
University of New Mexico
UNM Digital Repository

Biology ETDs Electronic Theses and Dissertations

7-1-2016

Patterns in richness and community structure:
From bacteria to apex predators
Ara Winter

Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Winter, Ara. "Patterns in richness and community structure: From bacteria to apex predators." (2016).
https://digitalrepository.unm.edu/biol_etds/128

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds/128?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


        Ara S. Winter  
       Candidate 
     
       Biology   

     Department

     

     This dissertation is approved, and it is acceptable in quality and form for publication:

     Approved by the Dissertation Committee:

       
     Dr. Christina Takacs-Vesbach       , Chairperson

 

      Dr. Diana Northup  

     Dr. Robert Sinsabaugh  

     Dr. Kathleen Lavoie  

          

          

           

           

           

 



PATTERNS IN RICHNESS AND COMMUNITY
STRUCTURE: FROM BACTERIA TO APEX

PREDATORS 
     
     
    

by

   ARA S. WINTER  
   

   B.A., Chemistry, Knox College, 1997  
 M.S., Earth and Planetary Sciences, University of New Mexico ,

2011 
     
     

DISSERTATION
Submitted in Partial Fulfillment of the

Requirements for the Degree of

  Doctor of Philosophy 
Biology

The University of New Mexico
Albuquerque, New Mexico

   July, 2016  

i



ACKNOWLEDGEMENTS

This work would not be possible without a large number of people who helped support me 
finically, emotionally, and physical with fieldwork and data gather. Most of the people that 
helped out are acknowledged in each chapter. 

Specifically I would like to thank my Mom (Kerry Calhoun), my sister (Amanda Kooser), 
and my wife (Odessa Winter) for their support over the past five years.

Additionally I would like to thank my committee:
Dr. Christina Takacs-Vesbach, who headed the committee, found RA support when I 
needed it, and challegened me in new areas of bioinformatics and microbial ecology. 

Dr. Diana Northup, who has been a friend and fellow collegue for over a decade now. Her 
continually support in pursuit my master’s and PhD was unflagging. She is a great mentor 
and friend. 

Dr. Robert Sinsabaugh, for shifting my focus and thinking to surface soils and their 
ecologies. In additional, he provided some new insights into our data and encouragement 
to pursue the micro-macroecology link. 

Dr. Kathleen Lavoie, my outside examiner and co-author on the LABE paper. She is a 
great example of how to be detailed orientated and help to guide the discussion sections 
of paper. 

ii



Patterns in richness and community structure: From bacteria to apex
predators

by
Ara S. Winter

B.A. in Chemistry, Knox College, 1997
M.S. in Earth and Planetary Sciences, University of New Mexico, 2011

PhD in Biology, University of New Mexico, 2016

ABSTRACT

Patterns of community structure and richness provide context for studies

from microbial ecology, global macroecology, languages, to Bayesian statistics. 

Diversity patterns for animals on land and their predictor variables are well 

studied. However, diversity patterns for bacterial communities and marine 

macroorganisms are not well studied or understood. Here I examine diversity 

patterns in caves, on the external surface of Chiroptera (bats), and in marine 

ecosystems. At the local to regional scale we investigate factors that drive 

bacterial community patterns in richness and composition in lava cave 

microbial mats and microbes on bats. Lastly, out of the cave and into the 

surface world, a global picture emerges of factors that drive community 

structure and richness from bacteria to apex predators in marine environments. 

I hypothesize that for cave microbial mats found in lava caves, local factors (i.e. 

sample site temperature and relative humidity) are important factors for 

determining community structure and richness. For bacteria on bats, a mix of 

local factors (bat species, bat body mass, location of capture) and regional 

factors (net primary productivity (NPP), annual mean rainfall) explain richness 

and structure of the microbial communities. In addition, the predictor variables

for richness and community structure will vary with spatial scale (local to 

regional to landscape). In the global marine data set, richness and community 

structure will be dependent on net primary productivity, temperature, thermal 

lifestyle, and foraging behavior. At small scales, temperature and NPP will be 
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variable in their predicting power, while at large scales they will be positivity 

correlated with species richness. Local factors likely drive the larger scale 

patterns in community structure and richness. 
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Introduction

Significance and intellectual merit

Understanding species diversity patterns is important for understanding how species 

disperse, how life history can determine species ranges, helping to inform conservation 

strategies (Kaschner, 2004, Paradinas, et al. 2015), to understanding the diversity and 

extinction risk of human languages (Moore, et al. 2002; Sutherland, 2003), which show 

mammal richness correlated with human language richness. Exactly which factors help to 

drive richness and community structure are complicated by local and global variables, spatial 

autocorrelation, and the importance how predictor variables change with spatial scale. In 

addition, there are ill-defined species ranges, many unknown variables, and predictor 

variables that are cofounding, such as temperature and net primary productivity. This work 

focuses on untangling factors that help to govern richness and community structures across 

different spatial scales and body masses. In this work we are using a Bayesian framework for 

understanding and determining factors that shape community structure and richness. 

Background

Biogeography is a science that attempts to answer the question of Why do organism 

live where they do? Biogeographers seek to explain and model patterns of richness and 

diversity across distances (Pasternak, et al. 2013) and time (Bisset, et al. 2010; Bahl, et al. 

2011). Determining what factors contribute to community structure and their richness may 

shed light on our understanding of why organisms occur where they do. Microbial 

biogeography, while relatively new, is important for locating rare and unique Actinobacteria 

(Riquelme, et al. 2015a) and Cyanobacteria, which are major sources of novel drugs (Wang, 

et al. 2015). 
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Microbial

Caves are excellent places to study biogeographic patterns due to cave environments 

generally being more stable than surface environments. In addition, many caves are aphotic, 

thermostable, and often have very low connectivity to the surface. The arid-land caves from 

this study are characterized by being oligotrophic, having relatively constant temperature and

high relative humidity, and in many cases, having no running water. A review of the global 

cave literature (Lee, et al. 2012) showed that the most common cave bacteria phyla were (in 

order of most abundance): Proteobacteria, Chlorobi, Bacteroidetes, Actinobacteria, 

Acidobacteria, Nitrospirae and Chloroflexi. In lava cave microbial mats the rare OTUs 

helped to structure the ß-diversity between caves and islands (Riquelme, et al. 2015b), while 

locally, the Azores microbial mat community structures were influenced by commonly 

shared OTUs. Between two different island arcs, geographic location and local host rock 

geochemistry were the most important drivers of community structure (Hathaway, et al., 

2014). In the Lava Beds National Monument caves Nitrospirae distributions of OTUs shift 

by cave (Figure 1) showing a change driven by biotic and abiotic factors. 
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Figure 1. Distribution of Nitrospirae oligotypes by cave name along a latitudinal and 
elevation gradient in Lave Beds National Monument. Each band of color represents a unique
oligotype of Nitrospirae. 

Microbial-Macroecology

Recently, large-scale microbial data allowed microbial biogeographers to provide the 

missing link between microbes and macroecology (Barberan, et al. 2014). With the advent of

cheaper next generation sequencing techniques, researchers are examining regional and 

global patterns of microbial diversity (Ladau, et al. 2013; Selama, et al. 2013; Zinger, et al. 

2011). At the intersection of microbial and macroecology from local to region scales are 
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microbiome studies of animals. Two species of fish raised in the laboratory had skin 

microbiomes that were different from the surrounding bacterioplankton in the tank 

(Chiarello, et al. 2015). A humpback whale study that consisted of 57 skins samples and four

seawater samples showed that the humpback whale skin microbiome is different from the 

surrounding sea water (Apprill, et al. 2014). In addition, the microbiome varied predictably 

by geographic region and metabolic state of the whale. A study of 337 samples from five 

body sites on 48 dolphins and 18 sea lions (Bik, et al., 2016) found that diet, host species, 

and phylogeny drove the gut microbiome patterns and that dolphins harbored a unique, rare 

biosphere that dominates their microbiome. In this dissertation research , factors that predict

bat richness (Figure 2) area also predictors for external bat bacteria.  

Figure 2. Integrated nested Laplace approximation model of bat species richness (Winter, 
unpublished) in Arizona and New Mexico. Bat species richness is best predicted by elevation,
landscape complexity, NPP, and temperature. The external bat bacteria follow similar trends 
in richness (Winter, et al., in preparation).

Macroecology

On the global scale, patterns of community structure and richness provide 

information on anthropomorphic impact on global ecosystems, help establish more 

sustainable fisheries, and determine which factors control species distributions. The global 

marine system is particularly important for its role in nutrient cycling and carbon storage 

potential. Recently, with the advances in next generation sequencing, there exists an 
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abundance of publicly available data sets that can be used to model the global distribution of 

marine bacteria. Marine bacteria have peak diversity in temperate latitudes in both the boreal

and austral winters (Ladau, et al. 2013). Marine bacteria have a higher diversity in areas that 

are highly impacted by humans following a similar relationship to macroorganisms 

(Tittensor, et al. 2010). Zinger et al. (2011) used 509 samples from sea surface to ocean 

abyssal plains to determine the diversity of marine bacteria. This study found that across all 

samples, they shared less then 10% of their taxa (Zinger, et al. 2011). 

Marine macroorganisms share many predicator variables with microbes, but display 

different patterns of community structure and richness. Two broad patterns emerged (Figure

3) for marine species: coastal species had peak diversity in the Western Pacific and ocean taxa

peaked across mid-latitudes. In contrast to marine bacteria, which follow anti-tropical 

patterns (Ladau, et al. 2013, Milici, et al. 2016). Ocean surface temperature was consistently 

predictive of ocean taxa richness.  

Figure 3. Global distribution of communities reflects environmental preferences, 
evolutionary history, thermal lifestyles, and dispersal capabilities (Grady, et al. in 
preparation). 
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Abstract

Lava caves around the world often support extensive microbial mats on ceilings and walls in 

a range of colors. Little is known about lava cave microbial diversity and how these 

subsurface mats differ from microbial communities in overlying surface soils. We generated 

and analyzed bacterial 16S rDNA from 454 pyrosequencing from three colors of microbial 

mats (tan, white, and yellow) from seven lava caves in Lava Beds National Monument, CA, 

USA, and compared them with surface soils overlying each cave. Actinobacteria dominated 
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in all samples, with 39% (caves) and 21% (surface soils). Proteobacteria made up 30% of 

phyla from caves and 36% from surface soil with Gamma- 20% and Alpha- 10% in the caves

and Gamma- 18% with Alpha-17% in soil. Other major phyla in caves were Nitrospirae 

(7%) followed by Minor Phyla (7%), compared to surface soils with Bacteriodetes (8%) and 

Minor phyla (8%). A very high proportion (53.33%) of the most abundant sequences could 

not be identified to genus, indicating a high degree of novelty. Surface soil samples had more

OTUs and greater diversity indices than cave samples. The same phyla were represented in 

both soils and cave microbial mats, but the overlap was only 11.2% at the operational 

taxonomic unit (OTU).  Although surface soil microbes immigrate into underlying caves, 

the environment selects for microbes able to live in the cave habitats, resulting in very 

different cave microbial communities. In terms of species richness, diversity by mat color 

differed, but not significantly. Number of entrances per cave, distance from an entrance, cave

length, and temperature also contributed to observed differences in diversity. With high 

levels of novel microbes, caves may represent excellent habitats for the isolation of new 

bioactive compounds. This study is the first comprehensive comparisons of bacterial 

communities in lava caves with the overlying soil community.

Introduction

Most life on Earth is microbial and in the aphotic subsurface [1]. Caves can provide a natural

way to access subsurface environments ranging from very deep limestone caves (Krubera 

Cave in the Western Caucasus is more than 2,190 m deep [2]), to shallow caves, such as lava 

caves that have an overburden of up to 10 m [3].  Discovery of extensive lava flows and lava 

caves on Mars [4] supports the concept that Earth’s lava caves may serve as a model for the 

study of life on other planets (astrobiology) [5,6,7]. Lava caves provide protection from 

ionizing radiation and would retain liquid water longer than the surface.

Lava caves, formed during active lava flows, contain diverse microbial mats that range in size 

from extensive mats covering walls and ceilings to small, scattered colonies (Fig 1, Fig 2). 
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Coverage is more extensive in moist lava caves in Hawai`i and the Azores than in arid caves 

in Hawai`i and New Mexico. Mat colors include white, yellow, tan, gold, orange, and pink, 

with shades in between [7-11].  Lava caves become colonized as soon as they cool down, and 

caves in lava flows in Hawai`i show diverse mat structure in tens of years.

Fig 1.  Overview of some of the lava cave sampling sites and caves, plus a view of the surface 

terrain at Lava Beds National Monument, CA (LABE). (A) Entrance to Valentine Cave. (B) 
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Surface samples taken above Hopkins Chocolate Cave. (C) Yellow microbial mat sampling 

site in Valentine Cave. (D) Extensive yellow microbial mats on walls of Hopkins Chocolate 

Cave. (E) Passage in Valentine Cave showing less microbial mat coverage near the entrance. 

(F) Tan microbial mat sample taken in L-V460 Cave. Photos copyright Kenneth Ingham (A,

D, E) and Diana Northup (B, C, F).

Fig 2. Microbial mat and colony morphology. 

(A) Overview of predominantly yellow and white microbial mats, some separate and some 

intermixed. (B) Overview of tan and white microbial mats. (C) Intermixed tan, white, and 

yellow microbial mats.  Close ups of (D) tan and white colony morphology, (E) tan colonies,
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and (F) yellow colonies.

Despite their extensive nature, little is known about microbial mat diversity (reviewed in 

[11,12]). Studies of microbial diversity [7-15] in lava caves lag behind such studies in karst 

caves. Stoner & Howarth [16] first described the mats or “slimes” in Hawaiian lava caves 

using culture-dependent methods for isolation of chemoheterotropic microorganisms and 

reported on the presence of fungi and aerobic bacteria.  They suggested that white and 

brown slimes may be important sites for nutrient cycling in caves, particularly nitrogen. 

Lava caves are extreme environments, simplified by the lack of photosynthesis in the deep or 

dark zone of the cave, resulting in extremely oligotrophic conditions. The simplified nature 

of caves makes them a model natural laboratory to study factors controlling biological 

diversification [17,18]. The isolation of most caves limits the ability of organisms to migrate, 

resulting in high levels of endemism among troglobionts and stygobionts as the norm [19].  

Culver et al. [20] found that about 30% of cave-adapted invertebrate species in U.S. caves 

are found in only a single cave. The results of Hathaway et al. [21] show that the trend can 

be extended to bacterial diversity in Azorean and Hawaiian lava cave microbial mats. The 

authors were far from sampling total diversity, but less than 5% of the OTUs found in lava 

caves occur in other caves or in other volcanic environments. Sequences were more likely to 

be related to samples from the same cave or the same island than between islands.  If 

microbial distribution is ubiquitous, then they would expect a higher percentage of shared 

OTUs between the two island archipelagos.   

Biospeleologists originally thought that cave microbes were simply a subset of surface 

microbes washed into underlying caves [22,23].  Ortiz et al. [24,25] recently published what 

we believe to be the first comparisons of cave microbial diversity with the overlying soil 

microbial community. Their study focused on bacterial diversity across carbonate speleothem

surfaces sampled by swabbing from Kartchner Cavern in Arizona. Comparison of bacterial 
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taxonomic profiles to soil samples revealed major differences and only a 16% overlap 

between cave speleothem and soil OTUs [24]. Their later study [25] explored the differences

between the cave microbial communities on speleothems and other habitats using 

metagenomics. Wu et al. [26] compared bacterial communities from rock walls, aquatic 

sediment, and sinkhole soil from a small limestone cave in China. Communities on rock 

walls were more diverse than surface or aquatic sediments.

Our study is the first and most comprehensive, comparing lava cave bacterial communities to

bacterial communities from the overlying surface soils of each cave. We also examined a 

range of environmental, geographical, and chemical factors that may contribute to bacterial 

diversity in microbial mats across a range of colors (tan, white, and yellow) from lava caves in

Lava Beds National Monument, California, USA. 

Materials and Methods

Field Studies Ethics Statement

All sampling was done under Permit LABE-2011-SCI-0007 to Northup issued by the 

National Park Service. Lava Beds National Monument is a federally-protected area under the

National Park Service, Department of the Interior. No protected species were sampled.

Sampling Sites

Lava Beds National Monument (LABE) is located in northern California close to the borders

of Oregon and Nevada [27]. The Monument covers 190 km2 on the NE flank of the 

Medicine Lake Volcano. Two-thirds of the lava came from the Mammoth and Modoc 

craters over the last two million plus years and as recently as 1,100 years ago. Flows are 

largely of basalt with smaller amounts of silica-rich basaltic andesite [28].

LABE has the largest number of lava caves in North America, with 778 known [27]. 

Twenty-five of the lava caves have signed entrances and developed trails for ease of visitation.
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The area is a high-elevation (1219-1737 m above sea level), semi-arid desert with average 

yearly precipitation of 375 mm. Temperature ranges from an average low of -5.4 ˚C in 

January to an average high of 22.3 ˚C in July and August. Some of the lava caves contain 

perennial ice.

We worked with LABE personnel to select seven lava caves for sampling to cover a range of 

parameters: amount of human visitation, elevation, length, number of entrances, and age of 

the lava flow, which determines the age of the cave.  During sampling we characterized color 

of the microbial mats (tan, white, and yellow) and distance from the nearest entrance, along 

with temperature, humidity, RH, and pH when suitable water pools or dripping water were 

available near mats. In addition to the cave samples, a sample of soil overlying each cave 

entrance (e.g. Fig 1(B)) was collected for comparison.  Each sample was photo-documented 

at the collection site (Fig 1(F)). 

Temperature, RH, and pH Measurements

Temperature (web bulb and dry bulb in order to obtain an approximate RH) was taken in 

April, 2011 and in September, 2012 with an IMC temperature probe 

(http://www.imcinstruments.com/), which was calibrated at frequent intervals in the cave to 

improve accuracy. Wet bulb readings were obtained with the IMC probe sheathed with 

wicking soaked in deionized water before each reading. For some RH samples a portable 

Kestrel 3000 wind meter (https://kestrelmeters.com/products/kestrel-3000-wind-meter) was 

used, which was calibrated at the beginning of each cave. A Javascript program 

(http://home.fuse.net/clymer/water/wet.html) used dry and wet bulb temperatures to 

approximate relative humidity. Readings for pH were taken with a Twin Cardy pH meter 

(Spectrum Technologies, Inc., http://www.specmeters.com/nutrient-management/ph-and-

ec-meters/ph/cardy-twin-ph-meter/), calibrated with pH 7 buffer.
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Sample Collections for DNA and Scanning Electron Microscopy (SEM)

Sampling took place in April 2011 and additional sampling (GEM2, HCC1, SC2) was done

in August 2012 to increase the number of white mat samples. A range of microbial mats with

different colors (yellow, white, and tan) was sampled from each cave. Samples for DNA 

extraction were collected aseptically with a flame-sterilized cold chisel into a sterile 50 cc 

Falcon tube. Soil samples were collected from above each cave entrance by removing any 

surface plant detritus and scooping the top 2 cm of soil into a sterile 50 cc Falcon tube. All 

samples for DNA were covered within hours with sucrose lysis buffer [29] to release and 

stabilize the DNA. All samples were brought to the Northup Lab at the University of New 

Mexico for further processing and analysis within seven days. We collected surface soils from 

above seven caves, and had seven samples of white and tan mats and nine samples from 

yellow mats, with at least one of each color from each cave.

Samples for SEM from rock chips were mounted directly onto SEM stubs with super glue 

and placed in a carrying case for transport.  A microbial mat sample (L-V460-110425-6), 

consisting of chips of the wall rock with white to pale yellow colonies, was taken 

approximately 200 m into Cave L-V460 at the bottom of a pillar. One of the two yellow 

microbial mat samples (HC110423-5) analyzed with SEM was a rock chip with yellow 

colonies from the floor of Hopkins Chocolate Cave, approximately 36 m into the cave. The 

second yellow mat sample (S-L280-110427-3) was taken approximately 60 m into Cave S-

L280 and 1 m above the floor and 1 m below the ceiling.

Water Chemistry Analysis

Dissolved organic carbon (DOC) in infiltrating water was collected and passed through a 

0.45 μm filter and preserved with phenyl mercuric acetate (PMA) in the field. Samples for 

nutrient analysis were preserved with 6N hydrochloric acid in the field, as described in [30]. 

Organic carbon water samples were analyzed using the persulfate digestion method as 

described [31] on a Shimadzu TOC-5050A instrument (Shimadzu Corporation, Kyoto, 

15



Japan). Amounts of chloride, nitrite, nitrate, phosphate, and sulfate were analyzed using a 

Dionex Ion Chromatograph DX-100 (Dionex, Sunnyvale, CA, USA) as described [32]. 

Molecular Phylogeny

DNA extraction, sequencing, and sequence analysis 

DNA was extracted from triplicate samples of rock chips with microbial mats from each cave

by mat color and from the surface soil samples using the MoBio Power SoilTM DNA 

extraction kit following manufacturer’s protocol except we used bead beating rather than 

vortexing, which the Northup Lab finds to be more effective at releasing DNA from Gram 

positive cells.

Polymerase Chain Reaction (PCR) 

PCR was performed to verify the quality and quantity of the DNA prior to sequencing.  One

hundred twenty five to three hundred ng of purified DNA was used to amplify the 16S 

rRNA gene from environmental DNA by PCR with universal primers, p46 forward (5’-

GCYTAAYACATGCAAGTCG-3’) and p1409 reverse (5’-

GTGACGGGRGTGGTGTRCAA-3’; [33] and AmpliTaq LD (Applied Biosystems) with 

an MJ thermal cycler using: 4 min denaturation at 94°C followed by 35 cycles of 45 sec 

annealing at 55°C, extension for 2 min at 72°C, denaturation for 30 sec at 94°C, with a final

45 sec 55°C and a 20 min 72°C extension step after cycling was complete. 

Sequencing and phylogenetic analysis 

Samples were analyzed with next-generation sequencing of the 16S SSU gene bacterial V1-3 

region (primer 27F) using Roche FLX and Titanium 454 technology conducted by MR 

DNA, Shallowater, TX (http://www.mrdnalab.com/). The shorter, but more numerous 

sequences generated by pyrosequencing give us a much more comprehensive view of the 

diversity present than from clone libraries. MR DNA designed tagged primer constructs, 

unique to each sample location, for post sequencing sample identification. In addition to the 
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sample tag, the primer constructs incorporated primer sequences specific to Bacteria, as well 

as 454 A and B adaptors for emulsion PCR and sequencing. 

All 454 data were processed in QIIME 1.9.1 [34]. Quality control and trimming of the 454 

dataset were done using the split_libraries.py command with a lower length (-l) of 100 bp 

and an upper length (-L) of 500. A quality score (-s) of 30 was chosen. Removal of erroneous

sequences (denoising) and otu clustering were done using pick_de_novo_otus.py pipeline 

with the sumaclust option [35]. The sumaclust algorithm is mainly useful to detect the 

'erroneous' sequences created during amplification and sequencing protocols. OTUs were 

clustered at the 97% similarity level using sumaclust. The pick_de_novo command also 

picks the representative set and assigns taxonomy using uclust [36] against the greengenes 

13.8 database [37]. The pipeline also aligns and builds a phylogenetic tree using pynast [38] 

and fasttree [39] from the representative sequence set. Chimera checking was done using 

USEARCH to detect artifacts created during sequencing. 

Diversity by phyla with the Proteobacteria separated out by class was compared for all 

samples. The L2 phyla data were reduced to 9 groups, including Unassigned Phyla and a 

group we called Minor Phyla. The Minor Phyla are entries that had less than 1000 OTU 

across all samples. Of a total of 140,848 OTU, 26,609 were from the surface samples, and 

38,214 from tan, 36,014 from white, and 40,011 from yellow mats. The process was 

repeated at the L6 genus level resulting in nine groups, an unassigned group, and Minor 

Genera with 471 taxa. The percent unclassified samples at the different taxonomic levels 

were as follows: Phyla 2.38%, Class 18.6%, Order 35.25%, Family 55.49%, and Genus 

53.33% (move to discussion). Good’s coverage showed that we were successful in getting 

nearly all of the diversity from our samples.  Values ranged from 99.11% to 87.13% with an 

average value of 94.98%. 

Sequences submitted to the NCBI GenBank database (www.ncbi.nlm.nih.gov/genbank/) 
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were assigned Accession Numbers JX694094-JX702544, and the three additional white 

samples KP705489-KP706447.

Statistical Analysis

Community dissimilarity was visualized using the phyloseq package [40] and ggplot2 [41] in

R [42]. Alpha diversity was analyzed using observed OTUs, Shannon and Simpson indices in

the phyloseq package. Observed OTUs is simply the raw number of OTUs present in each 

sample of quality controlled and clustered sequences as described above. Beta diversity was 

analyzed using non-metric dimensional scaling (NMDS) with the Brays-Curtis distance 

using the vegan package [43] in R. The Brays-Curtis distance was picked because it is 

invariant to changes in units, unaffected by additions and removals of species, and NMDS 

recognizes differences in total abundances when relative abundances are similar. The 

ordination of the taxa and environmental parameters was done using custom R scripts by 

Umer Zeeshan Ijaz available at: 

http://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/ecological.html. Briefly the scripts use 

vegan and ggplot to find the taxa and environmental parameters that best correlate with 

community similarity based on ADONIS and Pearson correlation. Differences in the 

abundance of taxa were characterized using the DESeq2 package [44] with parameters 

fitType= “local”. An adjusted p-value threshold of 0.1 was used to calculate log2 fold changes

between surface soils and cave microbial mats. Phylogenetic tree analysis was carried out in 

the phyloseq package. The data were subset by phyla that were differentially abundant as 

determined by DeSeq2. Tree files with tips label were written out using 

write.tree(phy_tree(phyloseq_obj),file="phylum_name.newick"). The tree, tip labels, and 

traits (cave or surface) were loaded into Interactive Tree of Life v3 (http://itol.embl.de/) [45] 

for visualization. Traits were assigned to the tree tips as relative abundance of the OTUs 

present in the cave. The tree trait was tested using the phylotools package [46] in R. Pagel’s 

Lambda was calculated for each tree. The values for Lamda range from 0 to 1. Values near 0 

indicate little phylogenetic signal in the trait data given the original tree and a high lambda 
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value indicates relatively more phylogenetic signal in the trait data. 

Results

Environmental Variables

The environmental variables (Table 1) age of lava flow, elevation of entrance, number of 

entrances, length of cave, distance of sample from entrance, latitude of entrance, number of 

branching points in cave, temperature at the sampling site, and relative humidity at the 

sampling site were tested against total richness of the cave microbial mats. The variables that 

had the highest positive correlation with richness were (from 0.10 to 0.46): distance from 

entrance, number of cave entrances, temperature, and length of cave. The remaining 

variables correlated with richness between -0.04 to 0.07. (S1 Fig.). 

Table 1. A. Characteristics of the seven study sites in LABE. Visit= number of visitors, 

grouped into High (open to the public) and Low (closed to visitation). Lava Age= Age of lava

flow. Surface describes surface vegetation, where Sagebrush = Big sagebrush-antelope 

bitterbrush scrubland and Juniper = Juniper-mountain mahogany scrubland. Elevation is the

elevation in m of the entrance a.s.l.  # Entr= number of accessible or functional entrances 

into the cave. Branches (Nodes) is an indication of the geometric complexity of the cave by 

counting the number of passage branch points. Length is the mapped length of the cave in 

m. 

B. Samples: C = Catacombs; GE and GEM = G-L350; GD = Golden Dome; HC and HCC 

= Hopkins Chocolate; L = L-V460; S and SC = S-L280; and V = Valentine.  Color: T=Tan, 

Y=Yellow, W=White. Distance is the distance in m from the nearest entrance to the 

sampling site. Temperature, RH, and pH data were collected in April 2011 and Aug 2012. 

(nd=not determined)

A. 

Cave Surface 
Soil

Visit Lava 
Age

Surface Elev # Entr Branches
(Nodes)

L

Catacombs C15 High 32,000 Sagebru 1,524 m 1 32 2104

19



sh m
Golden 
Dome

GD25 High 32,000 Sagebru
sh

1,491 m 2 7 679
m

GE-L350 GE13 Low 32,000 Sagebru
sh

1,513 m 1 9 461
m

Hopkins 
Chocolate 
(HCC)

HC15 High 32,000 Sagebru
sh

1,503 m 4 4 428
m

L-V460 L14 Low 10,000 Juniper 1,360 m 2 5 698
m

S-L280 S10 Low 32,000 Sagebru
sh

1,386 m 2 5 686
m

Valentine V16 High 10,000 Juniper 1,376 m 1 12 498
m

B. 

Cave Sample Color Distance 
from 
entrance

T° C %RH pH

Catacombs C1 T 51 m 13.6 61 nd

Catacombs C2 Y 51 m 13.6 61 nd

Catacombs C9 W 76 m 15.7 45 nd

Golden Dome GD1 Y 278 m 9.3 99 8.13

Golden Dome GD2 T 276.5 m 9.2 100 7.96

Golden Dome GD3 W 276.5 m 9.2 100 7.96

Golden Dome GD16 Y 278 m 9.3 99 8.13

GE-L350 GE1 T 64 m 9.9 87 7.45

GE-L350 GE2 Y 64 m 9.9 87 7.45

GE-L350 GEM2 W 67 m 7.1 86.6 nd

HCC HC1 Y 37 m 11.5 89 nd

HCC HC6 T 107 m 8.9 100 7.98

HCC HC7 Y 107 m 8.9 100 7.98

HCC HCC1 W 105 m 8.9 100 7.97

L-V460 L1 Y 200 m 9.3 96.3 7.31

L-V460 L3 W 200 m 9.3 96.3 7.31

L-V460 L9 T 87 m 9.8 92.7 nd

S-L280 S2 Y 255 m 16.1 82.1 nd

S-L280 SC2 W 135 m 16.1 82.1 nd

S-L280 S4 T 145 m 13.1 70.6 nd

Valentine V1 Y 135 m 11.2 100 7.45

Valentine V2 T 135 m 11.2 100 7.45

Valentine V13 W 170 m     11.3 100 7.75

Chemical analysis of water samples collected from each cave with available standing water is 
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shown in Table 2.  Chlorine levels averaged (5.086 ppm), slightly higher than the EPA 

Maximum Contaminant Level Goals for drinking water of 4 ppm [47] EPA levels for nitrate 

(1 ppm) and nitrate (10 ppm) were not exceeded in most cave water samples. There are no 

phosphate level standards set by the EPA, but our cave samples were all low. Sulfate water 

standards are 250 ppm, and ours were all very low. Bromide for all samples was below the 

detection limit. 

Table 2. Water chemistry of cave water samples from Lava Beds National Monument. bdl = 

below detection limits.

Cave Sample ppm ppm ppm ppm ppm
(F) Chloride Nitrite Nitrate Phosphate Sulfate

CAT7 12.571 bdl 0.6039 bdl 0.6103
CAT13 2.184 0.9866 0.5924 bdl 0.3251
GD20 3.567 0.5526 0.7286 bdl bdl
GE-L350-GE26 9.203 bdl 0.8325 bdl 0.4704
GE-L350-GE10 5.128 0.3320 0.9140 bdl 0.4329
HC3 2.116 bdl 0.6606 0.6715 0.5391
HC10 1.821 bdl 1.5608 bdl 1.1231
L-V460-LY4 4.493 0.5778 2.7485 0.5371 0.5851
L-V460-LY12 2.031 bdl 0.7116 0.5571 0.5505
S-L280-SV6 3.702 0.4489 8.0036 0.4697 2.3381
VAL3 9.132 0.3113 0.5483 bdl 0.5910

Dissolved organic carbon (DOC) in ppm is shown in Fig 3 for lava caves in the Azores, 

Hawai`i, and LABE caves. The NM samples are from Lechuguilla Cave, and Carlsbad 

Cavern, both carbonate caves in Carlsba (CAVE)d Caverns National Park, NM. All of the 

lava caves show a comparable range of levels of DOC. Lowest DOC values are from 

Lechuguilla Cave, ranging from about 4 to 7.5 ppm. LABE samples were the lowest and the 

highest among lava cave samples, ranging from about 4-18 ppm DOC. 
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Fig 3. Boxplot of DOC (ppm) in cave water from lava caves in the Azores, carbonate caves 

from CAVE, NM, lava caves from Hawai`i and from LABE, CA. 

Alpha Diversity

Measures of alpha diversity among surface soil samples and cave samples by color of mat (S2 

Fig.) show species richness (Observed and Chao1 [48]) and relative abundance (Shannon 

and Simpson’s). Simpson is less influenced by singletons (i.e. rare taxa) than Shannon’s 

Index. The means are very different, with much greater bacterial diversity in soil than cave. 

Soil bacterial diversity is more evenly distributed among OTUs. Cave samples are less evenly 

distributed, with a wide distribution of Simpson’s values with many outliers in contrast to 

soil samples.  In-cave variation is much higher than surface soil variation.  In terms of species

richness in differently colored mats, tan samples have higher diversity, followed by yellow 

and then white. In terms of Shannon’s and Simpson’s indices the three colors of microbial 

mats are not that different. Fig 4 shows the difference between cave microbial mats and 

surface soils in respect to total richness of each sample (observed OTUs) and Shannon Index.

In all cases surface soils have more OTUs and higher Shannon indices (indicating higher 
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diversity). 

Fig 4. Alpha diversity: Shannon index plotted against observed species for LABE surface soils

and microbial mats.

Molecular Phylogeny by Phylum and Proteobacteria Class

Composition by the top 5 phylum and 4 Proteobacterial classes, plus Minor Phyla based on 

OTU are presented in Fig 5 for surface soil samples (5A), by cave (5B), and by color of 

microbial mat (5C White; 5D Yellow; 5E Tan). Comparisons of surface soil samples with 

the underlying cave samples show some differences. Most notable is the reduction in 

Actinobacteria in surface soil samples (21%) versus cave samples (39%), the reduction in the 

Nitrospirae (3%) in surface vs. (7% in cave samples), and the increase in 

Alphaproteobacteria in the surface soil samples (avg. 17%) compared to the cave samples 

(10%). Smaller, but significant differences that decrease from surface to cave are seen with 

the Bacteroidetes (surface 8% and cave 2%); Gemmatimonadetes (avg. surface 3 % and cave 

<1%); Planctomycetes (surface 2% and cave 1%). Among the other Proteobacteria, only the 
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Gammaproteobacteria increase between cave (20%) and surface (18%), while 

Betaproteobacteria (surface 4% and cave 3%) and Deltaproteobacteria (surface 4% and cave 

1%) both decline in cave samples. None of the phyla differed substantially by mat color.  

Some differences were observed by mat color in the Actinobacteria (tan: 37%, white: 39%, 

yellow: 44%), Gammaproteobacteria (tan: 19%, white: 24%, yellow: 20%), Nitrospirae (tan:

11%, white: 4%, yellow: 7%), and Betaproteobacteria (tan: 3%, white: 6%, yellow: 2%).

DESeq2 (differential analysis of count data) between all surface samples and all cave samples 

showed strong evidence for differential abundance of OTUs between surface soils and cave 

microbial mats (Fig 6). Eighteen phyla stood out as being significantly differential over or 

under represented between cave microbial mats and surface soils. The major phyla and 

Proteobacteria class that are significantly higher in the cave than in surface soil are the 

Actinobacteria (p>0.00000) and Nitrospirae (p=0.00232). Major groups with greater 

representation in surface soils than the cave are Gammaproteobacteria (p>0.00000), 

Verrucomicrobia (p=0.00001), Bacteriodetes (p=0.00021), and Alphaproteobacteria 

(p=0.02373). Of the minor phyla, GAL15 (p=0.00273), WS3 (p=0.03444), and SBR1093 

(p=0.04227) have higher numbers in the cave samples compared to surface soils. The groups 

with higher amounts in surface soils than cave samples are TM7 (p>0.00000), OD1 

(p>0.00000), Armatimonadetes (p>0.00000), FBP (p=1e−05), Cyanobacteria p=0.00438), 

Fibrobacteres (p=0.00698), and Elusimicrobia (p=0.04176). The remaining two minor phyla

are approaching significant differences; Planctomycetes (p=0.05177) and NC10 

(p=0.05655).
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Fig 5. Comparison of phyla and class of Proteobacteria in A) cave microbial mats, B) surface 

soils (C15-V16),  and microbial mats by color: C) White = C9-V13, D) Yellow= C2-V1, E) 

Tan = C1-V2 . See Fig 1 legend for cave names.
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Fig 6. Differential proportion plot of phyla and Proteobacteria class that were statistically 

different between LABE surface soils and lava cave microbial mats. The band is the median, 

and the box delineates the upper and lower quartile. The whiskers show the maximum and 

minimum values. All data points are shown.

A phylogenetic tree of the Nitrospirae (Fig 7) shows the proportion of OTUs between cave 

and surface samples colored by family. The Nitrospirae vary by family in terms of whether 

they are primarily found in the cave vs. surface samples. The major Nitrospirae in our 

samples are found in three families, the Nitrospiraceae, the Leptospirillaceae, and a candidate

family, 0319-6A21. Pagel’s Lambda, the measure of the strength of a trait on a tree, for 

relative abundance of OTUs in the cave microbial mat was 0.84. The majority of the 0319-

6A21 family are found in the cave microbial mats and the remaining families both in the 

surface soil and the cave microbial mats. A similar tree was constructed for Actinobacteria 

(S3 Fig.) however the Pagel’s Lambda test was 0.26 which is a weak signal for differences 

between cave and surface. 
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Fig 7. Phylogenetic tree of Nitrospirae by LABE lava cave and surface soil. Approximate 

maximum likelihood tree.

Non-metric dimensional scaling (NMDS) in Fig 8 shows a separation of the cave microbial 
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mats samples from the surface soil samples, indicating that the two sets of samples are not 

similar to each other. The surface soil samples cluster tightly in the far right, while the cave 

spread out to the left. To fill out the dataset with one white sample per cave, we had LABE 

personnel obtain additional samples from GE-L350, Hopkins Chocolate, and S-L280 Caves 

in 2012. These three samples (GEM2, HC1, SC2) have very low numbers of OTUs and 

diversity compared to the other samples collected in 2011, although they have comparable 

overall sequence numbers as some of the original samples (e.g. GE2). Tan and yellow mats 

cluster together, while white mat samples are widely spread out and group into three clusters.

Within cave similarity is greater than between cave similarity, probably due to the three mat 

colors sampled in each cave, and suggests the necessity for multiple samples to cover the 

diversity comprehensively.

Fig 8. NMDS (Non-Metric Dimensional Scaling) separates out lava cave mat communities 

from the overlying surface soils. Circles show the 95% confidence interval. 
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Molecular Phylogeny by Genus

The percentage of OTUs by genus is presented in Fig 9 for surface soil and cave mat 

samples. Results from the analysis of diversity by genera are interesting in several respects. 

First of all, a large percentage of OTUs are novel. Of the nine major genera, only four are 

identified to genus level, one to class, and four to family. There is also a group called 

Unassigned, which could not even be classified to Bacteria. These unassigned OTU may 

represent archaeal DNA that amplified with our primers or may be organisms that are 

particularly difficult to classify through 454 sequencing, like members of the 

Verrucomicrobia. Bergmann et al. [49] used barcoded pyrosequencing with surface and 

subsurface soils to reduce primer bias, and found that Verrucomicrobia are ubiquitous and 

were often the dominant phylum in their samples. In our study, no individual 

Verrucomicrobia genus met our criteria for inclusion in Fig 9.

Surface
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Cave

Fig 9. Percent OTUs by lowest level of classification (family or genus) in all surface soils and 

combined cave microbial mats.

The other major observation from the comparison of soil and cave samples at the genus level 

is the occurrence of many OTUs that were present in smaller numbers (genera that were 

present in three or fewer samples with less than 100 sequences), which we grouped together 

into the category Minor Genera. The genus level diversity in the Minor Genera in surface 

samples represents 35% of the diversity in surface soils samples and 20% of the diversity in 

cave samples. 

A major difference between surface and cave samples is the proportion of the family 

Pseudonocardiacae present with 14% of surface soil OTUs vs. 30% of cave OTUs.

Other major genus level OTUs fell within the Acidobacteria, Nitrospiraceae, and 
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Bacteriodetes. Within the Acidobacteria there are three groups, all belonging to the 

candidate class Chloroacidobacteria. There are two orders PK29 and PK10 that cannot be 

identified further. The Nitrospiraceae is classified to the genus Nitrospira. The Bacteroidetes 

group is identified to the family Chitinophagaceae. Chitinophagaceae are elevated in soils 

where insect chitin is higher than in the cave, a defining characteristic of this family [50], 

although new isolates from oligotrophic lake waters lacked this ability [51].

The remaining major bacterial OTU groups are all members of the Proteobaceria, with three

from the Alphaproteobacteria and three Gammaproteobacteria. The Alphaproteobacteria 

OTUs are two members of the order Rhizospiriales, one family Hyphomicrobiaceae and one 

Methylobacteriaceae, and one Rhodospirillaes identified to the genus Magnetospirillum. 

Together the Rhizospiriales account for only 2% of cave species but 5% of surface species, 

probably associated with the rhizosphere.  The Gammaproteobacteria include the class 

Gammaproteobacteria and two members of the Sinobacteraceae with one family, 

Sinobacteraceae, and the genus Steroidobacteria. The type species is Steroidobacteria 

denitricans, a nitrate oxidizer [52]. There are only two described species.

Scanning Electron Microscopy 

The three samples (one white, two yellow) examined with scanning electron microscopy 

(SEM) revealed extensive microbial morphologies present with similarities and differences 

observed across the three samples.  The white sample from Cave L-V460 contained the most 

unusual morphologies, which were filaments covered in curly putative pili/fimbrae with 

spheroids emerging from the tips (Fig 10A-C).  The spheroids range in size from 0.8 to 1.2 

μm in diameter, and in Fig 10B, one can observe what appears to be a “neck” on one of the 

spheroids. Some of the “fuzzy” filaments appeared to be segmented (Fig 10B). Some parts of 

the sample also contained smooth, long filaments, while other areas had small spheroids (0.8 

μm in diameter) emerging from the biofilm (not pictured).  A somewhat similar morphology

(fuzzy filaments with spheroids protruding from the ends) was observed in a yellow sample 
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from Hopkins Chocolate Cave (Fig 10D).  This sample also had many colonies covered by, 

or partially emerging from, a lawn of biofilm (not pictured).  The second yellow sample, 

from Cave S-L280, had extensive biofilm that appeared to bury filaments, and was dotted 

with large colony masses.  We interpret the fuzzy areas along the margins of the colonies (Fig

10E) as being biofilm.  Many strands of beads-on-a-string morphologies are seen on the 

colonies and biofilm (Fig 10F).
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Fig 10. Scanning electron micrographs of cave white and yellow microbial mats. A. White

microbial mat from Cave L-V460 showing filaments covered with putative pili/fimbrae with

spheroid shapes emerging from the ends. B. Close-up of these morphologies from A. C.
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Overview of a field of these morphologies in the same white microbial mat from Cave L-

V460. D. Yellow microbial mat from Hopkins Chocolate Cave showing similar

morphologies to those seen in images A-C, and including some biofilm and smooth

filaments. E. Overview of a yellow colony from Cave S-L280, showing extensive biofilm in

the background and on colony edges. Beads-on-a-string morphologies are observed lying on

the background biofilm. F. Close-up of beads-on-a-string morphology on biofilm from Cave

S-L280 yellow microbial mat. 

Electron dispersive spectroscopy revealed the expected high carbon peak from the biofilm 

and microorganisms present, plus aluminum and silica peaks, possibly suggesting the 

presence of clays in all three samples.

Discussion 

The general belief for decades has been that cave microorganisms are a subset of the 

microbial community found in surface environments overlying the cave [53], eking out a 

minimal chemoheterotrophic existence in the cave. Our study is the first to test the 

hypothesis that bacterial communities in the soil overlying lava caves are substantially 

different from the bacterial communities found in the cave microbial mats.  Also, our study 

is the most robust study to date of lava cave microbial diversity, with three colors of 

microbial mats (tan, white, and yellow) from each of seven different caves in Lava Beds 

National Monument, CA, USA. The percent unclassified samples at the different taxonomic 

levels were as follows: Phyla 2.38%, Class 18.6%, Order 35.25%, Family 55.49%, and 

Genus 53.33%. Good’s coverage showed that we were successful in getting nearly all of the 

diversity from our samples.  Values ranged from 99.11% to 87.13% with an average value of

94.98%. 

The soil clearly can be a source of bacteria for colonization of the underlying caves; however, 

the actual overlap in OTU in our study is only 11.12%. Microbes in caves enter from the 
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surface through drip waters, air currents, gravity, floodwater or animals, but quickly adapt or

die under the selection pressure of oligotrophic and mineral conditions of lava caves as 

evidenced by the low level of overlap between cave and surface OTUs. It appears that over 

time, these communities become very different as the bacteria adapt to the cave and those 

that can’t adapt die off. Most microorganisms in subsurface environments grow as biofilms 

or individual or groups of cells or microbial mats attached to rock surfaces. 

Cave and surface soil sample bacterial communities differ in major ways

To understand the microbial diversity in lava caves, a good knowledge of the microorganisms

present on the surface on volcanic rock deposits and in soils is important. Acidobacteria, 

Alpha- and Gammaproteobacteria, Actinobacteria, and Cyanobacteria predominate in 

surface volcanic deposits in Hawaiˋi, with composition controlled by local differences in 

environments and the type of volcanic deposits [54]. Janssen [55] reviewed studies of the 

microbial diversity of soils from many environments found in clone libraries. Across many 

habitats, soils are dominated by Proteobacteria, averaging 39% of soil bacteria, and by 

Acidobacteria, Actinobacteria, Verrucomicrobiota, Bacteroidetes, Chloroflexi, 

Planctomycetes, Gemmatimonadetes, Firmicutes, and Other/Unknown. Our soils are fairly 

similar, dominated by Actinobacteria and Proteobacteria (together about 60-75% of the total

diversity), then lesser amounts of Nitrospirae, Verrucomicrobia, Chloroflexi, 

Gemmatimondetes, and Bacteriodetes, lacking only a significant amount of Planctomycetes 

and Firmicutes. These findings show the need for a careful comparison of microbial 

populations from soils that overlie caves that are available to colonize underlying caves, 

especially when those caves are relatively shallow like lava caves. Although the cave 

populations will diverge quickly from infiltrating surface microorganisms, an analysis of 

surface populations provides knowledge of the possible colonizers of caves.

Surface soil sample phyla or class (Proteobacteria) that are the most different from the cave 

phyla or class (Fig 6) are the Actinobacteria (21% in soil samples; 39% in cave samples), 

38



Bacteroidetes (8% in soil samples; 2% in cave samples), Alphaproteobacteria (17% in soil 

samples; 10% in cave samples), the Gammaproteobacteria (18% in soil samples; 20% in cave

samples), Nitrospirae (3% in soil samples; 7% in cave samples). The proportion of minor 

phyla is nearly equal, with 8% in soil samples vs. 7% from cave samples.

Northup et al. [14] compared bacterial phyla from lava caves in their study with other recent

studies (2006-2010) in carbonate systems and found a great deal of overlap at the phylum 

level. They noted that the more recent the study the more bacterial phyla were reported, 

probably a reflection of improved sequencing technology and lower cost of analysis. The 

comparison suggests that caves in general contain a core set of bacterial phyla. Six of 11 

studies found Actinobacteria, Proteobacteria (Alpha-, Beta-, Delta-, Gamma-), 

Acidobacteria, Verrucomicrobia, Planctomycetes, Nitrospirae, and Bacteroidetes. Three 

studies of sulfur-based caves Frassi Caves, Movile Cave (reviewed in [14]), and several other 

sulfur caves [56] lacked Actinobacteria. These sulfur caves are also the only ones with 

Epsilonproteobacteria. 

A comparison of bacterial communities in surface soils overlying each of our study caves with

those from cave microbial mats (Table 3) shows high overlap at the phylum level. Of the 16 

Phyla and Proteobacteria classes considered core in the Northup et al. [14] review, our LABE

study found an overlapping core of nine phyla and four classes of Proteobacteria, eliminating

TM7, Chlamydia, OP10, and Firmicutes. Some of the differences between caves sites are 

likely due to the use of clone libraries in the early NM, HI, and Azores analysis, and only 

White and Yellow mats, compared to 454 with LABE and all three mat colors. A newer 

study from 14 caves across two islands in the Azores by Riquelme et al. [57] was also done 

using clone libraries, but included white, yellow, and tan mats Table 3). Tan mats had the 

least diversity, which is different from our LABE study. They did not report 

Verrucomicrobia or Planctomycetes, leaving seven phyla or Proteobacteria classes in 

common dominating across all studies and mat color, supporting a worldwide biogeographic 
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core biome in lava cave microbial mats.

Table 3. Distribution of the major phyla and class of Proteobacteria from LABE soil and 

caves compared with the summary from Northup et al. [14] from lava caves in New Mexico, 

Hawaiˋi, and the Azores by color of microbial mat, and Azores [57]. All studies include white

and yellow mats, but only our study of LABE mats and the second Azores study included 

White, yellow, and tan microbial mats as indicated by letter.  See Table 1 for LABE cave 

names and Northup et al. [14] and Riquelme et al. [57] for other cave names. X = present in 

surface soil; Act=Actinobacteria; P= Proteobacteria are separated into alpha-, beta-, delta-, 

and gamma-; Acid= Acidobacteria; Chlf= Chloroflexi; Nit=Nitrospiraceae; Ver= 

Verrucomicrobia; Gem= Gemmatimonadetes; Plc= Planctomycetes; Bct= Bacteroidetes; 

Chl= Chlamydia; Frm= Firmicutes. Candidate Phyla are TM7 and OP10. 
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*Colors of samples by cave in parentheses.

While not significantly different between cave and surface or among mat colors, 

Acidobacteria are a major phylum across all samples. Jones et al. [58] studied Acidobacteria 

across 87 soils and found them to be both ubiquitous and abundant. Their abundance 

relative to other taxa was variable, but correlated strongly with pH (R= -0.80, p<0.001). 

They suggest that pH is an effective habitat filter for Acidobacteria, with the highest 

abundance below pH 5.5. pH in lava caves seldom drop to this level, but may on a 

microhabitat scale. In Jones et al. [58] the proportion of the community comprised of 

Acidobacteria dropped to about 20% between pH 5.5 and 8.5, leading to progressively more

narrowly defined lineages as pH deviates from neutrality.

Ortiz et al. [24] studied microbial communities swabbed from ten cave surfaces in one room 

of Kartchner Cavern, Arizona, which is a karst cave located in a semi-arid environment 

similar to ours in LABE. Previous studies of this oligotrophic cave had shown unexpected 

microbial diversity associated with speleothems [59, 60].  They identified 21 phyla and 21 

candidate phyla that grouped into three distinct community profiles; one dominated by 

Actinobacteria, one by Proteobacteria, and a third by Acidobacteria. Overall the community 

dominated by Actinobacteria had the lowest diversity and the Proteobacteria dominated had 

the more diverse community. The breakdown of phyla in the study by Ortiz et al. [24] of 

carbonate speleothems showed 46% of the bacteria were unclassified (in contrast to 5% 

unclassified surface and 3% unclassified cave at the phylum level in our study). The 

difference in unclassified bacteria has to do largely with better bioinformatics in the last few 

years.  They concluded that speleothem communities are very sensitive to subtle variation in 

nutrient inputs and environmental factors. The taxonomic profile from this study [24] 

differed from that reported for nine other speleothems [59], supporting high variability 

among samples.
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In a second study, Ortiz et al [25] collected surface soils from three locations above 

Kartchner Cavern. Analysis of their three soil samples was limited to qPCR for comparison 

of domain distributions within their cave samples. They found bacterial abundance in the 

cave was comparable to their soil samples, but Archaea were significantly higher in the cave, 

and fungi were below the detection limit in cave samples. Metagenomic analysis suggested 

that the speleothems they tested supported a unique chemoautotrophic community based on

nitrogen with potentially novel nutrient cycling pathways.  Comparison of cave samples with

one of the soil samples from above the cave showed an overlap of 16% between cave and 

surface [24], which is comparable to our study of seven cave and surface soil samples, with an

overlap of 11.12% at the OTU level.  Our study and the Ortiz et al. [24,25] studies support 

the hypothesis that cave bacterial communities are significantly different from surface soil 

bacterial communities. 

Another study that also examined surface soils was Wu et al. [26]. They found carbonate 

cave wall communities dominated by Gammaproteobacteria and Actinobacteria and 

identified related groups that use atmospheric carbon and inorganic nitrogen. Sinkhole soil 

was comparable to surface soil and more closely resembled aquatic sediment communities 

than cave wall communities.

The soil clearly can be a source of bacteria for colonization of the underlying caves; however, 

the actual overlap in OTU is only 11.2%. Microbes in caves enter from the surface through 

drip waters, air currents, gravity, floodwater, or human or animal activity, but quickly adapt 

under the selection pressure of oligotrophic and mineral conditions of lava caves as evidenced

by the low level of overlap between cave and surface OTUs. It appears that over time, these 

communities become very different as the bacteria adapt to the cave and those that can’t 

adapt die off. As an example of possible cave-adaptation, Snider et al. [61] compared UV 

sensitivity in bacteria isolated from Carlsbad Cavern, NM, compared to isolates from surface 

43



soil and rocks. Most of the cave isolates were more sensitive to the effects of UV than surface 

bacteria, but many of the cave microbes retained their ability to repair UV-induced DNA 

mutations.

Actinobacteria are more abundant in cave samples

A major difference between surface and cave bacterial communities in our study, and in 

comparison to the Ortiz et al. [24] study is the abundance of Actinobacteria. While 

Actinobacteria occurred in moderate numbers in surface soils in our study (21%), they 

occurred in much higher numbers in cave samples (39%). Surface soils were also dominated 

by Gammaproteobacteria (18%) and Alphaproteobacteria (17%). Actinobacteria are also 

probably the dominant forms seen in the scanning electron micrographs (Fig 10). 

The scanning electron microscopy (SEM) studies of white and yellow-pigmented samples 

from Caves S-L280, L-V460, and Hopkins Chocolate, showed many commonalities with 

SEM studies in other lava and carbonate cave studies around the world.  Notably, the beads-

on-a-string morphology has been found in Lechuguilla and Spider Caves in Carlsbad 

Caverns National Park [62] lava caves [57,64],  Hair-like extensions, which may be 

pili/fimbrae, have been commonly found in other lava caves in the Azores [57,64] and in 

Hawai`i [21].  The filaments that are covered with hair-like extensions with spheroids on the

tips are a novel morphology in our lava cave studies (Fig 10A,B).  As with our other lava cave

microbial community studies, LABE microbial mats display a range of interesting 

morphologies that overlap with these other studies.

Actinobacteria include organisms that give caves their musty odor due to the chemical 

geosmim [65]. Barka et al. [66] recently reviewed Actinobacteria taxonomy, physiology, and 

secondary metabolite production. Actinobacteria comprise the largest phylum among the 

Bacteria and are now subdivided into six classes, but about 80% are members of the class 

Actinobacteria. They are Gram positive with high G+C ratios and have a wide ecological 
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distribution in aquatic and terrestrial environments, and survive periods of nutrient 

depravation by production of exospores. Most Actinobacteria are heterotrophic, feeding on 

organic carbon, and some are known to fix nitrogen both as symbionts and free-living. New 

studies have also established that they can be chemolithoautotrophic, such as in the case of 

the uncultured T3 subdivision of Actinobacteria that have been shown to exhibit nitrate-

dependent iron oxidation [67]. 

Actinobacteria are key members of the microbial community in caves (e.g. [68]). Snider et 

al. [69] showed that Actinobacteria within two lava caves with roots penetrating the ceiling 

tended to be where more moisture is available, and their numbers fall off substantially in 

drier areas of the caves. 

Some evidence exists that the coloration of the microbial mats may be produced by the 

bacteria present, in particular Actinobacteria. Production of melanoid pigments varies by 

strain, nutrients, and age [66]. Pigment colors range from red, yellow, orange, blue, green, 

and black [66]. Porca et al. [68] also reported that several Pseudonocardiaceae (relatives of 

their OTU group III) were shown to produce yellow pigments [70,71] which could result in 

some of the coloration observed. Lee [72] identified two new members of the 

Peudonocardiaceae from soil and dry bat guano from a cave in the Republic of Korea that 

produced yellow and grey-white colored colonies.  One note of caution is that universal 

bacterial primers have been shown to be unable to amplify the 16S rRNA gene in many 

Actinobacteria despite 100% homology to the primers [73]. Thus, it is entirely likely that 

both our study and others are missing a portion of the Actinobacteria present in the 

environments sampled.

Within the Actinobacteria recovered from our cave samples, the dominant organisms 

belonged to the Pseudonocardiacea.  Barton et al., [74,75] hypothesized that the 

Pseudonocardiaceae-related phylotypes found at one of their sites are degraders of plant 
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matter coming into the caves.  The Pseudonocardiacea are also known to produce a variety of

secondary metabolites [76].  

A comparison [24] of Actinobacterial diversity in volcanic caves across four locations (HI, 

NM, and two islands in the Azores) showed dominance and exceptional diversity of 

Actinobacteria, with 62% of OTU having less than 97% similarity to known sequences. Of 

the Actinobacteria, 71% were singletons. Five of the OTUs (3.05%) represented 74.1% of 

sequences, with the most predominant family the Pseudonocardiaceae from all four 

locations.

Spilde et al. [62] sampled microbial communities in Hawaiian lava caves across a range of 

rainfall (47-401 cm per year). They sampled white, yellow, and unique pink-orange mats, 

along with white mats floating on water, and organic ooze. Of the microbial mats from the 

walls, white mats had the greatest diversity, while the yellow and pink-orange mats were 

dominated by Actinobacteria. Yellow and pink-orange mats were the most similar. The 

major diversity agrees with the patterns reviewed in Table 3. 

Results of these studies and our LABE study suggest a common core of phyla in caves from 

around the world, reflecting a subset of phyla from the overlying soils.

Other bacteria of interest in lava cave microbial mats

In addition to the Actinobacteria, the Gammaproteobacteria, in particular the orders 

Xanthomonadales and unclassified Gammaproteobacteria, were slightly elevated in cave 

samples (20%) in comparison to surface soil communities (18%). The order 

Xanthomonadales shows up in other cave studies on NCBI (i.e accession numbers: 

DQ066611, FJ347998, HM592533). A newer and not well described taxon, 0319-6A21, 

shows up with much greater abundance in the lava tube caves then in the surface soils.  

0319-6A21 was first isolated in 2004 from Australian desert soil [77]. 0319-6A21 is classified
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as belong to the class Nitrospirales and is likely to provide clues into nitrogen cycling in 

caves. Chitinophagaceae, from the phylum Bacteroidetes are elevated in soils where insect 

chitin is higher than in the cave, a defining characteristic of this family [49], although new 

isolates from oligotrophic lake waters lacked this ability [50]. 

These results, together with the elevated Pseudonocardiacea, parallel the findings of Porca et 

al. [68] who found these groups to be major constituents of microbial communities in their 

studies of yellow colonies in carbonate caves in Spain, Slovenia, and the Czech Republic. 

Their study revealed three major core groups that included the Pseudonocardiacea, the 

Chromatiales and the Xanthomonadales, which Porca et al. [68] suggest may be “true cave 

dwellers.”  One of the intriguing things in the study by Porca et al. is that their clone 

sequences were sometimes 98-99% similar to clone sequences from another of our lava cave 

studies [21].

One of the few lava cave microbial mat papers that extends the discussion of bacterial 

diversity to the level of genus is the Hawaiian study from 16 caves by Spilde et al. [62]  The 

samples included white and yellow microbial mats along with pink-orange mats. At the 

genus level they reported an abundance of Bacillus, which were not abundant in our LABE 

Nitrospirae, and two new genera of Actinobacteria; Crossiella and Euzebya.

One bacterial community is clearly different

Valentine 13 (Fig 5) is clearly not typical of either cave or surface samples. 

Betaproteobacteria (36.92%) dominate Valentine sample 13, while Actinobacteria make up 

only 8.56% of the total phyla. At the L6 level, only 1.44% of sequences are Pseudonocardia. 

Several variables may account for the differences. The site is located at a junction where the 

passage splits into two tubes. Very near the sample site is a large pile of breakdown, the only 

occurrence of breakdown of this size in the entire cave. The breakdown includes packed, wet 

sediment that has fallen through cracks in the ceiling above the pile. LABE personnel have 

47



observed millipedes and springtails around the edges of the breakdown indicating a small 

connection with the surface. The site is wetter than other locations in the cave. We speculate 

that the ceiling connection may be a source of microbes or nutrients unique to this site. The 

shape of the passage, with a higher ceiling at the collection site, may also direct more visitors 

to pass by the sample site, possibly also affecting the community structure or nutrient inputs.

The floor also changes from pahoehoe to a’a lava at this point, perhaps indicating a change in

rock chemistry. Regardless, we kept the sample in for analysis, and point out the need for 

multiple samples to mitigate such variations. 

Differences in bacterial diversity among differently colored mats

Mat color composition did not appear substantially different among the colors.  However, 

some minor interesting differences were observed. Members of the bacteria dominated lava 

cave microbial mats of all colors. The Actinobacteria vary somewhat by mat color (Fig 5), 

with 37% in tan mats, 39% in white mats, and 44% in yellow mats. Gammaproteobacteria 

varied the most by color with 19% in tan mats, 37% in white mats, and 21% in yellow mats.

Northup et al. [14] compared white and yellow microbial mats and selected secondary 

minerals based on color from four lava caves in each of three different locations; tropical and 

semi-arid lava caves in Hawaiˋi, temperate lava caves in the Azores, and semi-arid lava caves 

in New Mexico. Mats are more extensive in areas with greater rainfall. They found 13 Phyla 

across all white and yellow mats from all three locations. All mats had Actinobacteria; 

Alpha-, Beta-, Delta-, and Gammaproteobacteria; Acidobacteria, and all but one had 

Nitrospirae. The number of phyla per cave ranged from 5-11, with slightly greater diversity 

at the phylum level in yellow over white mats, but not in all phyla. 

The study by Hathaway et al. [21] was the first in-depth comparison of white and yellow 

microbial mat communities from lava caves on different archipelagos, and concluded that 

geographic location is important in determining the composition of microbial communities, 
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with Hawaiˋi showing greater diversity than Terceira. These differences may be partially due 

to the greater range of habitats in Hawaiˋi, ranging from semi-arid to tropical rainforest 

conditions. Novel bacteria were found in all sites showing the need for conservation of caves 

as sources of novel bacteria and as simplified natural ecosystems for study of larger ecological 

questions. 

Principle Coordinate Analysis (PCoA) by island showed that only 13.7% of the variability 

was explained by geographic location and levels of nitrogen, organic carbon, and copper. 

Rainfall, especially in Hawaiˋi, accounted for another 10.8% of the variability.  PCoA by 

cave showed a strong influence of geography. Actinobacteria (16%) dominated the clones 

recovered from Hawaiian samples, while on Terceira Acidobacteria dominated with 21% of 

the clones recovered.  Alphaproteobacteria made up 13% of the diversity in Hawaii and 15%

in Terceira. Bacterial sequences recovered with no known phyla were 14% of the total in 

Hawaiˋi and 12% in Terceira. A nearest neighbor comparison among caves in Hawaiˋi and 

Terceira with other caves in the ARB database showed only thee OTUs (0.22%) overlap. 

This high level of alpha diversity means that bacterial communities found in each cave are 

different. These differences may be partially due to the greater range of habitats in Hawaiˋi, 

ranging from semi-arid to tropical rainforest conditions.  

Riquelme et al. [57] studied white, yellow, and tan mats from 14 caves on two islands in the 

Azores using 16S rRNA clone libraries. Environment and chemistry showed no relation to 

OTU diversity and composition of the microbial mats. Similar to other studies including 

ours, there was a dominance of cosmopolitan OTUs. There was a greatest influence on β 

diversity (composition) between islands and caves than α diversity (community).  The 

absence of clear differences across mat colors they suggested could be due to insufficient 

geologic time on these islands for microbial communities to diversity, and/or covergent 

evolution due to the selective pressure of extreme environments in caves. 
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We predict that a comparison of LABE microbial mats with those of the Azores, New 

Mexico, and Hawai`i, as next gen sequencing becomes available for these sites, would show 

lower diversity in LABE than in Hawai`i in particular.  Color of the mat was not a predictive

factor in diversity, much to their surprise, but is consistent with our findings in LABE.

A study of Icelandic lava caves by Northup et al. [78] compared surface soil microbial 

communities with microbial communities of different types (mats, slimes, snottites, organic 

oozes, and soil) from four lava caves. Surface soils were the most diverse at two sites. As in 

our study the mats were similar at the phylum level with Actinobacteria dominant followed 

by Acidobacteria, and Alpha-, Beta-, and Gamma- Proteobacteria. Unlike our study there 

was a lack of Nitrospirae in the Icelandic caves—which may be due to cold They found 

sample type to be the most important factor in bacterial diversity.   

Porca et al. [68] compared yellow microbial communities on the walls of karst caves and 

found a common core of microorganisms that they compared to the Azorean and Hawaiian 

yellow microbial mats reported in Northup et al. [14]. They studied three geographically 

distinct caves from Spain, the Czech Republic, and Slovenia. Sixty percent of the OTUs 

formed three cores common to all three caves made up of Actinobacteria and two within the 

Gammaproteobacteria sequences.  Seven percent were common to two of the sites, and the 

remaining 35% were site-specific. Several estimates of diversity showed the greatest diversity 

from Slovenia, then Czech Republic, then Spain. There was no leveling off of diversity below

the phylum level. They concluded that the overall similarities of these and results from other 

studies reflects the similarity of limestone caves in terms of environmental conditions, 

geochemistry, and availability of organic matter to support microbial growth and may 

represent a group of true troglobiont microorganisms.

Abiotic variables impact bacterial diversity differences

We selected our study caves to include as broad a range of abiotic variables possible among 
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LABE caves. Richness by environmental variable (S1 Fig) shows an effect only with Distance 

from the nearest entrance and Temperature, but the two factors are related. As you go deeper

into a long enough cave the temperature reaches the stable temperature around the man 

annual surface temperature, as modified by many factors, particularly cave geometry. The 

remaining environmental factors of age of lava flow, elevation a.s.l., length of the cave, 

branch complexity (nodes), and pool water pH, have no significant effect on cave microbial 

diversity.  

Cave geomicrobiological studies show that caves are nutrient-limited with redox interfaces in

microniches where we see the interaction of microbial activities and minerals [79,80].  

Interactions with minerals may be the dominant force driving microbial diversity in lava 

caves. An experimental study by Jones and Bennett [81], using a range of mineral substrate 

types with two different cave microbial inocula, found that under nutrient-limited 

conditions different microbial communities can develop at the level of individual mineral 

grains.  The nature of mineral composition selects for the microorganisms that can grow on a

given rock. Rocks and minerals are not homogeneous and can influence microbial diversity 

at the microniche level. Components of the substrate may be toxic or beneficial to microbial 

growth by providing mineral nutrients, pH buffering, or other advantageous conditions. 

Given the long evolutionary history of microbes in geologic time, Jones and Bennett [81] 

hypothesize that each mineral surface is specifically altered by the best-adapted and most 

comprehensive microbial community that can use the mineral surface to the greatest 

advantage. While the surface may be a source for immigration of microbes, most are unable 

to adapt to the extreme cave environment. Isolation from the surface and from other caves 

allows for adaptation and the evolution of novel taxa. Further study of lava geochemistry at 

LABE is needed to test this hypothesis in the caves, but it seems likely that mineralogical 

factors do influence the within cave diversity differences.

Levels of PO4
-, SO4

2, NO3
- in LABE lava caves were compared to those reported in lava caves
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from Terceira Island, Azores [82]. Phosphate levels in LABE samples are low, but much 

higher than in Terceira (ranges LABE 0.4697-0.6715 ppm vs. Terceira 0.003-0.0696 ppm), 

much lower in sulfate (ranges LABE 0.3251-1.1231 ppm vs. Terceira 1.42-37.29 ppm), and 

higher in nitrate (ranges LABE 0.5483-8.0036 ppm vs. Terceira 0.08-6.92 ppm).  The 

nitrate results are unexpected given the large number of cattle roaming the surface above 

Terceira lava caves. Pools in Lechuguilla Cave [83], a carbonate cave in NM, varied 

depending on isolation from environmental factors. Levels of all measured minerals did not 

vary much over time in isolated Lake Louse, but did in Lake Lechuguilla, which is nearer the

entrance. In 2006 in Lake Louise, levels of Cl- were 4.16 ppm, SO4
2- 34.7 ppm, N-NO3

- 1.49

ppm, and N-NH3 3.05 ppm compared to Lake Lechuguilla with Cl- 3.65 ppm, SO4
2- 34.7 

ppm, N-NO3
- 1.65 ppm, and N-NH3 <0.03. Levels in Lake Lechuguilla spiked as high as Cl- 

up to about 45 ppm,  SO4
2- up to about 240 ppm, and N-NO3

- up to about 40 ppm.

Dissolved organic carbon (DOC) in standing waters in LABE is compared to DOC in water 

samples from four lava caves in the Azores and in Hawaiˋi, and carbonate caves within 

Carlsbad Cavern National Park (Fig 4).  Results across the caves are comparable, showing 

low levels of DOC from all of the caves sampled, with the lowest overall levels of DOC from

Lechuguilla Cave which are always <1-1.7 ppm [83]. LABE samples ranged from 3.7-17.3 

ppm DOC and showed a greater range than observed in the other sites. A study of ecosystem

dynamics in a karst cave in the Ozarks [84] showed DOC levels ranging from 0.77-3.4 ppm 

over the course of a year, and a relationship (r2= 0.85) between DOC and peak microbial 

biomass. DOC inputs in drip water into Kartchner Cavern ranged from 1.5 to 9.5 ppm [24]

and 0.5 to 2.7 ppm over a year [25].  We correlated LABE DOC with species richness and 

found no correlation, but our water sources are transient pools which are often no assocated 

with microbial mats.

Thurman [85] reports the range of DOC in groundwater from 0.2-15 ppm with a median 

value of 0.7 ppm and most less than 2 ppm.  Barton and Jurado [75] defined cave waters 
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below 2 ppm as oligotrophic. By these standards, our LABE water samples ranged from 

oligotrophic to mesotrophic. In addition to drip water with dissolved organic carbon, organic

carbon enters the LABE caves as occasional debris, like sticks, grass stems, and human-

associated debris.

Cave biologists are recognizing the importance of DOC as the base of the food chain, 

supporting the growth of microbes, rather than the traditional inputs of organic debris [23]. 

Chemoautotrophic contributions were once thought to be negligible in most caves have been

shown to be major contributors in some ecosystems [86], and likely contribute to the food 

base in many caves.

Nitrogen cycling bacteria in LABE caves

Nitrogen is often a limiting nutrient in oligotrophic environments. Our cave sequences 

document the presence of several key organisms in the nitrogen cycle, some of which occur 

in elevated numbers in comparison to surface soil samples. The Nitrospirae contain nitrite 

oxidizers, the Alphaproteobacteria include nitrogen fixers, and Betaproteobacteria contain 

ammonia oxidizers, all key players in the nitrogen cycle.  A new genus of Nitrospira has been

described by Daims et al. [87] that can complete the entire nitrification cycle, taking 

ammonia to nitrate. We will investigate whether this species is present in our samples once 

primers become available. Differences from cave to cave could be further investigated with a 

study of nitrogen available in the basaltic matrix and from infiltrating waters. Nitrite levels in

our limited sample (Table 2) were largely low, but three caves had slightly elevated nitrate 

levels. S-L280 at 8.0036 ppm, L-V460 at 2.7485 ppm, and Hopkins Chocolate at 1.5608 

ppm were above the limit for drinking water of 1.0 ppm, and may indicate either surface 

inputs with nitrate or in situ production in these caves. 

We found the Nitrospirae, which contain nitrite oxidizers and a Nitrospira sp. that can carry 

out complete nitrification, to be higher in cave samples (7%) in comparison to surface soil 
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samples (3%). Nitrospirae OTUs varied from 9 to 1064 across different caves and colored 

mats, with the highest number of OTUs occurring in tan mats from Golden Dome and GE-

L350 Caves. Other nitrogen cycle bacteria of interest in our samples are the 

Alphaproteobacteria, which contain nitrogen fixers, and the Betaproteobacteria, which 

contain ammonia oxidizers, all key organisms in the nitrogen cycle. Previous studies have 

suggested that nitrogen is low in cave environments (i.e. [14,88]) and the ability of 

microorganisms to cycle nitrogen is key to supplying community needs in an oligotrophic 

environment. The fact that these phyla vary from cave to cave is of interest and suggests that 

a study of the nitrogen available in the basaltic substrate and additional studies of infiltrating 

water would be useful.

Other studies have suggested the importance of nitrogen-based systems in caves. Hathaway 

et al. [82] investigated the diversity of ammonia oxidation (amoA) and nitrogen fixation 

(nifH) genes in lava caves of Terceira, Azores, Portugal. They found that Nitrosospirae 

related sequences dominated the ammonia-oxidizing bacteria and that a key nitrogen fixation

gene, nifH, was found among Klebsiella pneumoniae-like sequences (Gammaproteobacteria).

Tetu et al. [88] found evidence that microbial slime curtain communities in the submerged 

Weebubbie Cave under the Nullarbor Plain in Australia had primary productivity based on 

the combined activity of ammonia-oxidizing Archaea and bacterial nitrite oxidizers, 

especially Nitrospirae.  These studies support the importance of groups, such as the 

Nitrospirae and Proteobacteria in nitrogen cycling in caves.

Actinobacterial diversity in cave samples and the search for bioactive compounds

Caves are an extreme habitat and the cave microbiome has great potential as a novel resource 

for drug discovery [64,66,90,91]. Antimicrobials are one example of secondary metabolites 

produced by microorganisms, but Zheng [93] broadened our understanding of the role of 

these products as toxins, ionophores, bioregulators, and signal molecules produced by 

“metabolically talented” microbes. Actinobacteria produce 2/3 of antibacterial agents in use, 
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but are also important in biotechnology, medicine, and agriculture. A review of their 

extensive secondary metabolites by Barka et al. [66] include antibacterials, anifungals, 

antivirals, antihelminths, antitumor, immunosuppressive and immunostimulatory agents, 

biopesticides, herbicides, and plant growth promoters. Natural products are the most 

promising source of novel antibiotics and cave environments have great potential for the 

development of new bioactive microbial metabolites especially from Actinobacteria, which 

are dominant in lava caves [64].

The opposite of antibiotic production is antibiotic resistance; both are natural processes. A 

study of cultivatable oligotrophic isolates from Lechuguilla Cave, New Mexico, showed high 

levels of antibiotic resistance in an environment isolated from anthropogenic surface inputs 

for four million years [93].  Of 93 isolated strains from an oligotrophic environment, most 

were multiply drug-resistant to the 14 tested commercially available antibiotics. Resistance 

was more common against natural antibiotics, but not to all. There was little resistance 

shown to synthetic antibiotics. Streptomyces isolates overall showed the highest levels of 

resistance. The authors concluded that antibiotic resistance is natural and ancient, and “hard-

wired” in the microbial genome. If bacteria produce antibiotics to reduce competition for 

scarce resources, then oligotrophic cave environments are good places to look for production 

of novel bioactive metabolites. 

Impact of human visitors on bacterial diversity

We divided our LABE study caves into high visitation which are visited by about 30,000 

people a year, and low visitation which have controlled access and are rarely visited by 

researchers and park personnel, perhaps receiving up to 10 visitors some years. High and low 

visitation (Table 1A), are comparable in terms of alpha diversity and show no significant 

differences in microbial community structure. When you make the jump to Carlsbad Cavern

with over 400,000 visitors per year, Griffin et al. [94] reported significant human impacts of 

visitors on the microbiota. Using culture techniques they reported that Staphylococcus spp. 
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were the dominant bacteria in the air along tourist trails compared to Knoellia spp. off trail. 

Knoellia is a new genus of Actinobacteria first isolated from a cave in China [95]. Fungal 

spores of Penicillium and Aspergillus showed a general decrease with distance from the 

entrance, but with a peak in the lunch room where visitors rest, eat, and wait for the elevator 

to return to the surface. A second study in Griffin et al. [94] using molecular techniques 

showed Enterobacteriaceae dominating along the descent rail and in the lunchroom. They 

concluded that humans were important sources of non-indigenous microorganisms into 

Carlsbad Cavern, and recommended mitigation steps. There was only one Staphylococcaeae 

identified, and only 25 OTUs of Enterbacteriacae identified to the level of family detected at 

any LABE cave or surface sample. What we may be seeing is a threshold of visitors before we 

see human impacts. Right now, that threshold may be somewhere between 30,000 and 

500,000 visitors per year, and merits further study.

Conclusions

Overlap in OTUs between surface and cave sampled communities at LABE is only 11.12%, 

revealing that the subsurface cave bacterial communities are not a subset of the surface soil 

communities as previously assumed. Of particular significance are the differences in 

Actinobacteria, Alphaproteobacteria, Nitrospirae, and Gammaproteobacteria composition 

between surface and cave samples. Surface soil diversity is higher than that observed in cave 

samples and considerable novel diversity exists in both surface soil and cave mat samples. 

However, because many of the earlier studies are based on clone sequences that are limited in

number, this conclusion may change as more next generation sequencing is applied to these 

sites. Communities in different mat colors do not appear to differ substantially in 

composition, which is similar to the findings of Hathaway et al.[21].  The only 

environmental factors which did influence microbial diversity in our caves were distance of 

the sample site from the entrance and temperature, which correlate.

LABE microbial cave community diversity at the phylum and Proteobacteria class level is 
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comparable to diversity found in other major lava cave areas in New Mexico [8,10], Hawaiˋi 

[21,62], and the Azores [21,57,64,82]. Communities in different mat colors show significant

overlap but also many unique members that may contribute to the color of the mats in our 

study.  Comparison with other lave cave mat studies support a common core microbiome of 

Actinobacteria, Acidobacteria, Nitrospirae, and Alpha-, Beta-, Delta-, Gamma- 

Proteobacteria.

So what does account for the differences in mat colors in lava caves? Caves are not 

homogeneous environments. There are zones related to distance from the entrance; seasonal 

variations; three-dimensional geometry; differential cooling and deposition of minerals in 

lava caves; and microhabitats which may vary at the level of the individual grain. We think 

the microhabitat differences and the species composition at the microhabitat scale account 

for the color differences seen in the microbial mats.

Our study is the most extensive bacterial diversity study of lava caves to date, comparing the 

bacterial diversity in three colors of microbial mats across seven caves, and with surface soil 

from each cave. Variability inherent in sampling supports the need for replicated study of 

microbial community structure. Further studies should examine diversity in other lava cave 

areas around the world using newer sequencing technologies. There are preliminary 

indications of world-wide microbial biogeography and we should work to fill in the gaps.

Supporting Information

S1 Fig. Linear models of all environmental parameters plotted against bacterial richness of 

lava cave microbial mats. Grey area is the 95% confidence interval.

S2 Fig. Alpha diversity indices box plots of surface soils and cave microbial mats by color.

S3 Fig. Actinobacteria tree of samples from surface soils and cave microbial mats. The outer 
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bars are the proportion of each sequence found in either the cave or surface. Approximate 

maximum likelihood tree.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements

We thank personnel at Lava Beds National Monument, especially Shane Fryer, Shawn 

Thomas, Emma K. Smith, E. Brinley Buckley, David Riggs, and Nancy Nordstrom for 

assistance with field work, collection of mat samples and environmental data, and their 

continuing enthusiasm for the project. Shane helped us secure funding for the project. Bruce

Rogers, Joke Vansweevelt, and Pat Helton did sample collection, TDS, and climate 

monitoring in the caves, and surface support during the five days of the expedition. We’re 

especially thankful for Bruce Rogers’ help in drafting maps of the climate measuring stations 

and getting us interested in investigating LABE bacterial diversity. Kenneth Ingham was 

extremely helpful in photographing the caves, microbial mats, and science in action. We 

thank Abdul-Mehdi S. Ali for his analysis of our nutrient and organic carbon samples.

Author Contributions

Conceived and designed the experiments: DEN. Performed sample collection: DEN. 

Performed the experiments: KJH, EH, MNS. Analyzed the data: ASW, KHL, DEN. Wrote 

the paper: KHL, DEN, ASW. 

References

[1] Edwards KJ, Becker K, Colwell F. The deep, hot energy biosphere: Intraterrestrial life on 

earth. Ann Rev Earth Planet Sci. 2012;40: 551‒568.

58



[2] Depth records. Available: www.karstworlds.com/2012/08/krubera-voronya-record-

depth-record

[3] Palmer AN. Cave Geology. Dayton, OH: Cave Books; 2007.

[4] Léveillé RJ, Datta S. Lava caves and basaltic caves as astrobiological targets on Earth and 

Mars: A review. Planet Space Sci. 2010;58: 592‒598.

[5] Boston PJ, Ivanov MV, McKay CP. On the possibility of chemosynthetic ecosystems in 

subsurface habitats on Mars. Icarus. 1992;95: 300‒308.

[6] Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, et al. Cave 

biosignature suites: Microbes, minerals, and Mars. Astrobiol. 2001;1: 25‒55.

[7] Northup DE, Welbourn WC. Life in the twilight zone-Lava-tube ecology. NM Bur 

Mines Mineral Res Bull. 1997;155: 69‒81

[8] Northup DE, Connolly CA, Trent A, Peck VM, Spilde MN, Welbourn WC, et al. The 

nature of bacterial communities in Four Windows Cave, El Malpais National Monument, 

New Mexico, USA. Assoc Mex Cave Stu Bull. 2008;19: 119‒125.

[9] Garcia MG, Moya M, Spilde MN, Stone FD, Northup DE. 2009. Discovering new 

diversity in Hawaiian lava tube microbial mats. In: White WB (ed). Proc 15th Int Congr 

Speleol, Kerrvile, TX, USA, July 19-26, 2009. 2009; 1, Symposia Part 1: 364‒369.

 

[10] Moya M, Garcia MG, Spilde MN, Northup DE. Composition of bacterial mats in El 

Malpais National Monument, New Mexico, USA: Comparisons and contrasts with bacterial 

communities in Hawaiˋi  lava tubes. Proc 15th Int Congr Speleol. 2009;2: 709‒713.

59



[11] Northup DE, Hathaway JJM, Snider JR, Moya M, Garcia MG, Stone FD. Life in 

Earths lava caves: Implications for life detection on other planets. In: Hanslmeier A, Kempe 

S, and Seckbach J (eds.) Life on Earth and Other Planetary Bodies. Cellular Origin, Life in 

Extreme Habitats and Astrobiology Series. Berlin: Springer. 2012; p 459‒484. 

[12] Northup D, Lavoie KH. 2015. Microbial diversity and ecology of lava tubes.  In: Life in

Extreme Environments: Microbial Life of Cave Systems. Series Ed: Wagner R. Volume Ed. 

Engel AS. De Gruyter.  2015;3: 161‒192.

[13] Forti P. Genetic processes of cave minerals in volcanic environments: an overview. J 

Cave Karst Stu. 2005;76: 3–13.

[14] Northup DE, Melim LA, Spilde MN, Hathaway JJM, Garcia MG, Moya M, et al. Lava

cave microbial communities within mats and secondary mineral deposits: Implications for 

life detection on other planets. Astrobiol. 2011;2: 1‒18.

[15] White WB. Secondary minerals in volcanic caves: data from Hawaiˋi. J Cave Karst Stu. 

2010;72: 75‒85.

[16] Stoner MF, Howarth FG. Community structure and niche differentiation in Hawaiian 

lava tubes. In: Island Ecosystems: Biological Organization in Selected Hawaiian 

Communities. Mueller Dombois D, Bridges KW, Carson HL (eds) Hutchinson Ross Publ. 

Co., Stroudsburg PA, 1981; pp 318‒336.

[17] Poulson TL, White WB. The cave environment. Science. 1969;165: 971‒981.

[18] Culver DC, Pipan T. The Biology of Caves and Other Subterranean Habitats. Oxford 

60



UK. Oxford University Press; 2009.

[19] Christman MC, Culver DC, Madden MK, White D. Patterns of endemism of the 

eastern North American cave fauna. J Biogeogr. 2005;32: 1441‒1452.

[20] Culver DC, Master LL, Christman MC, Hobbs HH III. Obligate cave fauna of the 48 

contiguous United States. Conserv Biol. 2000;14: 386–401. doi: 10.1046/j.1523-

1739.2000.99026.x

[21] Hathaway JJM, Garcia MG, Moya Balasch M, Spilde MN, Stone FD, Dapkevicius 

MdLNE, et al. Comparison of bacterial diversity in Azorean and Hawaiian lava cave 

microbial mats. Geomicrobiol J. 2014a;31(3): 205‒220.

[22] Laiz L, Groth I, Gonzalez I, Saiz-Jimenez C. Microbiological study of the dripping 

waters in Altamira Cave (Santillana del Mar, Spain). J Microbiol Meth. 1999 36: 129‒138.

[23] Simon KS, Benfield EF, Macko SA. Food web structure and the role of epilithic 

biofilms in cave streams. Ecology. 2003;84: 2395‒2406.

[24] Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, et al. Profiling bacterial 

diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. 

Microb Ecol. 2013;65: 371‒383.

[25] Ortiz M, Legatzki A, Neilson JW, Fryslie B, Nelson WM, Wing RA, et al. Making a 

living while starving in the dark: metagenomic insights into the energy dynamics of a 

carbonate cave. ISME J. 2014;8(4): 478‒491, doi:10.1038/ismej.2013.159

[26] Wu Y, Tan L, Liu W, Wang B, Wang J, Cai Y, et al. Profiling bacterial diversity in a 

61



limestone cave of the western Loess Plateau of China. Front. Microbiol. 2015;6: 244. doi: 

10.3389/fmicb.2015.00244

[27] Lava Beds National Monument, CA. http://www.nps.gov/labe/

[28] Donnelly-Nola JM, Natheson M, Champion DE, Ramsey DW, Lowenstern JB, Ewert 

JW. Volcano hazards assessment of Medicine Lake Volcano, Northern CA. US Geolog Surv 

Sci Invest Rep. 2007-5174-A. 26 p.

[29] Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR. Tangential flow filtration and 

preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol. 

1990;56: 2572‒2575.

[30] Simon KS, Pipan T, Culver DC. A conceptual model of the flow and distribution of 

organic carbon in caves. J Cave Karst Stu. 2007; 69:279–284.

[31] Clesceri LS, Greenberg AE, Eaton AD (eds.). 1999. Standard Methods for the 

Examination of Water and Wastewater. Denver, CO: Am Pub Health Assoc.

[32] Pfaff JD, Hautman DP, Munch DJ. 1997. Method 300.1 Determination of inorganic 

anions in drinking water by ion chromatography. Cincinnati, OH: National Exposure 

Research Laboratory, Office of Research and Development, U.S. EPA.

 [33] Northup DE, Snider JR, Spilde MN, Porter MN, Van deCamp JL, Boston PJ, et al. 

Diversity of rock varnish bacterial communities from Black Canyon, New Mexico. J 

Geophys Res. 2010;115, doi:10.1029/2009JG001107

[34] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 

62



QIIME allows analysis of high-throughput community sequencing data. Nature Meth. 

2007;7(5): 335‒336.

[35] Mercier C., Boyer F, Bonin A., Coissac E. SUMATRA and SUMACLUST: fast and 

exact

comparison and clustering of sequences. SeqBio Invited Talks. 2013:27-29 Available:

http://www.gdr-bim.cnrs.fr/seqbio2013/wp-content/uploads/2013/12/seqbio2013-

actes.pdf#page=28

[36] Edgar RC. Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics. 2010;26: 2460-2461. doi: 10.1093/bioinformatics/btq461

[37] McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An 

improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses 

of bacteria and archaea. ISME J. 2012;6(3): 610–18. doi: 10.1038/ismej.2011.139

[38] Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. 

PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 

2010; 26(2): 266-7.

[39] Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees 

for large alignments. PLoS One. 2010 Mar 10;5(3):e9490. 

doi:10.1371/journal.pone.0009490

[40] McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis 

and graphics of microbiome census data. PLoS One. 2013 Apr 22. doi: 

10.1371/journal.pone.0061217

63



[41] Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

[42] R development core team. R: A language and environment for statistical computing. 

Vienna: R foundation for statistical computing. 2012. Available: http://www.R-project.org.

[43] Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. Package

‘vegan’. Community ecology package, version. 2013 Dec 12; 2(9).

[44] Love M, Anders S, Huber W. Differential analysis of count data–the DESeq2 package. 

Genome Biol. 2014 May 13; 15: 550.

[45] Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and 

annotation of phylogenetic and other trees. Nucl Acids Res. 2016 Apr 19:gkw290.

[46] Zhang JL, Mi XC, Pei NC. Phylotools: Phylogenetic tools for ecologists. R package 

version 0.0. 2010;7: 201019.

[47] EPA regulated water contaminants. Available: https://www.epa.gov/ground-water-and-

drinking-water/table-regulated-drinking-water-contaminants

[48] Chao A. Non-parametric estimation of the number of classes in a population. Scand J 

Stat. 1984;11: 265–27.

[49] Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, et al. The 

under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. 

Biochem. 2011;43: 1450‒1455. doi:  10.1016/j.soilbio.2011.03.012

[50] Skerman VBD. Genus Chitinophaga Sangkhobol and Skerman, 285VP. In Bergey's 

64



Manual of Systematic Bacteriology, 1st edn,. Eds; Staley JT, Bryant MP, Pfennig N, Holt 

JG. Baltimore: Williams & Wilkins. 1989;3: 2074‒2077.

[51] Lim JH, Baek S-H, Lee S-T. Ferruginibacter alkalilentus gen. nov., sp. nov. and 

Ferruginibacter lapsinanis sp. nov., novel members of the family ‘Chitinophagaceae’ in the 

phylum Bacteroidetes, isolated from freshwater sediment. IJSEM. 2009;59: 2394‒2399. doi:

10.1099/ijs.0.009480-0 

[52] Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, et al. 

Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading 

Gammaproteobacterium. Int J Syst Evol Microbiol. 2008; 58(Pt 9):2215‒2213. doi: 

10.1099/ijs.0.65342-0

[53] Engel AS, Northup DE. Caves and karst as models for advancing microbial sciences. In:

Martin JB, White WB. Frontiers of Karst Research: Proceedings and Recommendations of 

the Workshop Held May 3 through 5, 2007 in San Antonio, Texas, USA. Leesburg, VA: 

Karst Waters Institute, Inc. 2008; pp. 37‒48.

[54] Gomez-Alvarez V, King GM, Nusslein K. Comparative bacterial diversity in recent 

Hawaiian volcanic deposits of different ages. FEMS Microb Ecol. 2007;60: 60‒73.

[55] Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 

16S rRNA genes. Appl Environ Microbiol. 2006;72: 1719‒1728.

[56] Porter ML, Engel AS, Kane TC, Kinkle BK. Productivity-diversity relationships from 

chemolithoautotrophically based sulfidic karst systems. Int J Speleo. 2009;38: 27‒40.

[57] Riquelme C, Rigal F, Hathaway JJM, Northup DE, Spilde MN, Borges PA, et al. Cave 

65



microbial community composition in oceanic islands: disentangling the effect of different 

colored mats in diversity patterns of Azorean lava caves. FEMS Microbiol Ecol. 2015b;91: fiv

141. Doi: 10.1093/femsec/fiv141.

[58] Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive

survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME 

J. 2009;3: 442‒453.

[59] Legatzki A, Ortiz M, Neilson JW, Casavant RR, Palmer MW, Rasmussen C, et al. 

Bacterial and archaeal community structure of two adjacent calcite speleothems in Kartchner

Caverns, Arizona, USA. Geomicrobiol. J. 2011;28: 99‒117.

[60] Legatzki A, Ortiz M, Neilson JW, Casavant RR, Palmer MW, Rasmussen C, et al. 

Factors influencing observed variations in the structure of bacterial communities on calcite 

formations in Kartchner Caverns, AZ, USA. Geomicrobiol J. 2012; 29(5): 422‒434.

[61] Snider JR, Goin C, Miller RV, Boston PJ,  Northup DE. Ultraviolet radiation 

sensitivity in cave bacteria: Evidence of adaptation to the subsurface? Int J Speleol. 2009; 

38(1):13‒22. 

[62] Spilde MN, Northup DE, Caimi NA, Boston PJ, Stone FD, Smith S. Microbial mats 

communities in Hawaiian lava caves. Proc Int Symp Vucanospeleo. 2016; in press.

[63] Northup D, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, et al. 2003. Diverse

microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves.

Environ Microb. 2003;5(11): 1071–1086.

[64] Riquelme C, Hathaway JJM, Dapkevicius M de LNE, Miller AZ, Kooser A, Northup 

DE, et al. Actinobacterial diversity in volcanic caves and associated geomicrobiological 

66



interactions. Front Microbiol. 2015a; : 1‒16. Doi 10:3389/fmicb.2015.0134

[65] Gerber NN. Volatile substances from actinomycetes: Their role in the odor pollution of

water. CRC Crit Rev Microbiol. 1979; 7(3):191–214.

 [66] Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, et al. 

Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 

2016;80: 1–43. doi:10.1128/MMBR.00019-15

[67] Kanaparthi D, Pommerenke B, Casper P, Dumont MG. Chemolithotrophic nitrate-

dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3.  ISME 

J.2013;7(8): 1582‒1594.

[68] Porca E, Jurado V, ŽGur-Bertok D, Saiz-Jimenez C, Pašic L. Comparative analysis of 

yellow microbial communities growing on the walls of geographically distinct caves indicates 

a common core of microorganisms involved in their formation. FEMS Microbiol Ecol. 

2012;81: 255‒266.

[69] Snider JR. Comparison of microbial communities on roots, ceilings and floors of two 

lava caves in New Mexico. MSci Thesis. University of New Mexico; 2010. Available: 

http://repository.unm.edu/handle/1928/11135

 [70] Maskey RP, Kock I, Helmke E, Laatsch H. Isolation and structure determination of 

phenazostatin D, a new phanazine from a marine actinomycete isolate Pseudonocardia sp. 

B6273. Z Naturforsch. 2003;58: 692‒694.

[71] Qin S, Su YY, Zhang YQ, Jiang CL, Xu LH, Li WJ. Pseudonocardia ailaonensis sp. 

nov., isolated from soil in China. Int J Syst Evol Microbiol. 2008;58: 2086‒2089.

67



[72] Lee SD. Amycolatopsis jejuensis sp. nov. and Amycolatopsis halotolerans sp. nov., novel

actinomycetes isolated from a natural cave. Int J Syst Evol Microbiol. 2006;56: 549‒553 

doi: 10.1099/ijs.0.63881-0

[73] Farris MH, Olson JB. Detection of Actinobacteria cultivated from environmental 

samples reveals bias in universal primers. Lett Appl Microbiol. 2007;45(4): 376‒381.

[74] Barton HA, Taylor NM, Kreate MP, Springer AC, Oehrle SA, Bertog JL. The impact 

of host rock geochemistry on bacterial community structure in oligotrophic cave 

environments. Int J Speleol. 2007;36(2): 93–104.

[75] Barton HA, Jurado V. What’s up down there? Microbial diversity in caves. Microbe. 

2007;2: 132‒138.

[76] Bérdy J. Bioactive microbial metabolites: A personal view. J Antibiot. 2005;58(1): 1‒

26.

[77] Holmes AJ, Bowyer J, Holley MP, O'Donoghue M, Montgomery M, Gillings MR. 

Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria 

are widespread in Australian arid soils. FEMS Microbiology Ecology. 2000 Aug 1;33(2):111-

20.

[78] Northup DE, Stefánsson ÁB, Medina MJ, Caimi NA, Kooser AS.  Microbial 

communities of Icelandic lava caves. Proc Int Symp Vulcanospeleol. 2016: in press.

[79] Barton HA, Northup DE. 2007. Geomicrobiology in cave environments: Past, current, 

and future perspectives. J Cave Karst Stu. 2007; 69: 163–178.

68



[80] Northup DE, Lavoie KH. Geomicrobiology of caves: a review. Geomicrobiol J. 

2001;18: 199‒222.

 [81] Jones AA, Bennett PC. Mineral microniches control the diversity of subsurface 

microbial populations. Geomicrobiol J. 2014;31: 246‒261.

[82] Hathaway JJM, Sinsabaugh RL, Dapkevicius MdLNE, Northup DE. Diversity of 

ammonia oxidation (amoA) and nitrogen fixation (nifH) genes in lava caves of Terceira, 

Azores, Portugal.  Geomicrobiol J. 2014b;31: 221‒235.

[83] Levy DB. Geochemical trends in selected Lechuguilla Cave pools. J Cave Karst Stud. 

2007 69(3): 342–350.

[84] Graening GC. Ecosystem dynamics of an Ozark Cave. PhD Dissertation, University of 

Arkansas; 2000. Available: http://www.uark.edu/depts/ecology/docs/DISSERTATION.PDF

[85] Thurman EM. Organic Geochemistry of Natural Waters. Kluwer Academic 

Publications; 1985.

[86] Hutchins BJ, Engel AS, Nowlin WH, Schwartz BF. Chemolithoautotrophy supports 

macroinvertebrate food webs and affects diversity and stability in groundwater communities. 

Ecology.  2016;97(6):  1530–1542.

[87] Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete 

nitrification by Nitrospira bacteria. Nature. 2015;528: 504–509.

[88] Tetu SG, Breakwell K, Elbourne LDH, Holmes AJ, Gillings MR, Paulsen IT. Life in 

69

http://www.uark.edu/depts/ecology/docs/DISSERTATION.PDF


the dark; metagenomic evidence that a microbial slime community is driven by inorganic 

nitrogen metabolism. ISME J. 2013;7: 1227‒1236.

[89] Lazzarini A, Cavaletti L, Toppo G, Marinelli F. Rare genera of Actinobacteria as 

potential producers of new antibiotics. Antonie Van Leeuwenhoek. 2000;78: 399‒405.

[90] Gabriel CR, Northup DE. Microbial Ecology: Caves as an extreme habitat. In: Cave 

Microbiomes: A Novel Resource for Drug Discovery. Cheeptham N (ed). Springer. 2013. 

pp. 85‒108.

[91] Pelaez F. The historical delivery of antibiotics from microbial natural products – can 

history repeat? BioChem Parmacol. 2006; doi:10.1016/j.bcp.2005.10.010.

[92] Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnson MD, et al. 

Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE. 2012;7(4): 

e34953. doi:10.1371/journal.pone.0034953

[93] Zhang L. Integrated approach for discovery of novel drugs from microbial natural 

products. In Zhang L, Demain AL (eds). Natural Products. Drug Discovery and Therapeutic

Medicine. Humana, Totowa, NJ. 2005; p. 30‒55.

 [94] Griffin DW, Gray MA, Lyles MB, Northup DE. The transport of nonindigenous 

microorganisms into caves by human visitation: a case study at Carlsbad Caverns National 

Park. Geomicrobiol J. 2014;31: 175‒185

[95] Groth I, Schumann P, Schütze B, Augsten K, Stackebrandt. Knoellia sinensis gen. nov.,

sp. nov. and Knoellia subterranea sp. nov., two novel actinobacteria isolated from a cave. Int 

70



J Sys Evol Microb. 2002; 52: 77‒84.

S1

71



S2

72



73



S3

74



Local and Landscape Factors Affecting the External Bacterial Diversity on Bats 
in the Southwestern United States

Ara S. Kooser1, Jason C. Kimble1, Jesse M. Young1, Debbie C. Buecher2, Ernest W. Valdez3,

Andrea Porras-Alfaro4, Kaitlyn J. Hughes, Jennifer J. M. Hathaway1, and Diana E. 

Northup1*

 

1Department of Biology, University of New Mexico, Albuquerque, United States of America

2Buecher Biological Consulting, Tucson, United States of America

 

3United States Geological Survey, Fort Collins Science Center, Biology Department, MSC03

2020, University of New Mexico, Albuquerque, United States of America

 

4Department of Biological Sciences, Western Illinois University, Macomb, United States of 

America

*Corresponding author

E-mail: dnorthup@unm.edu

Abstract

Recently microbiomes of humpback whales, dolphins, shrimp, and external body 

parts on humans have captured the imagination of scientists and provide a new framework 

for microbial ecology, drug discovery, conservation management, and important links to 

macroecology. However, we have little to no understanding of the external bacteria 

microbiome on bats or factors that influence the structure of these communities. White-nose

syndrome (WNS) is a newly emergent disease that results in moderate to very high mortality 

in affected bats. Our results provide a first insight into the distribution of external bat 
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bacteria in a pre-WNS environment.  For this study we used 16S rRNA gene 454 

pyrosequencing on 186 bats from 14 species sampled across southeastern New Mexico to 

northwestern Arizona. The microbial communities on bats in the region were highly variable

with representatives from Actinobacteria, Firmicutes, Nitrospira, and Cyanobacteria. The 

patterns could be partly explained by environmental and local factors, with cave-caught bats 

sharing more similar external microbial communities based on Bray-Curtis dissimilarity. Bats

caught in caves had a distinct microbial community by compared to those that were netted 

on the surface. Our results also suggest that bats caught in the cave have a more 

homogenized external microbiome. 

Introduction 

There are approximately 45 species of bats that occur throughout the continental 

United States, with over half of these species found in the Southwest (Humphrey, 1975; 

Hall, 1981) (Figure 1). The high diversity of bats in the Southwest, particularly in southern 
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Figure 1. Map of bat species richness in the United States (US) and Canada. Total number 

of bat species occurring in each area calculated by counting the number of overlapping 

species distributions, as represented by the US National Atlas Bat Ranges geospatial data set 

(available at https://catalog.data.gov/dataset/north-american-bat-ranges-direct-download). 

Warmer colors represent areas with higher species richness and cooler colors represent areas 

with lower species richness. Map courtesy of P. Cryan, US Geological Survey.

Arizona and New Mexico, is attributed to the presence of some species occurring at the 

northern limits of their range from Mexico (Findley, 1975; Hoffmeister, 1986; Frey, 2004). 

Ecology and topography of the Southwest (e.g., Colorado Plateau and Sky Islands) also likely

contribute to suitable habitat that is used by many bat species for roosts. For example, several

species such as the spotted bat (Euderma maculatum) often use crevices in high, sandstone 
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cliff faces for day roosts (O’Shea et al., 2011).

White-nose syndrome (WNS) was introduced into the eastern region of the United 

States 10 years ago (Frick et al., 2010). To date this disease, caused by a cold-loving fungus 

(Pseudogymnoascus destructans), has killed millions of hibernating bats in the East and is 

spreading westward. Given the high diversity of bat species in the western and southwestern 

United States, the potential threat to bat diversity at a regional scale is very high. P. 

destructans is a novel species for cave ecosystems in North America and it is likely affecting 

the natural microbiota of bats and caves. It is likely that some of the naturally occurring 

microbiota found on bats have undergone various interactions with other novel microbiota 

over time (Phillips, et al., 2012), with the present faunal composition representing the more 

resilient or even beneficial species to the ecosystem or organism where they reside. However, 

most current microbiome studies on bats focus on the gut or fecal microbiome (Carrillo-

Araujo, et al., 2015; Borda, et al., 2014), and knowledge on a regional scale of the external 

bat microbiome in a WNS-free area is lacking. The influence of local factors including 

abiotic and biotic variables in geographic patterns of the bat external microbiome at the local

and regional scale still needs to be determined. 

In this study we used 186 bats collected from southeastern New Mexico to 

northwestern Arizona (Figure 2) to gain insights into regional scale patterns of external bat 

78



Figure 2. Map showing the general locations of the sampling sites in the southwestern 

United States. PARA (Grand Canyon Parashant National Monument), ELMA (El Malpais 

National Monument), FS (Fort Stanton-Snowy River Cave National Conservation Area), 

HGL (High Grasslands), CCNP (Carlsbad Caverns National Park). Elevation base map by 

Stamen, CC-BY OpenStreetMap Terrain.

bacteria and the factors that drive these patterns. Specifically, we address two questions: First,

to what extent are the changes in distributions of bat bacteria a function of geographic 

location, ecoregion (Omernik and Griffith, 2008), and climatic variables. Second, we 

examined whether being cave-caught (6-8 hours in the cave before capture), in contrast to 

surface-netted, had a significant effect on the external bacteria community on bats. This may 

be significant given that bats are susceptible to WNS while hibernating in caves and 

differential exposure to microbes might explain differing levels of susceptibility. 

Methods   

Sampling. We sampled 186 bats belonging to 14 species using 16S rRNA gene analysis for 

external microbiome identification. These samples came from a total of five study locations 

in the Southwest: Grand Canyon-Parashant National Monument (PARA), in Arizona, and 

Carlsbad Caverns National Park (CCNP), Fort Stanton-Snowy River Cave National 

Conservation Area (FS), El Malpais National Monument (ELMA), and Bureau of Land 

Management high grasslands (HGL) caves near Roswell, in New Mexico. Bat sample 

collection was allowed under the following permits: 2014 Arizona and New Mexico Game 

and Fish Department Scientific Collecting Permit (SP670210, SCI#3423, SCI#3350), 

National Park Service Scientific Collecting Permit (CAVE-2014-SCI-0012, ELMA-2013-

SCI-0005, ELMA-2014-SCI-0001, PARA-2012-SCI-0003), Fort Collins Science Center 

Standard Operating Procedure (SOP) SOP#: 2013-01, and an Institutional Animal Care 

and Use Committee (IACUC) Permit from the University of New Mexico (Protocol #15-

101307-MC) and from the National Park Service (Protocol 

#IMR_ELMA.PARA.CAVE.SEAZ_Northup_Bats_2015.A2).
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Samples were collected from 2012 through 2014. Cave-caught bats were plucked 

from the walls of the caves in ELMA, FS, and HGL and netted in Carlsbad Cavern in 

CCNP in a location along their flight path out of the cave. Cave-caught bats were typically 

sampled 6-10 hours after returning to the cave in the early morning. Surface-caught bats 

were netted using sterilized nets near water sources in CCNP, ELMA, FS, and PARA. 

Captured bats were handled with clean gloves and swabbed for DNA before other 

measurements were taken to limit contamination by human-associated microbiota. The skin 

(i.e., ears, wings and uropatagia) and furred surfaces of each bat were swabbed with sterile 

swabs soaked in sterile Ringer’s solution (Hille, 1984). Each swab was placed in a sterile 

1.7ml snap-cap microcentrifuge tube containing 100 ul of RNAlater, and immediately 

frozen in a liquid nitrogen dry shipper or placed on dry ice. Samples were transported to the 

University of New Mexico and stored in a -80°C freezer. We used MR DNA Molecular 

Research LP, Shallowater, Texas (http://www.mrdnalab.com/) for genomic DNA extraction 

and 454 sequencing diversity assays of bacterial 16S rRNA (27F universal bacterial primer). 

The 186 samples were sequenced in nine runs. Barcoded amplicon sequencing processes 

were preformed  by MR DNA® under the trademark service (bTEFAP®). The 16S rRNA 

gene 27F PCR primers were used in a single-step 30 cycle PCR using the HotStarTaq Plus 

Master Mix Kit (Qiagen, USA) under the following conditions: 94°C for 3 minutes, 

followed by 28 cycles (5 cycle used on PCR products) of 94°C for 30 seconds, 53°C for 40 

seconds and 72°C for 1 minute, after which a final elongation step at 72°C for 5 minutes was

performed. Sequencing was performed at MR DNA on an Ion Torrent PGM following the 

manufacturer’s guidelines.

454 Processing. All 454 reads were processed in QIIME (Caporaso, et al., 2010). Bacterial 

sequences shorter than 200 bp or longer than 500 bp were exclude and bases with a quality 

score lower than 30. The quality control and trimming was carried out using the 

split_libraries command. Bacterial samples were denoised and clustered (at the 97% level) 

with pick_denovo_otus.py pipeline using the sumaclust option (Mercier, et al., 2013). 
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Chimera checking was done using usearch (Edgar, 2010) to detect artifacts created during 

sequencing. Taxonomy was assigned using the Greengenes 13_8 core data set (McDonald, et

al., 2012) with uclust. This yielded a total of 186 bacterial 16S rRNA gene samples. 

Statistical analysis. Alpha diversity indices were carried out in QIIME using 

alpha_diversity.py command. NMDS analysis was carried out using the phyloseq package 

(McDonald, et al., 2012 McMurdie and Holmes, 2013) and ggplot2 (Wickham, 2009) in R 

(R development core team, 2012). Beta diversity was analyzed using non-metric dimensional

scaling (NMDS) with the Brays-Curtis distance. The Brays-Curtis distance was picked 

because it is invariant to changes in units and unaffected by additions and removals of 

species, and NMDS was chosen because it entails fewer assumptions about the data. Random

forest models were run in QIIME (supervised_learning.py) using 10-fold cross-validation 

with 1,000 trees. Random forest models, a type of supervised classification, was used to test 

the predictive power of the ecological variables for the NMDS. The goal of random forest 

model is to classify unlabeled communities based on a set of labeled training communities. 

This will generate a ratio of estimated generalization error and baseline error. A reasonable 

ratio of the estimated generalization error compared to the baseline error should be two or 

greater, i.e. the random forests classifier does at least twice as well as random guessing for an 

unlabeled community. Mantel tests were carried out using the vegan (Oksanen, et al., 2007) 

package in R with 999 permutations. Multiple regression on distance matrices (MRM) was 

done in the ecodist (Goslee and Urban, 2007) package in R with 1000 permutations. 

Bayesian t-test was carried out in the BayesianFirstAid (Bååth, 2013) package for R using 

bayes.t.test. The paired geographic distance matrix for these analyses was calculated from the 

latitude and longitude using an R function written by Peter Rosenmai, last accessed at: 

http://eurekastatistics.  com/  calculating-  a  -  distance-  matrix-  for-  geographic-  points-  using-  r 

March, 4th, 2016. Sorting of the distance matrix was done using the dendextend (Galilee, 

2015) package. Retrieval of the paired scores (distance and similarity) was done using an R 

function from http://stackoverflow.  com/  questions/21180464/distance-  matrix-  to-  data-  frame-

pairs-  in-  r, last accessed March, 4th, 2016. Environmentally associated taxa were taken from 
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Barberán et al, 2015 with the exception of the freshwater taxa (Newton, et al., 2011) and 

cave taxa (S5 table). 

Biome files, QIIME mapping files, workflow, and R scripts are available at 

https://github.com/bioinfonm/microBat/tree/batmicrobiom and are archived at 

https://zenodo.org/record/17577#. All raw sequence data with the quality files and mapping 

files are available at: [sequence storage link]. Full metadata table is available in the 

supplemental data (S1 table). Cave names and location are encoded to protect park and 

BLM resources. The full cave names and sampling locations are protected by law by their 

respective agencies. 

Results and discussion

Microbial diversity on bats. Our study stands apart from culture-based studies and other next

generation sequencing studies by focusing on the diversity of the external bacteria from 186 

bats (S2 Table). The number of reads after quality control range from 843 to 20515.  

Sample coverage was measured by calculating the Good's coverage. Good's coverage values 

ranged from 81% to 99% with an average of 95.3%.  The average bat sampled had ~6,000 

taxa on its external surfaces out of a total of 36,042 bacterial taxa identified across all bat 

swabs. OTUs of the 36,042 taxa were assigned to 47 phyla, 157 classes, 340 orders, 576 

families, and 1,143 genera of Bacteria. Twenty-seven classes, 113 orders, 292 families and 

621 genera had no representatives in the sequence database. The number of different 

bacterial phylotypes (richness) did not vary in a consistent manner across geographic distance

[Surface-netted samples Rm= 0.06, P= 0.0046 ; cave-caught samples Rm= 0.09, P= 0.0039; 

Mantel test].

Bats sampled from cave-caught bats were dominated by the phylum Actinobacteria, 

while surface-netted bats were dominated by Cyanobacteria, Actinobacteria, and 

Alphaproteobacteria. Most of the phylotypes were restricted to relatively few samples with 

very few shared taxa. Eighty percent of surface-netted bats shared 15 phylotypes. In cave-

caught bats, 80% of the samples shared only 8 phylotypes. Across 80% of all bats sampled 
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only 6 phylotypes were shared and they belonged to the classes Actinobacteria, Flavobacteria,

and Gammaproteobacteria. These bacterial classes are widely distributed across a range of 

environments. Bats are likely exposed to bacteria common in air, soil, and chloroplasts. 

Given the ability of bacteria to disperse over long ranges one might expect surface-netted bat 

bacterial communities to be more homogenous than caves but this is not the case. In 

addition, there were a large number of Chloroplasts hits across all samples. 

Common bacteria found in the air above guano piles  included: Chryseomonas, 

Klebsiella, Micrococcus, Salmonella, Staphylococcus, and Streptococcus in a culture 

dependent study (Borda, et al., 2014) . Bacillus, Enterobacter, Enterococcus, Escherichia, 

Klebsiella, Pantoea, Pseudomonas and Serratia were found in the gut of the short-nosed fruit

bat (Daniel, et al., 2013). On the ocular surfaces (Leigue, et al., 2014) of 36 bats the most 

common isolated bacteria were Staphylococci, Bacillus, Corynebacterium, Shigella, Hafnia, 

Morganella, and Flavobacterium. In our study many of the same bacterial genera were 

present on the external surfaces of bats. The exception was the lack of Chryseomonas, 

Klebsiella, Samonella, Pantoea, Serratia (found in six samples in low amounts), Shigella, and 

Hafnia in our samples. 

Structuring of Community Similarity Patterns. The bacterial community composition was 

highly variable within a sampling sites and across geographic regions. Community similarity 

patterns suggest that factors such as location (e.g. cave-caught vs. surface-netted) and 

ecoregion help to structure the bacterial communities on bats (Figure 3 and 4). Cave-caught 
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Figure 3. Similarity in the composition of the bacterial communities was quantified using 

NMDS (stress = 0.084) with the Brays-Curtis distance metric. Symbols are colored by 

location of capture. Samples closer together represent samples with more similar bacterial 

communities. The samples tend to cluster by cave-caught or surface-netted.
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Figure 4. Similarity in the composition of the bacterial communities was quantified using 

NMDS (stress = 0.084) with the Brays-Curtis distance metric. Symbols are colored by EPA 

Ecoregion IV. Samples closer together represent samples with more similar bacterial 

communities. The grey line represents the split between surface-netted and cave-caught bats. 
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or surface-netted was the strongest driver of the NMDS. 

Community similarity pattern variables were tested by using a random forest model. 

Random forest models were minimally successful for determining sampling site (2.76), bat 

species (2.28), and seasonality (2.61) associated with each sample. The models were 

successful for determining cave-caught or surface-netted with a ratio of 8.43 and ecoregion 

with a ratio of 3.20. Bacterial community similarity was related to geographic distance 

(Figure 5). Communities that were geographically closer shared more similar communities,

as indicated by a significant Mantel test [Rm=0.09, P=0.003], but the regression coefficient 

was weak. A similarly, significant but weak effect has been seen in a continental scale study of

dust-borne bacteria (Barberán, et al., 2015). 

Other microbiome projects from household dust, to whales and shrimp noted that 

factors such as net primary productivity (NPP), rainfall, temperature, and seasonality were 

correlated with patterns of bacterial richness and diversity (Apprill, et al., 2014; Larsen, et al.,

2015). Using multiple regression on distance matrices (MRM) on our target variables, we 
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determined other factors correlated with richness, similarity, and phylogenetic diversity (as 

measured by Faith’s PD) (Table S3). For all bat samples, richness was best correlated with 

soil pH and bat surface area [overall correlation: MRM R2=0.026 (P = 0.003)]. Similarity, as 

represented by the MDS1 (axis 1), was correlated with mean annual precipitation, mean 

annual temperature, soil organic carbon, soil pH, and log of NPP [overall correlation: MRM

R2=0.24 (P = 0.001)]. For phylogenetic diversity, surface soil pH and bat surface area 

mattered most [overall correlation: MRM R2=0.034 (P = 0.001)]. However, it is likely that 

climatic, soil, and bat variables influence cave-caught or surface-netted bats differently (Table

S4). Climate, NPP, and soil makeup are highly linked, so it is difficult to assign which 

factors are directly responsible for structuring the bacterial communities on bats.

Effects of cave and surface. Basic information on how roosting in a cave or flying on the 

surface affect a bat’s external microbiome is lacking. This question is important in light of 

WNS. Since bats contract WNS while hibernating in caves, it is possible that the external 

microbiome may offer natural defenses against WNS. Thus, the overall distribution of 

bacteria among phyla shifted between cave-caught or surface-netted bats (Fig 6) after a 

period of 6-8 hours is important for bats vulnerable to WNS. Cave-caught bats have 

proportionally more Actinobacteria and Nitrospira while surface-netted bats had 

proportionally more Cyanobacteria, Firmicutes, and Synergistetes. Similar shifts in 

community structure between surface soil and cave samples were seen in a carbonate cave in 

Arizona (Ortiz, et al., 2014) and the photic and aphotic zone in two caves in the Antarctic 

(Tebo, et al., 2015). 

In addition to seeing the effects of roosting in the cave on the external microbiome, 

we expected the source of microbes to vary between cave-caught and surface netted bats. To 

test this hypothesis, we identified specific bacterial taxa typically associated with 

environmental sources. We visualized source associated taxa using violin plots (Fig 7). Violin 

plots are similar to box plots but also show the probability density at a given value. 

Environmentally associated taxa included sources from: plants (Chloroplasts), soil, insect, 

freshwater, and caves. We would expect that for bats netted on the surface there would be 
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proportionally more surface-associated taxa than for cave-caught bats. For example, we 

would expect more plant or freshwater associated bacteria in bats netted on the surface. We 

did detect differences, using a Bayesian t-test, in the mean proportions for plant associated 

taxa (BEST mean difference for cave -0.11, 95% CI -0.15 - -0.083) and weak evidence for 

cave associated taxa (BEST mean difference for cave 0.058 , 95% CI 0.017-0.061). There 

was no evidence for differences between insect, soil, and freshwater associated taxa 

proportions (BEST mean difference for cave -0.00047, -0.0077, and -0.0026, respectively). 

We hypothesize that the few samples with high freshwater associated taxa are likely bats who 

were netted shortly after dipping into local water sources. In addition there were several 

samples (~20) with high numbers of insect-associated taxa; these likely belong to bats that 

had recently fed on insects before being netted or had a high parasite load. Future bat 

microbiome studies will test these hypotheses. 

Our results show that the external microbial community on bats follows similar local 

and regional scale patterns to household dust and internal bat microbiome studies. We might

expect some of the microbial patterns to be driven by differences in rates of bacterial 

dispersion. Unmeasured variables can contribute to both local and regional patterns. For 

example: average plant height and composition at a sampling site, local bat foraging and 

roosting behavior might influence the communities on a smaller scale.  We can show the 

importance of sourcing associated taxa with bats, i.e foraging habits. Our data show that 

surface-caught bats carry proportionally more plant taxa (Chloroplasts), whereas cave 

roosting bats carry more cave taxa (Nitrospira and Actinobacteria). The bacteria found on 

bats caught in the cave tend to be more homogeneous (Fig 6). Bats in caves are likely 

exposed to cave bacteria and a reduced number of surface taxa. The bats caught in caves 

trended towards having more Actinobacteria while other taxa (except Nitrospira) were 

reduced in porpotions of OTUs when compared with surface caught bats. 
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predicted from the linear model. 

Figure 6. Proportion of phyla (with Proteobacteria by class) of all bats that were cave-caught 

or surface-netted. Cave bat photo by Debbie Buecher. Surface-netted bat photo by Kenneth 

Ingham.

Figure 7. Square root proportion of bacterial sequences identified as indicator taxa of cave-

caught or surface-netted bats. Scale is the proportion of the total number of OTUs in a 

sample. 

Metabolic asymmetry drives the distribution of marine predators

John M. Grady, Ara Winter, Brian Maitner, James H. Brown, Kristin Kaschner, Derek
Tittensor, Anthony Dell, Felisa Smith 

Endothermic mammalian and avian lineages have independently invaded the sea over a 

dozen times during the Cenozoic and are ecologically significant predators in many habitats. 

Remarkably, the radiation of endotherms has occurred primarily in cold, thermally stressful 

waters, and counter to general biogeographic patterns of diversity. Here we link metabolism 

to biogeography by showing that the energetic constraints on foraging lead to metabolic and 

foraging asymmetries that favor endotherms in cold waters. We compile a comprehensive 

database of over one thousand species of large predatory fish, sharks, reptiles, mammals and 

birds to assess global patterns of distribution and consumption at sea, and derive theory to 

link foraging success to metabolism. After controlling for food availability and other factors, 

thermal drivers of consumption lead to ~20fold increase in mammal consumption and 

abundance from the equator to the poles. This corresponds to an increase in taxa with slower

and solitary feeding styles among endotherms as prey become easier to capture. An increase 

in abundance and foraging breadth can account for the striking patterns of richness in 

marine endotherms. 
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Endothermic mammals and birds, such as cetaceans, pinnipeds, and penguins, are top 

predators in the ocean, structuring trophic interactions, community organization, and 

ecosystem fluxes of energy and matter. Endotherms have independently invaded the sea over 

a dozen times1,2 despite numerous hurdles to entry, including the high rates of heat loss 

associated with water (~25x greater than air), lack of available oxygen and substantial energy 

costs associated with surfacing to breathe, incumbent predators and competitors, and for 

many species, energetic and geographic restrictions imposed by terrestrial birth. Remarkably, 

marine endotherms have largely diversified in cold temperate waters, despite the thermal 

stresses and counter to nearly all biogeographic trends of diversity in major taxa. They 

dominate predatory richness at large body sizes (Fig. 1) and the energy flux through upper 

trophic levels in cold seas3,4. 

To account for this biogeographic puzzle, and shed light on the ecological advantages of 

endothermy, we first illustrate the empirical patterns of distribution among endothermic, 

ectothermic and mesothermic marine predators and highlight their covariation between 

richness and thermoregulation. We build on qualitative theory5 to derive foraging principles 

that link ecological scales of individual metabolism to ecosystem trophic fluxes, with 

implications for patterns of global diversity.

Empirical Patterns

Ecologists have long noted that biodiversity on land tends to peak in the tropics, particularly 

within the productive and structurally complex tropical rainforests 6,7. This pattern hold for 

virtually all major taxa, includes terrestrial mammals, birds, reptiles, amphibians, plants, 

insects and fungi 8. In the ocean, similar patterns are observed, with peak richness for fish, 

sharks, coral, seagrasses, and mangroves occurring in the coastal tropics, often within the 
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structurally complex and productive coral reefs, particularly in the Indo-Pacific9. Large 

predatory ectotherms, including sharks (Selachimorpha), groupers (Epinephalinae), 

barracuda (Sphyraena), large jacks (Caranx and Seriola in Carangidae), sea snakes 

(Hydrophiini and Latidicauda) all fit this general pattern (Fig. 2). In contrast, most cetacean 

families forage primarily in cold temperate seas. Pinnipeds are virtually absent from the 

tropics, and all major clades of swimming birds that pursue prey via swimming (penguins, 

auks, cormorants, grebes, loons), rather than aerial diving, are predominantly temperate (Fig.

2, S1). Not a single species of penguin, auk or pinniped frequents the tropical central Indo-

Pacific, the center of marine biodiversity. Mesothermic tuna (Thunnini, billfish 

(Istiophoridae and Xiphiidae), mackerel sharks (Lamnidae), and thresher sharks (Alopius 

vulpinus and A. superciliosus), which metabolically elevate their body temperature but do 

not defend a thermal set point10,11, all have intermediate, cosmopolitan ranges and lack a 

strong latitudinal signal. 

The rare exceptions to these pattern are instructive, possessing novel feeding styles and 

elevated hunting speeds. Dolphins (Delphinidae) are among the fastest12 and most agile 

cetaceans and use their social intelligence to cooperatively herd and capture prey13. Sperm 

and beaked whales forage in depths that are cold at all latitudes, and herbivorous manatees 

are predominantly tropical (Fig. S2). Among birds, only aerial hunters are common in the 

tropics (Fig. S3). Many of these species rely on the element of surprise and great speeds 

attained by plummeting through the air; plunge-diving gannets, for instance, have been 

recorded to enter the water at 24 m/s to capture fish14. Only Delphinids and aerial hunting 

birds are common hunters in warm tropical waters, as well as cooler seas. Their shared 

reliance on high speed foraging is unlikely to be a coincidence.   

Endothermic mammals and birds have high metabolic rates, which require high 

consumption rates. Some have posited that endotherm restriction to cold temperate waters is

related to productivity in the temperate seas15. While high productivity may be necessary for 
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many endothermic species, it is hardly sufficient. Analysis of annual NPP at global scales 

reveals a very weak latitudinal signal (Fig S4, S8). NPP for phytoplankton peaks along parts 

of the Indo-Pacific, tropical western Africa and South America just as much as it does in the 

North Atlantic, North Pacific and the southernmost coastlines of South America, Africa and 

Australia. Indeed, the correlation between latitude and NPP, or sea surface temperature and 

NPP is low, and counter to this argument, there is a modest increase towards the tropics 

(Fig. S4). Similarly, fishery catch rates, a measure of fish productivity, also bear, little 

relationship to latitude or sea surface temperature16. Further, records of benthic productivity 

in tropical coral reefs are among the highest annual rates of benthic marine productivity 

recorded17, rivaling temperate kelp dominated coastal systems18. Finally, the diversity of 

oceanic dolphins and aerial foraging seabirds thriving in the tropics attests to the availability 

of sufficient food to support endotherm populations (Fig S2, S3), if it can be procured. 

Instead we argue that critical, thermally mediated aspects foraging are more important. A 

closer look at the energetics of endotherm/ectotherm foraging will illuminate the underlying 

causes of this unique and general biogeographical pattern.  

A Mechanistic, Metabolic Model of Foraging

To consume food, animals must search, encounter, capture and handle prey items. We first 

consider the elements of foraging, link their rates to temperature, and finally bridge foraging 

with ecosystem rates to address the mechanisms underlying the patterns of richness.  

The first component of foraging is a search rate, which will reflect the detection radius of the 
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predator, and the dimensionality of search space (3D pelagic vs 2D benthic or surfacing 

foraging19). These features will not, however, directly vary with water temperature. The 

encounter rate δ  reflects the rate at which consumer (predator) and prey’s paths intersect.

Path intersection can be modeled as a function of predator-prey relative velocity vr, or the 

root mean square of the velocities of consumer vc and prey vp across a landscape19:

1 . v r∝√vc
2+v p

2

Controlling for body size and shape, velocity in ectotherms will generally reflect the thermal 

effects of metabolism20,21 on muscle contraction rates:

2 . vecto∝B∝e−E /kT

where E is an activation constant (~0.65 eV), k is Boltzmann’s constant and T is temperature

(Kelvin).  While velocity ∝ e–E/kT for ectothermic predators and prey, it is constant for 

endotherms. For marine endotherms feeding on fish and squid, the temperature dependence 

of encounter rates δ  can be modeled as

3 .δ∝ vr∝√C 2+e−2 E /kT

where C is constant representing routine swimming speed for endotherms, ~1.5 m/s 22,23, 

while for prey fish, ~20 cm, they are ~0.2 m/s at 10 ºC24, increasing by a factor of ~2.5 for 

every 10 ºC change, following Eq. 3. Mean annual temperature varies from approximately 

30 ºC in the shallow tropics to 0 ºC in the polar seas. From 0 to 30 ºC, vr will increase 

~40% (Fig. S5). 

Encounter rate ϵ is a function of vr and as well as prey density Xp (per area or volume), where

ϵ = δXp. Data for global prey density is scarce, and overfishing has reduced historical 

quantities, but chlorophyll density Xchlor can be used as an index of historical prey density Xp, 
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where Xp ∝  Xchlor. Similarly, Net Primary Production (NPP) can be used as an index of 

prey production rates. 

Consumption rate C is the product of encounter rate ϵ, the capture rate per encounter c/ϵ, 

and handling time h (including digestion and satiation): C = ϵ(c/ϵ)h. The capture rate per 

encounter c/ ε  reflect on differences between consumer and prey speeds ∆v (vc - vp), 

favoring the predator when the differential is high and the prey when the differential is low 

or negative. The difference in velocity (or acceleration) between ectothermic consumers (e.g.,

sharks) and ectothermic prey (e.g., small teleosts) will generally not vary with water 

temperature, as their response are generally symmetric with respect to thermal gradients. In 

contrast, endothermic consumer and ectothermic prey speeds are asymmetric, with 

ectotherms rates falling in cold waters but endotherms staying constant. As a result, 

differences in locomotory rates will favor endotherms in cold temperatures, where ∆v 

increases:

4.   ∆ v=C−v0 e−1/ kT  

Just how ∆ v  affects capture rates has not been measured, though a positive relationship is

to be expected. In perhaps the simplest scenario, c/ϵ ∝ ∆v. Prey for most marine mammals 

range from 10 – 40 cm. Utilizing Eq. 1, and using empirical data25 for burst speed in a 

typically sized prey (~35 cm), we expect ∆v to increase ~fourfold from 30 to 0 ºC for an 

endotherm predator. However, capture rates per encounter may involve multiplicative 

metabolic processes (e.g. detection and locomotion rates) that are exceed ∆ v : 

5.   c /ε ≥ vd  

If capture involves multiplicative processes, c/ϵ will exceed this rate. Thus, Eq. 7, represents 

a minimum bound on consumption rates. Handling time is frequently treated as a Monod 

99



function (type II functional response)26, leading to an asymptote in consumption rates. 

Handling time and satiation impose limits on the rate an endotherm can consume food, no 

matter how successful it is at capturing prey. Excess prey, however, represents resources that 

can potentially be converted into offspring. If this occurs, total consumption Cendo at 

ecosystems scales rates will reflect changes in c/ϵ and prey density Xp.

6 .C endo∝X p V r(
c
ε
)

Ultimately, prey production rates impose limits on collective endotherm consumption. If 

endotherms approach one hundred percent capture of all food production (i.e., no 

competition), then consumption rates will take on a sigmoidal shape: 

7 .C endo∝( N p

1+e
Y 0 X p v r(

c
ε
) )

where Y0 is a normalization constant. In practice, this is likely rare in all but the most 

favorable circumstances. 

Wherever ectotherms are important consumers and endotherm consumption does not 

approach prey production, a more analytically tractable form should be observed in Eq. 6. 

Using NPP and chlorophyll as proxies for prey production and density, we can isolate the 

thermal effects on consumption. Considering the effects of temperature on predator and prey

velocity, as well as thermal effects on capture rates per encounter, we expect a minimum of 

~fourfold increase in collective endotherm consumption from 30 to 0 ºC, after controlling 

for food availability. Consumption rates exceeding a fourfold increase in cold waters will 

reflect the multiplicative metabolic processes at work, e.g., detection and pursuit rates. An 

increase in collective consumption rates will be reflected in a corresponding increase in 
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population abundance if body size distributions across thermal gradients are similar. 

Testing Model Predictions

We compiled rates on cellular, locomotory and visual processing rates for fish and 

endotherms from the literature (see Methods). Muscle contraction rates, acceleration, and 

routine swimming speeds increase in an approximately exponential fashion with temperature

(Fig. S6), and close to theoretically expected27 energy rate of –0.65 eV. Visual rates in fish, 

including flicker fusion frequency and saccadic eye movement, also increase at rates equaling 

or exceeding theoretical values (Fig. S7). The ecological significance of these rates are 

underscored by the unique mesothermic physiology of billfish, which metabolically elevate 

temperatures in their eyes and brain but no other organ28.  

The thermal sensitivity to ambient water in ectotherms contrasts with endotherm 

insensitvity; taken together they generate the velocity differential parameter (∆v) that 

informs our model (Eq. 4; Fig 4). Comparisons between endotherm ∆v values taxa may be 

instructive in assessing their foraging niche. Dolphins have burst speeds at nearly twice the 

rate of pinnipeds and penguins, expanding thermal range in which they can be effective 

foragers. In contrast, prey speed can exceed pinniped and penguin speeds at ~15 ºC (Fig. 4). 

It is probably not a coincidence that the richness of these taxa declines precipitously above 15

ºC (Fig. 2, S8). 

To connect individual components of foraging to ecosystem patterns we assessed patterns of 

collective consumption in mammals, focusing our attention on pinnipeds and small 

odontocetes, which predominantly feed in shallow waters where sea surface temperatures 

offer an accurate reflection of thermal foraging conditions. Calculations of marine 

endotherm consumption have been determined from abundance records, scaling of 

consumption with body size, range estimates, and expert knowledge of their habitat 

preferences within their range29,30 (see Methods). Current estimations lack resolution on 
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covariation of consumer abundance with food availability, constraining tests of model 

predictions with food. The relationship between temperature and abundance, however, has 

been independently modeled for marine mammals, and also corresponds closely with 

latitudinal restrictions on species distributions. Therefore, our most novel and important 

predictions of relating thermal drivers of consumption can be assessed. 

We performed both ordinary least squares linear models (LM) and spatial autocorrelation 

correction methods to assess the significance of temperature on food consumption. Our 

spatial autocorrelation correction method, known as Integrated Nested Laplace 

Approximation or INLA, employs a computationally efficient, Bayesian Hierarchical 

approach to removing autocorrelation and assessing predictors31,32. As there is some 

disagreement in the literature as to which provides better, unbiased estimates of coefficients33;

we show both here, and employ sensitivity analyses to quantify error associated with model 

selection choices (SI). We also considered the environmental predictors of ocean depth, 

NPP, distance from land, and coastline length (Fig. S8). The lowest AICc value was for the 

full model (Table I). 

Our results exceed minimal estimates of endotherm consumption and illustrate the 

importance of temperature in modulating endotherm foraging success and abundance.  

GLM coefficients indicate an 18fold increase in consumption from 30 to 0 Cº across the 

globe, with temperature accounting for 69% of the variation; INLA calculation provide a 

similar but somewhat lower value of 13fold increase. These results are robust; variation in 

scale size, analytical techniques and NPP estimation do not qualitatively alter our results 

(Table S2). These results are significantly greater than our minimal estimate of fourfold 

increase in consumption and suggest multiplicative metabolic processes at work. 
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Linking Abundance to Richness

Theoretical and empirical predictors of richness are varied and no simple cause is likely to be 

sufficient to fully explain patterns of global diversity. Nonetheless, it is clear that species 

cannot exist in areas where there is too little food to support minimum population sizes. 

Specialist species, in particular, should be vulnerable to low food availability. The more 

individuals hypothesis (MIH) links higher densities of individuals to higher community 

alpha richness34,35, and has received empirical and theoretical support in terrestrial systems36-

40.  In the marine realm, where ecosystems are more stable on annual and geological time 

scales, and dispersal barriers are less imposing, food limitations on abundance and richness 

should be more apparent, particularly for upper trophic predators with relatively low 

population sizes. 

The overall greater consumption rates observed by marine endotherms permits higher 

abundance in cold waters. If size structure is relatively stable across thermal gradients, then 

abundance should track global consumption patterns. Indeed, this is what we observe; 

relying on empirical compilations of global mammal abundance, we observed a ~20fold 

increase from from 30 to 0 ºC (Table 1, Table S1, Fig. 5, 6). In colder waters mammals 

consume a higher fraction of ecosystem production, leading to corresponding increases in the

number of individuals (Fig. 6).

Foraging difficulties for endotherms imposed by warm waters may lead to threshold effects 

that bar entry for organisms with certain body plans and foraging styles. In particular, 

solitary and slower moving taxa should be disadvantaged in the shallow tropics. Body plans 

and foraging styles tend to be similar at the family level in marine endotherms. 

Consequently, relatively slow and solitary foraging alcids, penguins, pinnipeds, loons, grebes 

and ducks largely disappear from the tropics. This can be observed in plots of familial 

richness in swimming birds and mammals (Fig. S9, 2). This suggests that two fundamental 
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forces are at work in constraining marine swimming mammalian and avian richness in the 

tropics: lower abundances due to difficulties in capturing food, and restrictions on foraging 

strategies and body plans that impose significant phylogenetic barriers to entry. 

This disparate pattern of biogeography among thermoregulatory guilds can be visually 

summarized by plotting the ratio of endotherm to ectotherm diversity (Fig. 7). Marine 

mammals and birds dominate apex predator richness in coastal habitats at ~45 º latitude, or 

~15 ºC sea surface temperature. Somewhat surprisingly, they comprise the majority of 

predator richness in pelagic habitats at all temperatures and latitudes. Pelagic tropical 

habitats are home to a diversity of fast–moving cooperative dolphins, as well as mesothermic 

tuna, billfish and sharks (e.g., mako and thresher sharks). While our compilation of 

ectothermic species is not exhaustive, it is also clear that large ectothermic teleosts are 

comparatively rare, as are pelagic sharks (Fig. 2). Clear, pelagic tropical seas offer little in the 

way of refuge to smaller juveniles, and it may be in these environments a premium is placed 

on elevated locomotory and sensory rates.  

The success of marine endotherms in cold waters reflects foraging advantages afforded by 

thermal kinetics, but it also hints at something of equal significance: competition. The effects

of temperature are symmetric for ectothermic predators and their prey; both increase their 

speeds in warm waters and decline in cold waters. Thus, from a foraging perspective, cold 

water offers equally appealing habitat for sharks as does the tropics. Further, ectothermic 

sharks and predatory fish, with their low metabolic demands, can survive on fewer fish than 

endotherms, and could potentially reduce prey populations to densities too low to support 

metabolically demanding endotherms41. Yet, clearly endotherms are thriving in cold coastal 

oceans (Fig. 2, 5). One reason may be that the foraging advantages afforded to endotherms 

(Fig. 3) allow them access to prey that may be otherwise too difficult for ectotherm predators

to signficantly reduce. Faster sensory and locomotory rates may allow endotherms to exploit 

transient patches of food more quickly and at the expense of ectotherms. Further, the higher 
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metabolic rates can benefit endotherms in the case of more aggressive forms of competition, 

including interference competition and predation on competitors’ offspring (i.e., intraguild 

predation). In these instances, faster locomotory and sensory rates in endotherms should 

prove advantageous, with the magnitude of their advantage increasing as water temperatures 

decline.  

Despite the advantages of higher metabolic power observed in endotherms, large predatory 

sharks are nonetheless cosmopolitan and important consumers in most marine ecosystems. 

This pattern is in stark contrast with ectothermic predators on land, where large reptiles are 

absent or inconspicuous in many terrestrial habitats. We suggest the reason may reflect the 

unique advantages that gills offer to sharks and fish, which lack a counterpart to terrestrial 

ectotherms. Without gills, mammals and birds face considerable challenges in deep sea 

foraging and employment of basic feeding strategies, such as sit-and-wait hunting. In 

addition, heat loss stress associated with water constrains mammals and birds to relatively 

large sizes, reducing the competitive and predatory burden on smaller fish and sharks. On 

land, however, reptiles are more vulnerable to mammalian predators and competitors. It is 

notable that the largest lizard, the Komodo dragon, occupies islands free of mammalian 

carnivores, and large crocodiles are confined to aquatic habitats where food is generally not 

abundant enough to support comparably sized mammals. Without any special anatomical 

advantages, low-power reptiles tend to persist in body sizes where their small stature offers a 

measure of protection from warm-blooded hunters by concealing them from a predatory 

gaze. In the ocean, the dangers posed by endotherms are comparatively reduced, permitting a

diversity of thermoregulatory lifestyles to flourish. 

Methods

Range distributions of large predatory ectotherms, mesotherm and endotherms were 

collected for our analysis. Range data for birds was acquired from BirdLife International 

(www.birdlife.org) and all mammal data from the IUCN (www.iucnredlist.org). Teleost 

105

file:///Users/ara/Desktop/PhD/Disseration/document/http:%2F%2Fwww.birdlife.org)


clades where most members are capable of reaching 1 meter in length and contain at least 

five species were considered. All fish and shark data was acquired from the IUCN. In 

addition missing species of barracuda and jacks were supplemented from aquamaps 

(www.aquamaps.org), which utilizes observation data stored in OBIS (www.iobis.org). OBIS

is an open access database of ecological and environmental information that serves as 

repository for fish ranges and environmental correlates.   

Data on locomotory and metabolic rates were compiled from the literature. See citations in 

the supplemental captions. Contraction time t and body length L can be used to calculate 

maximum speed S, where S = 0.7L/2t.25 This formula was used to generate the maximum 

swimming speeds of fish shown Figure 4, based on muscular contraction rates reported from 

Wardle25. See also Figure S5.  Rates for pinnipeds42-47, penguins48-51, and dolphins52,53 

were compiled from the literature. 

Consumption data determined from empirical compilation of abundance records and simple

niche modeling to assess their spatial distribution29,30. Abiotic niche variables of distance to 

land, distance from ice, and water temperature preferences were determined from the 

literature and used to construct range maps for marine mammals. Ranges were validated by 

comparison to independently constructed ranges based on presence/absence observation. 

All spatial analysis were performed in R 3.2.454 and QGIS55. All variables were log 

transformed except for temperature. Spatial autocorrelation techniques include INLA, or 

Integrated Nested Laplace Approximation, R package INLABMA56. INLABMA utilizes 

Bayesian hierarchical modeling approach to reduce spatial autocorrelation. 
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Figures

Figure 1. Global marine diversity for thermoregulatory guilds across body sizes. The total 
diversity of marine fish, sharks, reptiles, mammals and birds are considered, and percentages 
of marine diversity were calculated for each length bin. For fish, body length data for some 
species were not available. The percentage of species without length data was determined, 
and a correction was applied by adding a value corresponding to the missing percentage to 
each bin. Each bin represents one half an order of magnitude of length, where 100.5 cm 
equals 3.16 cm, 101.5 cm = 31.6 cm, etc. 
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Figure 2. Global patterns of richness in large marine predators. Ectothermic apex predators 
are most diverse in tropical and warm-temperate coastal habitats, particularly in the Indo-
Pacific region. Mesothermic predators (see text) are equally diverse in the tropics and mid 
temperate latitudes, only declining above 45º. Endothermic marine mammals and swimming
birds are generally absent or low diversity in the tropics, with diversity peaking above 30–
45º. 
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Figure 3. A schematic of the metabolic and performance asymmetry existing between 
endothermic predators and ectothermic prey. Endotherm metabolic and performance rates 
are generally insensitive to water temperature, while ectotherm rates generally respond in an 
exponential fashion. Note that, for endotherms, the most favorable difference in velocity 
(ΔV) or other performance rate will be at the coldest temperature, when ectothermic prey 
metabolism and performance rates are lowest. The same relationship also applies to 
ectothermic predators of endotherms. Endotherms will have the best chance of escape from 
sharks in cold temperatures, where shark speed and response rates are lowest. 
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Figure 4.  Metabolic asymmetry in marine endotherms and ectotherms. Data on fish and 
endotherm speed supports our schematic (Fig. 3). While endotherm maximum speeds 
varying with body plan, they are effectively insensitive to water temperature. Conversely, 
ectothermic fish show an exponential increase in speed as water temperatures increase. The 
mean speed for dolphins was 6.83 m/s (s.d. = 1.10); penguins 3.90 m/s (s.d. = 1.05); 
pinnipeds 3.15 m/s (s.d. = 0.566). For fish, log(y) = 0.068x, r2 = 0.98). 
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Table 1. Spatial modeling of endotherm consumption and abundance. The coefficient 
outputs for the linear model (LM) and spatial autocorrelation correction model INLA 
(Integrated Nested Laplace Approximation) are shown above. The term 1/kT, where k is 
Boltzmann’s constant and T is temperature (kelvin), is an alternative temperature variable to 
Celsius. The results are strikingly close to the inverse prediction from metabolic theory of 
-0.65 eV for individual rates.  All terms but temperature are log transformed. The variables 
shown represent the model with the lowest AICc value (695.3 for consumption; 5333.9 for 
abundance).    
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Figure 5. Global abundance and consumption in marine mammals. Pinnipeds and small 
toothed whales show increasing rates of collective consumption and abundance in colder 
coastal waters.
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Figure 6. Relative consumption and abundance in marine mammals. As sea surface 
temperatures decline, pinnipeds and small odontocetes increase in abundance and 
collectively consume more of the available production. The slopes are similar, reflecting the 
mechanistic linkages between these two currencies. Each point represents data for a 110 km2 
cell. For the bottom figure, the units are the same, generating a unitless ratio. Pinnipeds and 
odontocetes typically have a trophic level of ~4, and marine trophic transfer efficiencies are 
~10%; therefore, the maximum consumption/NPP ratio (bottom graph) is a log value of -3. 
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Figure 7. Relative richness of major predatory taxa. Large ectothermic predators contribute 
the highest fraction of community richness in tropical and warm temperate coastal waters, 
while endothermic swimming birds and mammals dominate cold waters and open oceans. In
areas where no large predatory ectotherms were recorded, e.g., near coastal Antarctica, the 
deepest red color was assigned. 

114



References

1 Pyenson, N. D., Kelley, N. P. & Parham, J. F. Marine tetrapod macroevolution: 
Physical and biological drivers on 250Ma of invasions and evolution in ocean 
ecosystems. Palaeogeogr., Palaeoclimatol., Palaeoecol. 400, 1-8 (2014).

2 Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of 
modern birds. Science 346, 1320-1331 (2014).

3 Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation 
on sea otters linking oceanic and nearshore ecosystems. science 282, 473-476 (1998).

4 Ainley, D. G., Ballard, G. & Dugger, K. M. Competition among penguins and 
cetaceans reveals trophic cascades in the western Ross Sea, Antarctica. Ecology 87, 
2080-2093 (2006).

5 Cairns, D. K., Gaston, A. J. & Huettmann, F. Endothermy, ectothermy and the 
global structure of marine vertebrate communities. MARINE ECOLOGY-
PROGRESS SERIES- 356, 239 (2008).

6 Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. 
Nat., 33-46 (1966).

7 MacArthur, R. H. Patterns of species diversity. Biological reviews 40, 510-533 
(1965).

8 Boyero, L. et al. Global distribution of a key trophic guild contrasts with common 
latitudinal diversity patterns. Ecology 92, 1839-1848 (2011).

9 Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across 
taxa. Nature 466, 1098-1101 (2010).

10 Grady, J. M., Enquist, B. J., Dettweiler-Robinson, E., Wright, N. A. & Smith, F. A. 
Evidence for mesothermy in dinosaurs. Science 344, 1268-1272 (2014).

11 Bernal, D., Dickson, K. A., Shadwick, R. E. & Graham, J. B. Review: analysis of the 
evolutionary convergence for high performance swimming in lamnid sharks and 
tunas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative 
Physiology 129, 695-726 (2001).

12 Rohr, J., Fish, F. & Gilpatrick, J. Maximum swim speeds of captive and free‐
ranging delphinids: Critical analysis of extraordinary performance. Mar. Mamm. Sci.
18, 1-19 (2002).

13 Wiirsig, B. Delphinid foraging strategies. Dolphin cognition and behavior: A 
comparative approach, 347-359 (1986).

14 Lee, D. N. & Reddish, P. E. Plummeting gannets: a paradigm of ecological optics. 
Nature (1981).

15 Berta, A., Sumich, J. L. & Kovacs, K. M. Marine mammals: evolutionary biology.  
(Academic Press, 2005).

115



16 Worm, B. et al. Rebuilding global fisheries. science 325, 578-585 (2009).
17 Hatcher, B. G. Coral reef primary productivity. A hierarchy of pattern and process. 

Trends Ecol. Evol. 5, 149-155 (1990).
18 Dayton, P. K. Ecology of kelp communities. Annu. Rev. Ecol. Syst., 215-245 

(1985).
19 Pawar, S., Dell, A. I. & Savage, V. M. Dimensionality of consumer search space 

drives trophic interaction strengths. Nature 486, 485-489 (2012).
20 Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of

size and temperature on metabolic rate. science 293, 2248-2251 (2001).
21 Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a 

metabolic theory of ecology. Ecology 85, 1771-1789 (2004).
22 Sato, K. et al. Stroke frequency, but not swimming speed, is related to body size in 

free-ranging seabirds, pinnipeds and cetaceans. Proceedings of the Royal Society of 
London B: Biological Sciences 274, 471-477 (2007).

23 Watanabe, Y. Y. et al. Scaling of swim speed in breath‐hold divers. J. Anim. Ecol. 80,
57-68 (2011).

24 Boisclair, D. & Tang, M. Empirical analysis of the influence of swimming pattern on
the net energetic cost of swimming in fishes. J. Fish Biol. 42, 169-183 (1993).

25 Wardle, C. in Environmental physiology of fishes     519-531 (Springer, 1980).
26 Holling, C. S. Some characteristics of simple types of predation and parasitism. The 

Canadian Entomologist 91, 385-398 (1959).
27 Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of

size and temperature on metabolic rate. Science 293, 2248-2251 (2001).
28 Block, B. Billfish brain and eye heater: a new look at nonshivering heat production. 

Physiology 2, 208-213 (1987).
29 Kaschner, K., Watson, R., Trites, A. & Pauly, D. Mapping world-wide distributions 

of marine mammal species using a relative environmental suitability (RES) model. 
Mar. Ecol. Prog. Ser. 316, 2-3 (2006).

30 Kaschner, K. Modelling and mapping of resource overlap between marine mammals 
and fisheries on a global scale. MMRU, Fisheries Centre, Department of Zoology. 
University of British Columbia, Vancouver, Canada, PhD Thesis, (2004).

31 Rue, H. et al. INLA: Functions which allow to perform full Bayesian analysis of 
latent Gaussian models using Integrated Nested Laplace Approximaxion. R package 
version 0.0-1420281647 (2015).

32 Martino, S. & Rue, H. Implementing approximate Bayesian inference using 
Integrated Nested Laplace Approximation: A manual for the inla program. 
Department of Mathematical Sciences, NTNU, Norway (2009).

33 Hawkins, B. A. Eight (and a half) deadly sins of spatial analysis. J. Biogeogr. 39, 1-9 
(2012).

34 Wright, D. H. Species-energy theory: an extension of species-area theory. Oikos, 
496-506 (1983).

35 Evans, K. L., Greenwood, J. J. & Gaston, K. J. Dissecting the species–energy 
relationship. Proceedings of the Royal Society of London B: Biological Sciences 272, 
2155-2163 (2005).

36 Kaspari, M., O'Donnell, S. & Kercher, J. R. Energy, density, and constraints to 
species richness: ant assemblages along a productivity gradient. The American 
Naturalist 155, 280-293 (2000).

37 Hawkins, B. A., Porter, E. E. & Felizola Diniz-Filho, J. A. Productivity and history 
as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84, 
1608-1623 (2003).

38 Hurlbert, A. H. Species–energy relationships and habitat complexity in bird 
communities. Ecol. Lett. 7, 714-720 (2004).

39 Pautasso, M. & Gaston, K. J. Resources and global avian assemblage structure in 
forests. Ecol. Lett. 8, 282-289 (2005).

40 Hubbell, S. P. The unified neutral theory of biodiversity and biogeography (MPB-
32). Vol. 32 (Princeton University Press, 2001).

116



41 Tilman, D. Resource competition and community structure.  (Princeton University 
Press, 1982).

42 Gallon, S. L. et al. How fast does a seal swim? Variations in swimming behaviour 
under differing foraging conditions. J. Exp. Biol. 210, 3285-3294 (2007).

43 Feldkamp, S. D. Swimming in the California sea lion: morphometrics, drag and 
energetics. J. Exp. Biol. 131, 117-135 (1987).

44 Cheneval, O., Blake, R., Trites, A. & Chan, K. Turning maneuvers in Steller sea 
lions (Eumatopias jubatus). Mar. Mamm. Sci. 23, 94-109 (2007).

45 Ponganis, P. J. et al. Swimming velocities in otariids. Canadian Journal of Zoology 
68, 2105-2112 (1990).

46 Boyd, I., Reid, K. & Bevan, R. Swimming speed and allocation of time during the 
dive cycle in Antarctic fur seals. Anim. Behav. 50, 769-784 (1995).

47 Crocker, D., Gales, N. & Costa, D. Swimming speed and foraging strategies of New 
Zealand sea lions (Phocarctos hookeri). J. Zool. 254, 267-277 (2001).

48 Ropert-Coudert, Y. et al. Preliminary investigations of prey pursuit and capture by 
king penguins at sea. Polar bioscience 13, 101-112 (2000).

49 Kooyman, G. L. et al. Heart rates and swim speeds of emperor penguins diving 
under sea ice. J. Exp. Biol. 165, 161-180 (1992).

50 Culik, B. & Wilson, R. P. Swimming energetics and performance of instrumented 
Adélie penguins (Pygoscelis adeliae). J. Exp. Biol. 158, 355-368 (1991).

51 Wilson, R. P., Ropert-Coudert, Y. & Kato, A. Rush and grab strategies in foraging 
marine endotherms: the case for haste in penguins. Anim. Behav. 63, 85-95 (2002).

52 Fish, F. E. & Hui, C. A. Dolphin swimming–a review. Mamm. Rev. 21, 181-195 
(1991).

53 Rohr, J., Fish, F. & Gilpatrick, J. Maximum swim speeds of captive and free‐
ranging delphinids: Critical analysis of extraordinary performance. Mar. Mamm. Sci.
18, 1-19 (2002).

54 R:  A language and environment for statistical computing. R Foundation for 
Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 
2012).

55 Quantum GIS Geographic Information System (2016).
56 Bivand, R., Gómez-Rubio, V. & Rue, H.    (American Statistical Association).
57 Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite‐

based chlorophyll concentration. Limnol. Oceanogr. 42, 1-20 (1997).
58 Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon‐based ocean 

productivity and phytoplankton physiology from space. Global biogeochemical 
cycles 19 (2005).

59 Behrenfield, M. <http://www.science.oregonstate.edu/ocean.productivity/index.php>
(

60 Domenici, P. & Blake, R. The kinematics and performance of fish fast-start 
swimming. J. Exp. Biol. 200, 1165-1178 (1997).

61 Peck, M. A., Buckley, L. J. & Bengtson, D. A. Effects of temperature and body size 
on the swimming speed of larval and juvenile Atlantic cod (Gadus morhua): 
implications for individual-based modelling. Environ. Biol. Fishes 75, 419-429 
(2006).

62 Montgomery, J. C., McVean, A. R. & McCarthy, D. The effects of lowered 
temperature on spontaneous eye movements in a teleost fish. Comparative 
Biochemistry and Physiology Part A: Physiology 75, 363-368 (1983).

63 Fritsches, K. A., Brill, R. W. & Warrant, E. J. Warm eyes provide superior vision in 
swordfishes. Curr. Biol. 15, 55-58 (2005).

117

http://www.science.oregonstate.edu/ocean.productivity/index.php


Supplemental Materials and Methods
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Figure S1. Additional richness patterns in marine mammals and swimming birds. 
Monodontids are composed of narwhals and belugas. Sea lions are Otarriidae, seals are 
Phocidae, cormorants are Phalacrocoracidae, and seaducks are Merginae, within Anatidae. 
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Figure S2. Exceptions that prove the rule. Marine mammals that forage at depth (in cold 
waters) or are large planktonic feeders are not expected to show a systematic bias towards 
temperate waters. Sperm whales (Physeteridae & Kogiidae) are cosmopolitan, whale beaked 
whales (Ziphiidae) show peak diversity in low southern latitudes. Baleen whales (Mysticeti) 
largely feed in temperate latitudes where swarms of zooplankton can be found. Dolphins 
(Delphinidae) are exceptionally fast and cooperative, and are able to exploit prey items in 
tropical as well as temperate seas. 
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Figure S3. Avian exceptions that prove the rule. Aerial feeding birds can opportunistically 
feed on surface foods or capture fish with fast plunging dives. This strategy permits species to
live throughout the globe, and show diverse distributions. Most families are predominantly 
tropical, but the members of the most diverse families, found within Procellariiformes 
(petrels and albatrosses), show peak diversity in the cool southern seas. Terns and kittiwakes 
belong to Laridae, gannets and boobies comprise Sulidae, pelicans are Pelecanidae, 
Tropicbirds are Phaethontidae, and frigate birds are Fregatidae. 
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Figure S4. Plots of Net Primary Production (NPP) with sea surface temperature (SST) and 
latitude. Shown her are two of the more common forms of NPP calculations, the vertically 
generated production model (VGPM), and Eppley model57-59. SST and latitude are only 
weak predictors of production for both models, and in the wrong direction to explain 
elevated endothermic consumption and richness in cold waters. In polar seas, subzero water 
and seasonal ice cover significantly reduces NPP. 
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Figure S5. Predicted changes in differential velocity and relatively velocity across thermal 
gradients. Gray dotted lines represent the relative velocity vr of endothermic predator and 
ectothermic prey, which will increase modestly as water temperatures warm. A greater shift 
will be observed in the difference in velocities ∆v between predator and prey across thermal 
gradients (black dotted line). Endotherms will be much faster than their prey in cold water, 
where ectotherm metabolism and locomotory rates are low, but will be disadvantaged in 
warmer waters. If realistic values for ∆v are used (Fig. 4) a straight line is fitted through ∆v, a
~fourfold shift in ∆v is observed from 0 to 30 º (∆v = 0.146ºC).
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Figure S6. Thermal dependence of metabolic rates. Metabolic rates generally increase in an 
exponential fashion with temperature. Metabolic theory suggests the rate of increase 
corresponds to an ‘activation energy’ of 0.65 eV. This value can be determined by plotting 
against 1/kT (inverse temperature), where k is Boltzmann’s constant and T is temperature in 
Kelvins (upper left panel). For ease of understanding, all calculations where performed using 
inverse temperature plots but are shown in the conventional manner with temperature on 
the x axis. Note that the upper left and lower left panels are equivalent. Acceleration (left 
panels) is considered to be a mass-independent rate in fish60, so standardization of body size 
is not necessary, but for velocity (upper right panel) it is important to control for size. Date 
for acceleration is from Domenici60; contraction rates from Wardle25, and swimming speed 
from Peck61. 
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Figure S7. Thermal dependence of visual detection and processing speeds. In the lower 
panel, saccadic eye movements, important for receiving visual information, showed an 
exponential dependence on temperature. In the upper panel, the flicker fusion frequency – 
i.e., the rate at which flickering light pulses can be registered as discrete – increase markedly 
with temperature, consistent with theory. Data from saccadic eye movement from 
Montgomery62 and flicker fusion frequencies from Fritsches et al.63
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Figure S8. Environmental predictor variables of endotherm consumption and richness.

Table S1. Model parameters at 880 km2 grid cells. Both linear model and INLA methods 
were performed to test environmental predictors of mammal consumption at 880 km2. The 
results were not qualitatively different from calculation using 110 km2 grid cells (Table 1). 
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Fig S9. Familial level richness in marine mammals and swimming birds. Marine mammal 

families are composed of pinnipeds, otters and cetaceans; bird families are penguins, auks, 

ducks, grebes, loons and cormorants. 
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Conclusions of patterns of richness from bacteria to apex predators

Conclusions

These studies involved large groups of people that formed an interdisciplinary group 

to address questions of what drives the patterns of richness and diversity we see from cave 

bacteria to apex predators in the ocean. The projects ranged in both geographic and body 

size scales from lava cave microbial mat communities to sperm whales in the deep oceans. 

This require a range of techniques borrowed from microbiology, macroecology, and 

geographic information systems. There were three fundamental philosophies that helped to 

guide these works: 

Hanson, et al., 2012 argued that we need to move beyond just showing patterns (in 

particular bacterial biogeography) to identifying drivers and mechanisms that give rise to 

these patterns. 

In talking about modeling building Levin, 1966 "Truth is at the intersection of independent 

lies." In other words having two different approaches to your models to help verify what you 

are seeing.

From Gelman et al.,2013. "Bayesian inference is the process of fitting a probability model to 

a set of data and summarizing the result by a probability distribution on the parameters of 

the model and on unobserved quantities such as predictions for new observations."

With these guiding philosophies in mind the research present here followed most closely to 

Hanson and Gelman. In studying microbial mats and bacteria on bats we showed 

biogeographic patterns but tested these patterns against local and regional environmental and

physical predictors. In each case with our models we fitted the model to the data and tested if

the model was corrected. Studying marine predators captured that whole approach from 

visualizing global patterns, to discovering what drives these patterns, and finally to a 

metabolic theory to describe the patters. Levin’s statement about two lies was harder to 
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apply. In the case of the microbial mats in lava tubes we were able to tell the same story with 

two different sets of data. One was OTU counts which told a story of cave microbial mats 

being different from the overhead soils. While the phylogenetic story showed a more 

nuanced evolutionary history. 

Importance of patterns and predictor variables

Across the range of distances and body plans one driver stood out, temperature. 

Temperature was the strongest driver of similarity between basalt surface soils and the 

microbial mats in caves; within lava caves temperature was also a driver of similarity; however

it is was a weak predictor of bacterial richness. In bacteria on bats temperature was a 

predictor of similarity in cave-caught bats but not for richness or phylogenetic diversity. For 

surface-caught bats temperature was predictive of richness, similarity, and phylogenetic 

diversity. Many of the predictors for bacteria richness on bats also predicted bat species 

richness across Arizona and New Mexico. For top ocean predators temperature is a major 

component that predicts not only species richness but also foraging and consumption habits. 

However for endotherms their peak richness was anti-tropical and for ectotherms there peak 

richness was tropical but in structural complex (reefs, mangroves, islands, and oceanic 

shelves) areas like the Indian Ocean. 

However, for each of these studies there were numerous other factors that also helped

to explain the patterns in richness and diversity. In the microbial mats in the lava caves 

relative humidity help to structure community similarity and distance from the entrance 

predicted richness. Bat bacteria had a range of other predictors from local (bat richness, 

precipitation, NPP) to larger landscape features like ecoregion classification and landscape 

complexity.  In the apex ocean predators we saw effects from proximity to land, bathymetry, 

structural complexity of the environment, and evolutionary history. The findings across all 

three studies showed a complex interaction of predictor variables that also varied by 

geographic scale. 
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Future studies

While macroecology is a robust and mature field, the areas of microbial biogeography

and applying macro principles to micro-problems is fairly young (~10 years, Fierer et al.). 

With the advent of new sequencing technologies and exponential expanding microbial gene 

databases microbial biogeography is catching up. Identifying the mechanisms that drive 

bacteria patterns in the first two studies would be key to establishing links between micro- 

and macro-. Testing the classic mechanisms such dispersal, drift, mutation, and selection in 

cave environments should be done due to caves having a more restrictive environment then 

the surface. On the marcoecology side testing our predictors across timescales is an important

next step. The pinniped peak richness showed anti-tropical patterns. This is due to a 

combination of foraging strategies and evolutionary history. Ultimately making the link 

between microbial process and macroecologic patterns is required to further both fields. 
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