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Abstract:  

The olfactory system is a common route pathogen entry in vertebrates. As a consequence, the 

nasopharynx-associated lymphoid tissue (NALT) needs to rapidly clear infections without 

compromising the sense of olfaction. NALT is present in teleost fish but its cellular and molecular 

mechanisms of action have not been investigated to this date. This dissertation focuses on three 

aims: 1. investigating the role of CCL19-like as a primordial chemokine in vertebrate nasal 

immunity, 2. determining the presence of tissue microenvironments within the olfactory organ 

(OO) of rainbow trout, and 3. understanding the immune contributions of olfactory sensory 

neurons (OSNs) in teleosts against viruses. In aim 1, we report six isoforms of CCL19-like 

chemokine in salmonids such as CK12. CK12 is mainly expressed in mucosal tissues and plays an 

important role in antiviral immunity. Although recombinant protein CK12 is not chemotactic in 

vitro, it induces infiltration of APCs and CD8+ T cells into OO of rainbow trout in vivo. In aim 2, 
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we demonstrate the presence of two different microenvironments (mucosal tip and neuroepithelial) 

in the OO of rainbow trout. The tip of the epithelium harbors clusters of CD8α+ cells whereas few 

numbers are found in the neuroepithelium. CD8a+ cell localization corresponds with a higher 

expression of chemokine and chemokine receptors in the tip versus the neuroepithelial side. We 

report that cell proliferation in response to viral nasal delivery occurs mainly at the tip. In aim 3, 

we unravel for the first time a new function for OSNs by which nasal rhadboviruses induce 

apoptosis in crypt neurons, a type of OSN, in rainbow trout via the interaction of viral G 

glycoprotein and the neuron TrkA receptor. CD8α+ T cells infiltrate to the OO within minutes of 

nasal viral delivery and this response was abrogated when TrkA was blocked. Infiltrating CD8α+ 

T cells originated from the microvasculature surrounding the olfactory bulb (OB) and not the 

periphery. In conclusion, this dissertation provides the first tissue, cellular and molecular 

characterization of teleost NALT and reveals a novel function of vertebrate OSNs in eliciting rapid 

nasal anti-viral immune responses in the OO and OB. 

 

 

 

 

 

 



viii 
 
  

 

 

TABLE OF CONTENTS 
 

I. Introduction 

 

1. The innate and adaptive immunity in vertebrates…………………………………… 1 

1.1. Innate immune molecules: chemokines……………………………………………………..…2 

1.2.  Innate vs adaptive immunity in teleost fish………………………………………..…………2 

1.3.  Chemokines in teleost…………………………………………………………………………….…….3 

2. Mucosal immunity in vertebrates………………………………………………..…………..4 

2.1. Nasal immunity in vertebrates………………………………………………………………………….5 

2.2. Nasal immunity in teleost…………………………………………………………………………………6 

3. The olfactory system of vertebrates………………………………………………………..7 

3.1. General organization of olfactory systems in vertebrates…………………………………8 

3.2. Teleost olfactory system…………………………………………………………………………………..8 

4. Neuro-immune interaction in mucosal surfaces in vertebrates……………….9 

II. Significance……………………………………………………………………..10 

III. Chapter 1………………………………………………………………………..12 

Sepahi, Ali, and Irene Salinas. "The evolution of nasal immune systems in vertebrates." Molecular 
immunology (2016). https://doi.org/10.1016/j.molimm.2015.09.008 

Article pages ……………………………………………………………………….………………..…131-138 (8 pages) 

https://doi.org/10.1016/j.molimm.2015.09.008


ix 
 
  

 

 

 

IV. Chapter 2…………………………………………………………………………21 

Sepahi, Ali, Luca Tacchi, Elisa Casadei, Fumio Takizawa, Scott E. LaPatra, and Irene Salinas. 
"CK12a, a CCL19-like chemokine that orchestrates both nasal and systemic antiviral immune 
responses in rainbow trout." The Journal of Immunology 11 (2017). DOI: 
https://doi.org/10.4049/jimmunol.1700757 

Article pages …………………………...…………...……3900–3913 (18 pages with supplementary data) 

 

V. Chapter 3……………………………………………………………………………39 

Sepahi, Ali, Elisa Casadei, Luca Tacchi, Pilar Muñoz, Scott E. LaPatra, and Irene Salinas. "Tissue 
microenvironments in the nasal epithelium of rainbow trout (Oncorhynchus mykiss) define two 
distinct CD8α+ cell populations and establish regional immunity." The Journal of Immunology 
(2016). DOI: https://doi.org/10.4049/jimmunol.1600678 

Article pages ………………………..……………...…… 4453–4463 (14 pages with supplementary data) 

 

VI. Chapter 4…………………………………………………………………………...53 

Sepahi, Ali, Aurora, Kraus, Chris Johnston., Jorge Galindo-Villegas., Cecilia Kelly., Diana Garcia-
Moreno., Pilar Muñoz., Victoriano Mulero., Mar Huertas and Irene Salinas. “Olfactory sensory 
neurons mediate ultra-rapid antiviral immune responses in teleosts in a TrkA-dependent 
manner”. Immunity. Under review 
 
Manuscript pages ………………………..……….…………...……...(42 pages with supplementary data) 

VII. Summary of findings.…………………………………………………………….96 

VIII. Conclusion…………………………………………………………………………97 

IX. References……………………………………………………………………………98 

Appendices 

https://doi.org/10.4049/jimmunol.1700757
https://doi.org/10.4049/jimmunol.1600678


x 
 
  

 

 

Appendix A………………………………………………………………………………102 

Sepahi, Ali, Héctor Cordero, Howard Goldfine, Maria Ángeles Esteban, and Irene Salinas. 
"Symbiont-derived sphingolipids modulate mucosal homeostasis and B cells in teleost fish." 
Scientific Reports 6 (2016). doi:10.1038/srep39054 

Article pages …………………………………………...……….. 1-13 (21 pages with supplementary data) 

 

Appendix B………………………………………………………………………………124 

Sanchez, Mariah, Ali Sepahi, Elisa Casadei, and Irene Salinas. "Symbiont-derived sphingolipids 
regulate inflammatory responses in rainbow trout (Oncorhynchus mykiss)." Aquaculture 
(2018).https://doi.org/10.1016/j.aquaculture.2018.05.051 

Article pages …………………….………………………...……... 932-939 (8 pages with supplementary data) 

 

Appendix C……………………………………………………………………….……..133 

Authors’ contributions  

Appendix D………………………………………………………………………………135 

Copyright permissions for papers that are not open access  

 

https://doi.org/10.1016/j.aquaculture.2018.05.051


1 
 

I. Introduction  

 

1. The innate and adaptive immunity in vertebrates 

The immune system is able to differentiate between self and non-self and protect hosts against 

infection. The immune system is traditionally divided into innate and adaptive immunity. Innate 

immunity is the first line of defense against pathogens, exerts rapid effector functions but is unable 

to recognize specific pathogens and therefore does not provide specific protection that avoids 

reinfection. In contrast, adaptive immunity, present in agnathans and gnathostomes, is 

characterized by the presence of two types of lymphocytes, B and T cells that bear highly diverse 

antigen-specific receptors that recognize antigens specifically (Table 1). 

Evolutionary speaking, the innate immune system appeared before the adaptive immune system, 

and some form of innate immunity probably exists in most of multicellular organisms ranging 

from small antimicrobial peptides to large phagocytic cells. Traditionally speaking, innate immune 

recognition is mediated by germ-line–encoded receptors and the specificity of each receptor is 

genetically predetermined and the innate immune system cannot have immunological memory (1, 

2). However, new studies on the innate immune system show that this concept is no longer accurate 

and innate immunity can also show some immune memory (3-5). In contrast with the innate 

immune system, during the development of lymphocytes, B and T cells receptors (BCR, TCR) are 

generated somatically in a way that endows each lymphocyte with a structurally unique receptor 

(1, 6) (Table 1).  
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*Table 1. Distinctive features of innate versus adaptive immunity 

 Innate immunity Adaptive immunity 

Receptors Germline-encoded and none germline-

encoded 

Antigen receptors are products of site-specific somatic 

recombination 

Distribution Subset-specific but non-clonal Antigen receptors are clonally-distributed 

Repertoire Limited Immense 

Memory 

response 

 some Yes 

Response time Minutes/hours Days 

Major cell types Phagocytes NK cells, dendritic cells  T cells and B cells, antigen presenting cells 

*The table is adapted from (7) 

 

The crosstalk between the innate and adaptive immune systems is essential for the adequate onset 

of adaptive immunity. This crosstalk is regulated by cells as well as soluble factors, including 

cytokines and chemokines (8, 9). Chemokines play key roles in the immune system and orchestrate 

the precise movement of leukocytes that is necessary to generate and deliver immune and 

inflammatory responses to specific anatomic sites (10).  

1.1.Innate immune molecules: chemokines  

Chemokines (chemotactic cytokines) are small proteins that direct the movement of circulating 

leukocytes to sites of inflammation or injury and induce activation of cells, especially phagocytic 

cells and lymphocytes (11). Around fifty chemokines have been identified in human and mice 

(12).  

In mammals, homeostatic chemokines such as CCL19 and CCL21, are known to play an 

important role in cell migration and secondary lymphoid organ’s organization and development 

(13, 14). Homeostatic chemokines are also important during microbial infection, for example 

studies showed that chemokine CCL19 expression is induced by viral infection and caused 

inflammatory responses (15).   
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1.2. Innate vs adaptive immunity in teleost fish 

The innate immune system of teleost fish is very similar to that of mammals (16, 17). In fish, the 

innate response is considered an essential component in combating pathogens due to the limitations 

of their adaptive immune system (18). The innate immune system of teleosts includes the 

epithelial/mucosal barrier, humoral parameters and cellular components (19). Evolutionary 

speaking, after cartilaginous fish, teleost are the earliest organisms with an adaptive immune 

system based on B and T cells (20). Teleost adaptive immune system is similar to that of mammals, 

as they have immunoglobulins, BCRs, TCRs, the major histocompatibility complex (MHC) class 

I and II, as well as a spleen and a thymus (20, 21). In spite of many similarities, the immune system 

of teleosts is different from that of mammals in a number of ways such as absence of lymph nodes, 

lack of germinal center formation, lack of class switch recombination and absence of a bone 

marrow (21, 22) (Table 2).  

*Table 2. Fundamental features of adaptive immune systems of teleost fish and mammals 

 Teleost Mammals 

Immunoglobulin IgM, IgD and IgT (or IgZ) IgM, IgG, IgA, IgD and IgE 

Activation-induced cytidine deaminase (AID) Yes Yes 

Class-switch recombination No Yes 

Somatic hypermutation +++ +++ 

Affinity maturation + +++ 

Memory responses + +++ 

TCR, CD4, CD8 Yes Yes 

MHC class I and II Yes Yes 

CD28, CD40, CD80, CD86, ICOS Yes Yes 

TH1, TH2 and TH17 cytokines Yes Yes 

Spleen, thymus and bone marrow Spleen and thymus but no true 

bone marrow 

Yes 

Mucosa-associated lymphoid tissue (MALT)  Yes Yes 

Germinal centers and lymph nodes 

 

No Yes 

*The table is adapted from (21) 

 

1.3. Chemokines in teleost 
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Teleosts have the highest number of chemokine genes in vertebrates, for example more than 100 

chemokine genes have been reported in zebrafish (23) a much larger number than in human with 

44 chemokine genes. Chemokines play a central role in the immune response in all vertebrates 

including teleost fish through the coordination of immune cell localization and function (24). CC 

and CXC chemokines are the main chemokine families in teleost fish (24).  Chemokine CCL19 

molecules have not been reported in amphibians but they are present in teleost fish. In zebrafish, 

for instance, three copies of CCL19 genes were reported (25). Previous studies reported three 

CCL19 genes in salmonids, CK10, CK12a, and CK12b (26, 27). However, little information is 

available regarding the functionality of CCL19 chemokines in rainbow trout. In the Chapter two 

of this dissertation, we reported three new CCL19-like genes in salmonids: CK10b, CK13a and 

CK13b. Moreover, we showed the role of chemokine CCL19 in nasal and systemic immune 

responses in rainbow trout (Published in The Journal of Immunology 2017) (28).  

2. Mucosal immunity in vertebrates 

Mucosal surfaces are the first line of defense against pathogen entry and are equipped with 

mucosa-associated lymphoid tissues (MALT). In endotherms, MALT includes secondary 

lymphoid tissues that contain both well-organized lymphoid structures (organized MALT, O-

MALT) as well as scattered or disseminated lymphoid cells (diffuse MALT, D-MALT) (29). 

According to their anatomical location, MALT is subdivided into the gut-associated lymphoid 

tissue (GALT), bronchus-associated lymphoid tissue (BALT), nasal lymphoid tissue (NALT), 

among others. Table 3 summarizes the presence of different MALT in vertebrates. 

*Table 3. Presence of different mucosal lymphoid tissues in vertebrates 

Mucosal area Present in 

MALT All vertebrates 

GALT All vertebrates 

Peyer’s patch Birds, mammals 

Mesenteric lymph node Birds, mammals 

Lamina propria leucocytes in gut All vertebrates 

Intraepithelial lymphocytes in gut All vertebrates 
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NALT Birds, mammals, teleost fish, lungfish 

BALT Birds, mammals 

Skin-associated lymphoid tissue (SALT) Fish, amphibians 

Gill-associated lymphoid tissue (GIALT) Fish 

*The table is adapted from (30) 

 

D-MALT such as lamina propria in gut is present in all vertebrates from agnathans to mammals 

whereas O-MALT such as peyer’s patch in gut is mainly reported in birds and mammals (30). 

Similarly, D-NALT is present in all vertebrates from teleost to mammals whereas primitive O-

NALT structured first appeared in lungfish and are composed of lymphocytic aggregates of both 

B and T cells. These structures may have evolved into more organized structures such as the tonsils 

of mammals (Figure 1) (31). However, Most of the mucosal immunity studies focus on GALT 

and that the biology of NALT is poorly understood, even in mammals. 

 

 

2.1. Nasal immunity in vertebrates 

NALT has been traditionally thought to protect terrestrial vertebrates against inhaled antigens. 

NALT is strategically located in the upper part of the respiratory tract of terrestrial vertebrates. For 

Figure 1: Phylogenetic tree showing the presence of NALT (organized and diffuse) in vertebrates. 
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instance, murine NALT consists of a pair of O-NALT structures located on the palate at the 

entrance to the nasopharyngeal duct and the less well organized diffuse lymphoid tissue lining the 

nasal passages (D-NALT) (32, 33).   

In mammals, the type of immune response that takes place in NALT as a result of infection or 

vaccination usually depends on the type of antigen. For example, immunization with cholera toxin 

in mice elicits IgA responses as well as a T cell response (34, 35). On the other hand, immunization 

with protein-containing microparticles, elicits primarily IgG responses (36). However, cellular 

responses such as IFNγ-producing CD4+ and CD8+ T cells are often observed in NALT following 

nasal infection or vaccination. For instance, viruses such as influenza (37-39), reovirus (40) and 

Sendai virus (41), promote CD8+ T cell responses supporting the idea that CD8 T cells play an 

important role in removing virally infected cells in NALT. The first chapter of this dissertation 

is a review paper on the evolution of NALT in vertebrates (Published in Molecular Immunology 

2016) (31). 

2.2. Nasal immunity in teleost 

Until recently, three MALT have been characterized in teleost fish: GALT, SALT and GIALT 

(30). Recently, histological examination of the olfactory organ of four different families of 

teleost fish showed that fish olfactory organs have an associated lymphoid tissue. This study 

included a preliminary characterization NALT at the cellular and molecular level in rainbow 

trout with a focus on B cells and immunoglobulins and demonstrated that NALT is conserved in 

vertebrates (42). However, very little was known about the cells and molecules that are 

implicated in the nasal immune response against different types of antigen in teleost fish. 
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Similar to other teleost MALT, teleost NALT harbors diffuse lymphoid cells only, lacking an O-

NALT (42). However, the histological regionalization present in teleosts and mammals led us to 

hypothesize that regional immunity may exist in different portions of the vertebrate nasal cavity. 

Chapter 3 of this dissertation demonstrates the presence of two different microenvironments 

(mucosal and neuroepithelial) in the olfactory organ of rainbow trout (published in The Journal 

of Immunology, 2016) (43).  

3. The olfactory system of vertebrates 

3.1. General organization of olfactory systems in vertebrates 

Olfactory systems are one of the most ancient and conserved sensory systems in vertebrates (44). 

Strikingly, the molecular and neurological arrangements of zebrafish and mouse olfactory systems 

are highly conserved (45). Most terrestrial vertebrates possess two distinct olfactory systems, the 

main olfactory system and the vomeronasal system. The surface of the nasal cavity is comprised 

of squamous epithelium, respiratory epithelium, and olfactory epithelial types in the main olfactory 

system (46). The olfactory epithelium of vertebrates has been examined extensively (47). It 

consists of three basic cell types, olfactory receptor cells, supporting cells and basal cells (47). The 

human olfactory epithelium has similar cellular characteristics to that of other vertebrates (47).  

The vomeronasal organ, on the other hand, is not present in fish, birds, old word monkeys, apes, 

or humans (48-50). The vomeronasal organ is located at the base of the nasal septum or in the roof 

of the mouth in most amphibians, reptiles and mammals and its main function is pheromone 

detection (51, 52). 

In the main olfactory system, the receptor cells project their axons to the main olfactory bulb. 

However, in the vomeronasal system the receptor cells project their axons to the accessory 
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olfactory bulb (53-55). The olfactory epithelium and vomeronasal organ are also different with 

respect to their G-protein-coupled receptors and types of olfactory receptors. In other words, the 

olfactory epithelium expresses olfactory receptor (OR) genes or trace amine-associated receptors 

(TAARs) genes whereas the vomeronasal organ expresses vomeronasal receptors, V1R or V2R 

genes (53, 56, 57). Ciliated neurons express ORs and TAARs and they ate coupled to Gαolf. 

However, in microvillus neurons V1Rs and V2Rs are coupled to Gαi and Gαo in mammals (53) 

and Gαq in teleost (50).  

3.2. Teleost olfactory system 

In vertebrates, the main olfactory sensory neurons (OSNs) are located in the sensory epithelium, 

which in fish is called the olfactory rosette due to the leaf-like structures of the lamellae resembling 

a miniature rose (Figure 1) (58). The olfactory system of teleost fish consists of two paired nasal 

cavities located at the dorsal part of the head. Unlike terrestrial vertebrates, there is no contact 

between the olfactory and respiratory systems including the oral cavity. The fish olfactory organ 

is comprised of a single olfactory system and lacks the vomeronasal organ and the accessory 

olfactory bulbs (59, 60). Although fish do not show anatomic segregation in two olfactory 

subsystems, the teleost single olfactory epithelium contains different types of OSNs. The main 

OSNs are ciliated and microvillous neurons. Interestingly, fish feature a third OSN type within 

their olfactory epithelium, the crypt neuron (61, 62).  

Crypt neurons were originally identified at the electron microscopy level, they are oval to egg-

shaped neurons that are completely surrounded by one or two supporting cells (62). Crypt neurons 

are present in cartilaginous fish, primitive bony fish, and also many modern fish species (63). They 

are located in the upper third of the olfactory epithelium and their axons travel towards the basal 

lamina and join the axon bundles of other OSNs (63). Thus, although not grouped in one organ, 
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the scattered crypt cells present in teleost olfactory organ are the functional equivalent to the 

vomeronasal organ of other vertebrates. 

 

Crypt neurons appear to express the G-proteins Gi1b, Gαo and Gαq as well as adenylate cyclase 

type-III and the glial marker protein S100 (49, 50, 64-66). Importantly, crypt neurons only express 

one type of olfactory receptor, the vomeronasal receptor 1-like Ora4. Additionally, crypt neurons 

can be identified by their tropomyosin-related kinase A receptor (TrkA) immunoreactivity (65, 67, 

68). The specific odors recognized by crypt neurons and their function are still enigmatic although 

recent evidence suggests that these neurons are responsible for kin recognition in zebrafish (69).  

4. Neuro-immune interaction in mucosal surfaces in vertebrates 

The interactions between immune system and nervous system are complex and multidirectional. 

The neurons can sense immune signals and immune cells express neurotransmitters and their 

receptors (70). The similarity between these two systems suggests that they may have the 

common ancestors through evolution (71). Neurons at mucosal surfaces such as nose are in 

direct contact to environmental antigens. A growing body of evidence indicates that neurons 

such as nociceptive neurons can sense microbial products as alarming signals (70, 72). Neurons 

in the OO of vertebrates are constantly exposed to environmental pathogens. Additionally, OSNs 

send signals to the CNS via the OB, therefore providing a fast and direct link between the 

Figure 1: General structure of teleost olfactory organ A) 

Light micrograph of the olfactory rosette of adult rainbow 

trout. B) Diagram of the olfactory organ in teleost fish and 

its connection to the brain (B) via the olfactory bulb (OB). 

OE (olfactory epithelium), R (rosette). 
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external microbial environment and the brain. This fast route is exploited by neurotropic viruses 

such as HSV and influenza which target OSNs to infect CNS in animals (73, 74). 

As mentioned earlier, neurons from the CNS have been shown to produce different immune 

mediators in response to infection or injury, particularly cytokines and chemokines. However, to 

date, the OSNs of any species have not been implicated in any immune role. Chapter 4 of this 

dissertation discusses the immunological role of OSNs and interaction of crypt neurons TrkA 

receptor and viral antigens (Immunity, under review).  

Overall, the goal of this dissertation is to shed light on the nasal immune system and important 

immunological players against viral antigens in teleost. This study showed the important role of 

CCL19-like chemokines in nasal immunity and revealed the presence of microenvironments in 

OO to minimize damages to olfactory neurons of rainbow trout. We discovered the immunological 

role of OSNs against neurotropic viruses and showed the interaction of viral glycoprotein and 

TrkA receptor on crypt neurons. We demonstrated that delivery of viral antigens intranasally 

results in neuronal activation and infiltration of CD8 T cells from OB microvasculature to OO 

within minutes in TrkA dependent manner. 

This dissertation has three aims: 1st. determining the role of CCL19-like as a primordial chemokine 

in vertebrate nasal immunity, 2nd. uncovering the presence of tissue microenvironments and 

regional immunity within the nasal mucosa of rainbow trout, and 3rd. establihsing the 

immunological role of olfactory sensory neurons in teleost. 

II. Significance 

This dissertation is significant both from a basic and an applied point of view. Our understanding 

of the cross talk between olfaction and immunity is very limited. By defining how OSNs respond 



11 
 

to pathogens, we can further infer how vertebrates sense and respond to environmental cues and 

how infection and olfactory detection of pathogens contributes to the behavior, success and 

survival of species. These studies will also shed light on novel aspects of neuroimmune 

interactions, usually studied in the gut or skin. 

Teleosts express a limited number of olfactory and vomeronasal receptors and therefore represent 

a simpler model system for the study of OSNs and their role in immunity compared to mammals.   

Thus, studying teleost nasal immunity can potentially reveal primordially conserved principles of 

nasal immunity and/or novel mechanisms and pathways so far overlooked in mammalian studies. 

Particularly, since teleosts only have D-NALT, understanding nasal immune responses in teleosts 

will establish the so far unclear contributions of D-NALT to the overall nasal immune response. 

As an example, this can help understand the effectiveness of nasal vaccines in humans who have 

undergone tonsil or adenoid surgical removal. 

From an applied point of view, this dissertation carries important significance for the field of 

aquaculture. At present, about 50% of the total seafood that we eat originates from aquaculture 

(FAO, 2012). The sustainability of this industry strongly depends on the prevention of infectious 

diseases, which cause critical economic losses. Nasal vaccination appears as a novel and reliable 

method of vaccination that can avoid disease related losses and guarantee a sustainable production 

of fish protein via the aquaculture industry. By understanding the immunological basis of nasal 

vaccines in this dissertation, we will be able to expand nasal vaccination to other fish species and 

other diseases. 
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a  b  s  t  r  a  c  t

The  olfactory  organs  of  vertebrates  are  not  only  extraordinary  chemosensory  organs  but  also  a  powerful
defense  system  against  infection.  Nasopharynx-associated  lymphoid  tissue  (NALT)  has  been  traditionally
considered  as  the  first  line  of  defense  against  inhaled  antigens  in  birds  and mammals.  Novel  work  in
early  vertebrates  such  as teleost  fish  has  expanded  our  view  of nasal  immune  systems,  now  recognized
to  fight  both  water-borne  and  air-borne  pathogens  reaching  the  olfactory  epithelium.  Like other  mucosa-
associated  lymphoid  tissues  (MALT),  NALT  of  birds  and  mammals  is  composed  of organized  lymphoid
tissue  (O-NALT)  (i.e., tonsils)  as  well  as  a diffuse  network  of  immune  cells,  known  as  diffuse  NALT  (D-
NALT).  In  teleosts,  only  D-NALT  is  present  and  shares  most  of  the  canonical  features  of  other  teleost
MALT.  This  review  focuses  on  the  evolution  of NALT in  vertebrates  with  an  emphasis  on  the most  recent
findings  in  teleosts  and  lungfish.  Whereas  teleost  are  currently  the  most  ancient  group  where  NALT  has
been  found,  lungfish  appear  to  be  the  earliest  group  to  have evolved  primitive  O-NALT  structures.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Historical aspects

Tonsillectomy or the surgical removal of tonsils is a very ancient
practice. Approximately 2000 years ago, Aulus Cornelius Celsus, a
Roman writer and physician, described tonsil surgery by using his
fingers to remove tonsils (Koempel et al., 2006; Younis and Lazar,
2002). Today, 530,000 children under the age of 15 have theirs ton-
sils or adenoids removed in the US every year and it is still one of
the most common surgical procedures in children in this country
(Cullen et al., 2009; Roland et al., 2011).

The first attempt to nasally vaccinate humans against smallpox
was reported in the Golden Mirror of Medicine, Chinese medi-
cal text in 1742. Nasal vaccination was done by using powdered
scabs that were blown to the nose or filling the nose with a vesi-
cle smeared cotton (Plotkin, 2014). Thus, tonsillectomy and nasal
vaccination precede our understanding of nasal immune systems.

Anatomically, the human Waldeyer’s ring was first described
in 1884 by von Waldeyer-Hartz as a ring of lymphoid tissue
in the pharyngeal wall (Cocquyt et al., 2005; Perry and Whyte,
1998). Nasopharynx-associated lymphoid tissue (NALT) was first
described as a paired of lymphoid cells accumulations in the nasal
passage of rat in 1947 (Kelemen, 1947) whilst the mouse NALT
was first described few decades later (Belal et al., 1977). In the
subsequent years, the NALT of other mammals such as monkeys

∗ Corresponding author.
E-mail address: isalinas@unm.edu (I. Salinas).

(Harkema et al., 1987; Loo and Chin, 1974) and horses (Mair et al.,
1987, 1988) were described. However these studies did not include
functional aspects of the nasal immune system (Kuper et al., 1992).

One of the major breakthroughs in nasal immunity field took
place in the early 2000, when the first nasal vaccine for use in
humans against influenza virus was  licensed in the USA (FluMist)
(Chen et al., 2006). To date, this vaccine remains the only nasal
vaccine licensed for human use. The effectiveness and availability
of this vaccine has helped the NALT community to expand basic
scientific knowledge on nasal immune responses. Intranasal vacci-
nation offers a number of advantages over other vaccination routes
(Neutra and Kozlowski, 2006). Apart from the fact that is needle
free and requires small amounts of antigen, intranasal delivery has
been shown to stimulate not only local nasal immunity but also sys-
temic immune responses as well as mucosal immune responses in
distant mucosal sites (Fukuyama et al., 2012; Lycke, 2012; Neutra
and Kozlowski, 2006; Pabst, 2015).

2. Anatomy of NALT

In endotherms, mucosa-associated lymphoid tissues (MALT)
comprise a network of secondary lymphoid tissues that con-
tain both well-organized lymphoid structures (organized MALT,
O-MALT) and scattered or disseminated lymphoid cells (diffuse
MALT, D-MALT) (Brandtzaeg and Pabst, 2004). Examples of O-MALT
include the Peyer’s patches in the gut or the tonsils in the nasopha-
ryngeal cavity. Generally speaking we know very little about NALT
(both organized and diffuse) compared to the gut-associated lym-

http://dx.doi.org/10.1016/j.molimm.2015.09.008
0161-5890/© 2015 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic diagram of the evolution of nasal immune systems in vertebrates.

phoid tissue (GALT). Furthermore, most mammalian studies focus
on organized NALT (O-NALT), whereas diffuse NALT (D-NALT) has
received very little attention. It is worth noting that the term
“non-NALT” can also be found in the literature instead of D-NALT
(Asanuma et al., 1997; Lee et al., 2015; Tamura et al., 1998). Addi-
tionally, “nasal passage (NP) leucocytes” is another term that can
be found in the mammalian literature referring to D-NALT (Hiroi
et al., 1998; Rodríguez-Monroy et al., 2007; Shikina et al., 2004).
Despite the fact that the Society for mucosal immunology does
not recommend the use of O-MALT and D-MALT (Brandtzaeg et al.,
2008), numerous mammalian immunologists continue to use this
terminology. Moreover, from the evolutionary immunologist point
of view, O-NALT and D-NALT are useful terms considering that early
vertebrates lack O-NALT (Fig. 1). In the next part of this review, we
will summarize the basic anatomical aspects of NALT in different
vertebrate groups.

2.1. Rodents and humans

The anatomy and structure of O-NALT have been widely stud-
ied in rodents (Mestecky et al., 2005). Murine NALT is composed
of a pair of organized mucosal organs located on the roof of the
soft palate at the entrance to the nasopharyngeal duct (Liang et al.,
2001). NALT in mouse is considered by some to be analogous to the
Waldeyer’s ring in human which consists of the adenoids and ton-
sils (Kuper et al., 1992). Thus, in both mice and humans, O-NALT is
strategically placed in the upper airways to combat air-borne anti-
gens. Perhaps, this anatomical observation historically hindered the
investigation of NALT in non-terrestrial vertebrates.

It is important to highlight that O-NALT of rodents and humans
appears to be significantly different anatomically speaking. In
rodents, NALT is located in a single localization bilateral at the
entrance of the nasopharyngeal duct whereas in human studies
conducted in children, O-NALT was mostly found in the middle
concha and it consisted of disseminated lymphoid, subepithelial
follicles (Debertin et al., 2003). The results from this study indicated
that children have O-NALT structures in addition to a Waldeyer’s
ring (Debertin et al., 2003). Additionally, these differences under-
score the fact that mice may  not be the best models for human nasal
immunity studies.

Similar to the Peyer’s patches in the gut, O-NALT structures are
located underlying specialized portions of the epithelium known
as follicle-associated epithelium (FAE). Additionally, high endothe-
lial venules (HEVs) control lymphocyte trafficking into O-NALT
(Kiyono and Fukuyama, 2004). O-NALT structures also have dis-
tinct B-lymphocyte and T-cell zones (Bailey et al., 2005; Brandtzaeg
and Pabst, 2004). Germinal center formation occurs in O-NALT
in response to infection or antigenic stimulation (Zuercher et al.,
2002).

As mentioned earlier, both mice and humans also possess dif-
fuse lymphoid cells situated on the mucosa of the nasal passages
called (D-NALT) (Liang et al., 2001). D-NALT includes myeloid cells
and lymphoid cells (both B and T cells). The similarities and differ-

ences between mammalian O-NALT and D-NALT are summarized
in Table 1.

2.2. Other mammals

In this section, we  are going to focus on reports pertaining four
groups of mammals: cattle, sheep, canines and rabbits. The studies
in these species have been motivated by the importance of nasal
vaccination in veterinary medicine.

In cattle, the tonsil (O-NALT) was  first described in 1992 (Schuh
and Oliphant, 1992). Cattle tonsils are located at the entry of the
pharynx and are equivalent to the Waldeyer’s ring in humans
(Rebelatto et al., 2000). During development, adenoid can be
detected at 95 days of gestation. Moreover, ciliated, microvillus
cells and a loose accumulation of mononuclear cells in lamina
propia is visible at 120–150 days of gestation. Small lymphoid folli-
cles form at 4–5 months of gestation following by the appearance of
goblet cells after 5 months of gestation (Schuh and Oliphant, 1992).
Tonsils are well developed at birth in cattle. However, germinal cen-
ter formation and increase in MHC  class II expression only occur
in the late natal and early post-natal period (Schuh and Oliphant,
1992). Moreover, cattle infected with foot-and-mouth disease virus
(FMDV) showed increased expression of TLR-4 in NALT, indicat-
ing the importance of type I IFN responses in NALT against FMDV
(Zhang et al., 2006).

Sheep O-NALT structures, similar to horse O-NALT, are clustered
posterior to the opening of the Eustachian tube (Mair et al., 1988;
Stanley et al., 2001). Thus, ovine NALT is highly organized and con-
sists of discrete B and T cells areas similar to those found of humans
and rodents. Furthermore, it has been shown that sheep NALT is
covered by ciliated and non-ciliated cells which play an important
role in antigen uptaking and processing (Stanley et al., 2001).

Peeters et al. reported the absence of typical O-NALT structures
in the nasal mucosa of dogs without respiratory disease (Peeters
et al., 2005). Waldeyer’s ring in the dog consists of the lingual ton-
sil, the palatine tonsils, the soft palate tonsil and the pharyngeal
tonsil or adenoid (Billen et al., 2006). The nasopharyngeal mucosa
in dogs appears uniform and the nasopharyngeal tonsil is not obvi-
ous (Billen et al., 2006). The latter might be due to the fact that dogs
breathe through both the nose and the mouth; therefore, exposure
of the canine nasal and nasopharyngeal mucosa to inhaled anti-
gens is decreased. This may  explain why the pharyngeal tonsil is
less developed in dogs than horses, cattle, sheep and pigs (Billen
et al., 2006).

Casteleyn et al. (2010) histologically examined the presence of
NALT in rabbits by sectioning the nasal cavity. Rabbits appear to
have well organized NALT in their nasal cavities including clus-
tered I and II lymphoid follicles separated by interfollicular regions
as well as isolated lymphoid follicles. Interestingly, in the middle
third of rabbit nasal cavity, NALT occupied the largest space. The
rabbit and human nasal cavities occupy a similar volume consid-
ering their respective body masses. However, in comparison with
rodents, O-NALT in the rabbit is more abundant. Therefore the sim-
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Table  1
The differences between mice O-NALT and D-NALT.

O-NALT D-NALT References

Number of lymphocytes + ++ Rodríguez-Monroy et al. (2007)
T/B cells ratio 0.76–1.2 0.33–1.0 Asanuma et al. (1997),

Rodríguez-Monroy et al. (2007)
Percentage of B cellsa 47–79% 55–74% Liang et al. (2001),

Rodríguez-Monroy et al. (2007)
Plasma cells + ++ Rodríguez-Monroy et al.,

(2007)
IgM+ B cells 47 or 85% 0.5–9% Rodríguez-Monroy et al.

(2007), Shikina et al. (2004),
Smith et al. (2013)

IgA+ B cells 1–1.6% 7.7–10.8%
B220+hi B cells Present Present Rodríguez-Monroy et al. (2007)
B220+hi B220+low B cells Absent Present
IgM/IgG/IgA secreting cells
ratio (Uninfected)

10/3/3 10/3/3 Asanuma et al. (1997)

IgM/IgG/IgA secreting cells
ratio (infected with influenza)b

4/50/40 1/25/10

IgM/IgG/IgA secreting cells
ratio(immunized with Cry1Ac
protoxin)c

1/80/125 1/125/350 Rodriguez-Monroy and
Moreno-Fierros (2010)

IgM/IgG/IgA secreting cells
ratio(immunized with cholera
toxin)

1/30/65 1/90/160

IgA  isotype class switching Present Absent Shikina et al. (2004)
Class switch
recombination-associated
molecules

Present Absent

Long-lasting, specific effector
antibody responsee

Absent Present Liang et al. (2001)

Frequency of AFCse + ++ Liang et al. (2001)
Generation of virus-specific
antibody forming cells (AFCs)e

+ +

Infected/uninfected IFN-�
production ratiod

∼1000 ∼700 Asanuma et al. (1997)

Infected/uninfected IL4
production ratio

1 2

CD3+ T cells 30–40% 13–20% Rodríguez-Monroy et al.
(2007), Smith et al. (2013)

CD4+/CD8+ T cells ratio 3–4.4 1.5–6.4 Asanuma et al. (1997), Heritage
et al. (1997),
Rodríguez-Monroy et al.
(2007), Smith et al. (2013)

�� /�� of CD3+ T cells ratio 49–100 2.5–3 Heritage et al. (1997)
�� /�� of CD4+ CD8− T cells
ratio

49–100 49–100

��  /�� of CD4− CD8+ T cells
ratio

49–100 9–19

��  /�� of CD4− CD8− T cells
ratio

0–1 0–1

Type of CD4+ T cells Th0 Th2 Hiroi et al. (1998), Liang et al.
(2001)

Summary of major immune characteristics of mammalian organized and diffuse NALT in mice: ++ = high, + = low.
a C57BL/6 mice have higher B cells percentage compared to BALB/c mice.
b 7 days post infection (dpi) with influenza.
c BALB/c mice immunized intranasally.
d 7 dpi with influenza.
e shows responses after influenza virus infection.

ilarities between human and rabbit nasal cavities suggest that the
rabbit is a better model for intranasal vaccine development than
rodents are (Casteleyn et al., 2010). Additionally, rabbits have a
D-NALT characterized by intraepithelial and lamina propria lym-
phocytes (Casteleyn et al., 2010).

2.3. Birds

Most of our knowledge on avian NALT comes from studies in
chicken and duck. The nasal cavity in chickens is cone-shaped
and separated into the right and left sides by a cartilaginiform
nasal septum. The majority of the nasal cavity is occupied by the
turbinates which play a major role in preventing the entry of dust
and microbes (Kang et al., 2013). Lymphoid nodules are the main

O-NALT structure in chickens. Nodules are made of B cells with
developed germinal centers, surrounded by a coat of CD4+ T cells.

Chicken D-NALT, on the other hand, consists mostly of CD8+ T
cells that can be found in the epithelium and in the lamina propria of
the nasal mucosa (Kang et al., 2013; Ohshima and Hiramatsu, 2000).
Additionally, scattered lymphoid cells are found in the paranasal
organs of chickens (nasolacrimal ducts, lateral nasal glands and
their ducts) (Bang and Bang, 1968; Kang et al., 2013).

NALT appears to be an important inductive site for the chicken’s
mucosal immune system, however, the low absorption rates of
antigen by the nasal mucosa may  limit induction of effective nasal
immune responses (Kang et al., 2013).

The nasal cavity in duck is cone-shaped and separated into right
and left sides by a nasal septum (Kang et al., 2014). At the caudal
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regions of the nasal cavity there are two pairs of symmetrical lym-
phoid aggregates; one pair located on the dorsal side of the choanal
cleft and the other pair on both sides of nasal septum (Kang et al.,
2014). The FAE found in duck O-NALT, unlike that of rodents, con-
tains almost no goblet cells. The use of liquid vaccines for ducklings
and dry powder vaccine sprays for adult ducks has been recom-
mended because liquid vaccines are unlikely to reach the NALT
located on the nasal septum in adult ducks (Kang et al., 2014).

Like the chicken, ducks have diffuse lymphoid tissue and
intraepithelial lymphocytes located within their nasal walls and
turbinalia randomly (Kang et al., 2014).

2.4. Reptiles and amphibians

Unfortunately, NALT has been studied neither in reptiles nor
in amphibians. This is despite the fact that chelonids are affected
by upper respiratory tract disease (URTD) caused by Mycoplasma
agassizii (Brown et al., 1999). The infection results in nasal dis-
charge, nasal wheeze, conjunctivitis and inflammation of the oral
mucosa. The contribution of NALT responses in M. agassizii infected
chelonids should be investigated

Amphibians are known to have both diffuse and organized
GALT and NALT (Goldstine et al., 1975). Tonsil-like structures were
found in the lingual and sublingual regions of anuran amphib-
ians (Myers, 1928). We  further identified lymphoid aggregates
associated with the olfactory epithelium of Lithobates sp.  Tadpoles
(Tacchi et al., 2015). Based on histological examination, these were
present immediately underneath the olfactory epithelium but did
not appear as organized as those found in lungfish. Contrary to birds
and mammals, amphibian O-MALT is characterized by lymphoid
nodules or aggregates that lack B and T cell zones or GC formation
(Goldstine et al., 1975).

2.5. Sarcopterygian fishes

Sarcopterygian fish such as lungfish are the closest living sis-
ter species to all tetrapods (Zardoya and Meyer, 1996). Moreover,
lungfish represent the transition from aquatic to terrestrial envi-
ronments during vertebrate evolution and are exposed to both
air-borne and water-borne antigens. We  recently discovered that
African lungfish (Protopterus sp.)  may  be the most ancient verte-
brate where O-MALT, including O-NALT, is found (Fig. 1). O-NALT
structures in lungfish are FAE-associated or embedded in the
mucosa of the upper and lower jaw (Fig. 2). They are mostly com-
posed of lymphocytes both B and T cells and do not display GC
formation (Tacchi et al., 2015). In response to bacterial infection,
lungfish O-NALT architecture and cellular composition changes,
with an increase in the percentage of T and B cells compared to
uninfected controls. Although not covered in the same study, we
anticipate the presence of D-NALT in lungfish, but their character-
istics need to be investigated. The discovery of these primordial
forms of O-NALT in lungfish along with the ability to infect these
animals intranasally in the laboratory makes this species an inter-
esting system for investigating the structure, organogenesis and
function of O-MALT in ectotherms.

2.6. Teleosts

Until recently, three MALT have been characterized in teleost
fish: gut-associated lymphoid tissue (GALT), skin-associated lym-
phoid tissue (SALT) and gill-associated lymphoid tissue (Salinas
et al., 2011). However, we have discovered that NALT is likely
conserved in all jawed vertebrates as it was found in teleost
fish. Teleost NALT resembles other teleost MALT in many regards
such as the presence of diffuse lymphoid cells with no organized
structures present, a predominant constitutive presence of IgT+

Fig. 2. (A) Light micrograph (hematoxylin and eosin stain) of paraffin sections of
the  olfactory organ of an Australian eel (Anguila australis) showing the presence
of diffuse NALT in the form of scattered lymphocytes (black arrow heads). (B) Light
micrograph (hematoxylin and eosin stain) of the olfactory organ of the African lung-
fish  (Protopterus dolloi) showing the presence of a primordial lymphoid aggregate
(yellow arrows). NC: nasal cavity; OC: oral cavity; OE: olfactory epithelium. Scale
bar = 100 �m.

B cells and secreted IgT compared to systemic lymphoid tissues
and the presence of an associated microbiota coated by mucosal
immunoglobulins (Tacchi et al., 2014). This discovery broke the
previous paradigm of nasal immune systems being a first line of
defense against inhaled antigens.

Histological examination of the NALT of four different families
of teleost fish showed that teleost NALT harbors diffuse lymphoid
cells but lacks O-NALT (Tacchi et al., 2014). One of the key features
of teleost MALT is the preponderant presence of IgT+ B cells and
secreted IgT into mucosal secretions (Zhang et al., 2010). Trout D-
NALT contains abundant B cells, 48.5% are IgM+ B cells and 51.5% are
IgT+ B cells, following the canonical B cell composition of other trout
MALT. Similarly, the ratio of secreted IgT and secreted IgM in nasal
mucus is much higher than that in plasma, again highlighting that
trout NALT shares the main features of other MALT in teleosts. In
gut and skin, previous studies have shown that specific IgT but not
IgM responses occur in the local mucosal environment in response
to parasitic infections in rainbow trout (Xu et al., 2013; Zhang et al.,
2010). Although we detected high levels of IgT in the nasal secre-
tion of trout in the absence of antigenic stimulation, specific IgT
responses in the olfactory organ of teleosts in response to infection
or vaccination are yet to be investigated. We  have demonstrated
striking protection levels conferred by nasal vaccines against viral
and bacterial pathogens of fish in rainbow trout however, the mech-
anisms underlying the observed protection are not well understood
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Table  2
Requirements for the formation of NALT in mice.

KO mice with Organogenesis of NALT References

Id2 Absent Fukuyama et al. (2002), Yokota et al. (1999)
Ror-�t Not required/well developed Harmsen et al. (2002), Sun et al. (2000)
Lt� Disorganized but developed with fewer number of lymphocytes De Togni et al. (1994), Fukuyama et al. (2002), Harmsen et al. (2002)
aly/aly Disorganized but developed with fewer number of lymphocytes Fukuyama et al. (2002), Miyawaki et al. (1994)
IL-7r� Disorganized but developed with decreased number of lymphocytes Adachi et al. (1998), Fukuyama et al. (2002), Harmsen et al. (2002)
plt/plt Developed with decreased number of lymphocytes Fukuyama et al. (2006), Rangel-Moreno et al. (2005)
Microbiota Developed with delay Randall and Mebius (2014)
LT� Developed but disorganized Fukuyama et al. (2002), Koni et al. (1997)
TRANCE Developed but disorganized Ache and Young (2005), Harmsen et al. (2002)
CXCL13/CCL19/CCL21 Developed but disorganized Ansel et al. (2000), Fukuyama et al. (2006), Rangel-Moreno et al. (2005)

and may  include both humoral and cellular immunity (LaPatra et al.,
2015; Tacchi et al., 2014).

Using a live attenuated infectious hematopoietic necrosis virus
(IHNV) model of nasal vaccination, we were able to show that trout
NALT mounts strong innate and adaptive immune responses over
the course of a 28 day experiment. Whereas the expression of innate
immune genes peaked at day 4 post vaccination, expression of
adaptive immune genes peaked at day 14. Additionally, nasal vac-
cination resulted in stimulation of immune genes not only in NALT
but also in the head-kidney (Tacchi et al., 2014).

Altogether, our results clearly reveal that early bony vertebrates
evolved olfactory organs with strong defense functions that serve
as a primary mucosal immune barrier against pathogens. More-
over, the discovery of teleost NALT and detection of nasal immune
responses in trout in response to vaccination underscores the fact
that strong nasal immune responses in vertebrates can take place
in the absence of O-NALT. Currently, surgical ablation of O-NALT in
mice is used as a tool to evaluate the specific contribution of O-NALT
to mammalian nasal immune responses. This method is complex
and may  result in incomplete removal of all O-NALT cells. Thus, we
propose that teleost NALT is an excellent model for the study of
D-NALT and can provide a unique tool to understand, for instance,
how tonsillectomized humans respond to nasal vaccines.

3. Evolution of NALT-specific molecules in vertebrates

The mucosal immune system has evolved complex suites
of immune molecules as well as cell adhesion and trafficking
molecules that separate it from the systemic immune system. For
instance, trafficking of lymphocytes to NALT in mice is governed
by the PNad-L-selectin pair (Csencsits et al., 1999; Fukuyama et al.,
2002), whereas the �4�7-MAdCAM-1 pair governs trafficking of
lymphocytes to the gut (Berlin et al., 1995).

The development of lymphoid tissues mainly relies on the
lymphotoxin-driven expression of homeostatic chemokines such
as CXCL13 (Ansel et al., 2000; Randall and Mebius, 2014). CXCL13
also plays an important role in maintaining the lymphoid architec-
ture of NALT such as formation of germinal centers (Rangel-Moreno
et al., 2005). In NALT, however, additional chemokines like CCL20
and CCL9 which are important in dendritic cell and B cell migration
are required for development (Zhao et al., 2003). Impaired expres-
sion of CCL19/CCL21 results in defects in influenza-specific CD8 T
cells responses in NALT of lymphotoxin-�-deficient (Lt�−/−) and
plt/plt mice (Rangel-Moreno et al., 2005).

We know very little about the role of chemokines in the nasal
immune system of vertebrates other than mice and humans. In
trout, we found CCL19 expression was upregulated around 50-fold
at 4 days post vaccination with live attenuated IHNV suggesting
a conserved role of this chemokine in vertebrate nasal immunity
(Tacchi et al., 2014).

With respect to O-MALT evolution, it has been proposed that
organization of lymphocytes in structures such as lymph nodes or

O-MALT is an endotherm-restricted innovation. Lymphocyte orga-
nization requires the presence of certain molecular signals that
create the adequate microenvironment for B and T cells. Most of
the molecules that play a role in lymphocyte organization belong to
the tumor necrosis factor superfamily (TNFSF) (Tacchi et al., 2015).
In this respect, we recently provided new insights into the evo-
lution of TNFSF and showed that it greatly diversified in African
lungfish. Among TNFSF members, lymphotoxins are of particular
relevance due to their function in the organization of lymphoid
tissues. Interestingly, where lymphotoxin beta receptor (LTBR) is
found from teleosts to humans, lymphotoxin alpha (LTA) and beta
(LTB) are absent in teleosts but found in lungfish. In other words,
TNFSF members known to be essential in lymphocyte organization
in mammals first appeared in lungfish and are absent from teleost
genomes. Moreover, a number of these TNFSF members were found
to be expressed in African lungfish O-NALT (Tacchi et al., 2015).

ID2 is a transcription factor known to be essential for O-NALT
formation. ID2 is involved in the induction of CD3–CD4+CD45+ cells
(Yokota et al., 1999) and ID2 deficient mice could not develop NALT
after birth (Fukuyama et al., 2002; Yokota et al., 1999). We  found ID2
expressed both in trout and lungfish NALT and its expression was
significantly modulated upon nasal vaccination with a viral vaccine
or nasal bacterial infection, respectively (Tacchi et al., 2014). Impor-
tant molecules in the formation of NALT in mice are summarized
in Table 2.

4. Nasal microbiota and immunity in vertebrates

Every animal mucosal surface is colonized by millions of
microorganisms forming a very ancient and successful symbiosis
between prokaryotes and metazoans. The microbiota controls the
immunological development of the host by different mechanisms
such as inhibition of pathogen colonization on mucosal surfaces and
stimulation of the host immune system (Buffie and Pamer, 2013;
Kiyono and Fukuyama, 2004; Randall and Mebius, 2014). Although
the number of studies revealing the importance of the microbiota
in GALT development and function is vast, information regarding
its effects on NALT is limited.

The nasal microbiome of human was sequenced and character-
ized in 2010 and further studies continue to determine its role in
health and disease (Dewhirst et al., 2010). In humans, over 96%
of the nasal bacterial microbiome belongs to three phyla: Acti-
nobacteria, Firmicutes and Proteobacteria (Yan et al., 2013). In
other mammalian species such as pigs, the nasal microbiome is
Proteobacteria, Firmicutes and Spirochaetes (Weese et al., 2014).
Nasal-associated microbiota are also present in aquatic vertebrates
as evidenced by our studies in rainbow trout (Tacchi et al., 2014).
The bacterial community associated with the trout olfactory organ
is very diverse. 16s rDNA pyrosequencing revealed the presence of
18 total bacterial phyla, the highest number of phyla present among
all body sites. The bacterial community was dominated by Pro-
teobacteria, Actinobacteria, Bacteriodetes and Firmicutes with the
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class Betaproteobacteria accounting for 15.1–53.6% of all sequences
(Lowrey et al., 2015). Thus, although limited pyrosequencing data
is available, it appears that Proteobacteria and Firmicutes may be
the most dominant and conserved taxa among nasal microbiomes
in vertebrates, further studies will confirm or reject this hypothe-
sis. The trout nasal microbiome composition is distinct from that
of any other trout mucosal surface but most closely resembles that
of the skin.

The presence of unique bacterial communities in association
with each mucosal anatomical site suggests a tight cross-talk
between the microbiota and MALT in vertebrates. One of the ways
by which the microbiota and the host immune system interact is
by means of secretory immunoglobulins that help anchor microor-
ganisms to the mucus layer, while tagging them in a process known
as immune exclusion. As an example, trout nasal-associated bac-
teria, similar to gut and skin bacteria, are coated by secretory
immunoglobulins. Particularly, in trout skin and gut mucus, the
immunoglobulin isotype IgT has specialized in the role of bacteria
coating (Xu et al., 2013; Zhang et al., 2010) with IgM coating sig-
nificantly lower numbers of bacteria. In nasal mucus, however, an
equal proportion of bacteria were coated with IgM or IgT and the
proportion of bacteria coated with both isotypes was higher than
that found in the gut and skin (Tacchi et al., 2014).

From mammalian studies it appears clear that the microbiota
plays a key role in the form and function of NALT. For instance,
the microbiota was shown to modulate local nasal T cell responses
against Mycoplasma pulmonis infection (Henriksson et al., 2004).
On the other hand, the composition of the nasal microbiome of
humans is a determinant of Staphylococcus aureus colonization and
carriage (Frank et al., 2010; Yan et al., 2013) and, in mice, it regu-
lates the immune responses against respiratory influenza A virus
infection (Ichinohe et al., 2011). Additionally, it has been shown
that the number of M cells in NALT of specific pathogen free rats
is lower compared to normally reared rats (Jeong et al., 2000) and
the numbers of T and B cells in NALT are 2–3 times greater after an
experimental infection (Asanuma et al., 1997). NALT, like most of
the lymphoid organs, can develop in germ free mice. NALT devel-
opment CXCL5-deficient mice in sterile conditions takes about 20
weeks, however by repeated intranasal application of heat inac-
tivated Propionibacterium acnes suspension, NALT can be induced
after 8 weeks (Krege et al., 2009). In the future, the specific roles of
the nasal microbiota on the development and function of vertebrate
NALT should be further elucidated.

5. How old is NALT?

Our current view of nasal immunity is limited and mostly
restricted to mammalian studies. We  provided the first evidence
supporting the idea that nasal immunity is an ancient arm of the
mucosal immune system of vertebrates. Furthermore, our studies
underscore that D-NALT, as anticipated, precedes the appearance
of O-NALT during evolution (Fig. 1). Currently, we  can state that
D-NALT is at least 380 MY  old, although we anticipate the cartilagi-
nous fish and even agnathans may  be equipped with an equivalent
immune system associated with their olfactory organs. How old is
O-NALT is a separate question. We have provided evidence of prim-
itive O-NALT structures in the African lungfish, indicating that the
ancestor to all tetrapods first acquired this immunological inno-
vation (Tacchi et al., 2015). Further studies should address the
immune function of primitive O-NALT in ectotherms.

6. Concluding remarks

Olfaction is one of the most ancient and conserved sensory
systems in vertebrates. It seems that the successful structure

and function of olfactory organs evolved to not only provide the
exquisite detection of odorants but also to ensure that pathogens
do not gain entry into hosts via this route. We  hope that our
pioneer studies in NALT evolution motivate more studies in non-
mammalian models that complete our understanding of nasal
immune systems and their evolution. Future studies in teleosts may
address whether specific IgT is the main immunoglobulin isotype
in nasal adaptive immune responses and whether nasal vaccination
can lead to protection in other distant MALT. Lungfish studies, on
the other hand, should try to address what evolutionary advantages
lymphocyte organization confers at mucosal sites in the absence of
germinal center formation.
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CK12a, a CCL19-like Chemokine That Orchestrates both
Nasal and Systemic Antiviral Immune Responses in
Rainbow Trout

Ali Sepahi,* Luca Tacchi,* Elisa Casadei,* Fumio Takizawa,† Scott E. LaPatra,‡ and

Irene Salinas*

Chemokines and chemokine receptors have rapidly diversified in teleost fish but their immune functions remain unclear. We

report in this study that CCL19, a chemokine known to control lymphocyte migration and compartmentalization of lymphoid

tissues in mammals, diversified in salmonids leading to the presence of six CCL19-like genes named CK10a, CK10b, CK12a,

CK12b, CK13a, and CK13b. Salmonid CCL19-like genes all contain the DCCL-conserved motif but share low amino acid

sequence identity. CK12 (but not CK10 or CK13) is constitutively expressed at high levels in all four trout MALT. Nasal

vaccination with a live attenuated virus results in sustained upregulation of CK12 (but not CK10 or CK13) expression in trout

nasopharynx-associated lymphoid tissue. Recombinant His-tagged trout CK12a (rCK12a) is not chemotactic in vitro but it

increases the width of the nasal lamina propria when delivered intranasally. rCK12a delivered intranasally or i.p. stimulates

the expression of CD8a, granulysin, and IFN-g in mucosal and systemic compartments and increases nasal CD8a+ cell numbers.

rCK12a is able to stimulate proliferation of head kidney leukocytes from Ag-experienced trout but not naive controls, yet it does

not confer protection against viral challenge. These results show that local nasal production of CK12a contributes to antiviral

immune protection both locally and systemically via stimulation of CD8 cellular immune responses and highlight a conserved role

for CK12 in the orchestration of mucosal and systemic immune responses against viral pathogens in vertebrates. The Journal of

Immunology, 2017, 199: 3900–3913.

C
hemokines are a family of cytokines that play important
roles in homeostasis as well as immunity (1–3). As small
secreted molecules, chemokines are the extracellular

messengers of the immune system and largely control the ex-
travasation of different immune cells from the bloodstream into
the tissues (4). It is known that chemokine responses can be in-
duced by a number of stimuli, including viral infection, and these
responses are vital for control of the virus (5). Chemokines are
classified in different families based on their amino acid sequence.
Homeostatic chemokines such as CCL19, CCL21, CXCL12, and
CXCL13 are expressed in lymphoid organs and regulate the mi-

gration and compartmentalization of lymphocytes and APCs
within lymphoid tissues (6–9). CCL19 and CCL21 are also known
to orchestrate the development and organization of secondary
lymphoid organs including the nasopharynx-associated lymphoid
tissue (NALT) (10, 11). Viral infections trigger CCL19 responses
in mammals (12), which attract naive T and B lymphocytes to
lymphoid organs after 24–48 h of infection (13).
A number of viruses are known to enter the host via the olfactory

route (14–18). This route of infection provides a clear advantage
to neurotropic viruses because they may gain access to the CNS
via the olfactory bulb. Moreover, in mammals, viral infection of
the upper respiratory surfaces may result in infection of the lungs
(19–22). Finally, viral infection of nasal tissues, if not controlled
locally, can trigger strong systemic responses once the virus enters
the bloodstream via the nasal capillary beds. As a consequence,
rapid onset of systemic antiviral immunity may be vital to control
nasal viral infections.
Nasal vaccines are known to offer a number of advantages over

other mucosal vaccines, including the ability to stimulate potent
systemic Ab immune responses (23–26). The profuse network of
capillaries that connects the olfactory organ (OO) with the sys-
temic bloodstream may explain this property of nasal vaccines. In
addition, molecular immune mechanisms connecting the nasal and
systemic lymphoid tissues must be pivotal for the orchestration
and rapid communication of local and systemic immune re-
sponses. In this regard, chemokines and other cytokines may
provide the required signals for this communication, yet a full un-
derstanding of these mechanisms and their evolutionary origins are
still missing.
We recently discovered the presence of NALT in teleost fish (27,

28) as a diffuse network of immune cells in the nasal mucosa that
shares the same canonical features of other teleost MALT. We also
showed that nasal vaccination of rainbow trout with a live atten-
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uated viral vaccine results in both local nasal and systemic im-
mune responses (27, 29). The latter opened up many questions,
including what are the molecular mechanisms that explain the
protective effects of nasal vaccines in fish, and how are nasal and
systemic immune responses orchestrated in cold-blooded verte-
brates. As a preliminary effort, oligomicroarray studies following
nasal vaccination with a viral vaccine revealed that early antiviral
immune responses in rainbow trout NALT are characterized by
dramatic increases in the expression of a CCL19-like molecule
(27). Thus, we hypothesized that salmonid CCL19-like chemo-
kines may provide the molecular link between local (nasal) and
systemic immune compartments during antiviral immune re-
sponses and therefore can orchestrate both types of responses
following nasal vaccination.
Evolutionarily speaking, chemokines and their receptors can be

detected in lower deuterostome animals (30–32), and are considered
rapidly evolving immune molecules (30, 33). To date, many che-
mokine and chemokine receptors have been found in bony fish (34–
40), a group that has more chemokines and chemokine receptors
than any other vertebrate including amphibians and mammals.
Previous studies have identified rapid, tandem duplications in a
number of teleost species including salmonids and zebrafish (38,
41, 42). It has been suggested that the diversification observed in
the numbers and sequences of chemokines in bony fish may reflect
the adaptation of the individual species to their respective biolog-
ical environment (42). Despite this plethora of chemokines and
chemokine receptor molecules, very little information is available
with regards to their biological activities in teleost fish.
Using the DCCL amino acid signature motif, CCL19-like

molecules have been previously identified in a few teleost spe-
cies including turbot (Scophthalmus maximus) (43, 44) and striped
murrel (Channa striatus) (45). Their reported activities resem-
ble canonical mammalian CCL19 functions including leuko-
cyte trafficking, cell proliferation, and antiviral and antibacterial
properties (43, 45). Recently, a study in Atlantic salmon (Salmo
salar) used microarray to detect the increased expression of
CCL19-like in the head kidneys (HK) of resistant and susceptible
salmon strains challenged with infectious pancreatic necrosis virus
(46). Moreover, a study on catfish showed that CCL19 gene ex-
pression is upregulated significantly following Edwardsiella
ictaluri and Flavobacterium columnare infection (41). In rainbow
trout, the CCL19-like CK12 was suggested to have a role in
mucosal immune responses given its constitutive expression in
mucosal tissues such as gills, gut, and skin (47). Furthermore, the
mRNA levels of two other trout CCL19-like, CK10 and CK12
mRNA, increase following bath infection with viral hemorrhagic
septicemia virus (VHSV) as well as infectious pancreatic necrosis
virus at the fin base and ovary, respectively (40, 48–50). Trout
CK12 expression also increased in the HK and spleen of VHSV-
infected or polyinosinic-polycytidylic acid–injected trout and in
trout HK leucocytes (HKLs) after in vitro exposure to polyinosinic-
polycytidylic acid, infectious pancreatic necrosis virus, and VHSV
(40, 48–50). However, whether teleost CCL19-like chemokines
play a role in nasal immune responses deserves further inves-
tigation (27).
Because we found a clear induction of CCL19-like by oligo-

microarray in trout NALT following nasal vaccination with a live
attenuated viral vaccine (27), using the DCCL amino acid signa-
ture motif, we conducted further analysis in the National Center
for Biotechnology Information database, in particular searching
the rainbow trout and salmon genomes, to identify additional
CCL19-like forms. Three CCL19-like genes have been described
in rainbow trout thus far: CK10, CK12a, and CK12b (34, 38)
based on expressed sequence tag libraries. However, in this study

we report that six CCL19-like genes exist in rainbow trout and
salmon (CK10a, CK10b, CK12a, CK12b, CK13a, and CK13b)
forming three major clusters (CK10, CK12, and CK13). Using a
number of in vitro and in vivo studies, we report in this study that
CCL19-like diversification resulted in the acquisition of a CCL19-
like form, CK12a, which is able to induce both nasal mucosal and
systemic antiviral immune responses. Our results not only high-
light the conserved role of CCL19 in nasal immunity in verte-
brates but also show that this chemokine facilitates the onset of
systemic immune responses following nasal detection of Ags as
well as the recruitment of APCs and CD8+ T cells to the local
nasal mucosa.

Materials and Methods
Molecular identification of trout CCL19-like, sequence
analysis, phylogenetic analysis, and three-dimensional
structure modeling

Rainbow trout CK12a sequence was identified by the basic local alignment
search tool (BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (51) using
the expressed sequence tag sequence printed in the “Trout_imm_v1”
(Agilent array design 028918) (27). The rainbow trout CK12a sequence
was used to identify the sequence of rainbow trout CK13 and CK10 by
BLAST against the available rainbow trout genome (52). The three rain-
bow trout sequences possess the canonical DCCL amino acid motif typical
of vertebrate CCL19 sequences. Prediction of the open reading frame was
performed with the programs BLAST and the ExPASy proteomics server
(http://ca.expasy.org/). The open reading frame of each sequence was
amplified by RT-PCR using specific primers (Table I) and the PCR prod-
ucts were cloned as previously described (53). A multiple sequence
alignment was created using CLUSTALW (http://align.genome.jp/) (54). A
phylogenetic tree was constructed from generated alignments using the
Neighbor-Joining method within the software MEGA 7 (55); data were
analyzed using Poisson correction and gaps were removed by pairwise
deletions. To evaluate the topological stability of the Neighbor-Joining
tree, a bootstrap of 1000 replicates was applied, with only values over
50% shown. To obtain the percentages of identity and similarities of the six
sequences, the software MatGat 2.02 (56) was used. Three-dimensional
prediction of protein structures for CCL19-like molecules was performed
via Phyre2 (57) online tool (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.
cgi?id=index), and the pdb files were modeled using PyMOL (https://www.
pymol.org).

Constitutive expression of CK12, CK13, and CK10 by
quantitative real-time PCR

RNA was extracted by homogenization in 1 ml TRIZol (Invitrogen) using
tungsten carbide beads (3 mm; Qiagen) and shaking (300 times per minute)
following the manufacturer’s instructions. The RNA pellet was washed in
500 ml 80% ethanol, air dried, and resuspended in RNase-free H2O. The
RNA concentration was determined by spectrophotometry (Nanodrop
ND1000; LabTech) and the integrity of the RNA was determined by
electrophoresis (Bioanalyzer 2100; Agilent). cDNA synthesis was per-
formed using 1 mg of total RNA, which was denatured (65˚C, 5 min) in the
presence of 1 ml of oligo-dT17, 1 ml deoxynucleoside triphosphate mix
10 mM each (Promega), and RNA/DNA-free water (Sigma) in a volume of
13 ml. Synthesis was carried out using 1 ml Superscript III enzyme reverse
transcriptase (Invitrogen) in the presence of 5 ml of 53 first strand buffer, 1
ml 0.1 M DTT, made up to a final volume of 25 ml with water, and in-
cubated at 55˚C for 1 h. The resultant cDNA was stored at 220˚C. The
expression of CK12, CK13, and CK10 was measured by quantitative real-
time PCR (RT-qPCR) using specific primers (Table I). Due to the sequence
similarities between CK12a and CK12b and between CK13a and CK13b,
we were only able to design primers sets that would amplify all CK12 and
all CK13 genes. Although it may be possible to design primers to analyze
gene expression of CK10a and CK10b separately, for consistency purposes
we designed primers that would amplify both CK10 genes. The RT-qPCR
was performed using 3 ml of a diluted cDNA template as described in
Tacchi et al. (53). Trout elongation factor EF-1a was used as control gene
for normalization of expression.

Animals and nasal vaccination with viral vaccine

Triploid female adult rainbow trout (mean weight 200 g) were obtained
from the Lisboa Springs Hatchery, Pecos, New Mexico. All animal studies
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were reviewed and approved by the Institutional Animal Care and Use
Committee at the University of New Mexico, protocol number 16-200384-
MC. For nasal vaccination studies, adult rainbow trout received live at-
tenuated infectious hematopoietic necrosis virus (IHNV) vaccine or PBS
intranasally (I.N.) as described previously (27). The OOs (n = 5) from each
group were sampled 1, 4, and 7 d postvaccination and placed in RNAlater
for gene expression studies

Recombinant protein production, SDS-PAGE, and Western blot

Recombinant His-tagged trout CK12a (rCK12a) (amino acid sequence:
MHHHHHHFSEVPVDCCLLTTETRFPRHFKMVSYLLQTTEKGCDI-
DATVFITKTGVRLCTPHPTKSKWVADYIKRLERTISL) was produced
in a bacterial expression system (Escherichia coli, expression vector E3;
GenScript USA), with a theoretical molecular mass of the recombinant
protein of 9.4 KDa. The endotoxin level was ,0.01 endotoxin units/mg.
The recombinant protein was then refolded using gel filtration as previ-
ously described (58), and filtered and sterilized using a 0.22 mm filter. The
obtained protein was analyzed by SDS-PAGE under nonreducing and re-
ducing conditions by loading 2 mg of recombinant protein onto a 4–2%
SDS-PAGE gel followed by Coomassie Blue staining to confirm the
presence of a band of the expected molecular mass (∼12 kDa)
(Supplemental Fig. 1A). We only observed one band after refolding.
Moreover, no aggregates were observed in the gel. The gel was trans-
ferred to a polyvinylidene difluoride membrane and incubated with anti–
His-tag Ab (1:1000; Pierce) followed by incubation with HRP-labeled
anti–His-tag mouse IgG1 (1:7500; Thermo Fisher Scientific) (Supplemental
Fig. 1B). Recombinant protein was then refolded using gel filtration as
explained previously (58).

HKL isolation and chemotaxis assays

After bleeding from the caudal vein, HKLs, spleen leukocytes (SLs), and
gut leukocytes (GLs) were isolated by Percoll density gradients as described
in Salinas et al. (59, 60). Cells were then washed twice, counted in a
Neubauer chamber, and adjusted to 5 3 106 cells per ml. Chemotaxis
assays were carried out in Transwell plates (pore size 3 mm, Costar;
Corning). To test the capacity of rainbow trout rCK12a to attract HKLs and
SLs from naive and vaccinated trout, 400 ml of culture media containing
different concentrations of rCK12a (10, 100, or 1000 ng/ml) were placed at
the bottom of the wells and 5 3 105 HKLs, SLs, or GLs were carefully
loaded onto the upper chamber. After 90 min at 18˚C in a CO2 chamber,
cells were collected from the bottom of the plate and adherent cells de-
tached by trypsinization. The total number of cells that had migrated to the
bottom of the wells was quantified by flow cytometry in an Attune Flow
Cytometer (Applied Biosystems) by counting the number of events in 2
min. Positive controls consisted of freshly isolated HKLs and SLs, which
were directly placed at the bottom of the well to test the maximum col-
lection capacity, and wells to where zymosan-activated trout serum (ZAS)
(1:30) was added to the medium. The chemorepellent activity of rCK12a
was tested by placing both ZAS and rCK19a (10, 100, 1000 ng/ml) at the
bottom of the Transwell plates. Negative controls consisted of medium to
which the same volume of PBS or an irrelevant protein (a His-tagged
Drosophila melanogaster recombinant protein refolded as rCK12a in PBS)
rather than rCK12a was added.

CFSE proliferation assay and flow cytometry

Freshly isolated rainbow trout HKL cells (106 cells per ml) from control or
IHNV I.N. vaccinated fish (n = 5) were labeled with 1 mM CFSE (Mo-
lecular Probes; Thermo Fisher Scientific) according to the manufacturer’s
instructions. Cells were then stimulated with rCK12a (100 or 1000 ng/ml)
for 7 d. Unstimulated labeled HKLs were used as negative controls. Pos-
itive controls consisted of HKLs incubated with Vibrio anguillarum lysate.
Cell division was measured as the percentage of cells where the CFSE
intensity was lower than the unstimulated control in an Attune Flow
Cytometer (Applied Biosystems). A total of 20,000 events were collected
per sample.

Fluorescence in situ hybridization

OO cryosections from adult control or nasally vaccinated IHNV rainbow
trout were stained with rainbow trout CK12 or NON-CK12 (negative
control) oligonucleotide probes labeled at their 59 ends with indodicarbocyanine
(Eurofins MWG Operon). The probe sequence used is shown in Table I.
Hybridizations were performed at 37˚C overnight with hybridization
buffer (23 SSC/50% formamide) containing 1 mg/ml of the labeled
probe. Slides were then washed with hybridization buffer without probes,
followed by two more washes in washing buffer (0.13 SSC) and two
washes in PBS at 37˚C. Nuclei were stained with DAPI (5 ng/ml)

solution for 25 min at 37˚C. Slides were mounted with fluorescent mount-
ing media, and images were acquired and analyzed with a Nikon Ti
fluorescence microscope and the Elements Advanced Research Software
(version 4.2).

Immunofluorescence microscopy

OO cryosections from control, I.N. rCK12a-treated, and i.p. rCK12a-treated
(n = 3) rainbow trout were stained with anti-trout CD8a+ and MHC class II
(MHC-II) Ab as explained previously (29, 61, 62). Nuclei were stained
with DAPI DNA stain and slides were observed under a Nikon Ti fluo-
rescence microscope. A total of 10 images per sample from six different
cryosections were captured, and the number of CD8a+ cells and MHC-II+

cells were visually counted by two different researchers. The distance from
0 to 100 mm was considered the apical lamina propria (LP) and between
100 and 250 mm was considered the mid-LP. The width of LP in apical and
mid-points of the lamella was measured in 10 different lamellae per
sample. All analyses were carried out with the Nikon Elements Advanced
Research Software v. 4.2.

In vitro effects of rCK12a on immune gene expression

A total of 106 HKLs (n = 6) in DMEM + 10% FBS per well were pipetted
onto flat-bottom 24-well plates. After 4 h, rCK12a (100 ng/ml) or PBS
(control) were added to the cell cultures for 6, 24, and 48 h. Cells were
collected and placed in TRIZol (Invitrogen). Total RNAwas extracted and
cDNA produced as explained previously (63). Expression levels of CD8a,
CD8b, granulysin, IFN-g, IL-7-R, CCR7, MHC-IIb, and CXCR3 was
measured by RT-qPCR using specific primers (Table I). Trout elongation
factor EF-1a was used as control gene for the normalization of expres-
sion. The relative expression level of the genes was compared with the
unstimulated control and determined using the Pfaffl method (64).

In vivo delivery of rCK12a, effects on gene expression, and
challenge experiments

Rainbow trout (mean weight 3 g) were divided into three experimental
groups. The first was a control group that received PBS I.N. and i.p.; the
second received 3 mg of refolded rCK12a in PBS I.N.; the third received 3
mg of refolded rCK12a in PBS i.p. OO and HKs (n = 5) were sampled at
days 1, 5, and 8 after rCK12a administration. Expression of CD8a,
granulysin, IFN-g, CCR7, and CK12 was measured by RT-qPCR and
analyzed as previously described. Then 8 d after rCK12a treatment, trout
were challenged with virulent IHNV as explained previously (27). A total
of 25 fish per tank in duplicate tanks were used for the challenge experi-
ment. Controls consisted of mock-vaccinated fish (which received PBS I.
N. and i.p.) and an unchallenged group. Mortalities were recorded for 28 d
postchallenge.

Statistical analyses

Data are expressed as the mean 6 SEM. Gene expression data were an-
alyzed by t test to identify statistically significant differences between
groups. Data analysis was performed in GraphPad Prism version 5.0. One-
way ANOVA and a Tukey post hoc analysis test were performed to identify
statistically significant differences among groups. For the proliferation
assay, a multivariate ANOVA test followed by a Fisher least significant
difference post hoc test for multiple comparisons was performed. Survival
proportions among experimental groups in the challenge experiment were
compared using the logrank test within Prism. A p value , 0.05 was
considered statistically significant.

Results
Salmonids possess six CCL19-like genes

Searching for the CCL19-like motif in the rainbow trout genome
revealed that salmonids possess six different genes that encode
CCL19-like chemokines. We named them CK12a, CK12b, CK13a,
CK13b, CK10a, and CK10b (Fig. 1, Table I). Out of all the iso-
forms, CK12a had been identified as one of the most important
immune genes upregulated in trout NALT following nasal vacci-
nation with a viral vaccine (27). The coding regions for CK12a,
CK12b, CK13a, CK13b, CK10a, and CK10b were 285, 297, 321,
324, 342, and 318 bp long, respectively. They encoded for a 95,
99, 107, 108, 114, and 106 aa-long protein, respectively (Fig. 1A).
Alignment of all six rainbow trout CCL19-like sequences showed
a highly variable level of conservation among them, with CK13a

3902 RAINBOW TROUT CCL19-LIKE IN NASAL IMMUNITY

 by guest on D
ecem

ber 25, 2017
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1700757/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1700757/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1700757/-/DCSupplemental
http://www.jimmunol.org/


and CK13b sharing 82.4% identity, whereas CK13b and CK10b
are the most dissimilar with only 17% identity (Supplemental
Table I). Phylogenetic analyses comparing salmonid CCL19-like
molecules with other available teleost and mammalian CCL19
sequences showed that there is a clear relationship between CK12
and CK13 genes (with a bootstrap over 50%) (Fig. 1B). Mean-
while, CK10a and CK10b appear to be phylogenetically distant
from the other teleost CCL19-like genes. As expected, mamma-
lian CCL19 sequences cluster in a separate clade from the fish
homologs. When comparing all the trout and human chemokines
available to date, phylogenetic analysis also shows that teleost
CCL19-like genes are more closely related to mammalian CCL19
genes than to other chemokine genes. Finally, screening of the
Atlantic salmon and rainbow trout genomes revealed that the six
CCL19-like genes are positioned in four different chromosomes in
the Atlantic salmon genome and in six different scaffolds in the
rainbow trout genome (Fig. 1C). However, we could not locate
CK10b in the current versions of the Atlantic salmon or trout
genomes. It is possible that future versions of these genomes may
reveal the CK10b genomic position.
Three-dimensional protein structures of all six rainbow trout

CCL19-like molecules (CK12a, CK12b, CK13a, CK13b, CK10a,
and CK10b) are shown in Supplemental Fig. 2. Mammalian CCL19
has a canonical chemokine fold consisting of a flexible N terminus
and N-loop followed by an antiparallel three-stranded b-sheet, a C-
terminal a-helix, and a short flexible C terminus (65). Predicted
rainbow trout CCL19-like structures show some commonalities but
also important differences compared with mammalian CCL19. All
trout CCL19-like forms have a short flexible C terminus, a C-terminal
a-helix, a three-stranded b-sheet, and an N-loop. However, the N
terminus differs significantly from the resolved mammalian CCL19
structure. Moreover, consistent with the low sequence identity among
some of the trout CCL19-like molecules, their N termini differ
considerably. Whereas CK12a has a very short flexible N ter-
minus followed by a N terminus a-helix, CK13a, b, and CK10a
all have long flexible N termini. CK12b and CK10b, in turn, had
intermediate length flexible N termini. These data indicate some
degree of molecular structural conservation among CK12, CK13,
and CK10 molecules in salmonids.

CK12, CK13, and CK10 show distinct constitutive tissue
distribution in rainbow trout

To gain some understanding of the physiological functions of the
three CCL19-like genes found in rainbow trout, we measured their
constitutive expression in main lymphoid organs (HK and spleen),
mucosal lymphoid tissues (gut, gill, skin, and OO), neuronal tissues
(brain) as well as muscle. We normalized the expression in every
tissue to that of the brain. As shown in Fig. 2A–C, each CCL19-like
gene displays a unique constitutive expression pattern. In agree-
ment with a previous report (47), CK12 is primarily expressed in
mucosal lymphoid tissues including the OO, with levels between
100- and 300-fold greater than those recorded in main lymphoid
organs such as the spleen (Fig. 2A). CK13 was expressed in all
immune tissues examined with no clear difference between mu-
cosal and nonmucosal immune sites, although it was expressed
between 1.5 and 4 times more in mucosal tissues than in the
spleen (Fig. 2B). Finally, CK10 was expressed in every tissue
examined, including nonimmune tissues such as the brain and the
muscle (Fig. 2C). At mucosal sites, expression of CK10 was
comparable to that measured in the spleen. This expression pattern
may indicate a more homeostatic role for CK10 compared with
the other two (Fig. 2C). Combined, these results suggested that
CK12 plays a more important role in trout mucosal immunity than
CK13 and CK10.

Kinetics of trout CCL19-like expression in trout NALT
following nasal viral vaccination

We previously identified CCL19-like (CK12a in this study) as
one of the major innate immune genes that is upregulated in
NALT following nasal vaccination with an IHNV vaccine (27).
To know if this response is specific to this CCL19-like form, we
measured CK12, CK13, and CK10 expression in the OO of trout
1, 4, and 7 d after nasal vaccination using the same IHNV
vaccine model (Fig. 2D). CK12 was upregulated 2-fold on day
1, 67-fold on day 4, and 4-fold on day 7 in the OO of vaccinated
trout compared with controls. The strong upregulation of CK12
expression on day 4 was confirmed by fluorescence in situ hy-
bridization (Supplemental Fig. 3). Fluorescence in situ hybrid-
ization staining showed that the increase in CK12 expression
was due to a few high-expressing cells rather than an increase
throughout the tissue.
CK13 only showed a moderate upregulation on day 1 (2-fold)

and no significant changes in expression at any other time points.
Interestingly, CK10 responded very differently to the other two
CCL19-like genes because it was significantly downregulated (∼3-
fold) on day 1 and back to basal levels after 4 and 7 d. These
expression patterns indicated that CK12 is the main CCL19-like
gene involved in trout nasal immune responses in vivo.

rCK12a is not chemotactic in vitro

Previous studies have shown that teleost CCL19 has a canonical
chemotactic activity similar to that reported in mammals (43, 45).
It is important to note that although those studies call the molecule
of interest CCL19, they used recombinant proteins that do not
cluster with trout CK12 based on phylogenetic analysis (Fig. 1B).
Moreover, a study in rainbow trout tested chemotactic activities of
recombinant protein CK12b (National Center for Biotechnology
Information [https://www.ncbi.nlm.nih.gov/] accession number
CA346383) in HKLs, PBLs, and SLs of rainbow trout (47). They
showed no chemotactic activity of 0.1, 1, and 10 ng/ml of
recombinant protein CK12b toward HKLs and PBLs cells in vitro
using the Transwell system. Nevertheless, they observed moderate
chemotactic activity in SLs exposed to 10 ng/ml of trout rCK12b
(47). We also tested the chemotactic ability of rCK12a in vitro
using a Transwell assay system (Fig. 3A–E). We could not detect
any significant migration of naive HKLs, SLs (Fig. 3A, 3B), or
GLs (data not shown) toward a wide range of concentrations of
rCK12a. We attempted to preactivate trout leukocytes with LPS
(data not shown), IHNV (Fig. 3C), or PGE2 (Fig. 3D), yet no
chemotaxis toward rCK12a was observed in vitro. To test whether
rCK12a has chemorepellent activities, we added rCK12a to our
positive control (ZAS) at different concentrations. However, we
did not detect any significant difference in HKL migration be-
tween treatments (Fig. 3E), indicating that rCK12a has no che-
morepellent activity.

rCK12a stimulates proliferation of HKLs from
IHNV-vaccinated fish but not naive fish

To know if trout rCK12a is able to induce proliferation of trout
immune cells, we used CFSE to label HKLs isolated from control
and IHNV-vaccinated fish (14 d postimmunization) followed by
incubation with rCK12a (100 ng or 1 mg) or PBS for 7 d. The
FACS analyses showed a significant proliferation rate in HKLs
from IHNV-vaccinated fish that were treated with 1 mg rCK12a,
compared with the control (Fig. 3F). However, we did not observe
any proliferation in naive HKLs that were treated with rCK12a at
both doses compared with the control. Thus, the results suggest
that CK12 plays a major role in cell proliferation in the Ag-
experienced leukocytes.
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FIGURE 1. Salmonids possess six CCL19-like

genes. (A) Multiple sequence alignment (per-

formed with CLUSTALW http://align.genome.jp/)

of trout CCL19-like isoforms with the conserved

DCCL motif boxed in bold. (B) Phylogenetic tree

showing the evolutionary relationship of CCL19-

like genes among fish and other vertebrates. The

tree was constructed using the Neighbor-Joining

method in MEGA 7. The tree was bootstrapped

1000 times, and only values over 50% are shown.

Sequences used to construct the tree were obtained

from the National Center for Biotechnology

Information (https://www.ncbi.nlm.nih.gov) un-

der the following accession numbers: trout CK1

(AF093802); trout CK2 (AF418561); trout CK4a

(CA371157); trout CK4b (CA352593); trout CK5a

(CA383670); trout CK5b (CA374135); trout CK6

(CA355962); trout CK7a (CA343117); trout CK7b

(CA346976); trout CK8a (CB494647);trout CK8b

(CA353159); trout CK9 (CA378686); trout CK12a

(KF683302.1); trout CK12b (CA346383.1); trout

CK13a (DV196492.3); trout CK13b (CO471983.1);

CK10a (CA361535.1); trout CK10b (DV194065);

trout CCL21 (CDQ86623.1 [unnamed product]);

salmon CK12a (XM_014143452.1, named S. salar

C-C motif chemokine 4-like [LOC106570886]);

salmon CK12b (XP014028076.1; named SsCCL4l12);

salmon CK13a (BT125229.1); salmon CK13b

(XP013984336.1); salmon CK10a (ACI69602.1);

salmon CK10b (XM_014172597.1, named S. salar

C-C motif chemokine 19-like [LOC106585878]);

salmon CCL21 (NP001134739.1); zebrafish

CCL19b_F1QHU2; zebrafish CCL19a.2_B3DHA6;

zebrafish CCL19a.1_A2BIR2; channel catfish

chemokine SCYA106 (ABA54953.1); elephant

shark CCL19.a (XP_007910129.1); Elephant

shark CCL19.b (XP_007910128.1); striped

murrel CCL19 (AGN52674.1); human CCL1

(P22362); human CCL2 (P13500); human CCL3

(P10147); human CCL4 (P13236); human CCL5

(P13501); human CCL7 (P80098); human CCL8

(P80075); human CCL11 (P51671); human CCL13

(Q99616); human CCL14 (Q16627); human CCL15

(Q16663); human CCL16 (O15467); human CCL17

(Q92583); human CCL18 (P55774); human CCL19

(Q99731); human CCL19.2 (Q5VZ75); human

CCL21 (Q6ICR7); mouse CCL19.1 (Q548P0);

mouse CCL19.2 (A0A0N4SUZ8); mouse CCL21a

(NP_035254.1); chicken CCL19 (R4GM50). (C)

Genomic configuration of CCL19-like genes in the

Atlantic salmon genome (top) and rainbow trout

genome (bottom). Salmon CCL19-like genes are

represented by gray arrows and are located in four

chromosomes: ssa01 for CK13a, ssa11 for CK13b,

ssa15 for CK12a, and ssa24 for CK12b and CK10.

The asterisk on CK13b highlights the presence of

three different variants. We were not able to locate

the chromosome containing salmon CCL19c-like.

In the lower part of the figure, trout CCL19-like

genes are represented within several scaffolds (in

black); the missing part of the sequences appears in

white.
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Nasal delivery of rCK12a results in infiltration of MHC-II+

cells into the nasal mucosa and in enlargement of the olfactory
LP in trout

Nasal vaccination of rainbow trout with live attenuated IHNV
vaccine results in the recruitment of myeloid and lymphoid cells
to the local nasal environment (27). Leukocyte recruitment is
easily visualized by histological examination due to the pres-
ence of an enlarged LP in the olfactory lamellae of vaccinated
animals compared with controls (27). Furthermore, we have
shown in the past that nasal delivery of IHNV vaccine results in
MHC-II+ responses in the OO of trout (29). Because in vitro
Transwell assays may not mimic in vivo immune responses, we
delivered rCK12a I.N. to rainbow trout and measured the ef-
fects on MHC-II+ cells as well as on the width of the olfactory
LP. As shown in Fig. 4, rCK12a delivery results in changes in
the morphology and localization of MHC-II+ cells in trout
NALT especially on day 5. Moreover, the olfactory LP of
rCK12a-treated fish was expanded significantly compared with
PBS controls in the tip of the lamella on day 1 (from ∼70 to
∼110 mm), and in both the tip (from ∼60 to ∼130 mm) and
medial regions (from ∼100 to ∼200 mm) of the LP on day 5. We
observed LP expansions in the rCK12a-treated group at other
time points in both the apical and mid-lamella regions but the
increase was not statistically significant (Fig. 4A–C). Our
analyses showed that I.N. delivery of rCK12a led to a signifi-
cant (∼3-fold) increase in the number of MHC-II+ cells in the
tip on day 1 and a ∼2.5-fold increase in both the tip and medial
regions of the lamella on day 5 (Fig. 4D, 4E). In addition, we
observed that rCK12a increased MHC-II intensity staining in
OO, which may be due to the stimulation of the Ag-presenting
process (Fig. 4G). Treatment with rCK12a also resulted in
higher numbers of MHC-II+ cells in LP in all time points compared
with controls; however, the increases did not reach significance
(Fig. 4F). These results indicate that rCK12a has inflammatory,
chemotactic properties, and suggest it can stimulate Ag presentation
in vivo.

rCK12a modulates CD8+ T cell–related genes in rainbow trout
in vitro and in vivo

Because CK12 appeared to be critical in the local nasal antiviral
immune response of rainbow trout, we next asked whether lo-
cally produced CK12a may modulate immune genes that may
contribute to defense against viruses in the systemic compart-
ment. We incubated HKLs with rCK12a in vitro for 6, 24, and
48 h and, using RT-qPCR, measured the expression change of
CD8+ T cell–related immune genes (Fig. 5A, 5B). At 6 h,
CD8a, IFN-g, and CCR7 expression was significantly upregu-
lated, whereas after 24 h, rCK12a resulted in an upregulation of
CD8a expression; however, the change observed did not reach
significance. No significant changes were recorded at 48 h (data
not shown).
Administration of rCK12a i.p. or I.N. led to a downregulation of

CD8a, granulysin, and IFN-g expression in the HK and OO 1 d
postadministration (Fig. 5C–E). In contrast, on day 5, all cell-
mediated immune genes were found to be upregulated in the
HK and OO as a result of rCK12a both i.p. and I.N. administration
(Fig. 5C–E). Similarly, on day 8 cell-mediated response genes
such as CD8a, granulysin, and IFN-g expression levels remained
significantly higher than those observed in control OO (Fig. 5C–E).
In mammals, CCR7 is known to be the receptor for CCL19 and

CCL21 (66) and a CCR7 homolog has been reported in rainbow
trout (37). Our RT-qPCR data show that CCR7 was significantly
upregulated in the HK 1 d postadministration of rCK12a both i.p.
and I.N. However, a significant downregulation in CCR7 expres-
sion was observed in the OO at this time point. On days 5 and 8,
CCR7 expression was significantly higher in the OO in both the I.
N.- and i.p.-administered groups compared with the control
(Fig. 5F). Administration of rCK12a led to increased CK12
transcript levels in the HK 5 d after I.N. delivery and decreased
expression levels on day 8 (Fig. 5G). In the OO, only I.N. ad-
ministration resulted in significant increases in CK12 expression
on day 8 (Fig. 5G). In agreement with our microscopy results
(Fig. 4C–F), we observed a significant upregulation in MHC-II

Table I. Oligonucleotides used in this study

Gene Primer Name Primer Sequence Application

EF-1a EF-1a F 59-CAACGATATCCGTCGTGGCA-39 RT-qPCR
EF-1a R 59-ACAGCGAAACGACCAAGAGG-39

CK12 CK12 F 59-CTCTGAGGTACCCGTGGATTGC-39 RT-qPCR
CK12 R 59-CCTTAGGGACTATTGTTCTTCAGC-39

CK13 CK13 F 59-CGACCGATACCAAGCTTCCC-39 RT-qPCR
CK13 R 59-CCTTATGCGATTTCCTCTTCAG-39

CK10 CK10 F 59-GGCCAGATGGTGATGGACTGTG-39 RT-qPCR
CK10 R 59-GGTAGTGAAGACCACAGCGCTG-39

CD8a CD8a F 59-ATGAAAATGGTCCAAAAGTGGATGC-39 RT-qPCR
CD8a R 59-GGTTAGAAAAGTCTGTTGTTGGCTATAGG-39

CD8b CD8b F 59-CAACGGTGTGCTTGTGGAAAAC-39 RT-qPCR
CD8b R 59-ACACTTTTTGGGTAGTCGGCTGAA-39

Granulysin Granulysin F 59-GCCTACTGGCTTGTTCAGTTTGG-39 RT-qPCR
Granulysin R 59-TGGTCCTCACGTCATCACTGG-39

IFN-g IFN-g F 59-GCTGTTCAACGGAAAACCTGTTT-39 RT-qPCR
IFN-g R 59-TCACTGTCCTCAAACGTG-39

CCR7 CCR7 F 59-TTCACTGATTACCCCACAGACAATA-39 RT-qPCR
CCR7 R 59-AAGCAGATGAGGGAGTAAAAGGTG-39

MHC II MHC II F 59-CATATTCTCTGGAACAGATGGATA-39 RT-qPCR
MHC II R 59-GCTCAACTGTCTTGTCCAGTATGGCGC-39

CXCR3 CXCR3 F 59-GGACATCGCCTTTAGACAGGTG-39 RT-qPCR
CXCR3 R 59-GTAGCAGTAGAGCATGACCAGC-39

IL-7R IL-7R F 59-GTGGAGAAGAATTGGTTGAC-39 RT-qPCR
IL-7R R 59-CCTCCATTTCATCATCGGTGTC-39

CK12 probe 59 → 39 59-GGTACCCGTGGATTGCTGTCTCCTCACCA-39 Fluorescence in situ hybridization
59-CTGAGACACGTTTCCCT-39

F, forward; R, reverse.
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expression in the OO 5 d postadministration (I.N.) of rCK12a
(Fig. 5H), with no other changes in any other time points or tis-
sues. Our results indicate that the presence of CK12 either in the
local nasal environment or systemically results in activation of
CD8+ T cell–related genes as well as CCR7 in rainbow trout.

In vivo delivery of rCK12a increases NALT CD8a+ cell
numbers in rainbow trout

We showed that i.p. and I.N. delivery of rCK12a modulates CD8a+

T cell–related genes especially in OO both in vitro and in vivo. To
test the number of CD8a+ T cells in OO changes following the
administration of rCK12a, we next measured the total numbers of
CD8a+ cells in the OO of rainbow trout using immunofluores-
cence microscopy on days 1, 5, and 8 after rCK12a delivery (i.p.
or I.N.). We observed a nonsignificant increase in the number of
CD8a+ cells on day 5 and a significant increase on day 8 (Fig. 6).
This was due to increased numbers in the neuroepithelial com-
partment, whereas no changes were observed in the mucosal tip
(data not shown). This result suggests that rCK12a may stimulate
local proliferation of CD8a+ cells or their migration from lym-
phoid organs to the nasal mucosa.

I.N. or i.p. delivery of rCK12a does not protect rainbow trout
against viral challenge

To investigate if rCK12a is sufficient to confer protection against
IHNV, we administered rCK12a I.N. or i.p. to trout and chal-
lenged them 8 d later with live IHNV. No significant levels of
protection were observed between rCK12a-treated and un-
treated (control) groups at the tested rCK12a dose and ad-
ministration regimen following viral challenge (Fig. 7). Thus,
when delivered alone rCK12a does not lead to protection
against viral pathogen.

Discussion
Chemokines are small proteins that act as extracellular messengers
of the immune system (3, 67, 68). CCL19 plays many biological
roles in mammals including homing of T cells and dendritic cells
(DCs) to T cell areas of lymphoid tissues, secondary lymphoid
tissue organogenesis, Ab responses, and regulatory and memory
T cell function (69–71). CCL19 is also one of the chemokines
whose expression is induced by viral infection in a number of
host-viral models (13, 71) and it contributes to inflammatory re-
sponses against viruses (71–73).
It is believed that the chemokine system appeared around 650

million years ago (31). Chemokines are present in both jawless
and jawed vertebrates but not in invertebrates (31, 33). Che-
mokine and chemokine receptor genes have undergone several
gene duplications in teleosts (31); however, the functional con-
sequences of this molecular diversification are largely unknown.
The goal of this study was to investigate the functional role of
CCL19-like as a messenger between the nasal and the systemic
immune compartments during antiviral immune responses in
rainbow trout.
Although previous studies had reported the presence of some

CCL19-like genes in salmonids, this study provides an updated and
comprehensive analysis of this chemokine family using recently
released genomes. Interestingly, we found an unprecedented di-
versity of CCL19-like genes in salmonids, with six genes in
rainbow trout forming three major clusters (CK12, CK13, and
CK10). This finding raised the question, are all these CCL19-like
forms involved in nasal immune responses? We first observed
unique tissue distribution patterns of each CCL19-like gene, with
CK12 showing a more mucosal-like profile than the other two.
These results are consistent with previous studies in trout, where
CK12 was mainly expressed in mucosal tissues (47). It is also
worth mentioning that the CK12 primers in previous studies (47)
and this study amplify both CK12a and CK12b genes due to se-
quence similarities. Moreover, we observed that only CK12 ex-
pression was significantly upregulated in a sustained manner over

FIGURE 2. CK12a is highly expressed in mucosal tissues and is up-

regulated following nasal IHNV vaccination. Tissue distribution of major

isoforms of CCL19-like (CK12, CK13, and CK10) in different tissues of

control trout and following IHNV vaccination was measured by RT-qPCR.

Constitutive expression of CK12 (A), CK13 (B), and CK10 (C) in seven

different trout tissues. Expression levels were normalized to the expression

in the brain. (D) Gene expression levels of CK12, CK13, and CK10 were

measured in the OO of rainbow trout 1, 4, and 7 d following I.N. IHNV

vaccination (2 3 107 PFU). Gene expression levels were normalized to the

housekeeping gene EF-1a and are expressed as the fold-change compared

with the expression levels in mock-vaccinated controls using the Pfaffl

method. Results are representative of two different experiments (n = 6).

*p , 0.05.
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a period of 7 d in the local nasal environment, supporting the idea
that CK12 is specialized in nasal mucosal immune responses
against viruses. These findings agree with previous studies in trout
where CK12 expression increased in response to experimental
rhabdovirus infection (49). Combined, the unique tissue distribu-
tions as well as the unique transcriptional responses of trout
CK12, CK13, and CK10 suggest specialized functions for each of
these molecules. Further studies should address the specific im-
mune roles of CK13 and CK10 in salmonids.
Along with the local induction of CK12 in the nasal mucosa, we

had previously recorded strong immune responses both in the nasal
mucosa and in the main systemic lymphoid tissue of teleosts (the
HK) in response to nasal vaccination with IHNV vaccine, espe-
cially 4 d postvaccination (27). These findings led us to hypoth-
esize this CCL19-like chemokine coordinates both local and
systemic antiviral immune responses in rainbow trout.
Several studies in mammals have shown that CCL19 is che-

motactic for the immune cells that express its receptor CCR7, such
as DCs (74, 75), B cells (76–78), CD4+, and CD8+ T cells (77–79).
Because migration rates of human cells increase with increasing
CCR7 ligands doses up to 1000 ng/ml in vitro (80–82), we tested

different concentrations of rCK12a up to 1000 ng/ml but we did
not observe any chemotactic effects regardless of the concentra-
tion tested. These results were consistent regardless of the source
of cells used (HKLs, SLs, or GLs) in vitro even when preactivated
leukocytes were used. We have previously shown that HK and gut
CD8a+ cells express CCR7 (29), indicating that the source of cells
used in our studies should not be the reason why chemotaxis re-
sults were negative. Some reports have shown the importance of
PGE2 on the migratory ability of CCL19 in mammalian mono-
cytes (83–86). Thus, we also preactivated HKLs with PGE2, but
still failed to observe any chemotactic effects in vitro. Testing the
bioactivity of mammalian chemokines such as CCR7 ligands
in vitro requires gradients generated by sustained release from
microparticles (81), the presence of immobilized but not soluble
chemokines (87), or the use of three-dimensional collagen gel
assays where soluble CCL19 gradients are formed (87, 88). Thus,
further studies may evaluate the chemoattractive activity of trout
CCL19-like molecules in vitro using assays other than Transwell
assays. In any case, our data highlight that trout CK12a and
CK12b have distinct biological functions because CK12b has
some chemotactic ability in vitro (47) whereas CK12a does not.

FIGURE 3. rCK12a is not chemotactic in vitro

but stimulates proliferation of HKLs from IHNV-

vaccinated fish. Chemotaxis assays were carried

out in Transwell plates and migrated cells were

measured by FACS. Chemotactic activity of

rCK12a on naive HKL cells (A), SLs (B), and HK

cells from IHNV-vaccinated fish (C), PGE2-treated

HK cells (D) are shown. (E) Chemorepellent ac-

tivity of rCK12a on naive HKL cells is shown.

Positive controls consisted of cells migrated toward

ZAS-activated trout serum. HKLs cells from con-

trol or IHNV I.N. vaccinated fish (n = 5) were la-

beled with CFSE and treated with rCK12a then

proliferation was measured by FACS. (F) Increased

proliferation (%) of HKLs from naive and IHNV-

vaccinated fish incubated with or without rCK12a

is shown (comparisons were carried out in cells

from the same individual). Transwell experiments

were conducted three independent times with n = 3.

Proliferation experiments were conducted twice

with n = 5. *p , 0.05.
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FIGURE 4. In vivo nasal delivery of rCK12a (I.N.) results in enlargement of trout OO LP. Trout were delivered rCK12a (3 mg per fish) I.N. and the OO

were sampled 1, 5, and 8 d later and cryosections obtained. (A) and (B) The width of LP at the tip (100 mm from the lamellar tip) and medial (250 mm from

the lamellar tip) regions of the olfactory lamella were measured by image analysis of 10 individual lamellae from three different fish per treatment. The

mean distance 6 SE is shown. (C) Immunofluorescence staining of control (left) and rCK12a-treated (I.N.) rainbow trout OO stained with anti-trout MHC-

II Ab (red) showing our image analysis strategy and the enlargement in the apical and medial regions of the LP in the rCK12a-treated fish (right). For (C)

and (G), cell nuclei were stained with DAPI DNA stain (blue). Results are representative of two different experiments (n = 3). Scale bar, 50 mm. (D–F)

Quantification of the number of MHC-II+ cells present in the tip, lateral, and LP regions of control and rCK12a-treated (I.N.) rainbow trout OO (n = 3).

*p , 0.05, **p , 0.01. (G) Magnified view of an immunofluorescence staining of control (left) and rCK12a-treated (right) rainbow trout OO labeled with

anti-trout MHC-II Ab (red) showing higher expression of MHC-II in the rCK12a-treated fish (right) compared with control (left). L, Lumen. Scale bar, 10 mm.
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In vivo delivery of the rCK12a (I.N.) led to expansion of LP in
both the apical and mid-regions of the olfactory lamella as well as
infiltration of MHC-II+ cells 5 d after delivery. These results are
consistent with our previous work showing significant enlarge-
ment of the olfactory LP and infiltration of immune cells 4 d after
nasal vaccination with IHNV vaccine (27). These data indicate
that trout CK12a promotes the recruitment and extravasation of
leukocytes into the nasal mucosa in vivo.
We have previously shown that I.N. delivery of IHNV vaccine

changes the morphology of the MHC-II+ cells dramatically (29).
This study revealed that delivery of rCK12a (I.N.) increases

MHC-II+ expression and changes in MHC-II+ cell morphology 5 d
after the delivery. In line with our findings, mammalian studies
have shown that CCL19 induces changes in morphology, activa-
tion, and maturation of MHC-II+ DCs in mice (71, 89). Combined,
these results suggest that trout CK12a is responsible for the acti-
vation of Ag presentation in the nasal mucosa of rainbow trout in
response to nasal viral Ag delivery.
CCL19 is known to modulate a myriad of adaptive immune

responses in mammals including memory B and T cell function
(69–71). Thus, we investigated the possible role of trout CCL19-
like in the onset of secondary immune responses. We observed no

FIGURE 5. rCK12a modulates CD8+ T cell–related genes in rainbow trout in vitro and in vivo. Control rainbow trout HKLs were cultured in the presence

of rCK12a for 6 or 24 h and expression of immune genes was measured by RT-qPCR. (A) and (B) Gene expression levels of CD8a, CD8b, granulysin,

IFN-g, IL-7-R, chemokine receptor CCR7, MHC-II, and CXCR3 are shown. Gene expression levels were normalized to the housekeeping gene EF-1a

and expressed as the fold-change compared with the untreated HKL expression levels using the Pfaffl method. Results are representative of three

different experiments (n = 5). For in vivo experiments, 3 mg of rCK12a were delivered I.N. or i.p. in rainbow trout (n = 5), and OO and HK were sampled 1, 5,

and 8 d later. *p , 0.05, **p , 0.01. Gene expression levels of CD8a (C), granulysin (D), IFN-g (E), chemokine receptor CCR7 (F), CK12 (G), and

MHC-II (H) are shown. Results are representative of four different experiments. *p , 0.05 compared with the HK.
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increased proliferation in naive HKLs incubated with rCK12a.
However, HKLs extracted from IHNV-vaccinated fish responded
to rCK12a stimulation with increasing proliferation rates. In
support, Marsland et al. (71) reported that CCL19 did not induce
any proliferation to murine naive T cells. Yet, the same study
observed that CCL19 enhanced T cell proliferation in the presence
of Ags (71). Overall, our findings support the idea that CCL19-
like molecules have adopted multiple innate and adaptive immu-
nological functions during evolution and that these functions are
largely conserved from teleosts to mammals.
CD8+ T cells play an important role in adaptive immune re-

sponses especially against viral pathogens in vertebrates. Some
reports have indicated the importance of CD8+ T cell responses
at the transcript level in salmonids during IHNV infection (90–
92). It is also shown that CCL19 stimulates Th1 responses rather
than Th2 responses by induction of DCs in mice (71). We hy-
pothesized that rCK12a plays an important role in the stimula-
tion of CD8+ T cell responses. Interestingly, we observed a
significant upregulation of CD8+ T cell–related genes in HKLs
that were treated with rCK12a in vitro. Similarly, in vivo de-
livery of rCK12a (i.p. or I.N.) modulated CD8+ T cell–related
genes in HK and OO, especially 5 and 8 d postdelivery. These
results indicate that rCK12a is a major factor for CD8a+ T cell
activation in trout. Importantly, we detected significant increases
in the total number of CD8a+ cells present in the nasal mucosa

8 d after rCK12a delivery regardless of the route (i.p. or I.N.),
suggesting that CK12a mobilizes CD8a+ cells from systemic to
nasal tissues whether produced locally or systemically. Although
the effects of CCL19 on nasal CD8 responses have not been
studied in mammalian models to date, our results are in line with
previous work in mice where delivery of plasmid DNA encoding
for CCL19 either I.N. or i.m. resulted in enhanced mucosal
(vaginal) and systemic Ab responses across isotypes (93). Sim-
ilarly, although in a different mucosal site, in this case the
sublingual mucosa, the CCR7-CCL19/CCL21 pathway has been
shown to regulate efficient Ag-specific systemic and mucosal T
and B cell immune responses (94).
We recently showed that NALT CD8a+ cells mostly express

T cell markers but not NK or DC markers, and that both nasal (but
not gut) and systemic CD8a+ cells express similar levels of CCR7
in trout (29). Thus, direct ligand-receptor interactions may have
driven the observed effects of CK12a on CD8a+ cells. The in-
creased numbers of CD8a+ cells may have been the result of local
proliferation or migration from other lymphoid sites into the
nasal mucosa. Given that nasal vaccination of trout with IHNV
vaccine results in negligible local proliferation (29), we believe
that infiltration of the local olfactory epithelium is the main
contributing mechanism by which CK12a stimulates nasal CD8
cellular responses.
Teleost MALT lack organized lymphoid structures such as

LNs as well as germinal center formation (27, 28, 95). However,
we recently characterized two unique tissue microenvironments
with unique immune cell populations in the trout OO (29).
Specifically, the apical mucosal portion of the olfactory lamella
harbors clusters of CD8+ T cells and this region also has the
highest expression of CK12. This is particularly interesting
because the CCL19/CCR7 axis appears to be vital for the
homing of naive and regulatory T lymphocytes to LNs and the
strategic positioning of these cells within LNs (66, 70, 96, 97).
Thus, in the absence of these organized lymphoid structures in
teleosts, CCL19-like chemokines may still have evolved a role
in the strategic positioning of T cells within mucosal lymphoid
tissues.
Because rCK12a was able to recapitulate some of the main

characteristic immune responses elicited by entire nasal vaccine
formulations, we hypothesized that delivery of rCK12a in the
absence of Ag may lead to protection against IHNV in naive
rainbow trout. Fish were challenged 8 d after rCK12a adminis-
tration because we had observed significant increases in CD8+

T cell numbers in NALT following rCK12a delivery at this time

FIGURE 6. In vivo delivery of rCK12a increases NALT CD8a+ T cell numbers in rainbow trout. rCK12a was delivered I.N. or i.p. (n = 5) and the OO

was sampled 1, 5, and 8 d later. Control fish received the same volume of PBS I.N. and i.p. (A) Quantification of the number of CD8a+ T cells present in

neuroepithelial region of the OO of control and rCK12a-treated (I.N. or i.p.) rainbow trout (n = 3). **p , 0.01. (B) Representative immunofluorescence

staining of control (left) and rCK12a-treated (right) rainbow trout OO labeled with anti-trout CD8a (green) mAb showing higher number of CD8a+ cells in

the rCK12a-treated fish (right) compared with control (left). DAPI was used to stain cell nuclei (blue). Scale bar, 10 mm.

FIGURE 7. I.N. or i.p. delivery of rCK12a does not protect rainbow

trout against viral challenge with IHNV. Kaplan–Meier curves showing the

percent survival of rainbow trout 28 d after challenge with virulent IHNV.

Then 8 d after rCK12a treatment, trout were challenged with virulent

IHNV by injection. In total, 25 fish per tank in duplicate tanks were used

for the challenge experiment. Controls consisted of mock-vaccinated fish

(which received PBS I.N. and i.p.) and an unchallenged group.
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point. However, we were not able to observe any protection
against live viral challenge following administration of rCK12a
(i.p. or I.N.). One explanation may be that the dose we used was
too low to afford protection. In this regard, murine studies have
shown no adjuvant effects of CCL19 when delivered at 50 mg per
mouse but immunostimulatory effects when delivered at a dose
of 100 mg per mouse (93). Our results may also be interpreted as
follows: the high levels of protection against IHNV following I.
N. IHNV vaccination require triggering a combination of im-
mune factors and cells beyond CCL19 responses. Alternatively,
rCK12a delivery may not result in sustaining enough immune
response. Nasal vaccination with IHNV vaccine results in the
presence of the Ag for 4 d in the local environment (98). Thus, a
single delivery of rCK12a may not have achieved the levels of
this chemokine required for protection on the day of the chal-
lenge. In addition, the half-life of the recombinant protein may
require multiple administrations of rCK12a to confer protection.
Finally, because we did not coadminister rCK12a with a vaccine,
our results may simply indicate that rCK12a alone did not
stimulate specific immune responses in naive rainbow trout. In
other words, the increased CD8+ cell numbers we observed in
the nasal mucosa are not protective unless those lymphocytes
are Ag specific. Future studies should address whether code-
livery of rCK12a with a vaccine enhances vaccine efficacy and/
or protection.
In summary, this study demonstrates that the diversification of

CCL19-like genes in salmonids resulted in the acquisition of one
CCL19-like molecule, CK12, which plays a cardinal role in an-
tiviral immune responses following nasal immunization. The
ability of CCL19 to not only regulate local mucosal immune re-
sponses against viruses but also systemic ones underscores the
biological role of chemokines as messengers between nasal and
systemic lymphoid tissues of vertebrates. The presence of this
CCL19-like–driven immune mechanism in teleost fish suggests
that this chemokine has evolutionary conserved roles in vertebrate
immune systems.
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Supplemental Figure 1: Production of trout recombinant protein CK12a (rCK12a). rCK12a was 
produced by bacterial expression system and then refolded by gel filtration. (A) SDS-PAGE 
confirmed the presence of the recombinant protein (rCK12a) band at expected molecular weight 
(12 KDa). R: reducing and NR: non-reducing conditions. (B) Immunoblot using anti-Histag 
antibody confirmed the presence of the recombinant protein (rCK12a) band at expected 
molecular weight.   

	

	

	

	

	

	



	

Supplemental Figure 2: 3-D protein structure prediction of the six CCL19-like molecules. (A) 
CK12a, (B) CK12b, (C) CK13a, (D) CK13b, (E) CK10a and (F) CK10b was performed via 
Phyre2 online tool (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) and the .pdb 
files were modeled using PyMOL. 

	

	

	

	

	

	

	

	



	

	

	

	

	

		

	

Supplemental Figure 3: CK12 expression is up-regulated in the olfactory organ following nasal 
vaccination with IHNV (4 dpi).  Olfactory organ cryosections from adult control or nasally 
vaccinated IHNV rainbow trout (4 dpi) were stained with rainbow trout CK12 oligonucleotide 
probes labeled at their 5’ ends with indodicarbocyanine. (A) FISH staining of control olfactory 
organ and (B) IHNV vaccinated (4 dpi) olfactory organ labelled with CK12 probe (Cy5, pink). 
DAPI was used to stain cell nuclei (blue). Fluorescence images were overlaid with differential 
interference contrast (DIC) image. Scale bars: 10 µm. 
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Supplemental Table I: MatGAT output for % of identity and similarities of the six CCL19-like 
sequences of rainbow trout (Oncorhynchus mykiss). Scoring matrix Blosum50 was used in the 
comparison. % of similarity is shown in light grey and % of identity in dark grey. 
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Tissue Microenvironments in the Nasal Epithelium of
Rainbow Trout (Oncorhynchus mykiss) Define Two Distinct
CD8a+ Cell Populations and Establish Regional Immunity

Ali Sepahi,* Elisa Casadei,* Luca Tacchi,* Pilar Muñoz,† Scott E. LaPatra,‡ and

Irene Salinas*

Mucosal surfaces require balancing different physiological roles and immune functions. To effectively achieve multifunctionality,

mucosal epithelia have evolved unique microenvironments that create unique regional immune responses without impairing other

normal physiological functions. Whereas examples of regional immunity are known in other mucosal epithelia, to date, no immune

microenvironments have been described in the nasal mucosa, a site where the complex functions of olfaction and immunity need to

be orchestrated. In this study we identified the presence of CD8a+ cells in the rainbow trout (Oncorhynchus mykiss) nasal

epithelium. Nasal CD8a+ cells display a distinct phenotype suggestive of CD8+ T cells with high integrin b2 expression. Impor-

tantly, nasal CD8a+ cells are located in clusters at the mucosal tip of each olfactory lamella but scattered in the neuroepithelial

region. The grouping of CD8a+ cells may be explained by the greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal

tip compared with the neuroepithelium. Whereas viral Ag uptake occurred via both tip and lateral routes, tip-resident MHC class

II+ cells are located significantly closer to the lumen of the nasal cavity than are their neuroepithelial counterparts, therefore

having quicker access to invading pathogens. Our studies reveal compartmentalized mucosal immune responses within the nasal

mucosa of a vertebrate species, a strategy that likely optimizes local immune responses while protecting olfactory sensory

functions. The Journal of Immunology, 2016, 197: 4453–4463.

A
nimal mucosal barriers are complex tissues that carry
many important physiological functions. In addition to
their main physiological role, every mucosal epithelium

is a first line of defense against pathogen invasion and has important
immune roles. To increase immune surveillance and regulate immune
responses, mucosal barriers have evolved unique microenvironments
allowing for regional tissue immunity (1–3). For instance, different
segments of the intestine have distinctive immune responses, such as
the small intestine, where immune tolerance to food Ags is impor-
tant, versus the colon, where constitutive antibacterial immunity or
symbiosis is essential (4). The increasing amount of work pertaining
to the number and complexity of mucosal microenvironments has
made clear that mucosal organs, previously thought to be immu-
nologically uniform, are immunologically heterogeneous. This het-
erogeneity helps them support multiple physiological functions
while mounting efficient immune responses. However, apart from

the intestine, there are very few well-documented examples of re-
gional immunity in other mucosal surfaces.
Regional immune specialization relies on specific anatomical

distributions of innate and adaptive immune cells (5, 6). The latter

is achieved by a number of molecular mechanisms. For instance,

selective expression of chemokines and chemokine receptors is

known to govern the localization and circulation of lymphocytes

within primary and secondary lymphoid organs (4, 7–9). Addition-

ally, expression of unique integrins on the surface of lymphocytes

and specific adhesion molecules also allows tissue-specific homing

of lymphocytes to different mucosal regions (7–9). In this respect,

intestinal epithelial cells, via expression of different immune mol-

ecules, determine the specificity of lymphocyte trafficking and the

nature of local immune specialization (10–12).
Ag presentation via MHC class II (MHC-II) molecules is an

important component of any immune response, including viral im-

mune responses. In this respect, the expression of MHC-II is also

variable in different regions of the intestine (5, 13), and professional

APCs in mammals have compartment-specific properties (2, 5, 14).

Importantly, epithelial cells, despite not being considered profes-

sional APCs, express MHC-II (15–17), and the levels and patterns of

expression change under pathological conditions (18, 19).
Generally speaking, mucosal surfaces establish a highly regula-

tory immune environment that dampens excessive inflammatory

responses with the goal of protecting barrier integrity. In the case of

the nasal mucosa, highly regulated immune responsesmay be critical

for the correct functioning of the sensitive neuronal tissue, the olfactory

neuroepithelium. As the olfactory epithelium is often subject to nu-

merous infections, rapid removal ofmicrobes and debris from this tissue

must be essential to maintain its integrity. Thus, to preserve olfactory

sensory function while still fighting nasal pathogens, we hypothesized

that the nasal mucosa may establish unique microenvironments that

meet its immune requirements without compromising olfaction.
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The teleost and mammalian olfactory organs are highly con-
served anatomically speaking and their cellular and molecular
mechanisms are largely similar (20). In both cases, the olfactory
organ is a complex sensory organ made up of many different cell
types. In humans, different regions of the nasal cavity contain
different densities and distributions of ciliated, columnar, and
goblet cells (21–23). In particular, the chemosensory portion of
the nasal cavity, the olfactory epithelium, contains no goblet cells
(24). In teleosts, the olfactory organ is also divided into sensory
and nonsensory regions; however, the location of these regions
varies in different species (25, 26). The sensory region of the ol-
factory lamella contains olfactory sensory neurons, including cil-
iated, microvillus, and crypt cells (26–28), whereas the nonsensory
region is a mucosal epithelium characterized by the presence of
goblet cells. Recently, a nasopharynx-associated lymphoid tis-
sue (NALT) was described in rainbow trout (Oncorhynchus
mykiss) (29, 30). Teleost NALT was described as a diffuse net-
work of myeloid and lymphoid cells located in the olfactory
organ of fish (29, 30). However, the histological regionalization
present in teleosts and mammals led us to hypothesize that re-
gional immunity may exist in different portions of the vertebrate
nasal cavity.
The present study demonstrates the presence of two different

microenvironments (mucosal and neuroepithelial) in the olfactory
organ of rainbow trout. The mucosal tip of the epithelium
harbors clusters of CD8a+ cells whereas few numbers are found
in the neuroepithelium. CD8a+ cell localization corresponds with a
higher expression of chemokine and chemokine receptor pairs
(CCL19 and CCR7) in the mucosal tip versus the neuroepithelial
side. Sorted nasal lymphoid CD8a+ cells have a CD8a+ T cell
phenotype rather than an NK cell or dendritic cell (DC) pheno-
type. Furthermore, based on MHC-II staining patterns, we report
important differences in Ag presentation in the two microenvi-
ronments both in control and vaccinated animals. This repre-
sents an example of unique nasal immune microenvironments in
a vertebrate species and suggests that regional immunity may
be a mechanism by which the nasal mucosa is able to mount
effective immune responses without impinging crucial neural
functions.

Materials and Methods
Animals, nasal vaccination, and tissue sampling

Triploid female adult rainbow trout (mean weight, 200 g) were obtained
from the Lisboa Springs Hatchery (Pecos, NM). All animal studies were
reviewed and approved by the Institutional Animal Care and Use Com-
mittee at the University of New Mexico (protocol no. 16-200384-MC).
Head kidney (HK) leukocytes, GALT leukocytes, and NALT leukocytes
were isolated as explained elsewhere (30). For nasal immunization studies,
adult rainbow trout (n = 10) received live attenuated infectious hemato-
poietic necrosis virus (IHNV) vaccine or PBS as described in (30). Five
fish from each group were sampled 4 and 8 d after vaccination. The ol-
factory organs were snap frozen and cryoblocks used for immunostaining
as described below.

Flow cytometry and cell sorting of CD8a+ T cells

HK leukocytes, gut leukocytes, and nasal leukocytes (n = 6) were stained
with rat anti-trout CD8a Ab (31) followed by FITC-labeled anti-rat IgG.
After washing, a total of 30,000 cells were recorded using an Attune flow
cytometer (Life Technologies). The percentage of CD8a+ cells was
quantified as the percentage of FITC+ cells within the lymphocyte gate
using their forward light scatter area/side light scatter area profile. A
doublet exclusion gate based on the forward light scatter area/forward light
scatter height profile was then applied to ensure that only singlets were
analyzed. CD8a+ cells from the lymphocyte gate of HK, gut, and
NALT cell suspensions (n = 9) were sorted using a Sony iCyt SY3200
high-speed cell sorter at the University of New Mexico Shared Flow
Cytometry facility.

Light microscopy, transmission electron microscopy, and
immunofluorescence microscopy

Control adult rainbow trout olfactory organs (n = 5) were fixed in 10%
neutral buffered formalin overnight at 4˚C and then transferred to 70%
ethanol. Samples were then embedded in paraffin and 5-mm-thick sections
stained with H&E. For transmission electron microscopy, the olfactory
organs (n = 2) of rainbow trout that had received live attenuated IHNV
vaccine intranasally an hour prior to sampling were fixed overnight at 4˚C
in 2.5% (v/v) glutaraldehyde in PBS, then transferred to 1% osmium tetroxide
(w/v) in PBS for 2 h at 4˚C. After washing in PBS (three times, 10 min),
samples were dehydrated in a graded series of ethanol (10–100%) through
changes of propylene oxide. Samples were then embedded in Epon resin,
sectioned, and stained with uranyl acetate and lead citrate before being
examined in a Philips Tecnai 12 transmission electron microscope. For
immunostaining, trout olfactory organs were snap frozen in OCT for
cryosectioning and 5-mm-thick cryosections were postfixed in acetone
followed by 4% paraformaldehyde and labeled with rat anti-trout CD8a
Ab (31), followed by FITC donkey anti-rat IgG (Jackson Immuno-
Research Laboratories). For detection of MHC-II+ cells in the nasal
mucosa, cryosections were stained with mouse anti-trout MHC-II
b-chain IgG (2 mg/ml) (32) followed by Alexa Fluor 647 donkey anti-
mouse IgG (2 mg/ml). For detection of IHNV, a pool of anti-IHNV mAbs
containing mAbs 1H8, 6A7, and 5AG (2 mg/ml) followed by Cy3 anti-
mouse IgG (1 mg/ml; Jackson ImmunoResearch Laboratories) was used.
Nuclei were stained with DAPI. Samples were observed under a Nikon Ti
microscope and images captured and measured with the Nis-Elements
Advanced Research software. Positive cells were scored manually.

Laser capture microdissection

Adult trout control cryosections from the olfactory organ were used to
perform laser capture microdissection (LCM). Ten sections, 5 mm thick
each, from each fish (n = 3) were used to obtain the mucosal regions (tips)
of each lamella or the lateral regions and valleys (neuroepithelium) of each
lamella. Tissues were captured using an Arcturus LCM system (Thermo
Fisher Scientific), and similar numbers of LCM captures were performed
for both side and tip. RNAwas extracted using the PicoPure RNA isolation
kit as per the manufacturer’s instructions. Whenever different RNA
amounts were obtained, they were adjusted to make them identical prior
to the cDNA synthesis. The experiment was repeated three independent
times.

Gene expression analysis by real-time quantitative PCR

Total RNA from sorted CD8+ T cells was obtained using the GenElute
single-cell RNA purification kit (Sigma-Aldrich) following the manufacturer’s
instructions. Total RNA from LCM-collected tissue samples was ob-
tained using the Arcturus PicoPure RNA isolation kit as per the manu-
facturer’s instructions. cDNA synthesis was performed using 500 ng of
total RNA, which was denatured (65˚C, 5 min) in the presence of 1 ml of
oligo(dT)17, 1 ml of 29-deoxynucleoside 59-triphosphate mix (10 mM
each; Promega), and RNA/DNA-free water (Sigma-Aldrich) in a volume
of 13 ml. Synthesis was carried out using 1 ml of SuperScript III enzyme
reverse transcriptase (Invitrogen) in the presence of 5 ml of 53 first-
strand buffer, 1 ml of 0.1 M DTT, made up to a final volume of 25 ml
with water, and incubated at 55˚C for 1 h. The resultant cDNAwas stored
at 220˚C. The expression of CD3, CD8a, IFN-g, CCR7, IL7-R, CD103,
integrin b2, FcRg, DC-SIGN, MHC-II, CD83, and CD141 in HK, gut,
and nasal CD8a+ cells was measured by real-time quantitative PCR (RT-
qPCR) using specific primers (Supplemental Table I). The expression of
CD8a, CD8b, TCRa, TCRb, TCRd, TCRg, L-selectin, VCAM-1, ICAM-1,
integrin b2, CCL19 and CCR7 in LCM-dissected nasal samples was mea-
sured by RT-qPCR using specific primers (Supplemental Table I). The
quantitative PCR was performed using 3 ml of a diluted cDNA template as
described in Tacchi et al. (33). The relative expression level of the genes was
determined using the Pfaffl method (34) as previously described (33).
Using this method, the fold change difference in expression in the mu-
cosal tip compared with the neuroepithelium (lateral) was quantified by
considering the neuroepithelium samples as controls. The expression in
the neuroepithelium was set to 1 and used as control.

Protein sequence analysis

Protein sequences for integrin b2 were obtained from the UniProt database
(http://www.uniprot.org/) and aligned using ClustalW (http://www.align.
genome.jp/) (35); subsequently, a phylogenetic tree was created using
the neighbor-joining method (bootstrap 10,000) within the software
MEGA 6.06 (36). Furthermore, to create the similarity and homology
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table the software MatGAT 2.02 (37) was used. All integrin b2 sequences
were searched for conserved motifs by using the National Center for
Biotechnology Information Batch conserved domain database (http://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (38).

In vivo 5-ethynyl-29-deoxyuridine proliferation assay

For proliferation assays, 100-g rainbow trout were intranasally vaccinated
with live attenuated IHNV vaccine as explained elsewhere (33). Twenty-four

hours prior to sampling, trout received 500 mg of 5-ethynyl-29-deoxyuridine
(EdU) by i.p. injection. The olfactory organs from control and vaccinated
trout (n = 4) were collected on days 4 and 8 postvaccination and snap frozen
in OCT. Proliferating cells were detected using the Click-iT EdU Alexa
Fluor 647 imaging kit (Thermo Fisher Scientific) as per the manufacturer’s
instructions. The percentage of proliferating cells in the tip and lateral re-
gions was calculated by counting the number of Alexa Fluor 647–positive
cells per field in 10 different fields (360) of each region per specimen under
a Nikon Ti inverted fluorescence microscope.

FIGURE 1. Characterization of NALT

CD8a+ T cells in rainbow trout by FACS.

(A) Representative dot plots of control trout

HK leukocytes and NALT and GALT

leukocytes stained with anti-trout CD8a

showing the percentage of positive cells

from the lymphocyte and myeloid gates. (B)

Mean percentage of CD8a+ cells in control

rainbow trout HK, NALT, and GALT cell

suspensions within the lymphocyte gate (n =

6) analyzed by FACS. (C) Mean percentage

of CD8a+ cells in control rainbow trout HK,

NALT, and GALT cell suspensions within

the myeloid gate (n = 6) analyzed by FACS.

(D) FACS histograms from anti-trout CD8a-

stained NALT cell suspensions showed one

peak in some fish whereas other fish have

two separate positive peaks. The frequency

of fish that contained one CD8a+ subpopu-

lation and two CD8a+ subpopulations is

represented. Different letters indicate statis-

tically significant differences among groups

(p , 0.05). Results are representative of

three different experiments.
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Statistical analysis

Results are expressed as the mean 6 SE. Data analysis was performed in
GraphPad Prism version 5.0. The RT-qPCR measurements were analyzed
by t test to identify statistically significant differences between groups.
One-way ANOVA and a Tukey post hoc analysis test were performed to
identify statistically significant differences among groups. For the prolif-
eration assay a multivariate ANOVA test followed by a Fisher least sig-
nificant difference post hoc test for multiple comparisons was performed.
The p values , 0.05 were considered statistically significant.

Results
Trout NALT contains CD8a+ cells that display a unique
mucosal T cell phenotype

Previous studies had reported the presence of CD8a+ cells in trout
mucosal tissues such as intestine and gills (31). Importantly, intes-
tine and gill CD8a+ cells expressed immune markers different from
those expressed by systemic (HK) CD8a+ cells. Thus, we asked
whether trout NALT also contains CD8a+ cells. By FACS we found
that lymphoid CD8a+ cells represent ∼8% of the NALT lymphocyte
gate whereas in HK and GALT they represent ∼3 and ∼30%, re-
spectively (Fig. 1A, 1B). Within the myeloid gate, NALT CD8a+

cells accounted for ∼0.1% of the cells, whereas in HK and GALT,
these accounted for 1.5 and 9.5%, respectively (Fig. 1A, 1C). In-
terestingly, most of the fish (∼75%) showed two different CD8a+

cell populations in NALT, one with a higher CD8a+ stain intensity
and a second one with a lower CD8a+ stain intensity (Fig. 1D).
These two (high and low) populations were not observed in the
rest of the organs examined.
To know whether nasal CD8a+ cells constitute a unique cell

population different from systemic CD8a+ cells or other mucosal
CD8a+ cells, we sorted nasal, HK, and gut CD8a+ cells from
the lymphocyte gate and measured the expression of CD3, CD8a,
CCR7, IFN-g, IL7-R, CD103, integrin b2, FcRg, DC-SIGN,
MHC-II, CD83, and CD141 by RT-qPCR (Fig. 2). Gut CD8a+

cells expressed higher levels of CD3 and CD8a (4- and 14.4-fold,
respectively) than did HK CD8a+ cells (Fig. 2A, 2B). Nasal
CD8a+ cells also expressed significantly higher levels (5.8-fold)
of CD8a transcripts than did HK CD8a+ cells (Fig. 2B). Impor-
tantly, both nasal and gut CD8a+ cells expressed IFN-g at higher
levels (∼3-fold) than did HK CD8a+ cells (Fig. 2D), whereas no
differences in the levels of CCR7 expression were detected in the
CD8a+ cells from the three organs (Fig. 2C). Alternatively, gut
CD8a+ cells expressed significantly higher levels of IL-7R and
CD103 (∼2-fold and ∼20-fold, respectively) than did HK and
nasal CD8a+ cells (Fig. 2E, 2F). Because integrins are known to
play a crucial role in directing lymphocytes to mucosal sites and
create tissue microenvironments, we measured expression levels
of one integrin b2. This integrin was selected as our candidate
nasal integrin based on previous microarray results (30). We found
that nasal CD8a+ cells expressed almost 50-fold more integrin b2

than did HK CD8a+ cells and ∼2.5-fold more than did gut CD8a+

cells (Fig. 2G). The low expression levels of FcRg (Fig. 2H), DC-
SIGN (Fig. 2I), and MHC-II (Fig. 2J) indicated that nasal lymphoid
CD8a+ cells are CD8a+ T cells and not NK cells or DC-SIGN+

DCs. Specifically, DC-SIGN expression was lowest in the gut
CD8a+ cells (Fig. 2I) whereas MHC-II expression in nasal CD8a+

cells was 10-fold lower than in HK and gut CD8a+ cells (Fig. 2J).
CD83 expression was ∼3.5-fold higher in nasal CD8a+ cells than in
HK and gut CD8a+ cells (Fig. 2K). Finally, expression of CD141
was low in HK and nasal but high (4.2-fold) in gut CD8a+ cells
(Fig. 2L), suggesting the presence of some DC-SIGN2/CD141+ DC
contamination in the gut but not nasal CD8a population. Collec-
tively, these results indicated that nasal CD8a+ cells have a unique
phenotype (i.e., high CD8a and IFN-g expression) that is more

FIGURE 2. Trout NALT CD8a+ cells have a CD8 T cell phenotype that

is different to HK and gut CD8a+ cells. CD8a+ cells from control rainbow

trout HK, NALT, and GALT (n = 9) were sorted and total RNA was

extracted to quantify gene expression levels by RT-qPCR. Gene expression

levels of CD3 (A), CD8a (B), chemokine receptor CCR7 (C), IFN-g (D),

IL-7R (E), CD103 (F), integrin b2 (G), FcRg (H), DC-SIGN (I), MHC-II

(J), CD83 (K), and CD141 (L) are shown. Gene expression levels were

normalized to the housekeeping gene EF-1a and expressed as the fold

change increase compared with the HK expression levels using the Pfaffl

method. Results are representative of three different experiments. *p ,
0.05, **p , 0.01 compared with the HK.
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similar to that of other mucosal CD8a+ cells than systemic CD8a+

cells. Moreover, gut and nasal CD8a+ cells appear to represent
distinct subsets with high integrin b2 expression specifically defining
nasal CD8a+ cells.

The trout nasal mucosa harbors two distinct CD8a+ cell
populations, one at the mucosal tip and one at the lateral
neuroepithelium

We next examined the localization of CD8a+ cells in the trout
olfactory organ focusing on the two main tissue compartments
(mucosal and neuroepithelial) as shown in Fig. 3A. H&E
staining of adult trout olfactory organ revealed clusters of cells
with lymphocyte morphology in the mucosal tip but not the
lateral regions of the olfactory organ (Fig. 3B). By immuno-
staining, CD8a+ cells were identified in both tissue microenvi-
ronments, albeit with important differences. At the mucosal tip,
clusters of CD8a+ cells were observed beneath the goblet cells.
In this region, CD8a+ cell clusters consisted an average of 12
cells (Fig. 3C, 3E). Alternatively, we found scattered CD8a+

cells within the neuroepithelial region of the olfactory organ
(Fig. 3D). These cells were not very abundant (one to two cells
per field) and did not form clusters (Fig. 3E). Moreover, staining
showed that some CD8a+ cells were located intraepithelially in
both tip and lateral neuroepithelium (Fig. 3C, 3D). Double
staining with anti-CD8 anti–MHC-II Abs showed no double-
positive cells in both regions (Supplemental Fig. 2). Thus,
based on these observations we concluded that the mucosal
tip constitutes a microenvironment specialized in CD8a+ cell–
mediated immunity in rainbow trout.

T cell markers, adhesion molecules, chemokines, and
chemokine receptor expression occur primarily in the
microenvironment of the mucosal tip

To further understand the preferential localization of CD8a+ cells
to the mucosal tip, we used LCM to dissect the two nasal mi-
croenvironments and measure a number of immune cell markers
as well as adhesion molecules and chemokines. As expected, the
mucosal tip expressed significantly higher levels of all T cell
markers (between 4- and 8-fold), except for TCRg, than did the
neuroepithelium (Fig. 4A). Because we had identified integrin b2

as an integrin highly expressed by nasal CD8a+ T cells, we
measured this integrin in LCM-dissected tissue microenviron-
ments as well as their putative adhesion molecule ligands VCAM-1,
ICAM-1, and L-selectin. Our results show that the mucosal tip
expresses all three adhesion molecules as well as the integrin b2 at
greater levels (between 2- and 3-fold) than does the lateral neu-
roepithelium (Fig. 4B), therefore creating the microenvironment
that ensures preferential trafficking of CD8a+ cells to this area.
We performed searches for a number of vertebrate integrin b2

molecules as well as phylogenetic analyses that revealed a high
degree of conservation between rainbow trout integrin b2 and the
other vertebrate integrin b2 molecules. Trout integrin b2 had an
identity/similarity of 50.6/67.4 and 50.2/66.5% with chicken and
human integrin b2, respectively (Supplemental Fig. 1). Impor-
tantly, all vertebrate integrin b2 molecules, including trout integrin
b2, contained three canonical conserved motifs for integrin b2: the
von Willebrand factor type A domain, the integrin b cytoplasmic
domain, and the b tail domain. Finally, we measured the expres-
sion levels of the chemokine CCL19 and its putative receptor

FIGURE 3. CD8a+ cells are clustered at the mucosal tip of the olfactory lamellae in rainbow trout. (A) Schematic diagram of the histological orga-

nization of the trout olfactory organ showing the mucosal tip area with goblet cells (i) and the lateral neuroepithelium (ii). (B) Representative H&E stain of

adult rainbow trout olfactory organ showing clusters of lymphocyte-like cells at the mucosal tip (i) (and inset) of the lamella (black arrows) but not in the

lateral region (ii). Scale bar, 150 mm. (C) Immunofluoresecence staining of a control rainbow trout olfactory organ cryosection stained with anti-trout CD8a

(FITC, green) showing a cluster of CD8a+ cells at the mucosal tip. (D) Immunofluorescence staining of a control rainbow trout olfactory organ cryosection

stained with anti-trout CD8a showing an isolated CD8a+ cell in the lateral neuroepithelium. For (C) and (D), cell nuclei were stained with DAPI DNA stain

(blue). Results are representative of three different experiments (n = 5). Scale bars, 5 mm. (E) Quantification of the number of CD8a+ cells present in the tip

and lateral regions of control rainbow trout (n = 6). **p , 0.01 for differences between both regions. GC, goblet cell; L, lumen; LP, lamina propria; Nep,

neuroepithelium.
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CCR7. We selected this molecule based on our previously published
microarray results (30) and found that the mucosal tip expresses
greater amounts of this chemokine and its putative receptor (4- and
2-fold, respectively) than does the neuroepithelium (Fig. 4C).
These results therefore indicate that the expression of immune
markers, adhesion molecules, and chemokines is preferentially
compartmentalized to the mucosal tip of the trout olfactory organ
whereas the neuroepithelial regions express lower levels of these
molecules. These data show that the establishment of two unique
CD8a+ cell populations in trout NALT is warranted by the re-
gional expression of chemokine pairs and adhesion molecules
that attract integrin b2

high lymphocytes.

Viral Ag uptake takes place via both nasal microenvironments
in rainbow trout

We hypothesized that one of the specialized immune functions of
the mucosal tip could be the preferential uptake of Ags due to the
greater production of mucosal secretions in this region. To test this

hypothesis, we examined the uptake of live attenuated IHNV
through the two regions 1 h after nasal delivery. Immunostaining
using anti-IHNV Abs recognizing the virus glycoprotein (G pro-
tein) (39) showed that both the mucosal tip and the lateral neu-
roepithelial region were able to uptake the viral Ag (Fig. 5A, 5B).
This finding was confirmed by transmission electron microscopy
(Fig. 5C, 5D) and by RT-qPCR (Fig. 5E) used to detect viral RNA
in LCM-dissected tip and lateral regions. Thus, these results in-
dicate that at least with our Ag model, no preferential uptake of
Ag occurs in the mucosal tip. This result supports the previous
notion that IHNV is a neurotropic virus (40, 41) and therefore the
trout olfactory sensory neurons are a portal of entry for this virus
in the olfactory organ.

MHC-II+ expression in the tip and lateral nasal
microenvironments

Despite that both the tip and lateral regions had taken up viral Ag,
we hypothesized that Ag presentation may be different in the two
microenvironments. MHC-II+ cells with the morphology of pro-
fessional APCs were observed in both the tip and lateral regions of
control trout nasal mucosa (Fig. 6A). Interestingly, in the lateral
region the MHC-II+ cells were located at the base, near the basal
membrane, whereas in the tip, they were closer to the apical portion
of the epithelium (Fig. 6A). As a consequence, when we measured
the distance between the MHC-II+ cells and the lumen of the nasal
cavity, we found that in the tip the mean distance was ∼25 mm,
whereas in the lateral region it was ∼120 mm (Fig. 6B). Thus,
professional APCs located at the tip have quicker access to nasal
pathogens than lateral APCs. In response to nasal vaccination with
IHNV, the morphology of the MHC-II+ cells dramatically changed,
particularly 4 d postvaccination in the lateral region (Fig. 6C).
Importantly, the epithelial cells of the mucosal tip displayed MHC-
II staining 4 d postvaccination (Fig. 6D) and the staining was no
longer present on day 8 (Fig. 6F). Both at days 4 and 8, the lamina
propria at the insertion of the lamellae to the midline raphe showed
a dramatic influx of MHC-II+ cells not observed in the control fish
(Fig. 6C, 6E).

Cell proliferation in response to nasal viral vaccination is
compartmentalized in the mucosal tip microenvironment

To know whether nasal vaccination resulted in cell proliferation
invivowe used the EdU assay. Overall, we observed limited amounts
of cell proliferation in the olfactory organ even following nasal
vaccination at day 4. At day 8, we found significantly higher numbers
of EdU+ cells in the tip but not the lateral neuroepithelium of
vaccinated fish compared with controls (Fig. 7). Thus, in response
to Ag stimulation, cell proliferation is primarily contained in the
mucosal tip of the olfactory organ, suggesting a protective response
of the sensory regions during the course of the immune response.

Discussion
Mucosal barriers are multifunctional epithelia that perform key
physiological functions while protecting the host against infection.
Vertebrates have evolved strategies to limit immune responses at
unique sites within mucosal barriers, a phenomenon also known
as regional immunity (5, 42–44). Regional immunity examples
are well documented in the intestinal mucosa of mammals (1, 5,
6, 45); however, to date, no examples have been illustrated in the
nasal mucosa.
The olfactory epithelium of both aquatic and terrestrial vertebrates

is often subjected to microbial invasion. Owing to the delicate nature
of the sensory regions in this organ, we hypothesized that regional
immunity may be critical to ensure adequate olfactory function in
vertebrates. NALTwas recently discovered in teleosts (30) and reported

FIGURE 4. Two unique tissue microenvironments are present in the trout

olfactory organ. Control trout olfactory organ cryosections were dis-

sected by LCM to separate the mucosal tip and the lateral regions. Total

RNA from each region was purified and gene expression was quantified

by RT-qPCR. (A) Gene expression levels in the mucosal tip and neuro-

epithelium of T cell–related markers. (B) Gene expression levels of adhesion

molecules and ligands. (C) Gene expression levels of the chemokine CCL19

and its putative receptor CCR7. Gene expression levels were normalized to

the housekeeping gene EF-1a and are expressed as the fold change in-

crease compared with the expression levels in the neuroepithelium using

the Pfaffl method. Results are representative of three different experi-

ments (n = 3). *p , 0.05.
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to have the same canonical features of other teleost MALT. Using
rainbow trout as a model, we show that immune responses in the
nasal mucosa are not homogeneous and that at least two unique mi-
croenvironments in the mucosal (nonsensory) and sensory regions of
the teleost olfactory organ exist.
CD8 T cells are a key component of the vertebrate mucosal

immune system. In this study, we identified the presence of CD8a+

T cells in trout NALT. Compared to HK, NALT harbors a greater
proportion of CD8a+ cells, but not as abundant as the percentage
found in GALT. The olfactory organs of all vertebrates are pro-
fusely irrigated by capillaries. Thus, the intermediate percentages
of CD8a+ cells found in NALT may reflect a greater influence of
the systemic compartment in this tissue compared with the gut.
Interestingly, we observed that some animals contained two dif-
ferent subpopulations of CD8a+ cells expressing different levels of
CD8a. Future studies should further address the meaning of this
finding.
Mucosal epithelia use a number of receptor–ligand interactions

to guide the trafficking of immune cells and establish regional im-
munity. For instance, CD8+ T cells express different selectins–selectin

ligands, chemokine receptors, and integrins depending on the ac-
tivation state of the cell (46), which define their tissue distribution
and enable regional immunity. Thus, mucosal lymphocytes often
express unique adhesion molecules that allow their specific homing
to the mucosal regions expressing the corresponding ligand (4, 44,
47, 48). Mucosal CD8a+ cells are abundant in rainbow trout gut and
gill (31). In this study, we identified the presence of CD8a+ T cells
in teleost NALT. CD8a+ cells were not uniformly scattered in the
nasal epithelium but rather formed clusters at the tip of each la-
mella, in the mucosal regions. Interestingly, trout skin CD8+ T cells
are twice as abundant in the anterior region than in the posterior
region of the body by flow cytometry (49); however, whether they
form cell clusters similar to those observed in NALT is unknown.
Because NALT CD8a+ cells mostly expressed T cell markers

but not NK or DC markers, we concluded that this NALT popula-
tion represents CD8a+ T cells. Based on our microscopy results,
no double CD8+/MHC-II+ cells were identified in NALT. Recently,
CD8+/MHC-II+ cells within the myeloid gate with a DC-like cell
phenotype have been characterized in the skin of rainbow trout (32).
Thus, it seems that this population is absent at this mucosal site in trout.

FIGURE 5. Viral Ag uptake takes place both via the

mucosal tip and the lateral neuroepithelium. Twenty-five

microliters of live attenuated IHNV (105 PFU) or PBS

(control) was delivered intranasally to rainbow trout

(n = 3), and trout olfactory organs were collected 1 h

later to localize Ag uptake. (A) Immunofluorescence

staining with anti-IHNV Abs (Cy3, red) showing the

presence of viral Ags (red arrows) at the mucosal tip

region of the olfactory organ of an IHNV-vaccinated

rainbow trout. Scale bar, 5 mm. (B) Immunofluorescence

staining with anti-IHNV Abs showing the presence of

viral Ags (red arrows) at the lateral region of the

olfactory organ of an IHNV-vaccinated rainbow trout.

Scale bar, 5 mm. No Ag was detected in the control PBS

group (data not shown). In (A) and (B), cell nuclei were

stained with DAPI DNA stain (blue). (C) Transmission

electron micrograph showing the presence of viral Ags

at the mucosal tip region of the olfactory organ of IHNV

vaccinated rainbow trout 1 h after nasal vaccination.

Scale bar, 10 mm. (D) Transmission electron micrograph

showing the presence of viral Ags at the lateral region of

the olfactory organ of IHNV-vaccinated rainbow trout

1 h after nasal vaccination. Scale bar, 5 mm. White ar-

rows point to viral particles. (E) Detection of IHNV G

protein RNA levels by RT-qPCR in the tip and lateral

regions of IHNV-vaccinated rainbow trout 1 h after

nasal vaccination using LCM-dissected regions from

olfactory organ cryosections. One pool for each region

obtained from three different fish was tested. No IHNV

G protein RNA could be detected in PBS controls (data

not shown). Gene expression levels are shown as the Ct

value and were normalized against the EF-1a house-

keeping gene. Results are representative of one experi-

ment (n = 3). Csn, ciliated olfactory sensory neuron;

GC, goblet cell; L, lumen; NEp, neuroepithelium.
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In agreement with previous studies on trout (31), we observed
that GALT and NALT CD8a+ cells have a phenotype reminiscent
of effector CD8 T cells with high IFN-g expression. We also
observed greater levels of IL-7R expression in mucosal CD8a+

cells than in HK CD8a+ cells. In mammals, increased expression
of IL-7R identifies the effector CD8+ T cells that will differentiate
into memory cells (50). Moreover, anatomic location plays an
inductive role in the memory differentiation program of mammalian
CD8+ T cells. Specifically, the gut microenvironment generates
virus-specific intraepithelial lymphocytes that do not resemble
central or effector memory CD8+ T cells isolated from spleen or
blood (51). The markers that differentiate different subsets of
CD8+ T cells in teleost fish are thus far unknown. If IL-7R
function is conserved across the vertebrate lineage, our results
indicate that trout memory T cells reside primarily in the gut.
Further studies should ascertain the unique aspects of mucosal
memory T cells in teleosts.
CD83 is expressed on the surface of mammalian DCs as well as

activated B cells and T cells (52–56). Studies on teleost fish have
found surface CD83 expression on DCs (57). Whether CD83
expression is a hallmark of certain teleost lymphocytes is un-
known. Our results may suggest that nasal CD8+ T cells express

CD83. Further studies should address the function of teleost CD83
expression on T cells.
Previous work from our laboratory had identified CCL19 as one

of the nasal-related genes whose expression greatly increased in the
olfactory organ of trout in response to nasal vaccination with IHNV
(30). CCR7, the receptor for CCL19 and CCL21 in mammals, is
an important player for the migration of T lymphocytes into
secondary lymphoid organs through high endothelial venules (58).
Additionally, CCR7 has been implicated in the microenviron-
mental positioning of lymphocytes in secondary lymphoid organs
(43, 59) and downregulation of CCR7 results in the retention of
tissue-resident memory T cells (48). In this study, we demonstrate
that trout CD8a+ cells express CCR7 and that levels of expression
are comparable in mucosal and systemic T cells. Previous studies
reported lack of CCR7 expression in trout blood T lymphocytes
but strong CCR7 mRNA expression in trout spleen T lymphocytes
(60). This result may reflect the presence of multiple CD8+ T cell
subsets, including naive, effector, and memory T cells within each
lymphoid tissue with varying levels of CCR7 expression at least
based on the mammalian literature (46, 61). Importantly, we found
that the mucosal tip expresses greater levels of CCL19 than does
the neuroepithelium, creating the adequate microenvironment likely

FIGURE 6. MHC-II expression in the two nasal tissue

microenvironments in response to viral nasal vaccina-

tion. (A) Immunofluorescence image of a control cryosection

of the trout olfactory organ stained with anti–MHC-II

(Alexa Fluor 647; magenta) and containing both the lat-

eral neuroepithelium and the mucosal tip. The distance

from the nucleus of the MHC-II+ cells to the lumen of the

nasal cavity was measured with the Nikon Nis Advanced

Research software in 50 cells from each region from three

different fish. The mean distance 6 SE is shown in (B).

Trout were vaccinated intranasally with IHNV vaccine

and the olfactory organs were sampled 4 and 8 d later.

Cryosections were stained with anti–MHC-II Ab. An in-

flux of MHC-II+ cells was observed in the lamina propria

at the midline raphe level 4 d postvaccination (C). Note

that the MHC-II+ cells in the neuroepithelium show an

activated stellate morphology. At 4 d postvaccination, the

epithelial cells at the tip of the lamellae increased their

MHC-II+ expression (white arrows) and MHC-II+ cells in

the tip of the lamella also showed signs of activation but

did not have a stellate morphology (D). Eight days

postvaccination, the influx of MHC-II+ cells in the lamina

propria at the raphae region was more evident (E); how-

ever, neuroepithelial MHC-II+ cells did not appear as

activated as on day 4. At the tip, epithelial cell expression

of MHC-II had already decreased (F). For (A) and (C)–

(F), the white line delineates the basal membrane. Cell

nuclei were stained with DAPI DNA stain (blue). Results

are representative of one experiment (n = 5). Scale bars,

50 mm. L, lumen; LP, lamina propria.
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necessary for the retention and positioning of CD8a+ cells in clus-
ters observed in this region. Based on our previous studies, we pre-
dict that expression of CCL19 by local epithelial cells or endothelial
cells in the trout olfactory organ in response to vaccination may be a
key mechanism by which CCR7+ T cells are recruited to the local
environment. Further studies will address the sources of CCL19 pro-
duction in trout NALT.
A number of receptor–ligand interactions are known to spe-

cifically guide lymphocytes to NALT in mammals. These include
L-selectin/PNAd, VCAM-1/a4b1 integrin, ICAM-1/aLb2, and
CCR7/CCL19, CCL21 (46, 62, 63). To date, the phenotype of tel-
eost NALT lymphocytes (B or T cells) had not been characterized.
In this study, we report that most of the molecules that dictate the
tissue localization of NALT lymphocytes appear to have a conserved
expression pattern in early vertebrates and mammals, including
L-selectin, VCAM-1, ICAM-1, integrin b2, and CCL19. Our study
reveals unique differences not only between systemic and NALT
CD8a+ cells but also between GALT and NALT CD8a+ cells in
rainbow trout. Mammalian tissue-resident CD8+ memory T cells
express the a-chain (CD103) of the integrin aEb7 (64–66).
Previously, CD103 and integrin b7 were shown to be abundantly
expressed in thymic and mucosal (gill and gut) trout CD8a+

lymphocytes (31). Moreover, unlike their mucosal counterparts,
trout splenic CD8+ T cells do not express CD103 (32). In this
study, we show that trout nasal CD8a+ lymphocytes have a sig-
nificantly lower expression of CD103 but much higher expression
of integrin b2 than do gut CD8a+ lymphocytes. Thus, the adhesion
molecules that guide immune cells to NALT and GALT compart-
ments are unique and specific in teleost fish. Another important
difference between gut and nasal CD8+ cells is the expression of
CD141. We found very low levels of expression of CD141 in
systemic (HK) and nasal CD8+ T cells but high expression in gut
CD8+ cells. Our results are in agreement with a previous study that
showed low CD141 expression in trout splenic CD8+ T cells (32).
With regard to the high CD103 and CD141 expression in gut, it is
noteworthy that teleost and mammalian DCs can also express
CD103 and CD141 (32, 67–69), and therefore the presence of few
CD8+/DC-SIGN2/CD103+/CD141+ DCs or DC progenitors in the
gut CD8a+ cell population, although unlikely, cannot be ruled out.
Because mammalian migratory CD103+ and lymphoid-resident
CD8+ DCs share many attributes, and may even belong to a com-
mon sublineage (70), it is possible that these lineages are also
complex and related to each other in teleosts.
The positioning of professional APCs at mucosal surfaces may

critically impact the kinetics of effectiveness of the immune re-
sponses against any invading pathogen. Based on their distance to
the lumen, any nasal Ag would reach mucosal tip APCsmuch faster
than neuroepithelium-resident APCs. In other words, we propose
that the onset of NALT immune responses takes place first at the
mucosal tip and then the neuroepithelium. With respect to non-
professional APCs, it is known that intestinal epithelial cells
display a highly dynamic phenotype and radically change their
immunological function from the transport and assembly of S-IgA
in the crypts to the expression of MHC-II as they mature and migrate
up the villi (71). Additionally, in response to chronic Helicobacter
hepaticus infection, IFN-g induces expression of MHC-II on intes-
tinal epithelial cells in mice (19). In this study, we found that nasal
viral vaccine delivery leads to important changes in MHC-II ex-
pression in both the mucosal tip and lateral neuroepithelium micro-
environments. Importantly, 4 d after vaccination, the epithelial cells
present at the tip expressed MHC-II, a time when we had previously
reported an upregulation of many innate immune genes, including
IFN-g. Thus, similar to mammalian intestinal epithelial cells, trout
nasal epithelial cells upregulate MHC-II expression in response to
antigenic stimulation and can contribute to Ag presentation in the
mucosal tip microenvironment.
The olfactory epithelium is one of the few neuronal tissues with

regenerative capacity (72–74). Our proliferation experiments indicate
that a few cells divide in the trout olfactory organ in the absence of
antigenic stimulation and that the proliferation rate increases mod-
erately 8 d after vaccination. Importantly, the proliferation rate
increased significantly in the tip but not the neuroepithelium,
suggesting that the mucosal region plays a greater role in the
local immune response than does the sensory region.
Different theories trying to explain the evolutionary forces

driving regional and tissue-specific immunity have been proposed.
For instance, an evolutionary bias toward specific protection of
pathogen entry sites has been proposed (4). In our model, both
microenvironments appeared equally suitable for Ag uptake. How-
ever, because Ag uptake was only quantified at one time point, it is
possible that during the course of an infection or immunization,
the mucosal tip may receive a higher Ag load than does the
neuroepithelium, thus requiring the recruitment of specific im-
mune cell subsets as suggested by others (4, 44).
In summary, the present study reveals the presence of distinctive

immune cells, molecules, and immune responses in the mucosal

FIGURE 7. In vivo cell proliferation in response to nasal vaccination is

limited to the mucosal tip of the nasal epithelium. Trout were vaccinated

intranasally with IHNV vaccine and the olfactory organs were sampled 4

and 8 d later. Trout were injected i.p. with EdU 24 h prior to sampling.

Cryosections were used to count the number of Alexa Fluor 647–positive

cells per field in 10 different fields (360) from the lateral neuroepithelium

region (A) or from the mucosal tip region (B) per specimen under a Nikon

Ti inverted fluorescence microscope. *p , 0.05 by two-way ANOVA

analysis followed by Bonferroni multiple comparisons test. Results are

representative of one experiment (n = 4). ns, not significant.
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and sensorial regions of the nasal epithelium of a vertebrate species,
the rainbow trout. We predict that similar microenvironments may
be also present in the nasal cavity of other vertebrates, including
humans. Furthermore, our results indicate that the molecular
mechanisms that allow regional immunity appear conserved in
teleosts and mammals. These findings provide an important basis
for the understanding of local tissue immune responses in the
nasal mucosa of animals and for the rational design of intranasal
vaccines.
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Table 1: Primers used in this study for RT-qPCR 
 
	  

Gene  Primer name Primer sequence (5’3’) 
EF-1α  EF-1α F  

EF-1α R 
CAACGATATCCGTCGTGGCA  
ACAGCGAAACGACCAAGAGG  

Integrin β2 β-Integrin-2 F 
β-Integrin-2 R 

GGAAGTGCATCGAGTGTCTGG 
CCTCACGTCACAAGGCTTACC 

CD3γδ CD3 F 
CD3 R 

CCTGATTGGAGTAGCTGTCTAC 
GCTGTACTCAGATCTGTCCATGC 

CD8α CD8α F 
CD8α R 

ATGAAAATGGTCCAAAAGTGGATGC 
GGTTAGAAAAGTCTGTTGTTGGCTATAGG 

CD8β CD8β F 
CD8β R 

CAACGGTGTGCTTGTGGAAAAC 
ACACTTTTTGGGTAGTCGGCTGAA 

CCL19.1 CCL19.1 F 
CCL19.1 R 

CTCTGAGGTACCCGTGGATTGC 
CCTTAGGGACTATTGTTCTTCAGC 

CCR7 CCR7 F 
CCR7 R 

TTCACTGATTACCCCACAGACAATA 
AAGCAGATGAGGGAGTAAAAGGTG 

ICAM1  ICAM1 F 
ICAM1 R 

CCTCACCTTGCTAGGCAGAG 
CGTTTGAGCTCAAGAGGAAAGG 

IFNγ IFNγ F  
IFNγ R 

GCTGTTCAACGGAAAACCTGTTT  
TCACTGTCCTCAAACGTG  

IL-7R IL-7R F 
IL-7R R 

GTGGAGAAGAATTGGTTGAC 
CCTCCATTTCATCATCGGTGTC 

L-selectin L-selectin F 
L-selectin R 

CCTCATCCCTCACTCATCAGTTC 
CCTCTAACTCTCTGTCTCCC 

TCRα TCRα F  
TCRα R 

CAGCTTGAAGTCAAGAAATAC  
TATCAGCACGTTGAAAACGAT  

TCRβ TCRβ F  
TCRβ R 

CTCCGCTAAGGAGTGTGAAGATAG  
CAGGCCATAGAAGGTACTCTTAGC  

TCRδ TCRδ F  
TCRδ R 

AACACTCTCCATCCTCACCC 
TGACAGAAGCAGTTGTAGCC 

TCRγ TCRγ F  
TCRγ R 

CACCCTGCTATGTCTGGCTA 
CCATTCATGCTCCACAGAAC 

FcRγ FcRγ F 
FcRγ R  

TACTCCAACTCTCCATCTACTC 
CTGTGGATACCCGCCAGTGA 

DC-SIGN DC-SIGN F 
DC-SIGN R 

CAGCAAGAAACAGCATGACGCTCTG 
CCCATGTGATCCTCCTGACT 

CD83 CD83 F 
CD83 R 

GGTGAGGTGGTACAAGCTGGGTG 
TGTGGACTCAAGGCAATCTG 

CD141 CD141 F 
CD141 R 

GGAGATTTGCTTGTAGGCTTAACGG 
ACTTTTTCCTGACAAGGTCGTTCTG 

MHC II MHC II F 
MHC II R 

CATATTCTCTGGAACAGATGGATA 
GCTCAACTGTCTTGTCCAGTATGGCGC 



CD103 CD103 F 
CD103 R 

AGGAGTGATCTTAAAACACCCCAAG 
TGGCAGACACAACACTGTAACCTAA 

VCAM1 VCAM1 F 
VCAM1 R 

GGTTGAGAAGCATCAGTACCAGC 
GGTGTCTTGATGTTGTCCTTGG 

IHNV G  IHNV-G1035 F 
IHNV-G1147 R 

CATGTCCATCCCCCAGAACT 
GGACAACTGTTCCACCTTGTGTT 
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Supplemental Figure 1. Phylogenetic analysis of rainbow trout integrin β2. (A) Phylogenetic 
tree showing the evolutionary relationship of integrin β2 proteins in vertebrates. Tree was 
generated using the Neighbour-Joining method in MEGA 6.06 and bootstrapped 10,000 times, 
and only values over 90% are shown. Integrin β2 GenBank accession numbers used are as 
follows: rainbow trout (om) (NP_001117907.1), salmon (ss) (NP_001158796.1), carp (cc) 
(BAB39131.1), zebrafish (dr) (XP_686012.3), Fugu (tr) (XP_003961738.1), mummichog (fh) 
(XP_012713602.1), tropical clawed frog (xt) (XP_012826644.1), chicken (gg) 
(XP_015144621.1), mouse (mm) (P11835.2) and human (hs) (NP_000202.3). Rainbow trout 
(om) integrin β7-like and rainbow trout (om) integrin β1 GenBank accession numbers used are:  
CDQ74299.1 and CDQ66682.1, respectively. (B) MatGAT output for global similarity and 
identity over the full length of different vertebrate integrin β2 protein sequences.  Scoring matrix 
Blosum50 was used in the comparison. % of similarity is shown in light grey and % of identity 
in dark grey.  
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Supplemental Fig. 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Figure 2: Nasal CD8α+ cells do not express MHC-II. Double 
immunofluorescence staining of a control rainbow trout olfactory organ cryosection stained with 
anti-trout CD8α (FITC, green), anti-trout MHC-II (Alexa 647, red) and DAPI DNA stain (blue). 
(A) Mucosal tip immunofluorescence image. (B) Lateral neuroepithelium immunofluorescence 
image. L: lumen. LP: lamina propria. Scale bar = 5 µm. Results are representatve of ten different 
cryosections per fish (N=3). 
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Summary 15 

The nervous system is known to regulate host immune responses. However, the ability of neurons 16 

to detect danger and initiate immune responses at barrier tissues is unclear. Vertebrate olfactory 17 

sensory neurons (OSNs) are located in direct contact with the external environment and therefore 18 

directly exposed to pathogens. Here, we report that nasal delivery of rhadboviruses induced 19 

apoptosis in crypt OSNs in rainbow trout olfactory organ (OO) via the interaction of the OSN 20 

TrkA receptor with viral glycoprotein. This signal resulted in pro-inflammatory responses in the 21 

OO and dampened inflammation in the olfactory bulb (OB). CD8+ cells infiltrated the OO within 22 

minutes of nasal viral delivery and this response was abrogated when TrkA was blocked. 23 

Infiltrating CD8+ cells originated from the microvasculature surrounding the OB and not the 24 

periphery. Ablation of crypt neurons in zebrafish resulted in increased susceptibility to rhabdoviral 25 

challenge. Our results, therefore, indicate a novel function for OSNs as a first layer of pathogen 26 

detection in vertebrates. 27 
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glycoprotein 29 

Introduction 30 

The interactions between the nervous system and the immune system are multiple and complex. 31 

Both systems are specialized in sensing and responding to environmental signals and, evolutionary 32 

speaking, these two systems may have originated from a common ancestral precursor (Arendt, 33 

2008). Sensory neurons have been shown to participate in immune responses in several animal 34 

models. For instance, in mice, nociceptor sensory neurons can be directly activated by bacteria to 35 

control pain and modulate inflammatory responses (Chiu et al., 2013; Pinho-Ribeiro et al., 2017) 36 

at several sites including the skin, joints, lungs and gastrointestinal tract (Pinho-Ribeiro et al., 37 

2017). Moreover, sensory neurons are critical for suppressing innate immune responses triggered 38 

by pathogens and restore host homeostasis in invertebrates (Sun et al., 2012).  39 

Vertebrate olfactory sensory neurons (OSNs) rapidly sense chemical stimuli present in the 40 

environment and transduce odorant-encoded signals into electrical signals that travel to the 41 

olfactory bulb (OB) via the olfactory nerve, where they are integrated and transferred to other parts 42 

of the central nervous system (CNS). OSNs are one of the few neurons in the vertebrate body that 43 

are in direct contact with the external environment, yet the interactions between microbes and 44 

OSNs remain unknown. OSNs are also in close proximity to a local network of immune cells 45 

known as the nasopharynx-associated lymphoid tissue (NALT) which is present in both teleosts 46 

and mammals (Sepahi and Salinas, 2016; Tacchi et al., 2014). The cross-talk between OSNs and 47 

NALT during the course of an immune response has not yet been investigated. 48 

Teleost fish are known to have four different OSN types: ciliated, microvillous, crypt, and kappe 49 

neurons (Ahuja et al., 2014). The specific odors recognized by crypt neurons and their function 50 

are still enigmatic although recent evidence suggests that these neurons are responsible for kin 51 

recognition in zebrafish (Biechl et al., 2016). Crypt neurons only express one type of olfactory 52 

receptor, the vomeronasal receptor 1-like Ora4 and can be identified by their tropomyosin-related 53 

kinase A receptor (TrkA) immunoreactivity (Ahuja et al., 2013; Catania et al., 2003; Germana et 54 

al., 2004). The interaction between TrkA and endogenous ligands, such as nerve growth factor 55 

(NGF), induces internalization of TrkA into endosomes (Grimes et al., 1996). While TrkA 56 
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activation by NGF regulates neuronal differentiation, growth and survival (Cattaneo and McKay, 57 

1990; Sofroniew et al., 2001), previous studies have shown the ability of pathogens to hijack the 58 

TrkA system to infect hosts. For instance, Trypanosoma cruzi activates TrkA receptors and uses 59 

TrkA as a vehicle for host cell invasion (de Melo-Jorge and PereiraPerrin, 2007). Additionally, 60 

herpes simplex virus (HSV2) G protein modulates TrkA in order to guide axons to the infection 61 

site and facilitate neuronal infection (Cabrera et al., 2015).  62 

Many neurotropic viruses exploit the olfactory route to infect CNS tissues (Koyuncu et al., 2013; 63 

Mori et al., 2005). In this context, murine studies suggest that nasal infection with neurotropic 64 

viruses can stimulate immune responses in the olfactory organ (OO) as well as the OB within hours 65 

of virus delivery (Leyva-Grado et al., 2010; Majde et al., 2007). Thus, currently, the OB in mice 66 

is considered as an immune effector organ capable of eliciting pro-inflammatory immune 67 

responses and containing pathogen infections to protect the CNS (Durrant et al., 2016). These local 68 

immune responses are isolated from the systemic immune compartment since the blood brain 69 

barrier (BBB) remains intact early during viral infection (Bi et al., 1995; D'Agostino et al., 2012).  70 

In this study, we report that crypt neurons expressing TrkA are fast sensors of viruses in the 71 

olfactory mucosa and critical regulators of antiviral immune responses in teleost fish. These 72 

sensory neurons enter apoptosis within minutes of nasal delivery of infectious hematopoietic 73 

necrosis virus (IHNV), an aquatic rhabdovirus with neurotropic characteristics (LaPatra et al., 74 

1995), via the interaction of the TrkA receptor neuron with viral glycoprotein (G protein). Upon 75 

exposure to virus, TrkA-dependent neuronal activation rapidly elicits pro-inflammatory immune 76 

responses in the OO and dampens inflammation in the OB. Furthermore, viral sensing by crypt 77 

neurons induces infiltration of CD8+ T cells from the microvasculature surrounding the OB into 78 

the OO and specific ablation of crypt neurons results in increased susceptibility to rhabdoviral 79 

challenge. Our results reveal that pathogen sensing by sensory neurons precedes that of the 80 

immune system and that initial signals derived from neurons allow quick orchestration of immune 81 

responses between the nasal mucosa and the CNS.  82 

Results 83 

Nasal delivery of neurotropic virus induces caspase-3 dependent apoptosis fo TrkA+ crypt neurons  84 
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Neurotropic viruses such as rhabdoviruses can infect OSNs and transneuronally infect the CNS 85 

(Koyuncu et al., 2013; Mori et al., 2005). Viruses can also cause caspase-dependent apoptosis in 86 

neurons via NGF signals (Allsopp et al., 1998; Chou et al., 2000; Gomes-Leal et al., 2006; Lavoie 87 

et al., 2005). We first confirmed that anti-TrkA antibody exclusively labels crypt neurons in trout. 88 

As previously reported, TrkA+ cells in the OO of trout had typical morphology and apical 89 

localization of crypt cells (Figure 1A). Immunoblotting of total tissue lysates with rabbit anti-TrkA 90 

antibody showed a band at the expected size of ~140kDa in OO and brain but not in the head-91 

kidney (HK), the main hematopoietic tissue in bony fish (Figure S1A). Microscopy results 92 

confirmed the absence of TrkA+ cells in HK (Figure S1B) indicating trout immune cells are not 93 

TrkA+. When we delivered live attenuated IHNV intranasally (IN) into rainbow trout, we observed 94 

a significant decrease in the number of TrkA+ crypt cells in the OO compared to control fish 15 95 

min, 1 h and 1 day after treatment (Figure 1 A, B, E & L). The number of TrkA+ crypt cells returned 96 

to basal levels by day 4 suggesting that that replacement from progenitors takes approximately 4 97 

days to complete. Loss of TrkA reactivity 15 min after viral delivery was associated with presence 98 

of apoptotic morphology in the remaining TrkA+ crypt cells (Figure 1C, G & I) compared to 99 

controls (Figure 1D, H & J). Moreover, staining with anti-caspase 3 antibody confirmed that crypt 100 

neurons were undergoing apoptosis through caspase 3 pathway at this time point (Figure 1F). Since 101 

TrkA signaling may result in cell death in sensory neurons (Nikoletopoulou et al., 2010) , we 102 

pharmacologically blocked TrkA with the drug AG879. Nasal delivery of AG879 30 min prior to 103 

IHNV nasal delivery (Figure 1K) rescued 50% of TrkA reactivity in crypt neurons (Figure 1M). 104 

Combined, these results indicate that aquatic rhabdoviruses result in crypt neuron cells death in 105 

the OO of rainbow trout in a TrkA-dependent manner. 106 

Rainbow trout smell neurotropic virus 107 

Exposure of either live attenuated IHNV or culture medium used to grow the virus elicited strong 108 

olfactory responses and followed a dose-dependent pattern characteristic of activation of olfactory 109 

receptors (Figure 2A). Both the virus and the culture medium elicited highly sensitive olfactory 110 

responses, which could be detected up to a 1:105 dilution by electro-olfactogram (EOG). However, 111 

IHNV elicited greater olfactory responses than medium at the 1: 100 dilution. Differences in the 112 

slopes of the linear dose responses also suggested activation of a different receptor set for each 113 

stimulus. Thus, we performed cross adaptation experiments in which the OO was continuously 114 
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saturated with IHNV (adapted stimulus), and then measured olfactory responses to IHNV (self-115 

adapted control) or a mix of IHNV with medium by EOG (see material and methods for details). 116 

We repeated the same experiment saturating the OO with medium and then measuring responses 117 

to medium alone or the IHNV and medium mix. If IHNV and medium activate different receptors, 118 

we would expect that OO saturated with IHNV will have a smaller olfactory response to a 119 

concentrated solution of IHNV due to fewer IHNV receptors available for activation. In turn, we 120 

would expect a greater response for the mix of IHNV and medium since medium-specific receptors 121 

but no IHNV-specific receptors would be available for activation. In agreement, cross-adaptation 122 

odorant assays showed that, after saturation of olfactory receptors with the adapting solution, 123 

normalized self-adapted controls had significant lower responses (26–40 %) than the mixture of 124 

live attenuated IHNV and culture medium (Figure 2B), which implied different activation of 125 

receptors by the virus and medium, respectively. 126 

Since we hypothesized that viral detection is TrkA receptor-mediated, we expected a decrease of 127 

olfactory responses after nasal exposure to TrkA inhibitor AG879. Inhibition curves showed that 128 

AG879 affected the olfactory responses to virus and culture medium in concentrations of the drug 129 

as low as 10–8 M, with a total inhibition of activity at 10–5 M (Figure 2C & D). The inhibition of 130 

olfactory responses by the drug was stronger for the virus than the medium, with an inhibition of 131 

50% of olfactory responses (EC50) by AG879 of 10–6.3 M, and 10–6 M for virus and medium 132 

respectively. Inhibitory curves also showed hormesis at 10–7 M for the virus but not for the 133 

medium, implying a positive effect of the drug for virus detection at very low concentrations. 134 

Combined, these experiments demonstrate the rainbow trout is able to smell viruses via TrkA 135 

signaling. 136 

Neurotropic viruses activate sensory neurons in the OO and OB in a TrkA-dependent manner   137 

Studies in fish have demonstrated that pERK staining and c-fos gene expression are suitable 138 

markers of neuronal activation upon odorant exposure in OO and CNS (Dieris et al., 2017; Lau et 139 

al., 2011). However, whether viruses activate neurons in the OO and OB has not been investigated 140 

to date. Incubation of OO single cell suspensions with IHNV in vitro showed a significant increase 141 

in pERK labeling after 15 min as measured by flow cytometry (Figure S2A & B). These results 142 

were confirmed in vivo since we detected pERK staining in the OO and OB of IHNV-treated fish 143 
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but not controls (Figure 3A-D). OB neuronal activation was due to viral-derived signals present in 144 

the OO since IHNV could not be detected in the OB 15 min after nasal delivery (Figure S3A-D). 145 

Interestingly, pERK positive cells in the OO of IHNV–treated fish were localized in the middle of 146 

the neuroepithelium and did not have a crypt neuron morphology, indicating that OSNs other than 147 

crypt neurons become activated following nasal viral delivery (Figure 3C). We also found a 148 

significant upregulation in c-fos expression in the OO but not the OB, in fish that received IHNV 149 

compared to controls (Figure 3E-G). Inhibition of TrkA signaling pathway with AG879 before IN 150 

IHNV delivery blocked neuronal activation as evidenced by the lack of pERK staining in the OO 151 

and OB and absence of c-fos up-regulation in the OO (Figure 3E-G). Combined, these data indicate 152 

that IHNV induces OSN activation through a TrkA-dependent pathway or, alternatively, that crypt 153 

neuron cell death results in activation of other OSNs.  154 

Nasal delivery of viruses results in ultra-rapid innate immune responses in the olfactory mucosa 155 

and the CNS in a TrkA-dependent manner 156 

We previously reported that nasal delivery of live attenuated IHNV results in the recruitment of 157 

myeloid and lymphoid cells to the local nasal environment 4 days after treatment in trout (Sepahi 158 

et al., 2017; Tacchi et al., 2014). Here, we report that leukocyte recruitment occurs as early as 15 159 

min after IHNV delivery as visualized by the enlarged lamina propria (LP) of the olfactory 160 

lamellae of IHNV-treated fish compared to control fish (Figure S4A-C). Histological changes in 161 

the OO were paralleled by changes in innate immune gene expression. Specifically, we observed 162 

a significant upregulation of ck10, a CCL19-like chemokine in rainbow trout (Sepahi et al., 2017), 163 

and ptgs2b in OO 15 min after IHNV delivery. In the OB, in turn, we observed a significant 164 

downregulation in expression of ck10 and no significant change in expression of ptgs2b (Figure 165 

4A). ifng expression was down-regulated both in the OO (2-fold) and the OB (4-fold) (Figure 4A) 166 

whereas no significant changes in tnfa expression were recorded in any tissue for any of the 167 

treatments. Importantly, when we pharmacologically blocked TrkA, we could revert IHNV-168 

elicited changes in innate immune gene expression in both the OO and OB (Figure 4A). These 169 

results indicate antiviral pro-inflammatory immune responses in the nasal mucosa are 170 

accompanied by dampened antiviral immune responses in the OB and that both types of responses 171 

require TrkA activation in crypt neurons. 172 

CD8α T cells rapidly infiltrate the olfactory organ in a TrkA-dependent manner 173 
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Gene expression data indicated that local immune responses in the OO of fish are initiated within 174 

minutes of viral exposure. We next evaluated changes in leukocyte populations in the OO and 175 

systemic circulation by flow cytometry following IHNV IN delivery. The percentages of trout 176 

IgM+, IgT+ B cells and CD8+ T cells remained unchanged in in PBLs 15 min after nasal viral 177 

delivery compared to control fish (Figure 4B & D). In turn, the percentage of CD8+ T cells 178 

increased from 7% in controls to 24% in IHNV-treated fish in the OO. Additionally, whereas no 179 

significant changes in IgM+ B cells were observed, we recorded a decrease in the percentage of 180 

IgT+ B cells after nasal viral exposure (Figure 4C, E, F & G). To test whether signals derived from 181 

crypt neurons are responsible for the observed infiltration of CD8+ T cells into the OO, we 182 

blocked TrkA with AG879, as explained in Figure 1K. We found that AG879 treatment abolished 183 

both the decrease in the percentage of IgT+ B cells and the increase in CD8+ T cells (Figure 4F 184 

& G). These results indicate that crypt neurons trigger ultra-rapid cellular immune responses 185 

against rhabodviruses in a TrkA-dependent manner.    186 

CD8α T cells infiltrates originate in the OB microvasculature  187 

Neurotropic virus can hijack TrkA receptor to infect neurons and induce apoptosis (Allsopp et al., 188 

1998; Chou et al., 2000; Gluska et al., 2014; Gomes-Leal et al., 2006; Lavoie et al., 2005). TrkA 189 

expressing crypt neurons project to a single target glomerulus in the OB (Ahuja et al., 2013) and 190 

we showed that nasal delivery of virus results in neuronal activation in the OO and OB. Moreover, 191 

we found that PBLs populations do not change following nasal viral delivery in trout. We therefore 192 

hypothesized that ultra-rapid infiltration of CD8+ T cells in the OO might originate from a pool 193 

of lymphocytes present at the OB microvasculature that are recruited after neuronal signals. To 194 

test this, we collected the blood from the microvasculature surrounding the OB, 15 min after IN 195 

delivery of IHNV and evaluated changes in the percentage of cells within the lymphocyte gate as 196 

well as CD8+ T cells, IgM+ and IgT+ B cells by flow cytometry.  We observed a significant 197 

decrease in the percentage of cells within the lymphocyte gate 15 min after nasal delivery of IHNV 198 

(Figure 5A & C). Analyses of OB microvasculature leukocytes showed no significant changes in 199 

the percentage of IgM+ or IgT+ B cells but a significant decrease in the percentage of CD8+ T 200 

cells from ~2% to ~0.5% (Figure 5B & D). Intravenous administration of FITC- conjugated 201 

dextran indicated that these effects occur without any changes in the blood barrier integrity of 202 
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IHNV-treated fish (Figure S3E-H). Combined, these results indicate an ultra-rapid shunting of 203 

CD8+ T cells from the OB to the OO.  204 

The interaction between IHNV viral glycoprotein (G protein) and TrkA is necessary for the onset 205 

of nasal antiviral immune responses 206 

Since HSV Secreted G protein has been previously shown to interact with mouse TrkA (Cabrera 207 

et al., 2015), we hypothesized that IHNV G protein may be the ligand for TrkA in rainbow trout 208 

crypt neurons. Amino acid sequence analysis of vertebrate TrkA molecules showed a high (>50%) 209 

conservation among  mouse, human and rainbow trout TrkA (Figure 6A) including amino acid 210 

sites known to interact with NGF (Wiesmann et al., 1999), whereas comparison of IHNV G protein 211 

and HSV secreted G protein indicated a low degree of amino acid conservation (Figure S5A). In 212 

order to test whether IHNV G protein alone is able to recapitulate IHNV-induced changes in crypt 213 

neurons and elicit nasal CD8+ T cell immune responses, we produced FLAG-tagged IHNV G 214 

protein in a mammalian expression system (Figure S5B) and delivered 100 ng of recombinant 215 

IHNV G protein IN to rainbow trout. Microscopy results showed the co-localization of TrkA and 216 

IHNV G protein 15 min after administration of FLAG-tagged IHNV G protein (Figure 6B). We 217 

also observed a significant decrease in the number of TrkA+ cells 15 min after IN delivery of 218 

FLAG-tagged IHNV G protein (Figure 6C) similar to what we observed following IHNV 219 

treatment. Moreover, nasal delivery of FLAG-tagged IHNV G protein resulted in a significant 220 

increase in the number of CD8+ T cells present in trout OO 15 min after nasal delivery (Figure 221 

6D).  To further confirm that IHNV G protein is responsible for TrkA-mediated nasal immune 222 

responses, we performed in vivo antibody neutralization experiments using a monoclonal anti- 223 

IHNV G protein antibody or a monoclonal anti-IHNV N protein antibody as a control. Blocking 224 

IHNV G protein but not N protein rescued the loss of TrkA reactivity in crypt neurons and 225 

abolished the infiltration of CD8+ T cells into the trout OO 15 min after IN delivery (Figures 6E 226 

& F). These experiments demonstrated that the interaction between viral G protein and the crypt 227 

neuron TrkA receptor is necessary and sufficient to elicit OO immune responses. 228 

Crypt neurons are involved in survival to rhabdoviral infection 229 

Our results thus far provided evidence for the role of crypt neurons in the immune crosstalk 230 

between the olfactory organ and the CNS. Next, we asked whether viral detection by crypt neurons 231 
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is necessary for survival against rhabdoviral infection using a  a zebrafish model (Figure 7A). To 232 

that end, we generated a transgenic zebrafish line which expressed the Gal4.VP16 transactivator  233 

under the ora4 promoter and the GFP under the heart specific promoter cmlc2 for rapid screening 234 

under the fluorescence microscope (Figure 7A). Crossing of this line with the a line which 235 

expresses bacterial nitroreductase fused to mCherry revealed the presence of ora+ crypt neurons 236 

from 2 dpf onward (Figure 7A & 7B). . Addition of the prodrug metronidzole (Mtz) into the 237 

zebrafish water tanks at 2 dpf for 24 h resulted in 100% ablation of crypt neurons, that started to 238 

regenerate 5 days later (7 dpf) (Figure 7B & 7C). Infection of  and  ora4+ crypt neuron ablated 239 

zebrafish with spring viraemia of carp virus (SVCV) resulted on defects in CCL19-like expression 240 

patterns in response to infection (Figure 7D), as measured by RT-qPCR.  Crypt neuron ablation 241 

resulted in no significant differences in SVCV viral loads 15 min after exposure but increased 242 

SVCV loads 2 days post-infection (dpi) (Figure 7E). Importantly, challenge with SVCV revealed 243 

that, in the absence of crypt neurons, zebrafish are more susceptible to viral infection (Figure 7F). 244 

These results demonstrate that crypt neurons induce immune responses in response to viral 245 

infection and that these responses are essential for viral clearance and host survival. 246 

 247 

Discussion 248 

The multifaceted, complex and bidirectional interactions between the nervous and the immune 249 

system highlight the importance of neuro-immune communication for the success and survival of 250 

all species. Apart from homeostatic functions, neuro-immune interactions are vital for the 251 

protection of neuronal tissues from invading pathogens as well as from damaging host immune 252 

responses. For instance, Caenorhabditis elegans responds to microorganisms by utilizing its 253 

nervous system, which triggers a protective behavioral avoidance response (Bargmann et al., 1990; 254 

Zhang et al., 2005). This behavior depends on G protein-coupled receptors (GPCRs) expressed by 255 

chemosensory neurons (McMullan et al., 2012).  256 

Viral pathogens have evolved different strategies to invade the CNS including exploiting the 257 

olfactory route or crossing the BBB (Koyuncu et al., 2013; Mori et al., 2005). HSV-1, influenza A 258 

virus, parainfluenza viruses, are some examples of viral pathogens that enter the CNS through 259 

olfactory organ in mammals (Detje et al., 2009; Koyuncu et al., 2013; Mori et al., 2005). CNS 260 

immune responses need to be quick and tightly controlled because, otherwise, they may lead to 261 
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meningitis, encephalitis, meningoencephalitis, or even death (Koyuncu et al., 2013). The present 262 

study reveals a novel model of viral recognition by the vertebrate nervous system in which OSNs 263 

are able to sense microbial-derived signals and use electrical decoding to trigger ultra-fast immune 264 

responses in teleosts.  265 

We have identified a specific type of OSN, the crypt neuron, that acts as a canary in the coal-mine 266 

in the bony fish olfactory organ. We envisage 3 features of crypt neurons that make them ideal for 267 

pathogen detection: (i) they are strategically located in the most apical part of the teleost olfactory 268 

epithelium and so are the most exposed to invading microorganisms; (ii) they only constitute ~1-269 

2% of all cells in the OO of trout, making TrkA-mediated cell death an exquisitely specific 270 

mechanism of triggering immune responses without compromising large numbers of OSNs; and 271 

(iii) because crypt neurons are replaced within few days, the refractory period to recover pathogen 272 

sensors in the trout OO is relatively quick. The effects of a secondary pathogen encounter prior to 273 

crypt neuron regeneration remain to be explored but it is possible that compensatory mechanisms 274 

are in place while crypt neurons replenish. 275 

Viral-induced cell death allows crypt neurons to efficiently orchestrate innate immune responses 276 

such as induction of CCL19-like and the recruitment of CD8+ T cells to the local nasal 277 

environment.  CD8+ T cells have been shown to prevent HSV-1 reactivation without destroying 278 

the infected sensory neurons in the trigeminal ganglia of mice (Liu et al., 2000). Thus, the CD8+ 279 

T cell infiltrates detected in the teleost OO after nasal IHNV delivery may play a critical role in 280 

the elimination of the virus without destruction of OSNs. Future studies will aim to further 281 

understand the role of fast-recruited CD8 T cells in the nasal mucosa. 282 

TrkA molecular receptor is known to be utilized by several pathogens including parasites such as 283 

Trypanosoma (de Melo-Jorge and PereiraPerrin, 2007) and viruses such as HSV (Cabrera et al., 284 

2015) in order to invade host neurons or to change neuronal behavior. Interestingly, secreted HSV 285 

G protein is able to bind TrkA in mouse skin neurons and modify neuronal dendrite outgrowth 286 

(Cabrera et al., 2015). Additionally, HSV-2 secreted G protein, is known to bind chemokines and 287 

enhance in this manner cell migration (Martínez-Martín et al., 2016). We provided evidence that 288 

the G protein of aquatic rhabdoviruses such as IHNV also interacts with TrkA+ crypt neurons. 289 

These findings suggest that G proteins from different neurotropic viruses have co-opted binding 290 

TrkA expressed in different neuronal types as a strategy to invade their hosts. Importantly, our 291 
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work shows that the arms race between host and pathogen has resulted in efficient immune 292 

responses evoked by the TrkA-viral G protein interaction. 293 

One of the most striking findings of the present study was the immunological cross-talk between 294 

the OO and the OB. Previous studies in mice have shown that infiltration of CCR7+ CD8+ T cells 295 

from the lymph nodes into the OB occurs in response to neurotropic viral infection of the OB 296 

(Cupovic et al., 2016). Our experiments revealed that the expression of CK10, a CCL19-like 297 

chemokine in trout (Sepahi et al., 2017), is quickly up-regulated on in the OO and down-regulated 298 

in the OB in response to nasal viral delivery and that zebrafish larvae where crypt neurons had 299 

been ablated showed dysregulated CCL19-like expression patterns. These findings suggest that 300 

the CCL19-CCR7 CD8 T cell axis is a conserved hallmark of viral neuronal infections in both 301 

bony fish and mammals. Importantly, the present study shows that a type of OSN, the crypt neuron, 302 

regulates antiviral immunity not only at the site of antigen encounter, but also in the OB, even in 303 

the absence of viral antigens in this tissue. Through a mechanism not explored in the present study, 304 

the OB turns viral-evoked electrical signals into immune responses within minutes. Future studies 305 

should address which molecules (i.e neurotransmitters or neuropeptides) are responsible for the 306 

changes in the OB microvasculature and T cell migration following nasal viral delivery. 307 

In conclusion, our findings demonstrate a new mechanism of neuroimmune interaction by which 308 

OSNs can rapidly initiate antiviral immune responses in the OO-OB axis via a TrkA-sensing 309 

mechanism of viral G proteins. Understanding how the interaction between viral antigens and 310 

OSNs regulates innate and adaptive immune responses in the nasal mucosa and CNS can 311 

potentially help improve the efficacy and safety of nasal vaccines. 312 
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 469 

Figure legends:  470 

Figure 1: Nasal delivery of neurotropic virus induces caspase-3 dependent apoptosis to TrkA+ 471 

crypt neurons 472 

Immunofluorescence microscopy image of rainbow trout olfactory organ cryosections (A) Control 473 

and (B) 15 min after nasal IHNV delivery stained with anti-TrkA (FITC, green) show a decrease 474 

in the number of TrkA+ crypt neurons following IN delivery of IHNV. Nuclei were stained with 475 

nuclear stain DAPI (blue). Confocal microscopy images of rainbow trout olfactory organ 476 

cryosections (C) Control and (D) 15 min after nasal IHNV delivery stained with anti-TrkA (FITC, 477 

green) showing changes in TrkA reactivity with the characteristic morphology of cell apoptosis in 478 

TrkA+ cells following IN delivery of IHNV. Cell nuclei were stained with DAPI (blue). Scale bar, 479 

20 µm. Immunofluorescence staining of an IHNV-vaccinated rainbow trout olfactory organ with 480 

anti-TrkA (FITC, green) (E) and anti-caspase 3 (Cy5, magenta) (F) showing co-localization of 481 

caspase-3 staining in low-TrkA+ crypt neurons. Scale bar, 20 µm. Cell nuclei were stained with 482 

DAPI DNA stain (blue). Results are representative of three independent experiments (N = 5) L, 483 

lumen; LP, lamina propria. Semithin sections of control (G) and nasal IHNV treated (H) rainbow 484 

trout olfactory organ indicate that crypt neurons undergo cell death within 15 min of viral delivery. 485 

Scale bar A-H, 20 µm. Transmission electron micrograph showing a crypt neuron in control trout 486 

olfactory epithelium (I) and a crypt neuron undergoing cell death in nasal IHNV treated rainbow 487 
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trout 15 min after nasal vaccination (J). Scale bar, 2 µm.  (K) Schematic diagram of the 488 

experimental design used in TrkA-blocking experiment. AG879 (TrkA blocker) or vehicle were 489 

delivered IN and 30 min later IHNV or PBS (control) were delivered to the nasal cavity of trout. 490 

OO and OB were collected 15 min after IHNV delivery. (L) Quantification of the mean number 491 

of TrkA+ crypt neurons in control and nasal IHNV treated rainbow trout olfactory organ 15 min, 492 

1 h, 1 day and 4 days after nasal viral delivery showing that TrkA reactivity begins to recover on 493 

day 4 as measured by immunofluorescence microscopy (N = 3).  Results are expressed as mean  494 

SEM. Unpaired t-test *p < 0.05, **p < 0.01. (M) AG879 pre-treatment partially abolishes loss of 495 

IHNV-induced TrkA reactivity in crypt neurons (N = 3). Results are expressed as mean  SEM 496 

and statistical. One-way ANOVA and a Tukey post hoc analysis test were performed to identify 497 

statistically significant differences among groups.  P < 0.05.  498 

 499 

Figure 2: Rainbow trout smell neurotropic virus 500 

(A) Olfactory responses to live attenuated IHNV and medium where the virus was grown (negative 501 

control) produce different dose-response curves in rainbow trout measured by electro-olfactogram 502 

(EOG). Responses were normalized to the L-Serine control. Data are represented as the mean ± 503 

SEM (N = 8). (B) Live attenuated IHNV activates a set of receptors different than those activated 504 

by virus-free supernatants (negative control). Cross-adaptation experiments compared olfactory 505 

responses to live attenuated IHNV (self-adapted control, SAC) or a mix of live attenuated and the 506 

virus-free supernatant (Mix IHNV-M) when the olfactory epithelium was saturated with live 507 

attenuated IHNV (adapted stimuli) odors. Same experiments were performed using the IHNV 508 

culture medium as adapted stimuli. Paired t-test showed significant differences (p < 0.05) between 509 

both SAC and Mix. (C) AG879 treatment results in stronger inhibition of olfactory responses in 510 

live attenuated IHNV than in virus-free supernatant (D). Pharmacological inhibition of olfactory 511 

responses was total at concentrations of the drug >10-5 M. Paired t-test showed significant 512 

differences (p < 0.05) between EC50. 513 

 514 

Figure 3: Nasal IHNV delivery activates sensory neurons in the OO and OB in a TrkA-dependent 515 

manner.  516 

Immunofluorescence staining of control rainbow trout OO (A) and OB (B) cryosections stained 517 

with anti-pERK (FITC, green) showing absence of neuronal activation. Immunofluorescence 518 
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staining of OO (C) and OB (D) cryosections of trout nasally treated with IHNV stained with anti-519 

pERK antibody (FITC, green) showing neuronal activation 15 min after viral delivery. 520 

Immunofluorescence staining rainbow trout OO (E) and OB (F) treated with AG879 + IHNV with 521 

anti-pERK showing AG879 inhibition of viral-induced neuronal activation in both OO and OB. 522 

Scale bar, 10 µm. For (A-F), cell nuclei were stained with DAPI DNA stain. (G) Gene expression 523 

levels of c-fos (neuronal activation marker) in control, nasal IHNV treated, AG879 only treated 524 

and IHNV + AG879 groups as measured by RT-qPCR. Gene expression levels were normalized 525 

to the housekeeping gene EF-1a and expressed as the fold-change compared to the control group 526 

using the Pfaffl method. Results are representative of three independent experiments (N = 5). 527 

Results were analyzed by unpaired t-test *p < 0.05, **p < 0.01. 528 

 529 

Figure 4: Viral nasal delivery results in ultra-rapid immune responses in the OO and OB of rainbow 530 

trout in a TrkA-dependent manner.  531 

(A) Gene expression levels of the chemokine ck10 (CCL19-like), ptgs2b, ifng and tnfa in OO and 532 

OB in of control, IHNV-treated, AG879 treated and AG879 + IHNV treated trout. Gene expression 533 

levels were measured by RT-qPCR and normalized to the housekeeping gene ef1a. Data are 534 

expressed as the mean fold change compared to the control group using the Pfaffl method. Results 535 

are representative of three different experiments (N = 5). Results were analyzed by unpaired t-test 536 

*p < 0.05. (B) Representative dot plots of control and IHNV-treated rainbow trout PBLs stained 537 

with mouse anti-trout IgM, mouse anti-trout IgT and rat anti-trout CD8α showing the mean 538 

percentage of positive cells from the lymphocyte gate. (C) Representative dot plots of control and 539 

IHNV, AG879 and AG879 + IHNV trout OO lymphocytes stained with mouse anti-trout IgM, 540 

mouse anti-trout IgT and rat anti-trout CD8α showing the mean percentage of positive cells from 541 

the lymphocyte gate.  (D) Quantification of flow cytometry data in (B) indicating no significant 542 

changes in the percentage of IgM+, IgT+ and CD8α+ cells in PBLs 15 min after nasal IHNV 543 

delivery. Results are representative of three independent experiments (N = 5). NS = not significant.  544 

(E-G) Quantification of flow cytometry data shown in (C) indicating significant decrease in the 545 

percentage of IgT+ B cells and increase in the percentage of CD8α+ T cells in the OO 15 min after 546 

nasal IHNV delivery and inhibition of such responses when AG879 is administered 30 min before 547 

IHNV treatment. Results are representative of three different experiments (N = 5). One-way 548 

ANOVA and a Tukey post hoc analysis test were performed to identify statistically significant 549 
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differences among groups. *p < 0.05, **p < 0.01. (H-J) Immunofluorescence staining of a control 550 

(H) IHNV only (I) and AG879+IHNV (J) rainbow trout OO cryosection stained with anti-CD8α 551 

(FITC, green).  Scale bar, 10 µm. Cell nuclei were stained with DAPI DNA stain. L, lumen; LP, 552 

lamina propria. 553 

 554 

Figure 5: CD8α T cells infiltrating the trout OO originate from the OB microvasculature but not 555 

from peripheral blood. 556 

(A) Representative dot plots of control and IHNV-treated trout of cells obtained from the OB 557 

microvasculature showing the percentage of cells within the lymphocyte gate in each group. (B) 558 

Representative dot plots of cells obtained from the OB microvasculature of control and IHNV-559 

treated rainbow trout stained with mouse anti-trout IgM, mouse anti-trout IgT and rat anti-trout 560 

CD8α showing the mean percentage of positive cells within the lymphocyte gate. (C) 561 

Quantification of flow cytometry data presented in (A) showing a significant decrease in the 562 

percentage of cells within the lymphocyte gate in IHNV-treated group compared to controls. (D) 563 

Quantification of flow cytometry data shown (B) indicating a significant decrease in the percentage 564 

of CD8α+ in the OB microvasculature 15 min after nasal IHNV delivery. Results are representative 565 

of three different experiments (N = 5). Results were analyzed by unpaired t-test NS = not 566 

significant.  567 

 568 

Figure 6: The interaction between viral glycoprotein (G protein) and crypt neuron TrkA is 569 

necessary for inducing crypt neuron-mediated nasal immune responses in trout.  570 

(A) Multiple sequence alignment (performed with CLUSTALW http://align.genome.jp/) of 571 

rainbow trout, mouse and human TrkA domain 5 (domain known to interact with cognate ligand) 572 

showing conservation of aa at sites previously described to be critical for NGF binding to TrkA. 573 

(B) Nasal delivery of recombinant IHNV G protein recapitulates IHNV-induced changes in crypt 574 

neurons and CD8 T cell immune responses.  Immunofluorescence staining of trout olfactory 575 

organs 15 min after receiving PBS or 100 ng of recombinant FLAG-tagged IHNV G protein 576 

intranasally stained with anti-TrkA (FITC, green), anti-FLAG (Cy3, magenta) and DAPI (blue) 577 

showing the co-localization of TrkA and IHNV G protein in the FLAG-tagged IHNV G protein 578 

delivered group but not controls. (C) Quantification of the mean number of TrkA+ crypt neurons 579 

in the OO of control trout and trout that received recombinant FLAG-tagged IHNV G protein IN 580 

http://align.genome.jp/
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(N = 3). (D) Quantification of the mean number of CD8+ T cells in control and FLAG-tagged 581 

IHNV G protein treated rainbow trout OO (N = 3) by immunofluorescence microscopy. (E) In 582 

vivo antibody blocking of IHNV G protein reverts IHNV-induced changes in crypt neurons and 583 

CD8 T cell immune responses. Live attenuated IHNV was incubated with anti-IHNV G protein 584 

monoclonal antibody, anti-IHNV N protein monoclonal antibody or not treated for 30 min at RT 585 

prior to in vivo nasal delivery. Quantification of the mean number of TrkA+ crypt neurons by 586 

immunofluorescence microscopy in control, anti-G protein antibody treated + IHNV, anti-N 587 

protein antibody treated IHNV and IHNV alone in the OO of rainbow trout (N = 3). (F) 588 

Quantification of the mean number of CD8+ T cells by immunofluorescence microscopy in the 589 

OO of control, anti-G protein antibody treated + IHNV, anti-N protein antibody treated IHNV and 590 

IHNV-treated rainbow trout (N = 3). Results are representative of two independent experiments 591 

(N = 3). One-way ANOVA and a Tukey post hoc analysis test were performed to identify 592 

statistically significant differences among groups.  *p < 0.05, **p < 0.01. 593 

 594 

Figure 7: Ablation of crypt neurons results in increased susceptibility to rhabdoviral infection in 595 

zebrafish. 596 

(A) Schematic representation of the generation of ora4 transgenic zebrafish and ablation of crypt 597 

neurons by delivery of the prodrug metronidazole (Mtz) into the water for 24 h. (B-CD Expression 598 

of CCL19-like in whole zebrafish larvae 15 min after infection with SVCV as measured by RT-599 

qPCR. Each symbol represents a pool of 10 larvae. Results are expressed as the fold-change in 600 

expression compared to uninfected controls. Expression levels were normalized to the rps11 as 601 

house-keeping gene. Data are expressed as the mean fold change compared to the control group 602 

using the Pfaffl method. Results are representative of three different experiments (N = 5). Results 603 

were analyzed by unpaired t-test. (E) Relative SVCV viral loads as measured by N protein 604 

expression levels 15 min and 2 days after SVCV infection in ORA4+ zebrafish and ORA4+ + Mtz 605 

(ablated) zebrafish. Each symbol represents a pool of 10 larvae. Results are expressed as mean 606 

level of N protein expression measured by RT-qPCR compared to uninfected controls. ND: non-607 

detectable. P-values were obtained by unpaired t-test (F) Percent survival of wildtype (ORA4-) 608 

and transgenic (ORA4+) zebrafish larvae that were ablated (+ Mtz) or not in response to SVCV 609 

infection. Results are representative of two independent experiments (N = 30 per group). Statistical 610 

analysis was performed by Gehan-Breslow-Wilcoxon method (p < 0.05). 611 
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 612 

 613 

 614 

STAR METHODS 615 

Animals, nasal delivery of virus and tissue sampling  616 

All rainbow trout studies were reviewed and approved by the Institutional Animal Care and Use 617 

Committee (IACUC) at the University of New Mexico, protocol number 16-200384-MC. For nasal 618 

delivery of virus studies, rainbow trout (mean weight of 50-150 g) received 30 µl of live attenuated 619 

infectious hematopoietic necrosis virus (IHNV) (2 x 108 PFU/ml) or phosphate buffer saline (PBS) 620 

in each nare. For TrkA blocking experiment, rainbow trout (N = 20) received 30 µl of 10 µM 621 

AG879 or vehicle 30 min before viral delivery as described in diagram (Figure 1K). Olfactory 622 

Organ (OO) and olfactory bulbs (OB) were snap frozen and cryoblocks used for immunostaining 623 

or kept in RNAlater for gene expression studies.   624 

Zebrafish (Danio rerio H.) were obtained from the Zebrafish International Resource Center 625 

and mated, staged, raised and processed as described (Westerfield, 2000). The line Tg(UAS-626 

E1b:nfsb-mCherry)c264 was previously reported  (Davison et al., 2007) The experiments performed 627 

comply with the Guidelines of the European Union Council (Directive 2010/63/EU) and the 628 

Spanish RD 53/2013. Experiments and procedures were performed as approved by the Bioethical 629 

Committees of the University of Murcia (approval numbers #537/2011, #75/2014 and #216/2014).  630 

Electrophysiological recordings 631 

Rainbow trout were anesthetized in a solution of MS222 at 0.1 g/l, and then immobilized with an 632 

intra-muscular injection of gallamine triethiodide (3 mg/kg of body weight, in 0.9% saline). Fish 633 

were then secured in a V-shape Plexiglas stand partially inundated, whereby gills could be 634 

continuously irrigated with aeriated anesthetic solution of MS222 at 0.05 g/l. The olfactory rosette 635 

was surgically exposed and borosilicate electrodes, filled with a solution of 3 M KCL in 0.4% agar 636 

and connected to solid state electrodes with Ag/AgCl pellets, were placed between olfactory 637 

lamellae (signal electrode) and external skin (reference electrode). The olfactory epithelium was 638 

continuously irrigated with tap charcoal filtered water and the stimulus was released directly into 639 

the nose through a borosilicate tube. The olfactory responses generated after release of the stimuli 640 
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for 4 s were filtered and amplified by a NeuroLog DC filter and pre-amplifier integrated by an 641 

Axon Digidata 1550B, and stored on a PC running Axoscope 10.6 software.  642 

Dose response experiments. Stimuli were serially diluted from a 1:100 to 1:1000 000 from a stock 643 

solution, and applied to the nose to measure amplitude of the olfactory responses. These responses 644 

were blank subtracted (i.e. the response to tap charcoal filtered water) and normalized to those of 645 

L-serine at 10-5 M. IHNV stock was a vaccine solution with inactivated IHNV at 2 x 108 PFU and 646 

culture medium stock was the supernatant of the vaccine after being centrifuged at 50000 rpm for 647 

20 min at 5 °C.  648 

Cross-adaptation experiments. We identified dilutions of IHNV and medium that evoked the same 649 

EOG amplitude (called the ‘unadapted’ response). Then the olfactory rosette was continually 650 

exposed to IHNV solution at the concentration of the unadapted response at least 1 min, and the 651 

response to a sample at double concentration of unadapted response IHNV was recorded (called 652 

the self-adapted control, SAC). After that, the response to a mixture IHNV and medium, both at 653 

same concentration that unadapted response, was recorded (Mix). Both measures, Mix and SAC, 654 

were then calculated as a percentage of the unadapted response. After adaptation, the olfactory 655 

rosette was flushed with charcoal filtered water for 20 min, and the process repeated using medium 656 

as the adapting solution and IHNV or the mixture IHNV and medium as stimuli.  Half of the fish 657 

were adapted first to IHNV and the other half first to control.  658 

Inhibition curves. Responses to 1:1000 to IHNV or medium were recorded (both showed similar 659 

amplitude in their olfactory responses). Then the olfactory rosette was continuously exposed to 660 

increasing concentrations of AG879 from 10-9 M to 10-5 M and, under each adapting concentration 661 

of the drug, it was measured the olfactory responses to 1:1000 of IHNV or medium. Responses 662 

were calculated as ratio between 1:1000 odorant after adaptation to drug solution and 1:1000 663 

odorant before adapted to drug. All graphs were produced with Sigma plot 11.0 and EC50 664 

concentrations were calculated using the Pharmacology module of the same program.  665 

Histology, transmission electron microscopy and immunofluorescence microscopy 666 

For transmission electron microscopy (TEM), the OO (N = 3) of rainbow trout that had received 667 

live attenuated IHNV IN 15 min prior to sampling were fixed overnight at 4 °C in 2.5 % (v/v) 668 

glutaraldehyde in PBS, then transferred to 1 % osmium tetroxide (w/v) in PBS for 2 h at 4 °C. 669 
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After washing in PBS (3 times, 10 min), samples were dehydrated in a graded series of ethanol 670 

(10–100 %) through changes of propylene oxide. Samples were then embedded in Epon resin, 671 

sectioned and stained with uranyl acetate and lead citrate before being examined in a PHILIPS 672 

TECNAI 12 transmission-electron microscope. Additionally, semithin sections were stained with 673 

toluidine blue. The conjugated antibodies used for immunostaining are listed in the Key Resources 674 

Table. Trout OO and OB were snap frozen in OCT and 5-m-thick cryosections were fixed in 675 

4% paraformaldehyde for 3 min, blocked and labeled with rat anti-trout CD8 (1:50 dilution), 676 

anti- pERK (1:50 dilution), anti-human TrkA (1:100 dilution) and rabbit anti-mouse caspase 3 677 

(1:100 dilution) antibody for immunostaining. Nuclei were stained with DAPI. Samples were 678 

observed under a Nikon Ti or Zeiss confocal microscopes. To test the permeability of BBB 15 min 679 

after nasal viral delivery, 50 l of FITC-conjugated 10 kDa dextran particles in PBS were injected 680 

i.v into 10 g rainbow trout (N = 6) 1 hour before sampling. Trout then received IHNV or PBS IN 681 

and 15 min later, trout heads were snap frozen, embedded in OCT and cryosections were examined 682 

for fluorescence microscopy.    683 

Western blot, cell isolation and flow cytometry  684 

The conjugated antibodies used for western blot and Flow cytometry are listed in the Key 685 

Resources Table. Olfactory Organ (OO), head kidney (HK), and brain (B) were extracted and 686 

prepared for Western blotting as explained elsewhere (Sepahi et al., 2016b). Briefly, tissues were 687 

lysed in RIPA buffer and 10 μl of lysed tissues were mixed with 10 μl of Laemmli buffer under 688 

non-reducing conditions. Samples were boiled for 3 min at 97 °C and resolved on 4–15% SDS-689 

PAGE gels. Gels were run for 50 min at 120 V and transferred onto PVDF membranes. Membranes 690 

were blocked in PBS-T containing 5% non-fat milk overnight at 4 °C. Membranes were incubated 691 

with anti-TrkA (1:1000) for 90 min, washed three times in PBS-T and then incubated for 60 min 692 

with HRP-anti-rabbit IgG (1:2500). Detection was performed using ECL Western Blotting 693 

Substrate. Immunoblots were scanned using a ChemiDoc Touch Imaging System and band 694 

densitometry was analyzed with Image Lab Software. 695 

Isolation of trout OO cells was carried out as explained elsewhere (Tacchi et al., 2014). Briefly, 696 

trout OO were obtained by means of mechanical agitation of both olfactory rosettes in DMEM 697 

medium (supplemented with 5% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin) at 4 °C 698 

for 30 min. Leukocytes were collected, and the aforementioned procedure was repeated four times. 699 
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Thereafter, the OO pieces were treated with PBS (containing 0.37 mg/ml EDTA and 0.14 mg/ml 700 

dithiothreitol) for 30 min followed by enzymatic digestion with collagenase (0.15 mg/ml) for 2 h 701 

at 20 °C. All cell fractions obtained the OO following the mechanical and enzymatic treatments 702 

were pooled, washed with modified DMEM. OB microvessels were extracted then 40 µl of DMEM 703 

containing heparin were added to the cavity to collect the remaining blood from the microvessels. 704 

This step was repeated twice. Cells were isolated by forcing the tissue through a 100-m pore 705 

nylon cell strainer and washed in DMEM three times. Cell suspensions were counted in a 706 

haemacytometer and stained with CD8α, IgM and IgT antibodies as explained elsewhere (Sepahi 707 

et al., 2016a). After washing, a total of 30,000 cells were recorded using an Attune NxT flow 708 

cytometer. The percentage of CD8α+, IgM+ and IgT+ cells was quantified as the percentage of 709 

FITC+ cells within the lymphocyte gate using their FSC/SSC profile. 710 

 711 

Gene expression analysis by real-time quantitative PCR 712 

Total RNA from OO and OB samples were collected and placed in 1 ml TRIzol for RNA extraction 713 

according to the manufacturer’s instructions. cDNA synthesis was performed as explained 714 

elsewhere (Sepahi et al., 2016b). The resultant cDNA was stored at -20 °C. The expression of 715 

pgs2b, IFN-, TNFα, CK10 (CCL19-like) and c-fos for rainbow trout and CCL19-like and SVCV 716 

N protein for zebrafish were measured by RT-qPCR using specific primers (Key Resources 717 

Table). The qPCR was performed using 3 μl of a diluted cDNA template as described in (Tacchi 718 

et al., 2013). The relative expression level of the genes was determined using the Pfaffl method 719 

(Pfaffl, 2001) as previously described (Tacchi et al., 2013). 720 

DNA constructs and generation of transgenic zebrafish larvae 721 

Three kb of the upstream regulatory sequence of the ora4 gene, which includes its 5’UTR 722 

(Ensembl accession number ENSDARG00000078223) was amplified using PfuUltra II Fusion HS 723 

DNA Polymerase, the primers 5’-aaggtaccgtgaatgcgtgtgtgtgatgtc-3 and 5’-724 

aaaggatccgctgaagatgctccagagtcc-3, and zebrafish larval genomic DNA as template. The amplicon 725 

was digested with KpnI/BamHI, cloned in the p5E-MCS vector (#228) of the Tol2kit and the 726 

ora4::Gal4VP16 construct were then generated by MultiSite Gateway assemblies using LR 727 

Clonase II Plus  according to standard protocols and using Tol2kit vectors described previously 728 

(Kwan et al., 2007).  729 
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The lines Tg(ora4::Gal4VP16)ums4 were generated by microinjecting 0.5-1 nl into the yolk 730 

sac of one-cell-stage embryos a solution containing 100 ng/µl ora4::Gal4VP16 construct and 50 731 

ng/µl Tol2 RNA in microinjection buffer (0.5x Tango buffer and 0.05 % phenol red solution) using 732 

a pneumatic microinjector . 733 

Cell ablation and live imaging of zebrafish larvae 734 

The lines Tg(UAS-E1b:nfsb-mCherry)c264 and Tg(ora4::Gal4VP16)ums4 were crossed. 735 

Their offspring were treated at 48 h post-fertilization (hpf) for 24 h with 12 mM metronidazole 736 

and kept in dark (Davison et al., 2007). Images were first obtained at 48 hpf as described below. 737 

Thereafter, starting from 72 hpf the prodrug was removed, and larvae imaged once a day up to 120 738 

hpf to confirm the ablation of ora4+ crypt neurons. 739 

For live imaging, larvae were anesthetized in tricaine as previously described (Galindo-740 

Villegas et al., 2012). Images were captured with an epifluorescence MZ16FA stereomicroscope 741 

(Leica) equipped with green and red fluorescent filters while animals were kept constantly at 742 

28.5°C.  743 

Viral challenge in zebrafish  744 

The SVCV isolate 56/70 was propagated in EPC cells and titrated in 96-well plates. Thirty 745 

72 hpf zebrafish larvae per group in triplicate were challenged for 24 h at 25°C in disposable Petri 746 

dishes by immersion in 108 TCID50/fish SVCV. After challenge, the remaining fish in each group 747 

were transferred to fresh plates containing egg water and monitored every 12 h over a 6-day period 748 

to score mortality (López-Muñoz et al., 2010). 749 

Statistical analysis 750 

Results are expressed as the mean ± SE. Data analysis was performed in GraphPad Prism version 751 

5.0. The RT-qPCR measurements were analyzed by t-test to identify statistically significant 752 

differences between groups. One-way ANOVA and a Tukey post hoc analysis test were performed 753 

to identify statistically significant differences among groups. Statistical analysis for survival assay 754 

was carried out using PRISM 7 for Mac OS X (GraphPad). Gehan-Breslow-Wilcoxon method was 755 

performed following a log-rank test and confirmed with Kaplan-Meier curve to ensure 756 
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compatibility and avoid deviations due a lack of proportional hazard. P-value of < 0.05 was 757 

considered statistically significant. 758 

Contact for reagent and resource sharing 759 

Further information and requests for resources and reagents should be directed to and will be 760 

fulfilled by the Lead Contact, Irene Salinas (isalinas@unm.edu) 761 

 762 

 763 

Supplemental Figure legends 764 

Supplementary Fig. 1: (A) Detection of TrkA in trout OO and brain but not HK lysates by 765 

immunoblotting. Immunoblots detecting TrkA showed a band at the expected size (~140 KDa) in 766 

OO and brain. (B) Immunofluorescence staining of control rainbow trout HK cryosection stained 767 

with anti-TrkA antibody (FITC, green) confirming absence of TrkA+ cells. Cell nuclei were stained 768 

with DAPI DNA stain (blue). Scale bar: 20 µm. 769 

Supplementary Fig. 2: IHNV activates sensory neurons in the OO in vitro (A) Representative dot 770 

plots of control (left) and IHNV (right) trout OO extracted cells stained with anti-pERK antibody 771 

showing the mean percentage of positive cells.  (B) Quantification of flow cytometry data in (A) 772 

indicating a significant increase in the percentage of pERK+ cells 15 min after adding IHNV 773 

(multiplicity of infection 1:3) in vitro. Results are representative of three independent experiments 774 

(N = 5). *p < 0.05 775 

Supplementary Fig. 3: Nasal delivery of IHNV does not result in presence of virus in the OB and 776 

does not alter BBB integrity 15 min after delivery.  (A) Immunofluorescence staining with anti-777 

IHNV Abs (Cy3, red) showing no IHNV staining in the OO of control rainbow trout. (B) 778 

Immunofluorescence staining with anti-IHNV Abs (Cy3, red) showing the presence of IHNV (red 779 

arrows) in the OO of IHNV treated rainbow trout 15 min after nasal delivery. (C) 780 

Immunofluorescence staining with anti-IHNV Abs (Cy3, red) showing no detection of IHNV at 781 

OB of control rainbow trout. (D) Immunofluorescence staining with anti-IHNV Abs (Cy3, red) 782 

showing the absence of IHNV in the OB of IHNV treated rainbow trout 15 min after nasal delivery.  783 

Scale bar, 20 µm. (E-H) Intravenous injection of FITC- conjugated dextran showing that no 784 
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changes in the BBB integrity in IHNV-treated fish as demonstrated by the absence of FITC 785 

staining in the OB. Scale bar: 100 µm. 786 

Supplementary Fig. 4: Leukocyte recruitment occurs as early as 15 min after IHNV delivery as 787 

visualized by enlargement lamina propria (LP) of the olfactory lamellae of IHNV-treated 788 

compared to control fish. (A) Immunofluorescence staining of control (left) and IHNV-treated 789 

(right) rainbow trout OO stained with anti-trout TrkA (FITC, green) showing our image analysis 790 

strategy and the enlargement in the apical and medial regions of the LP in the IHNV-treated fish. 791 

Cell nuclei were stained with DAPI DNA stain (blue). Results are representative of two different 792 

experiments (N = 3). Scale bar, 20 µm. (B) The width of LP at the apical (100 µm from the lamellar 793 

tip) and lateral (250 µm from the lamellar tip) regions of the olfactory lamella were measured by 794 

image analysis of 10 individual lamellae from three different fish per treatment. The mean distance 795 

± SE is shown. (C) Representative hematoxylin-eosin stain of adult rainbow trout olfactory organ 796 

showing Leukocyte recruitment occurs as early as 15 min after IHNV delivery of the olfactory 797 

lamellae of IHNV-treated (middle and right) compared to control fish (left). L, lumen; LP, lamina 798 

propria. Scale bar: 50 µm. 799 

Supplementary Fig. 5: A low degree of amino acid conservation between IHNV G protein and 800 

HSV secreted G protein indicated. (A) Amino acid sequence alignment of HSV-2 sG protein 801 

(accession number GD_HHV23) and trout IHNV G protein (sequenced obtained from the live 802 

attenuated IHNV used in this study) performed in CLUSTALW showing a low degree of amino 803 

acid conservation (B) Production of recombinant FLAG-tagged IHNV G protein by mammalian 804 

expression system. Immunoblot using anti-Flag antibody confirmed the presence of the 805 

recombinant protein (IHNV G protein) band at expected (~50 KDa) molecular weight. 806 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Trk A anti-rabbit polyclonal IgG Santa Cruz 

Biotechnology  

Cat# sc-118 

RRID:AB_632556 

Caspase-3 anti-rabbit polyclonal IgG  Abcam Cat# ab13847 

RRID:AB_443014 

Cy3 AffiniPure Goat anti-rabbit IgG (H+L) Jackson 

ImmunoResearch 

Cat# 111-165-144 

RRID:AB_2337913 

Phospho-p44/42 MAPK(ERK1/2) anti-rabbit polyclonal 

IgG  

Cell signaling  Cat# 9101 

RRID:AB_331646 

FITC affiniPure donkey anti-rat IgG Jackson 

ImmunoResearch 

Cat#712-095-153 

RRID:AB_2340655 

FITC donkey anti-rabbit IgG  Jackson 

ImmunoResearch 

Cat# 115-165-003 

RRID:AB_2340598 

Rat anti-trout CD8α polyclonal IgG (Takizawa et al., 2011)  

Rabbit anti-trout IgT (Zhang et al., 2010)  

Mouse anti-trout IgM (Zhang et al., 2010) 

(1.14) 

 

Mouse anti-IHNV mAb (Sepahi et al., 2016a) Pool of anti-IHNV 

mAbs 

containing mAbs 1H8, 

6A7, and 5AG (2 

mg/ml) 

Cy3 anti-mouse IgG  Jackson 

ImmunoResearch  

Cat# 715-165-150 

RRID:AB_2340813 

Peroxidase AffiniPure Donkey Anti-Rabbit IgG (H+L) Jackson 

ImmunoResearch 

Cat# 711-035-152 

RRID:AB_10015282 

Mouse anti-FLAG M2 IgG Sigma Cat# F3165 

RRID: AB_259529 

Monoclonal ANTI-FLAG® M2-Cy3™ antibody 

produced in mouse 

Sigma Cat# A9594 

RRID: AB_439700 

murine mAb: anti-Infectious hematopoietic necrosis 

virus G (anti-IHNV G) 

EVAg Cat# 015A-01754 

murine mAb: anti-Infectious hematopoietic necrosis 

virus N (anti-IHNV N) 

EVAg Cat# 015A-01753 

Bacterial and Virus Strains  

Key Resource Table

file:///C:/Users/Salinas/Google%20Drive/TRKA%20paper/Manuscript/Figures/ImmunityApril20_UMU.docx%23_ENREF_48
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Live attenuated infectious haematopoietic necrosis 

virus (IHNV) 

(Ristow et al., 2000) Passaged from IHNV 

Strain 220-90 

Spring Viremia Carp Virus (SVCV) (Galindo-Villegas et al., 

2012) 

Strain 56/70 

   

Biological Samples   

Triploid female rainbow trout adult olfactory organ, 

olfactory bulb, blood 

Lisboa Springs 

hatchery, New Mexico 

 

Zebrafish larvae (entire organism) ZIRC, Oregon , USA  

pcDNA3.1-IHNV expression plasmid This paper  

FreeStyle 293-F cells and expression system ThermoFisher Cat# R79007 

Chemicals, Peptides, and Recombinant Proteins 

Ampicillin Sigma Aldrich Cat# 69-52-3 

L-Serine Acros Organics Cat# 132660250 

Ethyl 3-aminobenzoate methanesulfonate salt (MS-

222) 

Sigma Aldrich Cat# 886-86-2 

Gallamine triethiodide  Sigma Aldrich Cat# G8134-25G 

RNAlater Ambion Cat# AM7021 

Paraformaldehyde Sigma Aldrich Cat# 30525-89-4 

ABsolute Blue qPCR SYBR Green ROX Mix Thermo Scientific Cat# AB4162B 

2-(4-Amidinophenyl)-6-indolecarbamidine 

dihydrochloride (DAPI)  

Sigma Aldrich Cat# 28718-90-3 

TRIzol™ Reagent Thermo Scientific Cat# 15596018 

Tyrphostin AG879 Sigma Aldrich Cat# 148741-30-4 

Tyrphostin AG879 Cayman Chemical Cat# 10793 

SuperScript™ III First-Strand Synthesis System Thermo Scientific Cat# 18080051 

Fluorescein isothiocyanate–dextran Sigma Cat# FD10S 

DMEM high glucose  Gibco Cat# 11995040 

Fetal bovine serum Hyclone Cat# SH30071.03 

Penicillin-Streptomycin (10,000 U/mL) Gibco Cat# 15140122 

StartingBlock™ T20 (TBS) Blocking Buffer ThermoFisher Cat# 37543 

Metronidazole Sigma-Aldrich Cat# M3761 

PfuUltra II Fusion HS DNA Polymerase  Agilent Cat# 600670 

Anti-FLAG M2 Magnetic Beads Sigma Cat# M8823 

RRID:AB_2637089 

3X-FLAG peptide Sigma Cat# F4799 

file:///C:/Users/Salinas/Google%20Drive/TRKA%20paper/Manuscript/Figures/ImmunityApril20_UMU.docx%23_ENREF_39
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Recombinant IHNV glycoprotein This paper N/A 

Gallamine triethiodide Sigma Aldrich Cat# G8134-25G 

Potassium chloride Acros Organics Cat# 196770010 

Agar VWR Cat# J637 

   

Critical Commercial Assays 

Gateway™ LR Clonase™ II Enzyme mix ThermoFisher Scientific Cat# 11791100 

GenElute™ Single Cell RNA Purification Kit Sigma Aldrich Cat# RNB300 

Deposited Data 

Experimental Models: Cell Lines 

   

Experimental Models: Organisms/Strains 

Triploid female adult rainbow trout Lisboa Springs 

Hatchery (Pecos, NM) 

N/A 

Wild type zebrafish strains AB Zebrafish International 

Resource Center 

ZFIN:ZDB-GENO-

960809-7 

Zebrafish: Tg(UAS-E1b:NTR-mCherry)c264 Zebrafish International 

Resource Center 

ZFIN ID: ZDB-ALT-

070316-1 

Zebrafish: Tg(ora4:gal4) This paper N/A 

Oligonucleotides 

flag-ihnv, primers 

AATAGGTACCGCCATGGATTACAAGGATGACGAC

GATAAGGACACCACGATCACCACTCCGCTC 

(forward) and 

AATACTCGAGCTAGTGGAGTGATTGAAGGTCGAA

TGAG (reverse) 

This paper N/A 

ef-1a, primers CAACGATATCCGTCGTGGCA 

(forward) and ACAGCGAAACGACCAAGAGG 

(reverse) 

N/A N/A 

ck10, primers GGCCAGATGGTGATGGACTGTG 

(forward) and GGTAGTGAAGACCACAGCGCTG 

(reverse) 

N/A N/A 

Ifnγ, primers GCTGTTCAACGGAAAACCTGTTT 

(forward) and TCACTGTCCTCAAACGTG (reverse) 

N/A N/A 

c-fos, primers CGTCCTTCATCCCTACTGTTACC 

(forward) and TGTTCCATTTTGCCTCTGC (reverse) 

N/A N/A 



tnfα, primers GGGGACAAACTGTGGACTGA 

(forward) and GAAGTTCTTGCCCTGCTCTG 

(reverse) 

N/A N/A 

ZF rps11, primers CCCAGAGAAGCTATTGATGGC 

(forward) and CCCATGCTTCAGGGATGTGA 

(reverse) 

N/A N/A 

svcv (N protein), primers 

ATCAGGCCGATTATCCTTCCA (forward) and 

AGATAAGCATTCACATGCTGTAT (reverse) 

N/A N/A 

ZF ccl19-like, primers GCCCACGTGATGCTGTAATA 

(forward) and ACAGCGTCTCTCGATGAACC 

(reverse) 

N/A N/A 

 

   

Software and Algorithms 

GraphPad Prism version 5.0 & 7.0 GraphPad https://www.graphpad

.com/scientific-

software/prism/  

RRID:SCR_002798 

 

Sigma Plot version 11 Systat Software Inc https://systatsoftware.

co 

Axoscope 10.6 Axon Instruments https://www.molecular

devices.com/systems/

axon-conventional-

patch-clamp/digidata-

1550b-plus-

humsilencer#tab-2 

Other 

Transmission Electronic Microscope PHILIPS TECNAI 12   

ABI Prism 7000 Applied Biosystems  

TissueLyser II Qiagen  

NanoDrop  Thermo Scientific ND 1000 

Nikon Eclipse Ti microscope Nikon  

Attune Flow Cytometer Thermo Scientific  

Micro HM 550 Cryostat Thermo Scientific  

https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/


Zeiss confocal microscope Zeiss LSM 780 

Fluorescence stereomicroscope  Leica MZ16FA 

Biological safety cabinet Telstar Class II/B3 

Axon digidata 1550B plus hum silencer Axon Instruments Digidata 1550B1 

Neurolog AC/DC amplifier Digitimer NL106 

Neurolog Band-Pass Filter 

Digitimer NL 125/6 

Neurolog DC Preamplifier with head stage 

Digitimer NL102G 

Nikon zoom stereomicroscope Nikon SMZ800N 

Flaming/Brown Micropipette Puller Sutter Instrument Co P-97 

Pneumatic Microinjector Narishige IM-300 
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Supplementary Fig. 1: (A) Detection of TrkA in trout OO and brain but not HK lysates by 

immunoblotting. Immunoblots detecting TrkA showed a band at the expected size (~140 KDa) in OO and 

brain. (B) Immunofluorescence staining of control rainbow trout HK cryosection stained with anti-TrkA 

antibody (FITC, green) confirming absence of TrkA+ cells. Cell nuclei were stained with DAPI DNA stain 

(blue). Scale bar: 20 µm. 

 

 

Supplementary Fig. 2: IHNV activates sensory neurons in the OO in vitro (A) Representative dot plots of 

control (left) and IHNV (right) trout OO extracted cells stained with anti-pERK antibody showing the 

mean percentage of positive cells.  (B) Quantification of flow cytometry data in (A) indicating a 

significant increase in the percentage of pERK+ cells 15 min after adding IHNV (multiplicity of infection 

1:3) in vitro. Results are representative of three independent experiments (n = 5). *p < 0.05 

Supplemental Text and Figures Click here to download Supplemental Text and Figures
Supplementary Fig (003)_MH.docx
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Supplementary Fig. 3: Nasal delivery of IHNV does not result in presence of virus in the OB and does not 

alter BBB integrity 15 min after IN delivery.  (A) Immunofluorescence staining with anti-IHNV Abs (Cy3, 

red) showing no IHNV staining in the OO of control rainbow trout. (B) Immunofluorescence staining with 

anti-IHNV Abs (Cy3, red) showing the presence of IHNV (red arrows) in the OO of IHNV treated rainbow 

trout 15 min after nasal delivery. (C) Immunofluorescence staining with anti-IHNV Abs (Cy3, red) 

showing no detection of IHNV at OB of control rainbow trout. (D) Immunofluorescence staining with 

anti-IHNV Abs (Cy3, red) showing the absence of IHNV in the OB of IHNV treated rainbow trout 15 min 

after nasal delivery.  Scale bar, 20 µm. (E-H) Intravenous injection of FITC- conjugated dextran showing 

that no changes in the BBB integrity in IHNV-treated fish as demonstrated by the absence of FITC 

staining in the OB. Scale bar: 100 µm. 



 

 

 

 

 

Supplementary Fig. 4: Leukocyte recruitment occurs as early as 15 min after IHNV delivery as visualized 

by enlargement lamina propria (LP) of the olfactory lamellae of IHNV-treated compared to control fish. 

(A) Immunofluorescence staining of control (left) and IHNV-treated (right) rainbow trout OO stained 

with anti-trout TrkA (FITC, green) showing our image analysis strategy and the enlargement in the apical 

and medial regions of the LP in the IHNV-treated fish. Cell nuclei were stained with DAPI DNA stain 

(blue). Results are representative of two different experiments (n = 3). Scale bar, 20 µm. (B) The width of 

LP at the apical (100 µm from the lamellar tip) and lateral (250 µm from the lamellar tip) regions of the 

olfactory lamella were measured by image analysis of 10 individual lamellae from three different fish per 

treatment. The mean distance ± SEM is shown. (C) Representative hematoxylin-eosin stain of adult 

rainbow trout olfactory organ showing Leukocyte recruitment occurs as early as 15 min after IHNV 

delivery of the olfactory lamellae of IHNV-treated (middle and right) compared to control fish (left). L, 

lumen; LP, lamina propria. Scale bar: 50 µm. 



 

Supplementary Fig. 5: A low degree of amino acid conservation between IHNV G protein and HSV 

secreted G protein indicated. (A) Amino acid sequence alignment of HSV-2 sG protein (accession number 

GD_HHV23) and trout IHNV G protein (sequenced obtained from the live attenuated IHNV used in this 

study) performed in CLUSTALW showing a low degree of amino acid conservation (B) Production of 

recombinant FLAG-tagged IHNV G protein by mammalian expression system. Immunoblot using anti-

Flag antibody confirmed the presence of the recombinant protein (IHNV G protein) band at expected 

(~50 KDa) molecular weight. 
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VII. Summary of findings  

This dissertation investigates the antiviral immune responses in the olfactory organ of the teleost 

fish. The major findings of this dissertation are summarized below. 

1. CCL19-like chemokine orchestrates both nasal and systemic antiviral responses in 

rainbow trout (O. mykiss) 

In chapter 2, we reported six CCL19 genes in salmonids, CK12a, CK12b, CK13a, CK13b, CK10a 

and CK10b. Out of all the isoforms, CK12a had been previously identified as one of the most 

important immune genes upregulated in trout NALT following nasal vaccination with a viral 

vaccine (42). Phylogenetically speaking, salmonid CK12 and CK13 clustered together and 

salmonid CK12 was more similar to mammalian CCL19 compared to the other two main isoforms. 

We showed that CK12 was mainly expressed in trout mucosal tissues and its expression in the 

olfactory organ increased up to 50-fold after IHNV nasal vaccination. Recombinant protein CK12 

(rCK12) was not chemotactic in vitro but it increased the width of the nasal lamina propria when 

delivered intranasally in vivo, suggesting an inflammatory function. rCK12a when delivered I.N 

or i.p. also stimulated the expression of CD8α, granulysin, and IFN in mucosal and systemic 

compartments and increased numbers of nasal CD8a+  and APC cell numbers. However, in vivo 

delivery of rCK12 did not confer protection against viral antigens. Overall, this chapter highlights 

the significant role of CCL19-like chemokines in nasal and systemic immunity of rainbow trout 

(28). 

2. Tissue microenvironments in the nasal epithelium of rainbow trout (O. mykiss) define 

two distinct CD8α+ cell populations and establish regional immunity 

In chapter 3, we identified the presence of CD8α+ cells in the rainbow trout nasal epithelium. We 

showed nasal CD8α+ cells display a distinct phenotype of CD8+ T cells. We observed that nasal 



96 
 

CD8α+ cells were mainly located in clusters at the mucosal tip of olfactory lamella but scattered 

in the neuroepithelial region. Their cluster as the tip of olfactory lamella could be explained by the 

greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal tip compared to the 

neuroepithelium. Whilst viral antigen uptake occurred via both tip and lateral routes, tip resident 

MHC-II+ cells were located significantly closer to the lumen of the nasal cavity than their 

neuroepithelial counterparts, providing quicker access to lumen antigens. Our results support the 

idea of compartmentalized immune responses within the nasal mucosa of teleosts that likely 

evolved as a sparing mechanism to protect olfactory sensory function (43). 

3. Olfactory sensory neurons mediate ultra-rapid antiviral immune responses in teleost 

fish in a TrkA-dependent manner 

In chapter 4, we report that nasal delivery of rhadboviruses induced apoptosis in crypt OSNs in 

rainbow trout OO via the interaction of the OSN TrkA receptor with viral glycoprotein. This signal 

resulted in pro-inflammatory responses in the OO and dampened inflammation in the OB. CD8α+ 

T cells infiltrated the OO within minutes of nasal viral delivery and this response was abrogated 

when TrkA was blocked. Infiltrating CD8α+ T cells originated from the microvasculature 

surrounding the OB and not the periphery (Figure 2). Finally, ablation of crypt neurons in a 

transgenic zebrafish model resulted in increased susceptibility to rhabdoviral challenge. Our 

results, therefore, indicate a novel function for OSNs as a first layer of pathogen detection in 

vertebrates. 
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VIII. Conclusion 

 The immune responses at tissue barriers are complex due to the multifunctional nature of these 

tissues. The olfactory organ, responsible for detection of chemical cues in the environment, also 

plays a role in defense against infection. However, the immunological principles that govern nasal 

immunity are poorly understood even in mammals. The current dissertation represents the first in-

depth anatomical, cellular and molecular characterization of the nasal immune system of a teleost 

fish. This work has revealed some of the key players in nasal immunity of teleosts (i.e. CCL19) 

and showed the unique immune regulatory mechanisms in the OO of fish that preserve neurons 

from inflammatory damages. The intimate relationship between neurons and immune cells in the 

teleost olfactory system offers an excellent platform for the study of neuroimmune interactions in 

Figure 2: Nasal delivery of neurotropic virus A) Induce 

apoptosis crypt neurons, red box B) Induce neuronal 

activation in OO and OB labeled, pERK C) Infiltrate CD8 T 

cells from OB to OO, orange arrow 
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vertebrates. As an example, we provide evidence for the immune role of crypt neurons against 

viral pathogens provides the first evidence for the immunological role of OSNs in vertebrates.  
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Symbiont-derived sphingolipids 
modulate mucosal homeostasis 
and B cells in teleost fish
Ali Sepahi1,*, Héctor Cordero1,2,*, Howard Goldfine3, Maria Ángeles Esteban2 & Irene Salinas1

Symbiotic bacteria and mucosal immunoglobulins have co-evolved for millions of years in vertebrate 
animals. Symbiotic bacteria products are known to modulate different aspects of the host immune 
system. We recently reported that Flectobacillus major is a predominant species that lives in the gill 
and skin mucosal surfaces of rainbow trout (Oncorhynchus mykiss). F. major is known to produce 
sphingolipids of a unique molecular structure. Here we propose a role for F. major and its sphingolipids 
in the regulation of B cell populations in rainbow trout, as well as an essential role for sphingolipids in 
trout mucosal homeostasis. We found that F. major-specific IgT titers are confined to the gill and skin 
mucus, whereas F. major-specific IgM titers are only detected in serum. Live F. major cells are able to 
stimulate sustained IgT expression and secretion in gills. F. major sphingolipids modulate the growth 
of trout total skin and gill symbiotic bacteria. In vivo systemic administration of F. major sphingolipids 
changes the proportion of IgT+ to IgM+ B cells in trout HK. These results demonstrate the key role of 
the symbiont F. major and its sphingolipids in mucosal homeostasis via the modulation of mucosal and 
systemic Igs and B cells.

The co-existence of beneficial microorganisms and the mucosal barriers of animals is one of the most conserved 
and successful associations found in nature. Microorganisms are known to provide the animal host with numer-
ous physiological benefits including metabolic, developmental and immunological ones1–6. At the same time, the 
animal host needs to tolerate symbionts while fighting pathogens, a complex process for the animal’s immune 
system1,7,8.

Teleost fish such as rainbow trout (Oncorhynchus mykiss) have numerous mucosal barriers such as the gut, 
skin, gills and olfactory organ that separate them from the environment. Each of these surfaces is colonized by a 
distinct and diverse bacterial community1,9–12. Although the presence of these complex microbial communities 
has been reported in a number of teleosts, the specific mechanisms by which the fish host benefits from this asso-
ciation are largely unknown.

Mucosa-associated lymphoid tissues (MALT) of teleost fish are characterized by a unique distribution of B 
cells compared to systemic lymphoid tissues, with 50% of all B cells being IgT+ B cells and 50% IgM+ B cells11,13–15.  
Importantly, teleost mucosal secretions contain one major immunoglobulin (Ig) isotype, IgT, specialized in 
mucosal immunity11,13–16. Compartmentalized IgT responses against pathogenic bacteria and parasites can be 
detected in mucosal secretion of trout whereas IgM responses are mainly systemic11,13–15. Additionally, rainbow 
trout IgT is the main Ig to coat bacterial symbionts, supporting the role of IgT in mucosal homeostasis11,13–15. 
Thus, IgT similar to IgA in mammals, is essential for the correct functioning of the teleost mucosal immune 
system.

A recent topographical map of the bacterial microbiome of adult rainbow trout revealed that the skin and gill 
bacterial communities are dominated by one species of bacteria, Flectobacillus major12. Until then, F. major had 
not been reported to be a member of the microbiome of any fish species, likely due to the lack of pyrosequencing 
studies from these two sites. This strong association, nevertheless, suggested that F. major may play a major role 
in the gill and skin mucosal immune system of rainbow trout.
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Sphingolipids are known to perform several immune-related functions17–19. For instance, sphingolipids have 
antimicrobial properties and they are able to modulate immune cells by formation of secondary messengers such 
as ceramides and sphingosine-1 phosphate (S1P) that are involved in immune cell development, differentiation, 
activation and proliferation17. The sphingosine-1 phosphate receptor (S1P1) is mainly expressed by lympho-
cytes and determines their migration patterns from and into the secondary lymphoid organs and thymus20–23. 
Moreover, S1P/S1P1 regulate peritoneal B cell trafficking and intestinal IgA production in mice24,25.

Sphingolipids are produced by most eukaryotic cells but are rare in prokaryotes, whose membranes comprise only 
glycerol-based phospholipids26. However, a few bacterial species possess both phospholipids and sphingolipids27–29.  
Importantly, bacterial derived sphingolipids can have unique properties compared to those synthesized by eukaryotes30.  
Interestingly, F. major is known to produce large quantities of a unique type of glycosphingolipid31,32, but the 
biological functions of these sphingolipids have not been investigated.

Here we propose that F. major and F. major-derived sphingolipids play a key role in the modulation of trout 
mucosal homeostasis and B cell populations. F. major-specific IgT antibodies were found in the gill mucus of 
healthy rainbow trout whereas F. major-specific IgM antibodies were confined to the serum. F. major stimulated 
sustained IgT but not IgM expression in gill tissue. Sphingolipid metabolism was not only essential for F. major 
growth but also impaired the growth of other resident aerobic bacterial symbionts. Finally, we demonstrate that 
F. major sphingolipids control the distribution of IgT and IgM B cells at mucosal and mucosal sites in vivo. Our 
results show for the first time that sphingolipids produced by a bacterial symbiont are able to modulate B cells 
and Igs in vertebrates.

Results
F. major-specific IgT is found in trout mucus and F. major-specific IgM in serum. We found 
specific F. major-IgM antibodies (titers between 1/4 and 1/6) in the serum of 36% of all analyzed specimens. 
However, F. major-specific IgT could not be detected in serum samples (Table 1, Fig. 1). In mucus, specific IgM 
titres were undetectable in all cases (Fig. 1). However, F. major-specific IgT titers were found both in gill and skin 
mucus but not gut mucus, with higher titers found in the gills compared to skin (Table 1, Fig. 1). Interestingly, 
upon symbiont removal, specific IgT could no longer be detected in skin mucus samples indicating that all the  
F. major-specific IgT in skin mucus was bound to bacteria present in the samples. In contrast, removal of bacteria 
from gill mucus did not eliminate the presence of specific IgT in the sample, indicating that F. major-specific 
IgT antibodies are present in free form (unbound to bacteria) in trout gill mucus (Table 1, Fig. 1). These results 
demonstrated the presence of Ig responses to symbiotic bacteria in mucosal and systemic compartments of teleost 
fish.

F. major induces sustained expression of IgT but not IgM in trout gill explants. Trout gill explants 
incubated with 104 cfu/ml of F. major showed significantly higher expression of IgT (between 2 and 4 fold higher 
than controls) at 6, 24 and 48 h whereas the lower dose (102 cfu/ml) did not significantly change IgT expression. 
IgM expression was transiently up-regulated at 6 h with 104 cfu/ml F. major (Fig. 2a and b) with no changes 
recorded at later time points or at the lower dose tested. IgT expression was not modified in head kidney leu-
kocytes (HKLs) at any time point or dose tested. IgM expression was significantly lower (2-fold) at 6 h in the 
presence of 104 cfu/ml F. major and 2-fold higher at 48 h with the same bacterial dose (Fig. 2c and d). No changes 
in IgM expression were detected in HKLs incubated with 102 cfu/ml F. major. This experiment showed that the 
symbiont F. major is capable of modifying IgT and IgM transcript levels, but primarily stimulates mucosal IgT 
expression.

Specific Ig Sample Positive/Total

IgM

Serum 4/11

Skin mucus with bacteria 0/6

Skin mucus without bacteria 0/6

Gill mucus with bacteria 0/6

Gill mucus without bacteria 0/6

Gut mucus with bacteria 0/6

Gill mucus without bacteria 0/6

IgT

Serum 0/6

Skin mucus with bacteria 6/6

Skin mucus without bacteria 0/6

Gill mucus with bacteria 6/6

Gill mucus without bacteria 6/6

Gut mucus with bacteria 0/6

Gut mucus without bacteria 0/6

Table 1.  Detection of specific immunoglobulins against Flectobacillus major in serum and mucus of 
rainbow trout (Oncorhynchus mykiss).
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F. major sphingolipids affect the growth of total trout aerobic symbionts. The growth of the 
total skin microbiota (TSM) of rainbow trout increased in the presence F. major sphingolipids at the four tested 
concentrations (0.1 μ M, 1 μ M, 10 μ M and 100 μ M) compared to the negative control groups (BSA only) although 
only the 0.1 and 100 μ M doses resulted in significant growth enhancement at 24 h (Fig. 3a,b). In the case of cer-
amide, the substrate for the sphingolipid synthesis pathway, no significant effects on TSM growth were recorded 
except for a reduction in growth at 24 h in the presence of 1 μ M ceramide (Fig. 3c,d). Regarding total aerobic gill 
microbiota (TGM) of rainbow trout, significant growth enhancement was observed in the presence of the highest 
(100 μ M) and lowest (0.1 μ M) doses of sphingolipids from F. major (Fig. 3e,f). Ceramide treatment, on the other 

Figure 1. F. major-specific IgM and IgT can be detected in hatchery rainbow trout (O. mykiss). Antibody 
titres were measured by ELISA. Results are expressed as the mean titre of all fish that tested positive ±  SEM 
(N =  6–10). Groups are F. major-specific IgM and IgT titres in rainbow trout serum (a) F. major-specific 
IgM and IgT titres in rainbow trout gill mucus containing bacteria (b) F. major-specific IgM and IgT titres in 
rainbow trout skin mucus containing bacteria (c) F. major-specific IgM and IgT titres in rainbow trout gut 
mucus containing bacteria (d).
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hand, caused a dose-dependent growth enhancement on TGM after 24 h (Fig. 3g,h). These results indicated that 
F. major-derived sphingolipids promote TSM and TGM growth when present at low or high doses.

F. major regulates the expression of genes involved in the sphingolipid and phospholipid 
metabolism of the host. Since F. major may be a source of sphingolipids to the trout host, we sought to test 
whether this bacterium can modify the expression of genes involved in the sphingolipid and phospholipid meta-
bolic pathways of the host. Incubation of gill explants with 104 cfu/ml F. major led to significant down-regulation 
of S1P1, cytosolic phospholipase A2 (cPLA) and alkaline ceramidase (CDase) after 48 h, with the greatest inhibi-
tion (~ 40-fold) observed for S1P1 transcripts. S1P1 expression was also significantly down-regulated (~ 10-fold) 
in gill explants incubated with 102 cfu/ml F. major for 48 h. Finally, CDase expression was significantly lower 
(3-fold) at 24 h in gill explants incubated with 102 cfu/ml F. major (Fig. 4a–c). Thus, F. major appeared to regulate 
three genes involved in the host’s sphingolipid and phospholipid metabolism at mucosal sites.

Phylogenetic analysis of salmonid S1P1. In order to gain further insights into the evolution of S1P1 in 
vertebrates we datamined S1P1 molecules in NCBI as well as the rainbow trout and Atlantic salmon genomes. 
S1P1 sequence alignment is shown in Supplementary Fig. S1. We identified two S1P1 genes in both rainbow 
trout and salmon that shared a high degree of amino acid sequence identity with other teleost S1P1 molecules as 
well as mammalian S1P1 (Supplementary Fig. S2). The Neighbour Joining tree (Supplementary Fig. S3) showed 
that all salmonid S1P1 form a clade that is closely related to other teleost S1P1 molecules. Teleost S1P1 clade is 
closely related to all tetrapod S1P1 molecules. Finally, evaluation of synteny revealed a high degree of conserva-
tion in the local genomic regions surrounding S1P1 across vertebrate species (Supplementary Fig. S4). The genes 
in conserved synteny included coiled-coil domain containing 76 [Source:ZFIN; Acc:ZDB-GENE-050327-19], 
leucine rich repeat containing 39 [Source:ZFIN; Acc:ZDB-GENE-050417-279], dihydrolipoamide branched 
chain transacylase E2 [Source:ZFIN; Acc:ZDB-GENE-050320-85], RNA terminal phosphate cyclase domain 
1 [Source:ZFIN; Acc:ZDB-GENE-030131-9687], CDC14 cell division cycle 14 homolog A, b [Source:ZFIN; 
Acc:ZDB-GENE-070705-309], G protein-coupled receptor 88 [Source:HGNC Symbol; Acc:4539], vas-
cular cell adhesion molecule 1 [Source:ZFIN; Acc:ZDB-GENE-070209-238], solute carrier family 30 
(zinc transporter), member 7 [Source:ZFIN; Acc:ZDB-GENE-030131-5650], DPH5 homolog (S. cerevi-
siae) [Source:ZFIN; Acc:ZDB-GENE-041114-85] and sphingosine-1-phosphate receptor 1 [Source:ZFIN; 
Acc:ZDB-GENE-001228-2].

Figure 2. F. major stimulates IgM and IgT expression in gill and HK in vitro in a dose-dependent manner. 
(a) IgM expression in trout gill following incubation with 102 cfu/ml or 104 cfu/ml F. major for 6, 24 or 48 h.  
(b) IgT expression in trout gill following incubation with 102 cfu/ml or 104 cfu/ml F. major for 6, 24 or 48 h.  
(c) IgM expression in trout HK following incubation with 102 cfu/ml or 104 cfu/ml F. major for 6, 24 or 48 h.  
(d) IgT expression in trout HK following incubation with 102 cfu/ml or 104 cfu/ml F. major for 6, 24 or 48 h. 
Results are expressed as the mean fold-change compared to unstimulated control as measured by RT-qPCR 
(N =  5). *Denotes statistically significant changes compared to the unstimulated control (p <  0.05).
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Figure 3. F. major sphingolipids modulate the growth of other trout bacterial symbionts. Effects of  
F. major-sphingolipids on trout total skin aerobic microbiota (TSM) growth over a 30 h period (a) or after 24 h 
(b). Effects of commercial ceramide on TSM growth over a 30 h period (c) or after 24 h (d). Effects of F. major 
sphingolipids on trout total gill aerobic microbiota (TGM) growth over a 30 h period (e) or after 24 h  
(f). Effects of commercial ceramide on TGM growth over a 30 h period (g) or after 24 h (h). Results are 
expressed as the mean and/or the mean ±  SEM (N =  3). Different letters denote statistically significant 
differences among treatments (p <  0.05).
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F. major and F. major sphingolipids induce IgT but not IgM production in trout gills explants. In 
order to investigate if F. major or its sphingolipids play a role in antibody production at mucosal and systemic 
lymphoid tissues, we performed a number of in vitro experiments with live F. major or F. major sphingolip-
ids using trout tissue explants and measure antibodies by western blot. Live F. major cells induced increases in 
IgM production in gills and HK but they were not significant (Fig. 5a and Supplementary Fig. S5). A significant 
increase in IgT production was detected in gill explants but not HK explants exposed to live F. major (Fig. 5b and 
Supplementary Fig. S5). Moreover, F. major sphingolipids did not significantly stimulate IgM production in gills 
or HK in vitro (Fig. 5c and Supplementary Fig. S5). However, F. major sphingolipids significantly induced IgT 
production in gill explants but not HK explants (Fig. 5d and Supplementary Fig. S5). These results showed that 
the symbiont F. major as well as F. major sphingolipids modulate IgT responses at the protein level in rainbow 
trout gill.

F. major sphingolipids regulate the distribution of IgT+ B cells in trout lymphoid tissues. We 
hypothesized that if symbiont-derived sphingolipids play a role in maintaining high IgT+ B cells numbers at 
mucosal sites, then systemic delivery of these sphingolipids would result in a change of IgT/IgM ratios in systemic 
lymphoid tissues. Consistent with our hypothesis, we found that in BSA treated control HKLs, ~ 86% of all B cells 
were IgM+ and ~ 14% were IgT+. Following i.v injection of F. major sphingolipids the proportions of IgM+ B cells 
and IgT+ B cells in the HKLs were significantly changed with IgM+ and IgT+ B cells contributing to ~ 78% and  

Figure 4. F. major regulates the expression of lipid metabolism genes in rainbow trout gill. Expression of (a) 
S1P1 (b) CDase and (c) cPLA in trout gill explants following incubation with 102 cfu/ml or 104 cfu/ml F. major 
for 6, 24 or 48 h. Results are expressed as the mean fold-change ±  SEM compared to unstimulated control as 
measured by RT-qPCR (N =  5). *Denotes statistically significant changes compared to the unstimulated control 
(p <  0.05).
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~ 22% of all B cells, respectively (Fig. 6a,b). Additionally, the proportion of all B cells within the lymphocyte gate 
in the HK significantly raised from ~ 30% in controls to ~ 45% in the sphingolipid treated group (Fig. 6c). As 
expected in the control group, gill B cells consisted of ~ 50% of IgM+ and ~ 50% IgT+ B cells. In response to the 
sphingolipid i.v injection, these proportions did not change significantly neither did the total number of B cells 
present in the gills (Fig. 6d–f). These results demonstrated that F. major sphingolipids, when delivered systemi-
cally, are able to increase the proportion of B cells within the HK and, specifically, to increase the proportion of 
IgT+ to IgM+ B cells in this organ.

Discussion
Vertebrate mucosal surfaces have co-evolved with symbiotic microorganisms for over 500 million years. In 
order to co-exist with these complex microbial communities, mucosal surfaces secrete mucosal Igs that pre-
vent microbial colonization. Symbiotic bacteria, in turn, stimulate mucosal Ig secretion33,34. Apart from Ig secre-
tion, this intimate relationship brings vast benefits to the host including adequate development, physiology and 
immunity3,4,35,36.

Similar to mammalian IgA, teleost IgT is produced at mucosal sites in response to parasitic or bacterial 
infection, whereas systemic adaptive immune responses are characterized by specific IgM production11,13–15. 
Importantly, IgT, like IgA, keeps commensal bacteria at check through the process of immune exclusion11,13–15.

Among the vast diversity of microorganisms living at vertebrate mucosal epithelia, certain species appeared 
to have been selected through evolution due to the specific benefits that they provide to the host. We selected the 
symbiont F. major based on previous studies performed in our laboratory that revealed the high abundance of 
this species in the skin and gill microbiota of hatchery rainbow trout12. In that study, we found F. major as part of 
the microbiome of adult outbred rainbow trout and therefore different genetic background. However, whether 
the skin and gill microbiomes of rainbow trout from other environments is also dominated by this species is 
currently unknown. Here we report for the first time the presence of symbiont-specific IgT responses in mucosal 
secretions as well as symbiont-specific IgM responses in plasma of rainbow trout. The observed IgT and IgM anti-
body titres were low in all samples, suggesting that these antibodies may be natural antibodies or antibodies that 
are cross-reactive against a number of symbiotic species. Critically, we found F. major-specific titers in skin and 
gill mucus but not in gut mucus, indicating that Ig responses to symbionts in teleost fish, similar to mammals37, 
are tissue specific.

Additionally, we identified differences between the skin and gill IgT F. major-specific antibodies. Whereas in 
the skin all F. major-specific IgT was bound to bacteria, in the gills, titers were still detected after bacterial cells 
had been removed. This result suggests different tissue dynamics in these two sites and can be explained by a 
number of scenarios. It is possible that in the skin, symbiont-specific IgT production is tightly regulated by the 
local bacterial communities present, with no excess IgT being produced to reach the unbound, free state. An alter-
native explanation is that in the gills, removal of symbionts still leaves unbound IgT in the gill mucus and these 
unbound antibodies have a greater cross-reactivity with F. major than the free IgT found in the skin.

Figure 5. F. major and F. major-derived sphingolipids stimulate Ig production in trout gills in vitro. 
Rainbow trout gill and HK tissue explants (N =  5) were incubated with DMEM alone (control), live F. major 
cells, F. major sphingolipids conjugated with BSA or BSA alone. Explant supernatants were collected and total 
IgM (a,c) and total IgT (b,d) levels were measured by Western Blot. Results are expressed as the mean relative 
IgM or IgT protein levels ±  SEM compared to their respective controls. Results are representative of two 
independent experiments. *Indicates p <  0.05, **Indicates p <  0.01.
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Symbiotic bacteria regulate the host physiology via the production of different metabolites38. Whereas sphin-
golipids are produced by most eukaryotic cells, prokaryotes rarely synthesize sphingolipids. However, a few 
examples of sphingolipid producing bacteria have been reported29,30,32, including the mammalian gut symbiont 
Bacteroides fragilis27,30,39. Symbiont-derived sphingolipids may have unique molecular structures that may confer 
them unique functional properties. For instance, sphingolipids from B. fragilis have anti-inflammatory properties 
and regulate iNK T cells responses in the gut of mammals30. Moreover, sphingolipid production is critical for the 
growth of B. fragilis27. Since F. major is a predominant commensal species of rainbow trout and previous reports 
had identified this species as a major producer of unique sphingolipids, we hypothesized that F. major sphingo-
lipids play a major role in antibody and B cells responses at mucosal sites.

It is worth mentioning that our study was not performed with purified sphingolipids. The methodology used 
to extract F. major lipids has been shown to extract lipids other than sphingolipids32. These amount to approxi-
mately 11% of total polar lipids. Additionally, the preparation should also contain ~ 10% non-polar lipids but these 
should have been removed during the clean-up step. The two other polar lipids present in our preparations apart 
from sphingolipids are phosphatidylethanolamine and a monoglycosyldiacylglycerol32. We speculate that these 
two polar lipids are unlikely to stimulate the teleost immune system since phosphatidylethanolamine is common 
to teleost fish and monoglycosyldiacylglycerol is common to many bacteria, although further research is needed 
in this area. We found that F. major sphingolipids were able to modulate the growth of other aerobic symbionts 
isolated from trout skin and gills. The responses were not always dose-dependent, since intermediate concen-
trations (1 and 10 μ M) of the sphingolipids did not stimulate bacterial growth but low and high concentrations 
did. Thus, these results may suggest that different bacterial species have different capabilities to metabolize lipids; 
some bacteria may sense the concentration gradients of these sphingolipids as growth factors whereas others may 
suffer from their antimicrobial effects and therefore the combined effects on the overall growth of the micro-
biota may be masked under specific sphingolipid concentrations. Additionally, the total trout aerobic bacteria 
community measured in this study is biased by the culture conditions and does not capture the entire breadth of 
modulatory growth effects that this product may have in non-culturable bacterial species. This capability from 
a bacterial symbiont to modulate the microbiota through sphingolipid pathway is an interesting finding that 
deserves further investigation.

Figure 6. Systemic delivery of F. major-derived sphingolipids changes the proportions of B cell subsets and 
increase the total number of B cells in HK but not gills. Rainbow trout (N =  6) were injected i.v with F. major 
sphingolipids combined with BSA or BSA alone. Fish were sampled 60 h later and leukocytes isolated from the 
HK and gills. Percentages of IgM+ and IgT+ B cells were measured by flow cytometry. (a) Mean percentage of 
IgM+ cells in HK. (b) Mean percentage of IgT+ cells in HK. (c) Total percentage of B cells in the lymphocyte gate 
in HK. (d) Mean percentage of IgM+ cells in gills. (e) Mean percentage of IgT+ cells in gills. (f) Total percentage 
of B cells in the lymphocyte gate in gills. Results are expressed as the mean % of B cells ±  SEM. Results are 
representative of four independent experiments. **Denote statistically significant differences compared to the 
control group (p <  0.01).
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F. major was able to stimulate IgT gene expression in trout gills but not HK in vitro whilst IgM stimulation was 
modest. In support, F. major and F. major sphingolipids induced secretion of IgT but not IgM antibodies in gills 
but not HK in vitro, suggesting that they can induce differentiation of B cells into antibody secreting cells. These 
results also indicate the existence of unique differentiation programs of B cells into antibody secreting cells in 
gills compared to HK. Finally, IgT but not IgM secretion was stimulated highlighting the intimate co-evolution 
between symbionts and mucosal antibodies of vertebrates.

Because we found that F. major cells increase the expression of antibody transcripts in vitro, we hypothesized 
that sphingolipids produced by this symbiont play a role in the distribution of trout B cell populations. A number 
of studies have demonstrated that at mucosal sites of trout such as the gut, skin, gill and nose, the ratio of IgT to 
IgM B cells is 1:111,13–15. This is in sharp contrast to the preponderance of IgM B cells in systemic lymphoid tissues 
such as the HK, the spleen and the blood14,16. However, the mechanisms contributing to this unique distribution 
of B cells at trout mucosal lymphoid tissues is unknown. In mammals, host-derived sphingolipids are known to 
control lymphocyte trafficking in and out of lymphoid tissues20,21,23,40–45. Moreover, host-derived sphingolipids 
were shown to determine IgA B cell trafficking in mice23,24. Since under natural conditions, trout skin and gill 
B cells may be exposed to F. major sphingolipids, we hypothesized that these sphingolipids may be responsible 
for the maintenance of IgT+ B cells at these two mucosal sites. In order to test this, we delivered sphingolipids 
systemically, expecting to shift the proportions of B cells in the HK towards a more “mucosal-like” distribution. 
We found that symbiont-derived sphingolipids increase the proportion of B cells in the HK. The latter may be 
achieved by local production of B cells or recruitment. Importantly, F. major sphingolipids shifted the propor-
tion of IgT+ to IgM+ B cells, which again shows that this symbiont product preferentially recruits or stimulates 
production of IgT+ B cells over IgM+ cells. These data are not in line with our gene expression results in vitro 
performed with the whole F. major bacterium, where no significant increase in IgT expression was recorded in 
HK. Although both experiments are not directly comparable, this disparity may imply that effects of sphingolipids 
on HK B cell populations require the intact HK microenvironment for B cells to proliferate or the influx of B cells 
from other lymphoid organs into the HK. Both requirements are met in the in vivo injection experiments but not 
in the in vitro ones.

Our in vivo results using F. major sphingolipids suggested that trout B cells may have receptors that bind these 
sphingolipids. In mammals, S1P1 receptor binding to its ligand S1P leads to the internalization of this complex46. 
The reduced S1P1 expression on the surface of lymphocytes results, in turn, in the sequestration of lymphocytes 
within lymphoid tissues therefore preventing them from entering in circulation20,21,23,40–45. Additionally, S1P has 
been shown to control intestinal IgA production24,25. In teleosts, S1P1 controls venous vascular integrity and 
development47 but its functional role in immune cells is so far unknown. We found that F. major is able to reduce 
the expression of S1P1 in the gill of rainbow trout. This could potentially lead to the sequestration of IgT B cells 
produced in the HK and circulating through the gills. Future studies should address the particular S1P1 expres-
sion patterns in IgT+ and IgM+ B cells and whether mucosal versus systemic B cells display different levels of 
expression of this receptor.

In conclusion, the present study demonstrates the intimate relationship between the symbiont F. major and 
the immune system of rainbow trout. Our results support the idea of an ancient co-existence between symbiotic 
bacteria and mucosal Igs and B cells. Moreover, sensing of symbiont-derived sphingolipids by trout B cells may be 
a novel mechanism of symbiont regulation of the host immune system. Fish symbiont sphingolipids could have 
beneficial applications for the aquaculture industry due to their IgT modulatory properties.

Materials and Methods
Animals, serum and mucus sample collection. Healthy adult triploid rainbow trout (O. mykiss) with a 
mean body weight of 250 ±  20 g were obtained from Lisboa Springs Fish Hatchery (Pecos, New Mexico, USA). 
Fish were anesthetized with MS-222 and bled from the caudal vein with a heparinized 3 mL syringe. Plasma sam-
ples were collected and stored at − 80 °C until use. Total gill, gut and skin mucus were collected with a sterile cell 
scraper as explained elsewhere13,14. Half of the sample was used directly for antibody titer measurement (contain-
ing all Igs, bound to bacteria and not bound to bacteria) whereas the other half was subject to a series of centrifu-
gation steps as explained elsewhere13. At the end of this procedure, the supernatants were filtered through a 0.2 μ m  
filter in order to detect antibodies unbound to bacteria. The pellets were used for the growth assays described 
below. All animal studies were reviewed and approved by the Institutional Animal Care and Use Committee 
(IACUC) at the University of New Mexico, protocol number 16-200384-MC. All methods were performed in 
accordance with the relevant guidelines and regulations.

Bacteria culture. F. major was grown in the specific culture medium ATCC®  29496TM at 25 °C for 30 h in 
956 Microcyclus medium as per manufacturer’s instructions, and adjusted to the desirable concentration in each 
case.

Sphingolipid extraction and purification. Five hundred ml of an F. major culture grown for 30 hours 
were centrifuged at 4000 g for 15 min. Supernatants were discarded and pellets were washed once in PBS. Pellets 
were left to dry in a sterile tissue culture hood for 4 h and then frozen at − 20 °C until lipid extraction. Lipids were 
extracted as explained elsewhere31 and then cleaned-up using a G25 Sephadex column as explained elsewhere48. 
In order to avoid toxicity to cells when used in vitro, purified sphingolipids and ceramide (a simple glycosphin-
golipid that serves as the substrate for the sphingolipid synthesis pathway), were combined with a 2 mM bovine 
serum albumin solution in Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies).
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In vitro exposure of rainbow trout gill and HK to F. major and F. major sphingolipids. After 
serum and mucus collection, gill tissue was excised with sterile scissors and placed in a Petri dish. Gills were 
rinsed until all the blood was removed by injecting sterile cold PBS into the gill arch with a 1 ml syringe. 
Blood-free gill samples were excised into 0.5 cm wide pieces and placed in flat bottom 24-well plates. Trout HK 
and HKLs were obtained as explained elsewhere11 and seeded onto flat-bottom 24-well plates at 106 cells/well. 
Both gills and HK explants (N =  5) were cultured in 1 ml DMEM supplemented with 10% fetal bovine serum 
(Sigma-Aldrich) and 1% Penicillin-Streptomycin (Gibco). For gene expression studies, gill explants and single cell 
HKLs suspensions were incubated for 6, 24, and 48 h with 102 or 104 F. major cfu/ml. Wells without bacteria were 
used as negative control. At each time point, samples were collected and placed in 1 ml TRIzol (Life Technologies) 
for RNA extraction according to the manufacturer’s instructions. Synthesis of cDNA was performed using 2 μ g  
of total RNA, which was first denatured (65 °C, 5 min) in the presence of 1 μ l of oligo-dT (Life Technologies), 
1 μ l dNTPs (10 mM each, Promega). Next, samples containing 1 μ l Superscript III enzyme reverse transcriptase 
(Life Technologies) with 5 μ l of 5x first strand buffer (Life Technologies), 1 μ l of DTT 0.1 M (Life Technologies) 
and RNA/DNA free molecular water (Sigma-Aldrich) in a final volume of 25 μ l were incubated at 55 °C for 1 h 
followed by 15 min at 70 °C for later qPCR analysis.

For IgT and IgM detection in supernatants, gill explants and HKLs (N =  5) were cultured for 5 days in 1 ml 
Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies) supplemented with 10% fetal bovine serum 
(Sigma-Aldrich), 1% Penicillin-Streptomycin (Gibco) and 0.5 μ g/ml fungizone (Gibco). Explants were incubated 
for 5 days with only medium (DMEM control), live F. major (104 cfu/ml), 30 μ M F. major sphingolipids conjugated 
with 2 mM BSA in DMEM; 30 μ M C2-ceramide (Enzo Life Sciences) conjugated with 2 mM BSA in DMEM or 
2 mM BSA alone in DMEM (BSA control). Supernatants were stored at − 20 °C until use.

Effects of F. major sphingolipids and ceramide on the growth of total gill and skin aerobic bac-
teria. Total microbiota from skin and gut mucus (N =  3) were collected as explained elsewhere12, washed twice 
in PBS and adjusted to an optical density of 0.01 in tryptic soy broth (TSB, Sigma-Aldrich). Samples were incu-
bated with 0.1, 1, 10 and 100 μ M of sphingolipids from F. major or commercial ceramide for 30 h and the optical 
density at 600 nm was measured in a plate reader (Synergy H1). Wells containing TSB only and TSB with lipids or 
ceramide without bacteria were used as negative controls.

ELISA. F. major-specific IgM and IgT titres were measured in serum, gill, gut and skin mucus from healthy 
control hatchery trout (N =  10–12) using an enzyme-linked immunosorbent assay (ELISA). Mucus samples were 
used in whole or as bacteria-free mucus after all symbionts were removed as explained elsewhere14. Flat-bottomed 
96-well plates were coated overnight at 4 °C with 100 μ l of a F. major culture adjusted at 107 cfu/ml in PBS. The 
plates were rinsed once with PBS before blocking for 2 h at room temperature with blocking solution containing 
8% non-fat dry milk (LabScientific) in PBS containing 0.05% Tween 20 (PBS-T). After rinsing with PBS-T con-
taining 10 mM EDTA (pH 7.2), the plates were then incubated for 90 min with 100 μ l of diluted serum or mucus 
samples in PBS with 10 mM EDTA. After washing three times, 100 μ l of either mouse anti-trout IgM antibody or 
rabbit anti-trout IgT were added to each well (1/500 in PBS-T) or their respective isotype controls (mouse IgG1 
or rabbit prebleed). After washing, wells were incubated for 45 min with the corresponding secondary antibodies 
(HRP-conjugated donkey anti-mouse IgG or HRP-conjugated donkey anti-rabbit IgG, both at 1/1000 in PBS-T, 
Jackson Immunoresearch). After four washes in PBS, the plates were developed using 100 μ l of a 0.42 mM solu-
tion of 3,3′ ,5,5′ -tetramethylbenzidine hydrochloride (TMB, Sigma-Aldrich) prepared in water containing 0.01% 
H2O2. The reaction was stopped after 2–15 min by adding 50 μ l of 2 M H2SO4. The plates were read at 450 nm 
in a plate reader (Synergy H1). Samples without bacteria and without serum/mucus were also used as negative 
controls. Positive titers were determined by subtracting the absorbance detected in the isotype controls from the 
absorbance in the sample wells.

Western blotting. Western blotting was performed as explained elsewhere11. Briefly, 10 μ l of each explant 
supernatant were mixed with 10 μ l of Laemmli buffer (Bio-Rad) under non-reducing conditions. Samples were 
boiled for 3 min at 97 °C and resolved on 4–15% SDS-PAGE gels (Bio-Rad). Gels were run for 50 min at 120 V 
and transferred onto PVDF membranes (Amersham). Membranes were blocked in PBS-T containing 5% non-fat 
milk overnight at 4 °C. Membranes were incubated with rabbit anti-trout IgT (1:1000) for 90 min, washed three 
times in PBS-T and then incubated for 60 min with HRP-conjugated donkey anti-rabbit IgG (1:2500). Detection 
was performed using ECL Western Blotting Substrate (Pierce). Membranes were stripped for 20 min in strip-
ping buffer (0.1 M Glycine, 0.02% NaN3, pH =  2.5) and reprobed with mouse anti-trout IgM for 90 min followed 
by HRP-conjugated donkey anti-mouse IgG (1:2500) for 60 min. After washing, membranes were developed as 
explained before. Immunoblots were scanned using a ChemiDoc XRS+  System (Bio-Rad) and band densitome-
try was analysed with Image Lab Software (Bio-Rad).

RT-qPCR. cDNA synthesis was carried out using 1 μ l Superscript III enzyme reverse transcriptase (Invitrogen) 
in the presence of 5 μ l of 5x first strand buffer, 1 μ l 0.1 M DTT, made up to a final volume of 25 μ l with water, and 
incubated at 55 °C for 1 h. The resultant cDNA was stored at − 20 °C. The expression of IgM, IgT, cytosolic phos-
pholipase A2 (cPLA), ceramidase (CDase) and S1P1 was measured by RT-qPCR using specific primers (Table 2). 
IgM and IgT primers were designed to amplify the CH regions of the antibody molecules and therefore amplifica-
tion of both functionally and non-functionally rearranged Igs was performed. The qPCR was performed using 3 μ l  
of a diluted cDNA template as described elsewhere49. The relative expression level of the genes was determined 
using the Pfaffl method50.

Sequence analysis of salmonid S1P1. Salmonid S1P1 sequences were identified by data mining in NCBI 
as well as the rainbow trout and Atlantic salmon genomes. Available mammalian S1P1 sequences were blasted to 
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identify teleost S1P1 molecules. We identified zebrafish (Danio rerio) S1P1, nile tilapia (Oreochromis niloticus) 
S1P1 and Atlantic salmon (Salmo salar) S1P1. The salmon sequence was used in further searches conducted in 
(http://salmobase.org/) that identified a second molecule in this species names (CIGSSA_084099.t1) that was 
named salmon S1P1-like. The zebrafish S1P1 sequence was used in the rainbow trout genome browser Genoscope 
(http://www.genoscope.cns.fr/blat-server/cgi-bin/trout) using default parameters in order to find rainbow trout 
S1P1 sequences. In that way, we identified 4 scaffolds (6065, 406, 1988 and 2747) in the trout genome. Blast 
searches of each scaffold revealed that only scaffold 6065 corresponded with S1P1 whereas the other scaffolds 
contained S1P2 and S1P3 molecules. BlastX of scaffold 6065 identified two rainbow trout unnamed protein prod-
ucts, one with 100% identity with the 6065 scaffold (CDQ90261.1) and one with 97% identity (CDQ69631.1) 
with the 6065 scaffold. CDQ90261.1 was identical to the translated protein sequence obtained from scaffold 
6065. Sequence alignments were performed in CLUSTALW and a phylogenetic Neighbor-Joining tree (10,000 
bootstrap) was constructed in MEGA6. Amino acid sequence identity and similarity were determined using 
MatGAT. Synteny analysis was performed in Genomicus version 01.01 (http://www.genomicus.biologie.ens.fr/
genomicus-trout-01.01/cgi-bin/search.pl).

In vivo administration of F. major sphingolipids. Rainbow trout (N =  6) received 50 μ l of DMEM con-
taining 1.4 μ g of F. major sphingolipids combined with 2 nM BSA by intravenous (i.v) injection. The negative 
control group received the same volume of DMEM containing BSA only. Trout were sampled 60 h post-injection. 
The gill and HK of each fish were collected and leukocytes isolated as explained elsewhere15.

Flow cytometry. One hundred thousand gill leukocytes or HKLs from each fish were stained with mouse 
anti-trout IgT and mouse anti-trout IgM as described elsewhere14. For secondary antibodies, a FITC-conjugated 
rat anti-mouse IgG2b and a Dylight 649-conjugated anti mouse IgG1 (both from Biolegend) were used. A total 
of 20,000 events from the lymphocyte gates were collected in an Attune Flow Cytometer (Life Technologies) and 
analyzed in the Attune analysis software. The total number of B cells was calculated by adding the percentage of 
IgM+ and IgT+ cells from the lymphocyte gate in each sample.

Statistical analysis. Results are expressed as the mean ±  standard error (SE). Data analysis was performed 
in GraphPad Prism version 5.0. Results were analyzed by unpaired t-test, paired t-test (for IgT and IgM quanti-
fication by western blot) or ANOVA followed by post-hoc Tukey test according to each dataset to identify statis-
tically significant differences among groups. Statistically significant differences were considered when p <  0.05, 
which were denoted with asterisks or different letters according to each dataset.
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Supplementary Fig. S1: Amino acid sequence alignment of vertebrate S1P1 performed in CLUSTALW. Accession numbers used 
were: Hs S1P1 (AAH18650.1 Sphingosine-1-phosphate receptor 1 [Homo sapiens]); Hs S1P2 (AAH69598.1 Sphingosine-1-phosphate 
receptor 2 [Homo sapiens]); Mm S1P1 (AAH51023.1 Sphingosine-1-phosphate receptor 1 [Mus musculus]); Rn S1P1 (NP_058997.1 
Sphingosine 1-phosphate receptor 1 [Rattus norvegicus]); Gg S1P1 (XP_422305.3 PREDICTED: sphingosine 1-phosphate receptor 1 
[Gallus gallus]); Xt S1P1 (NP_001072893.1 sphingosine 1-phosphate receptor 1 [Xenopus tropicalis]); On S1P1 (XP_005475711.1 
PREDICTED: sphingosine 1-phosphate receptor 1 [Oreochromis niloticus]); Dr S1P1 (AAG45430.1 sphingosine 1-phosphate 
receptor [Danio rerio]); Ss S1P1 (XP_014071480.1 PREDICTED: sphingosine 1-phosphate receptor 1 [Salmo salar]); Ss S1P1-like 
(CIGSSA_084099.t1); Om S1P1 (CDQ90261.1 and Scaffold 6065) and Om S1P1 (CDQ69631.1). 
 
 
 
Om_S1P1_CDQ69631.1                  ----------------MGDSMYSDLIARHYNFTGKLRKVEQDS-RLKADS 
CIGSSA_084099.t1                    ----------------MGDSMYSDLIARHYNFTGKLRKVEQDS-RLKADS 
Om_S1P1_CDQ90261.1_Scaffold_60      ----------------MGDSMYSDLIARHYNFTGKLRKVEQDS-RLKADS 
Ssalar_S1P1                         ----------------MGDSMYSDLIARHYNFTGKLRKVEQDS-RLKADS 
Drerio_S1P1                         ---------------------MDDLIARHYNFTGKFRKVHKDP-GLKADS 
Oniloticus_S1P1                     -------------MEAMAEPSYSDLIAKHYNYTGKFRKTEQDS-GLKADS 
Mmusculus_S1P1                      -MVSTSIPEVKALRSSVSDYGNYDIIVRHYNYTGKLNIGAEKDHGIKLTS 
Rnorvegicus_S1P1                    MVSSTSIPVVKALRSQVSDYGNYDIIVRHYNYTGKLNIGVEKDHGIKLTS 
Hsapiens_S1P1                       -MGPTSVPLVKAHRSSVSDYVNYDIIVRHYNYTGKLNISADKENSIKLTS 
Ggallus_S1P1                        --MSSGTTAPVRVVSSLTNTDVNYVIKEHYNYTGKLNENADSG--IKVTS 
Xtropicalis_S1P1                    -------MTPTSATQRRNEYYDHEIIIEHYNYTGKYKG--NLSTDIKPTS 
                                                            :* .***:*** .   .    :*  * 
 
Om_S1P1_CDQ69631.1                  VVFIIVCCFIILENVLVLLTIWRTKKFHKPMYYFIGNLALSDLLAGVVYT 
CIGSSA_084099.t1                    VVFIIVCCFIILENVLVLLTIWRTKKFHKPMYYFIGNLALSDLLAGVVYT 
Om_S1P1_CDQ90261.1_Scaffold_60      VVFIIVCCFIILENVLVLLTIWRTKKFHKPMYYFIGNLALSDLLAGVVYT 
Ssalar_S1P1                         VVFIIVCCFIILENVLVLLTIWRTKKFHKPMYYFIGNLALSDLLAGVVYT 
Drerio_S1P1                         VVFIIVCCFIILENVLVLLTIWRTKKFHKPMYYFIGNLALSDLLAGVVYT 
Oniloticus_S1P1                     VIFIIVCCFIILENILVLTTIWRTKKFHKPMYYFIGNLALSDLLAGVVYT 
Mmusculus_S1P1                      VVFILICCFIILENIFVLLTIWKTKKFHRPMYYFIGNLALSDLLAGVAYT 
Rnorvegicus_S1P1                    VVFILICCLIILENIFVLLTIWKTKKFHRPMYYFIGNLALSDLLAGVAYT 
Hsapiens_S1P1                       VVFILICCFIILENIFVLLTIWKTKKFHRPMYYFIGNLALSDLLAGVAYT 
Ggallus_S1P1                        VVFIIICCFIILENIFVLLTIWKTKKFHRPMYYFIGNLALSDLLAGVAYT 
Xtropicalis_S1P1                    IIFIIICCFIVLENILVLLTIWRTKKFHRPMYYFIGNLALSDLLAGTAYT 
                                    ::**::**:*:***::** ***:*****:*****************..** 
 
Om_S1P1_CDQ69631.1                  ANILLSGANTYKLTPTQWFFREGSMFVALAASVFSLLAIAIERHLTMLKM 
CIGSSA_084099.t1                    ANILLSGANTYKLTPTQWFFREGSMFVALAASVFSLLAIAIERHLTMLKM 
Om_S1P1_CDQ90261.1_Scaffold_60      ANILLSGANTYKLTPTQWFFREGSMFVALAASVFSLLAIAIERHLTMLKM 
Ssalar_S1P1                         ANILLSGANTYKLTPTQWFFREGSMFVALAASVFSLLAIAIERHLTMLKM 
Drerio_S1P1                         ANILLSGANTYKLTPTQWFFREGSMFVALAASVFSLLAIAIERHLTMLKM 
Oniloticus_S1P1                     ANILLSGANTYKLTPTQWFFREGSMFVALAASVFSLLAIAIERHLTMLKM 
Mmusculus_S1P1                      ANLLLSGATTYKLTPAQWFLREGSMFVALSASVFSLLAIAIERYITMLKM 
Rnorvegicus_S1P1                    ANLLLSGATTYKLTPAQWFLREGSMFVALSASVFSLLAIAIERYITMLKM 
Hsapiens_S1P1                       ANLLLSGATTYKLTPAQWFLREGSMFVALSASVFSLLAIAIERYITMLKM 



Ggallus_S1P1                        ANLLLSGHKTYSLTPSQWFVREGSMFVALSASVFSLLAIAIERYITMLKM 
Xtropicalis_S1P1                    ANILLSGPHTYKLTPVEWLIREGSMFVALSASVFSLVAIAIERYITMLKM 
                                    **:****  **.*** :*:.*********:******:******::***** 
 
Om_S1P1_CDQ69631.1                  KLHNNGNTCRVFMLISTVWLIAAILGGLPIMGWNCIQSMPSCSTVLPLYH 
CIGSSA_084099.t1                    KLHNNGNTCRVFMLISTVWLIAAILGGLPIMGWNCIQSMPSCSTVLPLYH 
Om_S1P1_CDQ90261.1_Scaffold_60      KLHNNGNTCRVFMLISTVWLIAAILGGLPIMGWNCIQSMPSCSTVLPLYH 
Ssalar_S1P1                         KLHNNGNTCRVFMLISTVWLIAAILGGLPIMGWNCIQSMPSCSTVLPLYH 
Drerio_S1P1                         KLHNNGKTCRVFMLISTVWFIAAILGGLPVMGWNCIDSINNCSTVLPLYH 
Oniloticus_S1P1                     KLHNNGNTFRVFLLISTVWMIAAVLGGLPVMGWNCIQSMTQCSTVLPLYH 
Mmusculus_S1P1                      KLHNGSNSSRSFLLISACWVISLILGGLPIMGWNCISSLSSCSTVLPLYH 
Rnorvegicus_S1P1                    KLHNGSNSSRSFLLISACWVISLILGGLPIMGWNCISSLSSCSTVLPLYH 
Hsapiens_S1P1                       KLHNGSNNFRLFLLISACWVISLILGGLPIMGWNCISALSSCSTVLPLYH 
Ggallus_S1P1                        KLHNGSNSFRSFLLISACWVISVILGGLPIMGWNCISLLSNCSTVLPLYH 
Xtropicalis_S1P1                    KLHNGSKSSRSFLLISGCWILSLFLGGLPIMGWNCIKQISACSTVLPLYH 
                                    ****..:. * *:***  *.:: .*****:******. :  ********* 
 
Om_S1P1_CDQ69631.1                  KTYILFCTTVFSVILMAIVVLYARIYALVRTRSRKMVFRKVSNGRGGGSA 
CIGSSA_084099.t1                    KTYILFCTTVFSVILMAIVVLYARIYALVRTRSRKMVFRKVSNGRGGGSA 
Om_S1P1_CDQ90261.1_Scaffold_60      KTYILFCTTVFSVILMAIVVLYARIYALVRTRSRKLVFRKVSNGRGGGSA 
Ssalar_S1P1                         KTYILFCTTVFSVILMAIVVLYARIYALVRTRSRKLVFRKVSNGRGGGSA 
Drerio_S1P1                         KAYILFCTTVFSVILMAIVILYARIYALVRTRSRKLVFRKVANGRG---- 
Oniloticus_S1P1                     KAYILFCTTVFSIILMAIVVLYARIYALVRTRSRKLVFRKVSNGRSNASA 
Mmusculus_S1P1                      KHYILFCTTVFTLLLLSIVILYCRIYSLVRTRSRRLTFRKN------ISK 
Rnorvegicus_S1P1                    KHYILFCTTVFTLLLLSIVILYCRIYSLVRTRSRRLTFRKN------ISK 
Hsapiens_S1P1                       KHYILFCTTVFTLLLLSIVILYCRIYSLVRTRSRRLTFRKN------ISK 
Ggallus_S1P1                        KHYILFCTTVFTGLLLSIVVLYCRIYSMVRTRSRRLTFRKN------ITK 
Xtropicalis_S1P1                    KHYILFCTTIFCALLMAIVILYARIYFLVRTRSRSLTFKRN------LAR 
                                    * *******:*  :*::**:**.*** :****** :.*::           
 
Om_S1P1_CDQ69631.1                  SSKSSEKSMALLKTVIIVLSCFIACWAPLFILLLLDVACNIRMCPILYKA 
CIGSSA_084099.t1                    SSKSSEKSMALLKTVIIVLSCFIACWAPLFILLLLDVACDIRMCPILYKA 
Om_S1P1_CDQ90261.1_Scaffold_60      SSKSSEKSMALLKTVIIVLSCFIACWAPLFILLLLDVACDIRMCAILYKA 
Ssalar_S1P1                         SSKSSEKSMALLKTVIIVLSCFIACWAPLFILLLLDVACDIRMCAILYKA 
Drerio_S1P1                         SNKSSEKSMALLKTVIIVLSCFIACWAPLFILLLLDVACQTLTCSILYKA 
Oniloticus_S1P1                     NSKSSEKSMALLKTVIIVLSCFIACWAPLFILLLLDVACETLSCPILYKA 
Mmusculus_S1P1                      ASRSSEKSLALLKTVIIVLSVFIACWAPLFILLLLDVGCKAKTCDILYKA 
Rnorvegicus_S1P1                    ASRSSEKSLALLKTVIIVLSVFIACWAPLFILLLLDVGCKAKTCDILYKA 
Hsapiens_S1P1                       ASRSSEKSLALLKTVIIVLSVFIACWAPLFILLLLDVGCKVKTCDILFRA 
Ggallus_S1P1                        ATRSSEKSLALLKTVIIVLSAFIACWAPLFILLLLDVGCRVKTCPILYKA 
Xtropicalis_S1P1                    PSRSSEKSMALLKTVIIVLSVFILCWSPLFIFLLLDFGCKVKTCPVLFKA 
                                     .:*****:*********** ** **:****:****..*    * :*::* 
 
Om_S1P1_CDQ69631.1                  EWFLALAVLNSAMNPLIYTLTSNEMRRAFLKTLLCCSVCTQSS-GKFSKP 
CIGSSA_084099.t1                    EWFLALAVLNSAMNPLIYTLTSNEMRRAFLKTLLCCSICTRPS-GKFSQP 
Om_S1P1_CDQ90261.1_Scaffold_60      EWFLALAVLNSAMNPLIYTLTSNEMRRAFLKTLMCCSVCTRPS-GKFSRP 
Ssalar_S1P1                         EWFLALAVLNSAMNPLIYTLTSNEMRRAFLKTLMCCCVCTRPS-GKFSRP 
Drerio_S1P1                         EWFLALAVLNSAMNPLIYTLTSNEMRRAFIKMLNCG-VCVQPS-GKFSRP 
Oniloticus_S1P1                     EWFLALAVLNSAMNPLIYTLTSNEMRRAFLKTLLCCTAFIRPR-TKLTGP 
Mmusculus_S1P1                      EYFLVLAVLNSGTNPIIYTLTNKEMRRAFIRIVSCCKCPNGDSAGKFKRP 
Rnorvegicus_S1P1                    EYFLVLAVLNSGTNPIIYTLTNKEMRRAFIRIISCCKCPNGDSAGKFKRP 



Hsapiens_S1P1                       EYFLVLAVLNSGTNPIIYTLTNKEMRRAFIRIMSCCKCPSGDSAGKFKRP 
Ggallus_S1P1                        EYFLVLAVLNSATNPIIYTLTNKEMRRAFIKILCCCKCPPTDSGTKFKRP 
Xtropicalis_S1P1                    EYFLSLAVLNSATNPIIYTLTNREMRRAFLKMACCSHCSIFGSSSKVKRP 
                                    *:** ******. **:*****..******::   *          *.. * 
 
Om_S1P1_CDQ69631.1                  IIG-AEFSRSKSDNSSHPNKDEPEYLPRETIVSSGIITSSS- 
CIGSSA_084099.t1                    IIG-AEFSRSKSDNSSHPNKDEPEYLPREAIVSSGNITSSS- 
Om_S1P1_CDQ90261.1_Scaffold_60      IMG-AEFSRSKSDNSSHPNKDEPEYSPRETVVSSGNITSSS- 
Ssalar_S1P1                         IMG-AEFSRSKSDNSSHPNKDEPEYSPRETVVSSGNITSSS- 
Drerio_S1P1                         IMG-AEFSRSKSDNSSHPNKDEPEYSPRETIVSSGNITSSS- 
Oniloticus_S1P1                     IMG-AEFSRSKSDNSSHPNKEEVEYSPRETTVVSSGNVTSSS 
Mmusculus_S1P1                      IIPGMEFSRSKSDNSSHPQKDDGDNP--ETIMSSGNVNSSS- 
Rnorvegicus_S1P1                    IIPGMEFSRSKSDNSSHPQKDDGDNP--ETIMSSGNVNSSS- 
Hsapiens_S1P1                       IIAGMEFSRSKSDNSSHPQKDEGDNP--ETIMSSGNVNSSS- 
Ggallus_S1P1                        IIGGMEFSRSKSDNSSHPQKEEGDRP--ETIMSSGNVTSSS- 
Xtropicalis_S1P1                    IITGMEFSRSKSDNSSHPQKDEGEYP--VTLMSSGNVTSSS- 
                                    *:   *************:*:: :     : : *.   :** 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Fig. S2: Percentage amino acid identity and similarity among vertebrate S1P1. Accession numbers used were: Hs 
S1P1 (AAH18650.1 Sphingosine-1-phosphate receptor 1 [Homo sapiens]); Hs S1P2 (AAH69598.1 Sphingosine-1-phosphate receptor 
2 [Homo sapiens]); Mm S1P1 (AAH51023.1 Sphingosine-1-phosphate receptor 1 [Mus musculus]); Rn S1P1 (NP_058997.1 
Sphingosine 1-phosphate receptor 1 [Rattus norvegicus]); Gg S1P1 (XP_422305.3 PREDICTED: sphingosine 1-phosphate receptor 1 
[Gallus gallus]); Xt S1P1 (NP_001072893.1 sphingosine 1-phosphate receptor 1 [Xenopus tropicalis]); On S1P1 (XP_005475711.1 
PREDICTED: sphingosine 1-phosphate receptor 1 [Oreochromis niloticus]); Dr S1P1 (AAG45430.1 sphingosine 1-phosphate 
receptor [Danio rerio]); Ss S1P1 (XP_014071480.1 PREDICTED: sphingosine 1-phosphate receptor 1 [Salmo salar]); Ss S1P1-like 
(CIGSSA_084099.t1); Om S1P1 (CDQ90261.1 and Scaffold 6065) and Om S1P1 (CDQ69631.1). 
 
 
 

 
 
 
 



 
 
Supplementary Fig. S3: Neighbour Joining Tree of vertebrate S1P1. Phylogenetic tree was constructed using MEGA6 with 10,000 
bootsrap value. Human S1P1 was used as a tree outlier. Accession numbers used were: Hs S1P1 (AAH18650.1 Sphingosine-1-
phosphate receptor 1 [Homo sapiens]); Hs S1P2 (AAH69598.1 Sphingosine-1-phosphate receptor 2 [Homo sapiens]); 
Mm S1P1 (AAH51023.1 Sphingosine-1-phosphate receptor 1 [Mus musculus]); Rn S1P1 (NP_058997.1 Sphingosine 1-phosphate 
receptor 1 [Rattus norvegicus]); Gg S1P1 (XP_422305.3 PREDICTED: sphingosine 1-phosphate receptor 1 [Gallus gallus]); Xt S1P1 
(NP_001072893.1 sphingosine 1-phosphate receptor 1 [Xenopus tropicalis]); On S1P1 (XP_005475711.1 PREDICTED: sphingosine 
1-phosphate receptor 1 [Oreochromis niloticus]); Dr S1P1 (AAG45430.1 sphingosine 1-phosphate receptor [Danio rerio]); Ss S1P1 
(XP_014071480.1 PREDICTED: sphingosine 1-phosphate receptor 1 [Salmo salar]); Ss S1P1-like (CIGSSA_084099.t1); Om S1P1 
(CDQ90261.1 and Scaffold 6065) and Om S1P1 (CDQ69631.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 



 

Supplementary Fig. S4: Conserved synteny of vertebrate S1P1 genes generated by Genomicus. Rainbow trout scaffold 6065 is not 
shown due to lack of the complete annotation of the scaffold. The central vertical line indicates the position of S1P1. From that line 
moving left, we found DPH5 homolog (S. cerevisiae) [Source:ZFIN;Acc:ZDB-GENE-041114-85], solute carrier family 30 (zinc 
transporter), member 7 [Source:ZFIN;Acc:ZDB-GENE-030131-5650], vascular cell adhesion molecule 1 [Source:ZFIN;Acc:ZDB-
GENE-070209-238], G protein-coupled receptor 88 [Source:HGNC Symbol;Acc:4539], CDC14 cell division cycle 14 homolog A, b 
[Source:ZFIN;Acc:ZDB-GENE-070705-309], RNA terminal phosphate cyclase domain 1 [Source:ZFIN;Acc:ZDB-GENE-030131-
9687], dihydrolipoamide branched chain transacylase E2 [Source:ZFIN;Acc:ZDB-GENE-050320-85], leucine rich repeat containing 
39 [Source:ZFIN;Acc:ZDB-GENE-050417-279] and coiled-coil domain containing 76 [Source:ZFIN;Acc:ZDB-GENE-050327-19]. 
 

 
 
 
 
 
 



Supplementary Fig. S5:  Immunoblots detecting IgM or IgT in supernatants obtained from rainbow trout HK and gill explants 
incubated for 5 days with control DMEM medium (C), 104 cfu/ml F. major (F), BSA (B) or F. major sphingolipids conjugated with 
BSA (S). Relative IgM and IgT levels were quantified by densitometry. Images show three different fish samples that are 
representative of two independent experiments with N=5 in each experiment. 
 

 



124 
 

 

Appendix B 

 

 

 

 

Sanchez, Mariah, Ali Sepahi, Elisa Casadei, and Irene Salinas. "Symbiont-derived sphingolipids 

regulate inflammatory responses in rainbow trout (Oncorhynchus mykiss)." Aquaculture (2018). 



Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Symbiont-derived sphingolipids regulate inflammatory responses in rainbow
trout (Oncorhynchus mykiss)
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A B S T R A C T

Farmed fish live in association with diverse bacterial communities that produce wide arrays of metabolites. In
rainbow trout, the skin and the gills are colonized by Flectobacillus major, a bacterium known to produce
sphingolipids (SLs). The goal of this study is to evaluate the ability of F. major SLs to regulate rainbow trout
inflammatory responses. F. major SLs were delivered by themselves or in combination with Freund's Complete
Adjuvant (FCA), an oil-based adjuvant known to cause severe abdominal inflammation when injected to fish.
Trout injected with SL+ FCA showed decreased severity of FCA toxic effects including necrosis, granuloma
formation and presence of oil droplets. However, inclusion of SLs in the FCA preparation did not decrease
infiltration of immune cells intramuscularly at the site of injection. Intraperitoneal or intravenous delivery of F.
major SLs resulted in increased expression of IgT, IgM and TGFβ transcripts in the gills but not the head-kidney
and had no effects on IL-10 expression. These results indicate the F. major SLs regulate rainbow trout in-
flammatory responses and indicate that this compound can have important applications in farmed fish health
management.

1. Introduction

Farmed fish suffer from a number of inflammatory diseases that can
hamper their welfare, growth and market value. For example, soybean
meal-induced enteritis (SBMIE) is a disease that causes severe in-
flammation in the intestine of salmonids (Booman et al., 2018;
Sahlmann et al., 2013; Urán et al., 2008; Urán et al., 2009). Examples of
inflammation caused by disease agents include heart and skeletal
muscle inflammation (HSMI) disease in salmon (Kongtorp et al., 2004)
or Flavobacterium psychrophylum infections in salmonids (Nematollahi
et al., 2003).

Vaccination is the most effective way to prevent disease outbreaks
in finfish farming. Although some vaccines elicit strong immune re-
sponses by themselves, several studies have shown that vaccine efficacy
in teleost fish is improved by using adjuvants in the vaccine preparation
(Siwicki et al., 1998; Tafalla et al., 2013; Thim et al., 2014). The most
studied and potent adjuvants in fish are oil-based adjuvants. However,
oil-based adjuvants are not approved for use in aquaculture due to the
detrimental side effects they cause to fish, including lesions, adhesions,
granulomas and inflammation (Bricknell and Dalmo, 2005; Noia et al.,
2014; Vazirzadeh et al., 2008). Thus, finding alternative adjuvants or
reducing the inflammatory side effects induced by oil-based adjuvants,
such as Freund's adjuvant, would increase the sustainability of the fish

farming industry.
Commensal bacteria bring many benefits to the host (Gomez et al.,

2013; Hooper et al., 2012; Kelly and Salinas, 2017; Sepahi and Salinas,
2016) and can produce metabolites with potent biological properties
(Arpaia and Rudensky, 2014; Gomez et al., 2013; Hooper et al., 2012;
Levy et al., 2016; Sharon et al., 2014). Teleost fish live in symbiosis
with large and diverse communities of microorganisms. In rainbow
trout (Oncorhynchus mykiss), one of the most abundant commensal
species residing in the skin and gills is Flectobacillus major (Lowrey
et al., 2015; Sepahi et al., 2016), a bacterium that has the unique ability
to synthesize glycosphingolipids (Batrakov et al., 2000; Batrakov et al.,
1999). Recent studies in the mammalian gastrointestinal tract suggest
that dietary sphingolipids or sphingolipids produced by bacteria can be
absorbed by enterocytes in a number of ways including fusion of outer-
membrane vesicles with host cell membranes (Heaver et al., 2018).
Absorbed sphingolipids are then mostly converted to free fatty acids
and incorporated into triglycerides that enter the bloodstream in the
form of chylomicrons (Heaver et al., 2018) allowing for effects at distal
sites. Uptake mechanisms at other tissue barriers such as the gills or
skin have not been investigated, but sphingolipid-derived metabolites
such as ceramide and S1P can be taken up by cells by different me-
chanisms including binding to G-protein coupled receptors (Blaho and
Hla, 2014). Thus, although yet to be investigated, epithelial cells in the
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gills and skin of teleosts may uptake sphingolipids or their metabolites
which could then enter the bloodstream eliciting local and distant ef-
fects.

Our laboratory has recently demonstrated that F. major-derived
sphingolipids are key modulators of mucosal B cells in rainbow trout
and that they can stimulate secretion of IgT and modulate the propor-
tions of IgM and IgT B cells in lymphoid organs (Sepahi et al., 2016).
Yet, other biological functions of F. major sphingolipids remain un-
known.

Previous work in mice has shown that sphingolipids produced by
the intestinal bacterium Bacteroides fragilis have anti-inflammatory
functions and regulate iNK T cells (An et al., 2014). Thus, we hy-
pothesized that F. major-derived sphingolipids may have important
anti-inflammatory properties in rainbow trout and therefore can be
used in aquaculture to ameliorate inflammatory processes. The aim of
this study was to determine the ability of F. major-derived sphingolipids
to induce anti-inflammatory cytokine responses and to test this com-
pound in an adjuvant-model of inflammation in rainbow trout. Our
results show that F. major-derived sphingolipids have both anti- and
pro-inflammatory functions and that they are able to ameliorate side-
effects caused by oil adjuvant injection in rainbow trout.

2. Material and methods

2.1. Animals

Healthy adult rainbow trout (with mean body weight of
250 ± 20 g) were obtained from Lisboa Springs Fish Hatchery (Pecos,
New Mexico, USA) and maintained at the University of New Mexico
Biology Animal Research Facility. Fish were acclimatized for two weeks
prior to conducting any experiments. Fish were kept in a recirculation
system with a 12-hour photoperiod and fed commercial pellets
(Rangen, Inc.) ad libitum. Prior to sampling, fish were anesthetized with
MS-222 and bled from the caudal vein with a heparinized 3ml syringe.
All animal studies were reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) at the University of New
Mexico, protocol number 16-200384-MC.

2.2. Bacterial growth and sphingolipid extractions and purification

F. major was grown in the specific culture medium ATCC® 29,496™
at 25 °C for 30h in 956 Microcyclus medium. F. major sphingolipids
were extracted using chloroform-methanol mixtures as explained in
(Batrakov et al., 2000). Non-lipid contents were then removed by
chromatography on a Sephadex G-25 column (GE Healthcare) as de-
scribed by (Wuthier, 1966). The cleaned fraction was resuspended in
Dulbecco's Modified Eagle Medium (DMEM, Life Technologies) con-
taining 2 nM bovine serum albumin (BSA).

2.3. In vivo administration of F. major sphingolipids

Rainbow trout were divided into four experimental groups, sphin-
golipids alone (SL), Freund's complete adjuvant (FCA, Sigma Aldrich,
USA) alone, FCA+ sphingolipid (FCA+SL) and DMEM-BSA alone
(N=4). The SL and FCA+ SL groups received a total of 1.4 μg of F.
major sphingolipids in 50 μl. FCA was first emulsified in DMEM/BSA
and then mixed 1:1 vol/vol with SL to make the FCA+ SL emulsion.
Trout were injected intraperitoneally (i.p) with 50 μl of each solution
and were sampled 3 weeks later for gross morphology, examination of
internal organs, and histology of the abdominal wall tissue. This ex-
periment was repeated two-independent times.

For gene expression analysis, two independent experiments were
conducted separately from the adjuvant experiments. The first experi-
ment consisted of two groups (N=6) injected with either 50 μl of
DMEM containing 1.4 μg of F. major sphingolipids combined with 2 nM
BSA or DMEM containing 2 nM BSA (control) i.p. The second

experiment contained the exact same experimental groups (N=6) but
received an intravenous (i.v) injection instead of i.p. We had previously
delivered the F. major sphingolipid preparation by i.v injection and
observed changes in immune cell populations (Sepahi et al., 2016).
Thus, we used this route as a positive control. For applied purposes,
however, or in adjuvant formulations, the i.p is more relevant and
therefore we used both routes. Fish were sampled 60 h post-injection. A
piece of the head kidney (HK) and gill tissue (from the center region of
the second gill arch) were collected from each fish and placed in TRIZol
for RNA extraction.

2.4. Gross morphology scoring

Overall gross morphology of the abdominal wall and internal visc-
eral organs was scored using four parameters: reddening, inflammation,
necrosis and adhesions. Each parameter was scored on a scale of 0–3 as
explained in Table 1. Total gross morphology score was calculated by
adding the individual scores from each of the four parameters for each
fish.

2.5. Histology and light microscopy analyses

Eight abdominal wall samples per group were collected and fixed in
4% paraformaldehyde for 3 days at 4 °C. After transferring samples to
70% ethanol, samples were processed and embedded in paraffin using
routine histological procedures. Five μm-thick paraffin sections were
stained with hematoxylin-eosin. Ten random fields were observed per
samples and scored on a 0–3 scale for the presence of necrosis, gran-
ulomas, empty vesicles, oil masses and immune cell infiltration. A
granuloma was defined as nodular structure composed of granuloma-
tous cells surrounding an oil core. No attempt to identify the cellular
composition of the granuloma was made. A score of 0 represents ab-
sence of observation whereas a score of 3 represents high abundance/
presence of a particular feature. Light micrographs were observed
under a Zeiss AxioSkop using the AxioVision software by two in-
dependent researchers.

2.6. RT-qPCR

Tissues were homogenized in 1ml TRIZol (Invitrogen) using tung-
sten carbide beads (3mm, Qiagen) and shaking (300 times per min) as
per the manufacturer's instructions for RNA extraction. The RNA pellet
was washed in 80% ethanol, air-dried and resuspended in RNase-free

Table 1
Gross morphology scoring system (arbitrary units).

Damage Score

Reddening: no superficial reddening 0
Inflammation: no inflammation
Necrosis: no visible necrosis
Adhesions: no adhesions of peritoneum to abdominal wall or visceral

organs
Reddening: minor superficial reddening 1
Inflammation: minor inflammation (only visible superficially)
Necrosis: minor reddening and inflammation within affected tissue
Adhesions: minor adhesions of peritoneum to abdominal wall (not

affecting visceral organs)
Reddening: moderate superficial reddening 2
Inflammation: moderate deep and superficial inflammation
Necrosis: moderate reddening and inflammation within affected tissue
Adhesions: moderate adhesions of peritoneum to abdominal wall/visceral

organs
Reddening: severe superficial reddening 3
Inflammation: severe deep and superficial inflammation
Necrosis: severe reddening and discoloration around affected tissue
Adhesions: severe adhesions of peritoneum spanning entire abdominal

wall or adhering to visceral organs
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H2O. The RNA concentration was measured by spectrophotometry
(Nanodrop ND1000, LabTech) and RNA integrity determined by elec-
trophoresis (Agilent Bioanalyser, 2100). cDNA synthesis was performed
using 500 ng of total RNA, which was denatured (65 °C, 5min) in the
presence of 1 μl of oligo-dT17, 1 μl dNTP (deoxynucleoside triphosphate
mix 10mM each Promega) and RNA/DNA free water (Sigma) in a vo-
lume of 13 μl. Synthesis was carried out using 1 μl Superscript III en-
zyme reverse transcriptase (Invitrogen) in the presence of 5 μl of 5×
first strand buffer, 1 μl 0.1 M DTT, made up to a final volume of 25 μl
with water and incubated at 55 °C for 1 h. The resultant cDNA was
stored at −20 °C. The expression of IgM, IgT, IL-10, IL-1β, TGFβ-1a,
TGFβ-1b and TNF-α was measured by RT-qPCR using specific primers
(Table 2). qPCR was performed using 3 μl cDNA template using specific
primers as explained elsewhere (Sepahi et al., 2017). Analysis was
performed using the Pfaffl method (Pfaffl, 2001).

2.7. Statistical analysis

Data are expressed as the mean± sem. Gene expression data was
analyzed by t-test to identify statistically significant differences be-
tween groups. Data analysis was performed in GraphPad Prism version
5.0. One-way ANOVA and a Tukey post hoc analysis test were performed
to identify statistically significant differences among groups. P va-
lues< 0.05 were considered statistically significant.

3. Results

3.1. Combination of FCA with F. major sphingolipids ameliorates gross
morphology of adjuvant-derived tissue damage

The abdominal wall and visceral organs were inspected for in-
flammation, reddening, necrosis and adhesions (Fig. 1A–D). Sub-
stantially more reddening at and around the injection site was observed
in FCA group, as compared to FCA+SL (Fig. 1A). Inflammation of the
abdominal wall was also observed in both FCA and FCA+SL groups,
but was greater in the FCA group compared to the FCA+ SL group
(Fig. 1B). The muscle tissue of the abdominal wall surrounding the site
of injection showed signs of necrosis in both groups but was sig-
nificantly more extensive in the FCA group compared to the FCA+SL
treatment (Fig. 1C). As expected, FCA i.p injection resulted in presence
of adhesions throughout the entire abdominal cavity (Fig. 1D). Small
adhesions of the peritoneum to the abdominal wall were observed in
FCA+ SL group. Injection of SL alone resulted in a mean score of
0.25 ± 0.17 (Fig. 1E and Table 3). The DMEM-BSA group (negative
control) showed no signs of damage around the site of injection
(0.00 ± 0.00). Reddening, inflammation, necrosis and adhesions were
lower in FCA+SL group (0.97 ± 0.58) compared to FCA alone

Table 2
Primers used for RT-qPCR study.

Gene symbol Accession number Sequence (5′→ 3)

Ef1a AF498320 F: CAACGATATCCGTCGTGGCA
R: ACAGCGAAACGACCAAGAGG

IgM OMU04616 F: AAGAAAGCCTACAAGAGGGAGA
R: CGTCAACAAGCCAAGCCACTA

IgT AY870264 F: CAGACAACAGCACCTCACCTA
R: GAGTCAATAAGAAGACACAACGA

IL-10 NM_001245099.1 F: CTGCTGGACGAAGGGATTCTAC
R: GGCCTTTATCCTGCATCTTCTC

IL-1β AJ223954 F: ACATTGCCAACCTCATCATCG
R: TTGAGCAGGTCCTTGTCCTTG

TGF1β – 1a AJ007836 F: CTCACATTTTACTGATGTCACTTCCTGT
R: GGACAACTGCTCCACCTTGTG

TGF1β – 1b FN822750 F: CATGTCCATCCCCCAGAACT
R: GGACAACTGTTCCACCTTGTGTT

TNF-α AJ277604 F: GGGGACAAACTGTGGACTGA
R: GAAGTTCTTGCCCTGCTCTG

(caption on next page)

M. Sanchez et al. Aquaculture 495 (2018) 932–939

934



(2.5 ± 0.61) (Fig. 1E). These results indicate the F. major sphingolipids
ameliorate gross damage caused by FCA injection.

3.2. Combination of FCA with F. major sphingolipids ameliorates adjuvant-
derived tissue damage but causes intramuscular immune cell infiltration

Histological observation of the skeletal muscle tissue at the site of
injection showed no damage or immune cell infiltration in DMEM-BSA
controls (Fig. 2A). As expected, infiltrates of immune cells were ob-
served among skeletal muscle fibers in the FCA only group (Fig. 2B).

Surprisingly, the FCA+SL group showed a higher degree of immune
cell infiltration compared to the FCA group (Fig. 2C). Extensive areas of
necrosis were observed in the FCA only but was far less frequently
observed in the SL and FCA+SL groups (Fig. 3A). Granulomas were
observed most frequently and extensively in FCA group with only one
granuloma observed in the FCA+ SL group and no granulomas in the
DMEM-BSA or SL only groups (Fig. 3B). In agreement with previous
study (Noia et al., 2014), large empty vacuoles were observed in both
FCA and FCA+ SL groups (Fig. 3C). The vacuoles that were observed in
FCA only group were larger and surrounded by few cells. In contrast,
the FCA+SL group contained smaller vacuoles that were surrounded
by several cells (not shown). Within the abdominal wall section, oil
masses were observed only in FCA only and FCA+SL groups, ap-
pearing to be far larger and more prevalent in FCA only group (Fig. 3D).
Finally, increased deposits of melanin were only observed in the FCA
group around the site of injection (not shown). Combined, these results
indicate that F. major sphingolipids reduce the side effects caused by
FCA injection, but they also stimulate infiltration of immune cells in-
tramuscularly.

3.3. In vivo delivery of F. major sphingolipids induces changes in IgM, IgT
and cytokine expression in HK and gills

I.p injection of SL resulted in a significant up-regulation of both IgM
(3-fold) and IgT (5-fold) gene expression in the gills. In the HK, i.p
delivery of SLs resulted in a down-regulation in IgM and IgT expression,
2-fold and 4-fold, respectively (Fig. 4A, B). Pro-inflammatory cytokine
Il-1β expression was down-regulated 2-fold in the HK but did not
change significantly in gill (Fig. 4C). TNFα expression was up-regulated
1.6-fold in the gills but not in the HK of i.p SL injected group (Fig. 4D).
The expression of anti-inflammatory cytokine TGFβ-1b was upregulated
in the gills and remained unchanged in the HK (Fig. 4F). No significant
changes in expression were observed for IL-10 or TGFβ-1a (Fig. 4E, G)
in response to i.p administration of SL.

IgM and IL10 expression remained unchanged in both HK and gills
in response to i.v SL delivery (Fig. 5A, G). I.v delivery of SLs caused an
up-regulation of IgT expression in the gill (Fig. 5B) but not in the HK.
IL-1β expression was significantly upregulated in the gill but not HK in
response to i.v SL delivery (Fig. 5C). The expression of the pro-in-
flammatory cytokine TNFα was up-regulated in the HK but not the gill
(Fig. 5D) Finally, anti-inflammatory cytokines TGFβ-1a and TGFβ-1b
were both significantly up-regulated in the gill but not in the HK
(Fig. 5E, F).

These results indicate that, at mucosal surfaces such as the gills, F.
major sphingolipids stimulate IgT as well as pro-inflammatory and anti-
inflammatory cytokine expression but that these effects are less pro-
nounced systemic lymphoid tissues such as the HK compared to mu-
cosal sites such as the gills.

4. Discussion

Host biological processes can be influenced by commensal-derived
metabolites (Gomez et al., 2013; Hooper et al., 2012; Kelly and Salinas,
2017; Sepahi and Salinas, 2016). Host immunological responses can be
directed by commensals in a variety of ways, including the induction or
suppression of inflammation (An et al., 2014; Hooper et al., 2012). Thus
far, the functions of commensal-derived metabolites such as lipids have
not been exploited in the context of aquaculture. In this particular
study, we evaluated the ability of F. major-derived sphingolipids to
regulate inflammatory responses in rainbow trout.

We focused on sphingolipids derived from F. major since this is a
prevalent commensal of the skin and gills of trout (Lowrey et al., 2015)
and we recently showed that sphingolipids isolated from this bacterium
modulate rainbow trout immunoglobulin and B cell responses (Sepahi
et al., 2016). To investigate the effects of the F. major-derived sphin-
golipids in trout inflammatory responses, we paired it with the

Fig. 1. Gross morphology of rainbow trout abdomen 3 weeks post injection (i.p)
of Freund's Complete Adjuvant combined with F. major sphingolipids
(FCA+ SL) or Freund's Complete Adjuvant alone (FCA). Pictures are re-
presentative of four different fish per group. (A) reddening of the skin at the site
of injection (black arrow), (B) inflammation at the site of injection (black
arrow) and (C) necrosis of abdominal tissue and (D) adhesions of the perito-
neum to the abdominal wall. Total average score (arbitrary units) of all four
parameters (reddening, inflammation, necrosis and adhesions) for each of the
four experimental groups are plotted in (E). Results are representative of two
independent experiments.

Table 3
Tabulated mean and standard deviation for each parameter.

Groups Damage Mean Standard deviation

DMEM/BSA Reddening 0.00 0.00
Inflammation 0.00 0.00
Necrosis 0.00 0.00
Adhesions 0.00 0.00

SL only Reddening 0.00 0.00
Inflammation 0.25 0.43
Necrosis 0.75 0.43
Adhesions 0.00 0.00

FCA+ SL Reddening 0.50 0.50
Inflammation 1.25 0.33
Necrosis 1.25 0.43
Adhesions 1.00 0.71

FCA only Reddening 2.37 2.37
Inflammation 2.50 0.50
Necrosis 3.50 0.50
Adhesions 3.62 0.62

Fig. 2. Hematoxylin and eosin staining of abdominal wall muscle tissue from
rainbow trout injected i.p with DMEM (control), Freund's Complete Adjuvant
(FCA), F. major sphingolipids alone (SL), or Freund's Complete Adjuvant con-
taining sphingolipids (FCA+ SL) and sampled 3 weeks later.
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commonly used oil-based adjuvant, Freund's Adjuvant. Oil-based ad-
juvants paired with vaccines are widely used to help elicit effective
immunological responses but are often accompanied by several adverse
side effects in fish (Tafalla et al., 2013). Specifically, Freund's Adjuvant
has been shown to induce inflammation, adhesions and granulomatous
lesions at the injection site and visceral organs, and has also been
shown to deposit droplets of the emulsified adjuvant within the ab-
dominal cavity (Gjessing et al., 2012; Noia et al., 2014; Villumsen et al.,
2015). Thus, there is a current need to develop new adjuvants or, as
proposed in this study, combine FCA with other compounds that de-
crease its toxicity. Our findings indicate that commensal-derived
sphingolipids like the one tested here are an inexpensive and promising
tool to regulate inflammatory diseases in farmed fish. Injection of F.
major sphingolipids alone did not result in leucocyte infiltration at the
site of injection 3 weeks later. It is possible that leucocytes infiltrated
the injection site at earlier time points and it deserves further in-
vestigation. Based on our observations, however, it is possible that the
leucocyte influx elicited by FCA delivery acquires an anti-inflammatory
phenotype when FCA+SL are present. A final point to consider is that
vaccines formulated with sphingolipids should afford equal or better
protection than the vaccine formulation without the sphingolipids.

Thus, future studies will evaluate the effects of incorporating F. major
sphingolipids with FCA in a vaccine preparation with regards to vaccine
immunogenicity, levels of protection and types of specific adaptive
immune responses.

Previous studies with F. major sphingolipids have demonstrated the
ability to stimulate secretion of IgT and modulate the proportions of
IgM and IgT B cells via i.v. injection in rainbow trout (Sepahi et al.,
2016). IgT is an immunoglobulin isotype specialized in mucosal im-
munity in teleost fish (Salinas et al., 2011; Tacchi et al., 2014; Xu et al.,
2016; Xu et al., 2013; Zhang et al., 2010). Thus, we expected to observe
greater modulation of IgT expression compared to IgM expression in
our present study. In accord, we were able to demonstrate that F. major
sphingolipids mostly stimulated IgT expression and to a lesser extent
IgM expression in a mucosal tissue, the gills. Interestingly, these effects
occurred in parallel to a decrease in IgT and IgM expression in systemic
lymphoid tissues (HK). Given that we have previously shown that F.
major sphingolipids orchestrate the distribution of B cells in mucosal
and systemic organs, we speculate that the changes in gene expression
here recorded may be due to redistribution of B cells exiting the HK and
reaching the gills in response to sphingolipid treatment. Further studies
will address the mechanisms by which F. major sphingolipids is able to

Fig. 3. Pathology scores based on histological observation (Fig. 2) of rainbow trout (N=4) injected i.p with DMEM (control), Freund's Complete Adjuvant (FCA), F.
major sphingolipids alone (SL), or Freund's Complete Adjuvant containing F. major sphingolipids (FCA+SL) and sampled 3weeks later and sections were stained
with hematoxylin-eosin. Ten random sections from each sample were scored by two independent researchers using scores of 0, 1, 2 or 3 for (A) cellular necrosis; (B)
granulomas; (C) vacuoles; (D) oil masses; and (E) immune cell infiltration. Results are representative of two independent experiments.
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regulate Ig transcript expression.
Commensals are known to influence host transcriptional programs

(Brestoff and Artis, 2013; Meireles-Filho and Deplancke, 2017; Meisel
et al., 2018). Commensals, compared to pathogens, are known to in-
duce anti-inflammatory responses in the mucosal environment (Round
and Mazmanian, 2010; Sokol et al., 2008; Tlaskalová-Hogenová et al.,
2011). Previous studies in mammals using Bacteroides fragilis sphingo-
lipids identified anti-inflammatory roles for this compound. The present
study tested a crude preparation of F. major sphingolipids that likely
contains mixtures of phosphatidylethanolamine, a common molecule in
teleost fish, and monoglycosyldiacylglycerol, a common molecule in
most bacteria. Thus, delivery of F. major sphingolipids resulted in mixed

pro-inflammatory and anti-inflammatory cytokine expression responses
in trout. We observed different gene expression responses depending on
the route of delivery (i.p or i.v). I.p injection of sphingolipids resulted in
significant up-regulation of IgM, IgT, TNFα and TGFβ-1b expression in
the gills but down-regulation of IgM and IL-1β in the HK. I.v delivery, in
turn, stimulated a significant upregulation of TNFα in the HK and IgT,
IL-1β, TGFβ-1a and TGFβ-1b in the gills. We previously reported that
i.v injection of F. major sphingolipids results in lower IgT proportions in
the gills and higher IgT proportions in the HK compared to control trout
(Sepahi et al., 2016). Thus, the changes in cytokine gene expression
observed in the i.v group may reflect the effects that sphingolipids have
on B cells populations. Alternatively, effects on other cells types cannot

Fig. 4. Rainbow trout (N=6) were injected i.p with F. major SLs combined with BSA in DMEM or BSA in DMEM alone. Fold-change expression of (A) IgM; (B) IgT;
(C) IL-1β; (D) TNFα; (E) TGFβ-1a; and (F) TGFβ-1b; (G) IL-10 were measured in the Head Kidney (HK) and gills 60 h post-treatment by RT-qPCR. Bars represent mean
fold change ± standard error. Asterisks denote statistically significant differences (*p < 0.05, **p < 0.01).
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be ruled out. Overall, our results highlight the potential for application
of F. major sphingolipids in a variety of diseases and disorders in
rainbow trout farming. Since we used a mixture of phosphatidyletha-
nolamine and monoglycosyldiacylglycerol, future studies using purified
fractions from this preparation should be conducted in order to identify
the specific compounds that trigger anti-inflammatory versus pro-in-
flammatory responses in fish.

Our studies have thus far only evaluated effects of F. major sphin-
golipids by injection. However, mucosal delivery of this compound ei-
ther in the water or incorporated into the feed should be tested in order
to facilitate larger scale applications of our results. Additionally, we did
not quantify whether sphingolipid administration exerted long-lasting
effects on the local and systemic trout immune system. Future studies

will address these key aspects of sphingolipid administration.
In conclusion, we have demonstrated the immunological functions

of a commensal derived sphingolipid in rainbow trout. The diverse and
potent effects that F. major sphingolipids have on rainbow trout im-
mune and inflammatory responses suggest that this compound can have
important applications in aquaculture.
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