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ABSTRACT 

The role of abiotic and biotic factors in regulating community and population 

dynamics is a central question of ecological inquiry.  In arid environments, the degree of 

abiotic versus biotic regulation varies, based on gradients of environmental stressors and 

associated biological responses.  Plant-herbivore interactions help shape these 

communities through foraging effects and actions of consumers.  In this dissertation I 

investigated consumer-producer interactions during resource scarcity, and their 

implications for plants and herbivores. 

The North American monsoon supplies vital pulses of moisture to the 

southwestern United States, including Sonoran desert, arid grassland, and montane 

communities.  Gunnison’s prairie dog (Cynomys gunnisoni) is a primary consumer 

inhabiting a diversity of the region’s grasslands.  I evaluated abiotic limitation in arid 

grassland and montane populations of C. gunnisoni during a multi-year drought using 
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stable isotope analysis to quantify foraging niche widths.  Niche widths declined under 

periods of drought stress.  Prairie dogs at the montane site exhibited seasonal shifts in 

dietary niche width during favorable growth periods for more nutritious plants using the 

C3 photosynthetic pathway.  Production of offspring was positively correlated with C3 

plant use.  Investigation of body condition as a mechanistic link between C3 forage use 

and reproductive output revealed no differences in body condition between sites.  Body 

condition improved after emergence from hibernation, except in montane females, who 

exhibited evidence of early-season reproductive investment.  Despite similar body 

condition and initial population densities, montane C. gunnisoni reached densities up to 

20x those of the prairie site.  The link between plant nutritional quality and demographic 

parameters suggests bottom-up regulation within this reportedly disease-limited species. 

In the Sonoran Desert, white-throated woodrats (Neotoma albigula) supplement 

their herbaceous diets with succulents such as the saguaro cactus (Carnegiea gigantea).  

The massive saguaros store water in their tissues for annual production of flowers, fruits, 

and stem growth that feeds desert consumers during drought periods.  Saguaros with high 

levels of herbivory (>20% of the surface) produced fewer flowers and fruits than similar 

plants with no herbivory.  These findings suggest that periodic use of saguaros by N. 

albigula, such as during extended droughts, can reduce long-term reproductive capacities 

of this keystone desert resource. 
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INTRODUCTION 

Plant-herbivore interactions play vital roles in shaping communities and 

ecosystems.  Herbivory and its associated plant responses influence the composition, 

diversity, productivity, heterogeneity, competitive advantages, and energy flow within 

biological communities (Ehrlich and Raven 1964, Brown and Heske 1990, Ritchie et al. 

1998, Agrawal 1999, Rausher 2001, Loranger et al. 2012).  Mammals make up the 

largest-bodied and most conspicuous class of herbivores (Huntly 1991), and each of these 

consumers must obtain energy to meet lifetime metabolic needs from primary 

productivity within a single home range.  Effects of herbivory are further exacerbated in 

social or herd-forming mammals whose clumped distributions are influenced by 

conspecifics (Coppock et al. 1983, McNaughton 1984, Fryxell 1991, Steuter et al. 1995).  

Mammalian herbivores influence biological communities by constructing or 

modifying physical components of their environments (Jones et al. 1994).  Mammals may 

function as keystone species with disproportionately large effects on their communities 

through actions as ecosystem engineers, prey for higher-level consumers, or apex 

predators (Mills et al. 1993, Power et al. 1996, Sinclair 2003, Soule et al. 2005).  Prairie 

dogs (Cynomys spp.) and their expansive burrow systems are prime examples of 

ecosystem engineers, and have been documented to support life history needs of 117 

vertebrate species (Kotliar et al. 1999).  Through engineering or foraging, mammalian 

herbivores influence biological communities by direct and cascading effects that 

transform ecosystem structure, composition, and function (Gutierrez et al. 1997, Olff and 

Ritchie 1998, Davidson et al. 2012). 
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In addition to top-down effects on the ecosystem, mammalian herbivore 

communities are influenced by bottom-up forces (Meserve et al. 2001).  Temperature 

shifts and other abiotic perturbations alter community composition and population 

dynamics of temperate mammalian consumers (Humphries et al. 2004).  Arid 

environments experience temporal heterogeneity of abiotic inputs that stimulate primary 

productivity and generate temporary surpluses of energy driving producer and consumer 

dynamics (Noy-Meir 1973).  How consumers acquire, store, and allocate energy to 

survive periods of variable or unpredictable resource availability is a central question of 

ecological inquiry (Noy-Meir 1974, Hirshfield and Tinkle 1975, Wiens 1977, Lindström 

1999, Liow et al. 2009, Bergeron et al. 2011).  

  The implications of drought periods on the foraging ecology a primary 

consumer, Gunnison’s prairie dog (C. gunnisoni), are investigated in Chapter 1.  

Cynomys gunnisoni is an herbivore that feeds on leaves of grasses and forbs throughout 

its active season (Rayor 1985).  Prairie dogs obtain the energy necessary to complete 

their life cycle by consuming plants within a shared territorial radius surrounding the 

underground burrow system that serves as the social, reproductive, and protective hub for 

each family group or coterie (Hoogland 1995).  Without a specialized diet of foods such 

as seeds or fruits, C. gunnisoni must meet its metabolic needs by assimilating nutrients 

from quantities of relatively low-energy foods that are limited by C. gunnisoni gut 

capacity and body size (Demment and Van Soest 1985).  Maintaining a threshold of 

consumed forage quality is therefore necessary to sustain these small generalist 

herbivores (Sinclair et al. 1982).  The temperate grasslands inhabited by C. gunnisoni are 

dominated by herbaceous vegetation comprised of plants using both the C3 and C4 
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photosynthetic pathways.  The two plant functional types contain structural differences 

that render the C3 plants as having more nitrogen, less fiber, and being more digestible, 

leading to the hypothesis that C3 plants are preferred energy resources for primary 

consumers based on these nutritional advantages (Caswell et al. 1973).  Multiple studies 

have evaluated the C3 hypothesis within laboratory environments and short-lived 

consumers (e.g., Heidorn and Joern 1984, Barbehenn et al. 2004).  However, empirical 

determination of fitness benefits to longer-lived consumers from selective foraging on C3 

plants is more difficult to demonstrate.  I evaluated evidence of selective herbivory and 

the C3 hypothesis in two C. gunnisoni populations that occurred along a gradient of 

environmental conditions and C3/C4 plant productivity.  Stable carbon and nitrogen 

isotopes ratios from C. gunnisoni body tissues represented dietary niches that were 

tracked over time at both an arid and more mesic study site.  As drought conditions that 

inhibited growth of the more water-limited C3 plants progressed over multiple years, 

grassland composition changed.  I monitored trends in energy assimilation from C3 and 

C4 plants in C. gunnisoni tissues to determine consumer responses to changes in available 

forage quality, and quantified reproductive output as an index of fitness associated with 

different levels of C3/C4 plant utilization.       

 In Chapter 2, I explore mechanistic links that translate improved forage resource 

quality into greater reproductive success and higher population densities.  Reproductive 

output is associated with parental body condition across a broad spectrum of consumers 

(Bonnet et al. 1998, Fokidis et al. 2007, Risch et al. 2007), and I predicted that groups of 

C. gunnisoni with access to higher-quality energy resources would exhibit improved body 

condition and greater abundances of juvenile prairie dogs.  Under the stress of drought 
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conditions, adult C. gunnisoni must effectively allocate limited energy resources between 

reproductive costs and maintaining somatic body condition for survival and future 

reproduction (Williams 1966, Reznick 1985).  A positive relationship between body 

condition and reproductive success indicates benefits to adult C. gunnisoni from energy 

reserves to support reproductive processes including ovulation, spermatogenesis, 

breeding, parturition, lactation, and other forms of parental investment.  Conversely, 

reproduction may occur as a trade-off to the condition of parents.  This strategy is 

adaptive when lifetime fitness is increased through energy allocation toward short-term 

reproductive success.  However, perceived resource stress that projects risks to future 

survival and recruitment may dictate a more conservative energy allocation strategy of 

foregoing reproductive investment (Stephens and Krebs 1986).  These resource allocation 

decisions thereby confer important implications not only for C. gunnisoni population 

dynamics, but for the full species assemblages inhabiting the prairie dog ecosystem.     

Chapter 3 addresses an additional aspect of the interaction between mammalian 

herbivores and the plants that supply them with vital resources.  In the Sonoran desert of 

North America, energy sources available during the hot and dry periods between pulses 

of monsoon-driven primary productivity are highly valuable to consumers.  One such 

resource is the saguaro cactus (Carnegiea gigantea), which uses reduced evaporative leaf 

area, stem photosynthesis, and water storage within its massive tissues to support survival 

and annual reproductive cycles under extreme desert conditions (Steenbergh and Lowe 

1977).  Consequently, saguaro flowers, fruits, and tissues provide energy and resources 

for desert herbivores at times when few other energy sources may be available (Fleming 

and Valiente-Banuet 2002).  When herbivores such as the white-throated woodrat 
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(Neotoma albigula) penetrate the outer stem tissue during foraging, the photosynthetic 

capacity of the columnar C. gigantea is permanently reduced through an epidermal 

wound response the plant generates to prevent further injury or infection (Steelink et al. 

1967).  We quantified herbivory on individual C. gigantea plants, and evaluated its 

effects on saguaro reproductive output.  Because C. gigantea is a keystone resource for 

desert consumers and lives for hundreds of years, impacts from desert foragers may 

persist for decades following herbivory.  This system demonstrates how changes in 

precipitation, climate, or other abiotic conditions alter relationships among primary 

consumers and their foraging resources, and create long-lasting impacts that permeate 

throughout biological communities.    
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CHAPTER 1 

Abiotic limitation and the C3 hypothesis: isotopic evidence from Gunnison’s prairie dog 

during persistent drought 

 

Published in similar form as: Hayes, C. L., W. A. Talbot, and B. O. Wolf. 2016. Abiotic 

limitation and the C3 hypothesis: isotopic evidence from Gunnison's prairie dog during 

persistent drought. Ecosphere 7:e01626.  doi:10.1002/ecs2.1626. 

 

Abstract 

Gunnison’s prairie dog (Cynomys gunnisoni) is a herbivore that ranges from 

desert grasslands to high-montane meadows, and is limited by disease across much of its 

range. The importance of abiotic drivers to the population dynamics of the species is 

poorly known. We employed stable isotope analysis to investigate energy assimilation 

patterns as indicators of abiotic limitation in arid grassland and montane populations of 

C. gunnisoni during a multi-year drought. Standard ellipse areas of plasma and red blood 

cell carbon (δ13C) and nitrogen (δ15N) isotope values, representing population-level 

dietary niche widths, declined during years and seasons of drought stress at both study 

sites. Prairie dogs at the montane site, but not the desert grassland site, maintained 

seasonal shifts in dietary niche width corresponding to periods of favorable growth 

conditions for the more nutritious C3 plants. Production of offspring was strongly and 

positively correlated with C3 resource use as indicated by δ13C values in metabolically 

active tissues (plasma and red blood cells), but not with δ13C values in adipose tissues 

used for long-term energy storage, or with foraging niche widths. These findings 

demonstrate that assimilation of energy from C3 plants is associated with increased 
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reproductive output, and that drought conditions importantly constrain the resource base 

available to C. gunnisoni. The link between plant nutritional quality and demographic 

parameters highlights the role of abiotic regulation within this reportedly disease-limited 

species.  

Key Words 

abiotic regulation; drought; Gunnison’s prairie dog; niche width; stable isotope analysis 

Introduction 

 The roles of abiotic versus biotic factors in regulating community and population 

dynamics represents a line of inquiry that has led to an understanding of some of the most 

fundamental principles and processes in ecology (Grinnell 1917, Whittaker et al. 1973, 

Tilman et al. 1981, Dunson and Travis 1991, Jones et al. 1994, Sexton et al. 2009). The 

relative importance of bottom-up regulation represents one aspect of this query that has 

been debated for over a century (Forbes 1887, Hairston et al. 1960, Carpenter et al. 1985, 

Hunter and Price 1992, Power 1992, Bunnell et al. 2013). Within New World deserts and 

arid grasslands, the degree of bottom-up regulation of biological communities changes 

over time based on gradients of abiotically-driven environmental stressors and cascading 

relationships among dynamic consumer populations (Brown and Ernest 2002, Meserve et 

al. 2003). This phenomenon is illustrated in populations of Gunnison’s prairie dog 

(Cynomys gunnisoni), a ground-dwelling herbivore of the family Sciuridae that lives in 

colonies of related individuals within grasslands ranging from arid prairies and high 

desert regions (Travis et al. 1995, Davidson et al. 2014) to mesic montane grasslands 

(Fitzgerald and Lechleitner 1974). Montane C. gunnisoni experienced catastrophic 

population declines following the introduction and spread of sylvatic plague (Yersinia 
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pestis) in North America (Lechleitner et al. 1968, Rayor 1985a, Cully et al. 1997). 

Abiotic regulation of C. gunnisoni is less well documented but suggested for the more 

arid grassland habitats of this species, where drier soils and lower primary productivity 

have been associated with reduced numbers of sylvatic plague vectors, hosts, and disease 

outbreaks (Parmenter et al. 1999).  

A rangewide conservation assessment of C. gunnisoni concluded that only 

montane populations of the species warranted additional management protections to 

preclude disease-related extirpation (USFWS 2008). Prairie populations of C. gunnisoni 

experience abiotically-driven declines during drought (Davidson et al. 2014) that provide 

evidence for bottom-up regulation outside of the montane range. High growing-season 

temperatures and reduced water availability during drought limit the growth of plants 

utilizing the C3 photosynthetic pathway (Ehleringer and Björkman 1977, Pearcy et al 

1981), which are hypothesized to be preferred forage for primary consumers over less 

nutritious C4 plants (Caswell et al. 1973). The mechanistic basis for this C3 hypothesis 

arises from structural differences between leaf tissues from C3 and C4 plants, with C4 

plants having lower nitrogen content, more fiber and silica, lower digestibility, and 

reduced macronutrient availability for herbivores compared to C3 plants (Caswell et al. 

1973, Landa and Rabinowitz 1983, Wilson et al. 1983, Scheirs et al. 2001). These 

anatomical differences between C3 and C4 plant tissues have been investigated for 

relationships to consumer selection and nutrient utilization in grasshopper diets (Heidorn 

and Joern 1984, Barbehenn et al. 2004a); and to abundance, growth, and intake rates for 

insects consuming C3 and C4 grasses (Boutton et al. 1978, Barbehenn and Bernays 1992, 

Barbehenn et al. 2004c). Implications to body condition and population dynamics from 
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isotopically-observed diet shifts between C3 and C4 plants are inferred within larger and 

longer-lived consumers (Bearhop et al. 2004, Codron et al. 2006, Warne et al. 2010, 

Hahn et al. 2013, Seamster et al. 2014), but have rarely been evaluated through 

measurement of demographic parameters. In prairie dogs, heavier adult breeding-season 

body masses are associated with individuals exhibiting increased reproductive success 

(Hoogland 2001). Reduced availability of high-quality (e.g., C3) forage within arid 

grassland habitats could thereby serve as a mechanism for explaining the consistently low 

recruitment of C. gunnisoni documented by Davidson et al. (2014) during periods of 

resource stress. 

The maturing field of isotopic ecology has contributed novel approaches to 

understanding the role of biotic and abiotic factors in population regulation (LaPointe 

1997, Marra et al. 1998). Resource use can be tracked using distinct carbon (δ13C) and 

nitrogen (δ15N) isotope ratios among food sources, and these isotopic ratios are 

incorporated into a consumer’s tissues through its diet (DeNiro and Epstein 1978, DeNiro 

and Epstein 1981). Isotopic indicators of abiotically-limited systems include behavioral 

shifts in foraging toward intermittently-available resources, changes in dietary niche of 

consumers following pulses of abiotic inputs (Darimont and Reimchen 2002, Orr et al. 

2015), and reduced dietary specialization of individual consumers in environments that 

lack consistent availability of preferred food sources (Darimont et al. 2009, Murray and 

Wolf 2013).  

 In this study, we investigate desert grassland and montane-dwelling populations 

of C. gunnisoni for evidence of abiotic versus biotic regulation by comparing 

isotopically-based indicators of resource assimilation and diet quality to observed 
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abundances of newly emerged offspring. We hypothesized that C. gunnisoni inhabiting a 

lower-elevation arid grassland (prairie) environment would exhibit resource utilization 

patterns indicative of abiotic limitation when compared to a population from the more 

mesic, disease-limited montane portion of the species’ range. Specifically, we predicted 

that prairie populations of C. gunnisoni would show greater seasonal similarity in dietary 

niche width (i.e., range of tissue stable isotope values) than montane C. gunnisoni, which 

are able to shift to preferred food sources during more dependable annual pulses in 

primary productivity. We also predicted that the limited availability of distinct forage 

resources in prairie populations would result in a narrower dietary niche breadth than in 

populations of montane C. gunnisoni. Periods of drought and abiotic resource stress 

should similarly reduce availability of preferred resources and constrain population-level 

dietary niche breadth. Finally, we evaluated whether changes in dietary niche width and 

composition of assimilated energetic resources within body tissues were associated with 

offspring abundance in prairie and montane C. gunnisoni.  

Methods 

Study sites 

We conducted research on C. gunnisoni colonies at Sevilleta National Wildlife 

Refuge, located 85 km south of Albuquerque, New Mexico, USA, and at Vermejo Park 

Ranch, situated ~300 km to the northeast between the towns of Raton and Cimarron, New 

Mexico. Sevilleta colonies were located at 1650 m elevation and considered to be prairie 

populations of C. gunnisoni. Prairie dogs at Sevilleta inhabited Chihuahuan Desert 

grasslands dominated by blue grama (Bouteloua gracilis) and other warm-season (C4) 

grasses. Sevilleta receives an average of 25 cm of precipitation annually, with the 
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majority falling during the late summer monsoon period (Muldavin et al. 2008). Vermejo 

prairie dogs were located at 2220 m, within the montane portion of the C. gunnisoni 

range. Vermejo habitats consisted of long (30–40 km), canyon-bounded grasslands that 

transitioned from short-grass prairie to montane meadows. A mixture of primarily C3 

forbs and other grasses complemented abundant B. gracilis, which was the most common 

plant species present within the Vermejo grasslands. Annual precipitation at the Vermejo 

colonies averages ~50 cm, and includes summer monsoonal thunderstorms that 

contribute an estimated 29–42% of the total annual precipitation (Legler 2010). The same 

summer storm systems associated with the North American monsoon therefore impact 

both study sties, but monsoonal activity becomes less intense as it moves northward to 

Vermejo from its sources of moisture in the Gulf of California and eastern Pacific Ocean 

(Adams and Comrie 1997). Based on relationships between precipitation and net primary 

productivity (NPP) developed by Sala et al. (1988), Vermejo experiences a projected 2.2x 

increase in NPP compared to Sevilleta during an average year.  

Weather measurements 

 We obtained precipitation data for the Sevilleta colonies from the Sevilleta Long-

Term Ecological Research (LTER) project’s Deep Well weather station 

(http://sev.lternet.edu, dataset SEV001), and from the National Oceanic and Atmospheric 

Administration station Cimarron 4 SW, located 30 km southwest of the Vermejo site. 

Precipitation seasons were summer (June-August) and non-monsoonal months 

(September–May). We compared seasonal precipitation totals to means at each site from 

the 20-year (1990–2009) period prior to study initiation, which represented the time 

frame when detailed meteorological data were available from the Deep Well station.  

http://sev.lternet.edu/
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Vegetation sampling 

 We monitored available vegetation 2x/year at three 1-ha plots per study area 

during pre- and post-monsoon periods. Sevilleta LTER monitoring provided vegetation 

data (http://sev.lternet.edu, dataset SEV129) from plots established at Sevilleta prairie 

dog colonies, and we established equivalent randomly-located plots at Vermejo colonies. 

At each plot, we determined total vegetative cover by species (Daubenmire 1959) and by 

functional group (C3 versus C4/CAM photosynthetic pathways) for all plants present 

within 0.25 m2 vegetation sampling frames. We measured total standing biomass by 

clipping vegetation samples from a 24% subsection of the sampling frame at 6 of the 12 

cover measurement points. Biomass sampling locations were directly adjacent to the 

vegetative cover plots, and rotated directionally to prevent clipping on any given quadrat 

during consecutive sampling seasons. We placed clipped vegetation samples in paper 

bags and weighed them on site using a portable electronic balance with a precision 

(readability) of 0.1 g SD (Scout Pro, Ohaus Corporation, Parsippany, New Jersey, USA).  

 To quantify the range in stable carbon and nitrogen isotope values within plants, 

we collected common plants from each study site over a range of moisture conditions. 

Collections began during the pre-monsoon period of 2011, and extended through the 

2013 post-monsoon period to capture variation among years of poor and strong monsoon 

influences on moisture availability. All plants collected were identified to species and 

photosynthetic pathway (C3 or C4) to assess isotopic variation within and between plant 

functional groups. 

http://sev.lternet.edu/
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Prairie dog sampling 

   We captured prairie dogs from 2010–2012 at four trapping plots (~1 ha each) 

within a complex of adjacent colonies that overlapped vegetation plots in each study area 

(Davidson et al. 2014). Capture and sampling methods followed all applicable 

institutional and national guidelines for care and use of animals, including protocol 10-

100465-MCC approved by the University of New Mexico’s Institutional Animal Care 

and Use Committee. High trap success rates dictated use of a reduced numbers of traps 

(30/plot) at Vermejo to prevent excessive above-ground exposure of captured prairie 

dogs. Capture periods occurred during the spring (post-emergence and pregnancy; April), 

early summer (pre-monsoon; June), and late summer (following monsoon initiation; 

August–early September) seasons. For all captured prairie dogs, we recorded age class 

(juvenile or adult) and weight to ± 0.1 g using a portable electronic balance. We collected 

blood samples (~50 µl) for isotopic analysis from adult and late-summer juvenile C. 

gunnisoni by clipping the distal end of the toenail on the lateral hind digit (Hoogland 

1995), which provided blood flow directly into capillary tubes for 60–90 seconds before 

coagulation occurred. We sampled adipose tissue non-destructively (Baker et al. 2004) 

using 16 ga, 6–9 cm standard bevel-tip biopsy needles (Products Group International, 

Inc., Lyons, Colorado, USA) inserted under the skin and into fat stores deposited on top 

of the lower dorsal musculature. Prior to release of each C. gunnisoni, we uniquely 

marked captured animals with hair dye for within-season identification of individuals 

during counts and trapping efforts, and with ear tags and passive integrated transponder 

(PIT) tags to identify individuals that were recaptured in different seasons (Schooley et 

al. 1993, Hoogland 1995).  
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 We estimated the number of offspring produced at each study site through counts 

obtained from direct observations of prairie dogs at trapping plots (Facka et al. 2008) 

during June, soon after C. gunnisoni juveniles first emerge from their burrows and 

become surface active (Hoogland 1999). We observed C. gunnisoni from a portable blind 

located adjacent to the plot at an elevated vantage point, or from a constructed platform in 

flat terrain (Facka et al. 2008). Observers arrived at count sites before sunrise and prior to 

the emergence of C. gunnisoni from their burrows, and monitored the colony for ~3 

hours. Observation periods included systematic scans of the entire plot conducted every 

30 minutes, beginning and ending from marked points at the edge of the plots. We 

observed each prairie dog plot 1–2 times during June, and completed annual counts of all 

plots at a study site within a period of <5 days. From observations, we determined 

maximum above-ground counts of adult and juvenile C. gunnisoni, and calculated the 

proportion of juveniles present within each count.  

Laboratory procedures 

We separated whole blood into plasma and red blood cells following procedures 

from Warne et al. (2010). Removal of foreign or cloudy materials (e.g., lipids) from 

blood occurred by sectioning capillary tubes as necessary to remove impurities, or to 

prevent mixing from any lysis of blood cells, prior to loading samples into tin capsules 

for isotope processing. We washed adipose tissue samples (0.6–0.8 mg) in distilled water 

and ethanol, and examined them under a hand lens to ensure that no connective or other 

tissue was attached to the sample. Plant samples were dried in an oven at 60 C for 24 

hours, and ground into 1.0–1.5 mg samples of homogenized tissues from individual 

plants before loading into tins for isotopic analysis. 
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We measured carbon and nitrogen isotope ratios through continuous flow isotope 

ratio mass spectrometry at the University of New Mexico Center for Stable Isotopes 

(UNM-CSI), using a Costech ECS 4010 elemental analyzer coupled to a Thermo 

Finnigan Delta Plus mass spectrometer via a ConFlo II interface. Isotope ratios are 

reported in standard delta (δ) notation in parts per thousand (‰) relative to isotopic 

standards (Vienna Pee Dee Belemnite [VPDB] for carbon, atmospheric air for nitrogen), 

as:  

δX = (Rsample/Rstandard  − 1) × 1000 

where R represents the ratio of heavy to light isotopes (13C/12C or 15N/14N). Average 

analytical precision based on routine analysis of laboratory standards at UNM-CSI was 

<0.1 ‰ SD. Laboratory standards were calibrated against NBS 21, NBS 22 and USGS 24 

for δ13C. We considered extreme δ13C or δ15N values >3 interquartile ranges from the 

first or third quartiles to represent outliers (Tukey 1977) that resulted from processing 

errors, and removed those values from further analysis. 

Statistical analyses 

 We compared the proportion of C4 plant cover and the mass of clipped vegetation 

among seasons and years using a mixed effects linear model (Zuur et al. 2007). The 

mixed effects model tested for differences at each site using plot number as a fixed effect 

to account for repeated measures of vegetation plots over time. We used the logit 

transformation (= log [yC4 / (1− yC4)], where yC4 = proportion of C4 plants) on all 

vegetative cover proportion data (Warton and Hui 2011), and the square root 

transformation on all plant biomass data, in order to meet assumptions for linear 
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modeling. Bonferroni procedures controlled experimentwise error rates for post-hoc 

multiple comparisons among time periods.  

We analyzed and compared plant δ13C values from arid (pre-monsoon periods and 

the 2011 monsoon failure year) and more mesic periods to quantify temporal variation in 

plant δ13C values. Carbon:nitrogen (C:N) ratios in plant tissues were calculated from 

quantities of combusted carbon and nitrogen, calibrated to a laboratory standard value. 

We used t-tests to evaluate differences in δ13C values between dry and wet periods for 

each photosynthetic pathway, and for differences in C:N ratios between C3 and C4 plants 

as an index of nutritional quality.    

 To estimate dietary niche breadth, we used the Stable Isotope Analysis in R 

package (SIAR) to calculate and compare Stable Isotope Bayesian Ellipses in R (SIBER) 

metrics (Jackson et al. 2011) among seasons and years. Standard ellipse areas (SEAs) 

from δ13C and δ15N bivariate plots represented foraging niche widths based upon the 

range of C3 (lower δ13C values) versus C4 (higher δ13C values) plant carbon assimilated, 

and the variation in δ15N in plants associated with differences in nitrogen fixation, 

moisture stress, plant parts, or other plant physiological traits (Dawson et al. 2002). 

Calculated SEAs for different tissues provided niche width metrics from distinct time 

frames, based upon projected continuous turnover rates for plasma (half life = 3–4 days) 

and red blood cells (half life = 28–30 days) (Hobson and Clark 1993, Hilderbrand et al. 

1996). We tested for population-level differences in foraging niche width among seasons 

(spring, pre-monsoon, post-monsoon) and years, and between consecutive seasons, by 

generating Bayesian estimates of plasma and blood isotope SEAs using 10,000 posterior 

draws. Two-tailed probabilities of differences in SEAs between groups were calculated as 
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2x the proportion of Bayesian ellipse sizes for one group (time period) that were smaller 

than SEAs for its comparison group. We considered differences to be significant at P < 

0.05 if SEAs were larger for one group in >97.5% or <2.5% of the draws relative to the 

comparison group.  

To evaluate the assimilation of preferred resources as energetic capital reserves, 

we analyzed δ13C ratios in adipose tissue. Prairie dogs do not turn over these fatty tissue 

deposits at fixed intervals, but may retain lipid stores as long-term energy storage for 

hibernation or periods of energetic deficit (Thompson et al. 1993, Lehmer and Van Horne 

2001). We tested for changes in adipose tissue δ13C values among seasons and years 

using Kruskal-Wallis tests to account for heterogeneous variances among δ13C values 

from different sampling periods. Where overall differences among time periods existed, 

we evaluated pairwise comparisons of seasonal and yearly mean δ13C values using 

Dunn’s test (Dunn 1964). We tested for relationships between early-summer abundance 

of juvenile C. gunnisoni at each study site and dietary niche width from plasma and blood 

samples, yearly δ13C values in all tissues, and total standing plant biomass from off-

colony vegetation plots, using Pearson product-moment correlation analysis. We 

eliminated post-monsoon period plasma samples from these yearly δ13C estimates 

because plasma has rapid turnover, and during late summer reflects foods assimilated 

after the June counts of C. gunnisoni adults and juveniles. 

Results 

Precipitation 

Annual precipitation was below average at both sites during all three years of the 

study (Fig. 1). Seasonal precipitation at Sevilleta was below the long-term average for 
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every season during the study period (Fig. 2), including a near complete failure of 

summer monsoons during 2011, when precipitation was 80% less than the long-term 

seasonal mean. Vermejo experienced five consecutive seasons of below-average 

precipitation beginning post-monsoon 2010. Precipitation during all monsoonal periods at 

Vermejo was at least 28% less than the long-term average, including two consecutive 

seasons in 2011 with precipitation inputs that were at least 45% less than the long-term 

average. 

Vegetation 

Vegetative cover at Sevilleta was dominated by perennial C4 grasses, with C4 

plants comprising >80% of total vegetative cover during the entire study period. 

Bouteloua gracilis was the most abundant of these grasses, averaging 55% of the total 

vegetative cover from plots at Sevilleta. No consistent increase in C4 plant cover was 

observed following post-monsoon periods (Fig. 2). There were no significant differences 

in proportion of C4 cover by season at Sevilleta (P = 0.44), but differences among years 

were significant (P < 0.001), with proportion of C4 cover increasing in 2011 compared to 

2010. Total standing biomass of vegetation from clipped samples showed similar 

patterns, with no significant seasonal patterns (P = 0.41), but a significant year effect (P 

< 0.001). Standing biomass was greater in 2010 than in 2011 and 2012.  

Bouteloua gracilis was also the most abundant plant species at Vermejo, 

averaging 59% of vegetative cover for the duration of the study period. However, C4 

vegetation at Vermejo initially comprised <50% of the total cover when the study began 

in 2010. By the 2011 pre-monsoon season, C4 plants at Vermejo represented >80% of 

total vegetative cover, and remained at or near that level for the duration of the study. 
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Vermejo experienced significant seasonal (P = 0.001) and year (P < 0.001) effects on the 

proportion of C4 vegetation. Proportional C4 plant cover increased during the post-

monsoon season, and was greater in 2011 and 2012 than 2010. Standing biomass of 

sampled vegetation also showed significant differences both by season (P = 0.018) and 

year (P < 0.001). Standing biomass was greater post-monsoon than pre-monsoon, and 

exhibited an annual pattern of 2010 > 2012 > 2011.  

Plants with C3 carbon fixation had δ13C values (mean ± SD) of −26.7 ± 1.5‰, and 

δ13C for C4 plants was −13.8 ± 1.0‰ (Appendix S1: Table S1). Plant δ13C values differed 

significantly between dry and wet periods for C3 plants (t = 2.33, P = 0.03), but not for C4 

plants  (t = −1.36, P = 0.19). Tissues from C3 plants had significantly different C:N ratios 

from C4 plants (t = −2.52, P = 0.02). 

Prairie dog sampling and tissue stable isotopes 

We collected tissue samples from 319 captures of C. gunnisoni at Sevilleta (n = 

77) and Vermejo (n = 242), representing 214 distinct individuals and 105 between-season 

recaptures. Standard ellipse areas of δ13C and δ15N in plasma (Fig. 3) and red blood cells 

(Fig. 4) from Sevilleta C. gunnisoni showed no significant differences in comparisons 

between seasons. At Vermejo, seasonal SEAs of plasma isotopes were smallest during 

the pre-monsoon season and significantly different from both spring (P = 0.008) and after 

monsoon initiation (P = 0.01). Standard ellipse areas from red blood cell isotopes at 

Vermejo showed a pattern that was shifted one season later from plasma isotopes. 

Seasonal SEAs were largest pre-monsoon and smallest during the post-monsoon season, 

although no pairwise differences between individual seasons were significant. Yearly 

SEAs of plasma isotopes at Sevilleta peaked during 2010, and were significantly different 
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from both 2011 (P = 0.006) and 2012 (P = 0.012). Plasma isotope SEAs at Vermejo were 

also highest in 2010, and differed significantly between 2011 (P = 0.024) and 2012 (P = 

0.002). Red blood cell isotope SEAs showed no significant differences between years at 

Sevilleta, but at Vermejo were greatest in 2010 and significantly different from 2011 (P < 

0.001) and 2012 (P = 0.018). Plasma isotope SEAs were larger at Vermejo than Sevilleta 

in all seasons and years, and red blood cell isotope SEAs were larger at Vermejo in all 

years but failed to show the same pattern among seasons.  

Both plasma and blood isotope SEAs exhibited no significant differences in 

pairwise comparisons between consecutive seasons at Sevilleta (Table 1). However, 

plasma SEAs at Vermejo differed between pre-monsoon and post-monsoon seasons in 

2010 (P = 0.049), monsoon season 2010 and post-emergence (spring) 2011 (P = 0.003), 

post-monsoon season 2011 and spring 2012 (P < 0.001), and pre-monsoon and post-

monsoon seasons in 2012 (P = 0.040). Blood isotope SEAs from Vermejo showed less 

variation between consecutive seasons, with the only significant differences between the 

2011 post-monsoon and 2012 spring emergence periods (P = 0.011). 

 Samples of adipose tissue had significantly different δ13C values at both sites by 

year (P < 0.001 Sevilleta, P < 0.001 Vermejo), and by season (P = 0.03) at Sevilleta 

(Table 2). Seasonal δ13C values from Sevilleta adipose tissue were greater (more similar 

to C4 plant tissues) during the post-monsoon than the pre-monsoon season. Adipose 

tissue δ13C values were greater in 2012 compared to 2010 and 2011 at Sevilleta, and 

followed the chronological sequence of 2012 > 2011 > 2010 at Vermejo.  
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Production of offspring 

 Juvenile C. gunnisoni comprised 8–25% of the total number of individuals 

observed at Sevilleta during June 2010–2012, and 55–68% of animals counted at 

Vermejo. The proportion of juveniles in the population was more strongly correlated with 

yearly δ13C values than with SEAs from both plasma (rδ13C = −0.744, rSEA = 0.037) and 

red blood cells (rδ13C = −0.890, rSEA = 0.397) (Fig. 5). Correlation between the proportion 

of juveniles and yearly δ13C values in adipose tissue (rδ13C = 0.392) was weaker than for 

the two metabolically active tissues with fixed turnover intervals. The lowest proportion 

of juveniles observed occurred during 2011 at both sites, when δ13C values in C. 

gunnisoni plasma and red blood cells peaked at both Sevilleta and Vermejo. Correlation 

between proportion of juveniles observed and yearly mean standing vegetation biomass 

(rmass = 0.187) was also weak. 

Discussion 

 The extended drought conditions present during this study provided a unique 

opportunity to observe responses of consumers to periods of persistent resource stress. 

Over the course of our three-year study, only a single season of precipitation (pre-

monsoon 2010) could have been classified as average (Fig. 1). On both study sites, all 

periods following the first summer exhibited a decline in available standing biomass as 

drought conditions persisted. Reduced moisture availability precluded any apparent 

growth pulses of the more nutritious C3 photosynthetic group of forage plants (Fig. 2). 

Sevilleta vegetation showed little seasonal or annual variation in cover by plant 

photosynthetic group, with C4 perennial grasses consistently comprising the majority of 

vegetative cover during all seasons and years. Vegetation at Vermejo shifted from an 
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initial majority of C3 plant cover to a C4-dominated composition in response to extended 

drought. Unlike Sevilleta, Vermejo experienced a detectable seasonal increase in C4 

vegetation during the summer post-monsoon period, but still showed a pattern of 

decreasing C3 plant cover over the three years of the study. We hypothesized that periods 

of reduced overall primary productivity and a decrease in more palatable, cool-season C3 

vegetation would create evidence of abiotic limitation within colonies of the strict 

herbivore C. gunnisoni. We also predicted that these constraints on the availability of 

forage resources would in turn result in narrower foraging niches, and shifts in energy 

assimilation away from the more nutritious C3 food sources. In the following discussion 

we interpret C. gunnisoni foraging niche width data and composition of energy stores to 

assess whether drought-related resource stress was associated with population-level 

indicators of abiotic regulation, including differences in reproductive output. 

Temporal changes in foraging niche 

 At Sevilleta, both the proportion of C4 vegetative cover and C. gunnisoni foraging 

niche width (as indicated by SEAs of tissue δ13C and δ15N values) failed to show 

significant seasonal variation in any of the tissue types analyzed. Seasonal and yearly 

foraging niche widths were smaller at the consistently C4-dominated Sevilleta site than at 

Vermejo (Fig. 3, 4), where more pronounced seasonal influences on vegetation 

composition provided C. gunnisoni with increased opportunities for dietary shifts. 

Differences in foraging niche widths between study sites were particularly pronounced in 

plasma, which experiences rapid carbon turnover and confines plasma SEAs to the short-

term variation in δ-space of carbon and nitrogen from available plant tissues. Plasma 
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SEAs at Sevilleta were on average 33% smaller by season and 45% smaller by year than 

for corresponding time periods at Vermejo. 

Variation in C3/C4 plant cover, total standing biomass, and C. gunnisoni foraging 

niche width at Sevilleta followed yearly patterns that appeared to reflect annual 

precipitation totals and the cumulative increase in severity of drought conditions. In 

contrast, Vermejo continued to show seasonal shifts in plant photosynthetic group cover, 

total biomass, and C. gunnisoni seasonal foraging niche width against a backdrop of 

decreasing C3 plant cover that persisted over multiple years of drought. Vermejo C. 

gunnisoni translated this available seasonal variation in plant growth to expanded 

foraging niches during spring and post-monsoon periods (Table 2), which are typical 

times for growth pulses in C3 and C4 plants, respectively. These results support our 

hypotheses that prolonged droughts at arid locations (e.g., Sevilleta) limit the opportunity 

to consume nutritious C3 resources, and thereby constrict the dietary niche widths of C. 

gunnisoni under environmentally stressful conditions. 

  We also considered whether the effects of water availability on plant water use 

efficiency and carbon discrimination in C3 and C4 plants could explain the observed 

trends in δ13C of consumer tissues and their relationships to C. gunnisoni population 

dynamics (Fig. 5). Based on the δ13C values for C3 and C4 plants in our study areas, the 

annual variation in rapid-turnover tissues (range = 3.5‰ plasma δ13C, Fig. 5) 

corresponded to a 27% shift in C3/C4 plant assimilation in C. gunnisoni tissues. While 

arid conditions may influence carbon isotope discrimination in C3 plant tissues through 

demands for increased water use efficiency (Tieszen 1991, Ehleringer et al. 1992), 

discrimination factors in desert plant species are highly constrained within water-limited 
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systems, and δ13C values exhibit a reduced range of variability (Wolf and Martínez del 

Río 2000, Codron et al. 2005, Symes et al. 2011, Orr et al. 2015). In contrast to C3 plants, 

carbon isotope discrimination in C4 plants may decrease under more mesic conditions, 

although the magnitude of such shifts is smaller (Bowman et al. 1989, Madhavan et al. 

1991, Peisker and Henderson 1992). Because δ13C values shift in opposite directions in 

C3 and C4 plants with increasing water stress, dietary mixing of C3 and C4 plants dampens 

effects from moisture-related variation in carbon isotope discrimination to observed δ13C 

values in consumer tissues. In our study, the difference in δ13C values between dry and 

moist conditions was −1.5‰ in C3 plants, and +0.5‰ in C4 plants (Appendix S1: Table 

S1), corresponding to an apparent diet shift in C3/C4 plant carbon assimilation of 4–12%. 

Yearly C. gunnisoni tissue δ13C values shifted in a direction consistent with changes in C3 

plant δ13C values under moisture limited conditions, with isotopic foraging niches 

extending toward the more positive δ13C values during the driest year (2011) at both 

study sites (Fig. 3). Temporal changes in carbon isotope discrimination in plants could 

therefore contribute to observed shifts in δ13C among years, and overestimate apparent 

diet shifts. However, seasonal foraging niches showed an opposite pattern, and exhibited 

a shift toward more positive δ13C values under the site-by-season combination with the 

most mesic conditions (post-monsoon seasons at Vermejo) (Fig. 3, 4). Moisture-related 

variation in carbon isotope discrimination would thus serve to reduce the observed 

magnitude of shifts in consumer tissue δ13C values, and underestimate seasonal diet 

changes. Our observed shifts in consumer isotopic foraging niches can therefore not be 

explained simply by temporal variation in plant δ13C values, but indicate selective 
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foraging among plant groups (i.e., C3 and C4 photosynthetic pathways) with distinct δ13C 

values when preferred forage resources are available.  

Under food-limited conditions, individual foragers may be forced to utilize 

available resources, whether or not they represent preferred sources of energy 

assimilation (Araújo et al. 2008). Shifts in resource availability can lead to niche 

partitioning among specialized individuals adapted to different portions of the total 

population niche (Van Valen 1965), or to more generalized individual foraging that 

creates greater intrapopulation niche overlap when the total available niche width 

decreases (Roughgarden 1972, Murray and Wolf 2013). Our study involved population-

level sampling and was not designed to assess changes in individual dietary specialization 

over time, but persistent drought produced decreases in population-level foraging niche 

widths that strongly indicate generalist foraging strategies with opportunistic utilization 

of moisture-limited forage resources.  

 Changes in both consumer resource use (selection) and resource availability have 

been identified as mechanisms associated with foraging niche width expansion. Niche 

width increases when optimal foragers selectively add intermittently-available preferred 

food sources to their diets, which can result in demographic benefits to consumer 

populations (Ostfeld and Keesing 2000, Yang et al. 2008). Alternatively, expanded 

foraging niches may reflect increased diversity of available food sources (Darimont et al. 

2009, Jaeger et al. 2010), even in generalist foragers consuming food resources in 

proportion to availability. In our study, expansion of consumer foraging niches occurred 

when conditions favored increases in C3 plant growth (Fig. 3, 4). The observed timing of 

niche width expansion signals an adaptive resource utilization strategy by C. gunnisoni 
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and supports the C3 hypothesis, with primary consumers capitalizing on the nutritional 

advantages of C3 over C4 plants (Barbehenn et al. 2004a). 

Foraging resources and reproductive output 

 As an obligate hibernator inhabiting montane grasslands, C. gunnisoni 

experiences pronounced temporal variability in energetic demands for meeting its life 

history requirements. The high metabolic costs associated with breeding, pregnancy, and 

lactation pose particular energetic challenges for C. gunnisoni during spring (Hoogland 

2003). Increased adult body masses and condition prior to parturition are associated with 

larger litter sizes in prairie dogs and other sciurids (Hoogland 2001, Fokidis et al. 2007, 

Risch et al. 2007), and availability of food resources can thereby affect production of 

prairie dog offspring (Rayor 1985b). We found a strong positive correlation between the 

number of juveniles present and the quantity of C3 carbon assimilated by adult C. 

gunnisoni to support our hypothesis relating C3 diet quality to juvenile recruitment (Fig. 

5). While other tests of the C3 hypothesis have focused largely upon abundances or 

growth rates of insects on C3 and C4 grasses (Boutton et al. 1978, Barbehenn and Bernays 

1992, Barbehenn et al. 2004b), our results provide strong evidence of how differences in 

relative nutritional quality of C3/C4 grasses and forbs may affect the demography of 

longer-lived consumers.  

 Although juvenile C. gunnisoni abundance was associated with δ13C values in 

tissues with regular turnover, we found no evidence to support predicted relationships 

between numbers of juvenile prairie dogs to total foraging niche width, or to adipose 

tissue δ13C values (Table 2). Variation in the δ15N component of observed foraging niche 

widths may reflect changes in plant tissue δ15N during periods of high soil nitrogen 
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turnover (Kielland et al. 1998) or other factors unrelated to consumer metabolic demands. 

Similarly, δ13C values in stored lipids reflect composition of food sources assimilated 

during periods when capital energy stores are accumulated, and may not replicate the 

isotopic composition of vegetation during times of peak energetic requirements for 

reproductive output. While consumers inhabiting environments characterized by periods 

of low or intermittent resource availability are predicted to fuel reproduction using capital 

energy stores (Bonnet et al. 1998), seasonal limitations in energetic resources may require 

delaying accumulation of capital energy reserves and somatic growth to post-

reproductive periods (Jonsson 1997). The association between increased abundance of 

juveniles and assimilation of carbon from C3 plants, which exhibit peak growth that 

coincides with the C. gunnisoni reproductive period, highlights the importance of 

seasonally-available C3 food sources as income energy sources to support reproduction. 

In contrast, the isotopic composition of fat stores appears largely unrelated to 

reproductive success, and may reflect accumulation of available resources during periods 

of surplus energetic resources (e.g., late summer and early fall).    

Implications for population persistence 

 Understanding how resource dynamics fuel reproduction and other demographic 

processes is vital to our understanding of the role of abiotic regulation in the persistence 

of C. gunnisoni populations. Climate models for the southwestern United States project 

increases in mean annual temperatures of >3oC by the end of the century, along with 

decreases in annual precipitation (Seager et al. 2007, Gutzler 2013). Projections for this 

region include disproportionate seasonal decreases in precipitation and moisture 

conditions during winter (Christensen et al. 2004). Because early season C3 plant growth 
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is linked to winter precipitation, future conditions of decreased precipitation and soil 

moisture would further reduce C3 plant productivity in these arid grasslands (Muldavin et 

al. 2008). Sylvatic plague is also promoted by wet winters and springs (Gage and Kosoy 

2005), and under future climate scenarios may play a reduced role in the limitation of C. 

gunnisoni populations. Climate-driven changes to future habitat conditions project an 

increased role of bottom-up regulation in C. gunnisoni populations, by dampening 

seasonal availability of the more nutritious C3 plants. Our research identifies 

demographic consequences associated with shifts in the assimilation of carbon from C3 

vegetation, and demonstrates important conservation concerns for the persistence of C. 

gunnisoni populations within moisture-limited grassland environments. 
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Tables 

Table 1. Bayesian estimates of standard ellipse areas (SEA) for consecutive season δ13C 

and δ15N values in Cynomys gunnisoni plasma and red blood cells at Sevilleta National 

Wildlife Refuge and Vermejo Park Ranch 

Season† Plasma SEA (‰2)‡  Red blood cell SEA (‰2) ‡ 

 Sevilleta  
(n = 64) 

Vermejo  
(n = 222)  Sevilleta  

(n = 65) 
Vermejo  
(n = 181) 

2010 Pre-monsoon 4.48 2.39  4.56 4.99 

2010 Post-monsoon 3.40 5.98*  2.68 4.67 

2011 Spring 2.55 1.90**  1.28 2.87 

2011 Pre-monsoon 1.70 2.25  3.92 1.84 

2011 Post-monsoon 1.63 1.57  1.53 1.77 

2012 Spring 1.89 4.52***  4.04 4.94* 

2012 Pre-monsoon 1.33 4.27  1.86 5.52 

2012 Post-monsoon 1.65 2.52*  3.61 3.60 

†Cynomys gunnisoni sampling seasons were April (spring), June (pre-monsoon), and August–

September (post-monsoon) 

‡Significant differences between consecutive (current versus previous) season SEAs are indicated 

as: *P < 0.05, **P < 0.01, ***P < 0.001
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Table 2. Seasonal and yearly δ13C values (mean ± SD‰, VPDB) in adipose tissue 

samples from Cynomys gunnisoni at the Sevilleta and Vermejo study sites 

Time period Sevilleta Vermejo 

δ13C n δ13C n 

Season† 

Spring         —   0 −21.0 ± 1.5c 20 

Pre-monsoon −22.4 ± 3.1a 33 −19.4 ± 3.5c 54 

Post-monsoon −20.6 ± 2.9b 22 −19.9 ± 3.4c 62 

Year 

2010 −23.0 ± 2.4d 21 −23.1 ± 3.0f 29 

2011 −22.4 ± 3.2d 19 −20.0 ± 2.1g 56 

2012 −18.9 ± 2.1e 15 −17.9 ± 2.9h 51 

†Cynomys gunnisoni sampling seasons were April (spring), June (pre-monsoon), and August–

September (post-monsoon)
a-hShared letters within study areas indicate no significant differences in adipose tissue δ13C values 

among time periods (Kruskal-Wallis test of rank values with Dunn’s test of pairwise comparisons)
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Figures 

 

 

Fig. 1. Annual precipitation at (A) Sevilleta National Wildlife Refuge and (B) Vermejo 

Park Ranch. Precipitation years were defined as September–August, the timing of 

precipitation considered most relevant to growth of vegetation available to prairie dogs 

during sampling periods. Dashed lines represent the long-term (20-year) average annual 

precipitation at each site 
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Fig. 2. Seasonal precipitation (bars, left axis) and mean proportion of total vegetative 

cover from C4 plant species (± 1 SE, line on right axis) at vegetation plots on the (A) 

Sevilleta and (B) Vermejo Cynomys gunnisoni study sites. Vegetation measurements 

were collected 2x/year, prior to and after the initiation of the summer monsoon growth 

period
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Fig. 3. Standard ellipses of (A–B) seasonal and (C–D) yearly δ13C and δ15N values from 

plasma in Cynomys gunnisoni at Sevilleta National Wildlife Refuge and Vermejo Park 

Ranch  
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Fig. 4. Standard ellipses of (A–B) seasonal and (C–D) yearly δ13C and δ15N 

values from red blood cells in Cynomys gunnisoni at Sevilleta National Wildlife 

Refuge and Vermejo Park Ranch
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Fig. 5. Observed proportion of juvenile Cynomys gunnisoni present during above-

ground counts and yearly δ13C values of C. gunnisoni (A) plasma and (B) red 

blood cells 
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Appendix 

Supplemental Appendix S1 (Table S1). C3 and C4 plant δ13C values and carbon:nitrogen ratios 

(C:N) during dry and mesic periods at Sevilleta National Wildlife Refuge and Vermejo Park 

Ranch 

Plant Species δ13C ± SD 
(‰ VPDB) 

C:N n Site† 

C3 plants, dry periods     

Artemesia dracunculus -26.6   8.8 1 VPR 

Chenopodium incanum -25.5   9.7 1 Sev 

Chenopodium leptophyllum -27.0 13.4 1 VPR 

Chenopodium watsonii -28.2 27.0 1 VPR 

Elymus trachycaulus -27.9 14.3 1 VPR 

Grindelia squarrosa -28.3 ± 0.3 30.1 2 VPR  

Gutierrezia sarothrae -25.4 ± 0.5 21.6 2 Sev 

Proboscidea parviflora -24.0   6.8 1 VPR 

Ratibida columnifera -26.0 16.7 1 VPR 

Senna bauhinioides -25.0 ± 0.5   9.8 2 Sev 

Sphaeralcea coccinea -26.1 13.3 1 VPR 

Sphaeralcea hastulata -25.5 ± 0.8 14.3 2 Sev 

All samples (pooled) -26.2 ± 1.4 16.3 16  
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C3 plants, mesic periods     

Chenopodium incanum -24.7   6.4 1 VPR 

Pascopyrum smithii -27.9 ± 0.4 11.9 2 VPR 

Solanum elaeagnifolium -28.9 ± 0.1 14.4 2 Sev 

Sphaeralcea coccinea -27.7 ± 0.1   9.2 2 VPR 

All samples (pooled) -27.7 ± 1.4 11.1 7  

C4 plants, dry periods     

Bouteloua eriopoda -15.6 ± 0.3 40.1 2 Sev 

Bouteloua gracilis -13.3 ± 0.7 35.9 2 VPR 

Chamaesyce albomarginata -14.5 20.6 1 Sev 

Chamaesyce serpyllifolia -14.6 ± 0.1 24.6 2 Sev 

Pleuraphis jamesii -14.3 33.1 1 Sev 

Portulaca oleracea -12.9 ± 0.7 13.2 2 VPR 

Salsola collina -12.8   7.7 1 VPR 

Salsola tragus -15.3   7.8 1 Sev 

All samples (pooled) -14.1 ± 1.1 24.7 12  

C4 plants, mesic periods     

Amaranthus biltoides -12.9   8.4 1 VPR 

Bouteloua gracilis -13.9 ± 1.0 28.6 4 Sev, VPR 
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Muhlenbergia wrightii -13.8 ± 0.3 13.2 2 VPR 

Pectis angustifolia -13.6 ± 0.1 23.6 2 Sev 

Pleuraphis jamesii -14.9 ± 0.1 29.5 2 Sev 

Portulaca oleracea -12.4 ± 0.2 22.3 2 Sev 

Salsola collina -13.1 ± 0.6   6.5 2 VPR 

All samples (pooled) -13.6 ± 0.9 20.9 15  

 
Note: Samples from dry periods were collected prior to the onset of monsoon 

seasons and in late summer during the 2011 monsoon failure year, and mesic period 

samples were obtained during post-monsoon seasons  

†Sev = Sevilleta National Wildlife Refuge, Socorro County, New Mexico; VPR = 

Vermejo Park Ranch, Colfax County, New Mexico 
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CHAPTER 2 

Gunnison’s prairie dogs (Cynomys gunnisoni) maintain body condition, not 

population size, under extended drought conditions 

 

Charles L. Hayes1,2†,  William A. Talbot1, and Blair O. Wolf1  

1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, 

USA 

2New Mexico Department of Game and Fish, One Wildlife Way, Santa Fe, New Mexico 

87507, USA 

†E-mail: clhayes@unm.edu 

 

Abstract 

Gunnison’s prairie dogs (Cynomys gunnisoni) inhabit temperate grasslands 

experiencing seasonal and interannual variability in primary productivity, and survive 

periods of negative energy balance using internal reserves.  We investigated relationships 

of resource use and energy assimilation to population demographics in two populations of 

C. gunnisoni.  Both the arid lower-elevation (prairie) and more mesic higher-elevation 

(montane) populations experienced persistent drought conditions that began following 

study initiation.  We documented no overall differences in body condition between the 

two C. gunnisoni populations, but found seasonal changes in body condition differed 

between sites.  Cynomys gunnisoni from both sites improved condition after emergence 

from hibernation, except for females at the montane site, who maintained a more stable 

condition and exhibited evidence of early-season investment in reproduction.  Despite 

mailto:clhayes@unm.edu
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similar body condition and initial population densities, montane C. gunnisoni populations 

reached densities up to 20x those of the prairie site, increasing each year with 

recruitment.  Our results suggest that consumers may be forced to choose between 

reproductive and somatic investment during extended droughts, and that maintenance of 

body mass and long-term energy stores may be independent of conditions that support 

population recruitment. 

Key words 

body condition, Cynomys gunnisoni, Gunnison’s prairie dog, population density, resource 

allocation, stable isotope analysis  

Introduction 

 A central question in ecology is how consumers obtain and allocate energy to 

meet life-history needs and maximize fitness (Lack 1968; Smith and Fretwell 1974; 

Charnov 1976; Drent and Daan 1980; Brown 1988).  Long-term survival requires 

successful trade-offs in energy allocation among processes that support organismal 

maintenance, growth, and reproduction (Gittleman and Thompson 1988; Lindström 1999, 

Kooijman 2000; Brown et al. 2004).  Consumers must match metabolic demands with the 

availability of energy sources (Thomas et al. 1996; Both et al. 2006).  In temporally 

heterogeneous environments, aligning resource availability with consumer metabolic 

needs can lead to modified life history strategies or changes in community structure 

(Paine 1966; Weltzin and Tissue 2003; Chesson et al. 2004; Yang et al. 2008).  One 

strategy for coping with periodic resource scarcity is to decouple periods of maximum 

energy availability and peak metabolic demand by accumulating reserves of “capital” 
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energy sources that can be mobilized when “income” sources are insufficient to meet 

reproductive or other critical life history needs (Jonsson 1997; Bonnet et al. 1998).  

Mammals of the family Sciuridae establish energetic reserves that are available 

during hibernation or periods of winter resource scarcity, and the presence of endogenous 

energy stores can play a vital role in gaining reproductive advantages and maximizing 

fitness (Fokidis et al. 2007; Risch et al. 2007).  Cyclical changes in body condition follow 

seasonal patterns of energy accumulation and subsequent depletion of energy reservoirs 

(McLean and Towns 1981; Körtner and Heldmaier 1995; Buck and Barnes 1999; 

Humphries et al. 2003).  Gunnison’s prairie dog (Cynomys gunnisoni) is a herbivorous 

ground squirrel of temperate North American grasslands that exhibits these patterns 

(Hoogland 2003).  Cynomys gunnisoni is an obligate hibernator with iteroparous 

reproduction and life expectancy in the wild of up to five years (Hoogland 2001).  

Northern and higher-elevation (montane) C. gunnisoni habitats are characterized by 

extended periods of cold followed by temperature-induced snowmelt and spring green-up 

that provide abundant forage throughout the short growing season (Longhurst 1944, 

Fitzgerald and Lechleitner 1974).  Mesic soil conditions in montane C. gunnisoni habitats 

help trigger vector-mediated cycles of sylvatic plague (Yersinia pestis) (Parmenter et al. 

1999; Stapp et al. 2004; Nakazawa et al. 2007), and montane populations of C. gunnisoni 

have experienced catastrophic declines since the introduction and spread of Y. pestis in 

North America (Rayor 1985a; Cully et al. 1997; Friggens et al. 2010).  In contrast, prairie 

C. gunnisoni inhabit warmer, arid grasslands where primary productivity tracks seasonal 

precipitation patterns including dry spring conditions that limit cool-season plant growth, 

and coincide with suppressed recruitment in C. gunnisoni populations (Davidson et al. 
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2014).  Monsoonal precipitation during the summer stimulates growth of the dominant 

warm-season herbaceous vegetation (Muldavin et al. 2008), but varies in intensity among 

days, seasons, and multi-year periods (Gutzler 2004; Vera et al. 2006).  

 The seasonal activity cycle of Cynomys gunnisoni begins in early spring, with 

breeding following soon after emergence for hibernation.  Endogenous reserves promote 

post-emergence reproductive success in mammals by providing energy to support 

reproductive activities from ovulation through weaning in adult females (Humphries et al. 

2003) and restoration of gonadal condition for spermatogenesis in males (Barnes 1996).  

Within populations of C. gunnisoni, heavier adult breeding-season body masses are 

associated with individuals exhibiting increased reproductive success (Hoogland 2001).  

Facultative or non-hibernating black-tailed prairie dogs show similar relationships 

between adult body mass, juvenile recruitment, and population trajectories (Facka et al. 

2010).  Heavier females are more attractive to males (Hoogland 1998), and incur fitness 

advantages compared to females with lower body masses.  Body condition thereby provides a 

conceptual mechanism linking energy availability, body condition, reproduction, and 

population dynamics. 

 Previous research quantifying reproductive output in prairie and montane populations 

of C. gunnisoni found a positive relationship between juvenile abundance and assimilation of 

energy from C3 plants (Hayes et al. 2016).  Plants using the C3 photosynthetic pathway 

provide more nutritious and digestible tissues than C4 plants (Caswell et al. 1973; Landa and 

Rabinowitz 1983; Wilson et al. 1983; Scheirs et al. 2001).  In this study, we evaluate the role 

of C. gunnisoni body condition in linking the availability of high quality energy resources to 

population demographics.  We investigated the assimilation of energy from forage resources 

relative to resource availability, and hypothesized that energy assimilation from higher 
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quality forage resources would be associated with improved body condition.  We also 

hypothesized that population-level differences in body condition would influence population 

densities and reproductive success on C. gunnisoni observation plots.  By evaluating 

relationships among availability of energy resources, body condition, and population 

dynamics, we provide an improved understanding of life history strategies associated with 

the growth and persistence of C. gunnisoni populations. 

Methods     

Study Sites 

We studied C. gunnisoni colonies at Sevilleta National Wildlife Refuge, 85 km 

south of Albuquerque, New Mexico, USA, and Vermejo Park Ranch, located ~300 km to 

the northeast between the towns of Raton and Cimarron, New Mexico.  Colonies 

occurred at 1650 m elevation on Sevilleta, and represented prairie populations of C. 

gunnisoni.  Precipitation at Sevilleta averages 26 cm annually, with 53% falling during 

the summer monsoonal period and 47% during winter (Muldavin et al. 2008).  Mature 

warm-season (C4) grasses such as blue grama (Bouteloua gracilis) dominated Sevilleta’s 

Chihuahuan Desert vegetation (Collins and Xia 2015).  Vermejo colonies fell within the 

montane portion of the C. gunnisoni range, and were located at 2220 m elevation.  

Annual precipitation at the Vermejo colonies averages ~50 cm, and includes summer 

monsoonal thunderstorms that account for an estimated 29–42% of the total annual 

precipitation (Legler 2010).  Vermejo habitats consisted of long (30–40 km), canyon-

bounded grasslands characterized by a mixture of primarily C3 forbs and grasses that 

complemented abundant B. gracilis, which was the most common plant species present 

within the Vermejo grasslands.  The same North American monsoon summer storm 

systems therefore impact both study sties, but monsoonal activity becomes less intense 
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and contributes a smaller proportion of total annual precipitation as it moves northward 

from its sources of moisture in the Gulf of California and eastern Pacific Ocean (Adams 

and Comrie 1997).   

Animal capture and sampling 

We captured prairie dogs from 2010–2012 at 4 trapping plots (~1 ha each) within 

a complex of C. gunnisoni colonies at each study area (Davidson et al. 2014; Hayes et al. 

2016).  Capture and sampling methods followed applicable guidance for animal care, 

including American Society of Mammalogists guidelines for use of wild mammals in 

research, and protocol 10-100465-MCC approved by the University of New Mexico’s 

Institutional Animal Care and Use Committee.  Capture periods occurred during spring 

(post-emergence; April), early summer (pre-monsoon; June), and late summer (following 

monsoon initiation; August-early September).  We recorded weight of each captured C. 

gunnisoni to +0.1 g using a portable electronic balance (Scout Pro, Ohaus Corporation, 

Parsnippany, New Jersey, USA), and measured hind foot length (Schulte-Hostedde et al. 

2005) to the nearest 1 mm.  We collected blood samples (~50 µl) for isotopic analysis 

from adult and late-summer juvenile C. gunnisoni by clipping the distal end of the toenail 

on the lateral hind digit (Hoogland 1995), which provided blood flow directly into 

capillary tubes for 60–90 seconds before coagulation occurred.  We sampled adipose 

tissue non-destructively (Baker et al. 2004) using 16 ga, 6–9 cm standard bevel-tip biopsy 

needles (Products Group International, Inc., Lyons, Colorado, USA) inserted under the 

skin and into fat stores deposited on top of the lower dorsal musculature.   

We counted C. gunnisoni each season by observing colonies from constructed 

platforms and portable blinds in flat terrain (Facka et al. 2008), or from elevated vantage 
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points located adjacent to the observation plots.  Observers arrived at count sites before 

sunrise and prior to the emergence of C. gunnisoni from their burrows, and monitored the 

colony for ~3 hours until activity declined.  Observers counted all prairie dogs above 

ground at 30 minute intervals by systematically scanning between marked endpoints at 

the edge of a plot.  We counted prairie dogs at each plot during 1–2 days of observation 

periods per season, and completed seasonal counts of all plots at a study site within a 

span of <5 days.  For each observation period, we determined the maximum number of 

adult C. gunnisoni observed above ground on the plot (Severson and Plumb 1998).  We 

counted the number of C. gunnisoni juveniles present on plots during pre-monsoon 

observations, when pups had been recently weaned and emerged from underground 

burrows.  By the post-monsoon period, juveniles and adults could not be reliably 

separated when viewing from the visual observation points, and all C. gunnisoni observed 

were counted as adults.    

Vegetation measurements 

 We monitored available vegetation during pre- and post-monsoon periods at 3 1-

ha grids that overlapped C. gunnisoni sampling plots within each study area.  At each 

plot, we determined total plant cover by species (Daubenmire 1959) and by functional 

group (C3 versus C4 or crassulacean acid metabolism [CAM] photosynthetic pathways) 

using 0.25 m2 vegetation sampling frames.  Sevilleta Long Term Ecological Research 

monitoring provided vegetation data (http://sev.lternet.edu, dataset SEV129) from plots at 

Sevilleta prairie dog colonies.  We monitored plant species composition at equivalent 

randomly-located plots on Vermejo colonies, and calculated relative abundance of plant 

functional groups (Hayes et al. 2016).  Presence of large grazing herbivores at Vermejo 
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(elk , Cervus canadensis and American bison, Bos bison) that were absent from Sevilleta 

dictated the use of relative (versus absolute) functional group abundances to obtain 

unbiased comparisons of plant growth between sites. 

Laboratory procedures 

We extracted plasma for isotope analysis from blood samples following 

procedures from Warne et al. (2010).  When foreign or cloudy materials (e.g., lipids) 

were present, sectioning of capillary tubes allowed for the removal impurities before 

loading samples into tin capsules for processing.  We washed adipose tissue samples (0.6 

- 0.8 mg) in distilled water and ethanol, and examined them under a hand lens to ensure 

that no connective or other tissue was attached to the sample.   

We measured carbon and nitrogen isotope ratios through continuous flow isotope 

ratio mass spectrometry at the University of New Mexico Center for Stable Isotopes 

(UNM-CSI), using a Costech ECS 4010 elemental analyzer coupled to a Thermo 

Finnigan Delta Plus mass spectrometer via a ConFlo II interface.  Isotope ratios are 

reported in standard delta (δ) notation in parts per thousand (‰) relative to isotopic 

standards (Vienna Pee Dee Belemnite for carbon, atmospheric air for nitrogen), as:  

δX = (Rsample/Rstandard - 1) x 1000 

where R represents the ratio of heavy to light isotopes (13C/12C or 15N/14N).  Average 

analytical precision based on routine analysis of laboratory standards at UNM-CSI was 

<0.1 ‰ SD.  Laboratory standards were calibrated against NBS 21, NBS 22 and USGS 

24 for δ13C.   
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Analyses 

We standardized all maximum above ground counts of C. gunnisoni as densities 

per hectare.  Variation in C. gunnisoni densities was tested using a mixed effects linear 

model (Zuur et al. 2007) for repeated measures of plots, with a diagonal covariance 

matrix including study area and season as factors.  We tested for differences between 

study areas and end of year densities (post-monsoon seasons, when all C. gunnisoni 

present on plots were counted as adults) using t-tests, and controlled experimentwise 

error rates using Bonferroni procedures.   

We compared the proportion of C4 plant cover and the mass of clipped vegetation 

among seasons and years within each study area using a linear mixed model to account 

for repeated measures of plant composition and quantity at fixed vegetation plots.  We 

used the logit transformation (= log [yC4 / (1− yC4)], where yC4 = proportion of C4 plants) 

on all vegetative cover proportion data (Warton and Hui 2011) in order to meet 

assumptions for linear modeling.  Bonferroni procedures controlled experimentwise error 

rates for post-hoc multiple comparisons among time periods.  

We calculated the proportional contribution of plant carbon to animal tissues from 

C3 versus C4 and CAM photosynthetic pathways using a one-isotope, two-source 

Bayesian mixing model (Stable Isotope Analysis in R; Parnell et al. 2010).  Plant samples 

collected during the study period supplied δ13C values for plant tissues that served as 

endpoints for the mixing model (mean + SD = –14.0 + 1.0‰ C4 plants, -26.7 + 1.5‰ C3; 

Hayes et al. 2016).  We obtained diet-to-tissue discrimination factors (Δ13C) from 

previous studies of carbon isotope assimilation in rodents.  These Δ13C values were 0.6‰ 

for plasma (Yoneyama et al. 1983), and -2.7‰ for adipose tissue based on results from 
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Tieszen and Boutton (1989).  We tested for seasonal and yearly differences in 

contributions of C3 and C4 plants to C. gunnisoni tissue carbon by generating Bayesian 

estimates of mean proportion of C3/C4 carbon in plasma and adipose tissue based on 

500,000 model iterations (with a burn-in of 50,000 runs).  Seasons and years were 

considered significantly different from each other when the intervals containing 95% of 

modeled source proportions did not overlap between time periods.   

The mean proportion of C3/C4 carbon from C. gunnisoni on a sampling plot was 

compared to the proportion of each plant functional group present on those plots using 

linear regression.  We calculated 95% confidence intervals of regression slopes to test 

whether use of C3/C4 plant resources shifted proportionally to plant availability (slope = 

1).  To meet linear regression assumptions, we considered extreme δ13C values >1.5 

interquartile ranges from the first or third quartiles to represent outliers (Tukey 1977) that 

were removed from further analysis. 

 We estimated body condition by developing a mass-length regression equation for 

captured C. gunnisoni, and considered residuals of individual mass-length ratios as 

indices of body condition (Le Cren 1951; Reist 1985; Krebs and Singleton 1993; 

Stevenson and Woods 2006).  The condition index compared total body mass to hind foot 

length, a structural body measurement that asymptotes to its mature size by ~2 months of 

age in prairie dogs (Pizzimenti and McClenaghan 1974).  We performed ordinary least 

squares regression on mass-length data plotted on a log-log scale to linearize the data, 

and calculated residuals of individual points from the regression line as metrics of overall 

body condition (Jakob et al. 1996; Schulte-Hostedde et al. 2005).  Inconsistent foot length 

measurements from recaptured prairie dogs (> 2.5 mm difference) were considered to be 
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process errors and removed from body condition analyses.  Relationships between 

individual body condition and δ13C and δ15N values from C. gunnisoni tissues were 

evaluated using stepwise linear regression (P < 0.05 to enter, P > 0.10 to remove).  We 

used analysis of variance to evaluate individual C. gunnisoni body condition by season 

and study area, using sex as a covariate to account for sexually dimorphic differences in 

body size (Pizzimenti and Hoffman 1973; Hoogland 2003).  At the plot level, we 

compared mean body condition to total plot densities during current seasons and from 

subsequent sampling periods using linear regression.  

 We created an index of proportional population growth on each plot from births 

and recruitment (λR) by calculating changes in observed plot densities following periods 

of annual emergence of C. gunnisoni juveniles.  Normalized values for λR were calculated 

as: 

 λR = (Nadults + Njuv.) / Nadults 

where Njuv. is obtained directly from counts of juveniles during June (pre-monsoon), and 

estimated during August-September (post-monsoon) by the increase in adult-sized 

animals on a plot since June.  Values of λR were not calculated from spring counts 

because no juvenile (young of year) C. gunnisoni were present during those observation 

periods.  We considered extreme λR values associated with low adult densities observed 

on plots as outliers resulting from sampling error, and excluded them from further 

analysis.  We used linear regression to predict λR from mean seasonal body condition 

indices for adult C. gunnisoni, and for changes in body condition from the previous 

season.  Relationships among body condition and other variables were significant when 

regression coefficients were different from zero at the α = 0.05 level.  To test for 
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relationships specific to the reproductive segment of C. gunnisoni populations, we 

conducted linear regression of λR values and mean body condition indices for adult 

females on a plot.   

Results 

We captured 319 C. gunnisoni from Sevilleta (n = 77) and Vermejo (n = 242), 

representing 214 distinct individuals and 105 between-season recaptures.  A total of 296 

of these captures produced mass and length measurements that generated body condition 

indices, after outliers and any inconsistent measurements from recaptured animals were 

removed.  Prairie dog masses were predicted by the equation: 

log (mass, g) = 2.48* log (hind foot length, cm) + 1.01 

(r2 = 0.26, F = 102.3, P < 0.001).  Individual condition indices (residuals) for adult 

prairie dogs ranged from −0.23 to 0.24.  Adult body masses ranged from 430.5 to 1301.6 

g, and the minimum and maximum condition indices corresponded to a difference 

between observed and predicted body masses of −304 and 468 g, respectively.  

Considering sex a covariate (F = 10.9, P = 0.001), body condition varied by season (F = 

5.8, P = 0.004), with condition indices increasing each season following emergence from 

hibernation. Differences in condition indices (Δresid.) during the late summer were 

significantly different from both spring (Δresid. = 0.043, P = 0.007) and early summer 

(Δresid. = 0.038, P = 0.003; Fig. 1).  Body condition did not vary significantly by study 

area (F = 3.6, P = 0.06), but there was a significant season by study area interaction (F = 

4.4, P = 0.01).  

Mean seasonal densities of C. gunnisoni observed on plots ranged from 2.1–10.3 

(x̅ = 4.1, SD = 3.7, total plot range = 0.0–15.0) adults/ha at Sevilleta, and 11.9–49.6 (x̅ = 
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32.8, SD = 15.8, total plot range = 7.9–74.0) adults/ha at Vermejo (Fig. 2).  Both the 

maximum densities at Sevilleta and minimum densities at Vermejo occurred during the 

first season of the study.  June plot counts produced mean observed densities of 0.8–4.7 

( ̅x = 1.7, SD = 2.9, total plot range = 0.0–10.0) juveniles/ha at Sevilleta, and 14.8–71.3 ( ̅x 

= 42.4, SD = 31.3, total plot range = 11.9–95.2) juveniles/ha at Vermejo.  Mean end-of-

year plot densities differed between areas during each year of the study (t > 4.2, P < 0.01 

for each year).  Study area (F = 220.4, P < 0.001) and season (F = 5.2, P = 0.01) both had 

significant effects on observed densities of adult C. gunnisoni, with greater numbers 

observed at Vermejo than Sevilleta and during the late summer compared to spring 

sampling periods. 

Composition of vegetation on C. gunnisoni plots varied over the period of the 

study.  Changes in proportion of C3 cover among seasons were not significant at Sevilleta 

(F = 0.6, P = 0.44), but Vermejo plots exhibited significant seasonal differences (F = 

16.8, P = 0.001) with proportionally more C3 vegetation pre-monsoon than post-

monsoon.  Proportion of C3 vegetative cover changed significantly among years at both 

Sevilleta (F = 26.6, P < 0.001) and Vermejo (F = 50.0, P < 0.001).  The proportion of C3 

vegetative cover was highest at both sites in 2010, and then decreased in subsequent 

years of the study.   

The proportion of tissue carbon assimilation in montane (but not prairie) C. 

gunnisoni plasma from C3 plants varied among seasons, and was lower during late 

summer than in spring at the Vermejo site (Table 1).  Both prairie and montane C. 

gunnisoni showed yearly variation in assimilated C3 carbon, with lowest proportion of C3 

carbon during 2011 compared to 2010 or 2012 (Table 1).  Isotopic composition of 
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adipose tissue also changed at both sites, shifting toward increased contributions of C4 

plant carbon during each progressive year of the study (Table 2).  Contributions of C3 

plant carbon to adipose tissue declined during later seasons at the prairie site, with the 

proportion of C3 carbon dropping from the pre-monsoon to post-monsoon season (Table 

2).  At the montane site, the proportion of C3 plant carbon in adipose tissue decreased 

from spring to early summer, but did not continue to decline into the post-monsoon 

period (Table 2).  

Overall, the proportion of C4 plant carbon in C. gunnisoni plasma increased with 

C4 plant availability (rplasma = 0.34, P = 0.03; Fig. 3).  The 95% confidence interval for the 

regression slope (C.I. = 0.02–0.52) was between 0 (no relationship) and 1 (forage use = 

availability).  The proportion of C4 carbon in adipose tissue showed no significant 

relationship to the proportion of C4 vegetation present on a plot (rfat = 0.19, P = 0.28), and 

the 95% confidence interval for the regression slope (−0.20–0.65) included zero, 

indicating no predictive relationship between the variables.   

 The relationship of body condition indices to carbon and nitrogen isotope values 

in tissues was significant (negative) only for δ13C values in adipose tissue (t = −2.1, P = 

0.04), but had low predictive power (r2 = 0.04).  Plot-level means of adult C. gunnisoni 

body condition showed no significant relationship to total plot densities during current (t 

= −0.56, P = 0.58, r2 = 0.006) or subsequent (t = −1.3, P = 0.20, r2 = 0.04) seasons of C. 

gunnisoni sampling.  However, adult body condition showed a significant inverse 

relationship to the index of reproductive investment (λR), based on seasonal means for 

each plot (t = −2.3, P = 0.033, r2 = 0.13).  For the reproductive segment of the population 

(adult females), λR had significant inverse relationships to mean body condition (t = −2.1, 
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P = 0.045, r2 = 0.13) and to changes in body condition from the previous season (t = −2.6, 

P = 0.014, r2 = 0.23; Fig. 4).  

Discussion  

Densities, body condition, and preferred resources  

We documented dramatic differences in C. gunnisoni population densities 

between two study sites located at different points along a moisture gradient within the 

same region.  Although observed densities from the two sites did not differ at the 

initiation of the study, population trajectories diverged so that greater abundances of C. 

gunnisoni were observed at the more mesic site during all subsequent seasons (Fig. 2).  

Reduced densities were found at the more xeric site, which experiences periods of 

precipitation-limited primary productivity (Muldavin et al. 2008; Thomey et al. 2011) 

that force consumers to shift patterns of resource utilization (Warne et al. 2010).  Based 

on our previous findings linking C. gunnisoni reproductive output to carbon assimilation 

from more nutritious C3 forage plants (Hayes et al. 2016), we hypothesized that C. 

gunnisoni body condition would decline under conditions of resource scarcity, and that 

reduced body condition would be observed during population declines.  However, we 

found no support for the relationship between body condition and study area, even though 

plots at the more mesic site (Vermejo) always had greater abundances of juvenile C. 

gunnisoni than plots at Sevilleta.  These differences in recruitment led to mean plot 

densities of adult C. gunnisoni that grew to over 20x greater at Vermejo than Sevilleta by 

the end of the study.   

The apparent disassociation of C. gunnisoni abundance and body condition in our 

study leaves the observed positive relationship between reproductive output and use of 
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high-quality forage resources in search of a mechanistic explanation.  In both 

populations, relative abundance of C3 plants declined over the years of the study, as 

extended drought conditions persisted.  Assimilation of carbon from C3 plants in C. 

gunnisoni adipose tissue, which does not turn over on a fixed interval but serves as a 

reservoir for long-term energy storage, also declined over years at both study sites (Table 

2).  Relative abundance of C3 and C4 plants continued to show expected seasonal shifts at 

Vermejo, but exhibited no detectable pulse of productivity from perennial warm-season 

grasses following the monsoonal period at Sevilleta.  Carbon isotope composition of C. 

gunnisoni plasma, a rapid-turnover tissue, reflected these shorter-term trends in available 

vegetation.  Plasma from Vermejo C. gunnisoni tracked the site’s post-monsoon spike in 

availability of C4 plant carbon, while plasma from individuals at Sevilleta displayed a less 

variable carbon isotope signature (Table 1).  The proportion of C4 plant carbon in plasma 

increased when C4 plants had greater relative abundance, but at a reduced rate than would 

be expected if energy assimilation from C3 and C4 forage plants occurred strictly as a 

function of plant availability (Fig. 3).  These observations portray C. gunnisoni foraging 

as responsive to plant availability, with some active selection that slows the transition 

toward a lower quality (C4-dominated) diet during periods of scarcity for higher-quality 

energy sources. 

Resource allocation and energetic trade-offs 

We hypothesized that prairie dogs consuming preferred diets (e.g., selective 

folivory with a diversity of grasses and forbs; Rayor 1985b; Shalaway and Slobodchikoff  

1988; Hoogland 1995) that include C3 plants should achieve an improved body condition 

with increased energetic reserves, which support vital life history functions.  However, 
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we found little to no relationship between C. gunnisoni tissue δ13C and δ15N ratios and 

body condition.  As an alternative life history strategy, high-quality energy resources may 

be translated to income energy sources.  Observed low levels of recruitment and marked 

population declines in desert grassland populations of C. gunnisoni during years of 

recurring spring droughts (Davidson et al. 2014) suggest an important role of income 

energy sources in reproductive success.  Growth pulses of the more digestible C3 plants 

occur earlier in the growing season and under cooler and more mesic conditions than for 

C4 plants, at similar times to energetically-demanding reproductive activities such as 

parturition and lactation.  The coinciding periods of high-quality forage plant growth and 

increased reproductive investment (in fetuses or offspring) offers further evidence of C. 

gunnisoni as income breeders.   

 Resource scarcity stimulates adoption of a risk-averse reproductive strategy, 

where parents adjust their reproductive effort based upon perceived risk of surviving 

future periods of environmental stress (Stephens and Krebs 1986).  This strategy is 

predicted when short-term prospects for marginal increases in reproductive investment 

cannot be anticipated without parental costs that result in future decreases in fitness 

(Williams 1966; Reznick 1985).  Risk-sensitive reproduction leads to diminished 

reproductive investment under poor environmental conditions, but subsequent 

improvements in resource conditions and energy availability are not immediately 

allocated to maternal reproductive condition (Bårdsen et al. 2008).   

Following the risk sensitive reproductive allocation hypothesis, iteroparous 

consumers forego reproduction when drought conditions create resource scarcity and risk 

to adult survival.  Risk-sensitive reproduction is adaptive for consumers in temporally 
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heterogeneous environments who experience repeated periods of energetic resource stress 

within their reproductive lifetimes (Boyce 1980).  Patterns of body condition and 

reproductive output are predicted by the “selfish mother” hypothesis, where parents 

reduce care and investment in offspring during resource scarcity in favor of their own 

survival and subsequent reproductive opportunities (Festa-Bianchet and Jorgenson 1998).  

These resource allocation systems are most frequently observed in populations of large-

bodied, long-lived mammalian herbivores inhabiting environments characterized by 

variable ecological conditions over seasonal or interannual periods (Gaillard et al. 2000).  

Gunnison’s prairie dogs survive periods of potential energetic stress through obligate 

winter hibernation, when they rely upon endogenous energy stores and experience 

cyclical depletion of body mass until spring emergence.  Overall, C. gunnisoni in our 

study improved their body condition throughout the active season to reach peak condition 

in the fall (Fig. 1), presumably to accumulate capital energy stores for winter hibernation.  

The significant interaction in body condition between sex and study area highlights 

differences in this pattern for female C. gunnisoni at the montane site, who achieved 

highest body condition following spring emergence and displayed no evidence of body 

condition increases later in the active season (Figure 1).  Because our condition index 

was based upon masses of C. gunnisoni relative to structural body size, increases in 

calculated body condition could reflect internal growth of fetuses during pregnancy, 

which coincided with our spring sampling period.  Increases in the presence and number 

of fetuses would generate upwardly-biased estimates of female somatic condition, but 

also demonstrate differential reproductive allocation early in the active season.  The 

montane population exhibited higher early-season body condition and greater densities of 
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juvenile C. gunnisoni observed during post-parturition periods, resulting in greater total 

population densities during each year of the study (Fig. 2).  These findings provide strong 

evidence of differential reproductive allocation between populations, despite the lack of 

any observed effect of study area on body condition.           

 Evidence of C. gunnisoni reproductive output that follows a risk-sensitive 

reproductive allocation must also be reconciled with the body of literature indicating 

increased reproductive success with improved parental body condition.  These 

relationships are documented across a wide range of mammal species (Millar 1977; 

Clutton-Brock 1991), and within multiple species of prairie dogs (Hoogland 2001; Facka 

et al. 2010).  We found an inverse relationship between adult body condition and 

reproductive output, where populations with greater reproductive allocation experienced 

reductions in body condition (Fig. 4).  When looking strictly at maternal effects, adult 

female condition and changes in body condition were inversely related to quantity of 

reproductive output.  Investment in reproduction thereby generates an apparent cost to 

body condition.  Increased reproductive investment in the form of larger litter sizes and 

increased lactation results in body mass losses and condition reductions in female sciurids 

that may be evident through the duration of the active season (Millesi et al. 1999).  

Although we were unable to document the fitness consequences of condition reductions 

at the individual level, previous research has shown that C. gunnisoni females suffer 

reduced overwinter survival after rearing young when compared to non-reproducing 

females (Rayor 1985b).   

Reproductive investment decisions made under a risk-sensitive allocation 

paradigm are condition-dependent, relative to a threshold for future risk of starvation or 
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other factors that reduce lifetime fitness (Lindström 1999).  Exceeding the condition 

threshold does not result in an immediate allocation of reproductive resources in a risk-

averse strategy, even though seasonal thresholds of endogenous reserves may be safely 

crossed during other times of the year (Monteith et al. 2013).  Because we did not 

continuously record body condition, our observed differences in reproductive output 

could reflect condition-dependent responses during a critical time period when we did not 

sample.  Site-level differences in female condition cycles began early in the active season 

(Fig. 1), suggesting that condition-dependent reproductive allocation was determined 

prior to our spring sampling period.  Reproductive allocation decisions made at spring 

emergence must consider body condition relative to some threshold for surviving the 

post-reproductive period, and can only project resource conditions later in the active 

season based on cues available upon emergence.  The limited reproductive output of the 

Sevilleta C. gunnisoni population suggests that it existed at or near some resource or 

environmental condition threshold which precluded successful reproductive investment.  

We found no evidence that achieving somatic body condition comparable to a more 

productive population was able to mitigate early-season reproductive investment 

decisions made by the Sevilleta C. gunnisoni population.   

Our study evaluated population-level effects of life history strategies regarding 

assimilation of foraging resources, and did not address specific mechanisms used in 

reproductive resource allocation decisions.  While most energetic trade-offs among 

physiological processes are hormonally-mediated (Stearns 1989), the proximate cues 

utilized by individual C. gunnisoni to distribute energy among somatic maintenance and 

reproductive activities are less clear.  However, the role of high-quality forage 
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availability should not be dismissed.  Energy assimilation in C. gunnisoni at the more 

productive montane population tracked seasonal pulses in vegetation growth and 

composition, while no seasonal patterns were evident at the prairie site.  As a result, the 

montane C. gunnisoni experienced a relative increase in C3 plant assimilation during the 

earlier portions of the active seasons.  The reproductive segment of this montane 

population (adult females) was the only demographic group that did not reach minimum 

condition levels during spring, consistent with early-season reproductive investment.  

Conversely, spring droughts at the arid grassland site were associated with low 

recruitment and population declines in C. gunnisoni (Davidson et al. 2014).  Although 

body condition was unrelated to the isotopic composition of C. gunnisoni tissue, evidence 

remains for a direct relationship between C3 forage availability and population growth 

through recruitment.  Manipulative experiments addressing the relative availability of C3 

and C4 forage plants, and the role of these income energy sources in reproductive output 

of C. gunnisoni, provide fertile ground for future research.  

Conservation implications 

Reproductive output of C. gunnisoni is associated with winter precipitation and 

spikes in C3 plant productivity (Hayes et al. 2016).  Future climate projections for the 

southwestern United States include decreases in winter precipitation and moisture 

(Christensen et al. 2004), creating conditions less favorable to growth of more nutritious 

C3 plants.  These projected changes in climate thereby create greater threats to C. 

gunnisoni reproductive output than to adult survival.  Declines in prairie dog populations 

associated with changes in climate and primary productivity may not be as readily 

detected as catastrophic population losses that have been attributed to disease events 
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(Lechleitner et al. 1968; Cully and Williams 2001).  This is especially true if observations 

are made outside of seasons when abundance of juveniles can be readily determined.   

 Despite the drought conditions experienced during our study, montane 

populations of C. gunnisoni appeared to maintain population recruitment, unlike the more 

southerly prairie populations.  These montane populations may be more resistant to 

climate shifts that serve to reduce primary productivity at the desert grassland site.  

Pulses of C3 plant growth in montane habitats follow more predictable periods of spring 

warming and release of moisture from snowpack than in the monsoon-dominated 

environments, where consumer populations fluctuate with changes in precipitation and 

moisture availability associated with variation in El Nino Southern Oscillation cycles 

(Brown and Ernest 2002; Meserve et al. 2003).  Although montane habitats of C. 

gunnisoni support more mesic soils that increase numbers of sylvatic plague vectors, 

host, and outbreaks, prairie C. gunnisoni may experience more pervasive threats to their 

persistence.  Growth pulses of the more palatable C3 plants were undetectable during 

drought periods at the arid grassland site.  Still, Sevilleta C. gunnisoni maintained 

somatic condition under precipitation and moisture regimes experienced during the study, 

but experienced depressed reproductive output during resource-limited periods.  

Vulnerability of prairie dog colonies to drought has been previously documented within 

southern New Mexico (Facka et al. 2010; Davidson et al. 2014), and is further evidenced 

through our results.  Risk-sensitive reproductive resource allocation and limitations in 

forage conditions that lead to foregoing or deferring of reproduction (Rayor 1985b) may 

further exacerbate population vulnerability.  Risk-sensitive resource allocation buffers 

large-bodied, long-lived herbivores against climate impacts by precluding investment in 
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reproductive efforts that trade future reproductive condition for limited short-term 

increases in fecundity (Bårdsen et al. 2008).  However, this life history strategy is 

successful only when cycles of resource heterogeneity occur at sufficiently short intervals 

for resource conditions to change between breeding periods.  Multi-year drought periods 

reduce opportunities for shorter-lived animals to maximize their lifetime reproductive 

success.  Changing climates with reduced winter precipitation and more arid conditions 

suppress cool-season C3 plant growth that provides an income energy source during post-

hibernation breeding seasons, and may serve as a greater threat to population persistence 

than the disease events that were previously postulated as limiting factors for C. 

gunnisoni.   
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Tables 

Table 1. Seasonal† and yearly proportions of C3 plant carbon in plasma sampled from 

Cynomys gunnisoni at Sevilleta National Wildlife Refuge and Vermejo Park Ranch, New 

Mexico. 

 Sevilleta   Vermejo  

 Proportion  

C3 carbon 

95% credible 

interval 

 Proportion  

C3 carbon 

95% credible 

interval 
Season        

 Spring 0.41a 0.37-0.46  0.55b 0.52-0.57 

 Pre-monsoon 0.48a 0.45-0.51  0.53b 0.51-0.54 

 Post-monsoon 0.47a 0.44-0.51  0.36c 0.34-0.38 

Year      

 2010 0.52d 0.48-0.56  0.49f 0.45-0.53 

 2011 0.38e 0.35-0.41  0.40g 0.39-0.42 

 2012 0.52d 0.49-0.56  0.47f 0.46-0.48 

†Cynomys gunnisoni sampling seasons were April (spring), June (pre-monsoon), and 

August–September (post-monsoon) 

a-gShared letters within study areas indicate no significant differences in carbon isotope 

composition of C. gunnisoni plasma among time periods (overlapping 95% credible 

intervals for Bayesian estimates of proportion of C3 plant carbon in animal tissues) 
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Table 2. Seasonal† and yearly proportions of C3 plant carbon in adipose tissue sampled 

from Cynomys gunnisoni at Sevilleta National Wildlife Refuge and Vermejo Park Ranch, 

New Mexico. 

 Sevilleta   Vermejo  

 Proportion  

C3 carbon 

95% credible 

interval 

 Proportion  

C3 carbon 

95% credible 

interval 
Season        

 Spring -- --  0.33c 0.30-0.36 

 Pre-monsoon 0.52a 0.49-0.55  0.17d 0.14-0.19 

 Post-monsoon 0.33b 0.30-0.37  0.17d 0.19-0.21 

Year      

 2010 0.55e 0.51-0.59  0.54g 0.51-0.57 

 2011 0.53e 0.48-0.58  0.25h 0.14-0.19 

 2012 0.16f 0.12-0.20  0.04h 0.02-0.06 

†Cynomys gunnisoni sampling seasons were April (spring), June (pre-monsoon), and 

August–September (post-monsoon) 

a-hShared letters within study areas indicate no significant differences in carbon isotope 

composition of C. gunnisoni plasma among time periods (overlapping 95% credible 

intervals for Bayesian estimates of proportion of C3 plant carbon in animal tissues) 
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Figures 

 

Figure 1.  Mean body condition by season and study area for 298 female (A) and male 

(B) Cynomys gunnisoni at Sevilleta National Wildlife Refuge and Vermejo Park Ranch.  

Body condition indices were calculated as residuals from a mass-length regression 

equation derived from measurements of captured C. gunnisoni.  Error bars represent 95% 

confidence intervals for mean condition indices by sex, site, and season 
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Figure 2.  Mean densities of Cynomys gunnisoni observed on sampling plots at Sevilleta 

National Wildlife Refuge (gray shading) and Vermejo Park Ranch (black shading).  Error 

bars represent 95% confidence intervals for seasonal density estimates 
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Figure 3.  Proportional vegetative cover from C4 plants on Cynomys gunnisoni plots 

versus the proportion of C4 plant carbon present in (A) plasma and (B) adipose tissue at 

Sevilleta National Wildlife Refuge (open symbols) and Vermejo Park Ranch (closed 

symbols).  Dashed lines represent 95% confidence intervals for the best fit regression 

line.  Dotted lines indicate the identity function (slope = 1) where C4 carbon assimilation 

in C. gunnisoni tissue is directly proportional to availability of C4 vegetation  
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Figure 4.  Relationship between λR (relative change in population size from reproduction) 

to mean body condition of adult female Cynomys gunnisoni (A) and change in adult 

female body condition from the previous season (B) on sampling plots at Sevilleta 

National Wildlife Refuge (open symbols) and Vermejo Park Ranch (closed symbols).  

Dotted lines represent the 95% confidence interval for the best fit regression line 
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CHAPTER 3 

Woodrat herbivory influences saguaro (Carnegiea gigantea) reproductive output 

 

Published in similar form as: Hayes, C.L., Talbot, W.A., Wolf, B.O., 2013.  Woodrat 

herbivory influences saguaro (Carnegiea gigantea) reproductive output.  Journal of Arid 

Environments 89, 110-115. doi.org/10.1016/j.jaridenv.2012.09.012.   

 

Abstract 

The saguaro (Carnegiea gigantea) is a keystone resource for Sonoran desert 

consumers of nectar, pollen, fruit, and cactus tissues.  Saguaro tissue contains oxalic acid 

and is unavailable to most consumers.  The white-throated woodrat (Neotoma albigula) 

is, however, able to consume foods with high oxalate content, and is strongly associated 

with desert succulents, primarily cacti of the genus Opuntia.  Neotoma albigula forages 

secondarily on saguaro tissues, reducing photosynthetic surface area and eliciting an 

energetically-demanding wound response that reduces energy stores available to fuel 

reproduction.  We observed and quantified Neotoma herbivory on saguaros in a low 

desert environment.  Evidence of Neotoma grazing was found on 44% of all saguaros 

surveyed, and 13% of all saguaros had >20% of their surface area affected by Neotoma 

grazing.  Neotoma herbivory on saguaros was predicted by the number of nearby 

succulents, presence of Neotoma middens, and saguaro age.  When comparing similarly 

sized plants, saguaros with high levels (>20% of surface) of herbivory produced fewer 

flowers and fruits than plants with no Neotoma herbivory.  These findings suggest that 

periodic use of saguaros by N. albigula, such as during extended droughts with 
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conditions unfavorable for Opuntia growth and establishment, may reduce long-term 

reproductive capacities in low-density saguaro populations. 

Keywords 

Carnegiea gigantea; flower production; fruit production; Neotoma albigula; Sonoran 

desert 

Introduction 

The saguaro (Carnegiea gigantea) is a massive, long-lived columnar cactus that 

serves as a keystone resource providing breeding substrate, thermal shelter, and nutrient-

rich flowers and fruits to Sonoran desert fauna including volant and non-volant 

mammals, birds, and insect consumers of pollen, nectar, and stem tissues (Fleming and 

Valiente-Banuet, 2002).  Reproductive output in saguaro represents a substantial 

investment of plant energy and resources.  Individual saguaros may produce hundreds of 

fruits, each with ~2250 seeds (Steenbergh and Lowe, 1977), a mass of >25 g, and water 

content of ~80% (Wolf et al., 2002).  Fully hydrated cactus stem tissue may have a water 

content of >90%, which in the absence of defenses against herbivory would become 

highly attractive and vulnerable to desert herbivores (Gibson and Nobel, 1986).   

Saguaro populations are limited by recruitment (establishment and regeneration) 

within portions of the species range (Drezner, 2006).  Latitudinal and elevational limits of 

saguaro distribution are largely determined by catastrophic freezes and subsequent 

necrosis of stem tissues, particularly near the northern extent of its range (Steenbergh and 

Lowe, 1976).  In contrast to mortality-limited populations, saguaro abundance in the 

highly-arid northwestern Sonoran desert is related to the frequency of moist, warm-

season conditions that promote germination (Turner, 1990).  Once saguaros reach a 
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reproductive maturity threshold (equivalent to 2.2 m in height), establishment of new 

seedlings is dependent upon the presence of monsoonal moisture conditions for 

germination (Steenbergh and Lowe, 1977), shading by nurse plants to prevent desiccation 

of seedlings (Turner et al., 1966), and survival from consumption and physical damage to 

seeds and seedlings (Niering et al., 1963).  

Saguaro establishment occurs episodically at multi-decadal scales (Parker, 1993), 

with some cohorts being separated by 60 years or more (Drezner and Balling, 2002).  

Episodes of increased saguaro establishment often coincide with wetter periods, although 

this relationship becomes less consistent within the more freeze-limited (and less xeric) 

portions of the species’ range (Pierson and Turner, 1998).  Factors affecting saguaro 

recruitment therefore have a disproportionate effect on populations within the 

germination-limited portions of the species range, such as western Arizona (Drezner, 

2008).       

Although juvenile saguaros experience substantial mortality from rodent 

herbivory (Niering et al., 1963), adult cactus tissues are protected against herbivores by 

the plant’s epidermis, rows of spines, and high oxalic content of tissues.  The white-

throated woodrat (Neotoma albigula) overcomes these obstacles to herbivory, and 

survives without free-standing water through the intake of preformed water from 

succulent food sources (Schmidt-Nielsen, 1964).  N. albigula is able to degrade oxalates 

through the action of its intestinal microbes, and can thereby tolerate secondary plant 

compounds that may be toxic to other herbivores (Shirley and Schmidt-Nielsen, 1967).  

Desert-dwelling Neotoma shows strong associations with Opuntia cacti, and may exhibit 

numerical responses to changes in Opuntia availability (Brown et al., 1972).  Neotoma 
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herbivory on saguaros represents use of a secondary food source when primary sources 

such as Opuntia are not readily available (Steenbergh and Lowe, 1977).   

  While conducting research near the northwestern extent of the Sonoran desert, 

we observed saguaros with extensive Neotoma herbivory.  Where herbivory on saguaros 

occurs, a multi-layered, lignin-based callus tissue seals the wound and protects the plant’s 

internal tissues against evaporative water loss, insect attacks, and necrosis form bacterial 

infection (Steelink et al., 1967).  The wounding response reduces the surface area of 

photosynthetic tissues and total interception of photosynthetically-active radiation (PAR), 

which limits CO2 uptake in cylindrical-stemmed cacti during much of the year (Nobel, 

1977).  Reduction in photosynthetically-active surface area from Neotoma herbivory 

thereby influences both short-term and long-term availability of energy resources for 

saguaro growth, maintenance, and reproductive output.  Stem tissue damage by non-

native herbivores has been documented in association with a >15% reduction in number 

of flowers and 8% fewer fruits in columnar cacti (Peco et al., 2011).  In this study we 

evaluate the relationship between Neotoma herbivory and saguaro reproductive output, 

by: 1) quantifying the extent of herbivory on saguaros by Neotoma, and 2) testing 

whether herbivory on individual saguaros is associated with reduced flower and fruit 

production.    

Materials and Methods 

Site description 

We established monitoring points for saguaro reproductive output at >50 saguaros 

at each of 3 transects in southwestern Arizona.  Transect locations were at the edge of La 

Posa Plain, La Paz County, beginning at 425 m elevation; near Kofa Mountain foothills, 
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La Paz County, 475 m elevation; and near Table Top Mountain foothills, Pinal County, 

500 m elevation.  All transects occurred near the edge of the Lower Colorado River 

Valley subdivision of the Sonoran Desert, characterized by hot and arid conditions with 

low-density vegetation (Shreve, 1951) and saguaro populations with low demographic 

rates for both “births” (germination under moist and shaded conditions below nurse 

plants) and deaths (freeze-related mortality) (Drezner, 2006).  Characteristic vegetation 

was low-density shrubs and trees including Larrea tridentata, Ambrosia dumosa, Encelia 

farinosa, and Parkinsonia microphylla, and cacti including C. gigantea, Opuntia 

bigelovii, and Opuntia acanthocarpa.   

Saguaro survey protocols   

We established transects 100 m in width, with length determined by quota 

sampling.  Observers walked transects in a randomly-selected direction until 50 saguaros 

had been identified, and then walked slowly in the opposite direction while thoroughly 

searching for any additional saguaros that were not located during the first pass along the 

transect.  At each saguaro we recorded plant height (using a graduated telescoping pole), 

plant diameter at a height of 1 m, number of arms (>30 cm or with reproductive 

structures), number of reproductive stems (arms plus the main stem if at a reproductively 

mature height), and the number of other cacti and Neotoma middens present within 10 m, 

a distance equal to 17–87% of the reported movement radius of N. albigula (Brown and 

Zeng, 1989; Chew and Chew, 1970).  We calculated saguaro ages from site specific age–

height and growth–precipitation regression equations developed by Drezner (2003).   

We assessed N. albigula herbivory through a visual classification system to 

quantify the percentage of damaged plant surface tissues (Turner and Funicelli, 2000), 
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and a training set of 108 saguaros near the study area that were photographed from 

multiple directions.  Neotoma herbivory exhibited characteristic grazing patterns, 

including circular staircases chewed into the outer stem tissue, long troughs or tunnels of 

surface tissue excavation, and/or presence of Neotoma feces within these excavated 

pathways (Figure 1).  In contrast, tissue damage from lagomorph herbivory was confined 

to the basal portion of the stem, generally affected a greater width of stem tissue, and in 

some cases was accompanied by lagomorph feces near the base of the stem.  We 

categorized surface impacts of herbivory (including contiguous areas of tissue necrosis or 

epidermal collapse) for each saguaro as no Neotoma herbivory, <20% of the surface 

affected, or >20% of the surface damaged by herbivory. 

 We conducted visual counts of reproductive structures (flowers and fruits, in any 

stage of development) present on transect saguaros during peak flowering and fruiting 

periods (mid-May and mid- to late-June, respectively) in 2008.  Two observers using 10x 

binoculars counted flowers and fruits by standing on opposite sides approximately 10m 

away from the plant.  Observers counted reproductive structures on each side of the stem, 

and communicated with each other to ensure against skipped or duplicate counts of 

reproductive structures.  In 2009, we counted flower and fruit production on paired, 

mature saguaros (empirically determined to be >2.5 m tall) with no Neotoma herbivory 

and with >20% herbivory.  Saguaros pairings matched plants on the same transect that 

had distinct (0 vs. >20%) levels of Neotoma herbivory, and were similar in height, age, 

and number of arms.  When mature saguaros with 0 or >20% herbivory could not be 

paired with other saguaros on the transect, we extended transect surveys to complete 
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saguaro pairings and recorded information on new saguaros until ~15 (+3) pairs were 

surveyed on each transect.    

Statistical analyses 

We constructed classification and regression trees (Breiman et al., 1984; Salford 

Systems, 2006) to analyze relationships between the presence/absence of Neotoma 

herbivory and environmental variables (middens and succulents present, saguaro age, 

transect), and for analysis of 2008 saguaro reproductive output and plant attributes 

(height, diameter, arms, surface herbivory, and transect).  We determined variable splits 

with the Gini impurity criterion for classification trees and sum of squares for regression 

trees, and identified optimal trees from repeated cross-validations to find the smallest 

trees whose model errors fell within 1 SE of the minimum error (De’ath and Fabricus, 

2000).  Variable importance scores reflected changes in misclassification associated with 

each variable, expressed on a scale of 0–100 (Breiman et al., 1984).  We calculated the 

year of establishment by subtracting saguaro age from the year of observation, and 

evaluated temporal uniformity of saguaro establishment using Kolmogorov–Smirnov 

tests.  We used Wilcoxon paired tests to determine whether 2009 flower and fruit 

production in saguaros with no Neotoma herbivory was significantly increased (α =0.05) 

relative to saguaros with >20% surface herbivory, and to test for differences between 

reproductive output of individual plants between 2008 and 2009.  Paired t-tests (two-

tailed, α =0.05) evaluated differences in all other attributes of paired saguaros (height; 

number of reproductive stems, 5.0+x  transformation; diameter; age) (R Development 

Core Team, 2011).    
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Results 

 Saguaro attributes  

We surveyed 158 saguaros on 3 transects in 2008.  Saguaro densities on transects 

ranged from 3.0 to 8.3 plants/ha.  Observed saguaros varied in height from 0.3 to 10.0 m.  

The shortest saguaros observed with flowers and fruits were 3.3 and 2.5 m tall, 

respectively, which corresponded to a minimum reproductive age of 83 years.  The 

distribution of saguaro establishment was not uniform across years (D = 3.2, P < 0.001). 

Herbivory occurred on 57% of all saguaros observed, and evidence of Neotoma 

herbivory was present on 44% of all saguaros.  Neotoma herbivory affected 0 to >70% of 

surface area of individual plants.  Thirteen percent of observed saguaros exhibited the 

highest category of surface herbivory impacts (>20%).  The presence or absence of 

Neotoma herbivory on a saguaro was successfully predicted in 65% of all cases, using the 

number of other cacti present, saguaro age, and the number of Neotoma middens present 

as predictive variables (Figure 2).  The predictive model had high specificity (81% of 

saguaros without herbivory correctly assigned) but relatively low sensitivity (45% correct 

assignment for plants with Neotoma herbivory).  No saguaros containing >3 cacti present 

within 10 m exhibited any evidence of herbivory.       

Reproductive output and herbivory 

Mean counts of mature saguaro reproductive outputs were 33.1 flowers (range 0–

165) and 23.2 fruits (range 0–111) per plant in 2008.  Mature saguaros failed to produce 

flowers and fruits in 27.1% and 24.1%, respectively, of observed cases.  Each 

classification and regression tree for presence/absence or total output of flower and fruit 

production identified plant height and the number of reproductive stems present as the 



102 
 

variables with the highest importance scores (Figure 3).  Importance values for the 

Neotoma herbivory variable were relatively low, but non-zero (5.8–10.4), in the optimal 

trees for classifying or quantifying reproductive output.  None of the optimal regression 

trees for quantifying or classifying presence of saguaro reproductive output included 

transect as a predictive variable.         

 We identified 46 pairs of structurally similar saguaros with distinct categories of 

herbivory (no Neotoma herbivory vs. >20% of surface affected) in 2009.  Numbers of 

flowers and fruits on mature saguaros with no observed Neotoma herbivory increased 

significantly compared to paired saguaros with >20% herbivory (Table 1).  No 

comparisons of other paired saguaro variables approached significance (0.38 < P < 0.91).  

For individual plants surveyed in both 2008 and 2009, no significant differences in flower 

(W = 178, P = 0.424) or fruit (W = 182, P = 0.078) production occurred between years.  

Discussion 

Deserts are water-limited systems that produce significant challenges for the 

plants and animals inhabiting those environments (Noy-Meir, 1973).  Extended drought 

conditions in the Sonoran desert lead to the loss of plants that normally comprise the 

primary food sources for N. albigula, including Opuntia spp. and other small cacti 

(McAuliffe and Hamerlynck, 2010).  Shifting of N. albigula grazing pressure to saguaro 

stems results in short-term consequences that are compounded through the life of the 

saguaro, as reduced surface for PAR interception limits the plant’s ability to generate 

long-term energy stores.  We found that Neotoma herbivory had significant effects on 

flower and fruit production of saguaros; counts of flowers and fruits were 31% and 42% 

lower on heavily-grazed versus ungrazed plants, respectively.  Saguaro seeds germinate 
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only under environmental conditions that occur intermittently in space and in time: under 

nurse trees or shrubs, and often at multi-decadal scales (Parker, 1993; Pierson and Turner, 

1998; Shreve, 1910).  Saguaro establishment requires a sufficient seed supply to reach 

suitable or “safe” sites, and the presence of favorable ambient conditions for seed 

survival and germination (Andersen, 1989).  Because saguaro seeds and seedlings are 

both subject to high mortality rates from herbivores and abiotic factors (Niering et al., 

1963; Steenbergh and Lowe, 1977), decreases in seed output may translate to reduced 

magnitude of episodic recruitment pulses that are vital to the growth and maintenance of 

cactus populations.  In the following discussion we consider implications to regional 

saguaro population demographics from the effects of Neotoma grazing on reproductive 

output, and project how increasing regional air temperatures and reductions in seasonal 

precipitation will affect the persistence of saguaros in the Sonoran desert. 

Saguaro densities on our transects ranged from 13 to 36% of mean regional 

densities documented across the drier, northwestern portion of saguaro range, and were 

only 2–5% of mean densities where saguaros grow in conditions near their environmental 

optimum (Drezner, 2006).  Saguaro densities were comparable to those reported by Brum 

(1973) at a low-density site where reproductive output was considered insufficient to 

prevent population declines.  Low saguaro densities and delayed onset of reproduction 

are consistent with populations where infrequent monsoonal rains limit saguaro 

recruitment (Brum, 1973; Drezner, 2008).  The observed non-uniformity of saguaro ages 

at our study sites further suggests that recruitment is linked to intermittent periods when 

conditions are favorable for saguaro establishment.  
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Assessing the impacts of N. albigula herbivory or other factors on reproductive 

output of saguaros must be viewed in the context of the established relationship between 

plant size and reproductive output (Parker, 1989; Peco et al., 2011; Schmidt and 

Buchmann, 1986).  Increased plant height is indicative of saguaro age exceeding the 

maturity threshold, a developmental stage were branching may occur to provide 

additional reproductive surfaces, increased photosynthetic surface for PAR interception, 

and increased energy stores.  Once saguaros reach a height indicating maturity, they are 

generally successful in translating energy stores to reproductive output, even during 

adverse environmental conditions such as drought (Steenbergh and Lowe, 1977; 

Thackery and Leding, 1929).  Our results similarly identified plant height as the strongest 

predictor of reproductive output among all saguaros surveyed, while comparisons of 

paired, morphologically-similar plants allowed us to isolate the negative effects to 

saguaro reproductive output associated with the permanent loss of photosynthetic surface 

area from Neotoma herbivory.      

Observed saguaro reproductive output was substantially lower than previously 

reported (Niering et al., 1963, Schmidt and Buchmann, 1986; Steenbergh and Lowe, 

1977; Thackery and Leding, 1929).  These differences may be largely methodological, as 

we did not obtain complete counts of reproductive output throughout the season, but 

instead quantified reproductive structures present at single visits during peak flowering 

and fruiting periods.  Although direct comparisons of reproductive output among studies 

are precluded, our study sties exhibited a frequency of mature-sized plants lacking 

reproductive structures and a delayed timing to maturity that was characteristic of 

saguaros in marginal habitats undergoing an apparent population decline (Brum, 1973).  
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The observed reduction in reproductive output from saguaros with high (>20%) levels of 

herbivory translates to an estimated loss of 0.48 kg of fruit (containing 0.36 kg of water) 

and 41,625 seeds produced per plant annually.  

Neotoma herbivory on saguaros was observed regularly at our study sites, and 

was associated with presence of nearby Neotoma middens (active or currently 

unoccupied), lower numbers of other succulents that may serve as primary food and 

water sources for N. albigula, and saguaro age.  Neotoma is precluded from subsisting 

entirely on non-succulent desert vegetation due to species’ water requirements and the 

need to avoid potential toxic effects from ingested plant compounds (Karasov, 1989).  

Loss of Opuntia from the home range of a Neotoma requires the animal to abandon its 

home range, or find more drought-resistant sources of succulent food to replace Opuntia 

in its diet.  The massive saguaro is one of the few plant species that can survive and 

provide a moisture-rich food source under conditions where Opuntia may not be able to 

persist.  Saguaros may experience establishment peaks and/or population increases over 

extended periods (>100 years) when other desert plant species exhibit climate-related 

population declines (Turner, 1990).  Saguaros are the plants most likely to be affected by 

diet switching and N. albigula herbivory during periodic extended droughts, and may 

experience reversed or disrupted mutualistic interactions with grazers that normally serve 

as seed dispersers (McCluney et al., 2012).  The magnitude of these cascading drought-

related impacts from native herbivore diet-switching exceeds observed depressions in 

reproductive output associated with columnar cacti stem tissue damage from multiple 

introduced herbivores (Peco et al., 2011). 
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Climate modeling for the southwestern United States projects increases in mean 

annual temperatures of >3oC by the end of the century, along with decreases in mean 

annual precipitation (IPCC, 2007).  Climate projections for the southwestern United 

States include disproportionate seasonal decreases in precipitation and moisture 

conditions during winter (Christensen et al. 2004).  Extended drought periods, 

particularly during winter, hinder the establishment of new Opuntia plants (Bowers 

2005).  The most severe impacts of climate change on Sonoran desert Opuntia are 

expected where Opuntia and other cacti currently exist at low densities or under sub-

optimal conditions.  If future climate conditions are insufficient for Opuntia 

establishment rates to replace mortality of adult plants, our results predict increased 

frequency of Neotoma grazing on saguaro tissues, which is associated with substantial 

reductions in reproductive output.  Diminished saguaro reproductive output reduces the 

availability of energy and moisture from flowers and fruits that are important resources 

for Sonoran desert fauna, and has potential demographic implications for saguaro 

populations. 
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Tables 

Table 1.  Characteristics of paired saguaros with no woodrat herbivory and with high 

(>20%) levels of surface tissue damage. 

 Saguaro Mean plant values
 attributes          Signif.a 

    No Neotoma          >20% surface            Difference 
 Herbivory (h0)      herbivory (h>20)  ( x h0 – x h>20) 

N   46  46 

Flowers  38.1  26.3 11.7 0.026 
  (n observed) 

Fruits  43.7  25.2 18.5 0.008 
  (n observed) 

Height   5.4   5.4   0.02 0.91 
  (m) 

Diameter  39.0  38.9   0.1 0.88 
  (cm) 

Reproductive    2.0   2.2  -0.2 0.38 
  Stemsb (n) 

Age 129.1 129.3  -0.2 0.91 
  (years) 

a P-values for tests comparing variables between paired plants: P(h0 ≤ h>20), Wilcoxon 

pairs test, for counts of flowers and fruits; P( x h0 = x h>20), paired t-test, for height, 

diameter, arms, and age of paired saguaros.  

bUntransformed values.  Transformed values ( x + 0.5 ) were used to meet assumptions 

of the paired t-tests for differences in attributes between saguaro pairs.  
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Figures 
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Figure 1.  (a) Extensive damage to saguaro from Neotoma grazing on succulent stem 

tissues.  Neotoma albigula herbivory reduces the photosynthetic surface area of the plant 

and generates a wound response that is necessary to protect grazed saguaro tissues from 

desiccation, freezing, and infection of exposed tissue.  (b) Damage from N. albigula 

herbivory is characterized by staircase-like patterns around the stem where feces from the 

grazing rodents may be found. 
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Figure 2.  Classification tree showing predictive factors for the presence/absence of 

observed Neotoma grazing on saguaros.  The branch-defining condition is labeled at each 

split in the tree, and the number of plants and percentage with Neotoma herbivory are 

given at each node.   
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Figure 3.  Relative importance values for variables used to predict presence/absence of 

saguaro (a) flowers, (b) fruits, and (c) any reproductive structures (flowers or fruits).  

Variables included: total height of the plant (Height), plant diameter at 1 m above ground 

(Diameter), the number of arms plus stems above the maturity threshold (#Stems), the 

extent of surface impacts of herbivory, by category (Herbivory), and the transect number 

for each plant (Transect).  
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CONCLUSION 

Arid environments challenge producers and consumers through resource scarcity, 

extreme conditions, and inconsistent or unpredictable pulses of resource availability.  

Biotic interactions of consumer populations further influence the composition and 

dynamics of ecological communities within these arid ecosystems.  In this dissertation I 

used emerging stable isotope techniques to track energy flow from producers to primary 

consumers, and monitored individual and population-level parameters associated with 

consumer energy assimilation patterns.  Research on Gunnison’s prairie dog (Cynomys 

gunnisoni) elucidated effects of persistent drought on resource utilization by this 

grassland herbivore, which subsists on relatively low-energy diets characterized by leafy 

herbaceous material.  Isotopically-indexed dietary niche widths decreased during drought 

conditions that suppress productivity of cool-season vegetation, including forbs and 

grasses utilizing the C3 photosynthetic pathway.  These findings portray C. gunnisoni as a 

generalist forager that opportunistically expands its dietary niche to include moisture-

limited vegetation, such as C3 plants, when they become available.  Plants with C3 

photosynthesis are hypothesized to be preferred food sources for primary consumers 

based on increased digestibility and nitrogen content relative to C4 plants, and have been 

shown to increase abundance and growth rates of grasshoppers and other insect 

consumers.  This dissertation documents changes in herbivore dietary niche widths 

during multi-year periods of variable C3 plant productivity, and links energy assimilation 

from C3 plants to increased abundance of C gunnisoni juveniles.  By combining data 

regarding uptake of C3 plant material and changes in demographic parameters of 
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vertebrate consumers, this research provides some of the strongest empirical support to 

date for the C3 hypothesis.      

The relationships among C3 plant productivity, dietary niche widths, and C. 

gunnisoni reproductive output beg the question of mechanistic links between forage 

quality and reproductive success.  Individual reproductive success correlates with 

parental body condition in a diversity of mammals, including multiple species of prairie 

dogs.  I used isotopic signatures in tissues to test whether C. gunnisoni would utilize 

increased C3 plant resources when available, and whether populations assimilating 

increased quantifies of preferred energy resources would achieve improved body 

condition and greater reproductive output.  Although C. gunnisoni appeared the select C3 

plants, proportions of C3/C4 plant contributions to isotopic tissue composition did not 

explain C. gunnisoni body condition, and increases in mean body condition were not 

associated with higher-density populations.  Instead, C. gunnisoni plots with greater 

reproductive output exhibited reduced body condition, suggesting a trade-off between 

maintenance of parental condition and energy investment in reproduction.  Use of 

internal energy stores to fuel reproduction (capital breeding) does not appear to be a 

successful population-level strategy for C. gunnisoni.  Although reserves of adipose 

tissue are necessary for survival of C. gunnisoni during winter hibernation, reproductive 

success correlates with assimilation of high-quality forage resources stimulated by 

growing conditions during periods of C. gunnisoni fetal and juvenile growth, and 

suggests an income energy breeding strategy.  

To evaluate implications of plant-herbivore interactions resulting from actions of 

arid-land consumers, I quantified impacts of herbivory to the Sonoran Desert’s iconic 
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saguaro cactus (Carnegiea gigantea).  Consumption of saguaro tissue by white-throated 

woodrats (Neotoma albigula) leaves permanent scars on saguaro tissue, thereby reducing 

photosynthetic surface area that is already limited by the plant’s structural adaptations for 

reduced water loss.  Saguaros with high levels of scarring from N. albigula herbivory 

produced fewer flowers and fruits, which provide vital resources for biological 

consumers during hot and dry periods in the Sonoran Desert.  Prevalence of N. albigula 

herbivory on saguaros was inversely related to the presence of other succulents, primarily 

cholla cacti of the genus Cylindropuntia.  Desert populations of N. albigula show strong 

associations with Cylindropuntia, but may shift foraging to longer-lived saguaros when 

extended droughts inhibit establishment and reduce densities of the smaller cholla 

species.  Resulting impacts to saguaros and their consumers thereby persist long after 

drought conditions affecting dynamics of Cylindropuntia and woodrats have subsided. 

Findings of this dissertation express a series of consistent themes that are relevant 

to research and management of ecological systems.  First, plant-herbivore interactions are 

complex, and have biological consequences extending beyond a single species feeding 

upon another.  Abiotic inputs and biotic interactions influence keystone resources, which 

can generate cascading effects to ecological communities.  Second, responses to resource 

scarcity in arid environments may be evidenced well after periods of stress-inducing 

conditions have ended.  Effects to consumer populations can be amplified or extended 

through energy allocation decisions based on stimuli that project risk to future survival 

and recruitment, or through physical modifications to long-lived primary producers.  

Finally, complexities and legacy effects from producer-consumer interactions warrant 

caution in the ability to replicate or restore perturbed ecological systems and functions.  
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Changes to producer and consumer populations from biotic or abiotic drivers that include 

anthropogenic development and climate change cannot be completely foreseen in future 

no-analog communities, nor can they be immediately reversed following removal of 

perturbations.  Despite our improved understanding of biological processes gained 

through ecological research conducted over recent decades, guidance from Aldo 

Leopold’s essays on conservation from the 1930s remain prescient today:  “If the biota, 

in the course of aeons, has built something we like but do not understand, then who but a 

fool would discard seemingly useless parts?  To keep every cog and wheel is the first 

precaution of intelligent tinkering.”    
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