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ABSTRACT 

Human schistosomiasis is one of the great neglected tropical diseases 

(NTDs) of our time with more than 206 million individuals infected and more than 

90% of those infected reside in Sub-Saharan Africa (WHO 2017). Chemotherapy 

based control programs play an essential role in contributing to the elimination of 

human schistosomiasis; however, there is an increasing consensus that 

chemotherapy needs to be supplemented by other means if interruption of 

transmission and elimination are to be achieved. Given this situation, the focus of 

this dissertation was to better understand transmission dynamics in a 

hyperendemic setting in western Kenya and to find alternative measures to 

supplement ongoing mass drug administration (MDA) using indigenous 

resources that disrupt the development of Schistosoma mansoni (the causative 

agent of intestinal schistosomiasis in Africa) within its obligatory aquatic snail 

intermediate host, Biomphalaria. 

The discipline of disease ecology emphasizes understanding the biotic 

context in which disease transmission occurs. S. mansoni and Biomphalaria exist 
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within a complex ecological milieu in streams, ponds and lakes in Kenya. The 

research in this dissertation combined DNA barcodes, phylogenetics, host use 

patterns and morphology to determine the diversity of trematodes that use 

Kenyan Biomphalaria as an intermediate host. Along with S. mansoni, we found 

21 additional digenetic trematodes that also use Biomphalaria species in Kenya 

as an intermediate host. The presence of other trematode species in 

Biomphalaria affects S. mansoni by causing competition for access to snail 

resources. Furthermore, we used experimental approaches to understand the 

competitive dynamics among these trematodes and to generate a dominance 

hierarchy among them. We found that several trematode species are dominant to 

S. mansoni and long-term agricultural practices have created a situation where 

an amphistome parasite of cattle relies on a facilitating effect by S. mansoni for 

its own successful development in the snail host. Coupled with these data are 

four years of observational survey data to predict how these trematodes 

influence S. mansoni’s prevalence in Biomphalaria and consequently the 

likelihood of influencing human infections.  
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INTRODUCTION 

African countries have relied extensively on mass administration of the drug, 

praziquantel (PZQ) in attempt to control human schistosomiasis. However, 

mounting evidence suggests that even after 5-10 years of annual treatments 

there is little reduction in disease prevalence (Lamberton et al., 2014; Andrade et 

al., 2017), or in schistosome genetic diversity (Lelo et al., 2014), calling for the 

need of alternative measures to control human schistosomiasis (Rollinson et al., 

2013; Loker et al., 2013). Interventions such as education, increased hygiene, 

water sanitation, and particularly snail control should be used as supplemental 

control strategies along with PZQ administration (Rollinson et al, 2013; Loker et 

al., 2013; Sokolow et al., 2017).  

Along these lines, we were interested in the finding alternative indigenous 

measures to control snails, because molluscicides (chemicals that kill snails) 

used for snail control are expensive and can have detrimental effects on fish and 

non-target gastropods (Rollinson et al., 2013). In recent years biologists have 

gained an increased appreciation for the reality that infectious diseases exist in 

complex ecological systems (Johnson and Thieltges, 2010; Keesing et al., 2010; 

Civitello et al., 2015). For example, according to the dilution hypothesis, a diverse 

community may interfere with transmission of a particular parasite by diverting 

the parasite into inappropriate hosts or by regulating the populations of 

susceptible hosts. On the other hand, transmission may be favored in diverse 

communities by providing more competent host species and thus more 

transmission options. Therefore, the biotic context in which disease transmission 

occurs must be considered carefully because not all host-parasite systems are 
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the same and because diversity can have both positive and negative effects in a 

given host-parasite system, particularly for parasites that use multiple hosts to 

complete their life cycles.  

The focus of this dissertation was to determine the diversity of trematodes 

in Kenyan freshwater bodies where human schistosomiasis transmission occurs 

(chapters 1-2). We were interested in their diversity because certain species of 

trematodes may compete with larval stages of S. mansoni for access to 

obligatory snail hosts. Not all larval trematodes have the same pattern of 

development within their host snail. For example, some trematodes (like S. 

mansoni) develop into sporocysts within the snail. Sporocysts are sac-like 

structures that absorb their nutrients across their body wall. They can 

nevertheless release materials that not only interfere with their host’s 

reproductive activities, but also in some cases interfere with development of 

larvae of other digenean species, what has been called indirect antagonism (Lie 

et al., 1965). Other trematode parasites develop rediae that have a mouth, 

pharynx, and gut. Rediae often move throughout the snail actively ingesting host 

tissue, including gonadal tissue (Lim and Lie 1969), and can actively attack and 

kill the larvae of other trematode species, during what is referred to as direct 

antagonism (Lim and Heyneman, 1972). There is growing evidence that for at 

least some species, particularly echinostomes that some species are dominant 

over other trematodes because they develop rediae in the snail host (Lim and 

Heyneman 1972; Hechinger et al., 2010). Certain rediae can become specialized 

for the purpose of attacking and killing the larvae of competing digenean species 
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within the body of their molluscan hosts, while other rediae are more specialized 

for reproduction (Garcia et al., 2016). Therefore, we were interested in how many 

different trematodes use Biomphalaria as an intermediate host and which 

species were more dominant against S. mansoni.  

A collecting program was initiated in January 2014 to identify freshwater 

snails and their parasites (Chapter 3). We used morphological features, host use, 

molecular markers and phylogenetics to delineate East African representatives of 

two major groups of trematodes, the amphistomes (Chapters 1) and the 

echinostomes (Chapter 2). We wanted to know more about both of these 

common groups of trematodes because they often infect the same snails hosts 

as S. mansoni, and because they are typically dominant to S. mansoni when 

found in the same individual snail. Molecular markers were used because cryptic 

species often exist, which can create issues when delineating specific clades of 

amphistome or echinostome parasites (Detwiler et al., 2010). We used the 

information from our molecular and survey data to determine which trematode 

species should be used for experimental exposures. Experimental exposures 

were done to determine the impact these trematodes may have on the 

Biomphalaria-S. mansoni system because they may 1) directly increase snail 

mortality, 2) reduce compatibility with S. mansoni, and 3) compete with S. 

mansoni infections. Ironically, virtually none of the previous work focusing on 

interspecific antagonism between schistosomes and other trematodes as a 

potential control strategy has been undertaken with species transmitted in sub-

Saharan Africa, where schistosomiasis assumes its greatest public health 
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significance (Combes 1982; Banes et al., 1974; Pointier and Jourdane 2000; 

Toledo and Fried, 2011).  

Using molecular markers, we found over twenty different trematodes that 

use Biomphalaria as an intermediate host. We also developed a dominance 

hierarchy among the various trematodes and found that certain species like 

amphistomes and echinostomes were more dominant than S. mansoni, but 

some, like xiphidiocercariae and strigeids, were subordinate and taken over by S. 

mansoni in B. pfeifferi. Lastly, we coupled our survey and experimental data to 

develop a model (Chapter 3) in the context of a hyper-endemic setting (west 

Kenya) to predict how one commonly transmitted parasite, an amphistome 

species provisionally identified as Calicophoron sukari influenced the outcomes 

of S. mansoni infections in B. pfeifferi. Our mathematical analyses found that in 

the absence of C. sukari, the number of B. pfeifferi infected with S. mansoni 

significantly increases (3-fold increase). Moreover, if we were to artificially 

increase C. sukari’s input into the system this significantly dampens the number 

of S. mansoni cercariae in the water, thereby reducing human infections.  
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Chapter 1 

Loads of trematodes: Discovering hidden diversity of paramphistomoids in 

Kenyan ruminants 

Laidemitt, M.R., Zawadzki, E.T., Brant, S.V., Mutuku, M.W., Mkoji, G.M., Loker, 

E.S., 2017. Loads of trematodes: discovering hidden diversity of 

paramphistomoids in Kenyan ruminants. Parasitology 144, 131-147 
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Abstract 

Paramphistomoids are ubiquitous and widespread digeneans that infect a 

diverse range of definitive hosts, being particularly speciose in ruminants. We 

collected adult worms from cattle, goats, and sheep from slaughterhouses, and 

cercariae from freshwater snails from ten localities in central and west Kenya. 

We sequenced cox1 (690 bp) and ITS2 (385 bp) genes from a small piece of 79 

different adult worms and stained and mounted the remaining worm bodies for 

comparisons with available descriptions. We also sequenced cox1 and ITS2 from 

41 cercariae/rediae samples collected from four different genera of planorbid 

snails. Combining morphological observations, host use information, genetic 

distance values, and phylogenetic methods, we delineated sixteen distinct clades 

of paramphistomoids. For four of the 16 clades, sequences from adult worms and 

cercariae/rediae matched, providing an independent assessment for their life 

cycles. Much work is yet to be done to resolve fully the relationships among 

paramphistomoids, but some correspondence between sequence- and 

anatomically based classifications were noted. Paramphistomoids of domestic 

ruminants provide one of the most abundant sources of parasitic flatworm 

biomass, and because of the predilection of several species use Bulinus and 

Biomphalaria snail hosts, have interesting linkages with the biology of animal and 

human schistosomes in Africa.      
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Introduction 

The Superfamily Paramphistomoidea is a prominent group of digeneans 

where adults are characterized by the absence of an oral sucker and the 

presence of an acetabulum at or near the posterior end of the body. The 

systematics of this group of digeneans is a work in progress. Sey (1991) 

concluded it is comprised of eight families, whereas Jones (2005a) concluded 

there are 12 families. Paramphistomoids are often called rumen flukes because 

many of the best-known representatives live in this habitat in domestic ruminants. 

However, many species also inhabit the intestines of fish, amphibians, reptiles, 

birds and non-ruminant mammals. They feature a life cycle in which cercariae 

produced in rediae emerge from snails and encyst on vegetation as 

metacercariae which are later ingested by the definitive host (Jones, 2005a). As 

part of a larger study to determine how digenean community diversity influences 

the transmission of schistosomes in Kenya, we provide new results regarding the 

overall diversity and host relationships of paramphistomoids in Kenya, based on 

cercariae collected from snails and adult worms from domestic animals from 

abattoirs. 

Paramphistomoids are of interest to parasitologists in several contexts. 

They are diverse in number of species and provide an understudied model group 

for those focused on revealing patterns and mechanisms of diversity.  Of the 12 

recognized paramphistomoid families recognized by Jones (2005a), 

representatives of nine occur in Africa. The diversity of paramphistomoids in 

Africa reflects the presence of many species of terrestrial mammals, including 
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elephants, rhinoceroses, hippopotami, and a rich diversity of wild and domestic 

ruminants. Three families in particular (Paramphistomidae, Gastrodiscidae, and 

Gastrothylacidae) are speciose in Africa. The distribution of diversity in rumen 

hosts can partly be explained by characters (e.g. regressed pharyngeal 

appendages) that are apomorphic which have allowed them to colonize the 

forestomach (Sey 1991). The three families comprise over 40% of all known 

paramphistomoids, the majority of which use ruminants as their definitive hosts 

(Sey, 1991).  

Paramphistomoids have thick bodies which make detailed morphological 

characterization of adult features and species identification challenging (Horak, 

1971; Jones, 1991; Mage et al. 2002; Rinaldi et al. 2005). The bodies of 

paramphistomoid cercariae are also relatively thick and typically filled with 

cystogenous material or pigment, also rendering identification difficult. 

Nonetheless, a meticulous framework for paramphistomoid identification and 

classification has been developed (see reviews by Sey, 1991; Jones, 2005a). 

Given the inherent difficulties in identification, coupled with a growing list of 

studies from other digenean groups documenting the presence of cryptic species 

(Detwiler et al. 2012; Herrmann et al. 2014; McNamara et al. 2014), 

paramphistomoids are ideal for studies attempting to meld traditional 

morphological identification with sequence data characterization provided by 

molecular approaches. The number of studies that use molecular techniques to 

provide assessments of the diversity of paramphistomoids have in general been 
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limited, especially so for African species (Lotfy et al. 2010; Mansour et al. 2014; 

Sibula et al. 2014; Titi et al. 2014; Dube et al. 2015).  

In addition to being speciose, paramphistomoids are often remarkably 

abundant (Horak, 1971; Cheruiyot and Wamae, 1988; Rolfe et al. 1994; Sanabria 

and Romero, 2008). In fact, one might be hard pressed to find a larger source of 

sheer digenean biomass than is presented routinely at abattoirs by ruminant 

paramphistomoids. Given the large worm populations that can occur in individual 

cattle, goats or sheep, vast numbers of paramphistomoid eggs are regularly 

passed into the environment. In rural west Kenya, we can routinely collect 10,000 

paramphistomoid eggs from a single cow dung sample. As domestic ruminants 

regularly seek water from natural habitats, it is not surprising that many 

paramphistomoid eggs enter freshwater, creating the potential for high levels of 

infection in their snail hosts (Chingwena et al. 2002a; Mohammed et al. 2016).  

A review of the East African paramphistomoid literature reveals that many 

of the described species are transmitted by Biomphalaria and Bulinus, the snail 

genera also of concern with respect to their role in transmission of human 

schistosomiasis in Africa (Dinnik, 1954; Dinnik and Dinnik, 1957; Dinnik, 1961; 

Eduardo, 1983; Brown, 1994; Chingwena et al. 2002b; Jones, 2005b; Jones, 

2005c). In some areas, Bulinus and Biomphalaria are the most commonly 

implicated snail hosts for paramphistomoids (Dinnik, 1965; Wright et al. 1979; 

Chingwena et al. 2002b; Ahmed et al. 2006; Mohammad et al. 2016). The 

presence of other digenean species utilizing the same snail species as 

schistosomes could be a factor that influences the overall success of animal and 
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human schistosome transmission (Lim and Heyneman, 1972; Combes, 1982; 

Hechinger et al. 2011; Spatz et al. 2014). This is particularly so for species like 

paramphistomoids that produce rediae as larval stages within their snail hosts, 

because rediae may attack, damage and consume schistosome sporocysts (Lim 

and Heyneman, 1972).  

We collected cercariae and adult worms from ten localities in Kenya. We 

provide stained whole mounts and provisional identification of adults that are 

linked to sequence data for cytochrome oxidase 1 (cox1) and the internal 

transcribed region 2 (ITS2). In some cases we provide matches with sequences 

obtained from cercariae and adult worms thus providing probable life cycle 

linkages. We also provide new hypotheses for phylogenetic relationships among 

the paramphistomoids that include available sequences from NCBI GenBank, 

which show that some species of paramphistomoids are geographically 

widespread throughout Africa. Data presented here will contribute to an 

increased understanding of the superfamily Paramphistomoidea, including 

providing greater clarification for how these worms are distributed among hosts, 

their potential roles if any in causing disease in domestic or wild animals, and 

their interactions with other digeneans, including schistosomes.  

Materials and Methods 

Sampling  

We collected larval and adult paramphistomoids from ten different 

localities in central and especially western Kenya between 2005-2015 (Table 1). 
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All species of field-collected aquatic snails were brought to the lab at Kisian, near 

Kisumu, Kenya. The snails were cleaned and then placed individually into 12-well 

tissue culture plates in 3 ml of aged tap water. The tissue culture plates were 

placed in natural light for two hours to induce shedding of cercariae. Snails 

shedding cercariae were identified using keys and information in Brown and 

Kristensen (1989) and Brown (1994), and cercariae were preliminarily identified 

using keys (Frandsen and Christensen, 1984; Schell, 1985) and by reference to 

regional monographs (e.g. Fain, 1953). All cercariae designated as 

paramphistomoids were confirmed as such according to Sey (1991). Snails were 

either dissected at the time of collection to procure rediae, or re-shed two and 

four weeks later to determine if snails were harboring prepatent infections at the 

time of collection. Snails were kept in 20 L plastic tanks and fed red leaf lettuce 

following collection. Cercariae and rediae were preserved in 95% ethanol for later 

molecular analysis.  

Adults were collected from the rumen or reticulum of Bos indicus, Capra 

aegagrus hircus, and Ovis aries from one slaughterhouse in central Kenya and 

three in western Kenya (Table 1). Adults were preserved in 95% ethanol for later 

molecular and morphological identification. 

Staining adult worms 

Adult worms were placed into 70% ethanol for 24 hours prior to staining. 

Sections of the adult worms were stained and mounted according to Eduardo 

(1982). Because of their thickness, each adult was sectioned frontally using a 
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razor blade. Part of the posteroterminally placed acetabulum was severed and 

used for molecular analysis.  

Collection of molecular data 

A partial sequence of cytochrome oxidase 1 (cox1) mtDNA and internal 

transcribed spacer two (ITS2) were amplified by polymerase chain reaction 

(PCR) to facilitate differentiation among paramphistomoid specimens. One to six 

cercariae, one to three rediae, or a portion of the acetabulum from adults were 

used for DNA extraction. Genomic DNA was extracted from 120 

paramphistomoid samples (Table 2) by the alkaline-lysis (HOT-SHOT) method 

(Truett et al. 2000), or by the QIAamp DNA Micro Kit following the manufacturer’s 

instructions, with a final elution volume of 30 µl (Qiagen, Valencia, CA). Although 

not the equal of the QIAamp Kit with respect to absolute quality of the DNA 

produced, the HOT-SHOT method also produced DNA of quality and proved 

more amenable for use under conditions where controlled conditions were less 

available.  

 Cox1 oligonucleotide primers were designed based on the barcode region 

(Folmer et al. 1994) and on conserved regions in the Fasciola hepatica 

(NC_002546), Paragonimus westermani (AF219379), and Paramphistomum 

cervi (NC_023095) mitochondrial genomes. Cox1 was amplified using primers 

123F [5'-ATTCGTTTGAACTATATGGA-3'] and 858R [5'-

CATATGATGAGCCCAAACAAC-3']. The volume of each PCR reaction was 25 µl 

with 1 µl of 100 ng of DNA, 0.8mM/L dNTPs, 2.5 mM/L MgCl2, 0.25 units of Ex 

Taq DNA (Clontech, Mountain View, CA), and 0.4 µM/L of each primer. PCR 
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cycles were programmed as follows: 2 minute denaturation hold at 94 ͦ C; 94 ͦ C 

for 1 min, 46 ͦ C for 30 s, and 72 ͦ C for 1 min for 3 cycles, 94 ͦ C for 1 min, 45  ͦC 

for 30 s, and 72 ͦ C for 1 min for 3 cycles, 94 ͦ C for 1 min, 44 ͦ C for 30 s, and 72 ͦ 

C for 1 min for 3 cycles, 94 ͦ C for 1 min, 44  ͦC for 30 seconds, and 72 ͦ C for 1 

min for 20 cycles, and followed by an extension step for 7 min at 72 ͦ C. 

ITS2 was amplified using GA1 [5’-AGA ACA TCG ACA TCT TGA AC-3’] 

(Anderson and Barker, 1998) and BD2 primers [5’-TAT GCT TAA ATT CAG 

CGG GT-3’] (Bowles et al.1995). The volume of each reaction was 25 µl, with 

12.5 µl of Premix TaqTM (Clontech, Mountain View, CA), 0.4 µM/L of each primer, 

and one µl of 55 ng of DNA. PCR cycles were performed on Eppendorf 

Mastercycler epigradient machines which were programmed as follows: 1 C/s 

rate of change, one cycle at 98 ͦ C for 10 s, followed by 30 cycles of 98 ͦ C for 1 

min, 52 ͦ C for 2 min, and 72 ͦ C for 1 min with an extension step for 7 min at 72 ͦ 

C. 

 PCR fragments were separated by agarose gel electrophoresis and 

visualized with 0.5% GelRedTM Nucleic acid gel stain (Biotium, Hayward, CA, 

USA). PCR products were purified using the QIAquick purification kit (Qiagen, 

Valencia, CA) or by ExoSap-IT® (Affymetrix, Santa Clara, CA). Both strands were 

sequenced using an Applied Biosystems 3130 automated sequencer and BigDye 

terminator cycle sequencing kit Version 3.1 (Applied Biosystems, Foster City, 

CA). DNA sequences were verified by aligning reads from the 5’ and 3’ directions 

using Sequencher 5.0 and manually corrected for ambiguous base calls (Gene 

Codes, Ann Arbor, Michigan) 
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Outgroup determination 

 To determine the most appropriate outgroup available for our data, we 

reconstructed trees with the most likely outgroups based on Lockyer et al. (2003) 

and chose the sister group to the paramphistomoids (ingroup). Species from the 

following nine families were used from twelve digenean mitochondrial genomes 

for Maximum Likelihood analysis: Dicrocoelium dendriticum (NC_025280), 

Fasciola gigantica (NC_024025), Paramphistomum cervi (NC_023095), 

Opisthorchis felineus (NC_011127), Clonorchis sinensis (NC_012147), 

Orthocoelium streptocoelium (NC_028071), Echinostoma hortense 

(NC_028010), Fischoederius elgonatus (NC_028001), Paragonimus westermani 

(NC_027673), Eurytrema pancreaticum (NC_026916), Fasciola hepatica 

(NC_002546), and Ogmocotyle sikae (NC_027112).  

Sequence alignment and phylogenetic analyses 

Phylogenetic analyses were done with cox1 and ITS2 sequences using 

Maximum Likelihood (ML) and Bayesian interferences (BI). The analysis included 

4 specimens from NCBI-GenBank for cox1 and 43 for ITS2 (Table 2). Non-

identical haplotypes of cox1 and ITS2 sequences were aligned by eye and edited 

in MEGA6 (Tamura et al. 2013). A total of 690 bases were used for cox1 

alignment and 385 bases for ITS2 alignments. Sequences generated in this 

study were submitted to GenBank (Table 2). ML analyses used PAUP* 4.0 b10 

(Wilgenbusch and Swofford, 2003) and BI analyses were carried out using 

MrBayes (v 3.12) (Ronquist and Huelsenbeck, 2003). MrModeltest 2.0 (Nylander, 

2004) was used to find the best fit model of substitution for BI and ML for both 



18 

genes. Heuristic searchers were utilized for ML analyses (excluding the third 

codon for cox1) and 100 bootstrap replicates were run for each dataset. For BI 

analyses of the cox1 dataset (excluding the third codon for cox1), the parameters 

were: nst=6, rates =invgamma, and ngammacat= 4. Four heated chains were run 

simultaneously for 1,000,000 generations. For BI analyses of the ITS2 dataset, 

the parameters were: nst=6, rates =gamma, and ngammacat= 4. Four heated 

chains were run simultaneously for 1,400,000 generations. In both datasets the 

trees were sampled every 100 cycles, and the first 25% of trees with pre-

asymptotic likelihood scores were discarded as burn-in. The number of 

generations were determined sufficient because the SD dropped below 0.01 at 

the end of the runs.  

Nucleotide substitution saturation at the third codon was tested in 

DAMBE5 (Xia, 2013) for cox1. Uncorrected pairwise distances values were 

calculated in MEGA6 (Tamura et al. 2013). Data were summarized within and 

between groups (Tables 3 and 4). We used similar criteria of other studies that 

used a p-distance value > 5% difference with cox1 and nd1 mtDNA markers and 

> 1.0% for ITS to indicate separate species (Vilas et al. 2005; Brant and Loker, 

2009; Detwiler et al. 2010). 

Results 

Samples 

Paramphistomoid adults were collected from three species of ruminants 

and cercariae and/or rediae were collected from four different genera of planorbid 
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snails (Biomphalaria, Bulinus, Ceratophallus, Segmentorbis) from ten localities in 

central and west Kenya (Tables 1 and 2). Paramphistomoid cercariae were not 

found in other snail species examined (Melanoides tuberculata, Radix natalensis, 

Physa acuta and Bellamya unicolor). Ruminants were typically heavily infected, 

and often hundreds of adult worms could be quickly collected per host.  From our 

samples collected, we examined and sequenced 79 adults and 41 cercariae 

specimens (120 total specimens) that represented obvious variants. To facilitate 

sampling, if a large numbers of adult worms were acquired from a  single host, 

we separated them by differences in adult host morphology (size and presence 

of a pouch or a genital sucker). To further assure collection of a diversity of 

specimens, we sampled both adult worms and rediae/cercariae from different 

localities 

Outgroup determination  

With the diversity of sequence data available in GenBank, our analysis 

revealed that Ogmocotyle sikae (Notocotylidae) is more closely related to 

paramphistomoids than members of Echinostomatidae or Fasciolidae used as 

outgroups for other paramphistomoid molecular phylogenies (Lotfy et al. 2010; 

Shylla et al. 2011; Ghatani et al. 2012). For phylogenetic analyses of both genes, 

we used three species of notocotylids as outgroup taxa. 

Cox1 phylogenetic analyses and pairwise distance divergences 

In general, trees were first constructed incorporating all 120 specimens 

(Supplementary Figs. S1 and S2). Because some clades were represented by 
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multiple specimens (haplotypes with a 1-4 bp difference for cox1) we reduced the 

number of specimens per clade to simplify the trees for display purposes (Figs. 1 

and 2). Many of the deeper nodes were not supported, however, the trees 

nonetheless provided a useful way to visualize the overall diversity of specimens 

found, and to provide comparisons with available systematic treatments. The 

specific clades identified (names next to the bolded black vertical lines) on the 

cox1 tree represent conspecifics (Fig. 1).  

Partial sequences of cox1 (690 bp) were obtained for all 120 samples 

(Supplementary Fig. S1). ML and BI (Supplementary Fig. S3) trees were created 

for the cox1 alignment, and the ML tree is shown (Fig. 1). MrModeltest 2.3 

selected the GTR+I+G model of nucleotide substitution. Based on bootstrap and 

posterior probabilities in Table 3, 16 distinct cox1 clades were identified among 

Kenyan specimens and are portrayed alongside the tree in Fig. 1 (vertical black 

lines or arrows). We used genetic distance data to determine if a clade was 

comprised of more than one species. A single species was determined for 

specimens with genetic distance values <1.3%, and species were designated as 

distinct when genetic distance values were >6.2% (Table 3). Most interclade 

pairwise distance values were >10.0% and they ranged up to 19.9%. These 

same clade numbers or scientific names were also used adjacent to the ITS2 

tree in Fig. 2.  

ITS2 phylogenetic analyses and pairwise distance divergences 

For ITS2, sequences were obtained from all 120 samples and our 

phylogenetic analyses also included 46 samples from GenBank (Supplementary 
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Fig. S2). The ITS2 alignment included 61 bp of 5.8S, 283 bp of ITS2, and 46 bp 

of 28S. The average intraclade pairwise distance was 0.30% and the average 

interclade pairwise distance was 3.9% (Table 4).  MrModeltest 2.3 selected the 

GTR+G model of nucleotide substitution for ITS2. Both BI and ML analyses were 

run using 33 or 46, respectively, additional relevant species sequences from 

GenBank, with the ML tree shown (Figs 2 and Fig S4). Not surprisingly, the 

degree of resolution provided by phylogenetic analysis of ITS2 sequences was 

not high given the more conservative rate of change of this widely-used nuclear 

gene marker (Locke et al. 2010). Based on ML and BI analyses, 12 ITS2 clades 

were identified among our Kenyan specimens (Fig. 2 and Supplementary Fig. 

S4.) Intraclade genetic distance values were <0.6%, and interclade genetic 

distance values were >1.0%.  

Further comparisons of the cox1 and ITS2 datasets  

Cox1 and ITS2 trees did not conflict, but the ITS2 trees did not have as 

much support for the deeper nodes as cox1 (Figs 1 and 2). All 12 clades from 

ITS2 were represented in the cox1 data set. The cox1 genetic distance data 

enabled differentiation among some of the worms clustered with Cotylophoron 

cotylophorum in the ITS2 data set, and also clearly differentiated clades 14 and 

15 (Fig. 2).  

In three cases (clades 4, 10, 16), cox1 sequence matches (<1.3%) were 

obtained between worms from ruminants and cercariae from snails (Fig. 1, 

orange stars). Clade 2 matched an ITS2 sequence from GenBank of cercariae 

from Ceratophallus natalensis, thus also confirming the intermediate host for this 
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clade (Fig. 1, yellow star). In four cases (clades 1, 5, 10, 12), sequences were 

found from cercariae with no matches from adult worms for either sequence (Fig. 

1). In at least five cases (PA7, PA26, PA27, PA35, and PA42), the ITS2 nuclear 

sequences obtained clustered in different clades than what is seen in the cox1 

trees (clades highlighted with red star in Fig. 2). These samples appear to have 

nuclear mitochondrial discordance (NMD) and are identified as worms with likely 

hybrid ancestry (see discussion).  

Provisional identification of the paramphistomoids 

Provisional identifications were based on the paramphistomoid 

systematics literature (Eduardo, 1983; Sey, 1991; Jones, 2005b,c,d) pertaining to 

intermediate or definitive host use, and descriptions of adult worms in 

comparison to our mounted adult specimens (Table 5, Fig. 3). Some of the 

sequences we obtained matched sequences from named species in GenBank, 

and in those cases the names we provide here are the ones from GenBank 

(clades 4, 8, and 16). Four clades were represented only by cercariae and did 

not match any sequences derived from adult worms in this study or from 

GenBank. These included two clades from B. pfeifferi (clades 1 and 12), one 

from Segmentorbis kanisaensis (clade 5), and one from C. natalensis (clade 10). 

Our 16 clades represented three different families of Paramphistomoidea: 

Gastrothylacidae, Paramphistomidae and Stephanopharyngidae. Species names 

in quotation marks in Fig. 1 were assigned based on our morphological 

identification from species descriptions.  

Discussion 
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Paramphistomoid flukes are speciose in sub-Saharan Africa, reflective of 

the presence there of many mammal species, particularly wild and domestic 

ruminants. These flukes are also ubiquitous and can have a high prevalence 

among domestic ruminants reaching 100% in some villages (Chingwena et al. 

2002a; Nzalawahe et al. 2015). During our sampling of Kenyan slaughterhouses, 

we found up to 90% percent of the domestic ruminants infected, and many 

individual animals harbored hundreds of adult worms. Of the many adult worm 

and cercariae samples collected, we further investigated 120 samples (79 adult 

worms, 41 cercariae) determined most likely to be genetically distinctive. We 

found 16 distinct clades in three families of the Paramphistomoidea. For future 

comparisons, all of our specimens are available as vouchers at the Parasite 

Division, Museum of Southwestern Biology (MSB) or at the Kenyan Medical 

Research Institute (KEMRI). 

Previous studies have used the easily-obtained ITS2 sequence as a 

molecular marker to distinguish among paramphistomoid species (Itagaki et al. 

2003; Rinaldi et al. 2005; Goswami et al. 2009; Lotfy et al. 2010; Sanabria et al. 

2011; Shylla et al. 2013; Ichikawa et al. 2013; Ghatani et al. 2014; Dube et al. 

2015). ITS2 is helpful for distinguishing paramphistomoid genera and 

differentiating more divergent species within a genus (Rinaldi et al. 2005; Ghatani 

et al. 2012). Because mitochondrial DNA accumulates substitutions more 

frequently than the internal transcribed spacers, it is more useful to differentiate 

among closely related species, particularly cryptic species (Blouin, 2002; Vilas et 

al. 2005; Locke et al. 2015), or to reveal intraspecific variation (Ghatani et al. 
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2014). Consequently, we used genetic distance values for cox1 sequence data 

as the primary means to delineate species. For cox1, interclade p-distance 

values were > 6.2%, although the majority of pairwise comparisons were 

>10.0%. In contrast, intraclade pairwise divergence values were less <1.3%. 

Other studies have used a p-distance value > 5% difference with cox1 and nd1 

mtDNA markers to indicate separate species (Vilas et al. 2005; Brant and Loker, 

2009; Detwiler et al. 2010). Our data suggests that ITS2 should not be used 

alone to differentiate species for paramphistomoids. 

We also examined the delineated clades with respect to where they 

grouped in either ML or BI phylogenetic analyses based on either cox1 or ITS2 

sequences. In general, there was low bootstrap/posterior probability support for 

many of the deeper nodes in either ML or BI trees, suggesting that broader taxon 

sampling, along with sequencing of additional markers, is needed to more 

definitively support or refute the morphologically based systematic framework 

developed for paramphistomoids (Sey, 1991; Jones, 2005a). The phylogenetic 

trees were useful, however, in providing preliminary hypotheses for how the 

various clades were related to one another (see paragraph below). Relative to 

other paramphistomoid molecular phylogenetic studies involving specimens from 

African ruminants and snails, we recovered 5 out of the 6 previously reported 

taxa from Kenya, Egypt, and Tanzania noted by Lotfy et al. (2010), 3 out of the 3 

identified taxa from Zimbabwe, Zambia, and Botswana (Dube et al. 2015) and 1 

of the 2 identified taxa from Algeria (Titi et al. 2014). The extent of overlap among 

specimens recovered from all four studies suggests that at least some of the 
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species have broad distributions in Africa. Additional sampling is needed to 

provide a more comprehensive picture of African paramphistomoid diversity, 

particularly from Central and West Africa.   

The phylogenetic trees provided support for anatomically-based taxon 

delineations as four clades identified as Calicophoron grouped together, as did 

three clades of Carmyerius and four clades of Cotylophoron. Furthermore, worms 

in the Stephanopharyngidae (Stephanopharynx) formed a clade, as did 

presumptive members of the Gastrothylacidae. However, all presumptive 

members of the Paramphistomidae did not group together. It is possible that this 

is a paraphyletic group or that certain genera, such as Cotylophoron belong in a 

different family. Clade 1 is quite divergent from the other specimens discussed 

and it is possible it represents a different family or superfamily. The trees also 

show some incongruences between nuclear and mitochondrial sequences 

(discussed further below).  

With respect to host use, specimens from a particular clade were reported 

from the same snail host species or genus, and different clades that group 

together tend to share the same genus of snail host (Calicophoron, in clades 13-

16, in Bulinus) or snail genera in related tribes (Carymerius in clades 2, 3 and 5 

in Segmentorbis and Ceratophallus). For 10 of 11 clades for which snail host 

usage could be identified, those snails belong in the family Planorbidae. Snail 

host use may thus have had an important impact on paramphistomoid 

diversification, which has also been suggested for other digenean groups (Brant 

and Loker, 2013). In only one instance have we found cercariae that we have 
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assigned to the same clade (clade 10) that derive from two different snail genera: 

cercariae from Ceratophallus natalensis collected from this study and cercariae 

from Biomphalaria sudanica collected by Lotfy et al. (2010). Many other digenean 

groups also indicate high first intermediate host specificity (Shoop, 1988; Donald 

et al. 2004; Detwiler et al. 2010; Brant and Loker, 2013). By contrast, adult 

worms of a particular clade were often recovered from more than one definitive 

host species, and we recovered up to three different taxa of paramphistomoids 

from an individual bovine. 

Sequence data derived from life cycle stages from different hosts provide 

an important alternative way to piece together the complex life cycles of 

digeneans, especially when experimental exposures are not possible (Chibwana 

et al. 2015). We provide supportive evidence for the life cycles of four of our 

identified clades (Fig. 1) by matching genetic sequences (< 0.6% for ITS2 and < 

1.3% cox1) collected from cercariae and adults: 1) ITS2 sequences from 

cercariae from Ceratophallus natalensis (GU735645) collected in Kenya grouped 

with sequences from adult worms we recovered from cattle (clade 2), 

provisionally identified as Carmyerius exporous (Dinnik and Dinnik, 1960). 2) 

Cercariae (clade 4) we collected from C. natalensis matched adults collected in 

this study as well as two adults from Botswana (KP639636) and Kenya 

(GU735658) identified as Carmyerius dollfusi by Dube et al. (2015).  The latter 

species was synonymized with C. mancupatus (Sey, 1991), a species known to 

be transmitted by C. natalensis (Dinnik, 1965). 3) Sequences from seven adults 

we obtained (clade 15) matched sequences collected from a cercariae sample 
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from B. forskalii. We provisionally identified the adults as C. phillerouxi, which is 

known to be transmitted by B. forskalii (Dinnik, 1961). 4) Lastly, two cercariae 

samples we collected from B. forskalii matched with 23 adults collected in this 

study, and with one cercariae sample from B. forskalii and 18 adults in GenBank, 

all of which were identified as C. microbothrium (clade 16). As the host record 

and sequence databases grow, the probabilities that more matches will be found 

also increases, providing a way forward in working out life cycles that will help 

offset increasing difficulties in doing so with more conventional experimental 

infections.   

The most common paramphistomoid genus we collected was 

Calicophoron (40 out of 120 specimens examined), and the most abundant 

species was Calicophoron microbothrium which is transmitted by bulinid snails. 

This species is the most geographically widespread paramphistome in Africa, its 

presence confirmed with molecular markers from Egypt, Kenya, Tanzania, 

Zambia, Zimbabwe, South Africa, Algeria, and Botswana (Lotfy et al. 2010; Titi et 

al. 2014; Dube et al. 2015). Given the difficulties in discriminating this species 

from others based on morphology alone, the broad geographic distribution, and 

the diversity of different bulinid snails reported as hosts, this species is a good 

candidate for further inspection as a possible complex of cryptic species.  

Presently the best sequence available to evaluate this possibility is cox1, but 

most of the data in the literature thus far for this species are for ITS2. Our ML 

analysis based on 354 bp of ITS2 (figure not shown) suggests there are distinct 

clades among the samples identified as C. microbothrium in GenBank, with an 
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average distance among them of 0.75%. Other sequence markers are needed to 

determine if C. microbothrium is a complex of cryptic species, and how well 

differentiated they prove to be from the other Calicophoron clades (13-15) 

identified in this study.  

We found some specimens with discordant nuclear and mitochondrial 

sequences, consistent with the possibility of hybrid origins (red stars, Fig. 2). For 

example, two samples (PA12 and PA24) grouped with C. microbothrium in the 

ITS2 trees, but fell in their own clade (3) in the cox1 trees. PA12 and PA24 were 

also morphologically distinct from C. microbothrium, being provisionally identified 

as members of the gastrothylacid genus Carmyerius. As we have noted, multiple 

species of paramphistomoids are frequently recovered from a single ruminant 

host, creating circumstances conducive for potential hybridization. The putative 

parental species and hybrids (PA7, PA12, PA24 PA27, PA35) all use Bulinus as 

intermediate hosts. It seems possible that the likelihood of successful 

hybridization would be increased if both parental species use the same genus or 

species of intermediate host, if as appears intermediate host use is more specific 

than definitive host use among the paramphistomoids. Other examples of 

sequence discordance in digeneans also involve groups with closely related 

species that can hybridize, and that share snail hosts, such as with some species 

of fasciolids and schistosomes (Steinauer et al. 2008; Peng et al. 2009). Further 

studies using microsatellite markers or RADSeq technology will be needed to 

verify a hybrid origin for paramphistomoids with discordant sequences. 
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Members of the basommatophoran family Planorbidae are the most 

common intermediate hosts transmitting paramphistomoids in Kenya, although 

snails of the Family Lymnaeidae have also been identified as hosts for 

paramphistomoids in East Africa (Sey, 1991). The snail hosts for some of the 

clades we have identified such as clades 3, 6, 7, 8 (Cotylophoron cotylophorum), 

9 and 11 (Stephanopharynx sp.) are unknown or require additional sequence-

based verification. Bulinus snails, with an ancient history and diversification in 

Africa (Van Damme 1984; Brown, 1994; De Groeve 2005), are particularly 

prominent as African paramphistomoid hosts (Sey, 1991). By contrast, 

Biomphalaria supports fewer paramphistomoid species and has a much shorter 

evolutionary history in Africa, with estimates ranging from <1-5 mya (Woodruff 

and Mulvey, 1997; Campbell et al. 2000; DeJong et al. 2001). It is noteworthy 

that clade 1, which is known only from cercariae from B. pfeifferi, is one of the 

most divergent clades we recovered. Clade 1 cercariae are also much larger 

than the other paramphistomoid cercariae we recovered (about 2.0X longer in 

combined body and tail length). This raises a possibility that the diversification of 

paramphistomoids is more recent than the longer evolutionary history of Bulinus 

in Africa might suggest. More data are needed to resolve the phylogenetic 

position of this and other paramphistomoid clades, including those found in non-

ruminant species.  

In Kenya, Bulinus globosus, B. nasutus, B. africanus, B. tropicus, B. 

forskalii, and Biomphalaria pfeifferi, are known to transmit paramphistomoids as 

well as ruminant and/or human schistosomes (Brown, 1994; Southgate et al. 
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1989). The overlap in use of snail hosts creates opportunities for distinctive 

interactions between the two common digenean groups. For example, in Kenya, 

Southgate et al. (1989) found that Bulinus tropicus was capable only of 

supporting the development of Schistosoma bovis to production of cercariae if it 

was first exposed to C. microbothrium.  Similarly, in South America, Biomphalaria 

oligoza and Biomphalaria orbignyi are naturally resistant to S. mansoni, but 

become susceptible to S. mansoni if first exposed to Zygocotyle lunata (Spatz et 

al. 2012). Paramphistomoids can also have the opposite influence on the 

success of other digeneans during co-infections. For example, as compared to 

snails exposed only to Fasciola hepatica, significantly fewer Pseudosuccinea 

columella produced F. hepatica cercariae if first exposed to Calicophoron 

daubneyi and then later exposed to F. hepatica (Dreyfuss et al. 2016).  

This study has shown that even in a fairly circumscribed area within one 

East African country that a considerable diversity of paramphistomoid flukes is 

present and that several of these fluke species are abundantly represented. 

Paramphistomoids are of veterinary interest because of their ubiquitous presence 

in herds of cattle, sheep and goats that are routinely watered in natural habitats 

where the presence of susceptible species of snails ensures their transmission. 

Whether the species we have encountered have long parasitized domestic 

livestock or represent recent acquisitions from the region’s many wild ruminants 

is an interesting question for future study. Studies currently underway in Kenya 

indicate that paramphistomoid infections are very common in some snail 

populations, so much so that they may represent significant impediments to the 
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ongoing transmission of schistosomes using the very same snail hosts in the 

same aquatic habitats (Laidemitt, personal communication).  Furthermore, the 

spectra of freshwater snails used by these two common digenean groups are 

broadly overlapping, further increasing the likelihood that interesting interactions 

and accommodations have been made over evolutionary time. It will be 

interesting to more fully ascertain how these two major groups of digeneans 

influence one another’s abundance. It is clear though that the domestication of 

livestock ensures that both paramphistomoid and schistosome (both human and 

ruminant schistosome species) life cycles are perpetuated side-by-side in the 

same habitats year after year. Livestock domestication may well prove to have 

had multiple downstream effects - mediated by the digeneans of livestock - on 

the present-day transmission of the all-too-common human blood flukes of sub-

Saharan Africa. 
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Figures and Tables 

Table 1. Collection Localities in central and west Kenya 
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Table 2. Specimen name, host collected from, collection locality, provisional 

identification, Museum of Southwestern Biology/KEMRI voucher numbers, and 

GenBank accession numbers of paramphistomoid specimens used in this study. 

PA1-PA44 contain representatives of the 16 different clades used to construct 

the Maximum Likelihood and Bayesian trees. PA45-PA120 were included in the 

preliminary trees. An (*) denotes samples that are in Kenya.  
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Table 3. Intra- and interclade p- distance values of cox1 amplified from 

paramphistomoids from Kenya. Values in bold are intraclade divergences. Note 

that “-“ indicates only a single specimen was collected and within distances could 

not be calculated.  

 

 

 

 

 

 

 

 

 

Clade N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. Clade 1 1 _

2. Clade 2 17 0.185 0.011

3. Clade 3 2 0.199 0.108 0.003

4. Clade 4 5 0.175 0.127 0.132 0.003

5. Clade 5 4 0.166 0.131 0.143 0.126 0.010

6. Clade 6 1 0.157 0.155 0.162 0.133 0.120 _

7. Clade 7 1 0.164 0.165 0.158 0.134 0.129 0.098 _

8. Clade 8 1 0.167 0.146 0.163 0.132 0.128 0.062 0.105 _

9. Clade 9 13 0.158 0.138 0.148 0.124 0.109 0.061 0.099 0.063 0.010

10. Clade 10 2 0.167 0.155 0.160 0.138 0.133 0.126 0.140 0.126 0.128 0.000

11. Clade 11 2 0.177 0.155 0.175 0.164 0.151 0.152 0.155 0.155 0.155 0.140 0.001

12. Clade 12 30 0.171 0.156 0.157 0.138 0.122 0.135 0.144 0.145 0.136 0.130 0.160 0.009

13. Clade 13 9 0.151 0.164 0.169 0.149 0.138 0.132 0.131 0.140 0.123 0.141 0.167 0.123 0.012

14. Clade 14 2 0.158 0.162 0.176 0.144 0.131 0.130 0.126 0.132 0.121 0.138 0.145 0.129 0.088 0.004

15. Clade 15 8 0.161 0.170 0.170 0.150 0.124 0.121 0.135 0.127 0.122 0.134 0.165 0.130 0.098 0.109 0.010

16. Clade 16 22 0.165 0.151 0.179 0.145 0.130 0.142 0.132 0.130 0.140 0.142 0.157 0.131 0.100 0.119 0.111 0.013
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Table 4. Intra- and interclade p- distance values of ITS2 amplified from 

paramphistomoids from Kenya. Values in bold are intraclade divergences. Note 

that “-“ indicates only a single specimen was collected and within distances could 

not be calculated. 

 

 

 

 

 

 

 

 

 

 

Clade N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. Clade 1 1 -

2. Clade 2 17 0.063 0.003

3. Clade 3 2 0.065 0.009 0.000

4. Clade 4 5 0.064 0.009 0.016 0.005

5. Clade 5 4 0.061 0.010 0.015 0.011 0.002

6. Clade 6 1 0.077 0.042 0.045 0.043 0.038 -

7. Clade 7 1 0.073 0.038 0.042 0.039 0.034 0.004 -

8. Clade 8 1 0.073 0.038 0.042 0.039 0.034 0.004 0.001 -

9. Clade 9 13 0.075 0.040 0.044 0.042 0.036 0.007 0.003 0.003 0.003

10. Clade 10 2 0.068 0.017 0.023 0.018 0.014 0.040 0.036 0.036 0.039 0.003

11. Clade 11 2 0.058 0.018 0.025 0.019 0.015 0.041 0.038 0.038 0.040 0.019 0.006

12. Clade 12 30 0.067 0.036 0.042 0.038 0.034 0.050 0.046 0.046 0.048 0.038 0.021 0.003

13. Clade 13 9 0.061 0.021 0.027 0.022 0.018 0.042 0.038 0.038 0.040 0.025 0.018 0.026 0.003

14. Clade 14 2 0.057 0.022 0.029 0.023 0.019 0.035 0.031 0.031 0.034 0.026 0.017 0.025 0.006 0.001

15. Clade 15 8 0.060 0.020 0.026 0.021 0.017 0.038 0.034 0.034 0.037 0.024 0.015 0.023 0.004 0.003 0.001

16. Clade 16 22 0.061 0.027 0.033 0.028 0.023 0.040 0.035 0.035 0.038 0.030 0.021 0.029 0.011 0.004 0.007 0.003
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Table 5. Provisional identification of the paramphistomoids was based on species 

descriptions and intermediate host use from the literature and on position in 

phylogenetic trees. Cercariae (C), adults (A) and their associated hosts are 

listed. Ventral pouch, acetabulum type and genital sucker were useful 

morphological features for genus and species placement.  

 

 

 

 

 

 

 

 

 

 

 

Clade Provisional Identification Stage Ventral Pouch Acetabulum Type Genital Sucker Known Intermediate Hosts Hosts from this Study References

1 Unknown C n/a n/a n/a n/a B. pfeifferi Sey, 1991, Jones, 2005a

2 Carmyerius exporus C, A Yes Carmyerius No Ceratophallus natalensis C. natalensis and cattle Dinnik 1965; Sey 1991; Jones, 2005c

3 Carmyerius gregarius A Yes Carmyerius No Bulinus  species Cattle Looss, 1896; Sey 1991

4 Carmyerius mancupatus C, A Yes Gastrothylax No Ceratophallus natalensis C. natalensis, cattle, sheep and goats Gretillat, 1964; Dinnik 1965; Sey 1991, Jones 2005c

5 Unknown C n/a n/a n/a n/a S. kanisaensis Sey, 1991, Jones, 2005c

6 Cotylophoron sp. A No Cotylophoron Yes Unknown Cattle Sey, 1991, Jones, 2005b

7 Cotylophoron sp. A No Cotylophoron Yes Unknown Cattle Sey, 1991, Jones, 2005b

8 Cotylophoron cotylophorum A No Cotylophoron Yes Unknown Cattle Sey, 1991; Eduardo, 1983; Jones, 2005b

9 Cotylophoron sp. A No Cotylophoron Yes Unknown Cattle, sheep and goats Sey, 1991, Jones, 2005b

10 Unknown C n/a n/a n/a Ceratophallus natalensis C. natalensis Sey, 1991, Jones, 2005a

11 Stephanopharynx sp. A No Stephanopharynx No Unknown Sheep Sey 1991; Jones, 2005d

12 Unknown C n/a n/a n/a n/a B. pfeifferi Sey, 1991, Jones, 2005a

13 Calicophoron raja A No Calicophoron No Bulinus globosus Cattle, sheep and goats Dinnik and Dinnik, 1955; Sey, 1991; Eduardo, 1983

14 Calicophoron clavula A No Calicophoron No Bulinus abyssinicus Cattle Sobrero, 1962; Eduardo, 1983; Sey, 1991

15 Calicophoron phillerouxi C, A No Calicophoron No Bulinus forskalii B. forskalii, cattle, sheep and goats Dinnik, 1961; Sey 1991, Eduardo 1983

16 Calicophoron microbothrium C, A No Calicophoron No Bulinus  species B. forskali, cattle, sheep and goats Dinnik and Dinnik, 1954; Sey, 1991, Eduardo, 1983
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Fig. 1. Phylogenetic relationships of 44 samples of paramphistomoids from this 

study and from GenBank based on cox1 (690 bp) sequences inferred from 

Maximum Likelihood (bootstrap values) analysis. Specimens are named based 

on sample name, the host it was collected from and are color coded based on 

intraclade p- distance values <1.3% and interclade values > 6.5%. An orange 

star represents clades where we matched cercariae and adult sequences. A 

yellow star represents clades where cercariae and adult ITS2 sequences 

matched. Identifications were made based on GenBank sequences and on the 

species descriptions in the literature (parentheses). An (*) denotes intermediate 

host use from studies in the literature that have not been sequenced confirmed.   
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Fig. 2.  Phylogenetic relationships of 44 samples of paramphistomoids from this 

study and from GenBank based on ITS2 (385 bp) sequences inferred from 

Maximum Likelihood (bootstrap values) analysis. Specimens are named based 

on sample name, the host it was collected from, and color coded based on clade 

designation from cox1 distance values. A red star represents clades where we 

have found evidence of putative hybrids. Adjacent to these indicated clades, are 

clade numbers that correspond to the same specimens and clade numbers as 

appearing on the cox1 tree (Fig. 1). 
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Fig. 3. Sections of adult paramphistomoids collected from domestic ruminants in 

Kenya and their provisional identifications. A. Calicophoron phillerouxi B.  

Calicophoron raja C. Calicophoron clavula  D.  Calicophoron microbothrium E. 

Cotylophoron sp. F.  Cotylophoron cotylophorum G. Cotylophoron sp. H. 

Carmyerius exporous I. Carmyerius gregarius J. Carmyerius mancupatus. Note 

that the photographed specimens represent sections of adults, and presence of 

some organs like the testes (T), or genital sucker (GS) are indicated. For the 

genus Carmyerius, a ventral pouch was present, but is not visible in the sections 

chosen for presentation. 
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Supplementary Fig. S1. Phylogenetic relationships of 120 samples of 

paramphistimoids from this study and from GenBank based on cox1 (690 bp) 

sequences inferred from Maximum Likelihood analysis. Specimens are named 

based on sample name and the host it was collected. 
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Supplementary Fig. S2. Phylogenetic relationships of 120 samples of 

paramphistimoids from this study and from GenBank based on ITS2 (385 bp) 

sequences inferred from Maximum Likelihood analysis. Specimens are named 

based on sample name and the host it was collected. Bootstrap values are listed 

if greater than 70%. 
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Supplementary Fig. S3. Phylogenetic relationships of 44 samples of 

paramphistomoids from this study and from GenBank based on cox1 (690 bp) 

sequences inferred from Bayesian Interference analysis. Specimens are named 

based on sample name and the host it was collected. 
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Supplementary Fig. S4. Phylogenetic relationships of 44 samples of 

paramphistomoids from this study and from GenBank based on ITS2 (385 bp) 

sequences inferred from Bayesian Interference analysis. Specimens are named 

based on sample name and the host it was collected. 
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Abstract 

Echinostomes are a diverse group of digenetic trematodes that are globally 

distributed. The diversity of echinostomes in Africa remains largely unknown, 

particularly in analyses using molecular markers. Therefore, we were interested 

in the composition and host usage patterns of African echinostomes, especially 

those that also use schistosome transmitting snails as intermediate hosts. We 

collected adults and larval stages of echinostomes from 19 different localities in 

East Africa. In this study we provide locality information, host use, museum 

vouchers, and genetic data for two loci (28S and nad1) from 98 samples of 

echinostomes from East Africa. Combining morphological features, host use 

information, and phylogenetic analyses we found 17 clades of echinostomes in 

East Africa. Four clades were found to use more than one genus of freshwater 

snails as their first intermediate hosts, and we determined at least partial life 

cycles of four clades using molecular markers. The cercariae of many of these 

clades had peculiar structures (granules or spines) near their anterior end that 

are likely used for light gathering. Of the 17 clades, 13 use Biomphalaria or 

Bulinus as a first intermediate host. The overlap in host usage creates 

opportunities for competition, including against human schistosomes, and 

although echinostomes are diverse, future studies need to be done to ascertain 

the interactions between schistosomes in their respective intermediate hosts.  

1. Introduction 

The Echinostomatoidea is a diverse superfamily of trematodes that 

includes nine different families and 105 genera (Tkach et al., 2016). Here we 
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discuss representatives of one family of that group, the Echinostomatidae, 

referred to hereafter as echinostomes. 

Echinostomes are characterized by having a distinctive crown of collar 

spines, a ventral sucker larger than the oral sucker, two testes tandemly or 

symmetrically arranged, a pretesticular ovary, and a cirrus sac (Kostadinova and 

Jones 2005). Echinostomes have a multi-host life cycle that involves a vertebrate 

definitive host, a molluscan first intermediate host, and a second intermediate 

host that is typically a mollusc, amphibian, or fish. The family Echinostomatidae 

(with a recent reclassification to now include the former Rhopaliidae, Looss, 

1899; Cathaemasiidae Fuhrmann, 1928; and Ribeiroiinae Travassos, 1951) is 

the most speciose family in the superfamily (Tkach et al., 2016). Delineation of 

genera has traditionally been based extensively on characteristics of adult worms 

and has included consideration of definitive host use, the morphology of the 

cephalic collar, number and arrangement of the collar spines, position of the 

testes and ovary, and location and structure of the vitellaria (Kostadinova 2005). 

Characteristics of the larval stages, especially of cercariae, have received less 

consideration. A recent molecular phylogenetic study focused on 28S rDNA 

sequences and incorporated a broad array of echinostome species has provided 

a new framework to organize our thinking about echinostomes (Tkach et al., 

2016).  

Echinostomes are of interest to parasitologists not only for their diversity, 

but also for their distinctive morphology and life cycles, their systematic inter-

relationships and their interactions with their intermediate hosts. Echinostomes 
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are often easily maintained in the laboratory and thus provide excellent subjects 

to pursue studies of parasite-host relationships (Fried and Graczyk 2000; Fried 

2001; Toledo et al., 2009). Many questions remain as to how these species 

diversify and remain distinct in nature. Moreover, their morphological innovations 

and peculiar patterns of host use have yet to be fully elucidated. Thus, 

parasitologists with interests in evolutionary and ecological processes have found 

echinostomes to be intriguing subjects for study, especially given that recent 

studies have documented that some echinostome “species” are actually 

complexes of cryptic species (Detwiler et al., 2010; Detwiler et al., 2012; 

Georgieva et al., 2013). Epidemiologists are also interested in studying 

echinostomes because they can cause disease in humans and animals (Fried 

and Toledo; Noikong et al., 2014). Immunologists too have adopted 

echinostomes for study because adult worms can modulate the immune 

responses of their definitive hosts (Cortes et al., 2017) and echinostome 

sporocysts and rediae can actively interfere with the defense responses of their 

snail intermediate hosts (Loker et al., 1992) in ways that differ from the evasive 

responses of schistosome sporocysts in snails (Bayne 2009).   

 Echinostomes are of interest to parasitologists not only for their diversity, 

but also for their distinctive morphology and life cycles, their systematic inter-

relationships and their interactions with their intermediate hosts They are often 

easily maintained in the laboratory and thus provide excellent subjects to pursue 

studies of parasite-host relationships (Fried and Graczyk 2000; Fried 2001; 

Toledo et al., 2009). Many questions remain as to how these species diversify 
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and remain distinct in nature. Fundamental questions remain for echinostomes, 

including unraveling their morphological innovations and several peculiar aspects 

in their patterns of host use.Parasitologists with interests in evolutionary and 

ecological processes have also found echinostomes to be intriguing subjects for 

study. It has been suspected that some echinostome “species” are actually 

complexes of cryptic species, and this has been documented in recent studies 

(Detwiler et al., 2010; Detwiler et al., 2012; Georgieva et al., 2013). 

Epidemiologists are also interested in studying echinostomes because they can 

cause disease in humans and animals (Fried and Toledo; Noikong et al., 2014). 

Immunologists too have adopted echinostomes for study because adult worms 

can modulate the immune responses of their definitive hosts (Cortes et al., 2017) 

and echinostome sporocysts and rediae can actively interfere with the defense 

responses of their snail intermediate hosts (Loker et al., 1992) in ways that differ 

from the evasive responses of schistosome sporocysts in snails (Bayne 2009).   

Of interest to this study are echinostomes transmitted in Africa, for which 

little is known with respect to biogeography, phylogenetic placement (especially 

using molecular markers), and host use. The majority of echinostome 

descriptions from Africa are of adults that use birds as a definitive host (Dietz 

1909; Ohdner 1910; Faust 1921; Himly 1949; Dollfus 1950; Bisseru 1957; 

Appleton et al., 1983; King and As 2000). One of our motivations is to learn how 

other digenean species, particularly echinostomes, can influence schistosomiasis 

transmission in Sub-Saharan Africa by competing with schistosome sporocysts 

for access to their required snail hosts. Studies have shown that when multiple 



64 

species of digenetic trematodes colonize the same snail host, echinostomes 

have usually proven to be dominant to other species (Lim and Heyneman 1972; 

Hechinger et al., 2011). There is growing evidence that for at least some species, 

echinostome rediae become specialized for the purpose of attacking and killing 

the larvae of competing digenean species within the body of their molluscan 

hosts, while other rediae are more specialized for reproduction (Garcia et al., 

2016).  An important first step in understanding echinostome-schistosome 

interactions is the need to gain a full appreciation for the biodiversity of 

echinostomes extant in East Africa to relate our work to the growing body of work 

that highlights the relevance between biodiversity and human disease 

transmission (Johnson and Thieltges, 2010; Civitello et al., 2015).  

In addition, our survey data from under-sampled locations coupled with 

published works will provide additional groundwork for a broader understanding 

of echinostome biology. This will include several attributes such as the distinctive 

morphological features among larval stages and patterns of intermediate host 

usage including the extent to which echinostomes prove to be host specific 

relative to other digenean groups. Better sequence-based analyses of 

echinostome diversity will also contribute to understanding broad biogeographical 

patterns and will enable new perspectives to emerge on phenomena like cryptic 

speciation. 

Towards this end, we collected and characterized different species of 

echinostomes that are transmitted in East Africa, primarily from western Kenya, 

with an emphasis on species that use Biomphalaria or Bulinus as their first 
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intermediate hosts. These two snail genera host Schistosoma mansoni, and 

Schistosoma haematobium and its close relatives, respectively. Our goal is to 

learn how many echinostome species use these snail hosts in order to provide 

context for future experiments to determine their ability to compete with and prey 

upon the sporocysts of schistosomes in their snail hosts. Here we provide locality 

information, sequence data, provisional species identification, museum vouchers 

and host use information for the African echinostome adults and larvae collected.  

2. Materials and methods 

2.1. Sampling  

All field-collected aquatic snails were brought to the lab and were 

individually placed into 12-well tissue culture plates in 3 ml of aged tap water. 

The tissue culture plates were placed in natural light for two hours to induce 

shedding of cercariae. Available keys were used for preliminary identification of 

African snails and their trematodes (Fain, 1953; Brown and Kristensen; 1989; 

Brown 1994; Frandsen and Christensen, 1984; Schell, 1985). Cercariae and 

rediae were fixed in 95% ethanol for later molecular analysis.  

2.2. Staining adult worms 

Adult worms were preserved in 95% ethanol and then were placed into 

70% ethanol for 24 hours prior to staining. Part of the posterior portion of the 

adult was severed and used for molecular work. For the voucher, the remaining 

part of the adult was stained according to Fried and Manger (1992).   

2.3. Molecular Characterization 
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Partial sequences of the 28S ribosomal gene and nicotinamide adenine 

dinucleotide dehydrogenase subunit 1 (nad1) from 98 echinostome specimens 

were amplified by polymerase chain reaction (PCR). Samples were chosen 

based on host usage, locality, and sampling time. One or two cercariae, one 

rediae, or a partial portion of the posterior end of an adult were used for DNA 

extraction. Genomic DNA was extracted using the QIAamp DNA Micro Kit 

following the manufacturer’s instructions, with a final elution volume of 35 µl 

(Qiagen, Valencia, CA). 

 The 28S gene was amplified using forward primer, dig12 (5’-AAG CAT 

ATC ACT AAGCGG-3’) and reverse primer 1500R (5’-GCT ATC CTG AGGGAA 

ACT TCG-3’) (Tkach et al., 2003). The volume of each PCR reaction was 25 µl 

with 1 µl of 100 ng of DNA, 0.8mM/L dNTPs, 2.5 mM/L MgCl2, 0.25 units of Ex 

Taq DNA (Clontech, Mountain View, CA), and 0.4 µM/L of each primer. PCR 

cycles were followed according to Tkach et al. (2016).  

The nad1 gene was amplified using forward primer NDJ11 (Morgan & 

Blair, 1998) (5’ -AGA TTCGTA AGG GGC CTA ATA-3’) and the reverse primer 

NDJ2a (5’-CTT CAG CCT CAG CAT AAT-3’) (Kostadinova et al., 2003). The 

volume of each PCR reaction was 25 µl with 1 µl of 100 ng of DNA, 0.8mM/L 

dNTPs, 2.5 mM/L MgCl2, 0.25 units of Ex Taq DNA (Clontech, Mountain View, 

CA), and 0.4 µM/L of each primer PCR cycles were performed on Eppendorf 

Mastercycler epigradient machines which were programmed as follows: 2 min 

denaturation at 94 °C; 94 °C for 1 min, 54 °C for 30 s and 72 °C for 1 min for 

three cycles; 94 °C for 1 min, 53 °C for 30 s, and 72 °C for 1 min for three cycles; 
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94 °C for 1 min, 52 °C for 30 s and 72 °C for 1 min for three cycles; 94 °C for 1 

min, 51 °C for 30 s and 72 °C for 1 min for 20 cycles, and followed by an 

extension step for 7 min at 72 °C. 

For some of the samples, only cercariae were saved. As cercariae may 

have adherent snail macromolecules on them including amplifiable DNA 

(Devkota et al., 2015), we used snail cox1 primers to generate amplicons from 

those cercariae derived from Bulinus. This was done in attempt to verify the 

original identification of the Bulinus species from which the cercariae were 

derived, because identification based only on snail keys is difficult for this genus. 

Many of samples yielded amplicons; however, in some cases, we were unable to 

amplify snail DNA from the cercariae samples, therefore we did not designate a 

species.  

 PCR fragments were separated by agarose gel electrophoresis and 

visualized with 0.5% GelRedTM Nucleic acid gel stain (Biotium, Hayward, CA, 

USA). PCR products were purified using the Illustra ExoProStar (GE Healthcare 

Life Sciences, Pittsburgh, PA). Both strands were sequenced using an Applied 

Biosystems 3130 automated sequencer and BigDye terminator cycle sequencing 

kit Version 3.1 (Applied Biosystems, Foster City, CA). DNA sequences were 

verified by aligning reads from the 5’ and 3’ directions using Sequencher 5.0 and 

manually corrected for ambiguous base calls (Gene Codes, Ann Arbor, 

Michigan). 

2.4. Sequence alignment and phylogenetic analyses 



68 

28S and nad1 sequences were used in phylogenetic analyses using 

Maximum Likelihood (ML) and Bayesian interferences (BI). The analysis included 

47 specimens from NCBI-GenBank for 28S and 41 for nad1. Non-redundant 

sequences were aligned by eye and edited in MEGA7 (Kumar et al., 2016). A 

total of 1,143 bases were used for 28S alignment and 493 bases for nad1 

alignments. Sequences generated in this study were submitted to GenBank 

(Table 2). ML and BI analyses were carried out using PAUP* 4.0 b10 (Swofford, 

2003) and MrBayes v 3.12 (Ronquist and Huelsenbeck, 2003) respectively. 

jModelTest 2.0 (Darriba et al., 2012) was used to find the best fit model of 

substitution for BI and ML for both genes. Heuristic searchers were utilized for 

ML analyses and 1,000 bootstrap replicates were run for each dataset. For BI 

analyses the parameters were unlinked: In both datasets the trees were sampled 

every 100 cycles, and the first 25% of trees with pre-asymptotic likelihood scores 

were discarded as burn-in.  

Uncorrected pairwise distance values were calculated in MEGA7 (Kumar 

et al., 2016). Data were summarized within and between groups (Tables 3, 4). 

We followed other studies in using a p-distance value >5% in mtDNA markers to 

provisionally designate our specimens as distinct species (Vilas et al. 2005; Brant 

and Loker, 2009; Detwiler et al. 2010; Laidemitt et al., 2017). 

3. Results 

3.1. Samples 
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We collected echinostome adults and larva between 2002-2017 from 19 localities 

(Table 1). Cercariae or rediae were collected from 9 species of snail hosts and 

adults were collected from two species of birds. We sequenced 28S and nad1 

from 92 different cercariae, 4 metacercariae, and 2 adult samples. Although we 

attempted to sequence nad1 from all 98 samples, 4 samples would not amplify 

using the nad1 primers. Our specimens were deposited as vouchers in the 

Museum of Southwestern Biology (MSB). 

3.2. 28S Phylogenetic analyses 

 Forty-seven samples from GenBank and 98 specimens from this study 

were used in analyses to determine into which clades our specimens fell. 

Because some clades had multiple representatives, we chose two or three 

specimens per clade to simplify the display of echinostome diversity. Sequences 

(1,243 bp) were obtained for all 98 samples of which 1,143 bp were used for 

Maximum Likelihood (Fig 1.) and BI (not shown) analyses. Analyses were run 

using the G+I+F model of nucleotide substitution by the Akaike Information 

Criterion (AIC) jModelTest 2.1 (Darriba et al., 2012). Caballerotrema sp. was 

used as the outgroup because it is the most related family to Echinostomatidae 

that has GenBank records. (Tkach et al., 2016).  ML and BI topologies were 

identical and overall the BI analysis had higher nodal support than the ML 

analysis. These analyses revealed 17 clades, the names for which are shown in 

Fig 1. Clades were color coded (Figs 2 and 3) based on intraclade nad1 p-

distance value of less than 1.5% (see below). 

3.3. nad1 Phylogenetic Analyses 
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 Forty-one samples from GenBank and the same specimens from this 

study were used to generate the 28S tree in this study were used in the analysis. 

Four of the Ribeiroia samples did not amplify or the quality of the sequences was 

poor. Therefore, 94 samples were used in the original analyses and to determine 

p-distance values. Fasciolopsis buski (EF612501) was used as the outgroup 

instead of Caballerotrema sp. because nad1 sequences for Caballerotrema sp. 

are not represented in GenBank (Tkach et al., 2016). ML and BI analyses were 

run using the GTR+I+G model of nucleotide substitution by the Alkaike 

Infromation Criterion (AIC) jModelTest 2.1 (Darriba et al., 2012). The ML and BI 

topologies were identical and overall the BI tree had higher nodal support than 

the ML tree. Nad1 sequences revealed two additional clades that were not found 

from the 28S analysis (see below under Patagifer).    

3.4. Clade 1 (Echinostoma caproni)  

Two of our specimens (PE79 and PE89) were representatives of Echinostoma 

caproni (p-distance value 0.005) based on GenBank accession number, 

AF025829 from Madagascar (Morgan et al., 1998).  

3.5. Clades 2-3 (Patagifer) 

3.5. Clades 2-3 (Patagifer) 

Representatives of Patagifer were known to use ibises as definitive hosts and 

snails as first and second intermediate hosts (Faltynkova et al., 2008). Many of 

our samples (43) grouped into clades 2 and 3. Thirty-one specimens grouped 

into clade 2 (Patagifer sp. 1) and 12 specimens grouped into clade 3 (Patagifer 
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sp. 2). There was a 0.077 (7.7%) p-distance value between these two clades. We 

completed the life cycle of worms from clade 2. We acquired eggs from fecal 

samples from a sacred ibis (Threskiornis aethiopicus), hatched the eggs and 

experimentally exposed Biomphalaria sudanica to the miracidia. We then used 

cercariae from successful experimental infections to expose B. sudanica to 

obtain metacercariae. We sequenced representatives of each life cycle stage for 

clade 2 and found them to be identical or to differ by less than 1.0% from one 

another. Clade 2 cercariae had tail fins and 58-62 collar spines. The larvae also 

possessed a structure we termed the spine pocket containing approximately 20 

spines that was located mid-ventrally just posterior to the oral sucker. Other 

descriptions called this unit a “brush of needles” (Appleton et al., 1983) or a 

“rosette of spines” (Ostrowski de Nunez 1997). These cercariae were also 

noteworthy for possessing diverticuli (greater than 16/side) along the length of 

their major excretory canals and for possessing numerous calcareous corpuscles 

(90-100 granules/side) in each major excretory canal (Fig. 3B). Clade 2 closely 

grouped with a 28S GenBank sample of an adult Patagifer vioscai worm which 

had 53 collar spines (Falynkova et al., 2008). Acquisition of nad1 sequences for 

P. vioscai would help clarify the relationship to our clade 2 specimens. P. vioscai 

is from the American white ibis (Eudocimus albus) which is endemic to the 

Americas. We also noted that cercariae of our clade 2 resembled cercariae from 

two South American species of Biomphalaria: 1) cercariae of B. tenagophila from 

the Uruguay River that transmitted an echinostome cercaria with 58 spines and 

16 excretory diverticuli/side (Martorelli et al., 2013), and 2) cercariae from 
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Biomphalaria straminea from Argentina have been reported with 53-54 collar 

spines, a spine pocket, diverticuli and tail fins (Fernandez et al., 2014).  

Clade 3 cercariae have tail fins, 54 collar spines, a spine pocket posterior 

to the oral sucker containing a cluster of 25 spines (Fig 3. A2), fewer diverticuli 

(less than 16/side) along each major excretory canal, and less than 60 

calcareous corpuscles within each excretory canal. Appleton et al. (1983) 

established the life cycle of Echinoparyphium montgomeriana from South Africa. 

He found this species to be transmitted by Bulinus africanus and reported it to 

have 48-54 collar spines and a brush of spines posterior to the oral sucker and 

the species was named E. montgomeriana which we believe does not 

correspond to that genus as defined by (Tkach et al., 2016). Ostrowski de Nunez 

et al. (1996) described a similar cercaria (including with a spine pocket) 

transmitted by Biomphalaria orbignyi from Argentina with 50 collar spines and 

less than 16 diverticuli/side associated with each main excretory canal. Lie and 

Umathevy (1966) described cercariae of Echinostoma hystricosum from the 

lymnaeid snail, Radix (Lymnaea) rubiginosa as having 60 collar spines and a 

spine pocket as well, but excretory diverticuli were not present.  

3.6. Clades 4-6 (Echinostomatidae sp. 1-3)  

These three clades did not group closely with any other specimens in GenBank, 

in either 28S or nad1 trees. Clades 4 and 5 (Echinostomatidae sp. 1-2) did not 

have prominent tail fins and have 33 collar spines. Four specimens grouped in 

clade 4. We found cercariae from this clade to be transmitted by both 

Ceratophallus natalensis and Segmentorbis kanisaensis. Clade 4 cercariae have 
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a cluster of approximately 20 granules just posterior to the oral sucker and 

approximately forty calcareous corpuscles within each main excretory canal (Fig. 

3D).  

 Ten specimens grouped into clade 5. We found only B. pfeifferi from a 

single locality to be shedding this cercaria (Fig. 3C). We also collected an adult 

worm from a hadada ibis (Bostrychia hagedash) that matched the cercariae 

samples in sequence. 

Clade 6 was represented by a single sample of cercariae (PE73) from 

Ceratophallus natalensis, designated Echinostomatidae sp. 3. These cercariae 

had approximately 18 collar spines on each side and a cluster of about 30 small 

granules posterior to the oral sucker. Tail fins were not prominent, and many 

small lipid drops were evident in the body. These cercariae also had 

approximately 60 small excretory granules in each main canal of the excretory 

system.  

3.7. Clade 7 (Echinoparyphium) 

A single specimen of a cercaria from Bulinus tropicus (PE68) comprised clade 7. 

The specimen was preserved in ethanol and not maintained in adequate shape 

to determine the number of collar spines or other morphological features; 

however, it grouped within Echinoparyphium from other GenBank samples. 

There were multiple species descriptions of Echinoparyphium from Bulinus from 

Africa; however, some of the descriptions matched more closely species in 

Patagifer than in Echinoparyphium (Appleton et al., 1983). Two species, E. 
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elegans and E. ralphaudyi were known to be transmitted by Bulinus from Africa. 

Molecular signatures for these two species were not represented in GenBank 

and no adult specimens are available for study. It is possible that our specimen 

was one of these two previously described bulinid-transmitted species based on 

geography and host-use, but molecular sequences of the two species would be 

required to validate this hypothesis.  

3.8. Clades 8-10 (Ribeiroia)  

3.8. Clades 8-10 (Ribeiroia)  

Five samples from our dataset grouped into three clades of Ribeiroia flukes that 

typically use birds as definitive hosts, planorbids as first intermediate hosts, and 

amphibians as second intermediate hosts, where they often cause limb 

deformities in such amphibians (Johnson et al., 2004). Cercariae from B. 

sudanica representing clade 9 (Ribeiroia sp. 2) resembled Fain’s (1953) 

description of Cercaria lileta from Biomphalaria stanleyi, notable for its 

possession of a distinctive rose-colored organ placed just posterior to the oral 

sucker. Based on ITS2 sequences (tree not shown), our cercariae representing 

clade 9 also grouped with sequences derived from cercariae from B. sudanica 

(GenBank AY761143) that also resembled Cercaria lileta and possessed the 

rose-colored organ (Wilson et al., 2005). Our clade 9 samples were from B. 

pfeifferi and B. sudanica from central and west Kenya, which resemble earlier 

descriptions of cercariae from B. sudanica (Fain 1953) and R. congolensis which 

was transmitted by the goliath heron (Ardea goliath) from the Democratic 

Republic of the Congo (Dollfus 1950; Wilson et al., 2005). In addition, we found 
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matching sequences from metacercariae of clade 9 obtained from B. sudanica, 

which was not infected with other larval stages. This was not expected because 

species of Ribeiroia was not known for using snails as second intermediate hosts 

(Johnson et al., 2004). 

Cercariae representing clades 8 and 10 developed in B. sudanica. Clade 8 

(Ribeiroia sp. 1, Fig. 3H) was from a single sample (PE19) collected 15 years 

ago in west Kenya. It had fewer granules in the excretory system than did 

cercariae of clade 10 (Ribeiroia sp. 3). Clade 10 was also represented by a 

single sample (PE52) of cercariae. These cercariae had a small pharynx and 

over 120 large, densely packed calcareous corpuscles in each main excretory 

canal, with some of the corpuscles appearing to be composed of two partially 

fused corpuscles. These cercariae also had a peculiar organ just posterior to the 

pharynx. However, this organ lacked the distinctive rose color observed in 

cercariae of clade 9 (Fig. 3G).  

3.9. Clade 11 (Isthmiophora) 

One sample, (PE30) of cercariae from Radix natalensis grouped closely with 

GenBank records for the genus Isthmiophora, which infected small mammals 

while using molluscs, including lymnaeids, as 1st intermediate hosts and fish or 

amphibians as 2nd intermediate hosts (Kostadinova and Gibson 2002). To our 

knowledge, this was the first genetic evidence of the genus in Africa 

3.10. Clades 12-17 (Petasiger)  
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We found six different clades that likely belonged to the genus Petasiger. 

Members of this genus were known for using snails as first intermediate hosts, 

fish or tadpoles as second intermediate hosts and birds (mainly cormorants) as 

definitive hosts (Faltynkova et al., 2008). Cercariae representing all six of the 

clades we identified had 27 collar spines, which was considered a trait of the 

genus (Faltynkova et al., 2008). Cercariae representing these clades had two 

conspicuous refractile granules situated immediately posterior to the oral sucker, 

an inflated gut and no tail fins. None of these clades matched any GenBank 

records.  

Clade 12 (Petasiger sp. 1) was represented by one cercaria (PE36), from 

R. natalensis occurring in central Kenya. The specimen had been preserved for 4 

years and was not in good condition. Although it was difficult to make out many 

of its morphological features, we were able to obtain sequences from it.  

Eight samples of cercariae from Bulinus grouped into clade 13 (Petasiger 

sp. 2). These cercariae had 7-10 calcareous corpuscles per main excretory 

canal, a small oral sucker and two refractile granules posterior to the oral sucker 

(Fig. 3F).  

Two specimens, PE39 and PE5 from R. natalensis and Bulinus sp., 

respectively made up clade 14 (Petasiger sp. 3). Both specimens were collected 

from central Kenya. The nad1 p-distance value between these two specimens 

was 0.014, suggesting that these two specimens were the same species. The 

cercaria from R. natalensis resembled that of an echinostome cercariae from 

South Africa also transmitted by R. (Lymnaea) natalensis (Moema et al., 2008). 
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Cercariae from both snail hosts had two large granules just posterior to the oral 

sucker.  

The cercariae comprising clade 15 (Petasiger sp. 4) that were recovered 

from B. pfeifferi and B. sudanica also had two granules just posterior to the oral 

sucker and 17 calcareous corpuscles in each main excretory canal. Sequences 

from these cercariae also matched those from an adult worm (PE38) recovered 

from a reed cormorant (Microcarbo africanus).  

Clade 16 (Petasiger sp. 5) likely corresponded to what was described as 

Petasiger variospinosus (King and Van As 2000) and Cercaria decora (Fain 

1953). Cercariae from the two samples representing this clade were both 

recovered from Bulinus sp. Such cercariae had 27 collar spines, two large 

granules posterior to the oral sucker, and 19-20 calcareous corpuscles in each 

main excretory canal. The life cycle was completed by experimentally exposing 

laboratory raised reed cormorants (Microcarbo africanus) to metacercariae from 

Xenopus that had been experimentally exposed to cercariae from B. tropicus 

(King and Van As 2000).  

Only one cercaria (PE4) obtained from Bulinus sp. comprised clade 17 

(Petasiger sp. 6). This specimen was from a preserved specimen and it was 

difficult to make out distinct morphological features.   

4. Discussion 

 Echinostomes are a diverse group of digenetic trematodes that are 

globally distributed, commonly represented in ecosystems and easily recognized 
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because of their collar spines. Species descriptions of echinostomes have been 

primarily based on their collar spine counts and arrangements, reproductive 

features of adult worms and their host use. As is the case with many other 

parasites that use multiple hosts, species descriptions of echinostomes rarely 

encompass all stages of the parasite’s life cycle, and this is particularly true for 

echinostomes from Africa. Even meticulous species descriptions, if based on 

adult morphology alone, can lead to confusion in their systematics. Likewise, use 

of other life cycle stages like cercariae or metacercariae by themselves may also 

prove difficult or unreliable as a basis for species descriptions and identifications. 

Also, in light of evidence that cryptic species exist among echinostomes (Detwiler 

et al., 2010) we used molecular markers for life cycle stages we collected, which 

allowed us to link certain life cycle stages in order to better understand host 

usage patterns and to differentiate clades of echinostomes from East Africa. 

Sequence data of all life cycle stages accompanied by morphological 

features, host and location data and that have been vouchered in museums 

provide a way forward for teasing apart differences among morphologically 

similar specimens. Sequence data from collected specimens from 

underrepresented areas is also important in building more comprehensive 

phylogenies and providing invaluable reference points that may eventually allow 

complete life cycles to be inferred on the basis of shared sequences. This is 

important in an age when collecting permits to work with many host species are 

becoming more difficult to obtain, and the hosts themselves are becoming rarer.  
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Analysis of 98 East African echinostome specimens, mostly of cercariae, 

using 28S and nad1 molecular markers revealed 17 clades from 5 genera of 

freshwater gastropods collected from 19 localities. We sequenced the 28S gene 

because such data are available for many of the echinostomes listed in 

GenBank, and can thus facilitate proper placement of our specimens into genera 

according to the scheme of Tkach et al. (2016). We sequenced the nad1 gene to 

provide additional resolution for some of the more-closely related representatives 

we obtained. The boundaries we used to delineate the 17 clades were 

intraspecific p-distance values less 1.5% and interspecific differences greater 

than 5% (Vilas et al., 2005). For instance, using p-distance values from the nad1 

gene we could distinguish two distinct species of Patagifer (7.7% difference), 

whereas this distinction was not apparent in our 28S tree or distance matrix.  

 One of the distinct challenges posed by this collecting effort is that many 

of the classic species descriptions were done prior to, or without reference to 

molecular markers. Without access to adult specimens from type localities from 

which confirmatory morphological and sequence data could be obtained, this 

poses problems when relating newly-acquired sequence-based data to the 

classic descriptions. Also, some of the original descriptions are clearly at 

variance with evolving sequence- or complete evidence-based descriptions or 

phylogenies. Additionally, some sequence data provided in GenBank is 

associated with formal names for which the growing molecular and complete 

evidence databases strongly suggests the formal name used is incorrect. As we 

move forward and provide more sequence data for vouchered specimens, there 
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will continue to be some discrepancies created among different sources of 

information.      

To reduce these complications among our samples we used ML and BI 

analyses to determine how our specimens grouped relative to each other and to 

echinostomes represented in GenBank. From our analyses, three clades (4-6) 

did not group with any GenBank records. Specimens from clades 4 and 5 

possessed 33 collar spines and those from clade 6 had 36 collar spines. There 

are few previous descriptions of echinostomes with 33 collar spines (Dietz 1909; 

Lumsden and Hugg 1965; Premvati 1968; Kanev et al., 2009), some of which 

placed 33-spined echinostomes in either Echinostoma or Petasiger. However, 

species of Echinostoma have 37 spines (Huffman et al., 1990) and Petasiger has 

27 collar spines (Faltynkova et al., 2008), but our 33-spined samples did not 

group with either genus (Tkach et al., 2016).  

From the addition of our specimens from our survey work in East Africa, 

we confirmed that E. caproni (37-collar-spined group) has a broad distribution 

throughout Africa (Morgan et al., 1998). It is of interest that this species was 

found because many studies have been done on the immunobiology of 

Biomphalaria and E. caproni and others that have shown E. caproni rediae move 

toward intramolluscan stages of other trematodes (Reddy and Fried 1996). Also, 

E. caproni was dominant against S. mansoni in co-infections in B. glabrata, and 

E. caproni had enhanced virulence when B. glabrata were exposed to both 

parasites (Sandland et al., 2007). Even though these studies used B. glabrata 
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(Neotropical snail), this species is from Africa and uses African Biomphalaria as 

intermediate hosts in nature. 

One surprising and previously unappreciated aspect of echinostome 

biology that emerged from examining a broad spectrum of cercariae was the 

presence of a variety of peculiar structures lying posterior to the oral sucker. 

Clades 2 and 3 have a distinctive concentration of spines that appear mid-

ventrally, a short distance posterior to the posterior margin of the oral sucker in 

what we have termed a spine pocket. The 20-30 spines contained in the pocket 

are similar in size and appearance to the collar spines and are arranged with 

their bases overlapping centrally and with their bases overlapping centrally and 

with their sharp distal tips fanning outward and anteriorly. They appear refractile 

as do the associated collar spines, but the number of collar spines for both 

clades is much greater (54-62). A role for the spines in the spine pocket as 

holdfast structures does not seem likely. Appleton et al. (1983) found the spine 

pocket of cercariae from Bulinus africanus to be lost once the cercariae encyst as 

metacercariae. Perhaps these spines are somehow moved to a position on the 

collar to replace spines lost during subsequent encystment as metacercariae or 

when excysted worms develop into adults in their definitive hosts. One possibility 

is that the spines in the spine pocket function as a light-harvesting organ to 

facilitate orientation to light by cercariae once they leave their snail host. As 

discussed further below, cercariae with spine pockets have also been recovered 

from South American echinostomes. 
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Four more peculiar structures were found just posterior to the oral sucker. 

The second type of peculiar refractile structure was found in clades 4 and 5. The 

enclosed structure lying just posterior to the oral sucker contains a cluster of 

granules (20-24), some of which are fused and similar to what were described by 

Fain 1953, Lie 1963 and Fernandez et al., 2014. A third type of refractile 

structure is exhibited by clades 13-16, also which have an enclosed structure 

located just posterior to the oral sucker.  But in the case of clades 13-16, the 

structure contains only two larger granules, similar to what was described by Fain 

1953, King and Van as 1996, King and Van As 2000, and Moema et al., 2008. A 

fourth type is found in clade 9, a species of Ribeiroia with its cercaria 

corresponding to C. lileta of Fain (1953). Fain (1953) observed a distinctive oval-

shaped rose-colored organ just posterior to the oral sucker, the presence of 

which was confirmed by Wilson et al. (2005) and in the present study. A fifth 

type, represented by Clade 10, likely a previously unappreciated Ribeiroia 

species, also possessed an identifiable oval structure lying in a comparable 

position to that seen for C. lileta, but it lacked any distinctive coloration. Similar 

structures have not been noted from the many echinostome cercariae described 

from North America or Eurasia; however, there are striking similarities between 

cercariae transmitted by Biomphalaria from Africa and South America (Ostrowski 

de Núñez et al., 1997; Martorelli et al., 2013; Fernandez et al., 2014). 

Some of these similarities were from cercariae recovered from Neotropical 

and African representatives of Biomphalaria which are of interest because of its 

role in vectoring Schistosoma mansoni. Several phylogenetic studies of the 
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genus have indicated that Biomphalaria originated in the Neotropics and later 

colonized Africa (DeJong et al., 2001). The presence of Biomphalaria in South 

America probably dates to 55-65 million years ago (MYA), whereas its 

appearance in Africa is relatively recent, <1-5 MYA (Woodruff and Mulvey, 1997; 

Campbell et al., 2000; DeJong et al., 2001). Given that many echinostome 

species are hosted by aquatic birds, they may have provided a conduit for 

dispersal of Neotropical echinostomes to Africa and vice versa (Woodruff and 

Mulvey 1997). This idea is supported by the fact that similar cercariae from 

opposite sides of the Atlantic use related, but distinct species of avian definitive 

hosts. For example, members of clade 2 from Biomphalaria in Africa are known 

to use sacred ibises as definitive hosts. Their cercariae are remarkably similar to, 

though distinct from echinostome cercariae from Biomphalaria straminea in 

South America (Ostrowski et al., 1997). There are very few GenBank records of 

South American echinostomes and further comparisons of sequence data among 

morphologically similar cercariae between the two continents will help to unravel 

patterns of intercontinental dispersal or to provide insight if they were part of 

Gondwanaland. 

Another interesting aspect is the involvement of other planorbid genera 

and species from both continents as additional first intermediate hosts of some of 

the echinostome recovered. Species recovered from African Biomphalaria were 

sometimes also recovered in another important schistosome-transmitting 

planorbid genus, Bulinus. Bulinus has been extant in Africa significantly longer 

than Biomphalaria (Morgan et al., 2002). Do these cases then represent 
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echinostomes that originated in Bulinus, then switched to Biomphalaria upon the 

arrival of Biomphalaria in Africa, followed by later colonization of South America 

where they infected local Biomphalaria species? Or did these echinostomes 

originate in South America Biomphalaria, then colonize Africa and exploit 

Biomphalaria there, and only later switch into Bulinus which commonly shares 

habitats with Biomphalaria?     

Using molecular markers, we confirmed that four clades (2, 4, 13, and 14) 

use more than one genus of snails (and sometimes multiple families of snails) as 

first intermediate hosts. For example, clade 2 was composed of cercariae 

samples from Ceratophallus, Bulinus, and Biomphalaria that all grouped into the 

same clade. We relied on the genetic markers to show what clade these 

specimens grouped into because relying on host usage alone cannot always 

determine species. This is in line with other studies that used molecular markers 

that have shown some echinostomes to have broad host specificity (using 

multiple genera and families of snails) even with respect to their first intermediate 

hosts (Detwiler et al., 2010).  

In many cases, it is difficult to complete species life cycles because 

collecting all necessary hosts in a life cycle and experimentally exposing those 

hosts is unfeasible in many settings. However, using molecular markers we were 

able to connect at least two hosts (2/3) in the life cycles for four clades of 

echinostomes. We sequenced certain life cycle stages (cercariae, metacercariae, 

or adults) and compared them to one another and if two life cycle stages fell into 

the same clade in the nad1 tree (less than 1.5% pairwise difference) we 
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considered them to be conspecifics. For example, in clade 5, we collected an 

adult worm from a hadada ibis which fell into the same clade as cercariae from B. 

pfeifferi. Clade 9 was composed of cercariae from B. sudanica and B. pfeifferi 

which grouped with metacercariae from B. sudanica. We collected an adult from 

a reed cormorant which grouped with cercariae from B. sudanica and B. pfeifferi 

from clade 15.  

With respect to transmission of human schistosomiasis, 15 of the 17 

clades we found were transmitted by planorbids, suggesting that planorbids are 

being heavily exploited by these echinostomes even though we collected other 

snail families including Physidae, Viviparidae, Thiaridae and Bithyniidae for which 

we did not find any infected with echinostomes. Of the 17 clades, 13 use the 

same (first) intermediate hosts as human schistosomes (Biomphalaria and 

Bulinus). Seven clades are transmitted by Biomphalaria and 6 of the clades are 

transmitted by Bulinus. Approximately 44% of the specimens we collected fell 

into clades 2 and 3 and these clades were transmitted by B. pfeifferi and B. 

sudanica. Even though many clades were found to be transmitted by planorbids, 

we also found 3 of the clades to be transmitted by Radix natalensis which is an 

intermediate host for Fasciola gigantica and F. hepatica, which causes 

fascioliasis (Correa et al., 2010). Further investigations should be done on their 

interactions within R. natalensis.  

The presence of echinostomes in these snails creates opportunities for 

competition between other trematode species. Although it is well known that a 

single snail species can be utilized by multiple different species of digeneans, 
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double infections are rare in nature, and some digenean species interfere with 

one another’s development within the same intermediate host (Lim and 

Heyneman 1972). Dominance hierarchies among digenean species have been 

documented and certain species of echinostomes have been shown to be 

dominant among other trematode species (Kuris 1990; Hechinger et al., 2011). 

Since 13 of the 17 clades of echinostomes use the same intermediate hosts 

(first) as human schistosomes, this creates issues for schistosomes because 

echinostomes have been shown to be strong competitors against human 

schistosomes (Lim and Hyneman 1972; Banes et al., 1974; Rashed 2002). 

Because certain echinostome species can be dominant, particularly against 

human schistosomes it has been suggested that other larval digeneans can be 

integrated into schistosome control programs (Bayer 1954; Lim and Heyneman 

1972; Banes et al., 1974; Pointier and Jourdane 2000). The use of indigenous 

echinostome species for control of human schistosomes deserves further 

consideration, and supplemental studies are needed to ascertain how these 

African species may affect schistosome abundance. 

Acknowledgments 

We thank Sarah K. Buddenborg, Joesph Kinuthia, Geoffery Maina and Ibrahim 

Mwangi for assistance with collection of field samples. This research was 

undertaken with the approval of the National Commission for Science, 

Technology and Innovation, Permit Number NACOSTI/P/15/9609/4270 and 

approval from KWS permit number 0004754.  

Financial Support 



87 

Technical assistance at the University of New Mexico Molecular Biology Facility 

was supported by the National Institute of General Medical Sciences of the 

National Institutes of Health under Award Number P30GM110907. We gratefully 

acknowledge the following agencies for their financial support: The National 

Institute of Health (NIH) grant R37AI101438, and the Bill and Melinda Gates 

Foundation for the Grand Challenges Explorations Initiative grant. The content 

for this paper is solely the responsibility of the authors and does not necessarily 

represent the official views of the National Institutes of Health. This paper was 

published with the approval of the Director of KEMRI. 

 

 

 

 

 

 

 

 

 

 

 



88 

References 

Appleton, C.C., Donnely, F.A., and Eriksson, I.M., 1983. The life-cycle and 

seasonal abundance of Echinoparyphium montgomeriana n. sp. (Trematoda: 

Echinostomatidae) in Natal, South Africa. Afr. Zool, 18, 320-325. 

Banes, V., Rysavy, B., Yousif, F. 1974. Observations on the development of two 

echinostomes, Echinoparyphium reaurvatum and Echinostoma revolutum, the 

antagonists of human schistosomes in Egypt. Folia Parasitol 21, 143-154 

Bayer, F.A.H., 1954. Larval trematodes found in some freshwater snails: a 

suggested biological method of bilharzia control. Trans R Soc Trop Med Hyg. 48, 

414-418. 

Bayne, C.J., 2009. Successful parasitism of vector snail Biomphalaria glabrata by 

the human blood fluke (trematode) Schistosoma mansoni: a 2009 assessment. 

Mol Biochem Parasitol 165, 8-18. 

Bisseru, B., 1957. On three known trematodes from African birds, with notes on 

the genera Typhlocoelum, Paryphostomum and Petasiger. J Helminthol. 3, 173-

186 

Brant, S.V., Loker, E.S., 2009. Molecular systematics of the avian schistosome 

genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J 

Parasitol 95, 941-963. 



89 

Brown D.S., 1984. An introductory guide to the identification of cercariae from 

African freshwater snails with special reference to cercariae of trematode species 

of medical and veterinary importance. Schwabe & Co LTD. 

Brown, D.S., 1994. Freshwater snails of Africa and their medical importance, 2nd 

ed. Taylor & Francis, London; Bristol, PA. 

Brown, D.S. & Kristensen, T.K.,1989. A field guide to African freshwater snails, 

southern African species. Danish Bilharziasis Laboratory Publication number 

383. 

Campbell, G., Jones, C.S., Lockyer, A.E., Hughes, S., Brown, D., Noble, L.R., 

Rollinson, D., 2000. Molecular evidence supports an African affinity of the 

neotropical freshwater gastropod, Biomphalaria glabrata, say 1818, an 

intermediate host for Schistosoma mansoni. Proc Biol Sci 267, 2351-2358. 

Chibwana, F., Nwengulila, G., 2017. A faunistic survey of digenean larvae 

infecting freshwater snails Biomphalaria, Radix and Bulinus species in the Lake 

Victoria and Mindu dam, Morogoro in Tanzania. Tanz J Sci Vol 43, 1-13. 

Civitello, D.J., Cohen, J., Fatima, H., Halstead, N.T., Liriano, J., McMahon, T.A., 

Ortega, C.N., Sauer, E.L., Sehgal, T., Young, S., Rohr, J.R., 2015. Biodiversity 

inhibits parasites: Broad evidence for the dilution effect. Proc Natl Acad Sci U S 

A 112, 8667-8671. 

Correa, A.C., Escobar, J.S., Durand, P., Renaud, F., David, P., Jarne, P., 

Pointier, J.P., Hurtrez-Bousses, S., 2010. Bridging gaps in the molecular 



90 

phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis. 

BMC Evol Biol 10, 381-393. 

Cortes, A., Sotillo, J., Munoz-Antoli, C., Molina-Duran, J., Esteban, J.G., Toledo, 

R., 2017. Antibody trapping: A novel mechanism of parasite immune evasion by 

the trematode Echinostoma caproni. PLoS Negl Trop Dis 11, e0005773. 

Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more 

models, new heuristics and parallel computing. Nat Methods 9, 772. 

Dietz, E. 1909. Die Echinostomiden der Vögel. Zool. Anz, 34, 180–192. 

DeJong, R.J., Morgan, J.A., Paraense, W.L., Pointier, J.P., Amarista, M., Ayeh-

Kumi, P.F., Babiker, A., Barbosa, C.S., Bremond, P., Pedro Canese, A., de 

Souza, C.P., Dominguez, C., File, S., Gutierrez, A., Incani, R.N., Kawano, T., 

Kazibwe, F., Kpikpi, J., Lwambo, N.J., Mimpfoundi, R., Njiokou, F., Noel Poda, J., 

Sene, M., Velasquez, L.E., Yong, M., Adema, C.M., Hofkin, B.V., Mkoji, G.M., 

Loker, E.S., 2001. Evolutionary relationships and biogeography of Biomphalaria 

(Gastropoda: Planorbidae) with implications regarding its role as host of the 

human bloodfluke, Schistosoma mansoni. Mol Biol Evol 18, 2225-2239. 

Detwiler, J.T., Bos, D.H., Minchella, D.J., 2010. Revealing the secret lives of 

cryptic species: Examining the phylogenetic relationships of echinostomoid 

parasites in North America. Mol Phylogenet Evol 55, 611-620. 

Detwiler, J.T., Zajac, A.M., Minchella, D.J., Belden, L.K., 2012. Revealing cryptic 

parasite diversity in a definitive host: echinostomoids in muskrats. J Parasitol 98, 

1148-1155. 



91 

Devkota, R., Brant, S.V., Loker, E.S., 2015. The Schistosoma indicum species 

group in Nepal: presence of a new lineage of schistosome and use of the 

Indoplanorbis exustus species complex of snail hosts. Int J Parasitol 45, 857-

870. 

Dollfus, R. P., 1950. Trematodes re´colte´s au Congo Belge par le Professeur 

Paul Brien (mai-aouˆt, 1937). Annales de la Musee Royale de Congo Belge 

(Zoologie), ser 5, 1: 136 p. 

Faltynkova, A., Gibson, D.I., Kostadinova, A., 2008. A revision of Patagifer Dietz, 

1909 (Digenea: Echinostomatidae) and a key to its species. Syst Parasitol 70, 

159-183. 

Fernandez, M.V., Hamann, M.I., Ostrowski-de Nunez, M.O., 2016. New larval 

trematodes in Biomphalaria species (Planorbidae) from Northeastern Argentina. 

Acta Parasitol 61, 471-492. 

Fernandez, M.V., Hamann, M.I., Ostrowski-de Nunez, M., 2014. Echinostomoid 

cercariae from Biomphalaria straminea (Mollusca: Planorbidae) in a ricefield from 

northeastern Argentina. Rev Mex Biodivers 85, 1024-1031. 

Fain, A., 1953. Contribution à l'étude des formes larvaires des trématodes au 

Congo belge et spécialement de la larve de Schistosoma mansoni, Bruxelles. 

Faust, C.F., 1921. Notes on South African Larval Trematodes. J. Parasitol. 8, 11-

21 



92 

Frandsen, F., Christensen, N.O., 1984. An introductory guide to the identification 

of cercariae from African freshwater snails with special reference to cercariae of 

trematode species of medical and veterinary importance. Acta Trop. 41, 181-202. 

Fried, B., 2001. Biology of echinostomoids except Echinostoma. Adv Parasitol 

49, 163-210. 

Fried, B., Manger, P.M., Jr., 1992. Use of an aceto-carmine procedure to 

examine the excysted metacercariae of Echinostoma caproni and E. trivolvis. J 

Helminthol 66, 238-240.  

Fried, B., Toledo, R., 2009. The Biology of Echinostomes Springer-Verlag New 

York 

Garcia-Vedrenne, A.E., Quintana, A.C., DeRogatis, A.M., Martyn, K., Kuris, A.M., 

Hechinger, R.F., 2016. Social Organization in Parasitic Flatworms--Four 

Additional Echinostomoid Trematodes Have a Soldier Caste and One Does Not. 

J Parasitol 102, 11-20. 

Georgieva, S., Selbach, C., Faltynkova, A., Soldanova, M., Sures, B., Skirnisson, 

K., Kostadinova, A., 2013. New cryptic species of the 'revolutum' group of 

Echinostoma (Digenea: Echinostomatidae) revealed by molecular and 

morphological data. Parasit Vectors 6, 64. 

Hechinger, R.F., Wood, A.C., Kuris, A.M., 2011. Social organization in a 

flatworm: trematode parasites form soldier and reproductive castes. Proc Biol Sci 

278, 656-665. 



93 

Hilmy, I. S., 1949. Patagifer skrjabini n. sp. (Echinostomatidae) from the glossy 

ibis, Plegadis facinellus facinellus, with a note on the genus. Proc Egypt Acad Sci 

4, 20-23 

Huffman, J.E., Fried, B., 1990. Echinostoma and Echinostomiasis, in: Baker, 

J.R., Muller, R. (Eds.), Advances in Parasitology. Academic Press, 29, 215-269. 

Johnson, P.T.J., Sutherland, D.R., Kinsella, J.M., Lunde, K.B., 2004. Review of 

the trematode genus Ribeiroia (Psilostomidae): Ecology, life history and 

pathogenesis with special emphasis on the amphibian malformation problem. 

Adv Parasit 57, 191-253. 

Johnson, P.T.J., and D.W. Thieltges. 2010. Diversity, decoys and the dilution 

effect: how ecological communities affect disease risk. J. Exp. Biol 213, 961-970 

Kanev, I., Fried, B., Radev, V., 2009. Collar spine models in the genus 

Echinostoma (Trematoda: Echinostomatidae). Parasitol Res 105, 921-927. 

King, P.H., Van As, J.G., 1996. A description of the life stages of 

Echinoparyphium elegans (Trematoda: Echinostomatidae). Afr. Zool 31, 145-

153. 

King, P.H., Van As J.G., 2000. Morphology and Life History of Petasiger 

variospinosus (Trematoda: Echinostomatidae) in the Free State, South Africa. J. 

Parastiol 86, 312-318. 



94 

Kostadinova, A., Gibson, D.I., 2002. Isthmiophora Luhe, 1909 and Euparyphium 

Dietz, 1909 (Digenea: Echinostomatidae) re-defined, with comments on their 

nominal species. Syst. Parasitol 52, 205-217. 

Kostadinova, A., and Jones, A., 2005a. Superfamily Echinostomatoidea Looss, 

1899. In: Jones, A., Bray, R.A., Gibson, D.I. (Eds.), Keys to the Trematoda. CABI 

Publishing and the Natural History Museum, New York, pp. 5–8. 

Kostadinova, A., 2005b. Family Echinostomatidae Looss, 1899. In: Jones, A., 

Bray, R.A., Gibson, D.I. (Eds.), Keys to the Trematoda. CABI Publishing and the 

Natural History Museum, New York, pp. 9-64. 

Kuris, A., 1990. Parasite Communities. Patterns and Processes. Gerald W. Esch, 

Albert O. Bush, and John M. Aho, Eds. Chapman and Hall (Routledge, Chapman 

and Hall), New York, 1990.  

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary 

Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870-1874. 

Laidemitt, M.R., Zawadzki, E.T., Brant, S.V., Mutuku, M.W., Mkoji, G.M., Loker, 

E.S., 2017. Loads of trematodes: discovering hidden diversity of 

paramphistomoids in Kenyan ruminants. Parasitology 144, 131-147. 

Lim, H.K., Heyneman, D., 1972. Intramolluscan inter-trematode antagonism: a 

review of factors influencing the host-parasite system and its possible role in 

biological control. Adv Parasitol 10, 191-268. 



95 

Loker, E.S., Cimino, D.F., Hertel, L.A., 1992. Excretory-secretory products of 

Echinostoma paraensei sporocysts mediate interference with Biomphalaria 

glabrata hemocyte functions. J Parasitol 78, 104-115. 

Lumsden, R.D., Hugg, D., 1965. A redescription of avian echinostome trematode 

Echinostoma operosum Dietz, 1909. Zool. Anz 174, 222-227. 

Martorelli, S.R., Alda, P., Marcotegui, P., La Sala, L.F., and Montes M.M., 2013. 

Larval digeneans in Biomphalaria snails from the Salto Grande Dam area in the 

Uruguay River. Laboratorio de Helmintos y Parásitos de Crustáceos. 2013, 1-3. 

Moema, E.B.E., King, P.H., Baker, C., 2008. Cercariae developing in Lymnaea 

natalensis Krauss, 1848 collected in the vicinity of Pretoria, Gauteng Province, 

South Africa. Onderstepoort J Vet Res. 75, 215-223. 

Mohammed, N.A., Madsen, H., Ahmed, A.A., 2016. Types of trematodes 

infecting freshwater snails found in irrigation canals in the East Nile locality, 

Khartoum, Sudan. Infect Dis Poverty 5, 16. 

Morgan, J.A., Blair, D., 1998. Relative merits of nuclear ribosomal internal 

transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing 

among Echinostoma species (Trematoda). Parasitology 116 (Pt 3), 289-297. 

Morgan, J.A., DeJong, R.J., Jung, Y., Khallaayoune, K., Kock, S., Mkoji, G.M., 

Loker, E.S., 2002. A phylogeny of planorbid snails, with implications for the 

evolution of Schistosoma parasites. Mol Phylogenet Evol 25, 477-488. 



96 

Nkwengulila G., Kigadye, E.S.P., 2005. Occurrence of digenean larvae in 

freshwater snails in Ruvu Basin, Tanzania. Tanz. J. Sci 31, 23-30. 

Odhner, T. 1910. Nordafrikanische trematoden größtenteils vom weißen Nil. 

Results of the Swedish zoological expedition to Egypt and the White Nile, 1901, 

23, 1-170. 

Ostrowski-de Núñez, M., H. I. Hamann and A. Rumi. 1997. Estudios de 

trematodes larvales en Biomphalaria spp. (Mollusca, Planorbidae) de la localidad 

de San Roque, provincia de Corrientes, Argentina. Physis 54, 7-15. 

Premvati G., 1968. Echinostomoid trematodes from Florida birds. Proc. 

Helminthol. Soc. Wash 35, 197-200. 

Pointier, J.P., Jourdane, J. 2000. Biological control of the snail hosts of 

schistosomiasis in areas of low transmission: the example of the Caribbean area. 

Acta Trop, 77, 53–60 

Rashed, A.A., 2002. Biological studies on the snail intermediate hosts of 

schistosomiasis with a special emphasis on using larval echinostomes as 

biocontrol agent against larval schistosomes and snail. J Egypt Soc Parasitol 32, 

775-784 

Reddy, A., Fried, B., 1996. In vitro studies on intraspecific and interspecific 

chemical attraction in daughter rediae of Echinostoma trivolvis and E. caproni. Int 

J Parasitol 26, 1081-1085. 



97 

Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic 

inference under mixed models. Bioinformatics 19, 1572-1574. 

Sandland, G.J., Rodgers, J.K., Minchella, D.J., 2007. Interspecific antagonism 

and virulence in hosts exposed to two parasite species. J Invertebr Pathol 96, 43-

47. 

Schell, S. C., 1985. Handbook of trematodes of North America north of Mexico. 

University Press of Idaho, Moscow, Idaho  

Toledo, R., Esteban, J.G., Fried, B., 2009. Chapter 3. Recent advances in the 

biology of echinostomoids. Adv Parasitol 69, 147-204. 

Tkach, V.V., Kudlai, O., Kostadinova, A., 2016. Molecular phylogeny and 

systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). 

Int J Parasitol 46, 171-185. 

Vilas, R., Criscione, C.D., Blouin, M.S., 2005. A comparison between 

mitochondrial DNA and the ribosomal internal transcribed regions in prospecting 

for cryptic species of platyhelminth parasites. Parasitology 131, 839-846. 

Wilgenbusch, J.C., Swofford, D., 2003. Inferring evolutionary trees with PAUP*. 

Curr Protoc Bioinformatics Chapter 6, Unit 6 4. 

Wilson, W.D., Johnson, P.T.J., Sutherland, D.R., Mone, H., Loker, E.S., 2005. A 

molecular phylogenetic study of the genus Ribeiroia (Digenea): Trematodes 

known to cause limb malformations in amphibians. J. Parasitol 91, 1040-1045. 



98 

Woodruff, D. S. and Mulvey, M. (1997). Neotropical schistosomiasis: African 

affinities of the host snail Biomphalaria glabrata (Gastropoda: Planorbidae). Biol 

J Linnean Soc 60, 505–516. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

Tables and Figures 

Table 1. Collections localities 

Locality Name Lat Long 

Sirikwa dam 0.46713 35.35170 

Anyanga Beach -0.05364 34.05149 

Asao Stream  -0.31810 35.00690 

Dunga Beach -0.14532  34.736330 

Kasabong Stream -0.15190 34.33550 

Powerhouse Beach  -0.09410 34.70760 

Carwash Beach -0.09587 34.74850 

Kazinga Channel -0.191928 29.89807 

Kameta Dam -0.109979 34.77456 

Nawa Beach -0.10194 34.71333 

Forest Beach -0.356594 34.68358 

Kabuong beach -0.336198 34.356155 

Kotieno Beach -0.35250 34.66733 

Mwea Rice Field -0.81800 37.62200 

Kagwa Beach -0.356594 34.68358 

Kobala Beach -0.34864 34.689057 

Alara Beach -0.350466 34.753866 
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Table 2. Provisional identification, sample name, host it was collected from, life 

cycle stage, collection locality, date, Museum of Southwestern Biology voucher 

number, and GenBank accession numbers of echinostome specimens used in 

this study 

 

Clade Sample Name Host Stage Locality Date Collected MSB Voucher Number GenBank 28S GenBank nad 1

Petasiger sp.  5 PE1 Bulinus sp. Cercariae Monitor Lizard Pond Jan-14 MSB:Para:26602 xxxxxx xxxxxx

Petasiger sp.  5 PE2 Bulinus sp. Cercariae Monitor Lizard Pond Jan-14 MSB:Para:26620

Petasiger sp.  5 PE3 Bulinus sp. Cercariae Monitor Lizard Pond Jan-14 MSB:Para:26644

Petasiger sp. 6 PE4 Bulinus sp. Cercariae Monitor Lizard Pond Jan-14 MSB:Para:26655

Petasiger sp.  3 PE5 Bulinus sp. Cercariae Sirikwa Dam Jan-14 MSB:Para:26666

Petasiger sp . 4 PE6 Biomphalaria pfeifferi Cercariae Monitor Lizard Pond Jan-14 MSB:Para:26677

Petasiger sp.  5 PE7 Bulinus truncatus trigonus Cercariae Anyanga Beach Jan-17 MSB:Para:26688

Patagifer sp. 1 PE8 Biomphalaria sudanica Cercariae Dunga Beach Apr-17 MSB:Para:26601

Patagifer sp. 1 PE9 Biomphalaria pfeifferi Cercariae Asao Stream Jul-15 MSB:Para:26626

Echinostomatidae sp. 1 PE10 Ceratophallus natalensis Cercariae Asao Stream, Kenya Jun-15 MSB:Para:26603

Echinostomatidae sp. 2 PE11 Biomphalaria pfeifferi Cercariae Asao Stream, Kenya Jun-15 MSB:Para:26604

Patagifer sp. 1 PE12 Biomphalaria sudanica Cercariae Powerhouse Beach Jan-13 MSB:Para:26605

Ribeiroia sp .2 PE13 Biomphalaria sudanica Cercariae Powerhouse Beach Jan-14 MSB:Para:26606

Echinostomatidae sp. 1 PE14 Ceratophallus natalensis Cercariae Carwash Beach Aug-12 MSB:Para:26607

Patagifer sp. 1 PE15 Ceratophallus natalensis Cercariae Carwash Beach Aug-12 MSB:Para:26608

Patagifer sp. 2 PE16 Biomphalaria sudanica Cercariae Dunga Beach Apr-17 MSB:Para:26616

Patagifer sp. 1 PE17 Biomphalaria sudanica Cercariae Kazing Channel May-02 MSB:Para:26617

Patagifer sp.  2 PE18 Biomphalaria sudanica Cercariae Kazing Channel May-02 MSB:Para:26618

Ribeiroia sp. 1 PE19 Biomphalaria sudanica Cercariae Powerhouse Beach May-02 MSB:Para:26619

Patagifer sp. 1 PE20 Biomphalaria sudanica Cercariae Dunga Beach May-17 MSB:Para:26621

Patagifer sp. 1 PE21 Biomphalaria sudanica Cercariae Powerhouse Beach Dec-10 MSB:Para:26622

Patagifer sp. 1 PE22 Bulinus ugandae Cercariae Powerhouse Beach Jan-17 MSB:Para:26630

Patagifer sp. 1 PE23 Biomphalaria sudanica Cercariae Dunga Beach Apr-17 MSB:Para:26631

Petasiger sp . 4 PE24 Biomphalaria pfeifferi Cercariae Mwea Rice Field Jan-13 MSB:Para:26632

Echinostomatidae sp. 2 PE25 Biomphalaria pfeifferi Cercariae Asao Stream Feb-13 MSB:Para:26633

Patagifer sp. 1 PE26 Biomphalaria sudanica Cercariae Carwash Beach Jan-12 MSB:Para:26634

Echinostomatidae sp. 1 PE27 Ceratophallus natalensis Cercariae Powerhouse Beach Aug-12 MSB:Para:26635

Patagifer sp. 1 PE28 Biomphalaria sudanica Cercariae Powerhouse Beach Aug-12 MSB:Para:26636

Ribeiroia sp .2 PE29 Biomphalaria pfeifferi Cercariae Asao Stream Oct-13 MSB:Para:26643

Isthmiophora sp. PE30 Radix natalensis Cercariae Nyamo Saro  Jun-05 MSB:Para:26645

Patagifer sp. 1 PE31 Biomphalaria pfeifferi Cercariae Kasabong Stream Oct-13 MSB:Para:26646

Ribeiroia sp .2 PE32 Biomphalaria pfeifferi Cercariae Mwea Rice Field Oct-13 MSB:Para:26647

Patagifer sp. 1 PE33 Biomphalaria sudanica Cercariae Powerhouse Beach Jan-13 MSB:Para:26648

Echinostomatidae sp.  2 PE34 Microcarbo africanus Adult Kameta Dam Jan-05 MSB:Para:26649

Echinostomatidae sp. 2 PE35 Biomphalaria pfeifferi Cercariae Asao Stream Jan-14 MSB:Para:26650

Petasiger sp.  1 PE36 Radix natalensis Cercariae Monitor Lizard Pond Jan-14 MSB:Para:26651

Petasiger sp . 4 PE37 Biomphalaria pfeifferi Cercariae Mwea Rice Field Jan-13 MSB:Para:26652

Echinostomatidae sp. 2 PE38 Phalacrocorax africanus Adult Kameta Dam Jan-05 MSB:Para:26653

Petasiger sp.  3 PE39 Radix natalensis Cercariae Monitor Lizard Pond Jan-14 MSB:Para:26654

Patagifer sp. 1 PE40 Bulinus ugandae Cercariae Powerhouse Beach Jan-17 MSB:Para:26656

Petasiger sp. 2 PE41 Bulinus globosus Cercariae Asao Stream Jan-17 MSB:Para:26657

Petasiger sp. 2 PE42 Bulinus globosus Cercariae Asao Stream Jan-17 MSB:Para:26658

Petasiger sp. 2 PE43 Bulinus globosus Cercariae Asao Stream Jan-17 MSB:Para:26659

Petasiger sp. 2 PE44 Bulinus globosus Cercariae Asao Stream Jan-17 MSB:Para:26660

Petasiger sp. 2 PE45 Bulinus globosus Cercariae Asao Stream Jan-17 MSB:Para:26661

Petasiger sp. 2 PE46 Bulinus globosus Cercariae Asao Stream Jan-17 MSB:Para:26662

Petasiger sp.  5 PE47 Bulinus globosus Cercariae Asao Stream Jan-17 MSB:Para:26663

Patagifer sp.  2 PE48 Biomphalaria pfeifferi Cercariae Asao Stream Jan-17 MSB:Para:26664

Patagifer sp.  2 PE49 Biomphalaria pfeifferi Cercariae Asao Stream Jan-17 MSB:Para:26665

Petasiger sp. 2 PE50 Bulinus globosus Cercariae Asao Stream Apr-16 MSB:Para:26667
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Patagifer sp. 1 PE51 Biomphalaria sudanica Cercariae Powerhouse Beach Jul-16 MSB:Para:26668

Ribeiroia sp.  3 PE52 Biomphalaria sudanica Cercariae Powerhouse Beach Aug-16 MSB:Para:26669

Patagifer sp. 2 PE53 Biomphalaria sudanica Cercariae Powerhouse Beach Aug-16 MSB:Para:26670

Petasiger sp . 4 PE54 Biomphalaria sudanica Cercariae Powerhouse Beach Jun-16 MSB:Para:26671

Patagifer sp.  2 PE55 Biomphalaria sudanica Cercariae Powerhouse Beach Jun-16 MSB:Para:26672

Patagifer sp.  2 PE56 Biomphalaria pfeifferi Cercariae Asao Stream Jun-16 MSB:Para:26673

Patagifer sp. 1 PE57 Biomphalaria sudanica Cercariae Dunga Beach Jun-16 MSB:Para:26674

Petasiger sp . 4 PE58 Biomphalaria sudanica Cercariae Powerhouse Beach Jun-16 MSB:Para:26675

Patagifer sp. 1 PE59 Bulinus ugandae Cercariae Powerhouse Beach Jan-15 MSB:Para:26676

Petasiger sp. 2 PE60 Pila ovata Cercariae Dunga Beach Sep-15 MSB:Para:26678

Patagifer sp. 2 PE61 Biomphalaria pfeifferi Metacercariae Asao Stream Jun-16 MSB:Para:26679

Patagifer sp. 2 PE62 Biomphalaria pfeifferi Cercariae Asao Stream Jun-16 MSB:Para:26680

Echinostomatidae sp. 2 PE63 Biomphalaria pfeifferi Cercariae Asao Stream Jun-16 MSB:Para:26681

Patagifer sp. 1 PE64 Biomphalaria sudanica Cercariae Powerhouse Beach Jun-16 MSB:Para:26682

Patagifer sp. 1 PE65 Bulinus ugandae Cercariae Powerhouse Beach Jun-16 MSB:Para:26683

Patagifer sp. 1 PE66 Biomphalaria pfeifferi Cercariae Kasabong Stream Jan-15 MSB:Para:26684

Echinostomatidae sp. 2 PE67 Biomphalaria pfeifferi Cercariae Asao Stream Aug-16 MSB:Para:26685

Echinoparphium sp. PE68 Bulinus tropicus Cercariae Mwea Rice Field Jan-15 MSB:Para:26686

Patagifer sp. 1 PE69 Biomphalaria sudanica Cercariae Ovara Beach Apr-16 MSB:Para:26687

Patagifer sp. 1 PE70 Biomphalaria sudanica Cercariae Kagaw Beach Apr-16 MSB:Para:26689

Echinostomatidae sp. 2 PE71 Biomphalaria pfeifferi Cercariae Asao Stream Aug-16 MSB:Para:26690

Echinostomatidae sp. 2 PE72 Biomphalaria pfeifferi Cercariae Asao Stream Aug-16 MSB:Para:26691

Echinostomatidae sp. 3 PE73 Ceratophallus natalensis Cercariae Asao Stream Aug-16 MSB:Para:26594

Patagifer sp. 1 PE74 Biomphalaria sudanica Cercariae Powerhouse Beach Jun-16 MSB:Para:26595

Patagifer sp. 2 PE75 Biomphalaria sudanica Cercariae Powerhouse Beach Jun-16 MSB:Para:26596

Patagifer sp.  2 PE76 Biomphalaria pfeifferi Cercariae Asao Stream Jun-16 MSB:Para:26597

Echinostomatidae sp. 2 PE77 Biomphalaria pfeifferi Cercariae Asao Stream Jul-15 MSB:Para:26598

Petasiger sp . 4 PE78 Biomphalaria sudanica Cercariae Powerhouse Beach Jan-16 MSB:Para:26599

Echinostoma caproni PE79 Biomphalaria sudanica Cercariae Kabuong Beach Jan-17 MSB:Para:26600

Echinostomatidae sp. 1 PE80 Segmentorbis kanisaensis Cercariae Nawa Beach Jun-16 MSB:Para:26609

Patagifer sp. 1 PE81 Bulinus ugandae Cercariae Powerhouse Beach Jan-17 MSB:Para:26610

Petasiger sp . 4 PE82 Biomphalaria sudanica Cercariae Kobala Beach Sep-16 MSB:Para:26611

Petasiger sp.  5 PE83 Bulinus ugandae Cercariae Powerhouse Beach Jan-16 MSB:Para:26612

Patagifer sp. 1 PE84 Biomphalaria sudanica Cercariae Powerhouse Beach Jan-16 MSB:Para:26613

Patagifer sp.  2 PE85 Biomphalaria pfeifferi Cercariae Kasabong Jan-16 MSB:Para:26614

Patagifer sp. 1 PE86 Biomphalaria sudanica Cercariae Powerhouse Beach Jan-16 MSB:Para:26615

Patagifer sp. 1 PE87 Biomphalaria sudanica Cercariae Nawa Beach Feb-17 MSB:Para:26623

Petasiger sp . 4 PE88 Biomphalaria sudanica Cercariae Dunga Beach Feb-17 MSB:Para:26624

Echinostoma caproni PE89 Biomphalaria sudanica Cercariae Kabuong Beach Jan-17 MSB:Para:26625

Patagifer sp. 1 PE90 Biomphalaria pfeifferi Cercariae Asao Stream Jul-15 MSB:Para:26627

Patagifer sp. 1 PE91 Biomphalaria sudanica Cercariae Forest Beach Jan-17 MSB:Para:26628

Patagifer sp. 1 PE92 Biomphalaria sudanica Metacercariae Dunga Beach Feb-17 MSB:Para:26629

Patagifer sp. 1 PE93 Biomphalaria sudanica Metacercariae Dunga Beach Feb-17 MSB:Para:26642

Patagifer sp. 1 PE94 Biomphalaria sudanica Metacercariae Dunga Beach Feb-17 MSB:Para:26637

Ribeiroia sp .2 PE95 Biomphalaria sudanica Metacercariae Dunga Beach Feb-17 MSB:Para:26638

Patagifer sp. 1 PE96 Biomphalaria sudanica Cercariae Kotieno Beach Jan-17 MSB:Para:26639

Echinostomatidae sp. 2 PE97 Biomphalaria pfeifferi Cercariae Asao Stream Jul-15 MSB:Para:26640

Patagifer sp. 2 PE98 Biomphalaria pfeifferi Cercariae Asao Stream Jul-15 MSB:Para:26641
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Table 3. Intra- and interclade P- distance values of 28S amplified from the 98 

echinostomes in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clade Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0.001

2 0.020 0.007

3 0.018 0.004 0.001

4 0.020 0.024 0.022 0.000

5 0.024 0.029 0.027 0.007 0.004

6 0.024 0.028 0.026 0.009 0.013 n/c

7 0.033 0.032 0.031 0.034 0.037 0.038 n/c

8 0.061 0.057 0.059 0.062 0.067 0.064 0.066 n/c

9 0.060 0.056 0.058 0.063 0.068 0.064 0.066 0.003 0.000

10 0.063 0.060 0.061 0.066 0.071 0.068 0.068 0.012 0.008 n/c

11 0.048 0.050 0.051 0.053 0.059 0.057 0.055 0.048 0.050 0.055 n/c

12 0.052 0.055 0.056 0.056 0.062 0.060 0.058 0.054 0.055 0.059 0.020 n/c

13 0.051 0.055 0.056 0.057 0.064 0.063 0.058 0.055 0.056 0.061 0.015 0.024 0.001

14 0.049 0.052 0.052 0.053 0.060 0.059 0.055 0.054 0.056 0.056 0.018 0.024 0.020 0.000

15 0.045 0.048 0.049 0.048 0.055 0.055 0.053 0.051 0.053 0.056 0.013 0.018 0.014 0.007 0.002

16 0.049 0.050 0.051 0.054 0.061 0.059 0.056 0.052 0.053 0.055 0.022 0.027 0.019 0.020 0.015 0.001

17 0.055 0.056 0.056 0.060 0.066 0.065 0.063 0.060 0.061 0.063 0.027 0.036 0.027 0.026 0.023 0.028 n/c
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Table 4. Intra- and interclade P- distance values of nad1 amplified from the 94 

(minus the 4 Ribeiroia samples) echinostomes in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clade Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.002

2 0.184 0.007

3 0.200 0.077 0.015

4 0.171 0.166 0.184 0.001

5 0.204 0.177 0.191 0.146 0.010

6 0.177 0.150 0.160 0.149 0.165 n/c

7 0.214 0.224 0.230 0.223 0.229 0.204 n/c

8 0.302 0.307 0.305 0.320 0.309 0.291 0.332 n/c

9 0.295 0.267 0.276 0.282 0.285 0.279 0.291 0.334 n/c

10 0.284 0.274 0.265 0.279 0.271 0.275 0.287 0.324 0.281 n/c

11 0.286 0.259 0.258 0.258 0.246 0.235 0.275 0.315 0.259 0.242 0.005

12 0.241 0.245 0.250 0.257 0.256 0.242 0.269 0.334 0.254 0.211 0.208 0.014

13 0.271 0.238 0.238 0.240 0.242 0.225 0.284 0.320 0.265 0.240 0.264 0.226 0.006

14 0.272 0.235 0.236 0.251 0.231 0.230 0.254 0.293 0.264 0.206 0.245 0.173 0.214 0.004
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Figure 1. Phylogenetic relationships of echinostomes from this and study 

(bolded) and from GenBank (with accession numbers) based on 1,143 bp of the 

28S gene inferred from ML and BI analyses. Nodes with a (*) indicate nodes that 

were supported (> 90%) by bootstrap values and posterior probabilities. 

Specimens are named based on sample name, the host and locality it was 

collected from, and color-coded based on clade designation from nad1 p-

distance values of less than 2%. A black circle indicates clades where more than 

one genus of snails was found to be infected and a red star indicates clades 

where sequences from two different life-cycle stages matched.  
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Figure 2. Phylogenetic relationships of echinostomes from this and study 

(bolded) and from GenBank (with accession numbers) based on 463 bp of the 

nad1 gene inferred from ML and BI analyses. Nodes with a (*) indicate nodes 

that were supported by (> 90%) bootstrap values and posterior probabilities. 

Specimens from this study are named based on sample name, the host and 

locality it was collected from, and color-coded based on clade designation from 

nad1 p-distance values of less than 2%. A black circle indicates clades where 

more than one genus of snails was found to be infected and a red star indicates 

clades where sequences from two different life-cycle stages matched 
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Figure 3. Pictures of echinostomoid cercariae collected from Kenya: Clade 3, 

Patagifer sp. 2 is A1-3. A2 represents the cluster of spines posterior to the oral 

sucker, (B) clade 1, Patagifer sp. 1, (C1-2) clade 5 echinostomatidae sp. 2 and 

C2 displays the cluster of granules just posterior to the oral sucker, (D) clade 4 

echinostomatidae sp.1, (E1-2) clade 14, Petasiger sp. 4 and E2 displays the two 

large granules posterior to the oral sucker, (F) clade 13 Petasiger sp. 2, (G) clade 

10 Ribeiroia sp. 3, and clade 8 Ribeiroia sp. 1. 
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Abstract: Human infectious agents exist within complex environmental milieu 

that influence the likelihood of transmission, and nowhere is this more evident 

than with parasites with multi-host life cycles. Among them is Schistosoma 

mansoni, a widespread causative agent of one of the world’s most common 

neglected tropical diseases (NTDs), human schistosomiasis in tropical Africa and 

South America. Biomphalaria snails are essential to transmission serving as the 

vectors in which proliferative sporocysts develop that produce human-infective 

cercariae. Cercariae penetrate the skin of people to initiate new infections. Here 

we show that the force of infection of S. mansoni to people as estimated by the 

number cercariae-producing snail infections is influenced by domestic cattle and 

wild vertebrate hosts because of their role in transmitting digenetic trematodes 

with larval stages that compete with and/or displace S. mansoni sporocysts in 

snails. Furthermore, permanence of aquatic habitats influences the species 

composition of Biomphalaria and of other snails, again with indirect effects of 

trematode abundance and the likelihood that cercariae-producing infections of S. 

mansoni develop. Our results suggest that the predictable co-dominant 

exploitation of aquatic habitats by domestic animals and humans have enabled 

some trematodes to depend on and exploit S. mansoni for their transmission. 

Our results help expand a conceptual framework to better understand the many 

factors dictating the abundance of this and other endemic neglected tropical 

diseases.  

Introduction: Infectious diseases are often conceptualized from a perspective 

emphasizing the routes of transmission directly to and from humans. However, 
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this can obscure the fact that each responsible causative agent exists in complex 

ecological settings that may involve sequential colonization of multiple obligatory 

hosts. Such obligatory hosts often must overlap closely in space and time and 

can be affected by multiple alternative host species. The diversity and 

abundance of potential host species available to an infectious agent may also 

vary on spatial or temporal scales. Furthermore, within host interactions among 

infectious agents and competitive interactions can occur. The extent to which the 

inherent biodiversity with which the infectious agent must interact influences the 

incidence or severity of human disease remains a topic of active discussion 

(Suzan et al., 2009, Keesing et al., 2010; Johnson et al., 2013; Wood et al., 

2013; Frainer et al., 2018).  

One of our interests is to understand how and why some infectious agents 

persistently attain high prevalence levels in their hosts such that they are 

designated as causing endemic and opposed to epidemic disease. Endemism in 

this context is indicative of ongoing and consistent success in transmission. What 

critical factors underlie the endemic state, and how does the ecological milieu in 

which the infectious agent resides influence its likelihood of success? 

Additionally, how might conditions exerted over longer time scales influence the 

evolution of infectious agents or hosts in ways that influence the level of 

endemicity of the infectious agent? 

Digenetic trematodes of the genus Schistosoma are responsible for 

causing one of the great neglected and unconquered tropical diseases of our 

time, schistosomiasis. Collectively, five species of schistosomes infect over 206 
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million people, with most cases occurring in children within tropical Africa (WHO 

2017). Our investigation centers on S. mansoni, one of the causative agents of 

intestinal schistosomiasis, near Lake Victoria in western Kenya. The Lake 

Victoria Basin is one of the largest hyperendemic areas of schistosomiasis in the 

world (Gouvras et al., 2017; Wiegand et al., 2017). Despite repeated treatments 

with the anthelmintic praziquantel, children living in villages near the lakeshore 

often exhibit prevalence of infection of >50%, with up to 90% in some areas 

(Woodhall et al., 2013). Here, we analyze with the aid of a mathematical model 

this hyper-endemic macroparasite, whose complex life cycle involves humans or 

other mammals as definitive hosts and freshwater snails of the genus 

Biomphalaria as intermediate hosts. Such analyses dissect and reveal how the 

availability of S. mansoni infection to people in west Kenya can be affected by 

various factors, including 1) availability of alternative host species; 2) animal 

husbandry and surrounding vertebrate biodiversity with causal influences on the 

availability of competitor/predator parasites; and 3) habitat stability, with 

attendant effects on snail host breeding systems and parasite colonization rates. 

S. mansoni transmission involves multiple hosts, multiple pathways:  

A textbook portrayal of the S. mansoni life cycle might convey an impression that 

humans are definitive hosts and an unnamed species of Biomphalaria serves as 

intermediate host. However, one of the factors contributing to the success of S. 

mansoni in the Lake Victoria Basin is that multiple options exist for transmission 

(Figure 1). With respect to mammalian hosts, humans are certainly the most 

important in maintaining transmission at a high level. Both baboons and several 
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small mammal species including both widespread rodents like Mastomys 

natalensis and insectivores like Crocidura olivieri acquire infection and can pass 

eggs into the environment (Fenwick 1969; Hanelt et al., 2010). For example, 

Hanelt et al., 2010 found that 5.4% of rodents surveyed were infected with 

schistosomes and 25.5% of the schistosome worms recovered were S. mansoni. 

Likewise, a recent study found the overall prevalence of schistosomes in field-

captured small mammals ranged between 1.9% to 28.6% (Catalano et al., 2018). 

The alternative reservoir hosts for S. mansoni provide important options for 

transmission, particularly in the light of ongoing chemotherapy-based control 

programs targeting human transmission. Likewise, S. mansoni in and around the 

lake can infect three Biomphalaria taxa, including B. pfeifferi in streams and small 

impoundments, B. sudanica along the lakeshore, and B. choanomphala, now 

generally considered to be a distinct ecophenotype of B. sudanica, found 

anywhere from the shoreline, but especially into deeper water, up to 0.5- 20 

meters in depth (Magendantz 1972; Ngupula and Kayanda 2010; Standley et al., 

2011; Lang et al., 2013; Zhang et al., 2018). All three species are experimentally 

susceptible to S. mansoni infection (Figure 2), are found naturally infected with S. 

mansoni (Magendantz 1972; Standley et al., 2011; Mutuku et al., 2017), and 

produce cercariae that can contribute to human infections. Also noteworthy, is 

the fact that in some cases infected snails can live over a year and produce 

thousands of cercariae per day (Mutuku et al., 2014). This further adds to the 

formidable nature of S. mansoni coupled with the egg-production in adult worms 
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in humans that can routinely live for five years and can produce hundreds of 

eggs per female per day (Warren et al., 1974). 

An unexpected effect of pastoralism on transmission of S. mansoni:  

Often at S. mansoni transmission sites in Kenya, people are side-by-side with 

domestic ruminants that come to water themselves (Figure 3). Among the 

consequences of such visits are the deposition of large quantities of cow manure 

into the water, including eggs of helminth parasites transmitted by cattle. 

Although cattle are not themselves common hosts for S. mansoni, they do 

transmit Schistosoma species such as S. bovis that are related to and hybridize 

with the causative agent of human urinary schistosomiasis, S. haematobium (see 

discussion) (Webster et al., 2013). Among the helminth eggs passed in profusion 

(approximately 10,000 eggs/cowpat) are those of amphistome flukes, which 

employ a life cycle involving a freshwater snail as intermediate hosts, cercariae 

that encyst as metacercariae on vegetation which are then consumed by cows, 

goats or sheep, which then mature to egg-producing adulthood in the rumen 

(Figure 4). We have found at least 16 species of amphistome flukes in west 

Kenya, one of which is both common and employs Biomphalaria snails as its 

intermediate host (designated here provisionally as Calicophoron sukari) 

(Laidemitt et al., 2017). This creates a scenario in which the two dominant 

definitive host species using available stream transmission sites, humans and 

cattle, both predictably seed the habitats with different trematodes that converge 

in their use of Biomphalaria snails (Figure 5 - prevalence of snail infections in 

Asao and Kasabong). 
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 Some amphistomes like Calicophoron microbothrium have attracted 

attention because their presence in snails like Bulinus tropicus can facilitate 

subsequent infections with S. bovis that would not otherwise occur in this snail 

species (Southgate et al., 1989). However, the pattern we have noted with C. 

sukari transmitted by B. pfeifferi was the opposite. We first observed C. sukari 

was common only where S. mansoni is present. We then noted that if snails 

taken from such habitats and that were determined not to be releasing cercariae 

of any trematode (“shedding”) at the time of collection were exposed to S. 

mansoni miracidia, they surprisingly were subsequently more likely (p = < 0.001) 

to shed C. sukari than S. mansoni cercariae (Figure 6). This suggested the snails 

already had been colonized by C. sukari larvae, but were for some reason C. 

sukari were unable to complete development without a follow-up exposure to S. 

mansoni.  

Additional experiments were undertaken with laboratory-bred B. pfeifferi 

exposed to S. mansoni and C. sukari miracidia, either each species or alone or 

both species in various combinations (Figure 7A). The results were clear in 

indicating that although S. mansoni miracidia were entirely capable of infecting B. 

pfeifferi on their own as expected (see also Mutuku et al., 2014), C. sukari 

miracidia were poorly infective to B. pfeifferi on their own. Examination of 

histological sections of B. pfeifferi taken 8 days after exposure only to C. sukari 

miracidia revealed the presence of sporocysts that had undergone little or no 

growth or development and that had host hemocytes about them (Figure 7B).  

However, the success of C. sukari miracidia increased significantly (p= <0.0091), 
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if S. mansoni miracidia were also allowed to infect the snails, particularly so if the 

S. mansoni exposures followed the exposure of snails to C. sukari. 

Other lines of evidence are also indicative of the ability of C. sukari to 

interfere with the intramolluscan development of S. mansoni. An Illumina-based 

study of the transcriptional profiles of larval S. mansoni in field-derived B. pfeifferi 

showed that transcriptional activity was sharply reduced in one biological 

replicate that represented a snail shown to also possess a non-shedding C. 

sukari infection (Buddenborg et al., 2017). Furthermore, infections of both S. 

mansoni and C. sukari are common in B. pfeifferi in west Kenyan stream 

habitats, but double infections, that is snails found shedding cercariae of both 

species, are rare, and occur less than expected by chance (p = < 0.001) (Fig 5c). 

We have observed that some field snails found to be naturally shedding S. 

mansoni cercariae would, upon further observation in the lab, permanently switch 

over to producing C. sukari cercariae instead (Figure 11). Lastly, whereas 

exposure to S. mansoni miracidia of field-collected snails shedding C. sukari 

cercariae rarely resulted in conversion of the infections to production of S. 

mansoni cercariae, the converse situation was not the case: exposure of snails 

that were shedding S. mansoni to miracidia of C. sukari more commonly resulted 

in production of C. sukari cercariae (Figure 11). Consistent with these 

observations, S. mansoni larval development involves two generations of sac-like 

sporocysts whereas intramolluscan development of C. sukari progresses through 

an initial sporocyst generation followed by two redial generations. Rediae 

possess a mouth surrounded by an oral sucker and a gut, and are well-known for 
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their ability to attack the sporocysts of other trematode species (Lim and 

Hyneman 1972; Hechinger et al., 2011). The mathematical model we have 

developed and parameterized using values obtained from our experimental and 

field studies indicates that the force of infection of S. mansoni is reduced in the 

presence of the competitor/predator C. sukari (Figure 9). We also noted that our 

survey data showed that S. mansoni and C. sukari are positively correlated (r= 

0.622) (Figure 5D). This is not surprising, since C. sukari relies on S. mansoni for 

its own transmission. Collectively, such findings indicate persistent human 

contamination has led to the predictable presence of S. mansoni in Biomphalaria, 

thereby providing opportunities for the cattle fluke C. sukari to initiate infections 

and routinely displace S. mansoni infections.  

Wild vertebrate hosts indirectly influence the interference of the production 

of S. mansoni cercariae:  Some wild rodents, including insectivores and 

primates can serve as viable definitive hosts for S. mansoni, thereby providing 

alternative routes for transmission, comprising a way that biodiversity can favor 

S. mansoni transmission. In the process of screening Biomphalaria from both 

stream and lake habitats for S. mansoni infections, we found other species of 

digenetic trematodes were also supported by Biomphalaria as first intermediate 

hosts (Figure 5A, B; Figure 8). For example, in Asao stream 19 species of 

trematode cercariae emerged from 19,914 B. pfeifferi and from Lake Victoria, we 

21 species of cercariae emerged from 3,369 B. sudanica. Although some of 

these species like S. mansoni were recovered from both habitats, many were 

habitat specific (Figure 8). It is not uncommon for certain gastropod species to 
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support diverse trematode guilds though there is considerable variation among 

snail hosts with respect to the extent to which this happens (Kuris and Lafferty 

1994).  

Extrapolating what is known about trematode life cycles, all the 

Biomphalaria- dependent species of trematodes (determined from cercariae 

morphology and sequence data) we collected require a vertebrate definitive host, 

and most require a second intermediate host in which cercariae encyst to form 

metacercariae. Thus, the presence of these complex guilds of cercariae in 

Biomphalaria provides a distinctive means to assess the variety of definitive and 

intermediate host species that must be present to support the various trematode 

life cycles. Although many of the specific definitive host species that go with the 

cercariae species recovered from Biomphalaria are as yet unknown, it is possible 

to make reasonable inferences about the types of host involved (Figure 10). For 

example, several trematode groups that exploit mammals and especially birds as 

definitive hosts cycle through Biomphalaria snails. For instance, Patagifer sp., 

and Petasiger sp. were recovered from Biomphalaria and wild birds and E. 

caproni which is known to use mammals and birds as definitive hosts (Richard 

and Brygoo 1978).  

 As we noted above for C. sukari and S. mansoni, it is unusual for two 

trematode species to stably and persistently co-infect the same individual snail. 

Furthermore, among the trematodes potentially vying for a particular species of 

snail host, the outcomes of co-infections are often predictable such that it is 

possible to work out a dominance hierarchy among the interacting parasite 
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species. Figure 11 shows such a hierarchy for the trematodes colonizing B. 

pfeifferi at Asao Stream, the first worked out for human schistosome-transmitting 

snails in an endemic setting. The hierarchy is worked out in three ways: 1) 

experimental co-infections of lab-reared snails as noted above (Figure 7); 2) by 

exposing field-derived B. pfeifferi naturally shedding one type of cercariae to 

miracidia of a second to see if the second species takes over the snail; and 3) 

observing field-collected B. pfeifferi shedding cercariae of one species to see if 

they switch over naturally to shedding cercariae of a second species. Several 

features are noteworthy about the hierarchy. First, note the relative positions of 

C. sukari and S. mansoni and that the former is dominant to the latter as noted 

above. Second, S. mansoni is not the top competitor, but occupies an 

intermediate position. Thirdly, echinostome species are dominant. Echinostomes 

are well-known for their ability to produce rediae that attack and kill the 

intramolluscan larvae of other trematode species (Lim and Hyneman 1972; Lie 

1973; Rashed 2002; Hechinger et al., 2011). We have identified 17 echinostome 

species transmitted among East African snails, with 7 able to infect Biomphalaria 

(Laidemitt personal communications). The degree of dominance and associated 

predatory tendencies of the rediae of the different species remain to be 

ascertained. Given the ability of echinostome rediae to attack and kill the 

sporocysts of S. mansoni, there has been an understandable interest in using 

them for biological control of schistosomiasis, a topic discussed at length by 

others (Bayer 1954; Lim and Heyneman 1972; Banes et al., 1974; Pointier and 

Jourdane 2000). Another intriguing feature is that there is a certain universality to 
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these hierarchies, often with trematodes producing xiphidiocercariae as most 

subordinate, and echinostome trematode as dominants, typically but not always 

with schistosome lying in the middle. One final consideration regarding the 

hierarchy is that it does not inevitably lead to echinostomes being the most 

prevalent infections (Figure 11). The input of echinostome eggs, as from avian 

hosts, into the snail habitat is most probably small in comparison to egg input 

rates achieved by trematodes of cattle and humans. Consequently, on their own, 

they may not be able to attain a high prevalence even if they can displace all 

other species in co-infections.   

 Most trematode infection in Biomphalaria must be viewed as a potential 

impediment to S. mansoni (unless facilitation of S. mansoni occurs). This is true 

if: 1) S. mansoni is the first to colonize the snail which is then colonized by a 

dominant species; 2) S. mansoni colonizes a snail already occupied by a 

dominant – it will then fail; or 3) S. mansoni colonizes a snail already occupied by 

a subordinate species – it will then have to displace the subordinate before its 

own cercariae are produced. Snails with double infections run higher risks of 

mortality than uninfected or single infection snails (Lafferty et al., 1994). 

Consequently, from this perspective, the availability of diverse sets of vertebrate 

hosts to support a large variety of Biomphalaria-infecting trematodes can be 

viewed as a beneficial effect of biodiversity in diminishing the force of S. mansoni 

transmission.  

 An additional way that the presence of diverse echinostome and other 

trematode infections may interfere with S. mansoni transmission could involve 
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the finding that echinostome cercariae released from one snail frequently 

colonize the excretory systems of other snails, thereby gaining access to the 

pericardium where they encyst to form metacercariae (Estaban et al., 2010).The 

cercariae produced in one snail may end up encysting in many different 

individual snails, as revealed by examination of field snails (Figure 12A). 

Although the effects of metacercariae are often discounted since they are not 

proliferative, they may influence S. mansoni infections and transmission in subtle 

ways: 1) provoking higher levels or mortality (Kuris and Warren 1980), 2) 

dissipating resources in the form of expensive hemocyte encapsulation reactions 

around metacercariae (Figure 12B); 3) altering a snail’s risk of being ingested by 

a definitive host (Mouritsen and Poulin 2003) and 4) they may be less attractive 

to S. mansoni miracidia than snails lacking metacercariae. If these effects were 

proven to be substantial, then the impact of other trematode species on S. 

mansoni transmission would be even greater than dictated by the rates of 

cercariae-producing infections observed.          

Four habitat types for transmission, each with its own ecological 

considerations: S. mansoni is favored in its transmission in the Lake Victoria 

basin because Biomphalaria snails can colonize multiple habitats, including 

ephemeral streams that might remain dry for months, more permanent streams 

that may be subject to dramatic flooding and drying, the shore of the lake 

including vast areas of papyrus swamps and associated marshlands, as well as 

deeper offshore waters of the lake. These habitat types differ in their 

permanence and biotic complexity. 
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Ephemeral streams are ubiquitous in East Africa and our studies of one 

such stream (Kasabong Stream) revealed that it can be without standing water 

for as long as 10 months, yet B. pfeifferi can quickly recolonize to support 

transmission of S. mansoni and C. sukari. Several studies of B. pfeifferi have 

shown this snail to be a strong preferential self-fertilizing species (Charbonnel et 

al., 2000; Tian-Bi et al., 2008), generally considered to be an adaptation favoring 

life in ephemeral habitats subjected to drying, flooding and requiring rapid 

colonization ability. B. pfeifferi from Kasabong Stream similarly has the 

characteristics associated with a predominant selfer (Lelo personal 

communications). Our studies show that the diversity of snail species occupying 

this habitat is relatively low and the diversity of trematode species colonizing 

even the dominant species B. pfeifferi is low (Table 1). However, the prevalence 

of infection in B. pfeifferi of the few trematode species present can be high (Table 

1 and Figure 5A). Trematodes transmitted by rarer hosts than humans or cattle 

may lack the opportunity or time to colonize snails in such habitats before drying 

occurs and transmission ceases.  

 A somewhat different picture emerges from examination of a perennial 

stream habitat. One such stream (Asao Stream) underwent a massive flood at 

the end of 2012 prior to the onset of our survey studies and has maintained a 

steady flow of water since that time, with some expected seasonal fluctuations. 

B. pfeifferi is the dominant freshwater snail species present in the stream, but 

several additional snail species are also present (Table 1). Likewise, the number 

of trematode species colonizing B. pfeifferi is larger than noted for the ephemeral 
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stream, but once again the trematode fauna is dominated by C. sukari and S. 

mansoni (Table 1). As noted with the Kasabong population of B. pfeifferi, a 

deficiency of heterozygotes is again present and is consistent with a predominant 

pattern of self-fertilization (Lelo personal communication). This pattern is 

somewhat paradoxical in that species that can undergo self-fertilization are 

generally considered to suffer greater inherent risk of the negative consequences 

of parasitism. Indeed, 12.2% (2,439 out of 19,914) of B. pfeifferi from Asao have 

been found infected with trematodes, suffering castration as a consequence. The 

retention of self-fertilization is perplexing given the relatively prolonged period of 

stability with attendant colonization by competing snails and harmful parasites. 

However, as is entirely possible, another strong flooding event comparable to 

that occurring in 2012 could happen again. In other words, a period of stability 

enabling parasites to take advantage of self-fertilizing hosts may be quickly offset 

by a catastrophic flood that strongly favors a self-fertilizing snail species in 

recolonization of the habitat. 

 The shoreline habitats of Lake Victoria can be thought of as ecological 

hotspot in the sense of King et al. (2011), in that the activity of numerous host 

species are focused there, facilitating completion of the life cycles of parasites 

like trematodes. It is noteworthy that experimental exposures of B. sudanica 

indicate this species is significantly less compatible with S. mansoni than is B. 

pfeifferi, regardless of whether the parasite is derived from sympatric or allopatric 

sources (Mutuku et al., 2017).Although the levels of the lake rise and fall with the 

seasons or with weather extremes, the habitats of snails associated with the 
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margins of the lake can be considered more stable compared to stream 

environments and thus can support a greater variety of snail species, including 

some species endemic to the lake or restricted to lacustrine habitats (Table 1). 

Examination of shoreline habitats indicate a diverse population of snail species 

and in this case, using B. sudanica as the reference point, a diverse guild of 

trematodes that clearly differs in composition from what is noted in B. pfeifferi in 

stream habitats (Figure 8, Table 1). For instance, in lake habitats, C. sukari is 

absent, and although S. mansoni is still present, its prevalence is much lower (0-

2.6%), presumably due to high levels of human excrement that pollutes the lake. 

Furthermore, in keeping with what is readily observed upon sampling at the 

Powerhouse Beach site, a large variety of aquatic birds including egrets, 

hammerkops, ibises, storks, terns, and kingfishers are present and seed the 

water with eggs with the trematode species they support (Figure 8, Table 1), 

especially including echinostomes and strigeids.  

 An ecophenotype of B. sudanica, customarily referred to as B. 

choanomphala, is found inhabiting the deeper waters of the lake (Zhang et al., 

2018). Whereas B. sudanica has a larger, flatter shell, the shell of B. 

choanomphala is smaller in diameter, deeper in its construction and has 

pronounced angulations that make it distinctive. B. choanomphala can be 

recovered from the shoreline but it is most predictably recovered by dredging 

from deeper water, particularly adjacent to shorelines facing open waters of the 

lake with sand/mud bottoms. Although legitimate arguments exist as to what 

name, sudanica or choanomphala, deserves systematic priority (Zhang et al., 
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2018), it is clear that gene flow occurs between the two forms (Bandoni et al., 

2000; Standley et al., 2014). B. choanomphala can be considered to occupy an 

ecological coldspot sensu of King et al. (2011 In support of this idea, thus far the 

prevalence rates of B. choanomphala are low (0.15%), and although this taxon is 

experimentally susceptible to S. mansoni, in fact more so than B. sudanica 

(Figure 2), naturally-infected specimens are rarely found. Furthermore, the 

diversity of trematode species recovered from B. choanomphala, based on both 

our studies and those of others from specimens recovered by dredging, is 

relatively low (Table 1). B. choanomphala occupies deep water refugia and 

based on the trematodes we recovered from B. choanomphala the chances of 

transmission of most trematodes except the sanguinicolid and spirorchiid blood 

flukes from fish and turtles, are lower.  

Discussion:   

Schistosoma mansoni is ubiquitous in sub-Saharan Africa, aided by multiple 

transmission options, including by the widespread presence of Biomphalaria 

vector snails in diverse aquatic habitats. Additionally, open human defecation 

and inadequate sanitation insure widespread contamination of freshwater 

habitats with S. mansoni eggs (Nagi et al., 2014). Against this backdrop, we 

highlight above that pastoralism, biodiversity and habitat stability all have 

cascading effects that favor the transmission of additional digenetic trematode 

species, many of which also depend on Biomphalaria for their larval development 

and transmission. Consequently, inevitable competitive interactions result, with a 

predictable pattern of outcomes in pairwise interactions between species. From 
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this, an overall dominance hierarchy among the larval trematodes exploiting 

Biomphalaria in west Kenya can be determined. A first among African species 

that use African Biomphalaria as an intermediate host. We found that S. mansoni 

occupies an intermediate position, predictably dominant to some and subordinate 

to other species of trematodes. As has been well-established elsewhere, rediae-

producing echinostome trematodes tend to be dominant though the rediae of 

different echinostome species vary in their predatory tendencies and 

consequently their dominance (Lim and Heyneman 1972; Combs 1982; 

Hechinger et al., 2011; Garcia-Vedrenne et al., 2016). Dominance by no means 

translates into abundance however. The input of bird-transmitted echinostome 

eggs into the stream habitats we studied is dwarfed by the input of eggs from 

large definitive hosts like people, goats or cattle, meaning that the prevalence 

achieved by S. mansoni or by C. sukari is much higher than achieved by 

echinostomes. Nor does S. mansoni’s intermediate position in the dominance 

hierarchy insure that the presence of competitor/predator trematodes will 

eliminate schistosome infections in snails.  

Most noteworthy with respect to reducing the impact of S. mansoni is the 

presence of the rumen fluke of cattle, C. sukari. The need for domestic livestock 

to water regularly, and the shortage of water sources for them means they must 

regularly visit streams also heavily used by people for bathing, washing and as a 

source of drinking water. The prodigious production of dung by these animals in 

and near these streams insures a ready supply of C. sukari eggs will reach the 

habitat, and miracidia derived from them will commonly encounter and penetrate 
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snails of their preferred host species, B. pfeifferi. Several aspects of our results 

indicate that C. sukari has very poor ability to infect B. pfeifferi on its own. If C. 

sukari miracidia enter an uninfected snail, the ensuing sporocyst must await 

(Figure 7B) the later arrival of S. mansoni miracidia (and possibly of other 

subordinate trematode species) if it is to succeed in producing rediae. The 

presence of developing S. mansoni sporocysts in some way insures that C. 

sukari too can develop, an effect that may be mediated by the known ability of S. 

mansoni from experimental studies to interfere with the snail immune system 

(Bayne 2009; Buddenborg 2017) to enable development of larvae of other 

trematode species. Alternatively, miracidia of C. sukari may enter a snail already 

infected with S. mansoni and in keeping with the dominance hierarchy noted, can 

displace S. mansoni sporocysts, leading to production of C. sukari cercariae. As 

a consequence, nearly all of the C. sukari infections present in streams represent 

snails once infected with S. mansoni larvae that have been displaced and 

eliminated. The presence of amphistome-infected cattle thereby provides a 

significant protective effect for people in diminishing the number of snails 

producing S. mansoni cercariae. Our model suggests that in the absence of C. 

sukari, the prevalence of S. mansoni would double (Figure 9). For example, if the 

prevalence of S. mansoni is 10%, it would increase to 20% for some time in the 

absence of C. sukari (Figure 9A). An artificial increase of C. sukari into the 

system would also reduce the number of S. mansoni cercarial output (Figure 9B). 

Not only does C. sukari influence the number of B. pfeifferi infected with S. 

mansoni, but the presence of S. mansoni facilitates transmission of a cattle 
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parasite that would not be successfully transmitted otherwise. It is interesting that 

the interaction we have noted between S. mansoni and C. sukari favors the 

amphistome, but in other instances, including in Kenya, the presence of another 

amphistome species may facilitate infections with the cattle schistosome 

Schistosoma bovis (Southgate et al., 1989). Schistosomes and amphistomes, 

possibly because of their intermediate positions in the dominance hierarchy, 

clearly engage in interesting interactions that seem to favor the colonization of a 

snail species that might otherwise not easily be infected.  

 One of the questions posed by the facilitation effect of S. mansoni 

exploited by C. sukari is why the latter species should be dependent on the first 

for its infection of snails. Other amphistome species have not shown such 

obvious dependency on a facilitation effect. It seems possible that many C. 

sukari infections in snails may never proceed past the initial sporocyst stage if 

help is not forthcoming by S. mansoni sporocysts. One possible explanation is 

that the colonization of B. pfeifferi by C. sukari represents a host shift in progress. 

Our phylogenetic studies of East African amphistomes indicate that few 

amphistome species colonize Biomphalaria species, whereas colonization of 

other related planorbid snails, particularly in the genus Bulinus, is common 

(Laidemitt et al., 2017). This pattern is consistent with the observation that 

Bulinus has a long evolutionary history in Africa and southwest Asia, whereas 

Biomphalaria snails arrived in Africa no longer than 2 million years ago (Woodruff 

and Mulvey 1997; DeJong et al 2001; Morgan et al., 2002). The consistent 

presence of an abundant snail like B. pfeifferi, particularly if it can be 
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immunocompromised by the presence of a trematode like S. mansoni, creates an 

opportunity for an amphistome parasite that normally might develop in a related 

snail species. The frequent deposition of eggs of the amphistome in B. pfeifferi 

habitats thanks to regular use by cattle of streams would further favor this 

possibility. In support of the concept of an incipient host-switching event, several 

phylogenetic studies of schistosomes and other trematodes suggest that host 

switching with respect to the snail host has occurred repeatedly (Brant and Loker 

2013).  

The facilitation effect we observed for C. sukari represents another 

example on a growing list of how pastoralism interfaces with human disease 

ecology. With respect to trematodes, a group of schistosomes distinct from S. 

mansoni includes species like S. haematobium that causes urinary 

schistosmiasis in humans and several closely related species like S. bovis, S. 

mattheei and S. curassoni that infect domestic ruminants (Webster et al., 2013). 

Increased application of molecular genotyping techniques to these schistosomes 

indicate that hybridization is common among them, facilitated by their common 

use of Bulinus snails and of the same aquatic habitats, enabling cercariae of 

these closely-related taxa to be acquired by both human and ruminants. The use 

of aquatic habitats by sheep and cows leads to transmission of the liver flukes 

Fasciola hepatica and F. gigantica by lymnaeid snails (Correa et al., 2010). 

These parasites are now also commonly found in humans in many different 

countries, transmitted to them by ingestion of metacercariae encysted in 

vegetation (WHO 2015). As another kind of example, two of humanity’s most 
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striking tapeworm species, Taenia solium and T. saginata, are acquired by 

ingestion of poorly-cooked pork and beef, respectively, once again pointing out 

how predictable occurrences of behavior involving humans and their domestic 

animals has favored the evolution of parasite lineages with distinctive properties 

(Ito and Budke 2014). 

Habitat permanence and the influence it has on shaping biotic diversity 

and breeding systems of vector snails are also of importance in gaining a general 

underlying understanding of the impact of other trematodes on S. mansoni 

transmission. Ephemeral habitats support relatively low diversity of snail and 

trematode species, but trematode egg input from common definitive hosts like 

cattle and humans can still be high, creating conditions leading to strong 

interactions between amphistomes and S. mansoni noted. Ephemeral or more 

perennial stream environments both favor habitation by a colonizing specialist, 

the predominately selfing B. pfeifferi, a species found to be highly susceptible to 

S. mansoni across Africa, regardless of whether the parasite is of sympatric or 

allopatric origin, or whether the S. mansoni is derived from an area where it is 

customarily transmitted by other Biomphalaria species (Frandsen 1979; 

Charbonnel et al., 2000; Mutuku et al., 2017).  

In more permanent streams, B. pfeifferi’s preference for selfing seems 

particularly maladaptive given the enhanced opportunities for colonization by 

many additional trematode species. The presence of a different, preferentially 

cross-fertilizing species, B. sudanica along the more permanent shoreline of the 

lake make sense in light of the steady pressure imposed by trematodes being 
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inputted into shoreline habitats by definitive hosts, especially birds. Enhanced 

levels of resistance to trematode infection might be expected and that is what is 

seen (15.4% at Kasabong and 12.2% at Asao in B. pfeifferi, 10.9% in B. 

sudanica in the lake). Susceptibility of B. sudanica to S. mansoni is lower than for 

B. pfeifferi, regardless of the origin of the parasite and S. mansoni derived from 

the lake is more infective to B. pfeifferi than it is to sympatric B. sudanica (Mutuku 

et al., 2017), suggestive of the evolution of greater infectivity in a coevolutionary 

hotspot. By contrast, the overall infection rates for B. choanomphala dredged 

from deeper water (0.15%) a coevolutionary coldspot, are much lower than for B. 

pfeifferi or B. sudanica, even though this taxon seems more inherently 

compatible to S. mansoni than B. sudanica.  

In conclusion, we note that in an area of hyperendemic transmission of S. 

mansoni in and around Lake Victoria, this predominantly human parasite 

experiences a broad variety of interactions with diverse definitive and 

intermediate hosts that favor its transmission. However, its transmission is 

modulated by a number of biological realities that relate to animal husbandry, 

presence of diverse populations of vertebrate species and conditions of habitat 

permanence that in turn influence not only the likelihood of S. mansoni infections 

becoming established in their snail vectors, but the likelihood that those 

infections are eventually compromised by other trematode species whose 

transmission is favored by the presence of domestic or wild vertebrate hosts and 

habitat permanence. The results add to a framework that permits more realistic 

models to be constructed which along with field studies lead to a better 
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understanding of the many factors dictating the abundance of this and other 

endemic neglected tropical diseases. 

METHODS 

Field surveys and parasite assessment: To measure transmission patterns of 

trematode parasites in their snail hosts, we sampled 6 sites along a 200 m 

stretch of Asao Stream (-0.31810, 35.00690) in western Kenya every other 

month from January 2014-January 2018. We also sampled 6 sites along a 200 m 

stretch at Kasabong Stream (-0.15190, 34.33550) and one shoreline site at Lake 

Victoria (-0.09410, 34.70760) from Jan 2015-Jan 2018. Sampling in the 

deepwater habitat (-0.085133, 34.071583) in Lake Victoria was done four times 

between Apr 2015 – May 2017. At the stream and shoreline sites, two people 

sampled for 15 minutes using a long-handled triangular mesh scoop, scooping 

the sides of rocks, plants, and the bottom of the substrate to collect snails. We 

used a metal mesh dredge to collect B. choanomphala from 0.5 to 10 m deep 

approximately 10 m from the shoreline of Lake Victoria. Water velocity and pH 

(Hanna Instruments® pH/Conductivity/TDS High-Range Tester) measurements 

were also recorded. Air temperature and rainfall data were collected from the 

Kisumu, Kenya airport weather station. Snails were then transported back to the 

lab and following cleaning and sorting were individually placed into 12-well tissue 

culture plates with 3 ml of aged tap water. The plates were then placed in natural 

light for 2 hr to induce the release of cercariae (“shedding”). Snails were 

identified using the key of Brown and Kristensen (1989), and cercariae were 

provisionally identified using the keys of Frandsen and Christensen (1984), and 
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Schell (1985). Some snails found to be infected with trematodes were used for 

experimental exposures to determine which trematodes were dominant or 

subordinate to S. mansoni (see below). Uninfected snails were placed into 20 L 

plastic aquaria and fed red leaf lettuce and then re-shed 3 weeks post-collection 

to determine if they had harbored prepatent trematode infections (incompletely 

developed infections) at the time of collection. Cercariae were saved in 95% 

ethanol for later molecular analyses.  

Because cryptic species commonly exist among trematodes, we employed 

molecular markers to more precisely differentiate species. We used nuclear 

markers (28S or ITS) and mitochondrial markers (cox1 or nad1) to differentiate 

species. The choice of molecular markers used depended upon the number of 

GenBank records already available for each trematode superfamily. For 

example, there was a greater diversity of GenBank records for ITS than the 28S 

gene for amphistomes. Genomic DNA was extracted from 1-6 cercariae using 

the Qiagen MicroKit (Qiagen, Valencia CA). Primers and details of PCR cycles 

were as reported in Morgan et al. (1998) to amplify the nad1 gene, Tkach et al. 

(2016) to amplify the 28S gene and Laidemitt et al. (2017) to amplify the cox1 

gene. PCR products were purified using ExoSap-IT® (Affymetrix, Santa Clara, 

CA). Both strands were sequenced using an Applied Biosystems 3100 

automated sequencer and BigDye terminator cycle sequencing kit Version 3.1 

(Applied Biosystems, Foster City, CA). Sequences were aligned by eye and 

Maximum Likelihood (ML) phylogenetic analyses were run in Mega 7 (Kumar et 

al., 2016) to determine species or at least genus into which the samples fell.  
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Experimental exposures to examine interactions between S. mansoni and 

the amphistome Calicophoron sukari: 

An experiment was set up to examine the interactions between S. mansoni and 

the common amphistome we provisionally identified as C. sukari (Dinnik and 

Dinnik 1957). Juvenile 2-4 mm lab-reared snails were used in the experimental 

exposures. They were F1 snails derived from uninfected adult B. pfeifferi 

obtained from Asao stream. Snails were fed red leaf lettuce three times a week. 

S. mansoni eggs were collected from 5 primary school children (see ethics 

statement below) and C. sukari eggs were harvested from cow dung samples 

collected along the banks of Asao stream. Eggs from both sources were isolated 

by the techniques reported in Mutuku et al. (2014). After the cattle dung was 

sieved, half of the retained egg-rich material was placed into the refrigerator as a 

source of C. sukari eggs for later parts of the same experiment, and the other 

half was placed in plastic containers and aerated in the dark for 14-16 days. 

Unlike S. mansoni eggs that are already embryonated when retrieved from feces, 

amphistome eggs take approximately 14-16 days to embryonate before hatching.  

Fifty or sixty snails were then assigned to each of the following six 

treatment groups: 1) sham controls (no parasite exposure); 2) snails individually 

exposed to 5 S. mansoni miracidia; 3) snails individually exposed to 5 C. sukari 

miracidia; 4) snails individually exposed to 5 S. mansoni miracidia and two weeks 

later to 5 C. sukari miracidia; 5) snails first individually exposed to 5 miracida of 

C. sukari then two weeks later to 5 miracidia each of S. mansoni; 6) snails 

simultaneously exposed to 5 C. sukari and 5 S. mansoni miracidia. All snails 
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were exposed to miracidia within 2 hours of hatching. Snails were kept in aerated 

20 L tanks and fed red leaf lettuce and shrimp pellets three times a week. Water 

was changed once a week. Snails were individually placed into 12- well cell 

culture plates to determine if they were shedding cercariae starting at three 

weeks post-exposure. This basic experimental protocol was repeated three 

times, in Nov 2014, Nov 2016 and Mar 2017. Experimental exposures were 

analyzed by the variation in parasite infection success using non-parametric 

Kruskal Wallis analysis of variance (ANOVA) of S. mansoni and C. sukari by 

exposure type (single parasite, and mixed species co-exposure), followed by 

pair-wise comparisons. Infection success of each parasite was determined as the 

proportion of B. pfeifferi shedding cercariae.  

Experimental exposures to test for dominance among trematodes: To 

determine which trematodes were more likely to be dominant against S. 

mansoni, two different methods were used to develop the trematode hierarchy. 

The first method used field-derived B. pfeifferi found to be shedding one species 

of cercariae. These were kept in aquaria and were shed twice a week until the 

snail died. A “natural takeover” was recorded if the snail ceased shedding one 

species of cercariae and switched over to shedding a different species of 

cercariae (for example, B. pfeifferi was first shedding S. mansoni and later began 

shedding C. sukari cercariae). The second method was to obtain field-derived B. 

pfeifferi shedding one type of cercariae, or to experimentally expose lab-reared 

B. pfeifferi to a particular species of trematode, and then once the snails were 

shedding cercariae they were re-exposed to a different species of trematode. 
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These snails were isolated and shed twice a week starting three weeks post 

second exposure.  

Histology: Preparation of field-derived and lab-reared exposed snails for 

histology were done by placing the snail in Railliet-Henry’s fluid for at least 48 

hours. The shell of the snail was carefully peeled away from the soft parts of the 

snails and the body of the snail was placed into 10% neutral buffered formalin. 

The snails were sent to TriCore Reference Laboratories in Albuquerque, New 

Mexico for hematoxylin and eosin staining and sectioning. 

Mathematical Modelling Methods:  A deterministic model framework was 

developed, formally described by a system of ordinary differential equations, 

which allowed us to evaluate the impact of C. sukari presence and transmission 

intensity on S. mansoni prevalence in B. pfeifferi and total S. mansoni cercarial 

production. The model addresses the reduction in growth rate, mortality and 

fecundity associated with S. mansoni and C. sukari infections and the timing of 

each trematode infection on consequent S. mansoni or C. sukari cercarial output. 

The equilibrium levels of S. mansoni and C. sukari infection are calibrated to field 

surveys which identify the proportion of B. pfeifferi shedding each trematode. 

This field survey data was then coupled with experimental laboratory data 

to calculate the total proportion of B. pfeifferi infected with each trematode 

species, including those B. pfeifferi who experience infection, but do not 

successfully shed trematode cercariae. The impact of varying levels of C. 

sukari miracidial input into the S. mansoni transmission system is then evaluated 
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with respect to the prevalence of S. mansoni infection in B. pfeifferi and the 

overall S. mansoni cercarial output of the snail population.  

Ethical Approval: Human subjects were enrolled into our study to provide fecal 

samples containing Schistosoma mansoni eggs. We used those eggs to do our 

experimental exposures and to develop our hierarchy. Samples were collected 

and pooled from five primary school children from Obuon primary school near 

Asao Stream, Kenya (00°19’01” S, 035°00’22” E). Consent forms were given and 

signed by the children’s parents. The KEMRI Ethics Review Committee (SSC No. 

2373) and the UNM Institution Review Board (IRB 821021–1) approved all 

aspects of this project involving human subjects. All children tested and found 

positive for S. mansoni were treated with praziquantel following standard 

protocols. Details of recruitment and participation of human subjects for fecal 

collection are described in Mutuku et al. 2014. This project done with the 

approval of Kenya’s National Commission for Science, Technology, and 

Innovation (permit number NACOSTI/P/15/9609/4270), National Environment 

Management Authority (NEMA/AGR/46/2014) and cercariae and snails were 

exported with the approval of the Kenya Wildlife Service permit number 0004754. 
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TABLES AND FIGURES 

Table 1. The four different habitats we surveyed, the intermediate hosts for S. 

mansoni found in each, the number of other trematode species that use the 

respective Biomphalaria species, and the number of co-occurring snail species.  
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Figure 1. A) Typical diagram of the Schistosoma mansoni life cycle in western 

Kenya. B) A more realistic life cycle of S. mansoni. In western Kenya; there are 

multiple species of both mammalian and molluscan intermediate hosts in 

different habitats, all supporting the transmission S. mansoni.  
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Figure 2. Compatibility of the three different snail vectors for S. mansoni. 60 

laboratory-bred B. sudanica, B. choanomphala, and B. pfeifferi were individually 

exposed to 5 S. mansoni miracidia. Reported here is the peak infection 

prevalence.  
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Figure 3. A herd of cattle at Asao Stream in western Kenya, watering alongside 

local women washing their clothes.  
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Figure 4. A graphical depiction of the life cycle of Calicophoron sukari. Adults 

reside in the rumen of domestic ruminants and lay eggs which are passed into 

the environment. Eggs hatch in water into miracidia which seek out the 

intermediate host, Biomphalaria pfeifferi. Miracidia transform into sporocysts 

which give rise to mother rediae, which in turn give rise to daughter rediae. 

Rediae produce cercariae, which emerge from the snail and encyst on vegetation 

and become metacercariae. Metacercariae are consumed by the definitive host 

(ruminant) and excyst in the intestine to become juveniles which mature into 

adults in the rumen.   
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Figure 5. A) Prevalence of S. mansoni, C. sukari, and other trematodes 

(combined) at Kasabong and Asao Stream during the bi-monthly surveys. B) The 

proportion of each major group of trematodes comprising the communities at 

Kasabong and Asao Stream. Numbers are total trematodes found over total 

number of B. pfeifferi collected. C) The number of observed double infections of 

S. mansoni and C. sukari at Asao Stream. Dual infections were observed less 

than what would be expected by chance (p= < 0.0001). D) Pearson correlation of 

S. mansoni prevalence vs. C. sukari prevalence, which are positively correlated 

(p = 0.0009). 
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Figure 6. 100 field-derived non-shedding B. pfeifferi were put into two treatment 

groups (50 snails each), unexposed controls or 5 S. mansoni miracidia exposed. 

Compared to unexposed controls, significantly more B. pfeifferi shed C. sukari (p 

< 0.001). 
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Figure 7. A) Exposure of lab-reared B. pfeifferi to S. mansoni, C. sukari or to 

both (single species controls, simultaneously, or first one species then two weeks 

later the other). Exposures to either species were with 5 miracidia/snail, 50 or 60 

snails were used for each of 5 treatments for 3 separate experiments (total of 

850 snails used). Separate ANOVAs were done for S. mansoni and C. sukari 

(each involving comparison of four groups), followed by pairwise comparisons. B) 

Hematoxylin and esosin stained section of a lab-reared B. pfeifferi exposed to C. 

sukari only. The arrow is pointing to a miracidium embedded in the muscular 

tissue of foot of snail. 
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Figure 8. Trematode species that use B. pfeifferi and/or B. sudanica as first 

intermediate hosts in western Kenya. Red arrows indicate those trematodes we 

found from both snail species, and black arrows indicate those we found in one 

or the other of the snail species. Colored cercariae were dyed with Lugol’s 

solution. Names of species were provisional based on GenBank records. 
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Figure 9. A) The proportion of B. pfeifferi infected with S. mansoni increases 

after release from competition with C. sukari. This increase holds under low, 

moderate and high S. mansoni infection regimes. After an initial increase in S. 

mansoni infection the prevalence reaches an equilibrium higher than the levels 

present with the inclusion of C. sukari in the system. B) With increases in S. 

mansoni miracidial input the output of S. mansoni cercariae also increases. 

Intensification in the input of C. sukari can diminish the impact of increasing S. 

mansoni miracidial input and reduces the output of S. mansoni cercariae. 
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Figure 10. Examples of trematode life cycles that, along with S. mansoni, use 

Kenyan Biomphalaria as first intermediate host, exemplifying the diversity of 

additional hosts they require to complete their life cycles.  
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Figure 11. Hierarchy among trematodes from B. pfeifferi at Asao Stream. At the 

top are shown overall prevalence values for each of the groups of trematodes to 

indicate the most dominant species are not inevitably the most common (see 

text). The numbers adjacent to arrows indicate observed “take-over” events, of 

two kinds: 1) natural, in orange, where a snail from the stream was brought to the 

lab and observed to quit shedding cercariae of one type, and to begin shedding 

cercariae of another type; and 2) experimental, in blue, where a snail from the 

stream shedding one type of cercariae was experimentally exposed to miracidia 

of another trematode species, followed by production of cercariae of the latter 

species. 
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Figure 12.  A) Hematoxylin and eosin stained sections of field-derived B. pfeifferi 

A) infected with echinostome metacercariae lodged in dense muscular tissue of 

foot of snail, and B) hemocyte-encapsulated echinostome metacercariae lodged 

in the pericardium (black arrows).   
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CONCLUSIONS 

Human schistosomiasis is ubiquitous in sub-Saharan Africa, with over 180 million 

people infected (WHO 2017). Chemotherapy based control programs play an 

essential role in contributing to the elimination of human schistosomiasis; 

however, it has been difficult to sustainably reduce the number of infected 

individuals because the rates of reinfections are high, the intermediate snail 

hosts are difficult to control, and the drug praziquantel only targets mature adult 

worms. Given this situation there is an increasing consensus that chemotherapy 

needs to be supplemented by other means if interruption of transmission is to be 

achieved. Therefore, we sought out to characterize the inherent snail and 

trematode diversity at S. mansoni transmission sites, and to test if certain 

trematodes that use the same obligatory snail host, Biomphalaria could disrupt S. 

mansoni’s development. 

 We were motivated to understand interspecific interactions of other 

trematodes against S. mansoni because it has been suggested that trematodes 

which are more dominant than S. mansoni could be used to supplement control 

programs (Bayer 1954; Lim and Heyneman 1972; Moravec et al., 1974; Pointier 

and Jourdane 2000). Therefore, we determined how many other trematodes use 

Biomphalaria as an intermediate host in western Kenya. Combining morphology, 

molecular markers and phylogenetic analyses we found over 20 different species 

of trematodes that use Biomphalaria as an intermediate host. Two groups of 

trematodes that were prominent are the amphistomes and echinostomes. These 

two groups of trematodes develop rediae within their intermediate hosts and the 
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rediae of some echinostome species have been shown to consume S. mansoni 

sporocysts (Lim and Hyneman 1972). We found that 2 different species of 

amphistomes and 6 different species of echinostomes use B. pfeifferi as an 

intermediate host. We developed a dominance hierarchy among the trematodes 

we that use B. pfeifferi as an intermediate host. We found that echinostomes are 

the most dominant trematode and can outcompete amphistomes, S. mansoni, 

strigeids and xiphidiocercariae. We also found that an amphistome (C. sukari) 

was more dominant than S. mansoni, and S. mansoni takes an intermediate 

position in the hierarchy.  The dominance of echinostomes did not translate to be 

the most abundant trematode we collected in our bi-monthly surveys. In fact, C. 

sukari (the amphistome) and S. mansoni were the most common trematodes 

collected. The input of bird-transmitted echinostome eggs into the stream 

habitats we studied is likely dwarfed by the input of eggs from large definitive 

hosts like people and domestic ruminants, meaning that the prevalence achieved 

by S. mansoni or by C. sukari is much higher than achieved by echinostomes. 

Since these two trematodes were commonly transmitted at Asao Stream and 

Kasabong Stream we did experimental exposures to understand their 

interspecific interactions.  

 From our experimental results we found that C. sukari cannot infect B. 

pfeifferi on its own, and in fact relies on S. mansoni (and potentially other 

subordinate trematodes) for its own development. Our results also showed that 

C. sukari could prevent S. mansoni from developing and taking hold in the snail. 

Consequently, nearly all of the C. sukari infections present in streams represent 
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snails once infected with S. mansoni larvae that have been displaced and 

eliminated. The presence of amphistome-infected cattle thereby provides a 

significant protective effect for people in diminishing the number of snails 

producing S. mansoni cercariae. This was further confirmed with our 

mathematical model that showed if we were to take away C. sukari from the 

system there is the large competitive release and the proportion of B. pfeifferi 

infected with S. mansoni increases three-fold. 

This dissertation highlighted the realities of human schistosomiasis 

transmission and how the diversity of other trematodes present in streams and 

lakes in Kenya can constrain the transmission dynamics of the human parasite, 

S. mansoni. We found that S. mansoni transmission is influenced by a number of 

biological realities that relate to animal husbandry, presence of diverse 

populations of vertebrate species and conditions of habitat permanence that in 

turn influence not only the likelihood of S. mansoni infections becoming 

established in their snail vectors, but the likelihood that those infections are 

eventually compromised by other trematode species whose transmission is 

favored by the presence of domestic or wild vertebrate hosts and habitat 

permanence. Our results suggest that certain aspects of biodiversity need to be 

closely studied to understand the interactions of biodiversity and human disease. 

We highlighted that multiple mammalian hosts and snail vectors can increase 

transmission, but on the other hand the diversity of other trematodes that use 

those same vectors can constrain S. mansoni transmission. Our study fits in with 

the recent and ongoing studies that have showcased how biodiversity can either 
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increase or decrease disease transmission and within this dissertation we 

emphasize that certain aspects of parasite biology can provide different biological 

realities all which relate to human disease transmission. 
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