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Abstract

Activated carbon has been the most widely used as adsorbent , which is

a versatile adsorbent due to its large area, porous structure, high

adsorption capacity and variable surface chemical composition.

Benzene, toluene and xylene( BTX) compounds are toxic organic

compounds that appear in underground water resources as results of

leakage from underground fuel tanks and also improper waste discharge

of oil and petrochemical industries.

In this work, Palm date pits(Majhool) were used as the precursor in the

preparation of activated carbon. The date pits were first washed with

water to get rid of impurities, dried at 110 °C for 24 h, crushed, then it

was mixed with FeCl3, AgNO3 and CuSO4·5H2O solution (as activating
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agent) at an impregnation ratio of 1:2 for 24 h at room temperature. The

impregnated samples were next dried at 110°C. A stainless steel reactor

was used for the carbonization of dried impregnated sample. The

reactor was placed in a tube furnace and heated to reach an activation

temperature (700°C ).

Adsorption of BTX compounds from water by using activated carbon

produced from date palm pits activated by FeCl3 was investigated in

terms of contact time, adsorbent dose, temperature, pH and BTX

concentration. Results indicated that the adsorption effectiveness was

increased with increasing the pH , dose amount and the contact time.

On the other hand, the adsorption efficiency was found to increase with

decreasing the temperature.

The equilibrium adsorption isotherm was explained using Langmuir

and Freundlich models. BTX adsorption was better represented by

Langmuir model. The kinetic of adsorption was studied using pseudo-

first order, pseudo-second order and intraparticle diffusion. It was

found that the adsorption followed pseudo-second order. Adsorption

thermodynamic parameters for BTX adsorption such as standard
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enthalpy ΔH°, standard entropy ΔS° and standard free energy ΔG° were

calculated.

The shape, size and surface area of the samples were determined using

SEM, iodine number and BET. The effect of activating agent on the

adsorption efficiency of BTX was also studied.
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Chapter One

Introduction

1.1 Overview

Water is one of the most valuable resources on planet earth, it is the

lifeline of almost all living thing on earth. Although this fact is widely

recognized, pollution of water resources is a common occurrence. During

the last few decades, the rise of world population as well as industrial

revolution has caused serious environmental pollution [1]. And that has

attracted a great deal of scientific, political, and media attention. Several

dramatic accidents such as oil spills happened in the 1970s and latest in

2010 (British petroleum oil spillage in the Gulf of Mexico). Water

pollution is the contamination of water bodies (e.g. lakes, rivers, oceans,

aquifers and groundwater). Water pollution occurs when pollutants are

discharged directly or indirectly into water bodies without adequate

treatment to remove harmful compounds [2].

Water pollution caused by inorganic and organic contaminants has

steadily increased in parallel with world population, industrialization, and

urbanization especially in developing countries [3].

1.2 BTX in the Water

Benzene, toluene and xylene (BTX) isomers are monocyclic aromatic

hydrocarbons, which have a moderate solubility in water (benzene: 1600
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mg/L; toluene: 500 mg/L and xylenes: 160 mg/L). These compounds are

the major water-soluble constituents of petroleum derivatives (gasoline)

[4]. In USA, it was found that the maximum level of benzene, toluene and

xylene in drinking water to be 0.005, 1 and 10 mg/L respectively [5].

While in Palestine, there is no study in this regard yet.

BTX compounds are toxic organic compounds thatappear in

underground water resources as results of leakage from underground fuel

tanks, cracked pipelines, and also improper waste discharge of oil and

petrochemical industries [5, 6, 7].

These pollutants have been found to cause many serious health side

effects to humans (e.g. skin and sensory irritation, central nervous system

depression, respiratory problems, leukemia, cancer, as well as disturbance

of kidney, liver and blood systems) and therefore their removal from

groundwater and surface water is essential [8].

Several processes have been examined for removal of BTX

compounds from aqueous environment including oxidation,

bioremediation and adsorption. Activated carbon has been the most

widely used adsorbent, which is a versatile adsorbent due to its large area,

polymodal porous structure, high adsorption capacity and variable surface

chemical composition [9].

In this study the date pits will be collected and carbonized to increase

the adsorption capacity. Then the carbonized date will be used for treating
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wastewater by removing BTX. Different physical properties like isotherm,

effect of pH and temperatures will be studied.

1.3 Previous Studies

The first known use of activated carbon dates back to the ancient

Egyptians who utilized its adsorbent properties for purifying oils and

medicinal purposes [10].

Date palm wastes have been used by different researchers as

adsorbents for removing of water pollutants such as heavy metals and

dyes.

Al-Ghouti et al. [11] investigated the adsorption mechanism of

removing heavy metal ions (Cu2+ and Cd2+) from aqueous solution using

date pits as adsorbent. While, El-Hendawy [12] studied the adsorption of

Pb2+ and Cd2+ ions onto date pits activated carbons.

Ashour [13] studied the kinetics and equilibrium adsorption of

methylene blue and remazol dyes onto the steam processed activated

carbons developed from date pits.

In the other hand, activated carbon has been used for removal of

phenolic and pesticides pollutants. For example, the potential of raw date

stone powder for phenol adsorption from aqueous solution was studied by

Okasha and Ibrahim [14].
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Danish et al [15] reported the kinetics for the removal of paraquat

dichloride from aqueous solution by calcium oxide activated date stone

carbon.

Adsorption of herbicide (Pendimethalin) onto activated carbons

developed from date pits were studied by Ashour [16]. Also, it have been

used forremoval of miscellaneous pollutants, such as, El-Naas et al [17]

carried out experiments to evaluate the batch adsorption of chemical

oxygen demand (COD).

1.4 Objectives of this Study

Due to the increasing sources of pollution in the world, the impact of

water pollution on human health is getting more crucial. This study is

focused on studying the impact of water pollution by BTX. The main

objectives of this study can be summarized by the following points:

• Finding a good method for carbonization of date.

• Using activated carbon for removing BTX from water.

• Studying the effect of activating agent.

• Studying the adsorption kinetic of contaminant on carbonization of

date.

• Studying the adsorption isotherm and thermodynamics of contaminant

on carbonization of date.

• Determining the effect of temperature, adsorbent dose, pH, time and

concentration on adsorption of contaminant.
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Chapter Two

Theoretical Background

This chapter includes an explanation about the used materials and

Equations.

2.1 Date-Palm Pits

The date palm is one of the oldest fruit trees in the world and is

mentioned in the Qur'an and Bible. The number of the date palms is about

100 million worldwide, of which 62 million palms can be found in the

Arab world [18, 19]. The place of origin of the date palm is uncertain.

Some claim that the date palm first originated in Babel, Iraq, while others

believe that it originated in Dareen or Hofuf, Saudi Arabia [20].

Date stones are suitable for use in animal feed and their oil is use in

soap and cosmetics. They can also be processed chemically as a source

of oxalic acid. Date seeds are also ground and used in the manner

of coffee beans, or as an additive to coffee [20].

Date palm consists of three main components: cellulose,

hemicellulose, and lignin in the range of 40–50%, 20–35%, and 15–35%,

respectively, besides these other minor constituents are oil and protein

[21]. Cellulose and hemicellulose consists of glucose units but

hemicelluloses consists of the lower number of sccharide units. Both have

average percent elemental compositions of 44.4 wt. % carbon, 49.4 wt. %
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oxygen, and 6.2 wt. % hydrogen. Lignin has more complex chemical

constituents.

It has a three-dimensional polymer of phenylpropane units linked

together by C–O–C or C–C bonds. This makes its elemental composition

to be higher in carbon percentage (62 wt. %) and lower in oxygen

percentage (32 wt. %) [22].

2.2 Precursors of Activated Carbon

Precursors of activated carbons are organic materials with high carbon

content [23]. The most widely used carbonaceous materials for the

industrial production of activated carbons are coal, wood and coconut

shell [24, 25].

Activated carbon can be produced from any natural or synthetic

carbonaceous precursor which is largely dependent on its availability, cost

and purity. Due to environmental considerations, agricultural wastes are

considered to be a very important precursor because they are cheap,

renewable, safe, available at large quantities and easily accusable sources;

in addition they have high carbon and low ash content [26, 27].

2.3 Carbon Activation

Carbon treatment has been used since Roman times to purify different

materials [28]. The production of activated carbon from agricultural waste

materials has been the purpose of several studies, among which we can
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mention activated carbons prepared from nut shells [29], rice husks [30],

peach stones [31], cane sugar [32], fruit rind [33] and peanut husks [34].

Activated carbon can be produced by physical or chemical activation.

2.3.1 Physical Activation

The physical activation process involves two steps: the first one is the

carbonization of the carbonaceous precursor [35] at elevated temperatures

(500-1000°C) under inert atmosphere in order to eliminate oxygen and

hydrogen elements as far as possible [36].

The second stage involves mild oxidation (gasification) with steam

(air, carbon dioxide). This can be done at the same temperature for

pyrolysis or at a higher temperature (800-1000°C) [37,38].

2.3.2 Chemical Activation

Chemical activation involves impregnation of the precursor with

chemical activating agents (mostly dehydrating agents such as ZnCl2,

KOH, FeCl3) followed by pyrolysis at relatively low temperature than

physical activation temperature. The chemical activating agent

incorporated into the bulk of the precursor particles, which make way for

a chemical reaction between the surface chemical constituents of

precursor and activating agents. These chemical reactions form many

stable and volatile complexes. The volatile complexes evaporate during

pyrolysis (such as oxygen and hydrogen) and the stable complexes

remains (carbon) to give pores shape [9].
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2.4 Activating Agents

2.4.1 Ferric Chloride

Ferric chloride is a chemical compound, with the formula FeCl3. The

color of its crystals depends on the viewing angle (the crystals appear dark

green by reflected light, but by transmitted light they appear purple-red)

[39].

Although the iron chloride salt has similar characteristics to zinc

chloride in aqueous solution, the ferric cation is smaller than the zinc

cation, and this opens up the possibility of producing activated carbon

with smaller pores sizes. On the other hand, the zinc cation presented in

aqueous solution is a well-known pollutant. Moreover, the ferric salt has a

low cost in comparison with the zinc salt [40].

The use of ferric chloride is not completely new. Oliveira et al [41]

and Rufford et al [42] used it to prepare activated carbons from coffee

husks and waste coffee grounds, respectively.

2.4.2 Silver Nitrate

Silver nitrate is an inorganic compound, colorless crystalline material

and high solubility in water with chemical formula AgNO3. This

compound is a versatile precursor to many other silver compounds [43].

It is used in chemical analysis for silver plating, in inks, hair dyes, silver
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mirrors and for detection of reducing agents and the cations of various

acids that form insoluble silver salts, as well as in medicine for treatment

of eye infections.

Ingestion of silver nitrate causes violent abdominal pains, vomiting,

and diarrhea, with the development of gastroenteritis. Treatment includes

oral administration of common salt solutions, milk (or white of egg and

water), and soap in water to protect the mucous membranes of the

esophagus and stomach [44].

2.4.3 Copper Sulfate Pentahydrate

Copper (II) sulfate is an inorganic chemical compound, odorless and

appears blue in color withCuSO4 chemical formula [45].

Copper Sulfate pentahydrate is a hazardous chemical and should be

handled with safety spectacles and rubber gloves. This compound is acidic

and irritates eyes and the respiratory tract upon contact. It is absorbed

through the skin, causing severe itching and eczema. If swallowed, it

causes nausea, vomiting, headaches and burning chest pains [46].

Copper Sulfate is used as an electrolyte in copper refining and

electroplating and mining. The building uses copper sulphate in

combination with other chemicals as a wood preservative. In agriculture,

it is widely used as a micronutrient in animal feeds and fertilizers. Its

fungicidal properties are utilized in the growing of grapes and fruit trees

[47].



10

The used activating agents  were chosen based on different properties

and the sizes of the particles. FeCl3 is a well known activating agents and

to the best of our knowledge AgNO3 and CuSO4.5H2O will be used for the

first time as activating agents in this study.

2.5 Adsorption Isotherm

Adsorption isotherm is the amount of adsorbate on the adsorbent as a

function of its pressure (if gas) or concentration (if liquid) at constant

temperature [53].

2.5.1 Langmuir Equation

This Equation used for the molecules that are in contact with a solid

surface at a fixed temperature. The Langmuir Isotherm developed by Irving

Langmuir between 1909-1916.It assumes a monolayer adsorption onto a

uniform adsorbent surface with energetically identical sorption sites [56].

The linear form of Langmuir isotherm Equation is described by the

following Equation: = + (2.1)

Where Ce is the equilibrium concentration of the adsorbate (mg/L), qe

is the amount of adsorbate per unit mass of adsorbent (mg/g), q0 and b are

Langmuir constants related to adsorption capacity and rate of adsorption,

respectively.
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2.5.2 Freundlich Equation

In 1909, Freundlich gave an empirical expression representing a

relationship between the concentrations of a solute on the surface of an

adsorbent, to the concentration of the solute in the liquid.

It describes equilibrium on heterogeneous surfaces and hence does not

assume mono layer capacity [56]. The logarithmic form of the Freundlich

isotherm is given by the following Equation:

efe C
n

Kq log
1

loglog 




+= (2.2)

Where Ce is the equilibrium concentration of the adsorbate (mg/L), qe

is the amount of adsorbate per unit mass of adsorbent (mg/g), Kf and n are

Freundlich constants.

2.6 Kinetics Experiments

The process of removal BTX can be explained by using several

kinetics models. In this study we used the first, second pseudo order and

intraparticle models [57].

2.6.1 Pseudo-First Order Kinetics Model

Is a second order reaction, in which one of the reactants is present in

such great amounts that its effect is not seen and the reaction thus behaves

as first order.
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The simple form of first order model, is shown in Eq.(2.3) [58].

tkqqq ete 1ln)ln( −=− (2.3)

Where k1 is the rate constant, qe is the equilibrium concentration

(mg/g); qt (mg/g) is the amount of adsorbed at any time t (min).

2.6.2 Pseudo -Second Order Model

The general form of the model is given in Eq. (2.4) [59].

t
qqkq

t

eet

11
2

2

+= (2.4)

In which, k2 is the equilibrium rate constant (g/mg.min) of pseudo-

second order. qe is the amount of adsorption sorbed at equilibrium (mg. g-

1), qt is the amount of adsorbate sorbed at t (min). The straight line plots of

(t/qt) vs t have been tested to obtain rate parameters [60].

2.6.3 Intraparticle Model

Intraparticle diffusion model can be expressedby Weber and Morris

[62], as the Eq.( 2.5)

qt = kit
0.5 + A                  (2.5)
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Where ki is the intraparticle diffusion constant and qt(mg/g) is the

amounts of adsorbate per unit mass of adsorbent at time t (min) the

intercept A reflects the effects of the boundary layer thickness.

2.7 Adsorption Thermodynamics

Thermodynamic considerations of the adsorption process of BTX on

date stones are necessary to conclude whether the process is favorable or

not.

This behavior was evaluated by the thermodynamic parameters

including the change in free energy (ΔGº), enthalpy (ΔHº), and entropy

(ΔSº).

TR

H

R

S
kd

1
ln

 ∆−∆= (2.6)

Where T (K) is the absolute solution temperature, R (8.314 J/mol K) is

the universal gas constant and Kd is the distribution coefficient which can

be calculated as:

Kd = CAe /Ce (2.7)

Where CAe (mg/L) is the amount adsorbed on solid at equilibrium and

Ce (mg/L) is the equilibrium concentration. ΔG° can be calculated as

below:

ΔGº= -RT lnKd (2.8)
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Chapter Three

Methodology

3.1 Materials

3.1.1 Precursor

Palm date pits (Majhool) were used as the precursor in the preparation

of activated carbon. The date pits were first washed with water to get rid

of impurities, dried at 110 °C for 24 h, crushed using stainless steel mill,

and sieved.

3.1.2 Chemicals and Reagent

All chemicals such as hydrochloric acid, sodium thiosulfate, iodine

and sodium hydroxide were used for analytical grades. FeCl3, AgNO3 and

CuSO4·5H2Oare used as chemical reagents for activation of date pits.

Benzene, toluene and xylene were used as adsorbate. The sources of all

reagent and chemicals which was used are summarized in Table 3.1.

Table 3.1: The sources of all reagent and chemicals.

Name Company Catalog
Benzene MercK 1782
Xylene J.T.Baker 9493-03

AgNO3 Riedel 31630

Toleune Frutarom 2355540500024

CuSO4.5H2O Frutarom 23555115500

HCl MercK 1.00319

FeCl3 Riedel 12321
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3.2 Preparation of Activated Carbon

Where, 50 g of crushed stones was well mixed with 500 ml FeCl3,

AgNO3 or CuSO4·5H2Osolution at an impregnation ratio of 2 (weight of

activating agent to weight of dried stone) for 24 h at room temperature.

The impregnated samples were next dried at 110°C until completely dried

and stored in a desiccator. A stainless steel reactor was used for the

carbonization of dried impregnated sample. This reactor was closed at one

end and the other end had a removable cover with two holes, one for inter

the nitrogen and the other for escape of the pyrolysis gases. The reactor

was placed in a tube furnace and heated to reach an activation temperature

(700°C) for 30 min; until no gas rising. At the end of activation time the

carbonized sample was withdrawn from the furnace and allowed to cool.

For removal of residual activated agent, the sample was soaked with 0.1M

HCl solution such that the liquid to solid ratio is 10ml/g. The mixture was

left overnight at room temperature and then it was filtered and was

washed with distilled water until the pH of filtrate reached 6.5-7; to wash

HCl and to make it neutral [62].

After that, the sample was dried at 110°C for 24 h and subsequently

was weighed to determine the yield of the product. Finally, it was stored

in closed bottles. The flow diagram for activation process is summarized

in Fig. 3.1.
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Figure 3.1: The flow diagram for activation process.
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Equation:
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The surface area is the sum of all areas of the activated carbon

particles used. The surface areas of the prepared activated carbons were

found by estimated iodine number andBrunauer, Emmett and Teller

(BET).

3.3.1 Iodine Number

Basically, iodine number is a measure of the micropore content of

activated carbon (0 to 20 Å) by adsorption of iodine from solution [64].
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It was found by titration 10 mL of 0.1N iodine solution with 0.1N sodium

thiosulfate solution in the presence of starch solution as indicator, until it

becomes colorless. The reading of burette is corresponding to Vb. Then

0.05g of activated carbon was added to 15 mL of 0.1N iodine solution, the

mixture was shaken for 5min and then was filtered. 10 mL of the filtrate

was titrated with 0.1N standard sodium thiosulfate solution in the

presence of starch solution as indicator. The burette reading is

corresponding to Vs. The following Equation was used to calculate the

iodine number.

(3.2)

Where IN is iodine number (mg/g), Vb and Vs are volumes of sodium

thiosulfate solution required for blank and sample titrations (mL),

respectively, N is the normality of sodium thiosulfate solution (mole/L),

126.9 g is atomic weight of iodine, and Wc is the mass (g) of activated

carbon.

Wc

(15/10).(126.9)N..)V-(V
IN

Sb
=
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Figure 3.2: standard calibration curve for iodine number [65].

3.3.2 Brunauer, Emmett and Teller (BET)

The BET theory was developed by Stephen Brunauer, P.H. Emmet

and Edward Teller in 1938.

This theory aims to explain thephysical adsorption of gas molecules on

a solid surface and serves as the basis for an important analysis technique

for the measurement of the specific surface area and pore size distribution

for a wide variety of samples, including powders and bulk solids [65]. The

BET machine has a multitude of applications in industries worldwide.

Some applicable industries include Rubber, Chemical, Ceramic, Paper,

Battery Separator, Fuel Cells and Pharmaceuticals. It is The most

advanced, accurate, easy to use and reproducible parameters in the world

[66].



19

3.3.3 Scanning Electron Microscopy (SEM)

Is a type of electron microscope that produces images of a sample by

scanning it with a focused beam of electrons. The electrons interact with

atoms in the sample, producing various signals that can be detected and

that contain information about the sample's surface topography and

composition [67].

The SEM image was performed in the University of Jordan/ Faculty

of Science. The SEM device has a high-brightness, high-current, high-

resolution imaging, a SEM equipped with a high resolution Schottky Field

Emission source, provides clear, sharp and noise-free imaging. The

system's excellent lateral resolution enables easy detection of low-Z

elements at low beam energies, adding value and flexibility to the Inspect

F50.

3.4 Gas Chromatography (GC-MS)

Gas Chromatography (Figure3.3) is a method that combines the

features of gas chromatography and mass spectrometry for chemical

identification of volatile and semi-volatile organic compounds in

mixtures, drug detection, environmental analysis and explosives

investigation. Additionally, it can identify trace elements in materials that

were previously thought go undetected by other technologies [48].
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Solid-Phase Micro Extraction (SPME) (Figure3.4) is a solvent-free

sampling and sample preparation technique, which combines sampling,

pre-concentration and the direct transfer of the analytes into a GC or

HPLC [49].

In SPME technique, analytes of interest are allowed to adsorb onto a

small microfiber made of a fused silica coated with a thin-film of

stationary phase. Analytes either in the air or in an aqueous sample come

into equilibrium with the fiber according to their affinity for the solid

phase [50]. The microfiber, which is incorporated into a gas

chromatography (GC) syringe, is directly injected into the GC. Because

the SPME fiber is heated at the GC injection port to allow the analytes to

be desorbed from the fiber, the injection is directly to the GC without

solvent [41].

Figure 3.3: Gas Chromatography with Mass Spectrometer (GC-MS).
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Figure 3.4: SPME device [taken from Ref.52].

In this work, the GC-MS was used to determined the effect of contact

time, dosage, temperature and pH on the adsorption by found the peak

area1 at equilibrium.

The analysis of BTX in water samples was conducted by SPME,

GC/MS using the Clarus SQ 8S Mass Spectrometer. The DB-5 column

(60 m × 0.53 mm × 0.5 µm) was used. The experimental conditions are

presented in Tables 3.2- 3.4.

Table 3.2: SPME Conditions.

Sample Temperature 80 ˚C

Needle Temperature 110 ˚C

Transfer Line Temperature 120 ˚C

SPME Low/ SPME High 35 ˚C to 260 ˚C

1The peak area for  the calibration curve are shown in appendix A, section A.1.
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Equilibration Time 8 min

Table 3.3: Gas Chromatograph Conditions.

GC/MS Clarus SQ 8S

Column
DB-5 ( 60 m x 0.53 mm x 0.5

μm )

Oven
40 ˚C for 0.5 min, then 35 ˚C/

min to 185 ˚C

Injector (PSS)
Temp Programmable

Split/Splitless at 180 ˚C

Carrier

Program (He)

1 mL/ min for 0.4 min, then 0.7

mL/ min

Table 3.4: Mass Spectrometer Conditions.
Ionization Mode Electron Impact
Acquisition Full Scan
Filament  Delay 1.5 min
Scan Speed 0.15 sec
Interscan Delay 0.04 sec
Run Time 4 min
Ion Source Temperature 200 ˚C
Transfer Line Temperature 200 ˚C

3.6 Adsorption Efficiency

Several factors could be affected on the adsorption efficiency by

using activated carbon produced from date stone with FeCl3 as

activating agent, which have been studied in this work as shown below.

3.6.1 Effect of contact time

To study the effect of time, 1g of activated carbon was added to 50

mL BTX solution (50 ppm) by volume at pH 4 and 25°C. These steps

were repeated for different time intervals.
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3.6.2 Effect of Dosage

Different weights was added to 50 mL (50 ppm) BTX solutions at

25°C and pH 4 for 30 min, the effect of dosage was determined.

3.6.3 Effect of Temperature

This effect was studied by adding 0.25 g of activated carbon to 50

mL (50 ppm) BTX solutions at pH 4 for 30 min at different

temperatures.

3.6.4 Effect of pH

This effect was studied using 0.25 g of activated carbon which were

added to 50 mL (50 ppm) BTX solutions for 30 min at 25°C and

different pH.

3.6.5 Effect of concentration

To study the effect of concentration; 0.25 g of activated carbon was

added to 50 mL of 10, 20, 30 and 40 ppm solutions at pH 4 and 25°C

for 30 min. The initial and final concentrations of BTX were measured.

The amount of adsorption at equilibrium, qe, was calculated by using

the following Equation:

( ) ( )
m

v
gmgq cc e

e

⋅
=

_
/ 

(3.3)

Where C° and Ce (mg/L) are the liquid-phase concentration of drugs

initially and at equilibrium, respectively. v is the volume of the solution

(L) and m is the mass of dry adsorbent used (g). The data were fitted to
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Langmuir and Freundlich isotherms to evaluate the adsorption

parameters.

The amount of removal percentage of BTX by AC was calculated

according to the following expression:

%100 x
C

C-C
(%)PR

o

eo= (3.4)

Where PR is the removal percentage (%), Co and Ce are the initial

and equilibrium concentration of BTX solution (mg/L), respectively.
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Chapter Four

Results and Discussions

4.1 Carbon Characterization

The characteristics of date stones activated carbon were studied and

calculated by the Equations 3.1, 3.2 and Figure 3.2. The data are

summarized in Table 4.1. The results showed higher surface area which

means that the use of date stones as activated carbon for removal of BTX

from aqueous solutions was successful. On the other hand, the high iodine

number indicates that the date stone has a good capability to remove most

of BTX which have molecular sizes in the range of micropores content

[69].

Table 4.1: The characteristics of date stones activated carbon.

Sample code Yeild
Iodine number

(IN)
mg/g

Surface area
from IN

m2/g

Surface area
from BET

m2/g
AC/ FeCl3 39.8% 739.775 694.149 893.780

AC/ AgNO3 37.4% 676.275 635.519 818.289

AC/

CuSO4·5H2O
42.3% 708.025 664.834 796.028

4.2 SEM Analysis of the AC

SEM has been used to investigate the surface morphology of the

prepared date stone activated carbon.
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Fig.4.1 shows that many large pores were clearly found on the surface

of the activated carbon. This shows that FeCl3 was effective in developing

pores on the surface of the precursor.

Figure 4.1: SEM micrographs of AC/ FeCl3.

4.4Adsorption Efficiency of AC

4.4.1 Calibration curve for BTX

Different BTX standard solutions with different concentrations were

prepared. Then the samples were analyzed by a GC-MS.
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Calibration curve were constructed by plotting the value of area under the

peak vs. concentration of standard BTX as shown in Fig. 4.2.

Figure 4.2: Calibration curve for BTX standard solutions at 25 ºC.

A straight lines was obtained with a correlation factor of 0.995, 0.999

and 0.991 for benzene, toluene and xylene respectively.

4.4.2 Effect of contact time

The effect of contact time on the adsorption of BTX by date stone

with FeCl3 activating agent was studied at 5-1440 min. The results are

shown in Figure 4.3. The Figure shows that BTX adsorption has been

rapidly increased for the first 180min.Then the adsorption capacity

increases slowly until it reached equilibrium.
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Figure 4.3: Effect of contact time on the adsorption of BTX by AC/FeCl3 at initial
concentration 50 ppm, pH: 4, temperature: 25oC and 0.25g of AC.

The fast adsorption at the initial stage may be due to the higher driving

force making fast transfer of BTX ions to the surface of date stone

particles and the availability of the uncovered surface area and the

remaining active sites on the adsorbent [70].

The order of the sorption capacity of the modified adsorbent is B < T <

X. This order may be due to the water solubility [71]. Many previous

studies have confirmed that the sorption of BTX from aqueous solutions

with various adsorbents follows a similar order as above [72, 73, 74].

4.4.3 Effect of Dosage

The range of activated carbon dose which was used is 0.1-1.5 g. The

effects of dosage are shown in Figure 4.4.
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Figure 4.4: Effect of AC dosage on the adsorption of BTX by AC/FeCl3 at initial
concentration 50 ppm, pH: 4 and temperature: 25 ºC for 30 min.

The amount of BTX removal was increased rapidly until 0.7g of AC

and then it increased slowly from 0.8 to 1.5 g.

In the first part, as the amount of AC increased at constant BTX

concentration, the adsorption of pollutant increased because it provided

more adsorption sites (i.e. more surface area). But in the second part, the

adsorption effectiveness was slowed down because most of BTX was

adsorbed [75].

4.4.4 Effect of Temperature

This effect was studied at 15-45°C by adding activated carbon to 50

ppm BTX solutions at pH 4 for 30 min. The results are summarized in

Fig. 4.5.
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Figure 4.5: Effect of temperature on BTX removal by AC/FeCl3 at initial conc: 50
ppm, pH: 4 and temperature: 25 ºC for 30 min.

It can be seen from Fig.4.5 that, as the activation temperature

increases, the adsorption effectiveness for BTX decreases. This is due to

the loss of the volatile materials and active sites for adsorption at higher

temperatures [76,77].

Generally, as temperature increases, the adsorption capacity decreases

due to the following reasons:

1. Energy Content: As the temperature raises, the energy content

increases, therefore, the adsorbent requires more energy to remain in a

liquid state, thus directly affecting the adsorption balance.

2. Saturated Vapour Pressure: As the temperature rises, the vapour

pressure increases making it more difficult to keep the adsorbent in its

liquid state [78].
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4.4.5 Effect of pH

The amount of BTX removal under the influence of pH was

investigated in the range 2-10.  Figure 4.6 summarizes the results.

Figure 4.6: Effect of pH on the adsorption of BTX by AC/FeCl3 at initial
concentration 50 ppm, 0.25 g of AC and temperature: 25 ºC for 30 min.

From the Figure it can be noticed that the amount of BTX removals

directly proportional to the degree of pH, and the adsorption value at pH

10 increases up to (85%, 89% and 93%) for (benzene, toluene and xylene)

respectively.

As we show in Figure 4.6, the addition of NaOH leads to decreases

the solubility of all organic material because NaOH is more soluble in

water, which means increases the adsorption of benzene, toluene and

xylene, due to the salting out effect [73].
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4.5 Adsorption Isotherm

The study of adsorption isotherm is important to determine the

adsorption capacity of BTX by date stone activated carbon.

In order to achieve this, the data were fitted to Langmuir and

freundlich isotherms which describe the relationship between the amounts

of BTX adsorbed and its equilibrium concentration in solution.

The adsorption parameterswere investigated by plotting Ce/qe vs. Ce

for Langmuir Eq.(2.1) and log qe vs. logCe for Freundlich Eq.(2.2) as

shown in Fig. 4.7.a, b, c and Fig. 4.8.a,b,c respectively.

Figure 4.7.a: Langmuir plot for benzene adsorption onto AC/FeCl3 at temperature: 25
ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL.
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Figure 4.7.b: Langmuir plot for toluene adsorption onto AC/FeCl3 at temperature: 25
ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL.

Figure 4.7.c: Langmuir plot for xylene adsorption onto AC/FeCl3 at temperature: 25
ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL.
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Figure 4.8.a: Freundlich plot for benzene adsorption onto AC/FeCl3 at temperature:

25 ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL).

Figure 4.8.b: Freundlich plot for toluene adsorption onto AC/FeCl3 at temperature:
25 ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL).
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Figure 4.8.c: Freundlich plot for xylene adsorption onto AC/FeCl3 at temperature: 25
ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL).

The adsorption isotherm parameters and correlation coefficients which

were found from the slope and intercept are summarized in Table 4.2.

Table 4.22: Langmuir and Freundlich isotherm parameters and correlation
coefficient of BTX adsorption onto AC/FeCl3.

FreundlichLangmuirIsotherm
ParametersParameters

Adsorbate R2nKf

((mg/g)(L/mg)1/n)
R2b

(L/mg)
qo(mg/g)

0.973-
3.37

15.440.995-0.355.47Benzene

0.940-
3.70

14.160.992-0.415.53Toluene

0.948-
3.35

14.760.993-0.405.19Xylene

Freundlich adsorption equation is perhaps the most widely used in

mathematical description of adsorption in aqueous systems and describes

equilibrium adsorption on heterogeneous surfaces and hence does not

2The calculations are shown in appendix A.2, sections A.2.1 and A.2.2.
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assume monolayer, while the Langmuir adsorption isotherm is commonly

applied to monolayer physisorption of gases onto a uniform adsorbent

surface [79].

As shown in Table 4.2, the correlation coefficients in Langmuir

adsorption isotherm are very high and closer to one than in freundlich.

In Freundlich isotherm, n value giving an indication of how the

adsorption process is suitable.Adsorption process is considers as

beneficial when n value is between 1 and 10, which means stronger

interaction between the adsorbent and the adsorbate [80]. A value for (n)

below one indicates a normal Langmuir isotherm, while (n) above one is

indicative of efficient adsorption [80].In this study, the calculated n value

as shown in Table 4.2.

As a conclusion, the adsorption of BTX follows Langmuir isotherm in

this study.

4.6 Kinetics of adsorption

The experimental kinetic data for BTX adsorption on date stones are

fitted with pseudo-firstorder, pseudo-second order and intraparticle

diffusion models, Eqs. (2.3)-(2.5), In order to investigate the mechanism

of BTX adsorption process.

The kinetics parameters and correlation coefficients at 50 mg/L initial

adsorbate concentration have been calculated from the linear plots of log
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(qe-qt) versus t and t/qt versus t, Figure 4.9 and Figure 4.10 respectively

and the results are presented in Table 4.3.

The data show large difference between the experimental and

calculated adsorption capacity (qe) for BTX on the pseudo-first order

model and good agreement based on the pseudo-second order model. On

the other hand, the correlation coefficient of the pseudo-second order

model was larger than for pseudo-first order model, indicating a poor

pseudo-first order to fit the experimental data.

This suggests that the pseudo-second order is better to describe the

mechanism of BTX adsorption process by date stone activated carbon.

Figure 4.9: Kinetics of BTX removal according to the pseudo-first-order model by
AC/FeCl3 at temperature: 25 ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL).
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Figure 4.10: Kinetics of BTX removal according to the pseudo-second-order model
by AC/FeCl3 at temperature: 25 ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL).

Table 4.3 3 : Pseudo-first-order and pseudo-second-order kinetic model
parameters for BTX adsorption by AC/ FeCl3.

R2

Pseudo-second
order kinetic

model
R2

Pseudo-first
order kinetic

modelqe

(exp)
(mg/g)

Adsorbent qe

(calc)
(mg/g)

k2

(g/mg.min)
qe(calc)
(mg/g)

k1

(min-
1)

0.99998.520.05070.82311.510.01238.6Benzene
0.99999.170.03050.97041.400.01109.0Toluene
0.99978.870.04750.91272.110.01789.1Xylene

For the intraparticle diffusion model Eq. (2.5), the qt values are

calculated by using the Equation 3.3. The values of Ki and A are found

from the slope and the intercept of the linear plot of qt versus t0.5. The

results are shown in Figure 4.11, Table 4.4 and Table 4.5.

3The calculations are shown in appendix A.3, sections A.3.1 and A.3.2.
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Table 4.44: The values of qt and t0.5 for intra-particle diffusion kinetic
model.

t0.5 qt

Benzene Toluene Xylene
2.24 6.4 7.75 5.8
5.48 7.6 7.8 8.2
7.75 8.2 8.4 8.6
13.42 8.4 8.8 9

Figure 4.11: Kinetics of BTX removal according to the intra-particle diffusion model
by AC/FeCl3 at temperature: 25ºC, pH: 4 and solid/liquid ratio 0.25 g/50 mL).

Table 4.55: Intra-particle diffusion kinetic model parameters for BTX adsorption by
AC/ FeCl3.

R2AKi

(mg/g min1/2)
Adsorbent

0.78316.7280.1691Benzene
0.90217.45350.1016Toluene
0.71096.04120.2574Xylene

4The calculations are shown in appendix A.3, section A.3.3.
5The calculations are shown in appendix A.3, section A.3.3.
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The intraparticle diffusion model is used to describe the diffusion

mechanism. If the straight lines did not pass through the origin, this

indicates that the rate is limited by mass transfer across the boundary layer

and the mechanism of removal is complex [81]. While the value of A give

an information about the thickness of the boundary layer.

4.7 Adsorption Thermodynamics

According to Equation (2.6), the ΔH°, ΔS° parameters for BTX can be

calculated from the slope and intercepts of the plot of In Kd versus 1/T

respectively (Fig. 4.12), and ΔG° values are obtained from the Equation

(2.8). While the values of Kd calculated by using Equation (2.7). The

obtained values of ΔH°, ΔS° and ΔG° are listed in Table 4.5.

Figure 4.12: Plot of lnKd versus 1/T for BTX adsorption on AC/ FeCl3.
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Table 4.66: The values of the thermodynamic of adsorption at various
temperatures and various adsorbents.

ΔG°
(kJ/mol)

ΔS°
(J/mol K)

ΔH°
(kJ/mol)Adsorbent

318 K308 K298 K288 K
2.371.941.58-0.50-87.06-25.16Benzene
2.141.951.14-0.90-88.30-25.91Toluene
1.740.23-3.22-1.68-87.89-26.89Xylene

The negative values of enthalpy (ΔH°) indicate that the nature of the

adsorption is exothermic and its magnitude gives information on the type

of adsorption, which can be either physical or chemical adsorption.

Furthermore, the negative values of entropy (ΔS°) show that the

decrease in the randomness at sorbate-solution interface during the

adsorption process.

A negative ΔG° value means the reaction is favorable. Increase in the

value of ΔG° with rise in temperature show that the adsorption is more

favorable at lower temperature.

6The calculations are shown in appendix A.4.
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Conclusion

The results that have been obtained in this work can be summarized in the

following points:

1. Using of activated carbon produced from date stones to remove the

BTX from water is good and efficiency method.

2. Date stones have high surface area which means that the use of it for

the removal of BTX from aqueous solutions is successfully.

3. The values of surface area showed that the using FeCl3 as activating

agent for date stones is better than CuSO4.5H2O and AgNO3.

4. The results showed that the adsorption of BTX by date stones activated

carbon increase by increasing time, dosage and pH.

5. The results indicate that the adsorption effectiveness was increased with

decreasing temperature.

6. Adsorption of BTX by AC/FeCl3 followed Langmuir isotherm.

7. Experimental data showed that BTX adsorption can be represented by

pseudo- second order model.

8. Intraparticle model which describe the diffusion mechanism showed

that the mass transfer happen across the boundary layer.
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9. The results of ΔH°, ΔS° and ΔG° show that the adsorption of BTX by

AC/ FeCl3 is exothermic and favorable process.

10. The adsorption of BTX by FeCl3 is physical adsorption.

Suggestions for Future Work

Recommendations that can be forwarded in this study are as follows:

1. Producing activated carbon by impregnated it with different solutions.

2. Study the effect of contact time, amount of dose, pH and temperature

on the activated carbon effectiveness of activated carbon which

impregnated with AgNO3 and CuSO4.5H2O.

3. Using different type of polymer like polymer synthesis from cellulose

instead of activated carbon produced from date stone palm pits.

4. Using different technique of nanoparticle from natural fiber for

adsorption/ degradation of BTX from water.

5. Grinding the prepared activated carbon to mesh number less than 16 to

increase the surface area.
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Appendix A

A.1 The Peak Area

The values of the peak area for the calibration curve are shown in the

following table:

Concentration

(ppm)

Peak area for

Benzene

Peak area for

Toluene

Peak area for

Xylene

10 15750 19320 22150

20 28374 36520 40817

30 43715 55428 60058

40 57362 76128 79860

50 76125 93826 108716

A.2 Isotherm Calculation

A2.1 Langmuir Isotherm

Calculation of q0 in Langmuir using Equation 2.1 from the slope, and b

from the intercept in Figure 4.7.

For example:

The slope for benzene in Figure 4.7.a, is 0.182,

Slope=1/q0

q0 = 1/ slope= 1/ 0.182 =5.47 mg/g
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The intercept for benzene in Figure 4.7.a, is -0.525

Intercept= 1/ bq0

b= 1/ q0 (Intercept)= -0.35 L/mg

A2.2 Freundlich Isotherm

Calculation of n in Freundlich using Equation 2.2 from the slope, and Kf

from the intercept in Fig. 4.8.

For example:

The slope for benzene in Figure 4.8.a is -0.297

Slope= 1/n

n= 1/slope= -3.37

The intercept for benzene in Figure 4.8.a, is 1.188

Intercept=log Kf

Kf = 15.44 ((mg/g)(L/mg)1/n)

A.3 Kinetics Calculation

A.3.1 Pseudo First Order

The plot of ln (qe-qt) versus t in Equation 2.3 for pseudo first order will

give a straight line and the values of k1 and qe (calculated) can be
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obtained from the slope and the intercept of the graph 4.9 respectively.

For example:

Slope for benzene= -k1= -(-0.0123)= 0.0123 min-1

Intercept= lnqe = 0.409

qe =1.51 mg/g.

A.3.2 Pseudo Second Order

As shawn in Figure 4.10,the plot of  t/qt versus t from Equation 2.4 will

give 1/qe and 1/k2qe
2 as a slope and intercept  respectively.

For example:

Slope for benzene = 0.1174= 1/qe

qe = 8.52 mg/g

Intercept =0.271= 1/k2qe
2

k2 =0.0507 g/mg.min

A.3.3 Intraparticle Diffusion Model

The qt values are calculated by using the Equation 3.3. While, the values

of Ki and A are found from the slope and the intercept of the linear plot of

qt versus t0.5from Equation 2.5. The results are shown in Figure 4.11.
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Example:

Calculation for benzene.

( ) ( )
m

vCC
gmgq e

e

−= 0/

=
( ) .. = 6.4 mg/g

The slop= Ki= 0.1691 mg/g.min1/2

The intercept= A = 6.728

A.4 Thermodynamics Calculation

The thermodynamic parameters such as change in standard free

energy(∆ o), enthalpy(∆ o) and entropy(∆ o) can be determined by using

Equation 2.6, 2.7 and 2.8.

According to Equation 2.6, the ΔH°, ΔS°  parameters for BTX can be

calculated from the slope and intercepts of the plot of In Kd versus 1/T

respectively (Fig. 4.12), and ΔG° values are obtained from the equation

2.8. While the values of Kd calculated by using equation 2.7.

For example

qe will be calculated using equation 3.3 as follow

qe at 15Co = (50 - 7) 0.05 /0.25 = 8.6
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Kd for benzene at 15Co= qe/ Ce =1.229L/g.

lnKd =0.21

Slope =2997= -∆ o/R, R=8.314 J/mol.K∆ o= -25.16 KJ/ mol

Intercept= -3.47= ∆ o/R∆ o= -87.06 J/mol.K∆ o= -RT lnKd = -0.50 KJ/ mol.

A.5 Pseudo-First Order Kinetics Model

+ → (second order)
At  t=0        a       b (K is the second order rate constant)

At t=t        a-x       b-x          x

Rate= K [A]1[B]1

= K(a-x)(b-x)Rate = − = −
[A]= a-x[ ] = ( − ) = −
= 0



61[ ] = −Rate = − = − − == ( − )( − )
∫ ( )( ) = k∫ dt (method of partial fraction)

= ln ( )( ) (integrated rate law for second order)

Because ≫ ,b-a≈ , b-x≈= 1 ln ( − )
= 1 ln ( − )= 1 ln ( − )

Kb=K1, a= qe, x=qt= 11 ln qe(qe − qt)
tkqqq ete 1ln)ln( −=−

A.6 Pseudo-Second Order Kinetics Model

= ( − )



62

Where, is the pseudo second order rate constant of adsorption (g/mg.min),

qe is the amount of solutes sorbate sorbed at equilibrium (mg/g) and qt is

amount of solutes sorbate on the surface of the sorbent at any time t (mg/g).

Separating the variables in the previous equation  gives:

Integrating this for the boundary conditions t=0 to t=t and qt =0 to qt =qt

gives:

which is the integrated rate law for a pseudo-second order reaction.
The equation can be rearranged to obtain:

= 12 + 1
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في محلول باستخدام بذور البلح المكربنةBTXالدینامیكا الحراریة و ادمصاص مادة، الحركیة
مائي

إعداد
رشا فوزي خالد احمد

اشراف
شحدة جودة. د
محمد سلیمان. د

الملخص

تعرض العالم للعدید من كوارث تلوث المیاه السطحیة والجوفیة بمشتقات البترول في السنوات 

لذا كان من الضروري البحث عن . ٢٠١٠الأخیرة وخاصة تلك التي حدثت في خلیج المكسیك عام 

ء عدة تجارب لتنقیة المیاه من مشتقات ولتحقیق ھذا الھدف تم إجرا. وسائل التقلیل من آثاره الضارة

ویعتبر الكربون النشط الأكثر استخداما في عملیة الامتزاز . البترول باستخدام الكربون المنشط

.نظرا لبنیتھ المسامیة ولامتلاكھ مساحة سطح كبیرة وقدرتھ العالیة على الامتصاص

موارد المیاه الجوفیة بسبب تسرب البنزین والتلوین والزایلین ھي مركبات عضویة سامة تظھر في 

وكذلك التصریف غیر اللائق لنفایات الصناعات النفطیة ، الوقود من الخزانات تحت الأرض

.والبتروكیماویة

في ھذه الدراسة تم استخدام نواة ثمرة التمر لتحضیر الكربون المنشط حیث تم غسلھا بالماء 

ساعة وسحقت ثم مزجت مع ٢٤ئویة لمدة درجة م١١٠للتخلص من الشوائب ثم جففت على درجة 

ساعة ٢٤لمدة ١:٢كمادة منشطة بنسبة تشریب 3AgNOأوO25H·4CuSOأو 3FeClمحلول 

وقد جففت العینات المشربة بالمادة المنشطة على درجة حرارة . على درجة حرارة الغرفة

من اجل كربنة العینات وذلك على درجة حرارة Tube Furnaceثم استخدام جھاز ، مئویة١١٠

.درجة مئویة٧٠٠تنشیط تصل إلى 



ت

ھو الأفضل في امتزاز FeCl3وأشارت النتائج في ھذا العمل إلى أن الكربون المنشط باستخدام 

وقد تم دراسة اثر الوقت ودرجة الحرارة ودرجة الحموضة وكمیة . البنزین والتلوین والزایلین

وتشیر النتائج إلى أن فعالیة الامتزاز زادت . المستخدم على قدرة الكربون على الامتزازالكربون 

.بینما قلت الفعالیة بزیادة درجة الحرارة، بزیادة درجة الحموضة وكمیة الكربون والوقت

وفسرت نتائج الامتزاز التي تم الحصول علیھا عند الاتزان باستخدام معادلتي فریندلیش و 

.وقد استطاع نموذج لانجمویر تفسیر عملیة الامتزاز، لانجمویر

نظام الاعتماد من الدرجة : أجریت دراسة على ثلاثة أنظمة للحركة ھي، ولمعرفة آلیة الامتزاز

. الأولى ظاھریا ونظام الاعتماد من الدرجة الثانیة ظاھریا ونظام تدفق الدقائق إلى داخل الجسیمات

.الاعتماد من الدرجة الثانیةوقد وجد أن الامتزاز یتبع نظام 

والتغیر °ΔHوالمحتوى الحراري°ΔGتم أیضا حساب ثوابت الدینامیكا الحراریة وھي طاقة غیبس

Iodineأما شكل وحجم مساحة السطح للعینات فقد تم تحدیدھا باستخدام طریقة . °ΔSفي الفوضى 
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