and coherence (right) distributions in response to 

separate external input regimes. All examples are from the same initial network. Note that 

triad counts (ordinate axes) are not on the same scale for all input regimes. 
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Figure 8 – Dynamic Triad Trajectories 

Average number of dynamic triads gained (top), lost (middle) and net triad number 

differences (bottom) for each minute in the analysis interval. Each minute (abscissa) 

represents the difference between that minute and the following minute. Colored lines 

represent responses to separate external input regimes averaged across 10 simulations. 
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Tables 

Table I – Global Variables 

RS RA IS IA50 IA12

Average Firing Rate 13.64 (0.699,0.205)** 12.89 (0.688,0.232)** 14.51 (0.838,0.134) 15.81 (0.506,0.150) 12.61 (0.672,0.172)

Synapses 9212.23 (20.67,212.22) 9290.67 (23,234.13) 9282.87 (20.73,199.38) 9234.36 (20.78,208.66) 9249.36 (21.49,214.5)

C.V. Synapses 0.0022 0.0025 0.0022 0.0022 0.0023

Synaptic Weight 4.43 (0.006,0.01)** 4.49 (0.008,0.02) 4.39 (0.006,0.02)** 4.55 (0.006,0.02) 4.57 (0.007,0.01)

C.V. Synaptic Weight 0.0014 0.0018 0.0014 0.0014 0.0015

Average Clusering Coefficient 0.43 (0.001,0.003)** 0.436 (0.002,0.004) 0.428 (0.001,0.003)** 0.438 (0.002,0.004) 0.442 (0.002,0.003)

C.V.  Clusering Coefficient 0.008* 0.01* 0.007 0.009 0.006

Average Path Length 3.33 (7.76,1.48) 2.61 (5.13,1.11) 4.1 (13.71,3.64) 2.62 (7.38,1.33) 2.56 (6.39,1.46)

C.V. Path Length 2.33 1.97 3.34 2.82 2.49

Average Degree per Neuron 45.59 (0.102,0.21)** 46.5 (0.127,0.22) 44.7 (0.08,0.28)** 47.21 (0.101,0.22) 47.35 (0.124,0.25)

C.V. Degree per Neuron 0.0022** 0.003 0.0018** 0.002 0.003

Values represent means across simulations. Values in parentheses represent s.d.'s across time and networks, respectively.

C.V. is the coefficient of variation (standard deviation / mean) across time.

* indicates significant increase in measure due to input regime

** indicates significant decrease in measure due to input regime

INPUT REGIME

 

 

Table II – Triad Demographics 

RS RA IS IA50 IA12

# of Total Triads 516343.6 (8650.1)* 556875.1 (9821.11) 465299.3 (9944.84)* 566319.7 (10173.93) 569135.4 (9473.55)

% Total Triads 51.51 (0.73)* 55.55 (0.85) 46.41 (0.89)* 56.49 (0.9) 56.77 (0.81)

RS RA IS IA50 IA12

% of TTL Triads 54.52 (2.34)* 49.75 (1.95) 61.39 (2.68)* 48.78 (1.95) 50.08 (2.2)

Intensity 7.99 (0.047,< 0.001)* 7.99 (0.064,< 0.001) 7.99 (0.044,< 0.001)* 7.98 (0.061,< 0.001) 7.98 (0.058,< 0.001)

Coherence 1 (0.003,< 0.001)* 1 (0.004,< 0.001)* 1 (0.002,< 0.001)* 0.999 (0.003,< 0.001) 1 (0.003,< 0.001)

% Time as Triad 100 100 100 100 100

Repertiore Size 1 1 1 1 1

State Changes 0 0 0 0 0

RS RA IS IA50 IA12

% of TTL Triads 45.48 (2.34) 50.25 (1.95)* 38.61 (2.68) 51.22 (1.95)* 49.92 (2.2)*

Intensity 4.77 (2.823,0.19)* 4.67 (2.802,0.09) 5.39 (2.798,0.19)* 4.77 (2.828,0.14) 4.7 (2.81,0.17)

Coherence 0.7 (0.303,0.02)* 0.69 (0.298,0.01) 0.76 (0.287,0.02)* 0.71 (0.281,0.01) 0.69 (0.294,0.02)

% Time as Triad 42.94 (35.884,1.14)* 43.01 (35.886,0.6)* 45.69 (35.463,1.08) 45.54 (36.742,0.66) 44.55 (35.903,0.83)

Repertiore Size 1.12 (0.395,0.01) 1.14 (0.423,< 0.001)* 1.11 (0.369,0.01) 1.14 (0.429,0.01)* 1.15 (0.439,< 0.001)*

State Changes 7.53 (6.834,0.42) 8 (6.939,0.24)* 6.45 (6.33,0.33) 8.36 (6.733,0.36)* 8.35 (7.199,0.4)*

Values represent means across simulations. Values in parentheses represent s.d.'s across triads (where appropriate) and/or networks, respectively.

* indicates significant increase in measure due to input regime

Input Regime

CORE TRIADS

DYNAMIC TRIADS
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Table III – Triad Distributions 

RS RA IS IA50 IA12

1 87948.9 (2464.055) 85236.1 (2161.244) 90323.9 (2330.471) 89830.5 (1661.41) 85712.4 (2913.244)

2 91914.7 (3663.314) 90907.4 (2941.961) 91879.6 (3532.719) 88042.5 (3070.752) 96123.4 (4002.14)

3 91206.4 (2347.259) 90518.1 (2182.437) 92847.1 (1901.472) 88053.8 (1859.709) 92342.4 (2119.267)

4 0 0 0 0 0

5 10306.4 (356.145) 10248.9 (427.476) 10395.4 (406.427) 10152.6 (310.266) 10702 (432.661)

6 0 0 0 0 0

7 0 0.9 (0.876) 0 0.6 (0.843) 9.6 (3.373)

8 0 0 0 0 0

9 0 0 0 0 0

10 0 0 0 0 0

11 0 0 0 0 0

12 0 0 0 0 0

13 0 0 0 0 0

RS RA IS IA50 IA12

1 24486.75 (316.32,2507.193) 27432.17 (414.14,1558.307) 20958.14 (310.11,2685.029) 26692.06 (281.84,2360.944) 27197.09 (362.12,2456.308)

2 44731.36 (849.49,3503.98) 54332.58 (1067.77,2642.003)35859.63 (658.28,3687.466) 60439.94 (893.49,3497.665) 57895.35 (1078.58,3735.6)

3 26097.23 (488.58,1863.52) 31625.32 (573.36,1390.782) 20983.33 (369.87,2109.14) 37402.4 (503.75,1888.146) 33947.03 (617.85,1982.282)

4 84.01 (50.21,16.191) 133.72 (64.12,11.786) 47.16 (35.22,6.366) 121.77 (51.98,19.044) 171.28 (68.14,17.684)

5 5149.22 (100.05,421.378) 6120.18 (123.98,246.43) 4214.36 (83.72,467.738) 6735.49 (103.84,432.454) 6412.09 (123.27,400.931)

6 214.89 (105.32,56.377) 344.51 (139.83,43.572) 171.71 (94,50.253) 340.79 (136.26,49.111) 441.05 (160.92,57.433)

7 162.78 (19.9,21.337) 351.12 (34.74,19.728) 56.53 (9.19,4.703) 442.86 (31.63,26.229) 564.55 (40.12,34.497)

8 4.9 (3.53,0.928) 7.53 (4.39,0.67) 2.61 (2.44,0.301) 6.28 (3.73,0.652) 9.61 (4.84,1.125)

9 0.1 (0.31,0.056) 0.27 (0.57,0.039) 0.06 (0.21,0.071) 0.27 (0.54,0.085) 0.41 (0.69,0.154)

10 2.76 (2.15,0.754) 6.72 (3.88,0.631) 1.03 (1.11,0.253) 7.22 (4.08,0.889) 11.49 (5.54,1.727)

11 11.64 (6.32,3.269) 19.15 (8.71,2.938) 9.6 (6,2.813) 19.22 (8.65,3.016) 25.23 (10.02,3.675)

12 0.01 (0.09,0.015) 0.04 (0.17,0.037) 0.01 (0.07,0.014) 0.03 (0.16,0.024) 0.07 (0.25,0.028)

13 0 0 0 0 0 (0.01,0.005)

Values represent means across simulations. Values in parentheses represent s.d.'s across time (for dynamic triad types) and networks, respectively.

CORE TRIADS

DYNAMIC TRIADS

INPUT REGIME

INPUT REGIME

TRIAD TYPE

TRIAD TYPE

 

 

Table IV – Triad Count Change 

RS RA IS IA50 IA12

Net Triad Count Change per Min 1623.23 (1249.73,249.12)** 1953.81 (1467.43,146.68) 1087.04 (806.91,85.61)** 1716.94 (1234.55,196.68) 2001.32 (1511.56,240.47)

Number Triads Gained per Min 13802.95 (1373.46,822.98)** 17340.58 (1666.98,858.66) 9025.7 (902.58,459.28)** 18815.17 (1488.23,891.92) 18237.44 (1668.52,778.58)

Number Triads Lost per Min 13811.87 (1283.37,844.65)** 17376.07 (1593.05,868.63) 9035.94 (880.07,441.4)** 18830.03 (1447.61,877.42) 18242.36 (1588.17,770.86)

Gained - to - Net Ratio 8.71 (1.1,1.58)** 8.91 (1.15,0.73) 8.36 (1.12,0.88)** 11.11 (1.21,1.59) 9.23 (1.12,1.16)

Values represent means across simulations. Values in parentheses represent s.d.'s across time and simulations, respectively.

** indicates significant decrease in measure due to input regime

INPUT REGIME
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Table V – Significant Motifs 

 

 

 

 

 

 

 

 

Table VI – Parameter Variation Global Variables 
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CONDITION INPUT % REMAIN % CORE CORE INTENS. CORE COHER. % DYNAM DYNAM INTENS DYNAM COHER % TIME REPERTOIRE CHANGES

Reduced  Rate RS 48.968 69.583* 7.99 1 30.417 1.697 0.31 30.092 1.122 11.639

Reduced Window RS 45.794 68.247* 7.995 1 31.753 4.623 0.668 41.164 1.116 7.06

Symmetric STDP RS 51.409 58.819* 7.991 1 41.181 5.005 0.718 44.758 1.155 6.767

Reduced  Rate RA 53.484 63.952* 7.986 0.999 36.048 1.974 0.35 33.523 1.151 11.617

Reduced Window RA 51.159 60.884* 7.992 1 39.116 4.467 0.651 39.684 1.126 7.157

Symmetric STDP RA 53.735 57.772* 7.989 1 42.228 4.731 0.693 44.593 1.159 8.143

Reduced  Rate IS 44.063 75.295* 7.994 1 24.705 2.47 0.395 35.32 1.118 10.809

Reduced Window IS 44.074 70.546* 7.995 1 29.454 4.888 0.702 43.45 1.105 7.206

Symmetric STDP IS 47.276 63.807 7.994 1 36.193 5.669 0.78 47.513 1.121 5.715

Reduced  Rate IA50 55.817 64.173* 7.99 1 35.827 1.738 0.324 31.48 1.14 12.308

Reduced Window IA50 51.893 61.96* 7.993 1 38.04 4.594 0.669 40.275 1.117 7.126

Symmetric STDP IA50 55.127 56.818* 7.989 1 43.182 5.144 0.737 46.833 1.163 7.298

Reduced  Rate IA12 55.733 62.738* 7.986 0.999 37.262 1.947 0.346 34.845 1.159 12.122

Reduced Window IA12 54.32 56.463* 7.991 1 43.537 4.527 0.662 41.772 1.148 7.671

Symmetric STDP IA12 55.933 55.349* 7.987 1 44.651 4.919 0.713 46.274 1.167 7.831

CONDITION INPUT % REMAIN % CORE CORE INTENS. CORE COHER. % DYNAM DYNAM INTENS DYNAM COHER % TIME REPERTOIRE CHANGES

Reduced Weight RS 95.059 12.962** 3.95 0.997 87.038* 1.795 0.665 45.102 1.232 13.794

Asymmetic Weight RS 50.251 57.015* 7.991 1 42.985** 4.622 0.684 43.27 1.124 7.869

Sparse RS 80.019 27.897** 7.901 0.997 72.103* 4.841 0.745 54.651 1.109 10.717

Stationary Input RS 36.129 82.943* 7.95 0.997 17.057** 4.848 0.715 44.694 1.108 7.809

Reduced Weight RA 99.995 3.779** 3.828 0.989 96.221* 2.061 0.765 63.757 1.339 20.33

Asymmetic Weight RA 55.443 47.616** 7.987 1 52.384* 4.924 0.716 44.001 1.138 7.474

Sparse RA 79.937 25.908** 7.883 0.996 74.092* 5.325 0.795 61.421 1.114 11.312

Stationary Input RA 39.878 69.582* 7.918 0.996 30.418** 5.523 0.781 49.711 1.124 7.214

Reduced Weight IS 86.906 11.026** 3.95 0.996 88.974* 2.111 0.712 44.13 1.234 11.956

Asymmetic Weight IS 46.403 59.937* 7.993 1 40.063** 5.485 0.763 45.574 1.116 5.954

Sparse IS 67.277 36.371** 7.976 0.999 63.629* 3.991 0.633 36.915 1.075 8.219

Stationary Input IS 34.629 84.903* 7.985 0.999 15.097** 5.675 0.793 47.988 1.11 5.918

Reduced Weight IA50 100 0** - - 100* 2.173 0.804 62.65 1.417 26.699

Asymmetic Weight IA50 56.819 47.475* 7.978 0.999 52.525** 4.694 0.697 44.247 1.134 8.098

Sparse IA50 94.672 10.072** 7.852 0.994 89.928* 5.893 0.848 69.294 1.136 11.391

Stationary Input IA50 48.617 56.872* 7.96 0.998 43.128** 4.768 0.694 41.442 1.113 6.561

Reduced Weight IA12 100 0** - - 100* 1.882 0.79 71.785 1.415 24.187

Asymmetic Weight IA12 55.709 50.969* 7.984 1 49.031** 4.669 0.692 45.307 1.152 8.649

Sparse IA12 83.92 23.267** 7.882 0.996 76.733* 5.37 0.798 62.819 1.121 11.394

Stationary Input IA12 49.481 57.518* 7.914 0.996 42.482** 4.532 0.671 40.884 1.129 7.42

* indicates signif icant increase in value due to variation (t ≥ 3.25).

** indicates signif icant decrease in value due to variation (t ≤ -3.25).

Note: Only the % of Core and % of Dynamic triads w ere subjected to signif icance tests

STDP PARAMETER VARIATIONS

NETWORK PARAMETER VARIATIONS

Table VII – Parameter Variation Triad Demographics 
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CONDITION INPUT T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

Reduced Rate RS 103889 118364 104777 0 13581 0 20 0 0 0 0 0 0

Reduced Window RS 93715 106525 100163 0 12041 0 0 0 0 0 0 0 0

symmetric STDP RS 93314 101782 95759 0 11443 0 0 0 0 0 0 0 0

Reduced Rate RA 101427 121168 105411 0 13868 0 67 0 0 0 0 0 0

Reduced Window RA 91013 107431 100871 0 12061 0 13 0 0 0 0 0 0

symmetric STDP RA 93817 106177 98266 0 12074 0 17 0 0 0 0 0 0

Reduced Rate IS 102512 112806 103384 0 12966 0 9 0 0 0 0 0 0

Reduced Window IS 95457 104841 98717 0 11815 0 0 0 0 0 0 0 0

symmetric STDP IS 93751 100094 96310 0 11416 0 0 0 0 0 0 0 0

Reduced Rate IA50 106581 126337 110402 0 14586 0 186 0 0 0 0 0 0

Reduced Window IA50 91813 113738 103089 0 12750 0 48 0 0 0 0 0 0

symmetric STDP IA50 96926 106957 97002 0 12235 0 11 0 0 0 0 0 0

Reduced Rate IA12 100363 125971 108693 0 14319 0 214 0 0 0 0 0 0

Reduced Window IA12 86354 107842 100369 0 11970 0 85 0 0 0 0 0 0

symmetric STDP IA12 92818 107251 97229 0 12152 0 46 0 0 0 0 0 0

CONDITION INPUT T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

Reduced Weight RS 57503 20827 42211 0 2640 0 0 0 0 0 0 0 0

Asymmetric Weight RS 89770 94582 91358 0 10712 0 0 0 0 0 0 0 0

Sparse RS 20083 19121 19068 0 1005 0 2 0 0 0 0 0 0

Stationary Input RS 92414 101100 94998 29 10870 122 41 0 0 1 6 0 0

Reduced Weight RA 26202 1218 10210 0 143 0 0 0 0 0 0 0 0

Asymmetric Weight RA 79662 87360 87262 0 9641 0 0 0 0 0 0 0 0

Sparse RA 19774 18272 18221 0 971 0 1 0 0 0 0 0 0

Stationary Input RA 85638 92320 89206 65 9873 226 56 0 0 6 8 0 0

Reduced Weight IS 34065 21674 38231 0 1824 0 0 0 0 0 0 0 0

Asymmetric Weight IS 87354 89840 90688 0 10163 0 0 0 0 0 0 0 0

Sparse IS 19416 24474 22521 0 1219 0 0 0 0 0 0 0 0

Stationary Input IS 89971 98485 94840 13 10549 59 8 0 0 1 5 0 0

Reduced Weight IA50 0 0 0 0 0 0 0 0 0 0 0 0 0

Asymmetric Weight IA50 87654 86338 85757 0 9923 0 0 0 0 0 0 0 0

Sparse IA50 13052 6095 6877 0 331 0 0 0 0 0 0 0 0

Stationary Input IA50 82815 93292 90008 51 10070 142 24 2 1 1 9 0 0

Reduced Weight IA12 0 0 0 0 0 0 0 0 0 0 0 0 0

Asymmetric Weight IA12 85481 96695 90999 0 10677 0 9 0 0 0 0 0 0

Sparse IA12 19437 16953 16692 0 881 0 3 0 0 0 0 0 0

Stationary Input IA12 83211 98105 92423 50 10421 227 69 1 0 9 8 0 0

CORE TRIAD TYPES

CORE TRIAD TYPES

Table VIII – Parameter Triad Core Distributions 
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CONDITION INPUT T1 T2 T3 T4 T5 T6

Reduced Rate RS 9487.02 (1793.32) 19591.87 (3773.29) 12919.43 (1059.9) 155 (371.33) 2113.78 (324.59) 333.7 (465.82)

Reduced Window RS 15950.52 (437.41) 26063.12 (1231.44) 14547.13 (561.58) 53.53 (106.7) 3009.88 (134.4) 136.77 (171.54)

symmetric STDP RS 21781.97 (265.77) 42516.4 (1260.02) 24663.72 (694.78) 189.25 (84.26) 4946.13 (122.7) 358.17 (188.03)

Reduced Rate RA 12875.28 (163.87) 29212.6 (550.42) 18167.03 (352.05) 293.67 (53.35) 3058.98 (63.61) 544.52 (142.43)

Reduced Window RA 20226.38 (1147.51) 35474.82 (2272.15) 19085.03 (1169.01) 88.52 (640.36) 4052.55 (345.98) 233.77 (641.62)

symmetric STDP RA 22018.65 (522.65) 46233.52 (994.92) 26555.27 (522.92) 191.3 (60.87) 5271.33 (106.9) 404.85 (124.06)

Reduced Rate IS 8926.53 (281.11) 16529.3 (533.14) 10619.08 (302.48) 104.85 (29.72) 1851.13 (63.81) 308.9 (76.88)

Reduced Window IS 14364.07 (356.73) 24474.98 (663.17) 14422.22 (341.48) 27.45 (35.8) 2941.27 (95.07) 109.05 (88.34)

symmetric STDP IS 20385.28 (484.97) 36079.02 (1239.95) 20210.62 (735.96) 69.78 (67.97) 4257.8 (149.9) 178.17 (160.97)

Reduced Rate IA50 12279.92 (236.18) 28765.7 (948.07) 17702.23 (574.02) 218.57 (83.55) 2991.73 (102.39) 457.07 (139.37)

Reduced Window IA50 19351.72 (226.97) 35919.33 (717.5) 19688.9 (392.88) 51.37 (55.05) 3988.57 (86.9) 129.73 (104.2)

symmetric STDP IA50 22737.33 (1173.82) 51156.33 (2237.75) 30512.67 (1151.29) 214.62 (844.58) 5759.13 (380.24) 491.27 (854.45)

Reduced Rate IA12 14063.07 (443.02) 33122.35 (609.7) 20137.65 (371.67) 261.77 (35.61) 3494.48 (75.5) 606.75 (85.26)

Reduced Window IA12 23933.37 (417.77) 44891.18 (1067.79) 24099.33 (560.16) 129.9 (50.26) 4861.18 (125.23) 308.63 (119.57)

symmetric STDP IA12 24070.18 (307.97) 52988.72 (773.11) 30915.98 (390.81) 249.9 (78.24) 5955.97 (93.2) 619.58 (153.27)

CONDITION INPUT T1 T2 T3 T4 T5 T6

Reduced Weight RS 83811.15 (288.84) 168998.33 (1004.08) 90524.12 (526.23) 3567.22 (88.05) 18306.15 (114.22) 5048.75 (153.48)

Asymmetric Weight RS 21290.15 (733.92) 41653.92 (1752.93) 25140.52 (797.96) 91.22 (334.67) 4798.42 (183.9) 269.35 (380.99)

Sparse RS 18874.03 (439.61) 45821.29 (874.68) 24569.8 (502.55) 157.33 (87.5) 2405.08 (101.33) 211.23 (215.19)

Stationary Input RS 6444.23 (425.28) 11929.8 (937.34) 7506.53 (435.48) 61.17 (68.47) 1408.12 (56.99) 152.58 (90.16)

Reduced Weight RA 134792.77 (880.17) 274518.41 (2414.39) 144785.61 (840.73) 10585.35 (579.99) 27601.77 (288.98) 12131.2 (638.86)

Asymmetric Weight RA 30515.97 (197.66) 57481.33 (526.23) 32537.7 (337.98) 127.23 (43.25) 6380.88 (51.76) 328.38 (99.09)

Sparse RA 19758.62 (182.92) 49923.72 (523.24) 27345.68 (346.36) 168 (34.78) 2540.7 (61.88) 229 (94.05)

Stationary Input RA 14174.05 (421.12) 26569.57 (848.28) 16203.85 (406.65) 59.68 (57.98) 3017.45 (51.1) 194.15 (77.74)

Reduced Weight IS 81200.95 (255.51) 149477.77 (713.7) 86207.38 (437.98) 2465.88 (49.35) 15819.67 (86.15) 4046.43 (115.48)

Asymmetric Weight IS 21690.62 (255.07) 36840.77 (515.7) 21543.3 (222.01) 51.27 (40.97) 4372.38 (54.4) 139.45 (75.74)

Sparse IS 11054.68 (235.68) 20708.07 (550.99) 10632.43 (212.41) 34.05 (33.92) 1121.28 (44.11) 45.57 (65.15)

Stationary Input IS 7058.87 (385.83) 10913.18 (867.07) 5778.02 (373.46) 24.6 (80.25) 1222.82 (54.16) 64.72 (123.76)

Reduced Weight IA50 143441.56 (282.34) 286914.97 (1335.39) 142739.97 (716.39) 9439.57 (93.87) 24505.55 (135.47) 9378.05 (165.65)

Asymmetric Weight IA50 26974.52 (295.11) 60238.85 (845.31) 37262.21 (526.37) 108.98 (52.8) 6676.75 (97.47) 292.27 (124.39)

Sparse IA50 33434.52 (356.59) 79817.63 (941.69) 44348.68 (505.48) 222.73 (54.57) 4048.08 (105.43) 279.83 (129.58)

Stationary Input IA50 20815.45 (361.24) 38401.2 (612.9) 22764.03 (291.75) 106.23 (29.41) 4373.17 (42.26) 204.62 (33.37)

Reduced Weight IA12 158617.36 (379.34) 317333.28 (1182.73) 157367.44 (560.35) 20635.18 (65.72) 28823.12 (123.69) 20508.2 (128.09)

Asymmetric Weight IA12 25621.62 (278.78) 56551.29 (959.97) 34010.52 (524.45) 168.67 (71.68) 6313.18 (115.74) 426.65 (152.24)

Sparse IA12 21565.08 (275.02) 55966.88 (821.2) 30297.4 (388.22) 200.45 (76.67) 2836.27 (101.36) 290.67 (120.04)

Stationary Input IA12 20438.15 (388.99) 38473.88 (841.64) 22180.93 (383.51) 99.72 (80.6) 4262.15 (58.05) 227.2 (104.93)

DYNAMIC TRIAD TYPES

DYNAMIC TRIAD TYPES

Table IX – Parameter Triad Dynamic Distributions 

 

 

 

 

 

 

 

 

 

 



51 

 

CONDITION INPUT T7 T8 T9 T10 T11 T12 T13

Reduced Rate RS 176.78 (165.09) 8.02 (19.27) 0.05 (8.4) 4.7 (25.11) 17.3 (27.8) 0 (2.39) 0 (0.22)

Reduced Window RS 68.67 (36.86) 2.67 (5.49) 0.05 (0.72) 0.9 (5.36) 6.87 (10.3) 0 (0.22) 0

symmetric STDP RS 234.05 (47.35) 10.77 (5.81) 0.38 (0.89) 5.03 (7.68) 21.18 (12.54) 0.05 (0.28) 0

Reduced Rate RA 403.9 (11.62) 12.53 (3.21) 0.73 (0.25) 13.57 (2.62) 30.4 (7.89) 0.15 (0.18) 0

Reduced Window RA 207.92 (128.63) 5.03 (35.63) 0.1 (23.79) 3.42 (60.42) 13.48 (33.22) 0.03 (6.31) 0 (0.18)

symmetric STDP RA 435.73 (35.41) 12.43 (3.73) 0.38 (0.47) 9.93 (3.9) 23.63 (7.72) 0.05 (0.29) 0

Reduced Rate IS 73.3 (7.5) 4.87 (2.59) 0.07 (0) 2.78 (0.7) 16.95 (4.43) 0.03 (0.13) 0

Reduced Window IS 42.05 (22.35) 1.92 (2.34) 0 (0.18) 0.47 (3.22) 6.12 (5.36) 0.02 (0.18) 0

symmetric STDP IS 78.97 (43.74) 4.48 (4.68) 0.07 (0.7) 1.12 (5.38) 9.6 (9.92) 0 (0.39) 0

Reduced Rate IA50 468.05 (33.52) 11.88 (5.65) 0.47 (0.8) 14.32 (4.75) 26.05 (9.27) 0.05 (0.22) 0

Reduced Window IA50 337.68 (12.8) 3.38 (3.79) 0.03 (0.25) 3.53 (1.03) 7.62 (6.17) 0.03 (0) 0

symmetric STDP IA50 528.2 (129.17) 12.12 (45.59) 0.42 (62.3) 12.08 (80) 29.72 (44.93) 0.1 (12.76) 0 (0.83)

Reduced Rate IA12 589.83 (9.87) 12.88 (2.6) 0.77 (0.22) 19.07 (1.24) 33.93 (4.92) 0.08 (0.13) 0

Reduced Window IA12 503.75 (33.37) 6.65 (3.85) 0.18 (0.46) 8.07 (3.31) 17.9 (7.12) 0.05 (0.22) 0

symmetric STDP IA12 665.47 (28.55) 13.97 (5.72) 0.92 (0.65) 19.33 (5.49) 35.92 (9.41) 0.13 (0.3) 0

CONDITION INPUT T7 T8 T9 T10 T11 T12 T13

Reduced Weight RS 2120.92 (26.99) 164.37 (5.81) 49.93 (0.74) 193.45 (3.15) 265.1 (9.71) 4.73 (0.22) 0

Asymmetric Weight RS 168.15 (80.46) 5.55 (21.15) 0.25 (9.25) 3.98 (21.15) 16.22 (24.28) 0.02 (2) 0

Sparse RS 499.52 (42.61) 3.43 (5.76) 0.27 (1.23) 6.55 (7) 5.33 (12.72) 0 (0.47) 0

Stationary Input RS 18.97 (24.7) 2.02 (2.52) 0.53 (0.64) 2.25 (3.23) 8.23 (2.75) 0 0

Reduced Weight RA 6621.9 (167.29) 458.28 (34.48) 239.35 (29.5) 885.23 (49.96) 613.43 (36.03) 38.8 (6.49) 0.45 (0.62)

Asymmetric Weight RA 351.08 (10.07) 7.08 (2.84) 0.17 (0.22) 6.83 (1.09) 19.28 (4.91) 0.08 (0) 0

Sparse RA 560.7 (7.87) 3.75 (2.35) 0.28 (0.51) 6.85 (0.97) 5.75 (7.05) 0 0

Stationary Input RA 46.97 (23.8) 2.58 (2.09) 0.2 (0.48) 2.8 (3.25) 12.65 (3.19) 0 0

Reduced Weight IS 1390.87 (21.61) 121.18 (3.48) 27.88 (0.35) 145.67 (2.65) 219.82 (7.91) 5.85 (0.18) 0.05 (0)

Asymmetric Weight IS 49.88 (14.26) 2.85 (1.77) 0.05 (0.5) 0.88 (2.13) 7.58 (5.01) 0.02 (0) 0

Sparse IS 77.48 (19.06) 0.92 (1.51) 0.02 (0.43) 0.77 (2.63) 0.63 (5.48) 0 0

Stationary Input IS 10.98 (23.64) 0.98 (3.12) 0.23 (0.91) 1.43 (4.16) 4.83 (3.28) 0 (0.13) 0

Reduced Weight IA50 8089.65 (42.93) 404.37 (5.67) 156.88 (0.94) 810.13 (5.81) 409.35 (9.6) 27.7 (0.4) 0.03 (0)

Asymmetric Weight IA50 432.93 (17.63) 5.85 (3.56) 0.17 (0.44) 5.8 (2.55) 15.68 (7.89) 0.05 (0.13) 0

Sparse IA50 879.6 (27.33) 5.62 (4.33) 0.5 (0.38) 9 (2.76) 6.85 (8.66) 0.08 (0.18) 0

Stationary Input IA50 179.4 (13.21) 4.5 (1.36) 1.05 (0.13) 5.35 (1.28) 11.7 (1.07) 0.52 (0) 0

Reduced Weight IA12 9739.23 (35.56) 944.87 (4.16) 687.32 (0.42) 1907.55 (3.86) 951.82 (7.61) 124.12 (0.28) 0.87 (0)

Asymmetric Weight IA12 581.82 (20.07) 10.1 (4) 0.42 (0.22) 11.37 (3.08) 24.85 (8.08) 0.13 (0) 0

Sparse IA12 627.52 (30.98) 5.03 (3.76) 0.5 (1.61) 8.75 (4.78) 5.98 (7.41) 0.02 (0.81) 0

Stationary Input IA12 208.5 (28.74) 6.12 (2.64) 0.17 (0.75) 4.37 (4.95) 14.35 (3.75) 0.03 (0.28) 0

Values in parentheses are s.d.'s across time

DYNAMIC TRIAD TYPES
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Appendix A - Rate Correlated Learning 

In addition to the STDP learning implementation, an additional simulation was 

performed using a different learning rule that did not depend on the specific timing of pre-

synaptic and post-synaptic neurons. Rather, a learning implementation was applied which 

depended on correlations in firing rate activity between the pre- and post-synaptic neurons.  

Measures of topological dynamics were collected across an analysis interval of the same 

duration as in the STDP simulations for comparison. 

Learning Rule Implementation and Simulation 

The basic principle of the rate learning algorithm was to modify synapses based on 

comparisons between the firing rates of the pre-synaptic and post-synaptic neurons. When 

the firing rates of both neurons were increasing or decreasing, the synapse connecting the 

two neurons was potentiated according to the following set of equations: 

Eq. A1    1 pre postt t pre post
w w A r r r r

 
       

Eq. A2       max          if max

1                                                            otherwise

pre post pre postpre post pre post
r r r r r r r rA







             



 

And when the firing rate of one neuron was increasing while the other was decreasing, the 

synapse was depressed: 

Eq. A3    1 pre postt t pre post
w w A r r r r

 
       

Eq. A4       min          if min

1                                                            otherwise

pre post pre postpre post pre post
r r r r r r r rA







              



 

In Eq. A1 - A4, Δωt is the additive (+/-) change in synaptic weight, Δω t - 1 is the value 

of Δω from the preceding timestep. rpre and rpost are the firing rates of the pre- and post-
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synaptic neurons, respectively, averaged over the last 1000 timepoints (the last second). 

Specifically, rpre and rpost are the sum of the number of firings for each neuron from timepoint 

t - 999 to t where t is the current timepoint. prer and postr are the mean firing rates of the pre- 

and post-synaptic neurons, respectively. prer and postr are the sum of the number of firings 

from each neuron from timepoint t - 4999 to t divided by five. A+ and A- determine the 

maximum or minimum weight change for a given synaptic event (learning rate).  is a 

scaling factor that bounds the maximum and minimum attainable weight from any synaptic 

event.  is set to 0.044 (0.055% of the maximum attainable weight) to maintain consistency 

with the STDP simulations. Max and min are the maximum and minimum functions 

evaluating   pre postpre post
r r r r  over all synapses connecting the pre-synaptic neuron to 

all of its post-synaptic neurons. Note that when the firing rate of either neuron was constant, 

the synapse remained unmodified. 

Eq. A1 - A4 are evaluated every time a pre-synaptic neuron fires (i.e. every time there 

is a change in the pre-synaptic firing rate). As with the STDP implementation, the synapse 

was updated only once every 1000 timesteps (once per second) by adding the current value 

of Δω at that timepoint to the current weight. Synaptic weights were bounded so that when 

the sum of the synaptic weight and Δω was  8 mV or  0 mV, the weight was set to 8 mV or 

0 mV, respectively.  

The simulation was initialized with five seconds of activity (5000 timepoints) during 

which external input was provided and neurons fired, but Δω remained zero and synapses 

weren’t modified. This initialization was necessary to determine the firing rates and mean 

firing rates so that Δω could be evaluated. 
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All other aspects of the simulation were the same as the standard STDP simulations. 

The initial network was selected from one of the 10 original networks used the standard 

simulations and external input was irregular, asynchronous input at 12 Hz (IA12). The 

simulation was run for the same duration (7.2 million timepoints) with the same analysis 

interval. The same measures were collected and evaluated as in the standard simulations.  

Results and Conclusions 

Table AI presents the values obtained from all measures in the simulation as well as 

the averages of the same measures from the 10 STDP simulations where the same external 

input was used (IA12). Remarkably, no functional motifs were detected in the simulation 

using the modified learning rule. The average firing rate and average synaptic weight from 

the correlated rate learning simulation were much higher than in the STDP simulations. 

These results imply that pre- and post-synaptic firing rates were frequently or highly 

correlated. It is possible that Δω reached maximal values quickly, further increasing 

correlations until synaptic modification no longer occurred.  Indeed, all of the remaining 

excitatory-to-excitatory synaptic weights reached 8 mV. As mentioned previously, the 

difference between the maximum attainable synaptic weight and the learning rate can have 

significant consequences on network (and triad) behavior. These parameters were selected to 

maintain consistency with the STDP simulations. It is possible that variations in these 

parameters could result in more interesting behavior for the rate correlation learning 

implementation. At any rate, the triad type distribution from the simulation was qualitatively 

different than the STDP distributions as displayed in Figure A1, further underscoring 

differences in network topology between the two different learning regimes. Taken together, 
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these results suggest that STDP may be unique in developing and maintaining the stable yet 

dynamic sorts of topologies which were observed in the original simulations. 

Table AI – Rate Learning Results 

    RATE LEARN STDP 

1 total synapses per min 15906 9249.361667 

2 ave wt per min 7.966 4.5669 

3 ave path per min 0.2395 2.617848186 

4 ave clust coeff per min 0.7987 0.44244716 

5 ave total degree per min 79.53 47.3457 

6 # remaining triads (observed at least once) 992395 569135.4 

7 % of remaining triads observed 99.268 56.7712 

8 % of core triads 100 50.0836 

9 avera core intensity 8 7.9816 

10 ave core coherence 1 0.9997 

11 % of functional triads 0 49.9164 

12 ave funct intensity NaN 4.6958 

13 ave funct coherence NaN 0.6946 

14 % time as a triad NaN 44.5536 

15 ave repertoire size NaN 1.1529 

16 ave number of changes NaN 8.3517 

17 ave net change in triad number 0 2001.3236 

18 ave gained 0 18237.4423 

19 ave lost 0 18242.356 

20 ave firing rate 112.5635 12.593 

21 CV num synapses 0 0.002320085 

22 CV ave wts 0 0.001532275 

23 CV ave path len 0 2.079907221 

24 CV ave clust coeff  0 0.003792791 

25 CV ave neuro degree 0 0.002616169 

26 Gained to net ratio NaN 9.227899598 

27 lost to net ratio NaN 9.229889106 
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Figure AI – Type Distribution Rate Learning 
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Appendix B - Matlab Code for STDP Simulations 

 

The following code is a stand-alone variation of the primary code used in the STDP 

simulations.  
 

   
%stdp net---------------------------------------------------------------- 

%This is the main program for running stdp net simulations as used in 

%mauscript. 

%It creates an initial weight matrix and applies input (regular synchronous, 50Hz) 

%for one hour while modifying weights according to STDP learning rule. 

%Displays a rastergram, weight distribution, and input matrix during each second. 

%Main output is a multidim matrix 'W', which contains the weight matrix at each 

minute of simulation. 

% 

%Code for the STDP implementation was inspired by Izhikevich, 2005 

%and can be found at: 

%http://senselab.med.yale.edu 

%titled: spnet.m 

% 

%Written by David B. Stone, 2010 - 2012 

%-------------------------------------------------------------------------- 

  

  

%-----Parameters----------------------------------------------------------- 

N = 500;   %number of neurons 

E = round(.8*N);    %# of excitatory 

In = round(.2*N);   % In = N - E;       # of inhibitory 

num_conn = round(.1*N); %# of synapses 

a=[0.02*ones(E,1); .1*ones(In,1)];  %} a,b,c,d are neuron dynamical params 

b = .2;                             % 

c = -65;                            % 

d=[8*ones(E,1); 2*ones(In,1)];      % 

max_w = 8; %maximum weight per synapse 

v = c;  %voltage (initially a scalar, becomes an N-by-1 vector) 

u = 0.2.*v; %relaxation variable 

ftimes = zeros(N,1002); %a neuro-by-timepoint matrix of current stdp value(voltage) 

dw = zeros(N);      %differential weight matrix (updated ea ms according to stdp) 

%-------------------------------------------------------------------------- 

  

%----Create an initial network-------------------------------------------- 

A = zeros(N); %Adjacency (binary) matrix 

for i = 1:N 

    p = randperm(N);    %shuffle neurons 

    q = round((5*randn)+num_conn); %pick #ofconnects from normdistrib(mean  

        %num_conn,var 25) 

    h = p(1:q); %pick post syn neuros 

    A(i,h)=1; 

end; 

%make the diagonal zeros (no self-connecting neurons) 

diagonal = diag(A); 

diagonal = diag(diagonal); 

A = A-diagonal; 

  

w = zeros(N);       %weight matrix 

ind = find(A); 

for i = 1:length(ind) 

    w(ind(i)) = max_w*rand;  % uniform distr of weights (range from 0 to max_w) 

end; 
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w(E+1:N,:) = -1 .* w(E+1:N,:); %make the inhib neuros negative 

%------------------------------------------------------------------------- 

  

%index of pre- and post-synaptic neurons for each neuron 

pre = cell(N,1); 

post = cell(N,1); 

for i = 1:N 

    pre{i} = find(w(:,i)); 

    post{i} = find(w(i,:)); 

end; 

  

%multidim matrix of weights each minute 

W = zeros(N,N,61); 

W(:,:,1) = w;       %Initial weight matrix 

  

%--------Simulation (one hour)-------------------------------------------- 

for mins = 2:61     %minutes. min(1) is initial weight matrix 

     

    for s = 1:60    %seconds 

         

        %Input (Regular Synchronous)--------------------------------------- 

        P = zeros(N,1000);  %input matrix (neurons-by-time) 

        pt = linspace(1,981,50);    %50 = every 20 spaces (50Hz) 

        for i = 1:50 %length of pt 

            z= randperm(500); 

            e = uint16(100+randn); 

            z = z(1:e); %pick ~100 random neurons 

            P(z,pt(i)) = 16; %16 mV input 

        end; 

        %------------------------------------------------------------------ 

         

        for t = 1:1000  %millisecs 

             

            I = .5*randn(N,1)+1.3;   %weak internal noise term 

            I = I + P(:,t);          %external input 

            F = find(v>=30); %index of neurons that fired at t-1 (at last ms) 

            v(F)=c; 

            u(F)=u(F)+d(F); 

            ftimes(F,t+1) = .044; %= learning rate 

             

            for i = 1:length(F) %for ea fired neuro 

                I(post{F(i)}) = I(post{F(i)}) + w(F(i),post{F(i)})'; %synaptic  

              %input 

                %pre->post stdp 

                dw(pre{F(i)},F(i)) = dw(pre{F(i)},F(i)) + ftimes(pre{F(i)},t);  

  

                %post->pre stdp 

                dw(F(i),post{F(i)})=dw(F(i),post{F(i)})1.05*ftimes(post{F(i)},t)';  

 

            end; 

             

            ftimes(:,t+2) = 0.95*ftimes(:,t+1); %reduce potentiation  

         %[(A+)e^(-t/20)=stdp 

rule] 

             

            %Runge Kutta ------------------------ 

            h = .5; 

             

            v1 = v; 

            k1 = h*((.04*v1+5).*v1+140-u+I); 

            v2 = (v +.5.*k1); 

            k2 = h*((.04*v2+5).*v2+140-u+I); 
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            v3 = (v+.5.*k2); 

            k3 = h*((.04*v3+5).*v3+140-u+I); 

            v4 = (v + k3); 

            k4 = h*((.04*v4+5).*v4+140-u+I); 

            v = v + (1/6).*(k1 + 2*k2 + 2*k3 + k4); %update voltage (4
th
 order 

             

            v1 = v; 

            k1 = h*((.04*v1+5).*v1+140-u+I); 

            v2 = (v +.5.*k1); 

            k2 = h*((.04*v2+5).*v2+140-u+I); 

            v3 = (v+.5.*k2); 

            k3 = h*((.04*v3+5).*v3+140-u+I); 

            v4 = (v + k3); 

            k4 = h*((.04*v4+5).*v4+140-u+I); 

            v = v + (1/6).*(k1 + 2*k2 + 2*k3 + k4); %do it again 

             

            if max(v) > 30 

                v_ind = find(v>=30); 

                v(v_ind) = 30;  %bound max voltage to 30 mV 

            end; 

             

            u1 = u; 

            ku1 = a.*(b.*v-u1); 

            u2 = u + .5.*ku1; 

            ku2 = a.*(b.*v-u2); 

            u3 = u + .5.*ku2; 

            ku3 = a.*(b.*v-u3); 

            u4 = u + ku3; 

            ku4 = a.*(b.*v-u4); 

            u = u + (1/6).*(ku1 + 2*ku2 + 2*ku3 + ku4); %update relaxation term 

            %----------------------------------------------- 

             

        end; 

         

        %----- Plot ----------------------------------% 

        [x,y] = find(ftimes==.044); 

        ind = (w ~= 0); 

        wt = w(ind); 

        subplot(3,1,1); 

        plot(y,x,'k.'); %rastergram 

        title(s); 

        axis([0 1000 0 N]); drawnow; 

        subplot(3,1,2); 

        hist(wt,100);   %weight distribution 

        title(mins-1); 

        axis([0 8 0 16500]);drawnow; 

        subplot(3,1,3); 

        image(P);drawnow    %external input 

        %--------------------------------------------------% 

         

        ftimes(:,1:2) = ftimes(:,1001:1002);    %wrap around 

        w(1:E,1:E) = max(0,min(max_w,w(1:E,1:E)+dw(1:E,1:E)));  %update weights 

        dw = .9*dw; %reduction term for stability 

         

    end; %seconds 

     

    W(:,:,mins) = w;    %weight matrix at each minute 

     

end; %minutes 
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