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ABSTRACT	

	

This	dissertation	investigated	the	initial	and	multi-year	effects	of	a	catastrophic	

wildfire	(Las	Conchas	fire	in	2011)	on	adjacent	and	downstream	aquatic	ecosystems	in	

comparison	to	pre-fire	conditions.	Specifically,	the	research	looked	at	1)	multi-year	

water	quality	responses	along	the	river	continuum	using	data	collected	before,	

immediately	after	and	for	multiple	years	post-fire,	2)	differential	water	quality	and	

whole-stream	metabolism	responses	of	paired	headwater	catchments	over	multiple	

years	after	disturbance,	and	3)	fish	communities	at	two	sites	on	a	larger	river	

downstream	of	the	extensive	region	impacted	by	the	catastrophic	wildfire.	Overall,	the	

research	in	this	dissertation	highlights	the	importance	of	long-term	ecological	data	

collection	using	advanced	instrumentation	that	can	be	used	to	evaluate	the	effects	of	a	

changing	climate	and	climate-mediated	disturbances	on	water	resources.	Secondly,	

these	studies	emphasize	the	need	to	collect	water	quality	and	biological	data	at	

temporal	and	spatial	scales	that	more	effectively	capture	the	hydrology	and	water	

quality	dynamics	of	landscape-scale	disturbances	that	are	becoming	more	common	and	

more	destructive	with	climate	change	and	growing	human	impingement	on	forested	

lands.	Thirdly,	this	research	highlights	the	importance	of	evaluating	streamflow	

pathways,	geomorphology,	physiochemical	properties	with	biogeochemical	processes,	

and	watershed-specific	hydrologic	connections	within	their	landscapes	prior	to	and	

following	landscape-scale	disturbance.	
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1	

Introduction	

	

	 Watershed	characteristics	and	processes	control	the	structure	and	function	of	

stream	ecosystems.	Landscape-scale	disturbances	within	a	watershed	often	alter	local	

hydrologic	and	geomorphic	characteristics,	impacting	physiochemical	and	

biogeochemical	characteristics	and	processes	in	adjacent	streams.	These	effects	can	

also	propagate	from	the	source,	transported	by	hydrologic	networks,	impacting	lotic	

ecosystems	tens	to	hundreds	of	kilometers	downstream	of	the	initial	disturbance.	This	

dissertation	investigated	the	initial	and	multi-year	effects	of	a	catastrophic	wildfire	(Las	

Conchas	fire	in	2011)	on	adjacent	and	downstream	aquatic	ecosystems	in	comparison	

to	pre-fire	conditions.	Specifically,	the	research	looked	at	1)	multi-year	water	quality	

responses	along	the	river	continuum	using	data	collected	before,	immediately	after	and	

for	multiple	years	post-fire,	2)	differential	water	quality	and	whole-stream	metabolism	

responses	of	paired	headwater	catchments	over	multiple	years	after	disturbance,	and	

3)	fish	communities	at	two	sites	on	a	larger	river	downstream	of	the	extensive	region	

impacted	by	the	catastrophic	wildfire.		

To	further	the	understanding	of	the	linkages	among	wildfire,	streamflow	

pathways,	and	water	chemistry,	a	network	of	water-quality	sensors	and	streamflow	

gages	were	used	to	assess	initial	and	long-term	effects	of	wildfire	along	a	river	

continuum.	The	water	quality	of	a	3rd-order	(East	Fork	Jemez	River)	and	a	7th	-order	

(Rio	Grande	at	U.S.	550)	stream	in	a	single	watershed	for	5	monsoon	seasons	(i.e.,	June	

through	September)	before,	during,	and	after	a	catastrophic	wildfire	was	evaluated.	The	

wildfire	had	significant	and	sustained	long-term	effects	on	both	streams.	In	the	3rd-

order	stream,	variability	in	dissolved	O2	(DO)	increased	after	the	fire	with	prominent	

DO	sags.	Precipitation	trends	were	similar	to	pre-fire	conditions,	but	episodic	storm	

events	resulted	in	significant	increases	in	stream	discharge	that	led	to	elevated	

turbidity	and	specific	conductance	(SC)	following	the	fire.	In	the	7th-order	stream,	the	

wildfire	led	to	elevated	SC	and	greater	variability	of	the	DO	signal	with	strong	sags	

when	fire	scar	material	was	in	transport,	in	comparison	to	the	pre-fire	records.	Water-

quality	data	from	a	2nd-order	(Jaramillo	Creek),	3rd-order	(East	Fork	Jemez	River),	4th	–



	 	 	

 

	

2	

order	(Jemez	River	near	Jemez	Springs),	and	7th	order	(Rio	Grande	at	U.S.	550)	along	

the	river	continuum	over	a	four-month	period	before,	during,	and	after	the	wildfire	

were	also	evaluated.	Overland	transport	and	debris-flow	events	in	the	2nd-	and	3rd-

order	streams	resulted	in	elevated	particles	(e.g.,	soil,	sediment,	rock,	ash,	charcoal,	and	

plant	biomass)	and	solutes	in	transport	that	elevated	turbidity	and	SC,	and	a	dampened	

DO	signal	likely	due	to	reduced	stream	metabolic	rates	(i.e.,	gross	primary	productivity	

and	ecosystem	respiration).	Less	pronounced	post-fire	effects	in	the	4th-order	stream,	

possibly	because	of	groundwater	contributions	and	a	higher	stream	gradient	with	a	

pool–riffle	geomorphology	increasing	reaeration,	were	observed.	Strong	SC	spikes,	and	

strong	DO	decreases	likely	due	to	intensified	chemical	oxygen	demand	and/or	

biological	oxygen	demand,	were	documented	in	the	7th-order	stream.	The	turbidity	

effects	on	the	7th	order	stream	could	not	be	assessed	due	to	concentrations	exceeding	

the	sensor’s	maximum	detection	limit	(i.e.,	4000	NTU)	prior	to	and	following	the	

wildfire.	These	findings	determined	that	streamflow	pathways,	channel	

geomorphology,	physiochemical	properties,	and	biogeochemical	processes	all	play	a	

central	role	in	the	post-fire	water	quality	responses	along	the	river	continuum.	These	

findings	also	highlight	the	importance	of	collecting	water-quality	measurements	at	

temporal	and	spatial	scales	that	effectively	capture	the	variable	hydrological	dynamics	

of	the	study	sites.	

Post-fire	effects	on	hydrologic	and	geomorphic	processes	are	known	to	alter	the	

sediment	loads	and	water	quality	of	burned	catchments	and	downstream	riverine	

ecosystems.	However,	the	lack	of	high-frequency	and	long-term	data	prior	to	and	

following	a	catastrophic	wildfire	limits	our	understanding	of	how	ecosystem	processes	

respond	and	recover	over	time.	Nine	years	of	high-frequency	water	quality	parameters	

collected	during	the	growing	season	before,	immediately	after,	and	for	multiple	years	

post-fire,	combined	with	streamflow	and	meteorological	records	were	analyzed.	In	

addition,	the	variability	of	water	quality	parameters	over	time	both	pre-fire	and	post-

fire	were	assessed	for	their	effects	on	gross	primary	productivity	(GPP)	and	ecosystem	

respiration	(ER)	in	two	nearly	identical	and	paired	headwater	streams.	Data	from	

before	(3	years	of	data)	and	after	(6	years	of	data)	the	catastrophic	wildfire	were	
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analyzed.	Pre-fire,	a	positive	correlation	between	GPP	and	ER	(r2	>0.4)	in	the	low-

turbidity	(<	10	NTU)	streams	was	observed.	Immediately	following	the	wildfire,	both	

streams	had	elevated	turbidity	(3	to	25x	pre-fire)	and	specific	conductance	(2x	pre-

fire),	>	20%	reduction	in	GPP,	<	10%	reduction	in	ER,	and	positive	correlations	between	

GPP	and	ER	(r2	>0.6).	This	study	found	that	the	shorter-term	(1	to	3	years	post-fire)	

turbidity,	GPP	and	ER	estimates	were	different	between	the	two	streams,	while	the	

longer-term	(4	to	5	years	post-fire)	responses	showed	that	both	systems	had	returned	

to	near	pre-fire	conditions.	To	link	our	results	with	catchment	hydrology,	watershed,	

stream,	and	wildfire	characteristics	were	analyzed.	Paradoxically,	the	results	suggest	

that	the	water	quality	and	ecosystem	responses	(via	metabolism)	to	the	wildfire	of	

these	nearly	identical	streams	were	different	and	likely	controlled	by	watershed-

specific	hydrologic	connections	(i.e.,	stream	gradient	and	watershed	slope)	with	their	

post-fire	landscapes	(i.e.,	burn	severity	and	proximity	to	the	burn	scar).	This	variability	

resulted	in	a	differential	response	in	turbidity,	which	was	found	to	negatively	impact	

GPP	and	ER	post-fire.	Thus,	accounting	for	catchment	specificity	remains	a	relevant,	

open	challenge	for	predicting	watershed-scale	effects	of	wildfire	disturbances	on	

aquatic	ecosystems.	

The	effects	of	wildfire	on	coldwater	fish	communities	in	headwater	streams	

within,	or	in	close	proximity	to	the	burned	areas	are	well	known;	however,	few	studies	

have	evaluated	the	effects	of	a	catastrophic	wildfire	on	downstream	fish	assemblages.	

Long-term	fish	community	survey	data	with	supporting	high-frequency	water	quantity	

and	quality	data	were	analyzed	prior	to	and	following	the	Las	Conchas	fire	at	two	sites	

on	the	Rio	Grande	(i.e.,	7th	order)	that	were	>	20	km	downstream	of	a	major	wildfire.	

The	effects	of	a	>1000-year	rain	event	and	subsequent	flood	(during	year	3	post-fire)	on	

the	fish	community	in	a	post-fire	environment	was	also	evaluated.	Prior	to	the	fire,	

moderate	between-site	overlap	in	commonly	detected	and	abundant	species	was	

observed.	There	was	also	considerable	seasonal	and	interannual	variability	in	the	fish	

community	at	both	sites.	Small	episodic	DO	sags	were	documented	prior	to	the	fire,	

although	concentrations	remained	greater	than	5.5	mg	L-1	throughout	the	year.	During	

the	first	three	years	post-fire,	we	observed	multiple	severe	DO	sags	(<	3	mg	L-1)	in	both	
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reaches.	A	reduction	in	total	fish	abundance,	diversity,	and	evenness,	was	observed	

post-fire	in	the	upstream	community.	In	contrast,	the	community	at	the	downstream	

site	appeared	to	be	generally	unaffected	by	the	effects	from	the	fire.	Following	a	major	

flood	event	in	2013,	a	further	reduction	in	total	and	species-specific	fish	abundance	was	

observed	at	the	upstream	site.	While	total	and	species-specific	abundance,	diversity	and	

evenness	remained	unchanged	at	the	downstream	site	immediately	following	the	large	

flood.	At	the	upstream	site,	two	native	cyprinids,	which	were	commonly	collected	both	

pre-	and	post-fire,	were	absent	during	each	of	the	first	three	surveys	after	the	2013	

flood	event,	and	only	a	single	individual	of	each	species	was	collected	in	the	fourth	

survey	following	the	flood	event.		In	contrast,	a	non-native	catastomid	was	detected	in	

each	of	the	four	surveys	immediately	after	the	flood	at	the	upstream	site,	and	this	

species	exhibited	similar	seasonal	trends	pre-	and	post-fire	years.	Consistent	with	

previous	studies,	the	differential	post-fire	and	post-flood	response	at	the	two	sites	with	

similar	community	composition	and	flow	regime	can	be	attributed	to	1)	the	proximity	

and	quantity	of	fire-impacted	watersheds	upstream	and	2)	non-natives’	tolerance	to	

harsh	abiotic	conditions,	along	with	habitat	generalist	classification.	These	results	

highlight	the	need	to	evaluate	watershed-specific	hydrologic,	water	quality,	and	biotic	

responses	to	fully	assess	the	impacts	of	wildfire	on	downstream	aquatic	ecosystems.	

Forested	watersheds	throughout	the	western	United	States	are	currently	

experiencing	warmer	temperatures,	larger	spring	and	fall	vapor	pressure	deficits,	less	

snow	and	more	rainfall,	and	extended	fire	seasons.	Wildfire	activity	has	increased	

during	each	decade	since	the	1970s.	These	trends	are	forecast	to	grow	worse	in	the	

coming	decades	given	forecasted	increases	in	air	temperature	and	aridity.	Catastrophic	

forest	fires	with	higher	intensities,	larger	areas	burned,	and	longer	durations	are	likely	

future	outcomes.	This	investigation	shows	how	a	large	and	high	intensity	wildfire	

impacts	water	quality,	ecosystem	processes,	and	biotic	communities	in	the	stream	and	

river	network	affected	by	a	large	and	high-intensity	fire.	These	findings	also	

demonstrate	the	importance	of	collecting	long-term	chemical	and	ecological	data	at	

time	scales	that	effectively	capture	the	ecohydrological	dynamics	of	the	watershed	prior	

to	and	following	major	watershed-scale	disturbances.	 	
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Abstract	

	 To	further	our	understanding	of	the	linkages	among	wildfire,	stream	flow	

pathways,	and	water	chemistry,	we	used	a	network	of	water-quality	sensors	and	

streamflow	gages	to	assess	initial	and	long-term	effects	of	wildfire	along	a	river	

continuum.	We	assessed	pre-	and	postfire	water	quality	of	a	2nd-	and	a	4th-order	stream	

in	a	single	watershed	for	5	monsoon	seasons	before,	during,	and	after	a	catastrophic	

wildfire.	Our	findings	documented	that	fire	had	significant	and	sustained	long-term	

effects	on	both	streams.	In	the	2nd-order	stream,	variability	in	dissolved	O2	(DO)	

increased	after	the	fire.	Daily	total	precipitation	was	unchanged,	but	episodic	storm	

events	resulted	in	significant	increases	in	stream	discharge	that	led	to	elevated	

turbidity	and	specific	conductance	(SC).	In	the	4th-order	stream,	fire	led	to	minimal	

measurable	effects	on	turbidity,	elevated	SC,	and	greater	variability	of	the	DO	signal.	We	

also	assessed	water-quality	data	from	4	sites	along	the	river	continuum	for	a	4-mo	

period	before,	during,	and	after	the	wildfire.	Large	overland	and	debris-flow	events	in	

the	1st-	and	2nd-order	streams	resulted	in	elevated	particles	(e.g.,	soil,	sediment,	rock,	

ash,	plant	biomass)	and	solutes	in	transport	that	elevated	turbidity	and	SC	and	
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dampened	the	DO	signal.	We	documented	less	severe	post-fire	effects	in	the	3rd-order	

stream	probably	because	of	groundwater	contributions	and	a	higher	stream	gradient	

with	a	pool–riffle	geomorphology.	We	observed	nominal	changes	in	turbidity,	strong	SC	

spikes,	and	strong	DO	decreases	in	the	4th-order	stream.	Streamflow	pathways,	

geomorphology,	physiochemical	properties,	and	biogeochemical	processes	play	a	

central	role	in	the	postfire	water-quality	response	along	the	river	continuum.	Our	

findings	highlight	the	importance	of	collecting	water-quality	measurements	at	temporal	

and	spatial	scales	that	effectively	capture	hydrological	dynamics.	

Keywords:	water	quality,	forest	fire,	continuous	monitoring,	river	continuum,	

disturbance,	dissolved	oxygen,	turbidity,	specific	conductance.	

Introduction	

Forests	in	the	western	USA	have	a	‘fire	deficit’	linked	to	synergistic	effects	of	fire	

suppression,	landuse	change,	and	ongoing	climate	change	(Marlon	et	al.	2012).	The	

combination	of	elevated	winter	temperature	and	associated	reduced	spring	snow	

accumulation	(Cayan	et	al.	2001,	Mote	et	al.	2005),	reduced	winter	precipitation	minus	

evaporation	(Seager	et	al.	2007),	greater	frequency	and	duration	of	droughts	(Seager	et	

al.	2007),	earlier	spring	snowmelt	(Cayan	et	al.	2001,	Stewart	et	al.	2004),	and	greater	

vapor-pressure	deficit	in	the	warm	season	(Williams	et	al.	2012)	has	amplified	the	

stress	on	western	US	forests	and	has	led	to	an	increase	in	fire	frequency	and	intensity	in	

the	southwestern	USA	(Westerling	et	al.	2006,	Allen	et	al.	2010).	Widespread	and	high-

intensity	wildfires	cause	considerable	hydrologic	and	geomorphic	changes	in	affected	

watersheds	(DeBano	2000,	Shakesby	and	Doerr	2006)	including	extreme	floods	and	

debris	flows	(Neary	et	al.	2002,	Pausas	et	al.	2009)	with	serious	implications	for	water	

quality,	drinking	water	sources	(Writer	and	Murphy	2012,	Bladon	et	al.	2014),	and	

aquatic	ecosystems	(Bisson	et	al.	2003,	Romme	et	al.	2011).		

Specific	wildfire-induced	water-quality	effects	are	numerous.	Increased	

sediment	loading	from	fire	negatively	affects	stream	and	river	channels	(Malmon	et	al.	

2007,	Smith	et	al.	2011,	Goode	et	al.	2012,	Moody	et	al.	2013)	by	elevating	in-stream	

turbidity	levels	(Rhoades	et	al.	2011,	Oliver	et	al.	2012,	Sherson	et	al.	2015).	Ash	inputs	
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and	elevated	erosion	also	increase	the	transport	of	major	ions	and	elevates	postfire	

specific	conductance	(SC)	values	(Earl	and	Blinn	2003,	Lyon	and	O’Connor	2008,	Dahm	

et	al.	2015)	and	in-stream	nutrients	(Spencer	and	Hauer	1991,	Oliver	et	al.	2012,	Miller	

et	al.	2013,	Sherson	et	al.	2015).	Decreases	in	dissolved	O2	(DO)	to	hypoxia	(<2	mg/L)	

also	have	been	observed	(Verkaik	et	al.	2013,	Dahm	et	al.	2015,	Sherson	et	al.	2015).	

Previous	investigators	have	used	discrete	or	event-driven	sampling	methods	to	

document	the	negative	effect	of	wildfire	on	water	quality	(Townsend	and	Douglas	2000,	

Earl	and	Blinn	2003,	Rhoades	et	al.	2011,	Oliver	et	al.	2012).	Relying	on	discrete	

samples,	even	at	weekly	intervals,	does	not	always	provide	the	temporal	resolution	to	

understand	the	linkage	between	catchment	hydrology	and	stream	water	chemistry	

(Kirchner	et	al.	2004,	Johnson	et	al.	2007).	High-frequency	and	high-resolution	data	are	

needed	to	improve	our	understanding	of	highly	dynamic	and	fast	changing	

ecohydrological	processes	(Kirchner	et	al.	2004).	Data	collection	also	must	be	spatially	

distributed,	long-term,	and	real-time	to	capture	the	ecohydrological	dynamics	and	

large-scale	implications	effectively	(Krause	et	al.	2015).	Establishment	and	maintenance	

of	in	situ,	long-term,	continuous	water-quality	monitoring	networks	before	and	after	

fire	events	is	economically	and	logistically	difficult	but	is	a	crucial	step	for	assessing	

post-wildfire	effects	on	stream	chemistry	(Smith	et	al.	2011).	A	few	investigators	(Lyon	

and	O’Connor	2008,	Dahm	et	al.	2015,	Sherson	et	al.	2015)	have	used	continuously	

deployed	water-quality	and	nutrient	sensors	to	capture	the	effects	of	wildfire	on	

aquatic	systems,	but	these	investigators	focused	on	the	initial	response	within	a	single	

stream	order.		

	 The	River	Continuum	Concept	(RCC;	(Vannote	et	al.	1980)	presents	a	gradient	of	

physical	variables	from	headwater	to	terminus,	and	has	been	used	to	predict	and	

compare	biological	aspects	of	lotic	systems.	We	used	this	framework	to	analyze	data	

from	a	network	of	continuously	deployed,	multiparameter	water-quality	sensors	

(sondes)	in	the	Jemez	Mountains	and	Rio	Grande	in	New	Mexico.	This	network	lies	

within	and	downstream	of	major	catchments	burned	by	the	Las	Conchas	(LC;	2011)	and	

Thompson	Ridge	(2013)	fires.	Our	goals	were	to	use	continuous	water	quality	and	

quantity	data	to:	1)	assess	the	pre-	and	postfire	water	quality	of	a	2nd-	and	a	4th-order	
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stream	in	a	single	watershed	for	5	summer	monsoon	seasons	before,	during,	and	after	a	

catastrophic	wildfire;	and	2)	investigate	the	water-quality	response	(turbidity,	specific	

conductance	(SC)	and	dissolved	O2	[DO])	along	the	river	continuum	(1st-	to	4th-order	

streams)	for	a	4-mo	period	that	included	a	catastrophic	wildfire.		

	

Methods	

Watershed	and	site	descriptions	

We	worked	in	headwater	streams	of	the	Jemez	Mountains	(Fig.	1A–C).	We	

focused	on	Jaramillo	Creek	(JC;	1st	order;	Fig.	S1A),	and	the	East	Fork	Jemez	River	(EFJR;	

2nd	order,	Fig.	S1B)	in	the	Valles	Caldera	National	Preserve	(VCNP;	Fig.	1C).	JC	(Fig.	S1A)	

is	a	major	tributary	to	the	EFJR	(Van	Horn	et	al.	2012).	The	Jemez	River	is	a	tributary	of	

the	Middle	Rio	Grande	(MRG;	the	Rio	Grande	from	the	US	Geological	Survey	streamflow	

gage	at	Otowi	(08313000)	above	Cochiti	Dam	to	Elephant	Butte	Reservoir)	in	central	

New	Mexico	(Fig.	1A,	B).	The	Jemez	River	enters	the	Rio	Grande	6.4	km	north	of	the	US	

550	bridge	in	the	town	of	Bernalillo,	New	Mexico	(Fig	1B,	S1D).	Jemez	Canyon	Dam	is	

1.6	km	upstream	of	the	confluence	and	has	been	operated	as	a	pass-through	facility	

since	2002	(U.S.	Army	Corps	of	Engineers	2009)	(Fig.	1B).	

The	Jemez	Mountains	are	semi-arid	and	seasonally	snow-covered.	

Approximately	½	of	the	regional	precipitation	occurs	from	October	to	April	in	the	form	

of	rain	and	snowfall	(Bowen	1996).	The	remainder	occurs	as	rainfall	associated	with	

the	North	American	monsoon,	during	the	primary	monsoon	(July,	August)	and	

transition	(June,	September)	months.	The	large	elevation	gradient	results	in	high	

variability	in	the	vegetation	community,	which	includes	Engelmann	spruce	(Picea	

engelmannii)	and	corkbark	fir	(Abies	lasiocarpa	var.	arizonica)	above	3040	m	asl;	

Douglas	fir	(Pseudotsuga	menziesii),	white	fir	(Abies	concolor)	and	blue	spruce	(Picea	

pungens),	and	scattered	aspen	stands	(Populus	tremuloides)	between	3040	and	2740	m;	

ponderosa	pine	(Pinus	ponderosa)	and	Gambel	oak	(Quercus	gambelii)	below	2740	m;	

and	montane	wet	meadows	and	wetlands	of	the	Valles	Caldera	(Muldavin	et	al.	2006).	

The	soils	in	the	VCNP	are	generally	classified	as	forest	(Andisols,	Alfisol,	and	Inceptisol	
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soil	orders)	and	grassland	(Mollisols)	soils	(Muldavin	and	Tonne	2003).		

The	JC	and	EFJR	sites	were	within	an	expansive,	high-elevation	(>2590	m)	

meadow	valley	with	minimal	overstory	vegetation	(Sherson	et	al.	2015)	in	the	1.25	Ma-

year-old	Valles	Caldera	(Goff	et	al.	2006).	The	JC	sonde	is	~5.4	km	upstream	of	the	

confluence	with	the	EFJR	(Fig.	1C).	Subsurface	flow	and	groundwater	contribute	most	of	

the	stream	water	to	the	EFJR	except	during	intense	monsoonal	thunderstorms	when	

contributions	from	near-surface	runoff	occur	(Liu	et	al.	2008).	Stream	discharge	data	

for	JC	were	obtained	from	the	Catalina-Jemez	Critical	Zone	Observatory	(CZO)	(Broxton	

et	al.	2009),	~7.3	km	upstream	of	the	sonde.	The	EFJR	sonde	is	~1.0	km	upstream	of	the	

VCNP	stream	gage.	The	Jemez	River	(JR;	3rd	order)	sonde	is	upstream	of	the	confluence	

with	the	Rio	Guadalupe	in	the	town	of	Jemez	Springs,	New	Mexico	(Figs	1B,	S1C).	

Surface-water	inputs	and	shallow	and	deep	groundwater	inputs	contribute	surface	

water	flow	in	this	river	reach	(Trainer	et	al.	2000).	The	US	Geological	Survey	(USGS)	

stream	gage	on	the	JR	(08324000)	is	~14.6	km	downstream	of	the	sonde	and	1.9	km	

downstream	of	the	confluence	with	the	Rio	Guadalupe	(Fig.	1B).		

	 Within	the	mainstem	of	the	Rio	Grande,	we	focused	on	the	sonde	at	the	US	550	

Bridge	(US	550;	4th	order),	in	Bernalillo,	New	Mexico	(Fig.	1B).	We	selected	this	site	

because	it	is	upstream	of	major	urban	stormwater	and	wastewater	point-source	

discharges	and	below	tributaries	affected	by	recent	wildfires.	We	used	the	USGS	stream	

gage	at	San	Felipe	(08319000),	which	is	20.1	km	upstream	of	US	550,	to	document	

specific	flow	events.	Perennial	tributaries	upstream	of	Cochiti	Dam	(Fig.	1B)	are	the	

major	sources	of	surface-water	flow	(Ortiz	and	Lange	1996)	except	during	intense	

rainfall	or	heavy	snowmelt	(Moore	and	Anderholm	2002).	The	MRG	is	considered	a	

predominantly	losing	stream	(i.e.,	a	stream	that	loses	surface	water	to	the	saturated	

zone)	(McAda	and	Barroll	2002).	Discharge	downstream	of	Cochiti	Dam	is	

predominantly	from	controlled	releases,	and	ephemeral	and	intermittent	streams	

downstream	of	the	dam	provide	minimal	surface-water	inputs	except	during	periods	of	

intense	summer	monsoonal	rainfall	(often	flowing	for	≤1	d/event)	(Moore	and	

Anderholm	2002).	Despite	the	infrequency	of	surface-water	inflow,	these	ephemeral	

and	intermittent	systems	contribute	large	amounts	of	suspended	sediment,	turbidity,	
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solutes,	and	nutrients	to	the	Rio	Grande	(Healy	1997,	Moore	and	Anderholm	2002,	

Dahm	et	al.	2015).	The	MRG	is	a	naturally	turbid	river,	except	during	periods	when	

clear-water	flow	from	Cochiti	Dam	is	the	only	contributing	source	of	surface	water	to	

the	system	(e.g.,	during	winter	base	flow)	(Dahm	et	al.	2013).	We	obtained	stream	order	

for	study	reaches	from	the	USGS	National	Hydrography	Dataset,	which	uses	Strahler	

stream	order	(Strahler	1952).		

Wildfire	descriptions	

The	Las	Conchas	(LC)	fire	began	on	26	June		2011	and	was	100%	contained	on	3	

August	2011.	During	this	period,	the	fire	burned	~63,370	ha	of	mixed	conifer	and	

ponderosa	pine	forest,	pinyon-juniper	woodland,	high	elevation	montane	grassland,	

and	meadows	in	the	Jemez	Mountains	(Fig.	1B).	At	that	time,	the	fire	was	the	largest	

forest	fire	recorded	in	the	history	of	New	Mexico.	The	US	Forest	Service’s	Burned	Area	

Emergency	Response	team	developed	a	soil	burn-severity	map	for	the	fire.	Soil	burn	

severity	is	indicative	of	the	degree	of	impact	on	soil	and	ground	properties	that	may	

affect	infiltration,	runoff,	and	erosion	potential	(Parsons	2002),	and	the	maps	are	used	

to	prioritize	treatments	and	protect	at-risk	resources	(Bobbe	et	al.	2001).	The	maps	are	

based	on	pre-	and	postfire	satellite	imagery	comparisons	and	field	surveys	(vegetation,	

ground	cover,	water	repellency,	and	soil	characteristics),	and	areas	on	the	maps	are	

grouped	into	unburned,	low,	moderate,	and	high	severity	categories	(Parsons	et	al.	

2010).	The	burn	severity	of	the	LC	fire	was	~20%	high,	26%	moderate,	39%	low,	and	

15%	unburned	(Fig.	1C).	We	used	Hydrologic	Unit	Codes	(HUC)	subunits	in	

combination	with	the	LC	burn	perimeter	to	calculate	%	area	burned	in	ArcGIS	(ArcGIS	

Desktop:	Release	10.	Environmental	Systems	Research	Institute,	Redlands,	California).	

The	LC	fire	burned	31%	of	the	JC	catchment	and	36%	of	the	EFJR	catchment.	The	

Thompson	Ridge	fire	began	on	31	May	2013	and	was	declared	100%	contained	on	1	

July	2013.	This	fire	burned	9698	ha	of	grassland,	Ponderosa	pine	forest,	and	mixed	

conifer	forest	near	and	within	the	VCNP	(Fig.	1B).	The	burn	severity	of	the	Thompson	

Ridge	fire	was	3%	high,	23%	moderate,	and	74%	low/unburned.		

Dahm	et	al.	(2015)	identified	the	Peralta	Creek	watershed	(of	which	~7252	ha	
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[62%	burnt])	as	a	major	contributor	of	water-quality	impacts	to	the	MRG	downstream	

of	Cochiti	during	July	and	August	2011.	This	tributary	is	an	ungaged	ephemeral	stream	

that	enters	the	Rio	Grande	below	Cochiti	Dam	(Fig	1B).	Cochiti	Reservoir	and	its	

controlled	hypolimnetic	releases	significantly	buffered	the	monsoon	flood	pulses	and	

water-quality	excursions	immediately	after	the	LC	fire,	with	the	exception	of	2	water-

quality	excursions	(elevated	SC	and	turbidity	and	~1.5	mg/L	decrease	in	DO)	observed	

at	the	USGS	continuous	streamflow	and	sonde	(08317400)	immediately	downstream	of	

the	dam	(Dahm	et	al.	2015).	Sherson	et	al.	(2015)	also	documented	postfire	water-

quality	effects	in	the	headwater	streams	of	the	Jemez	during	the	2011	monsoon	season	

with	a	focus	on	EFJR.		

Continuous	measurements	

	Water-quality	data	(turbidity,	DO,	and	SC)	were	collected	at	15-min	increments	

by	with	multiparameter	sonde	models:	Yellow	Springs	Instruments	(YSI)	6920	(YSI	

Inc./Xylem	Inc.,	Yellow	Springs,	Ohio),	YSI	EXO	1,	and	In-Situ	9500	troll	(In-Situ	Inc.,	

Fort	Collins,	Colorado).	The	range,	resolution,	and	accuracy	of	each	probe	are	provided	

in	Table	S1.	The	maximum	detection	limit	(MDL)	for	the	turbidity	probes	deployed	

varies	greatly	(Table	S1)	among	the	YSI	6920	(1000	NTU),	9500	Troll	(2000	NTU),	and	

YSI	EXO	(4000	NTU)	and	we	took	this	variability	into	consideration	during	the	analyses.	

We	made	site	visits	at	2-	to	4-wk	intervals	to	clean	and	calibrate	the	sondes	following	

USGS	standard	operating	procedures	(Wagner	et	al.	2006).	We	calibrated	probes	with	

laboratory-grade	conductivity,	pH,	and	turbidity	standards.	We	calibrated	DO	in	water-

saturated	air	or	air-saturated	water.	We	recorded	detailed	field	information	during	

each	site	visit	(site	and	river	conditions,	observed	probe/sonde	burial	or	fouling,	pre-	

and	post-cleaning	values,	pre-	and	post-calibration	values,	and	values	from	a	

laboratory-calibrated	comparison	sonde).	Data	gaps	in	the	water-quality	records	were	

caused	by	multiple	factors	(e.g.,	a	sonde	was	not	deployed,	probe	was	buried/out	of	the	

water,	probe	malfunction,	probe	fouling).	Gaps	exist	in	the	long-term	continuous	

records,	but	these	methods	still	provide	a	much	greater	temporal	resolution	and	

completeness	than	traditional	periodic	grab	or	event	sampling.		
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We	compiled	and	validated	water-quality	data	with	Aquarius	Workstation	3.3	

(Aquatic	Informatics,	Vancouver,	British	Columbia).	We	flagged	suspect	data,	and	

documented	the	possible	causes	of	low-quality	data	(i.e.,	instrument	fouling,	exposure	

to	air,	burial,	probe	or	wiper	malfunction,	low	voltage).	We	used	data	collected	in	the	

field	(see	above)	to	correct	sonde	data	for	fouling	drift	and	calibration	drift.	Suspect	

data	that	could	not	be	corrected	were	removed	from	the	record.	We	used	data	from	

colocated	(i.e.,	deployed	<50	m	apart	in	similar	flow	conditions)	sondes	maintained	by	

the	VCNP	(EFJR)	and	USGS	(Rio	Grande	at	US	550)	to	fill	data	gaps	in	the	water-quality	

record	and	to	provide	additional	data	validation.		

We	used	stream	discharge	estimates	from	the	USGS	(JR	near	Jemez	Springs	and	

Rio	Grande	at	San	Felipe),	VCNP	(EFJR),	and	CZO	(JC).	All	stations	were	equipped	with	a	

pressure	transducer	(HOBO	30-Foot	Depth	Water	Level	Data	Logger;	Onset	Computer	

Corporation,	Bourne,	Massachusetts)	that	collected	data	at	10-	to	30-min	increments	in	

the	bottom	of	a	stilling	well	to	infer	water	levels	(corrected	for	barometric	pressure	and	

temperature).	Rating	curves	were	developed	and	periodically	updated	using	direct	

streamflow	measurements	by	the	USGS	(2015)	and	VCNP	(Condon	and	Gregory	

Unpublished).	Water	levels	at	JC	were	used	in	conjunction	with	an	in-stream	flume	to	

estimate	discharge	at	this	station	(Broxton	and	Troch	Unpublished).	We	obtained	daily	

total	precipitation	data	from	the	weather	station	at	the	VCNP	headquarters	(VCNP	HQ;	

Western	Regional	Climate	Center	2014),)	which	is	~2.5	km	upstream	of	the	EFJR	sonde.		

Data	analysis	

To	document	the	long-term	water	quality	along	the	river	continuum,	we	

conducted	an	analysis	for	the	EFJR	and	US	550	during	the	monsoon	seasons	before,	

during,	and	after	the	LC	fire.	We	selected	2	prefire	years	with	the	most	complete	water-

quality	records	for	all	water-quality	variables	for	the	EFJR	(2008	and	2009)	and	US	550	

(2007	and	2008).	The	2010	data	were	excluded	because	of	incomplete	water-quality	

records	for	all	variables.	We	calculated	summary	statistics	for	the	time-series	data	for	

each	water-quality	variable	at	each	station	(Table	1).	We	generated	pre-	and	postfire	

histograms	for	each	variable	at	each	station	using	the	percent-of-total	(POT)	
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measurements	because	of	the	variability	in	pre-	and	postfire	sample	sizes	(see	Table	1).	

We	used	a	2-sample	Kolmogrov–Smirnov	(KS)	test	implemented	in	RStudio	(version	

0.98.501;	RStudio,	Boston,	Massachusetts)	to	perform	a	nonparametric	value-

distribution	analysis	(Corder	and	Foreman	2014)	to	assess	whether	the	pre-	and	

postfire	data	came	from	the	same	distribution.	The	2-sample	KS	test	is	a	powerful,	

nonparametric	method	that	evaluates	the	divergence	between	the	cumulative	

distribution	functions	of	the	2-sample	data	vectors	over	the	range	of	x	in	each	data	set	

(Young	1977).	We	evaluated	the	null	hypotheses	at	α	=0.05.	

We	removed	missing	values	before	running	the	KS	test	(sample	sizes	for	each	

sample	are	provided	in	Table	1).	To	normalize	for	variations	in	the	turbidity	probe	

MDL,	we	set	all	values	>1200	NTU	to	1200	NTU	based	on	observations	that	the	YSI	

6920	probe	recorded	reliable	data	up	to	1200	NTU	when	deployed	with	other	probes	

with	greater	MDLs	(Table	S1).	We	used	the	validated	15-min	record	for	turbidity,	SC,	

and	DO	analyses.	We	also	calculated	the	DO	daily	(0000–2345	h)	minimum	and	

maximum	because	we	were	interested	in	both	daily	high	and	low	values	and	potential	

effects	of	nutrient	fertilization	(Table	1).		

We	used	the	KS	test	to	evaluate	the	effects	of	wildfire	on	hydrologic	flow	paths	

and	discharge.	We	conducted	a	POT	analysis	of	daily	precipitation	at	the	VCNP	HQ	

station	and	instantaneous	stream	flow	at	the	EFJR	stream	gage	to	compare	pre-	and	

postfire	daily	precipitation	and	instantaneous	discharge.	We	did	not	analyze	

precipitation	and	discharge	data	on	the	Rio	Grande	because	we	were	interested	in	fire-

related	changes	in	discharge	and	flow	path	contributions	in	the	affected	headwaters	

that	then	propagated	to	lower	reaches.		

	

Results	

Precipitation	and	discharge	in	a	2nd-order	system	affected	by	wildfire	

	 We	used	the	EFJR	to	assess	changes	in	precipitation	and	discharge	during	the	

monsoon	seasons	before	and	after	the	LC	fire.	Greater	than	80%	of	the	monsoonal	
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precipitation	events	at	the	VCNP	HQ	station	before	and	after	the	LC	fire	fell	into	the	0	to	

5	mm/d	bin,	with	similar	distributions	and	variability	observed	during	both	periods	

(Figs	S2A,	S3).	Pre-	and	postfire	means	were	2.31	and	2.96	mm/d,	respectively	(Table	

1),	with	maximum	values	of	48.26	and	56.13	mm/d,	respectively	(Table	1).	The	null	

hypothesis	was	not	rejected	(Table	2).		

Minimal	change	occurred	in	baseflow	discharge	pre-	and	postfire	(Table	1)	on	

the	EFJR	(0.04	m3/s	and	0.017	m3/s	decrease	in	the	median	and	mean,	respectively),	

and	>80%	of	the	stream	discharge	values	fell	into	the	0	to	0.25	m3/s	bin	for	both	

periods	(Fig.	S2B).	However,	post-fire	precipitation	events	(Fig.	S3)	increased	the	

magnitude	of	discharge	(Fig.	S4)	resulting	in	a	histogram	that	was	right	skewed	(Fig.	

S2B).	The	pre-	and	postfire	maximum	discharge	values	were	0.492	and	3.620	m3/s,	

respectively	(Table	1).	The	null	hypothesis	was	rejected	(Table	2).	

Water	quality	in	a	2nd-order	and	a	4th-order	system	affected	by	wildfire	

We	selected	the	EFJR	(2nd	order)	and	US	550	(4th	order)	to	assess	water	quality	

(turbidity,	SC	and	DO)	during	the	monsoon	seasons	before,	during,	and	after	the	LC	fire.	

The	EFJR	showed	dramatic	increases	in	turbidity	after	the	fire.	Before	the	fire,	>90%	of	

all	turbidity	values	were	<50	NTU	and	no	values	were	>100	NTU	(Fig.	2A).	After	the	fire,	

15%	of	all	values	were	>150	NTU,	and	5%	were	>400	NTU.	The	median	turbidity	

decreased	by	3.4	NTU	postfire,	whereas	the	mean	turbidity	increased	by	22.5	NTU	

postfire	(Table	1).	During	monsoonal	thunderstorms	before	the	fire,	turbidity	peaked	

between	15	and	150	NTU,	whereas	turbidity	during	thunderstorms	peaked	between	

250	and	1200	NTU	after	the	fire	(Fig.	S5).	The	null	hypothesis	was	rejected	(Table	2).	

US	550	showed	minimal,	but	statistically	significant	(Table	2)	changes	in	

turbidity	after	the	fire.	Before	the	fire,	turbidity	at	this	site	regularly	exceeded	200	NTU,	

and	7%	of	the	total	values	were	>1150	NTU	(Fig.	2B).	Postfire	values	regularly	

exceeded	200	NTU,	and	11%	of	the	total	values	were	>1150	NTU.	In	2013,	an	EXO	

turbidity	probe	detected	turbidity	>4000	NTU	MDL	during	postfire	monsoon	storm	

pulses	at	this	site.	The	median	pre-	and	postfire	turbidity	increased	only	30	NTU	

postfire	(Table	1).	During	pre-	and	postfire	monsoonal	thunderstorms	upstream	of	US	
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550,	turbidity	regularly	exceeded	1200	NTU	(Fig.	S6).	The	null	hypothesis	was	rejected	

(Table	2).	

The	EFJR	showed	clear	increases	in	SC	after	the	fire	(Table	1),	resulting	in	a	

histogram	that	was	right	skewed	(Fig.	3A).	The	median	and	mean	SC	showed	minimal	

variation	with	only	0.033	and	0.046	mS/cm	increases	postfire,	respectively	(Table	1).	

During	prefire	monsoonal	thunderstorms,	SC	increased	to	a	maximum	of	0.15	mS/cm,	

in	pulses	that	were	infrequent	and	dissipated	within	hours	(Fig.	S7).	During	postfire	

events,	SC	pulses	peaked	between	0.150	and	0.350	mS/cm,	with	durations	from	hours	

to	weeks	(Fig.	S7).	The	null	hypothesis	was	rejected	(Table	2).	

US	550	also	showed	clear	increases	in	SC	after	the	fire	(Table	1),	and	the	

distribution	shifted	to	the	right	(Fig.	3B).	The	median	and	mean	SC	showed	minimal	

variation	with	only	0.005	and	0.023	mS/cm	increases	postfire,	respectively	(Table	1).	

SC	peaks	also	increased.	Prefire	peaks	from	monsoonal	thunderstorms	were	between	

0.500	and	1.130	mS/cm,	and	postfire	peaks	were	between	0.500	and	3.740	mS/cm	(Fig.	

S8).	The	null	hypothesis	was	rejected	(Table	2).	

	 The	DO	signal	at	EFJR	changed	strongly	after	the	fire.	Postfire,	the	minimum,	

median,	and	mean	decreased,	whereas	the	daily	maximum	increased	(Table	1)	and	the	

interquartile	range	(IQR)	expanded	in	both	directions	(Table	1).	POT	analysis	

documented	a	positive	and	negative	expansion	of	the	DO	distribution	(Fig.	4A),	positive	

and	negative	expansion	of	the	daily	DO	maximum	distribution	(Fig.	S9A),	and	a	negative	

expansion	of	the	daily	DO	minimum	distribution	(Fig.	S10A).	The	DO	time	series	(Fig.	

S11)	showed	a	strong	prefire	diel	signal	that	expanded	in	both	directions	(i.e.,	lower	

daily	minimum	and	higher	daily	maximum)	postfire.	During	postfire	discharge	events	

(Fig.	S4),	DO	maxima	were	severely	reduced,	whereas	DO	minima	were	only	minimally	

reduced	(Fig.	S11).	This	signal	dampening	also	was	observed	prefire	after	changes	in	

discharge,	but	was	less	frequent	and	less	severe	(Fig.	S11).		

The	DO	signal	and	distribution	also	changed	postfire	at	US	550.	Change	in	the	

median	was	minimal	(0.1	mg/L),	and	the	mean	did	not	change	(Table	1).	However,	the	

DO	minimum	was	lower	and	the	maximum	was	greater	after	than	before	the	fire	(Table	

1).	POT	analysis	showed	positive	and	negative	expansions	of:	1)	the	DO	signal	
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distribution	(Fig.	4B),	2)	the	daily	DO	maximum	distribution	(Fig.	S9B),	and	3)	the	daily	

DO	minimum	distribution	(Fig.	S10B).	Before	the	fire,	the	DO	signal	(Fig.	S12)	was	fairly	

stable	throughout	the	monsoon	season,	with	small	daily	variability.	During	postfire	

discharge	events	(Fig.	S13)	the	DO	minima	were	substantially	lower	(Fig.	S12).	The	null	

hypotheses	for	the	DO	signal,	daily	minimum	DO,	and	daily	maximum	DO	at	the	EFJR	

and	DO	at	the	Rio	Grande	at	US	550	were	rejected	(Table	2).		

Initial	postfire	response	along	the	river	continuum	

We	selected	JC,	EFJR,	JR,	and	US	550	data	to	assess	the	initial	response	during	the	

monsoon	season	before,	during,	and	after	the	LC	fire.	Approximately	1	mo	after	the	

onset	of	the	LC	fire,	monsoon	precipitation	events	resulted	in	changes	in	discharge	

along	the	continuum	(Fig.	5A).	The	postfire	discharge	events	coincided	with	turbidity	

>1000	NTU	at	all	stations	along	the	river	continuum	(Fig.	5B).	In	August	2011,	turbidity	

measurements	on	the	Rio	Grande	at	US	550	during	water-quality	excursions	were	

>1200	NTU	then	immediately	dropped	to	0	NTU,	while	SC	(Fig.	5C)	increased	and	DO	

decreased	(Fig.	5D).	The	failure	to	detect	turbidity	at	US	550	during	some	of	these	

events	(because	of	instrumental	issues;	see	below)	was	not	seen	in	the	headwater	

streams.		

	SC	initially	decreased	during	fire-related	pulses	followed	by	strong	increases	in	

maximum	values	to	0.33,	0.33,	0.92,	and	2.34	mS/cm	at	the	JC,	EFJR,	JR.	and	US	550	

sites,	respectively	(Fig.	5C).	The	diurnal	variability	of	the	DO	signal	during	fire-affected	

discharge	events	was	almost	completely	absent	from	JC	and	EFJR	(Fig.	5D).	Multiple	DO	

depressions	(<4	mg/L)	were	observed	at	JR	and	EFJR	during	this	period	with	

depressions	to	0.14	and	0.96	mg/L,	respectively	(Fig.	5D).	The	DO	signal	at	JR	was	

depressed	during	discharge	events,	but	did	not	drop	<6.9	mg/L	(Fig.	5D).	The	diurnal	

DO	signal	at	US	550	was	completely	absent	during	this	period,	and	10	DO	depressions	

(<4	mg/L)	occurred	in	July	and	August	(Fig.	5D).		
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Discussion	

Fire	effects	on	2nd-	and	4th-order	streams	

	 Erosive	overland	flow	responsible	for	large	sediment	inputs	to	streams	is	

observed	rarely	in	undisturbed	grassland	and	forested	catchments	(Shakesby	and	

Doerr	2006).	Before	the	fire,	the	EFJR	fit	this	pattern,	and	subsurface	flow	and	

groundwater	contributed	most	of	the	water	during	the	monsoon	season	with	negligible	

contributions	from	near-surface	or	overland	flow	during	summer	baseflow	periods	(Liu	

et	al.	2008).	The	single	prefire	exception	was	during	heavy	(20–40	m/d)	and	

continuous	rainfall	when	near-surface	water	contributed	to	the	EFJR	(Liu	et	al.	2008)	as	

a	result	of	saturated	overland	flow.	Wildfire	removes	forest	litter	that	promotes	water	

storage	(Shakesby	and	Doerr	2006),	reduces	or	halts	transpiration	(Loaiciga	et	al.	

2001),	and	induces	or	enhances	pre-existing	water	repellency	of	soils	by	altering	

physical	and	chemical	properties	of	the	soil	(Shakesby	and	Doerr	2006).	The	daily	total	

precipitation	POT	analysis	(Fig.	S2A,	Table	2)	showed	statistically	similar	pre-	and	

postfire	daily	precipitation	distributions.	However,	analysis	of	the	discharge	record	at	

the	EFJR	(Fig.	S2B,	Table	2)	confirmed	a	significant	increase	in	postfire	discharge	(Fig.	

S4)	during	episodic	monsoonal	precipitation	events	(Fig.	S3).	These	results	suggest	that	

fire	decreased	water	storage	capacity	and	increased	surface	runoff	in	the	EFJR	

watershed.		

	 The	historical	median	turbidity	of	the	EFJR	was	very	low	(7.4	NTU;	Table	1),	

supporting	the	importance	of	subsurface	inputs	(Liu	et	al.	2008).	Prefire	precipitation	

events	(Fig.	S13)	led	to	minimal	increases	in	discharge	(Fig.	S4)	and	small	(rarely	>100	

NTU;	Fig.	S5)	turbidity	spikes	that	were	infrequent	and	dissipated	within	hours.	Postfire	

baseflow	values	remained	low	(median	turbidity	decreased	by	3	NTU),	but	postfire	

precipitation	events	of	intensities	similar	to	those	observed	prefire	led	to	a	greater	

discharge	response	(frequently	>1000	NTU;	Fig.	S5)	and	larger	turbidity	spikes	lasting	

hours	to	weeks;	Fig.	S5).	These	results	confirm	that	overland	flow	and	associated	

erosion	significantly	affected	postfire	water	quality.	Pelletier	and	Orem	(2014)	used	

pre-	and	postfire	LiDAR	(light	detection	and	ranging)	data	to	document	significant	post-
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LC-fire	sediment	transport	in	the	VCNP.	They	identified	rill	formation	as	an	important	

hillslope	erosion	mechanism	and	reported	transport	of	boulders	up	to	1	m	in	diameter,	

confirming	our	in-stream	water-quality	observations.	Fire-related	impacts	on	water	

clarity	have	been	observed	in	other	streams	(Smith	et	al.	2011).	In	some	1st-	through	

3rd-order	streams,	elevated	turbidity	lasted	for	up	to	5	y	after	fire	(Nyman	et	al.	2011,	

Rhoades	et	al.	2011).	Rhoades	et	al.	(2011)	also	documented	that	turbidity	and	NO3–	

concentration	increased	linearly	with	the	percentage	of	basin	that	was	burned	or	was	

burned	at	high	severity.	Identifying	the	mechanism	for	the	observed	increase	in	

overland	flow	is	beyond	the	scope	of	our	study.	However,	our	analyses	documented	an	

increase	in	turbidity	in	VCNP	headwater	streams	that	was	independent	of	precipitation	

severity.	Elevated	turbidity	probably	was	caused	by	increased	frequency,	magnitude,	

and	duration	of	overland	flow,	and	subsequent	sediment,	charcoal,	and	ash	

mobilization.	

Despite	flood	and	sediment	control	in	the	MRG,	both	pre-	and	postfire	turbidity	

often	were	>1200	NTU	during	monsoonal	thunderstorms	(Fig.	2B,	Fig.	S6).	Many	

studies	of	fire	effects	on	streams	have	been	focused	on	total	suspended	sediment	(TSS)	

rather	than	on	turbidity	because	TSS	is	transferable	among	watersheds	(Smith	et	al.	

2011).	However,	this	preference	has	resulted	in	few	studies	documenting	the	postfire	

turbidity	regime	in	large	river	systems.	Leak	et	al.	(2003)	documented	postfire	debris-

flow	pulses	with	a	maximum	turbidity	of	129,000	NTU	in	the	Buckland	River,	Victoria,	

Australia.	This	event	propagated	into	the	Ovens	River	>150	km	downstream	from	the	

source,	resulting	in	a	maximum	of	2370	NTU	12	d	after	the	initial	pulse	in	the	Buckland	

River	(Leak	et	al.	2003,	Lyon	and	O’Connor	2008).	High	background	turbidity	and	

values	>4000	NTU	MDL	prevented	us	from	assessing	whether	maximum	turbidity	

values	changed	significantly	in	the	Rio	Grande	at	US	550	after	the	fires.	Black	C	(ash	and	

charcoal)	events	that	eliminated	all	light	scattering	and	resulted	in	instrument	

measurements	of	0	NTU	also	were	a	limitation	when	using	continuously	deployed	

turbidity	sensors	to	document	post-fire	effects	on	water	quality.	Dahm	et	al.	(2015)	

simulated	these	conditions	in	the	laboratory	with	ash	and	charcoal	(black	C).	These	

substances	absorbed	all	light	emitted	from	the	probe	and	simulated	conditions	of	no	
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particle-related	light	scatter,	resulting	in	instrument	measurements	of	0	NTU.	It	is	

unclear	why	this	phenomenon	was	documented	at	US	550	but	not	in	the	headwater	

systems	in	spite	of	observed	debris	flow	events	in	the	VCNP	(Dahm	et	al.	2015).	This	

discrepancy	might	be	attributable	to	differences	in	the	size	distribution	of	suspended	

material	(Landers	and	Sturm	2013),	heterogeneity	of	the	types	of	suspended	sediment	

between	stream	orders	(Lenzi	and	Marchi	2000),	or	the	size	and	shape	of	the	particles	

(Bisantino	et	al.	2011),	all	of	which	influence	the	sensitivity	and	accuracy	of	the	optical	

turbidity	measurement.	We	identified	the	benefit	of	in	situ	turbidity	measurements	to	

assess	impacts	on	water	clarity	and	the	limitations	of	such	measurements	in	systems	

that	are	highly	turbid	prior	to	disturbance,	such	as	wildfire.	

	 The	effects	of	wildfire	on	total	dissolved	solids	(TDS)	and	SC	have	rarely	been	

studied	(Neary	et	al.	2002).	The	few	investigators	who	explored	postfire	SC	found	

mixed	results.	Some	investigators	observed	elevated	postfire	SC	(Earl	and	Blinn	2003,	

Lyon	and	O'Connor	2008,	Dahm	et	al.	2015)	including	an	~2×	increase	in	SC	from	

baseline	values.	SC	also	was	positively	correlated	with	sediment	loss	during	rainfall	

over	an	artificial	burn	(Badia	and	Marti	2008).	However,	Hall	and	Lombardozzi	(2008)	

used	discrete	sampling	and	showed	statistically	nonsignificant	changes	in	SC	after	

forest	fire.	We	found	long-term	fire-induced	changes	in	SC	in	both	the	2nd-	and	4th-order	

streams	over	a	3-y	period	(Fig.	3A,	B).	Salinization	has	been	identified	as	the	greatest	

water-quality	concern	for	the	Rio	Grande	and	may	limit	agricultural	and	municipal	use	

in	the	future	(Moyer	et	al.	2013).	Our	findings	suggest	that	more	frequent	and	severe	

wildfires	probably	will	accelerate	the	concentration	and	load	of	TDS	in	the	MRG,	but	

other	sources	(e.g.,	saline	groundwater	discharge,	mineral	dissolution,	agricultural	

returns,	and	wastewater	treatment	plant	effluent	(Moyer	et	al.	2013)	probably	will	

continue	to	dominate	the	salinity	budget.		

	 The	prefire	SC	record	for	the	EFJR	was	quite	stable	with	only	small	depressions	

and	spikes	during	precipitation	events	(Fig.S7).	Liu	et	al.	(2008)	hypothesized	that	

strong	seasonal	evapotranspiration	in	the	VCNP	decreases	soil	moisture	and	increases	

water	retention	time,	both	of	which	reduce	the	magnitude	of	near-surface	runoff	during	

short	duration,	high	intensity	monsoonal	thunderstorm	events.	These	factors	
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minimized	prefire	SC	spikes	in	the	EFJR	(Fig.S7)	and	resulted	in	minimal	variation	in	SC	

values	(Fig.	3A).	The	postfire	EFJR	SC	spikes	increased	in	magnitude,	frequency,	and	

duration	(Fig.	3A,	Fig.S7).	These	changes	can	be	attributed	to	synergistic	effects	of	

altered	soil	properties,	input	of	ash	and	charcoal	from	combusted	organic	matter,	and	

postfire	changes	in	hydrologic	flow	paths	including	increased	overland	flow.	

Furthermore,	elevated	Ca2+,	Mg2+,	K+,	and	SO42–	have	been	observed	in	postfire	surface	

soils	(Khanna	et	al.	1994,	Certini	2005)	and	combusted	plant	matter	can	leach	Na+,	

SO42–,	and	Cl–	when	wetted	(Murphy	et	al.	2006).	Both	mechanisms	probably	increase	

the	availability	of	ions	that	are	easily	dissolved	in	water	and	transported	to	streams	

near	the	fire	scars.	As	a	result,	ephemeral	and	intermittent	tributaries	of	the	MRG	that	

were	affected	by	the	LC	fire	are	contributing	higher	concentrations	of	dissolved	ions	to	

the	Rio	Grande.		

	 The	wide	range	of	prefire	daily	summertime	DO	values	in	the	EFJR	(Fig.	4A,	Fig.	

S11)	show	that	this	system	had	high	rates	of	primary	production	and	ecosystem	

respiration	before	the	fire.	Whole-stream	metabolism	modeling	estimates	spanning	6	y	

confirmed	that	the	EFJR	is	a	very	productive	ecosystem	(Shafer	2013).	Gross	primary	

production	(GPP)	and	community	respiration	(CR)	rates	are	among	the	highest	

reported	in	the	literature	for	open-canopied	streams	(Shafer	2013).	The	RCC	predicts	

that	autotrophic	production	should	be	low	in	headwater	streams	(Vannote	et	al.	1980,	

Webster	2007),	but	low	GPP	clearly	is	not	the	case	in	open-canopied	systems,	such	as	

the	EFJR	or	those	in	other	grassland	ecosystems	(Young	and	Huryn	1996).	Hydrologic	

stability	(i.e.,	periods	that	lack	flooding)	can	increase	GPP	(Leggieri	et	al.	2013).	

Episodic	storm	events	resulting	elevated	turbidity	and	reduced	light	penetration	can	

decrease	GPP	for	short	periods	(Hall	et	al.	2015).	The	postfire	expansion	of	the	IQR	and	

DO	maximum	and	minimum	values	in	the	EJFR	(Fig.	4A,	Fig.	S11)	indicate	that	the	fire	

had	a	large	effect	on	this	important	water-quality	variable	via	physical	and	

biogeochemical	mechanisms	that	both	increased	and	decreased	DO	values.	The	DO	

signal,	which	typically	exhibits	high	diurnal	variability	(Fig.	S11),	was	suppressed	

during	postfire	river	stage	increases	(Fig.	S4).	The	stage	increases	are	caused	by	large	

overland	flow	events	documented	by	elevated	turbidity	(Fig.	S5)	and	SC	(Fig.S7)	after	
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precipitation	events	(Fig.	S3)	within	the	burn	scar.	The	loss	of	the	diurnal	pattern	is	

probably	a	result	of	light	limitation	from	high	sediment	loads	and	increased	metabolism	

from	dissolved	and	particulate	organic	matter	in	transport	(Figs	S5,	S7).	However,	these	

limited	DO	depressions	were	not	responsible	for	observed	changes	in	the	postfire	

distributions	of	DO	values	(Fig.	3A),	which	arose	from	consistently	higher	daytime	and	

lower	nighttime	DO	concentrations	throughout	the	summer	seasons	after	the	fire	(Fig.	

S11).	Our	findings	suggest	that	wildfire	can	alter	rates	of	primary	production	and	

ecosystem	respiration	in	headwater	streams.		

	 Wildfires	have	increased	nutrient	supply	in	the	EFJR	(Sherson	et	al.	2015)	and	

other	streams	(Bayley	et	al.	1992,	Earl	and	Blinn	2003,	Betts	and	Jones	2009).	This	

creates	a	fertilization	effect	that	directly	stimulates	in-stream	primary	production	in	

nutrient-limited	systems	(Betts	and	Jones	2009).	Elevated	community	respiration	

results	from	multiple	factors	including	increased	fire-related	organic-matter	resources,	

reduced	nutrient	limitation,	and	stimulation	of	autochthonous	supplies	including	the	

biomass	of	benthic	algae	and	aquatic	macrophytes	and	labile	exudates	(Bertilsson	and	

Jones	2003)	related	to	the	increase	in	primary	production.	Our	results	suggest	a	

fertilization	effect	is	occurring	at	the	EFJR,	and	has	yet	to	subside	3	y	post-fire.		

	 Prefire	DO	concentrations	at	US	550	showed	much	smaller	diurnal	variability	with	

much	of	the	variability	controlled	by	abiotic	factors	such	as	temperature.	The	absence	

of	a	strong	autotrophic	signal	differs	from	the	prediction	for	mid-size	rivers	made	in	the	

RCC	(Vannote	et	al.	1980).	Authors	of	a	meta-analysis	of	metabolism	data	from	30	US	

streams	and	rivers	also	found	that	streams	in	deserts	and	with	larger	watersheds	

generally	have	higher	metabolic	values	(Lamberti	and	Steinman	1997),	but	this	was	not	

the	case	in	the	Rio	Grande.	Low	available	nutrient	levels	in	the	Rio	Grande	above	

Albuquerque	(Passell	et	al.	2005)	and	light	limitation	from	high	sediment	loads	even	at	

baseflow	conditions	probably	are	responsible	for	the	weak	diurnal	primary	production	

signal	at	this	site.	The	small	postfire	increase	in	the	frequency	of	DO	values	>8.5	mg/L	

and	in	the	IQR	of	DO	concentrations	at	US	550	(Fig.	4B)	suggests	that	the	fire	did	

produce	a	small	fertilization	effect	during	baseflow	conditions.	However,	the	major	fire-

related	effects	occurred	during	discrete	discharge	pulses	from	fire-affected	and	
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intermittent	tributaries	entering	the	Rio	Grande	below	Cochiti	Dam.	These	episodic	

pulses	periodically	drove	DO	levels	to	0	mg/L	in	2011	(Dahm	et	al.	2015)	and	<3	mg/L	

in	2012	and	2013	(Fig.	S12).	The	MRG	is	listed	in	the	State	of	New	Mexico	Clean	Water	

Act	(2000)	as	an	impaired	waterbody	for	DO.	Our	results	document	additional	DO	

impairment	from	the	recent	wildfires.		

	 Together,	DO	data	from	the	EFJR	and	US	550	suggest	large	differences	in	

biologically	driven	water-quality	responses	to	fire	along	the	river	continuum.	The	high	

benthic	surface	area:water	volume	ratio	in	headwater	streams	(Battin	et	al.	2008)	

promotes	strong	biological	control	of	DO	concentrations,	and	fire-related	nutrient	

fertilization	increases	both	GPP	and	CR	during	baseflow	conditions	in	EFJR.	However,	

the	main	impact	on	DO	concentrations	during	storm	discharge	events	were	reductions	

in	the	daily	maximum	DO.	This	effect	can	be	attributed	to	the	large	quantities	of	fire-

related	material	in	transport	and	elevated	turbidity.	As	a	result,	primary	production	

was	suppressed	resulting	in	DO	values	comparable	to	typical	nighttime	concentrations	

when	respiration	pathways	dominate.	DO	at	US	550	during	summer	baseflow	changed	

minimally	after	the	fire,	largely	because	of	the	strong	abiotic	controls	(temperature	and	

light	limitation)	and	limited	biological	controls	regulating	the	DO	signal,	both	pre-	and	

postfire	at	US	550	(Van	Horn	and	Reale	Unpublished).	Large	storm	pulses	of	fire-scar-

derived	material	were	sufficient	to	lower	DO	concentrations	strongly	at	US	550	up	to	3	

y	after	the	fire.	In	summary,	we	found	that	pre-	and	postfire	abiotic	and	biotic	

processes,	influence	the	response	of	DO	to	fire-related	effects	and	should	be	taken	into	

consideration	when	assessing	postfire	DO	effects	on	streams	along	the	river	continuum.		

Initial	postfire	water-quality	responses	along	the	river	continuum	

	 Overbanking	was	observed	in	many	streams	in	the	VCNP	during	the	initial	postfire	

pulses	(Sherson	et	al.	2015),	and	ash,	sediment,	black	C,	and	debris-laden	floods	

occurred	throughout	the	basin	after	the	fire	in	2011	(Dahm	et	al.	2015).	(Vannote	et	al.	

1980)	did	not	discuss	changes	in	turbidity	of	streams	and	rivers	along	the	river	

continuum	except	to	say	that	that	turbidity	will	limit	primary	production	in	large	rivers.	

Webster	(2007)	showed	that	as	the	distance	from	headwaters	increases,	so	do	seston	
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(suspended	particles	in	transport)	levels,	a	result	suggesting	elevated	TSS	and	turbidity	

along	the	river	continuum.	Rhoades	et	al.	(2011)	documented	elevated	turbidity	in	1st-	

through	3rd-order	streams	after	wildfire,	but	they	compared	streams	in	burned	and	

unburned	basins	collectively	so	differential	effects	on	various	stream	orders	cannot	be	

assessed.	We	observed	turbidity	events	that	were	>1000	NTU	in	1st-	through	4th-order	

streams	immediately	after	the	LC	fire	(Fig.	5B).	However,	the	magnitude	above	‘normal’	

prefire	turbidity	values	decreased	in	a	downstream	direction,	suggesting	that	the	fire-

related	turbidity	response	is	strongest	in	headwater	streams	(JC	and	EFJR)	and	less	

strong	in	higher-order	systems	(JR	and	US	550).		

	 Ash	inputs	and	elevated	erosion	can	increase	transport	of	major	ions	as	evidenced	

by	elevated	SC	after	wildfires	(Earl	and	Blinn	2003,	Lyon	and	O’Connor	2008,	Dahm	et	

al.	2015),	but	such	changes	have	not	been	assessed	along	a	river	continuum.	Postfire	

precipitation	events	in	headwater	streams	(JC	and	EFJR)	resulted	in	significant	

increases	in	SC,	with	gradual	descending	limbs	that	sometimes	lasted	weeks	to	months	

before	returning	to	prefire	levels	(Fig.	5A).	Initial	SC	spikes	corresponded	with	elevated	

turbidity	and	were	probably	caused	by	increased	overland	flow	that	mobilized	ash,	

charcoal,	plant	leachate,	and	sediment	into	the	stream	as	suggested	by	Earl	and	Blinn	

(2003),	who	documented	an	immediate	increase	in	SC	after	addition	of	ash	to	a	1st-

order	stream.	We	hypothesize	that	the	gradual	descending	limbs	for	SC	after	fire	in	low-

order	streams	are	a	consequence	of	ions	leaching	from	deposited	ash	and	sediment.	The	

SC	response	at	JC	was	noticeably	larger	than	at	the	EFJR,	possibly	because	of	differences	

in	stream	discharge	between	the	stream	orders.	JC	discharge	is	approximately	an	order	

of	magnitude	less	than	discharge	in	the	EFJR	during	baseflow	(subsurface	and	

groundwater	inputs)	and	during	storm	events	(near-surface	and	overland	flows)	(Fig.	

5A).	Therefore,	the	conductivity	dilution	factor	probably	is	greater	on	the	EFJR	than	JC,	

which	results	in	a	stronger	initial	response	and	a	more	gradual	and	longer-duration	

descending	limb	in	SC.	The	proportions	of	the	JC	and	EFJR	basins	burned	by	the	LC	fire	

were	similar,	and	we	suggest	that	fire	affected	these	basins	similarly	but	that	the	lower	

discharge	from	JC	led	to	higher	SC	concentrations	in	JC	than	in	EFJR.		

	 The	SC	response	at	JR	during	postfire	precipitation	events	consisted	of	an	initial	
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dilution	followed	by	a	gradual	increase	and	decrease	in	concentration	(Fig.	5C).	This	

response	probably	was	caused	by	mineralized	geothermal	inputs	to	JR	(Trainer	et	al.	

2000).	These	additions	overwhelmed	the	postfire	SC	response	observed	higher	in	the	

Jemez	catchment.	The	postfire	SC	response	at	US	550	consisted	of	high-intensity,	short-

duration	spikes	that	quickly	returned	to	prepulse	values	(Fig.	5C).	We	suggest	this	effect	

was	caused	by	the	high-intensity,	short-duration	pulses	from	ephemeral	tributaries	

affected	by	wildfire,	which	were	quickly	diluted	by	releases	from	Cochiti	Dam.	Dahm	et	

al.	(2015)	documented	minimal	variation	(0.05	mS/cm)	downstream	of	Cochiti	and	

considerable	and	short-lived	increases	at	US	550	(0.30	mS/cm)	during	the	2011	

monsoon	season,	suggesting	these	ephemeral	inputs	are	the	sources	of	elevated	SC.		

	 Single-site,	postfire	DO	depressions	have	been	measured	previously	using	

continuously	deployed	water-quality	probes	(Lyon	and	O’Connor	2008,	Dahm	et	al.	

2015,	Sherson	et	al.	2015).	However,	wildfire	effects	on	DO	along	a	river	continuum	

have	not	been	assessed.	Strong	prefire	diurnal	DO	variability	in	the	headwater	systems	

(JC	and	the	EFJR)	was	suppressed	after	the	fire,	probably	because	of	light	limitation	

from	high	sediment	loads	and	possible	scour	of	the	primary	producers	(Fig.	5D).	Strong	

diel	variability	returned	more	quickly	on	the	EFJR	than	JC.	This	difference	in	recovery	

can	be	attributed	to	faster	recovery	of	the	primary	producers.	The	higher-order	systems	

(JC	and	US	550)	had	lower	diurnal	variability	in	the	prefire	DO	signal,	but	these	sites	

responded	differently	postfire.	The	JR	DO	signal	decreased	1	to	2	mg/L	immediately	

during	flow	events,	but	these	depressions	rebounded	quickly	to	prepulse	values.	JR	has	

a	large	stream	surface	area:volume	ratio,	higher	stream	gradient	and	streambed	

roughness,	and	a	pool	and	riffle	bed	morphometry	(New	Mexico	Environmental	

Department	2005),	all	of	which	create	significant	turbulence	and	reaeration	that	can	

buffer	the	DO	signal	during	postfire	discharge	events.	The	fire-related	depressions	were	

much	more	severe	at	US	550	than	at	the	low-order	streams,	with	10	large	DO	

depressions	(<4	mg/L)	in	July	and	August	(Fig.	5D).	Dahm	et	al.	(2015)	hypothesized	

that	DO	depressions	on	the	MRG	could	be	attributed	to	intensified	biological	and	

chemical	O2	demand	stimulated	by	the	input	of	fire-related	organic	matter,	chemically	

reduced	compounds,	and	black	C.	US	550	has	a	deep	and	narrow	channel	configuration,	
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an	incised	thalweg,	and	lower	gradient	(Ortiz	2004).	These	factors	reduce	atmospheric	

reaeration	and	extend	residence	times.	Thus,	biological	and	chemical	O2	demand	can	

reduce	DO	levels	when	large	quantities	of	fire-scar	materials	are	present.		

	

Conclusions	

	 Discrete	samples,	even	at	weekly	intervals,	provide	insufficient	temporal	

resolution	to	fully	describe	and	understand	the	linkages	between	catchment	hydrology	

and	stream	water	chemistry	(Kirchner	et	al.	2004),	especially	when	studying	episodic	

disturbance	events	like	forest	fires	and	assessing	long-term	trends	(Johnson	et	al.	

2007).	In	addition	to	high-resolution	data,	spatially	distributed,	long-term,	and	real-

time	data	are	needed	to	assess	the	dynamic,	fast	changing,	and	nonlinear	behavior	of	

aquatic	systems	at	the	watershed	level	(Krause	et	al.	2015).	Our	findings	highlight	the	

importance	of	collecting	water-quality	data	at	time	scales	that	effectively	capture	the	

ecohydrological	dynamics	of	the	watershed.	Establishment	of	long-term,	continuous,	

water-quality	monitoring	networks	has	been	proposed	as	a	crucial	next	step	for	

assessing	postwildfire	impacts	on	stream	chemistry	(Smith	et	al.	2011).	Our	study	fills	

this	data	gap	by	documenting	long-term,	pre-	and	postfire	water-quality	trends	in	a	2nd-	

and	4th-order	stream	during	the	summer	monsoonal	thunderstorm	season.	We	also	

assessed	the	initial	effects	of	wildfire	along	a	river	continuum	(1st-	through	4th-order	

streams)	using	continuous	records.	Streamflow	pathways,	physiochemical	and	

biogeochemical	processes,	and	geomorphology	play	central	roles	in	the	initial	and	long-

term	postfire	water-quality	responses	along	a	river	continuum.		
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Figures	

	
	

Fig.	1.	Maps	showing	the	Rio	Grande	River	and	the	location	of	the	Las	Conchas	(LC)	

forest	fire	in	north	central	New	Mexico	(A),	streamflow	gages,	water-quality	sondes,	

streams	of	interest,	perimeter	of	the	LC	and	Thompson	Ridge	fires,	key	landmarks,	and	

the	major	hydrologic	unit	codes	(HUCs)	for	this	section	of	the	Rio	Grande	(B),	and	the	

burn	severity	map	for	the	LC	fire	in	relation	to	monitoring	locations	(C).	
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Fig.	2.	Distribution	of	pre-	and	post-fire	turbidity	(15-min	increments)	values	at	East	

Fork	Jemez	River	(A)	and	the	Rio	Grande	(RG)	at	the	US	550	bridge	(B).	See	Table	1	for	

monsoon	seasons	analyzed	for	each	location.	Insets	are	magnified	views	of	0	to	5%	of	

total.		
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Fig.	3.	Distribution	of	pre-	and	postfire	specific	conductance	(15-min	increments)	

measurements	at	East	Fork	Jemez	River	(A)	and	the	Rio	Grande	(RG)	at	the	US	550	

bridge	(B).	See	Table	1	for	specific	monsoon	seasons	analyzed	for	each	location.	Insets	

are	magnified	views	of	0	to	5%	of	total.	
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Fig	4.	Distribution	of	pre-	and	postfire	dissolved	O2	(15-min	increments)	measurements	

at	East	Fork	Jemez	River	(A)	and	the	Rio	Grande	(RG)	at	the	US	550	bridge	(B).	See	

Table	1	for	specific	monsoon	seasons	analyzed	for	each	location.	Insets	are	magnified	

views	of	0	to	5%	of	total.	 	
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Fig.	5.	Log	(stream	discharge)	(A),	turbidity	(B),	specific	conductance	(SC)	(C),	and	

dissolved	O2	(DO)	(D)	measurements	(15-min	increments)	along	the	river	continuum	

during	the	2011	monsoon	season.	Stations	include	Jaramillo	Creek	(JC),	East	Fork	Jemez	

River	(EFJR),	Jemez	River	(JR),	and	Rio	Grande	(RG)	at	the	US	550	bridge	(US	550).	

Turbidity	values	>1200	NTU	were	changed	to	1200	NTU	because	of	varying	maximum	

detection	limits	of	the	deployed	probes.	The	LC	fire	began	on	26	June	2011.	Stream	

order	is	in	brackets.	
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Tables

	

Station	 Parameter	 Condition	 Years	assessed	 Min	 1st	quart	 Median	 Mean	 3rd	quart	 Max	 n	(total)	

VCNP	HQ	 Daily	precipitation	 Prefire	 08,	09,	11	 0	 0	 0	 2.31	 1.52	 48.3	 269	

VCNP	HQ	 Daily	precipitation	 Postfire	 11,	12,	13	 0	 0	 0	 2.96	 2.03	 56.1	 341	

EFJR	 Discharge	 Prefire	 08,	09,	11	 0.080	 0.088	 0.105	 0.115	 0.134	 0.492	 23,907	

EFJR	 Discharge	 Postfire	 11,	12,	13	 0.004	 0.039	 0.061	 0.132	 0.084	 3.620	 26,786	

EFJR	 Turbidity	 Prefire	 08,	09,	11	 1.7	 5.7	 7.4	 8.6	 9.7	 87.1	 25,321	

EFJR	 Turbidity	 Postfire	 11,	12,	13	 0	 2	 4	 31.08	 16.4	 1200	 31,019	

US	550	 Turbidity	 Prefire	 07,	08,	11	 16.4	 36.8	 48.3	 169.4	 96.4	 1200	 19,713	

US	550	 Turbidity	 Postfire	 11,	12,	13	 0	 42	 79.4	 256.5	 237	 1200	 49,554	

EFJR	 SC	 Prefire	 08,	09,	11	 0.057	 0.069	 0.076	 0.075	 0.080	 0.146	 25,350	

EFJR	 SC	 Postfire	 11,	12,	13	 0.081	 0.098	 0.109	 0.121	 0.134	 0.348	 32,105	

US	550	 SC	 Prefire	 07,	08,	11	 0.252	 0.289	 0.314	 0.320	 0.34	 1.13	 19,818	

US	550	 SC	 Postfire	 11,	12,	13	 0.005	 0.297	 0.319	 0.343	 0.35	 3.74	 27,153	

EFJR	 DO	 Prefire	 08,	09,	11	 2.8	 6.4	 8.1	 8.3	 10.1	 16.4	 21,657	

EFJR	 DO	 Postfire	 11,	12,	13	 0.9	 3.5	 6.1	 6.9	 10.2	 17.3	 32,589	

US	550	 DO	 Prefire	 07,	08,	11	 5.3	 6.9	 7.2	 7.2	 7.5	 8.7	 20,236	

US	550	 DO	 Postfire	 11,	12,	13	 0.0	 6.8	 7.1	 7.2	 7.5	 11.5	 52,812	

EFJR	 DO	daily	max	 Prefire	 08,	09,	11	 5.0	 10.3	 11.7	 11.8	 12.9	 16.4	 230	

EFJR	 DO	daily	max	 Postfire	 11,	12,	13	 1.5	 11.5	 12.8	 12.1	 14.0	 17.3	 341	

US	550	 DO	daily	max	 Prefire	 07,	08,	11	 6.9	 7.3	 7.6	 7.6	 7.9	 8.7	 212	

US	550	 DO	daily	max	 Postfire	 11,	12,	13	 5.6	 7.3	 7.6	 7.8	 8.2	 11.5	 552	

EFJR	 DO	daily	min	 Prefire	 08,	09,	11	 2.8	 4.8	 5.5	 5.5	 6.2	 8.1	 230	

EFJR	 DO	daily	min	 Postfire	 11,	12,	13	 0.9	 1.9	 2.6	 2.9	 3.5	 6.4	 341	

US	550	 DO	daily	min	 Prefire	 07,	08,	11	 5.3	 6.7	 6.8	 6.9	 7.1	 7.6	 212	

US	550	 DO	daily	min	 Postfire	 11,	12,	13	 0.0	 6.5	 6.7	 6.6	 7.0	 9.8	 552	
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Table	1.	Summary	table	of	the	long-term	pre-	and	postfire	turbidity,	specific	conductance	

(SC),	dissolved	O2	(DO),	and	daily	DO	maximum	(max)	and	minimum	(min)	(0000–2345	h)	

comparison	for	the	sondes	at	Valles	Caldera	National	Preserve	Headquarters	(VCNP	HQ),	

the	East	Fork	Jemez	River	(EFJR)	and	the	Rio	Grande	at	US	550	bridge.	n	=	the	total	sample	

size,	quart	=	quartile.	Years	are	given	as	the	last	2	digits	of	2008,	2009,	2011,	2012,	2013.	
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Station	 Variable	 D	 Dcritical	 p	 H0	rejected?	

VCNP	HQ	

Daily	

precipitation	 0.06	 0.11	 0.6	 No	

EFJR	 Discharge	 0.49	 0.01	 <0.001	 Yes	

EFJR	 Turbidity	 0.43	 0.01	 <0.001	 Yes	

US	550	 Turbidity	 0.21	 0.01	 <0.001	 Yes	

EFJR	 SC	 0.91	 0.01	 <0.001	 Yes	

US	550	 SC	 0.22	 0.01	 <0.001	 Yes	

EFJR	 DO	 0.33	 0.01	 <0.001	 Yes	

US	550	 DO	 0.10	 0.01	 <0.001	 Yes	

EFJR	 DO	daily	max	 0.24	 0.12	 <0.001	 Yes	

US	550	 DO	daily	max	 0.13	 0.11	 0.013	 Yes	

EFJR	 DO	daily	min	 0.76	 0.12	 <0.001	 Yes	

US	550	 DO	daily	min	 0.15	 0.11	 0.002	 Yes	

	

Table	2.	Summary	table	of	the	2-sample	Kolmogorov–Smirnov	(KS)	tests	comparing	pre-	

and	postfire	daily	precipitation,	discharge,	turbidity,	specific	conductance	(SC),	dissolved	

O2	(DO),	DO	daily	maximum	(max)	and	minimum	(min)	(0000–2345	h)	at	Valles	Caldera	

National	Preserve	Headquarters	(VCNP	HQ),	the	East	Fork	Jemez	River	(EFJR)	and	the	Rio	

Grande	at	US	550	bridge.	Dcritical	α	=	0.05.	
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Abstract	

Post-fire	effects	on	hydrologic	and	geomorphic	processes	are	known	to	alter	the	sediment	

loads	and	water	quality	of	burned	catchments	and	downstream	riverine	ecosystems.	

However,	the	lack	of	high-frequency	and	long-term	data	prior	to	and	following	a	wildfire	

limits	our	understanding	of	how	ecosystem	processes	respond	and	recover	over	time.	

Using	nine	years	of	high-frequency	water	quality	parameters	collected	during	the	growing	

season,	combined	with	streamflow	and	meteorological	records,	we	analyzed	the	variability	

of	water	quality	parameters	and	their	effect	on	gross	primary	productivity	(GPP)	and	

ecosystem	respiration	(ER)	in	two,	nearly	identical	and	paired	headwater	streams,	before	

(3	years	of	data)	and	after	(6	years	of	data)	a	catastrophic	wildfire.	Pre-fire,	we	observed	a	

positive	correlation	between	GPP	and	ER	(r2	>0.4)	in	the	low-turbidity	(<	10	NTU)	streams.	

Immediately	following	the	wildfire,	both	streams	had	elevated	turbidity	(3	to	25x	pre-fire)	

and	specific	conductance	(2x	pre-fire),	>	20%	reduction	in	GPP,	<	10%	reduction	in	ER,	and	

positive	correlations	between	GPP	and	ER	(r2	>0.6).	We	found	that	the	shorter-term	(1	to	3	

years	post-fire)	turbidity,	GPP	and	ER	estimates,	and	mechanisms	influencing	GPP	and	ER	



	

	 45	

were	different	between	the	two	streams,	while	the	longer-term	(4	to	5	years	post-fire)	

responses	suggest	that	both	systems	returned	to	near	pre-fire	conditions.	To	link	our	

results	with	catchment	hydrology,	we	analyzed	watershed,	stream,	and	wildfire	

characteristics.	Paradoxically,	we	found	that	the	water	quality	and	ecosystem	responses	

(via	metabolism)	to	the	wildfire	of	these	nearly	identical	streams	were	different	and	likely	

controlled	by	watershed-specific	hydrologic	connections	with	their	landscapes.	Thus,	

accounting	for	such	degree	of	specificity	still	remains	a	relevant,	open	challenge	for	

predicting	watershed-scale	effects	of	wildfire	disturbances	on	aquatic	ecosystems.		

	

Keywords:	whole-stream	metabolism,	ecosystem	respiration,	primary	production,	

wildfire,	continuous	monitoring,	headwater	streams,	water	quality.		

	

Introduction	

Forested	watersheds	in	the	western	United	States	are	currently	experiencing	

climate-change-mediated	increases	in	aridity,	variability	in	precipitation	patterns,	and	air	

temperatures	(Cayan	and	others,	2001;	Stewart	and	others,	2004;	Seager	and	others,	

2007).	These	conditions	have	resulted	in	drought-stressed	trees	with	greater	susceptibility	

to	disease	(Raffa	and	others,	2008;	Weed	and	others,	2013),	increased	forest	mortality	

(Breshears	and	others,	2005;	Allen	and	others,	2010;	Williams	and	others,	2010),	and	

subsequent	elevated	risk	of	forest	fires.	For	example,	reduced	winter	precipitation,	earlier	

and	faster	spring	snowmelt,	and	elevated	spring	and	summer	temperatures	resulted	in	

extended	fire	seasons	and	increased	wildfire	activity	during	each	decade	since	the	1970’s	

in	western	US	forests	(Westerling	and	others,	2006;	Westerling,	2016).	The	trend	of	

increased	wildfire	activity,	which	is	influenced	by	climatic	conditions	(Westerling	and	

others,	2003;	Flannigan	and	others,	2009),	has	significant	implications	for	aquatic	

ecosystems	impacted	by	wildfire	(Gresswell,	1999;	Bisson	and	others,	2003).		

Following	catastrophic	wildfires,	substantial	portions	of	the	landscape	are	denuded	

of	vegetation,	resulting	in	hydrological	and	stream	geomorphological	instability	(Shakesby	

and	Doerr,	2006)	including	increased	overland	and	debris	flows	(Moody	and	Martin,	

2001a;	Cannon	and	others,	2008),	and	elevated	mobilization	and	transport	of	ash,	charcoal,	

soil	and	nutrients	(Mast	and	Clow,	2008;	Sherson	and	others,	2015).	The	magnitude,	
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frequency,	and	duration	of	these	events	depend	on	complex	relationships	between	

antecedent	aridity,	burn	severity,	soil	type,	land	use	and	land	cover,	topography,	post-fire	

precipitation	patterns,	and	climate	(Moody	and	Martin,	2001a;	Shakesby	and	Doerr,	2006).	

Rehabilitation	treatments	may	also	influence	post-fire	sediment	yields	and	flooding	

(Robichaud	and	others,	2000;	Wagenbrenner	and	others,	2006).	The	post-fire	hydrologic	

and	geomorphic	alterations	have	the	potential	to	severely	impact	water	quality	as	recently	

summarized	(Smith	and	others,	2011b;	Bixby	and	others,	2015;	Martin,	2016).	For	

example,	post-fire	ash	and	sediment	transport	results	in	elevated	levels	of	suspended	

sediment	(Reneau	and	others,	2007;	Goode	and	others,	2012),	turbidity	(Murphy	and	

others,	2012;	Mast	and	others,	2016),	major	ions	and	specific	conductance	(Dahm	and	

others,	2015;	Reale	and	others,	2015),	nutrients	(Betts	and	Jones,	2009;	Sherson	and	

others,	2015),	and	dissolved	and	particulate	organic	matter	(Mast	and	Clow,	2008;	Betts	

and	Jones,	2009).	Additionally,	the	loss	of	riparian	canopy	cover	from	the	initial	burns	and	

from	subsequent	debris	flows	(Cannon	and	others,	2001;	Cannon	and	others,	2008)	

increases	solar	radiation	and	water	temperatures	(Isaak	and	others,	2010;	Mahlum	and	

others,	2011).	Although	all	of	these	alterations	are	known	to	affect	key	aquatic	ecosystem	

variables,	there	is	limited	information	about	the	long-term	effects	of	wildfires	on	stream	

ecosystem	processes	and	on	the	spatial	and	temporal	recovery	of	these	processes	in	

burned	watersheds.	

Estimates	of	stream	metabolic	state	(i.e.,	gross	primary	production	(GPP)	and	

ecosystem	respiration	(ER))	are	integrative	metrics	of	stream	function	and	embed	

numerous	key	factors	affected	by	wildfires	across	a	range	of	spatial	and	temporal	scales.	

These	factors	include	channel	hydraulics	(Mulholland	and	others,	2001)	and	

geomorphology	(Bott	and	others,	2006),	groundwater-surface	water	interactions	

(González-Pinzón	and	others,	2014),	photosynthetically	active	radiation	(Bott	and	others,	

2006;	Hall	and	others,	2015),	turbidity	(Izagirre	and	others,	2008;	Hall	and	others,	2015),	

water	temperature	(Demars	and	others,	2011;	Dodds	and	others,	2013),	nutrient	

concentrations	(McTammany	and	others,	2007;	Bernot	and	others,	2010)	and	organic	

matter	supply	(Young	and	Huryn,	1999;	Roberts	and	others,	2007).	While	many	of	these	

factors	are	likely	to	be	affected	by	wildfire	impacts	to	stream	ecosystems,	very	few	studies	

have	assessed	the	effects	of	wildfire	on	whole-stream	metabolism,	and	the	reported	
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impacts	are	variable	and	appear	to	be	contextual	(Betts	and	Jones,	2009;	Davis,	2015;	

Tuckett	and	Koetsier,	2016).	

We	use	long-term,	high-frequency	water	quality	data	with	supporting	physical	data	

to	determine	pre-	and	post-fire	variations	in	water	quality	and	whole-stream	metabolism	

in	two	adjacent	second-order	streams	that	were	similarly	impacted	by	a	large	catastrophic	

wildfire	in	2011.	Data	for	river	stage,	meteorological	parameters,	and	water	quality	are	

used	to	estimate	daily	rates	of	GPP	and	ER	to	compare	the	response	of	these	two	streams	

throughout	the	growing	season	(typically	May	through	October)	over	nine	years.	The	goals	

of	this	study	are	to	1)	assess	water	quality	and	whole-stream	metabolism	during	the	

growing	season	for	multiple	years	prior	to	a	severe	wildfire,	2)	determine	the	immediate	

(year	one),	shorter-term	(years	two	to	four)	and	longer-term	(years	five	and	six)	impacts	of	

the	wildfire	on	water	quality	and	whole-stream	metabolism,	and	3)	identify	mechanisms	

that	influence	in-stream	metabolic	processes	during	pre-	and	post-fire	conditions.			

	

Materials	and	methods	

Watershed	and	site	descriptions		

The	1.25	million	year-old	(Goff	and	others,	2006),	21	km	wide	Valles	Caldera	(VALL)	

is	located	in	the	volcanic	Jemez	Mountains	of	north-central	New	Mexico,	USA	(Fig.	1;	see	

https://www.nps.gov/vall/index.htm)	.	The	elevation	within	the	VALL	ranges	from	2300	m	

at	Redondo	Meadow	to	3432	m	at	Redondo	Peak,	a	resurgent	volcanic	dome	(Heiken	and	

others,	1990).	The	elevational	gradient	results	in	high	variability	in	the	vegetation	

communities	that	include	spruce	and	fir	forests	above	2740	m;	Ponderosa	pine	(Pinus	

ponderosa)	and	oak	forests	below	2740	m,	and	montane	grasslands,	wet	meadows	and	

wetlands	on	valley	floors	(Muldavin	and	others,	2006).	The	soils	in	the	VALL	are	generally	

classified	as	forest	(andisols,	alfisols,	and	inceptisols)	and	grassland	(mollisols)	soils	

(Muldavin	and	Tonne,	2003).		

	 After	the	collapse	of	the	volcano	about	1.25	million	years	ago,	resurgent	domes	

(Smith	and	others,	1970;	Phillips	and	others,	2007)	bisected	the	VALL	into	two,	nearly	

identical,	paired	watersheds	(Liu	and	others,	2008):	the	East	Fork	Jemez	River	(EFJR)	and	

the	Rio	San	Antonio	(RSA)(Fig.	1).	The	geomorphology	of	the	EFJR	and	RSA	is	highly	

sinuous	(sinuosity	index	of	1.5	and	2.8,	respectively),	with	low	width	to	depth	ratios	(11.8	
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and	10.5,	respectively),	and	low	gradients	(0.12	and	0.22%,	respectively)	and	readily	

access	their	floodplain.		Riparian	vegetation	on	both	streams	within	the	VALL	is	dominated	

by	sedges	and	grasses,	and	lacks	a	canopy	(Simino,	2002;	NMED,	2005;	Joseph	and	

Henderson,	2006;	Van	Horn	and	others,	2012).	Subsurface	flow	and	groundwater	

contribute	the	majority	of	the	discharge	to	both	streams,	except	during	the	snowmelt	pulse	

and	intense	monsoonal	thunderstorm	events	when	overland	flows	occur	(Liu	and	others,	

2008).		

	 Both	the	EFJ	and	RSA	have	similar	mean	concentrations	of	total	nitrogen,	

ammonium	and	total	phosphorus	(Liu	and	others,	2008;	Van	Horn	and	others,	2012)	and	

nitrogen	is	the	limiting	nutrient	for	primary	production	(Van	Horn	and	others,	2012).	

Submerged	Aquatic	Macrophyte	(SAM)	taxa	(i.e.,	Elodea	canadensis,	Ranunculus	aquatilis,	

Potamogeton	richardsonii	and	Stuckenia	pectinata)	dominate	the	primary	producer	

community	and	are	prevalent	throughout	the	growing	season,	along	with	periodic	algal	

blooms	dominated	by	green	algae	(Cladophora	sp.)	and	epiphytic	algae	on	the	SAM	taxa	

(Thompson	et	al.,	unpublished	data).			

In	June	through	July	of	2011,	the	Las	Conchas	(LC)	fire	burned	approximately	

63,370	hectares	of	forest,	high	elevation	montane	grassland,	and	meadows	in	the	Jemez	

Mountains.	The	burn	severity	of	the	LC	fire	was	approximately	20%	high,	26%	moderate,	

39%	low,	and	15%	unburned	(Fig.	1c).	Following	the	LC	fire,	elevated	overland	flow	

resulted	in	rill	formation,	extensive	erosion	and	deposition,	channel	incision	and	avulsion,	

and	debris	flows	in	watersheds	within	the	VALL	(Pelletier	and	Orem,	2014;	Orem	and	

Pelletier,	2015).		

Continuous	measurements		

Water	quality	parameters	(i.e.,	dissolved	oxygen	(DO),	turbidity,	specific	

conductance	(SC),	pH,	and	temperature)	were	collected	at	15-minute	intervals	using	YSI	

6920	sondes	(Yellow	Springs	Instruments	Inc.	/Xylem	Inc.,	Yellow	Springs,	OH,	U.S.A.).	The	

sondes	were	deployed	from	mid-April	to	mid-November,	with	year-to-year	variability	

depending	on	hydroclimatic	conditions	(e.g.,	ice	cover,	snowpack	and	snowmelt).	Site	visits	

were	made	every	two	to	four	weeks	to	clean	and	calibrate	the	sondes	following	USGS	

standard	operating	procedures	(Wagner	and	others,	2006).	Water	quality	data	were	



	

	 49	

compiled,	validated,	and	corrected	for	fouling	and	drift	using	Aquarius	Time-Series	3.3	

(Aquatic	Informatics,	Vancouver,	British	Columbia,	Canada).				

	 Barometric	pressure	was	obtained	from	the	VALL	Headquarters	climate	station	

(WRCC,	2016),	and	corrected	using	the	hydrostatic	equation	(Barry	and	Chorley,	2003)	to	

estimate	site-specific	values.	Total	solar	irradiance	(SI)	data	were	obtained	from	the	Rio	

San	Antonio	and	Headquarters	climate	stations	(WRCC,	2016).	Photosynthetically	active	

radiation	(PAR)	was	calculated	following	(Meek	and	others,	1984).	

Stream	depth	and	discharge		

Stage	measurements	and	associated	discharge	estimates	were	collected	on	for	the	

EFJR	and	RSA	at	flumes	within	1.5	km	of	the	sonde	deployment	sites	(Fig.	1).	Rating	curves	

near	the	flumes	were	also	developed	to	estimate	discharge	when	flows	exceeded	the	

capacity	of	the	flume	(Condon	&	Compton,	unpublished	data).	Due	to	data	gaps	in	the	

discharge	records	at	the	flumes,	and	high	flows,	we	estimated	daily	mean	discharge	for	the	

EFJR	and	RSA	using	data	from	the	Jemez	River	(JR)	USGS	gage	(no.	08324000)	located	near	

Jemez	Springs,	New	Mexico	(Fig.	1b),	using	Equation	1	(Gupta,	2014):		

Q!"#$ !" !"# =
!!"
!!"

×A!"#$ !" !"#	 	 	 Equation	1	

where	Q!"	is	daily	average	discharge	measured	for	JR	(m3	s-1);	A!"	is	the	drainage	area	

(1217	km2)	for	the	JR	gage;	A!"#$ 		and	A!"# 			are	the	drainage	areas	calculated	from	the	

location	of	the	sondes	(100	and	146	km2,	respectively);	Q!"#$ 	and	Q!"#		are	the	average	

discharges	estimated	for	the	EFJR	and	RSA.	The	rating	curves	allowed	us	to	relate	our	daily	

estimates	of	Q!"#$ 	and	Q!"#	with	stage	values	(r2=0.97	and	0.90,	respectively),	and	

estimate	daily	mean	stream	depth.	

Stream	metabolism	model		

15-minute	interval	diel	DO	profiles	and	environmental	variables	(water	

temperature,	water	salinity,	atmospheric	pressure,	and	PAR)	were	used	in	the	BAyesian	

Single-station	Estimation	(BASE	V2)	modeling	package	(Grace	and	others,	2015)	to	

estimate	daily	mean	GPP	and	ER	values	at	the	location	of	the	sondes	(Fig.	1).	The	model	

estimates	metabolic	parameters	by	using	the	day-time	regression	method	(Kosinski,	1984),	
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applies	temperature,	barometric	pressure	and	salinity	corrections	for	100%	DO	saturation	

(Grace	and	Imberger,	2006),	and	accounts	for	the	temperature	dependency	of	the	

respiration	and	reaeration	constants	by	using	mean	daily	temperature	during	the	model	

fitting	(see	Grace	et	al.	2015).	BASE	V2	incorporates	changes	to	the	model	structure	

following	findings	of	Song	and	others	(2016).	

BASE	V2	models	changes	in	DO	directly	using:	

[DO]!!! = [DO]! + AI!
!-R(θ !!-! + K!" * 1.0241 !!-! *( DO !"#,!- DO !"#,!) 	

Equation	2	

where	t	indicates	the	time	interval	in	the	diel	profile	(15-min).	The	GPP	term	is	AI!
!	

(mg	O2	L-1	d-1)	where	A	(-)	is	a	constant	that	represents	GPP	per	quantum	of	light,	I	(μ	mol	

m-2s-1)	is	the	incident	light	intensity,	p	(-)	is	an	exponent	describing	the	ability	of	the	

primary	producers	to	use	the	incident	light	and	accounts	for	saturating	photosynthesis.	R	

(mg	O2	L-1	d-1)	is	the	instantaneous	respiration	rate,	θ	(-)	describes	temperature	

dependence	of	respiration,	T		(°C)	is	water	temperature,	T	(°C)	is	the	mean	water	

temperature	over	the	24-hour	period	(°C),	K!"	(day-1)	is	the	estimated	reaeration	

coefficient,	and	 DO !"#,!	and	 DO !"#,!	(%	saturation)	indicate	100%	saturation	measured	

concentration	and	modeled	concentration	for	time	t.		

We	ran	100,000	model	iterations	and	used	50,000	burn-in	(‘settling’)	iterations	to	

improve	model	convergence.	We	multiplied	volumetric	GPP	and	ER	(mg	O2	L-1	d-1)	by	

estimated	daily	mean	stream	depth	to	convert	them	to	areal	(g	O2	m-2	d-1)	or	flux	estimates.	

We	followed	the	developer’s	guide	for	model	validation	(see	Supplementary	Material	in	

Grace	et	al.	(2015)	for	details).	In	addition,	we	used	the	measured	versus	predicted	diel	DO	

curves	along	with	measured	water	temperature	and	PAR	data	to	confirm	curve	fits	and	

identify	discrepancies	in	the	data	or	model.		

Periods	of	analysis	and	statistical	methods		

We	evaluated	water	quality	and	whole-stream	metabolism	throughout	the	growing	

season	(i.e.,	longer	time	scale)	to	determine	the	immediate	(2011),	shorter-term	(2012-

2014)	and	longer-term	(2015-2016)	within-stream	effects	of	wildfire	to	pre-fire	(2008-

2011)	conditions.	We	included	all	days	during	the	growing	season	from	each	year	that	

produced	reliable	metabolism	estimates,	resulting	in	an	annual	range	of	76	to	137	days	
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over	a	nine-year	period	with	a	mean	of	104	days	on	the	EFJR,	and	a	range	of	72	to	143	days	

and	a	mean	of	112	days	on	the	RSA	(SI	Table	1).	We	filtered	the	results	to	include	only	

overlapping	days	to	compare	the	immediate,	shorter-	and	longer-term	responses	between	

the	EFJR	and	RSA.	This	resulted	in	an	annual	range	of	60	to	137	days	and	a	mean	of	100	

days	(SI	Table	1).		

All	statistics	were	implemented	in	RStudio	(RStudio	Team,	2015).	We	calculated	the	

average	pre-fire	mean	value	and	equi-tailed	90th	percentile,	two-sided,	non-parametric	

confidence	intervals	for	each	stream	to	define	pre-fire	conditions.	We	selected	the	90th,	

rather	than	the	95th	percentile,	based	on	the	precautionary	principle	(Fairweather,	1991;	

Greystone,	1996).	The	confidence	intervals	were	calculated	using	the	Package	boot	(Canty	

and	Ripley,	2016),	from	which	we	could	compare	the	average	pre-fire	conditions	to	the	

post-fire	response	each	year	through	2016.	Linear	models	were	used	to	identify	

mechanisms	that	influenced	in-stream	metabolic	processes	pre-	and	post-fire.		

Geospatial	analyses	

ArcGIS	(ESRI	2011.	ArcGIS	Desktop:	Release	10.	Redlands,	CA:	Environmental	Systems	

Research	Institute)	was	used	to	evaluate	and	compare	the	watershed	characteristics	of	the	

EFJR,	RSA	and	their	tributaries	in	relation	to	the	LC	fire.	We	used	Hydrologic	Unit	Codes	

(HUCs)	to	delineate	each	watershed	and	sub-watershed	(USGS,	2014).	The	HUCs,	in	

combination	with	the	fire	maps,	allowed	us	to	quantify	the	total	area	burned	and	the	area	

within	each	burn	severity	category	within	each	watershed.	We	used	streamlines	(USGS,	

2016),	along	with	the	HUCs	and	fire	maps,	to	quantify	the	number	of	stream	kilometers	

within	the	burned	areas.	This	value	represents	the	length	of	stream	within	a	watershed	

that	can	directly	contribute	material	to	the	stream	if	overland	flows	were	to	occur.	We	

estimated	stream	gradients	using	a	1-m	digital	elevation	model	(USGS,	2017).	These	results	

were	used	to	classify	streams	into	low	(0.00-0.07),	medium	(0.07-0.14)	and	high	(0.14	to	

0.22)	gradient	(m	km-1)	reaches	within	the	burned	area,	which	influences	sediment	

entrainment,	transport,	and	deposition	(Bull,	1979).	Finally,	we	measured	the	distance	in	

river-km	from	moderate	or	high	burn	severity	areas	to	the	confluence	with	the	main	stem	

for	each	impacted	watershed	(i.e.,	EFJR	or	RSA)	to	quantify	the	proximity	of	the	disturbance	

to	the	main	stem.	These	distances,	in	combination	with	the	corresponding	stream	gradient	
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for	these	reaches,	were	used	to	evaluate	the	potential	transport	of	burn	scar	material	from	

the	impacted	tributaries	to	the	main	stem.		

	

Results	

Pre-fire	water	quality	and	stream	metabolism		

Pre-fire,	daily	mean	water	temperature	for	the	EFJR	and	RSA	(light	gray	in	Fig.	2a	&	

2e,	respectively)	varied	between	and	within	years,	and	lacked	an	apparent	trend	(Table	1).	

Additionally,	the	means,	standard	deviations	and	confidence	intervals	were	similar	

between	streams	within	a	given	year	(Fig.	2	&	Table	1),	and	the	observed	temperatures	

from	both	streams	were	highly	correlated	with	each	other	(r2=0.91)	and	tightly	centered	

on	the	1:1	line	(Fig.	4a).	For	SC,	we	observed	a	general	trend	of	increasing	mean	values	and	

minimal	within-year	variance	for	both	streams	(Fig.	2b	&	2f,).	While	SC	data	from	the	two	

streams	were	correlated	(r2=0.42;	Table	1),	the	pre-fire	values	for	the	RSA	were	

consistently	higher	than	those	observed	in	the	EFJR	(270	days	or	99.6%	above	the	1:1	line	

shown	in	Fig.	4b).	The	pre-fire	turbidity	values	had	very	low	means	and	standard	

deviations	for	both	streams	(Table	1,	Fig.	2c	&	2g).	However,	values	for	the	EFJR	were	

consistently	higher	(161	days	or	60%	below	1:1	line)	than	those	observed	in	the	RSA	

(Table	1,	Fig.	4c).	Pre-fire	pH	values	varied	between	and	within	years	on	both	streams	(Fig.	

2d	&	Fig.	2h)	with	values	from	the	RSA	being	slightly	elevated	(231	days	or	85%	above	the	

1:1	line)	as	compared	to	those	measured	in	the	EFJR	(Table	1,	Fig.	4d).		

Pre-fire	GPP	and	ER	on	the	EFJR	(Fig.	3a	&	3b,	respectively)	and	RSA	(Fig.	3c	&	3d,	

respectively)	exhibited	variability	within	and	between	years	and	lacked	clear	inter-annual	

trends	(Table	1	&	Fig.	3).	ER	and	GPP	values	were	positively	and	significantly	correlated	for	

both	the	EFJR	(r2=0.78)	and	the	RSA	(r2=0.47)	(Fig.	6).	We	observed	a	positive	correlation	

between	GPP	and	ER	versus	water	temperature	(SI	Fig.	1	&	2,	respectively)	on	the	EFJR	

(r2=0.36	&	0.41,	respectively)	and	no	correlation	on	the	RSA	(r2=0.08	&	0.16,	respectively).	

Metabolism	values	on	both	rivers	were	not	strongly	correlated	with	turbidity	(Fig.	7)	or	SC	

(SI	Figure	3	&	4).	GPP	and	ER	values	between	the	streams	were	not	strongly	correlated	(r2=	

0.03	and	0.16,	respectively)	with	each	other.	While	there	was	a	similar	distribution	of	GPP	

values	around	the	1:1	line,	with	158	days	(58%)	above	and	113	days	(32%)	below,	ER	
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values	were	consistently	higher	in	the	EFJR	than	in	the	RSA	(235	days	or	87%	below	the	

1:1	line)	(Fig.	4e	&	f).	

Post-fire	water	quality	and	stream	metabolism	responses	

Post-fire,	daily	mean	water	temperature	on	the	EFJR	and	RSA	were	similar	to	pre-

fire	conditions.	The	strong	between-stream	correlation	persisted	(Fig.	4a),	and	no	

immediate,	shorter-term	or	longer-term	post-fire	effects	were	observed	with	regards	to	

temperature	(Table	1,	Fig.	2a	&	2e).	In	contrast,	SC	concentrations	(an	indicator	of	total	

dissolved	solids)	increased	from	pre-fire	averages	on	the	EFJR	and	RSA	(Table	1,	Fig.	2b	&	

2f).	While	values	remained	elevated	through	2016,	the	greatest	increase	(nearly	double	the	

pre-fire	mean)	was	observed	in	2011,	the	year	of	the	fire.	Immediately	following	the	fire,	

the	SC	values	in	the	RSA	increased	above	those	observed	in	the	EFJR.	However,	the	values	

for	the	two	streams	in	subsequent	years	were	well	correlated	(Table	1,	Fig.	4b).	Post-fire	

turbidity	on	the	EFJR	(Fig.	2c)	was	greater	than	pre-fire	conditions	(i.e.,	20-52	NTU	greater	

than	the	pre-fire	mean)	through	2014	and	converged	to	pre-fire	averages	in	2015	and	2016	

(Table	1).	The	greatest	increase	in	turbidity	on	the	EFJR	occurred	in	2012,	the	year	after	

the	fire.	Turbidity	on	the	RSA	(Fig.	2g)	was	greater	than	during	pre-fire	conditions	through	

2016	(Table	1).	The	greatest	increase	in	turbidity	on	the	RSA	occurred	in	2013,	two	years	

after	the	fire.	Post-fire	turbidity	values	were	higher	for	the	RSA	than	for	the	EFJR,	a	trend	

that	persisted	through	2016	(Table	1,	Fig.	4c).	Similarly,	episodic	turbidity	spikes	following	

monsoon	precipitation	events	on	the	RSA	continued	through	2016,	with	a	maximum	value	

of	175	NTU	in	2016	(Reale	et	al.,	unpublished	data).	The	post-fire	pH	values	on	the	EFJR	

and	RSA	(Fig.	2d	&	2h,	respectively)	both	decreased	as	compared	to	pre-fire	values.	

However,	the	decline	in	the	EFJR	did	not	begin	until	2013	and	values	had	returned	to	

baseline	by	2016,	while	for	the	RSA,	pH	values	remained	lower	from	2012	through	2016.		

Mean	GPP	post-fire	on	the	EFJR	remained	within	the	pre-fire	confidence	interval,	

with	the	exception	of	values	for	2012	and	2013,	which	were	elevated	(Fig.	3a).	In	contrast,	

GPP	post-fire	on	the	RSA	was	below	the	pre-fire	confidence	limit	for	all	years	except	2015	

(Fig.	3c).	On	the	EFJR,	the	correlation	between	turbidity	and	GPP	remained	weak	(r2	<	0.14)	

and	flat	in	2011,	2012	and	2015	(Fig.	7)	but	varied	along	with	the	magnitude	of	the	slope	in	

2013	(negative	slope),	2014	(negative	slope)	and	2016	(positive	slope)	(Fig.	7).	On	the	RSA,	
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we	observed	a	negative	correlation	between	turbidity	and	GPP	(r2	>	0.3)	post-fire	through	

2014,	no	correlation	in	2015,	and	a	positive	correlation	in	2016	(Fig.	7).	On	the	EFJR,	we	

observed	a	positive	correlation	between	GPP	and	temperature	(SI	Fig.	1)	in	2011,	2012	and	

2016	(r2	≥	0.40).		GPP	on	the	RSA	continued	to	not	be	correlated	with	SC	(SI	Figure	1).	We	

also	found	no	correlation	between	GPP	and	SC	on	the	EFJR	or	RSA	post-fire	(SI	Fig.	3),	with	

the	exception	of	negative	correlations	during	2013	on	the	EFJR	(r2	=	0.53)	and	2011	

through	2013	on	the	RSA	(r2	≥	0.39).	While	for	pre-fire	conditions	paired	GPP	values	from	

the	two	streams	had	been	approximately	equally	distributed	above	and	below	the	1:1	line,	

for	post-fire	conditions	the	majority	of	the	values	for	the	EFJR	were	higher	than	those	for	

the	RSA	(559	days	or	90%	below	the	1:1	line)	(Table	1,	Fig.	4e	&	5a).	Additionally,	the	pre-

fire	seasonal	pattern	of	a	peak	in	GPP	occurring	during	summer	months	was	not	observed	

on	the	RSA	post-fire	during	2011	–	2013.	Instead,	GPP	values	remained	low	and	consistent	

throughout	the	growing	season	(Fig.	5a).			

Daily	mean	post-fire	ER	on	the	EFJR	(Fig.	3b)	was	within	the	pre-fire	confidence	

interval	in	2011	and	2016,	and	elevated	in	2012	through	2015,	while	post-fire	ER	on	the	

RSA	(Fig.	3d)	remained	below	the	pre-fire	confidence	interval	until	2014,	was	higher	in	

2015	and	went	back	to	near	pre-fire	conditions	in	2016.	Daily	values	of	post-fire	ER	and	

GPP	on	the	EFJR	were	positively	correlated	through	2016.	However,	this	relationship	

weakened	in	2013	through	2015	with	numerous	high	ER	values	on	days	with	low	GPP	

estimates	(Fig.	4).	In	2016,	the	post-fire	ER	vs.	GPP	relationship	strengthened	with	fewer	

days	when	ER	was	high	and	GPP	was	low	(Fig.	4).	In	the	RSA,	post-fire	ER	and	GPP	were	

positively	correlated,	but	the	range	of	the	relationship	was	greatly	constrained	in	2012	and	

2013	as	a	majority	of	daily	GPP	and	ER	values	remained	below	the	pre-fire	mean	(Fig.	4).	In	

2015,	and	to	a	lesser	extent	in	2014	and	2016,	higher	ER	values	for	the	RSA	were	observed	

and	corresponded	to	an	increase	in	daily	GPP	values	(Fig.	4).	Daily	mean	ER	was	generally	

not	correlated	with	water	temperature	on	the	EFJR	or	RSA	(SI	Fig.	2),	with	the	exception	of	

2011,	2012	and	2016	on	the	EFJR	when	they	were	positively	correlated	(r2	≥	0.40).	ER	for	

both	ecosystems	did	not	correlate	with	SC	(SI	Figure	4).	As	with	the	pre-fire	data,	ER	values	

for	the	EFJR	were	higher	than	those	for	the	RSA.	However,	the	discrepancy	increased	from	

2011-2015	post-fire	(Table	1,	Fig.	4e	&	5b).	Additionally,	as	with	GPP,	the	pre-fire	seasonal	

pattern	of	a	peak	in	ER	occurring	during	summer	months	was	not	observed	on	the	RSA	
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post-fire	during	2011	–	2013,	i.e.,	ER	values	remained	low	and	consistent	throughout	the	

growing	season	(Fig.	5b).			

Geospatial	analyses	

The	LC	fire	burned	approximately	31%	(31	km2)	of	the	EFJR	watershed	upstream	of	

the	sonde	(100	km2)	with	approximately	28%	(28	km2)	of	the	burn	area	classified	as	

moderate	or	high	severity	(Table	2).	Within	the	EFJR	watershed,	25%	of	the	total	stream	

length	was	contained	within	the	burn	perimeter,	with	0,	9	and	16%	within	high,	moderate,	

and	low	severity	burned	areas,	respectively.	This	watershed	is	divided	into	two	sub-

watersheds,	the	Upper	East	Fork	of	the	Jemez	River	and	the	Jaramillo	watersheds.		

The	Upper	East	Fork	of	the	Jemez	River	watershed	(i.e.,	upstream	of	the	confluence	

with	Jaramillo	Creek)	is	a	low-gradient,	highly	sinuous	system	encompassing	the	Valle	

Grande,	with	an	average	longitudinal	slope	of	0.01	m	km-1	(Fig.	1c).	Within	this	sub-

watershed,	approximately	27%	of	the	area	was	burned	with	24%	moderate	or	high	burn	

severity	(Table	2).	Also,	the	LC	fire	did	not	impact	any	medium	or	high	gradient	stream	

reaches	in	this	sub-watershed	and	only	3.2	river-km	of	low	gradient	stream	(Fig.	1c,d	&	

Table	3).	A	total	of	57%	(22.6	km2)	of	the	second	sub-watershed,	the	Jaramillo	watershed,	

was	burned,	with	51%	(20	km2)	classified	as	moderate	or	high	severity	(Table	2).	The	

western	and	southern	portions	of	the	Jaramillo	watershed	are	predominantly	low	gradient,	

and	were	not	impacted	by	the	LC	fire	(Fig.	1d	&	Table	3).	The	eastern	portion	of	the	sub-

watershed	was	impacted,	including	4.9	river-km	of	medium	gradient	stream	(Fig.	1d	&	

Table	3).	Downstream	of	these	fire-impacted	tributaries,	the	Jaramillo	Creek	is	a	low	

gradient	and	highly	sinuous	stream	that	travels	3.5	km	before	the	confluence	(Fig	1d)	with	

the	EFJR.	New	Mexico	highway	4	(NM4)	bisects	the	southern	portion	of	the	EFJR	watershed	

and	served	as	a	firebreak	during	the	LC	fire	and	continues	as	a	likely	ash/debris	break	

during	the	post-fire	years.	The	road’s	shoulder	and	drainage	system	intercept	downslope	

movement	of	ash	and	debris,	disconnecting	the	hillslope	burned	areas	and	the	EFJR	(Fig.	

1c).		

	 The	LC	fire	burned	approximately	33%	(49	km2)	of	the	RSA	watershed	upstream	of	

the	sonde	(146	km2)	with	approximately	26%	(38	km2)	classified	as	moderate	or	high	

severity	(Table	2).	Upstream	of	the	sonde,	61%	of	the	total	stream	length	was	contained	
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within	the	burn	perimeter,	with	8,	26,	and	27%	within	high,	moderate,	and	low	severity	

burned	areas,	respectively.	Within	the	RSA	watershed,	approximately	28%	(5.2	km2)	of	

Rito	de	Indios	(Indios)	and	64%	(31.7	km2)	of	the	upper	RSA	(i.e.,	upstream	of	the	

confluence	with	Indios)	sub-watersheds	were	burned	(Fig.	1d	and	Table	2).	Approximately	

21%	(4	km2)	and	51%	(25	km2)	of	the	Indios	and	upper	RSA	sub-watersheds	were	

classified	as	moderate	or	high	severity	burn,	respectively	(Table	2).	The	mainstem	of	Indios	

is	predominantly	a	low	gradient	system,	highly	sinuous	system,	with	a	longitudinal	slope	of	

0.05	(Fig.	1d	&	Table	3).	However,	the	LC	fire	impacted	several	tributaries	of	Indios	that	are	

medium	(8.6	river-km)	and	high	(1.8	river-km)	gradient.	We	estimated	that	the	distance	

from	the	burn	scar	within	the	Indios	to	the	confluence	of	the	RSA	was	0.37	river-km	and	

classified	this	segment	as	low	stream-gradient	(Fig.	1d	and	Table	3).	Similarly,	the	

mainstem	of	the	upper	RSA	is	a	low-gradient,	highly	sinuous	system,	with	a	longitudinal	

watershed	slope	of	0.09	(Fig.	1d,	Table	2	&	3).	However,	the	LC	fire	impacted	several	

tributaries	of	the	upper	RSA	(Fig.	1d)	that	are	medium	(5.3	river-km)	and	high	(2.2	river-

km)	gradient.		

	

Discussion	

This	study	compares	3	years	of	pre-fire	data	with	immediate	(same	year),	shorter-

term	(1-3	years	after)	and	longer-term	(4-5	years	after)	water	quality	and	whole-stream	

metabolism	responses	to	wildfire	in	two	open-canopy,	low-nutrient,	low-gradient	streams	

within	a	large	volcanic	caldera.	The	catchments	for	these	streams	had	very	similar	burn	

extent	and	severity	during	a	large-scale,	catastrophic	wildfire	that	occurred	in	the	summer	

of	2011.	We	estimated	large	between-stream	variation	in	ecosystem	metabolism	within	the	

two	catchments	in	response	to	differential	hydrologic,	physical,	chemical	and	biological	

drivers	and	their	interactions	over	time.	This	study	adds	to	the	growing	list	of	long-term	

ecosystem	metabolism	studies	for	streams	based	on	dissolved	oxygen	sensor	technology	

and	advances	in	stream	metabolism	modeling	(Grace	and	others,	2015;	Appling	and	others,	

2016).		

Annual	to	multi-year	stream	metabolism	studies	have	been	reported	for	

intermittent	Mediterranean	streams	(Acuna	and	others,	2004),	deciduous	forested	

headwater	streams	(Roberts	and	others,	2007),	montane	streams	(Birkel	and	others,	



	

	 57	

2013),	urban	streams	(Smith	and	Kaushal,	2015;	Larsen	and	Harvey,	2017),	and	

agricultural	streams	(Griffiths	and	others,	2013;	Roley	and	others,	2014).	This	study	

expands	the	range	of	multi-year	stream	metabolism	to	two	open-canopy,	high-light,	high-

elevation,	montane	streams,	where	metabolism	studies	are	few,	and	overlays	the	impacts	of	

a	catastrophic	wildfire	on	the	recovery	of	these	stream	ecosystems	over	a	five-year	period.		

To	our	knowledge,	this	study	is	the	first	multi-year	water	quality	and	whole-stream	

metabolism	study	linked	to	one	major	wildfire.	Previous	stream	metabolism	studies	after	

wildfire	have	been	carried	out	for	one	summer	period	at	different	times	post-fire	(Betts	

and	Jones,	2009;	Davis,	2015;	Tuckett	and	Koetsier,	2016).	These	previous	studies	on	the	

effects	of	wildfires	on	stream	metabolism	provide	interesting	insights	on	the	responses	of	

various	catchments	to	wildfire	at	different	points	in	time	after	disturbance.	For	example,	

Betts	and	Jones	(2009)	showed	that	a	large	wildfire	affecting	a	stream	in	a	boreal	forest	in	

Alaska	doubled	the	rates	of	stream	gross	primary	production	and	elevated	stream	

respiration	rates	the	summer	after	the	fire,	compared	to	unburned	reference	sites.	Davis	

(2015)	surveyed	18	streams	in	Idaho	wilderness	areas	with	varying	fire	histories	during	

one	summer	and	found	that	the	extent	of	post-fire	riparian	canopy	recovery	strongly	

influenced	stream	metabolic	state.	Tuckett	and	Koetsier	(2016)	studied	stream	ecosystem	

metabolism	in	31	streams	with	varying	fire	histories	within	the	Boise	River	watershed	

(Idaho,	USA)	between	July	14	and	August	21	of	2005	and	found	that	streams	that	

experienced	debris	flows	after	wildfire	had	higher	rates	of	gross	primary	production	and	

lower	rates	of	ecosystem	respiration.	Contrary	to	the	existent	literature,	our	study,	based	

on	continuous	growing	season	data	that	started	before	a	major	catastrophic	fire	in	2011	

and	extends	for	five	years	after	the	fire,	allows	a	more	continuous	look	at	stream	ecosystem	

metabolism	and	recovery,	and	facilitates	a	comparison	of	recovery	trajectories	in	streams	

in	adjacent	catchments.	

Immediate	responses	to	hydrologic	and	geomorphic	alterations	(2011)	

The	EFJR	and	RSA	watersheds	experienced	extensive	and	rapid	hydrologic	and	

geomorphic	changes	during	the	first	few	months	following	the	LC	fire.	Elevated	post-fire	

peak	stream	discharges	were	documented	following	short-duration,	high-intensity	

monsoon	rainfall	events,	resulting	in	elevated	turbidity	and	solute	concentrations	(Reale	
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and	others,	2015;	Sherson	and	others,	2015).	During	these	post-fire	storms,	several	studies	

documented	the	removal	of	ash,	charcoal	and	litter	from	hillslopes,	rill	and	gully	formation,	

channel	incision	and	scour,	all	of	which	resulted	in	debris-laden	flood	events	that	

transported	and	deposited	material	from	the	upland	watershed	onto	the	low-gradient	

valley	streams	(Pelletier	and	Orem,	2014;	Orem	and	Pelletier,	2015).	The	combination	of	

the	LC	fire	and	the	subsequent	storm	disturbances	operating	at	the	hillslope	to	watershed-

scales	resulted	in	elevated	erosion	rates,	additional	sources	of	sediment	and	ash	(Orem	and	

Pelletier,	2016),	and	subsequently	elevated	SC	(Fig.	2b	&	c)	and	turbidity	concentrations	

(Fig.	2f	&	g).	These	hydrological	and	geomorphological	impacts	and	subsequent	water	

quality	responses	are	not	unique	to	the	LC	fire,	as	similar	post-fire	and	post-storm	elevated	

peak	discharges	(Moody	and	Martin,	2001b;	Veenhuis,	2002),	accelerated	geomorphic	

processes	and	debris	flows	(Cannon	and	others,	2001;	Moody	and	Martin,	2001a),	elevated	

levels	of	suspended	sediment	(Reneau	and	others,	2007;	Goode	and	others,	2012),	and	

elevated	turbidity	(Rhoades	and	others,	2011;	Murphy	and	others,	2012;	Mast	and	others,	

2016)	and	solutes	(Mast	and	Clow,	2008;	Mast	and	others,	2016)	have	been	well	

documented	in	other	catchments.	However,	no	studies	have	continuously	evaluated	the	

immediate,	shorter-	and	longer-term	post-fire	impacts	to	stream	metabolism	after	a	major	

forest	fire.	

The	immediate	documented	decline	in	post-fire	GPP	in	both	streams	can	be	

attributed	to	numerous	factors	shown	to	decrease	GPP	in	other	stream	studies.	These	

include	the	alteration	of	geomorphic	characteristics	such	as	changes	in	stream	width	and	

depth	(Sweeney	and	others,	2004;	Bott	and	others,	2006),	bed	movement	with	associated	

dislodgment	of	biofilms	and	aquatic	macrophytes	(Atkinson	and	others,	2008;	Gerull	and	

others,	2012),	the	occurrence	of	destructive	debris	flows	(Tuckett	and	Koetsier,	2016),	and	

reduced	light	availability	(Izagirre	and	others,	2008;	Hall	and	others,	2015).	The	observed	

reductions	in	GPP	due	to	these	physical	impacts	also	were	likely	linked	to	the	reduced	ER	in	

both	streams.	Ecosystem	production	and	respiration	were	closely	coupled	in	our	study	

systems	pre-fire	(Fig.	4),	and	these	parameters	are	closely	connected	in	other	open-canopy,	

low	gradient	mountain	streams	(Hotchkiss	and	Hall,	2015).	In	contrast	to	our	results,	Betts	

and	Jones	(2009)	documented	an	increase	in	GPP	due	to	elevated	concentrations	of	limiting	

nutrients	and	elevated	ER	due	to	additional	DOC	or	extent	of	the	hyporheic	and	transient	
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storage	zone	immediately	following	a	wildfire.	It	appears	that	elevated	discharge	and	

turbidity	(reducing	light	availability)	observed	in	the	EFJR	and	RSA	outweighed	the	

priming	effects	of	elevated	dissolved	nutrients	on	primary	producers	in	headwaters	

streams	that	are	sometimes	detected	during	the	first	few	weeks	following	wildfire	(Hauer	

and	Spencer,	1998).			

Differential	shorter-term	responses	to	fire	impacts	(2012-2014)	

We	observed	several	differential	responses	between	the	two	streams	for	both	water	

quality	and	stream	metabolism	parameters	during	the	shorter-term	period	(2012-2014)	

following	the	fire.	In	the	EFJR,	the	observed	decline	in	turbidity	as	compared	to	immediate	

post-fire	conditions	(Fig.	2c)	and	the	associated	increase	in	GPP	(Fig.	3a)	and	ER	(Fig.	3b)	

above	pre-fire	mean	values	suggest	that	several	previously	documented	responses	are	

occurring.	These	include	1)	a	rapid	decline	in	the	transport	of	sediments	from	the	

landscape	into	streams	during	the	second	year	after	the	fire	(Lavine	and	others,	2006;	

Smith	and	others,	2011a),	2)	a	reduced	potential	for	debris	flows	and	floods	as	vegetation	

stabilizes	hillslopes	and	material	previously	transported	from	initial	debris	flow	events	

(Cannon	and	others,	2011;	Kean	and	others,	2013),	and	3)	a	likely	fertilization	effect	of	in-

stream	primary	producers	(Silins	and	others,	2014;	Cooper	and	others,	2015)	from	the	

nutrient	rich	ash	and	sediment	deposited	post-fire	(Bodi	and	others,	2014;	Emelko	and	

others,	2016).		

Our	geospatial	analyses	suggest	that	low	terrain	and	stream	gradient,	large	

percentage	of	the	watershed	that	was	classified	as	low	to	moderate	burn	severity,	and	

considerable	portions	of	the	watershed	that	were	unburned	(Fig.	1,	Table	2	&	3)	likely	

contributed	to	the	rapid	water	quality	recovery	of	the	EFJR	(Fig.	2	&	Table	1).	In	addition,	

rapid	regrowth	of	herbaceous	vegetation	(grasses	and	forbs)	in	the	valleys	and	low	

gradient	slopes	of	burned	forest	(Parmenter	and	others,	2012;	Suazo,	2016)	likely	further	

accelerated	the	rate	of	recovery.	Tributaries	to	the	Jaramillo	Creek,	the	other	major	

upstream	contributor	to	the	EFJR,	were	more	severely	burned,	had	higher	stream	

gradients,	and	have	been	identified	as	having	high	(>80%)	probability	of	debris	flows	

(Tillery	and	Haas,	2016).	However,	the	~4	km	of	Jaramillo	Creek	upstream	of	the	

confluence	with	the	EFJR	are	low	gradient,	likely	buffering	and	dissipating	post-fire	pulses	
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and	promoting	sediment	deposition	prior	to	reaching	the	EFJR	(Figure	1d,	Tables	2	&	3).	

Additionally,	the	highway	present	along	the	southern	edge	of	the	fire	may	also	have	

redirected	overland	flow,	further	minimizing	the	impacts	of	the	post-fire	activity	on	the	

EFJR.		

In	contrast,	the	multi-year	suppression	of	ER	and	GPP	in	the	RSA	suggests	that	

different	mechanisms	were	at	play	in	this	watershed	for	the	first	few	years	after	the	

wildfire.	The	observed	elevated	turbidity,	which	is	significantly	and	negatively	correlated	

with	GPP	post-fire	(Fig.	7),	likely	suppressed	both	GPP	and	ER	(Fig.	3	&	5).	GPP	and	ER	are	

tightly	linked	in	this	system,	suggesting	that	1)	there	is	continued	transport	of	sediment	

from	the	hillslope	into	the	stream	(Reneau	and	others,	2007;	Orem	and	Pelletier,	2016),	

and/or	2)	there	is	continued	re-suspension	of	ash,	charcoal	and	fine	sediments	deposited	

into	the	stream	even	during	low	flow	conditions	(Ryan	and	others,	2011).	Either	of	these	

possibilities	could	outweigh	the	positive	influence	of	elevated	nutrients	on	post-fire	

primary	production	(Hauer	and	Spencer,	1998).	Our	geospatial	analyses	identified	high	

gradient	tributaries	(Fig.	1d),	including	the	upper	RSA	and	Rito	de	Indios,	that	were	

substantially	impacted	by	the	fire	(Table	2	&	3)	and	likely	contributed	to	the	sustained	

transport	and	re-suspension	of	sediment	altering	water	quality	(Fig.	2)	and	ecosystem	

processes	(Fig.	3-5).	In	addition,	Tillery	and	Haas	(2016)	identified	sub-basins	within	the	

RSA	watershed	that	had	high	probability	of	debris	flows	that	likely	contributed	sediments	

that	influenced	water	quality	downstream.	These	results	suggest	that	hydrologic	

connections	between	the	upland	and	adjacent	aquatic	ecosystems	are	primary	controls	on	

water	quality	and	ecosystem	scale	processes	following	high-severity	wildfire	disturbance	

that	can	continue	from	immediate	to	shorter-term	timescales.		

Longer-term	recovery	post	fire	(2015-2016)	

Four	to	five	years	post-fire,	both	aquatic	ecosystems	had	approached	near	pre-fire	

conditions	with	respect	to	water	quality	parameters	and	measures	of	ecosystem	

metabolism.	On	the	EFJR,	turbidity,	GPP,	and	ER	decreased	to	near	pre-fire	mean	values,	

suggesting	that	similar	recovery	trajectories	observed	in	other	watersheds	were	occurring	

in	our	study	systems.	This	includes	1)	a	return	to	pre-fire	flow	regime	and	sediment	loads	

(Romme	and	others,	2011)	and	2)	a	decline	in	dissolved	nutrient	content	and	thus	
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fertilization	effect	in	previously	deposited	ash	and	sediment	due	to	uptake	by	macrophytes	

(Chambers	and	others,	1989),	microbial	uptake	and	transformation	(Jones	and	Holmes,	

1996;	Bernot	and	Dodds,	2005),	groundwater	and	surface	water	interactions	(Dahm	and	

others,	1998)	and	downstream	transport.		

The	more	gradual	return	to	pre-fire	values	on	the	RSA	indicates	that	in	streams	that	

are	strongly	linked	to	ongoing	disturbance	in	the	surrounding	watershed,	sediment	loading	

from	the	erosion	of	destabilized	hillslopes	remains	elevated.	However,	by	the	fifth	year	

following	the	fire,	we	observed	an	overall	reduction	in	turbidity	(Table	1	&	Fig.	2)	and	

reduced	suppression	of	GPP	and	ER	(Fig.	3	&	5).		These	responses	suggest	recovery	and	a	

return	to	pre-fire	conditions	including;	minimal	additional	transport	of	sediments	into	the	

stream,	a	reduction	in	the	resuspension	of	fine	sediments	during	base	flow	conditions	

(Ryan	and	others,	2011),	and	greater	light	availability	stimulating	GPP	(Mulholland	and	

others,	2001;	Bernot	and	others,	2010).		

	

Conclusions	

1)	Immediately	following	a	catastrophic	wildfire,	turbidity	and	specific	conductance	values	

increased	substantially	and	measures	of	whole	stream	metabolism	declined	in	each	of	two	

streams	in	nearly	identical,	paired	watersheds.	

2)	From	one	to	three	years	following	the	fire,	streams	in	these	two	paired	watersheds	

responded	differently:	one	stream	with	tight	hydrologic	connections	to	the	landscape	

experienced	persistently	high	turbidity	and	suppressed	GPP	and	ER,	likely	due	to	light	

limitation,	while	the	other	stream	had	much	lower	turbidity	levels	and	elevated	GPP	and	

ER,	likely	due	to	fertilization	of	nutrient-rich	fire	debris.	

3)	Both	ecosystems	returned	to	near	pre-fire	water	quality	and	metabolism	values	by	six	

years	after	the	fire.		

4)	Long-term,	high-frequency	data,	both	pre-	and	post-fire	are	necessary	to	accurately	

assess	the	impacts	of	wildfire	on	ecosystem	processes	in	aquatic	environments.			
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	Figures	

	
	

Figure	1:	(a)	Maps	showing	the	Rio	Grande	and	the	burn	perimeter	of	the	Las	Conchas	(LC)	

wildfire	in	north-central	New	Mexico,	USA,	(b)	water-quality	stations,	streams	of	interest,	

perimeter	of	the	LC	fire,	and	key	landmarks,	(c)	the	U.S.	Forest	Service	burn	severity	map	

for	the	LC	fire,	water	quality,	discharge	and	meteorological	(MET)	monitoring	locations	and	

streams	of	interest	and,	(d)	average	stream	gradient	(m	km-1)	and	sub-watershed	

boundaries	in	relation	to	the	burn	perimeter	of	the	LC	fire.		
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Figure	2:	Daily	mean	water	temperature	(°C),	specific	conductivity,	SC	(mS	cm-1),	log10	turbidity	(NTU),	and	pH	(pH	units)	

during	the	growing	season	(Mid-May	through	September),	pre-(2008-2011)	and	post-Las	Conchas	fire	(2011-2016)	for	East	

Fork	Jemez	River	(a-d)	and	Rio	San	Antonio	(e-h).	Grey	lines	represent	the	compiled	growing	season	mean	values	and	90%	

confidence	intervals	for	pre-fire	for	each	stream.		
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Figure	3:	Daily	mean	Gross	Primary	Productivity	(GPP)	and	Ecosystem	Respiration	(ER)	on	the	East	Fork	Jemez	River	(a,	b)	

and	the	Rio	San	Antonio	(c,	d)	during	the	growing	season	(Mid-May	through	September).	Grey	lines	represent	the	compiled	

pre-fire	growing	season	mean	values	and	90%	confidence	intervals	for	each	stream.	
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Figure	5:	(a)	Daily	mean	Gross	Primary	Productivity	(GPP)	and	(b)	Ecosystem	Respiration	(ER)	on	the	East	Fork	Jemez	River	

(red)	and	the	Rio	San	Antonio	(blue)	during	the	growing	season	(Mid-May	through	September)	by	year	(2008-2016).	Black	

vertical	dashed	line	represents	the	Las	Conchas	fire.			
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Figure	4:	Comparison	of	daily	mean	water	temperature	(°C),	specific	conductivity,	SC	(mS	

cm-1),	log10	turbidity	(NTU),	pH	(pH	units),	Gross	Primary	Productivity	(GPP,	g	O2	m-2	d-1)	

and	Ecosystem	Respiration	(ER,	g	O2	m-2	d-1)	on	the	East	Fork	Jemez	River	(EFJR,	x	axis)	

and	the	Rio	San	Antonio	(RSA,	y	axis)	during	the	growing	season	(Mid-May	through	

September),	pre-(2008-2011)	and	post-Las	Conchas	fire	(2011-2016).	
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Figure	6:	Daily	mean	Gross	Primary	Productivity	(GPP,	g	O2	m-2	d-1)	versus	daily	mean	

Ecosystem	Respiration	(ER,	g	O2	m-2	d-1)	versus	estimates	for	the	growing	season	(Mid-May	

through	September),	pre-fire	(green)	and	each	year	following	the	Las	Conchas	fire	(black)	

on	the	East	Fork	Jemez	River	(EFJR;	left	column)	and	Rio	San	Antonio	(RSA;	right	column).	

Grey	lines	represent	the	compiled	growing	season	mean	values	pre-fire	for	each	stream.	*	p	

value	≤	0.05.
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Figure	7:	Log10	transformed	daily	mean	turbidity	(NTU)	versus	Log10	transformed	Gross	

Primary	Productivity	(GPP,	g	O2	m-2	d-1)	estimates	for	the	growing	season	(Mid-May	

through	September),	pre-fire	(green)	and	each	year	following	the	Las	Conchas	fire	(black)	

on	the	East	Fork	Jemez	River	(EFJR;	left	column)	and	Rio	San	Antonio	(RSA;	right	column).	

Grey	lines	represent	the	compiled	growing	season	mean	values	pre-fire	for	each	stream.	*	p	

value	≤	0.05.	
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Tables	

	

	

Table	1:	Compiled	year	averages	(standard	deviation)	from	daily	mean	water	temperature	(°C),	specific	conductance,	SC	(mS	

cm-1),	turbidity	(NTU),	Gross	Primary	Productivity	(GPP,	g	O2	m-2	d-1),	and	Ecosystem	Respiration	(ER,	g	O2	m-2	d-1)	for	the	

growing	season	(Mid-May	through	September),	pre-fire	(2008-2011)	and	each	year	following	the	Las	Conchas	fire	(2011-

2016),	and	the	compiled	pre-	and	post-fire	mean	on	the	East	Fork	Jemez	River	(EFJR)	and	Rio	San	Antonio	(RSA).	Bold	rows	

are	the	combined	pre-	and	post-fire	mean.	NA=	no	data	available.		

	

	 Temperature	 SC	 Turbidity	 GPP	 ER	

	

EFJR	 RSA	 EFJR	 RSA	 EFJR	 RSA	 EFJR	 RSA	 EFJR	 RSA	

2008	 15.0	(2.1)	 16.0	(2.3)	 0.064	(0.002)	 0.085	(0.003)	 9.5	(7.2)	 4.8	(2.5)	 2.5	(0.8)	 4.3	(1.3)	 2.1	(0.6)	 2.2	(1.3)	

2009	 16.1	(3.2)	 15.4	(2.8)	 0.078	(0.004)	 0.096	(0.002)	 9.4	(4.8)	 6.6	(13.1)	 4.8	(1.7)	 4.4	(1.1)	 3.6	(1.2)	 2.4	(1.1)	

2010	 16.7	(2.4)	 16.9	(2.1)	 0.074	(0.007)	 0.100	(0.004)	 NA	 2.2	(2.0)	 3.3	(0.8)	 2.7	(0.6)	 2.9	(0.8)	 1.2	(0.6)	

2011	 16.3	(2.6)	 15.9	(2.5)	 0.095	(0.009)	 0.106	(0.002)	 2.5	(5.2)	 7.4	(4.0)	 4.6	(0.9)	 2.5	(0.6)	 4.0	(1.1)	 1.8	(0.6)	

Pre-fire	 16.1	(2.6)	 16.0	(2.5)	 0.077	(0.012)	 0.096	(0.008)	 8.1	(6.4)	 5.3	(7.8)	 3.8	(1.5)	 3.6	(1.7)	 3.1	(1.2)	 2.0	(1.1)	

2011	 15.4	(2.6)	 16.0	(2.6)	 0.158	(0.035)	 0.194	(0.072)	 24.3	(23.3)	 132.4	(212.5)	 3.1	(1.8)	 1.1	(0.7)	 2.9	(0.9)	 2.2	(4.9)	

2012	 16.5	(2.5)	 16.7	(2.2)	 0.099	(0.009)	 0.126	(0.226)	 54.8	(167.5)	 101.1	(229.5)	 5.5	(2.2)	 0.7	(0.3)	 4.6	(1.7)	 1.4	(0.4)	

2013	 15.5	(2.3)	 15.7	(2.2)	 0.128	(0.026)	 0.130	(0.024)	 26.8	(58.9)	 206.5	(355.4)	 5.1	(2.4)	 1.1	(0.7)	 5.9	(1.5)	 2.4	(6.6)	

2014	 15.5	(2.1)	 15.9	(2.1)	 0.112	(0.009)	 0.119	(0.009)	 22.0	(88.3)	 59.9	(172.0)	 4.0	(1.5)		 2.1	(1.0)	 5.3	(1.9)	 1.9	(4.5)	

2015	 16.0	(2.1)	 15.4	(2.7)	 0.120	(0.012)	 0.124	(0.013)	 5.7	(5.9)	 34.3	(90.4)	 3.2	(1.4)	 3.8	(2.5)	 6.2	(2.2)	 5.8	(10.9)	

2016	 15.2	(2.8)	 12.3	(2.6)	 0.099	(0.007)	 0.115	(0.006)	 5.5	(5.8)	 18.3	(24.2)	 3.3	(1.5)	 2.3	(1.2)	 3.8	(1.8)	 2.5	(1.7)	

Post-fire	 15.7	(2.4)	 15.2	(2.8)	 0.115	(0.020)	 0.126	(0.023)	 24.2	(88.1)	 69.7	(177.1)	 4.1	(2.0)	 1.9	(1.4)	 4.9	(2.0)	 1.8	(1.3)	
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Watershed	 Sub-watershed	

Total	area	

(km2)	

Burn	

severity	 Area	(km2)	 Area	(%)	

RSA	 Rito	de	Indios	 19	 High	 1.7	 9.1	

	 	 	

Moderate	 2.2	 12	

	 	 	

Low	 1.3	 7	

	 	 	

Unchanged	 13.8	 73.8	

	

Upper	RSA	 49.4	 High	 13.1	 26.6	

	 	 	

Moderate	 12.2	 24.6	

	 	 	

Low	 6.4	 12.9	

	 	 	

Unchanged	 17.7	 35.9	

	

Sonde	 146	 High	 18.8	 12.9	

	 	 	

Moderate	 19.1	 13.1	

	 	 	

Low	 11.4	 7.8	

	 	 	

Unchanged	 96.7	 66.2	

EFJR	 Upper	EFJR	 32.9	 High	 1.5	 4.6	

	 	 	

Moderate	 6.3	 19.1	

	 	 	

Low	 0.9	 2.9	

	 	 	

Unchanged	 24.2	 73.5	

	

Jaramillo	 39.4	 High	 9.7	 24.7	

	 	 	

Moderate	 10.2	 25.9	

	 	 	

Low	 2.7	 6.7	

	 	 	

Unchanged	 16.8	 42.7	

	

Sonde	 100	 High	 11.2	 11.2	

	 	 	

Moderate	 16.5	 16.5	

	 	 	

Low	 3.6	 3.6	

	 	 	

Unchanged	 68.7	 68.7	

	
	

Table	2:	Total	watershed	area	(km2)	and	cumulative	area	(km2	and	percentage)	within	each	

of	the	burn	severity	classes	(i.e.,	unchanged,	low,	moderate,	and	high)	for	the	EFJR	and	RSA	

watersheds	calculated	from	the	location	of	the	water	quality	sonde	and	contributing	sub-

watersheds	that	were	impacted	by	the	Las	Conchas	fire.		
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Watershed	 Sub-watershed	

Mean	

watershed	

slope	

River-km	to	

fire	

Stream	

gradient	
%	burned	of	total	river-km	 %	unburned	of	total	river-km	

	River-km	

burned	

River-km	

unburned	

RSA	 Upper	RSA	 0.09	 1.4	 High	 13.6	 8.0	 2.2	 1.3	

	 	 Medium	 32.7	 15.4	 5.3	 2.5	

	 	 Low	 14.8	 16.0	 2.4	 2.6	

	 	 Total		 60.5	 39.5	 9.8	 6.4	

	 Rito	de	Indios	 0.05	 0.4	 High	 4.8	 0.0	 1.8	 0	

	 	 Medium	 23.0	 5.6	 8.6	 2.1	

	 	 Low	 32.9	 33.2	 12.3	 12.4	

	 	 Total		 61.0	 39.0	 22.8	 14.6	

	 Sonde	 0.06	 11.8	 High	 7.5	 2.4	 4	 1.3	

	

	 	

Medium	 25.9	 8.6	 13.9	 4.6	

	

	 	

Low	 27.4	 28.0	 14.7	 15	

	

	 	

Total		 60.8	 39.2	 32.6	 21	

EFJR	 Upper	EFJR	 0.01	 NA	 High	 0.0	 0.0	 0	 0	

	 	 Medium	 0.0	 18.3	 0	 5.1	

	 	 Low	 11.5	 70.1	 3.2	 19.5	

	 	 Total		 11.5	 88.5	 3.2	 24.6	

	 Jaramillo	Creek	 0.04	 3.1	 High	 0.0	 0.0	 0	 0	

	 	 Medium	 19.5	 0.0	 4.7	 0	

	 	 Low	 20.3	 60.2	 4.9	 14.5	

	 	 Total		 39.8	 60.2	 9.6	 14.5	

	 Sonde	 0.05	 5.6	 High	 0.0	 0.0	 0	 0	

	

	 	

Medium	 9.1	 9.8	 4.7	 5.1	

	

	 	

Low	 15.6	 65.5	 8.1	 34	

	

	 	

Total		 24.7	 75.3	 12.8	 39.1	
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Table	3:	Mean	sub-watershed	slope,	distance	(river-km)	to	the	fire	burn	scar	classified	as	moderate	or	high	burn	severity,	and	
percentage	of	river-km	classified	as	low	(0.00-0.07),	moderate	(0.07-0.14)	or	high	(0.15-0.22)	gradient	(m	km-1)	unburned	
and	burned	by	the	Las	Conchas	fire	within	each	sub-watershed	within	the	greater	EFJR	and	RSA	watersheds.	NA=	distance	
could	not	be	calculated	due	to	the	lack	of	a	moderate	or	high	burn	severity	parcel	within	the	watershed.
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Supplemental	figures	and	tables	

	

	
	
Supplemental	Information	Figure	1:	Log10	transformed	Gross	Primary	Productivity	(GPP,	g	
O2	m-2	d-1)	estimates	for	the	growing	season	(Mid-May	through	September)	versus	daily	
mean	water	temperature	(°C),	pre-fire	(green)	and	each	year	following	the	Las	Conchas	fire	
(black)	on	the	East	Fork	Jemez	River	(EFJR;	left	column)	and	Rio	San	Antonio	(RSA;	right	
column).	Grey	lines	represent	the	compiled	growing	season	mean	values	pre-fire	for	each	
stream.		*	p	value	≤	0.05.	
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Supplemental	Information	Figure	2:	Log10	transformed	Ecosystem	Respiration	(ER,	g	O2	m-

2	d-1)	estimates	for	the	growing	season	(Mid-May	through	September)	versus	daily	mean	
water	temperature	(°C),	pre-fire	(green)	and	each	year	following	the	Las	Conchas	fire	
(black)	on	the	East	Fork	Jemez	River	(EFJR;	left	column)	and	Rio	San	Antonio	(RSA;	right	
column).	Grey	lines	represent	the	compiled	growing	season	mean	values	pre-fire	for	each	
stream.		*	p	value	≤	0.05.	
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Supplemental	Information	Figure	3:	Log10	transformed	Gross	Primary	Productivity	(GPP,	g	
O2	m-2	d-1)	estimates	for	the	growing	season	(Mid-May	through	September)	versus	daily	
mean	specific	conductance	(SC,	mS	cm-1),	pre-fire	(green)	and	each	year	following	the	Las	
Conchas	fire	(black)	on	the	East	Fork	Jemez	River	(EFJR;	left	column)	and	Rio	San	Antonio	
(RSA;	right	column).	Grey	lines	represent	the	compiled	growing	season	mean	values	pre-
fire	for	each	stream.	*	p	value	≤	0.05.	
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Supplemental	Information	Figure	4:	Log10	transformed	Ecosystem	Respiration	(ER,	g	O2	m-

2	d-1)	estimates	for	the	growing	season	(Mid-May	through	September)	versus	daily	mean	
Specific	Conductance	(SC,	mS	cm-1)	pre-fire	(green)	and	each	year	following	the	Las	
Conchas	fire	(black)	on	the	East	Fork	Jemez	River	(EFJR;	left	column)	and	Rio	San	Antonio	
(RSA;	right	column).	Grey	lines	represent	the	compiled	growing	season	mean	values	pre-
fire	for	each	stream.		*	p	value	≤	0.05.	
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Year	 EFJR	 RSA	 Overlapping	

2008	 76	 84	 67	

2009	 88	 99	 66	

2010	 105	 72	 60	

2011	(pre-

fire)	 77	 69	 75	

2011	(post-

fire)	 48	 39	 27	

2012	 131	 134	 127	

2013	 132	 123	 118	

2014	 127	 131	 120	

2015	 117	 113	 95	

2016	 127	 133	 127	

	
Supplemental	Information	Table	1:	Count	of	days	during	from	each	year	that	produced	
reliable	metabolism	estimates	on	the	East	Fork	Jemez	River	(EFJR),	Rio	San	Antonio	(RSA),	
and	overlapping	days	(i.e.,	days	when	the	data	were	available	and	reliable	from	both	
streams)	during	the	growing	season	(Mid-May	through	September)	pre-	and	post-Las	
Conchas	fire.		
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Abstract	

Post-wildfire	effects	on	coldwater	fish	assemblages	in	headwater	streams	within,	or	close	

to,	the	burned	areas	are	fairly	well	known;	however,	few	studies	have	evaluated	the	effects	

of	catastrophic	high	intensity	and	large	areal	wildfires	on	downstream	non-salmonid	

assemblages.	Using	data	from	long-term	fish	community	surveys	and	high-frequency	water	

quantity	and	quality	monitoring,	we	analyzed	pre-	and	post-fire	differences	in	the	

cypriniform	dominated	community	at	two	sites	on	a	large	river	(i.e.,	Rio	Grande	[7th	order])	
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>	20	km	downstream	of	a	major	wildfire	in	the	Jemez	Mountains,	NM.	We	also	evaluated	

the	effects	of	a	>1000-year	flood	(three	years	post-fire)	on	the	fish	assemblage	in	a	post-fire	

environment.	Pre-fire,	we	observed	moderate	between-site	overlap	in	commonly	detected	

and	abundant	species,	along	with	seasonal	and	interannual	variability	in	fish	assemblage	

composition.	Episodic	small	dissolved	oxygen	(DO)	sags	were	observed	pre-fire,	but	

concentrations	remained	greater	than	5.5	mg	L-1	throughout	the	year.	During	the	first	three	

years	post-fire,	we	observed	multiple	severe	DO	sags	(<	3	mg	L-1)	at	both	sites.		We	

observed	a	differential	response	in	total	abundance	and	fish	assemblage	variables	between	

sites.	While	declines	in	total	abundance,	diversity,	and	evenness	were	observed	post-fire	in	

the	upstream	assemblage,	the	downstream	assemblage	appeared	to	be	generally	

unimpacted	by	effects	of	the	fire.	Following	a	major	flood	in	2013,	species-specific	and	fish	

assemblage	response	variables	remained	unchanged	at	downstream	site.	A	further	

reduction	in	total	and	species-specific	fish	abundance	was	observed	at	the	upstream	site	

after	the	flood.	We	attribute	the	differential	post-fire	and	post-flood	response	at	the	two	

sites,	with	similar	assemblage	composition	and	flow	regimes,	to	the	proximity	and	extent	of	

fire-impacted	watersheds	upstream.	Our	results	highlight	the	need	to	evaluate	watershed-

specific	hydrologic,	water	quality,	and	biotic	responses	at	different	spatial	scales	to	fully	

assess	the	impacts	of	wildfire	on	downstream	aquatic	ecosystems.		

Keywords:	wildfire,	desert	fish	assemblages,	disturbance,	Rio	Grande,	water	quality.		

	

Introduction	

Pronounced	climatic	changes	have	been	documented	in	the	western	United	States	

(US),	including	below-average	winter	precipitation	and	earlier	spring	snowmelt	(Stewart	et	

al.,	2004;	Westerling	et	al.,	2006),	and	elevated	spring	and	summer	temperatures	(Mote	et	

al.,	2018;	Westerling,	2016;	Westerling	et	al.,	2006),	and	increased	aridity	(Abatzoglou	and	

Williams,	2016;	Littell	et	al.,	2009).	These	changes,	in	combination	with	other	climate-

mediated	processes	such	as	insect	outbreaks	(Bentz	et	al.,	2010;	Raffa	et	al.,	2008),	have	

resulted	in	widespread	forest	stress	and	mortality	(Adams	et	al.,	2012;	Breshears	et	al.,	

2005).	Synergistically,	the	increase	in	climate-mediated	wildfire	activity	(Westerling	et	al.,	
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2003),	including	an	expansion	of	the	wildfire	season	(Westerling,	2016;	Westerling	et	al.,	

2006),	increased	burned	area	(Littell	et	al.,	2009;	Williams	and	Abatzoglou,	2016)	and	

increased	fire	severity	(Miller	et	al.,	2009;	van	Mantgem	et	al.,	2013),	has	resulted	in	

further	forest	mortality	throughout	the	western	US	(Williams	et	al.,	2010).	

Severe	wildfires	create	large-scale	disturbances	that	induce	hydrologic	and	

geomorphologic	change	in	burned	watersheds	(Shakesby	and	Doerr,	2006).	Impacts	

include	enhanced	and	accelerated	flooding,	surface	erosion,	mass	wasting,	and	debris	flows	

(Cannon	et	al.,	2008;	Moody	et	al.,	2013).	Water	quality	impacts	include	elevated	sediment	

loads	(Kunze	and	Stednick,	2006;	Ryan	et	al.,	2011),	turbidity	(Mast	et	al.,	2016;	Murphy	et	

al.,	2012;	Reale	et	al.,	2015),	solutes	(Sherson	et	al.,	2015;	Silins	et	al.,	2014)	and	organic	

matter	(Betts	and	Jones,	2009;	Earl	and	Blinn,	2003;	Mast	and	Clow,	2008;	Murphy	et	al.,	

2015).	Low	dissolved	oxygen	and	hypoxia	(<	2	mg	L-1)	events	also	have	been	documented	

post-fire	(Dahm	et	al.,	2015;	Lyon	and	O'Connor,	2008;	Sherson	et	al.,	2015)	and	attributed	

to	intensified	chemical	and/or	biological	oxygen	demand	from	burn-scar	derived	inputs	to	

streams	and	rivers	(Dahm	et	al.,	2015).		

Negative	impacts	to	water	quality	have	significant	implications	for	downstream	

river	ecosystems	and	biota	(Bisson	et	al.,	2003;	Bixby	et	al.,	2015;	Minshall	et	al.,	1989).	

While	information	on	fish	assemblage	responses	is	limited,	it	is	suggested	that	despite	

harsh	post-fire	hydrologic,	geomorphic	and	water	quality	conditions,	native	fish	

populations	can	be	resistant	or	resilient	to	fire	disturbance	(Dunham	et	al.,	2003).	Re-

colonization	of	the	fish	assemblage	post-fire	is	often	rapid	(Bisson	et	al.,	2003;	Gresswell,	

1999;	Rieman	and	Clayton,	1997a),	However,	knowledge	of	fish	community	responses	to	

fire-associated	stream	conditions	relies	heavily	on	research	focusing	on	cold	(i.e.,	streams	

with	maximum	daily	mean	water	temperatures	<	22⁰C;	Lyons	et	al.	1996)	headwater	

streams	(i.e.,	1st	and	2nd	order)	within	or	near	the	burn	scar	(Gresswell,	1999).	Very	few	

studies	(e.g.,	Lyon	and	O'Connor	2008;	Whitney	et	al.	2015a;	Whitney	et	al.	2015b)	have	

assessed	the	effects	of	wildfire	on	non-salmonid	(i.e.,	warm	water)	fish	assemblages	in	

larger	rivers	(≥	4th	order)	downstream	(i.e.,	≥	10	river-km)	from	the	burn	scar.	

We	use	long-term	fish	assemblage	data,	with	supporting	high-frequency	water	

quantity	and	quality	data,	to	evaluate	drivers	of	pre-	and	post-fire	variations	in	a	
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cypriniform	dominated	assemblage	at	two	sites	in	a	large	river	(i.e.,	Rio	Grande	[7th	order])	

downstream	(i.e.,	>	20	km)	of	a	catastrophic	wildfire	that	burned	the	Jemez	Mountains,	NM	

in	2011.	The	goals	of	our	study	were	to	1)	assess	the	immediate	(year	one)	and	short-term	

(years	two	to	five)	fish	assemblage	and	water	quality	responses	post-fire	in	comparison	to	

pre-fire	conditions,	and	2)	evaluate	the	effects	of	an	extreme	flood	event	(occurring	in	year	

three	after	the	fire)	on	the	fish	assemblage	and	water	quality	in	a	post-fire	environment.		

	

Methods	

Study	site	

	The	Middle	Rio	Grande	(MRG)	is	defined	as	the	section	of	the	Rio	Grande	from	the	

U.S.	Geological	Survey	(USGS)	stream	gage	at	Otowi	(USGS	08313000)	near	Santa	Fe,	NM	in	

the	north	to	Elephant	Butte	Reservoir	in	the	south	(Fig.	1).	The	MRG	is	a	highly	regulated	

system	with	discharge	controlled	predominantly	by	reservoir	releases	and	agricultural	

water	demand	(Bestgen	and	Platania,	1991).	Cochiti	Dam	is	the	primary	flood	and	

sediment	control	structure	in	the	MRG	and	has	caused	a	reduction	in	overbank	flooding	

(Crawford	et	al.,	1996;	Molles	et	al.,	1998),	and	channel	armoring	and	substrate	coarsening	

(Lagasse,	1980;	Richard,	2001).	Downstream	of	the	Otowi	gage,	the	river	receives	limited	

surface	water	inflow	(Ortiz	and	Lange,	1996)	and	lacks	perennial	tributaries	(Richard	and	

Julien,	2003).	However,	numerous	ephemeral	and	intermittent	streams,	both	upstream	and	

downstream	of	Cochiti	Dam,	contribute	surface	water	and	sediment	during	periods	of	

intense	monsoonal	rainfall	or	rapid	snowmelt	(Moore	and	Anderholm,	2002)	(Fig	1).	The	

river	usually	remains	perennial	through	the	city	of	Albuquerque	(Bestgen	and	Platania,	

1990),	while	downstream	reaches	are	frequently	dried	due	to	agricultural	water	demand	

during	summer	and	autumn	(Archdeacon,	2016).			

Wildfire	characteristics	

The	Las	Conchas	(LC)	fire	burned	~633	km2	in	the	Jemez	Mountains,	NM	during	the	

summer	of	2011	(Fig.	1).	The	burn	severity	was	~20%	high,	26%	moderate,	and	54%	low	

or	unburned	(USDA	Forest	Service,	2011).	The	LC	fire	burned	the	headwaters	of	the	Jemez	
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River	along	with	the	headwaters	of	numerous	smaller	catchments	containing	intermittent	

rivers	that	discharge	into	the	Rio	Grande	upstream	and	downstream	of	Cochiti	Dam	(Dahm	

et	al.,	2015;	USACE,	2012).	Following	the	LC	fire,	elevated	overland	flow	resulted	in	rill	

formation,	extensive	erosion	and	deposition,	channel	incision	and	avulsion,	debris	flows	

and	flooding	within	and	downstream	of	the	burn	scar	(Dahm	et	al.,	2015;	Orem	and	

Pelletier,	2015;	Pelletier	and	Orem,	2014;	USACE,	2012).	These	runoff	events	also	resulted	

in	episodic	pulses	of	degraded	water	quality	that	periodically	drove	dissolved	oxygen	to	0.0	

mg	L-1	and	propagated	over	~50	river-km	on	the	Rio	Grande	downstream	of	Cochiti	Dam	

(Dahm	et	al.,	2015).	These	episodic	sags	continued	through	2013	with	associated	

concentrations	of	dissolved	oxygen	of	less	than	3	mg	L-1	(Reale	et	al.,	2015).		

Monitoring	locations	and	methodology	

We	focused	on	two	locations	within	the	mainstem	of	the	Rio	Grande,	NM	that	are	

downstream	of	intermittent	tributaries	affected	by	the	LC	fire.	These	sites	have	multi-year	

fish	assemblage	data	along	with	nearby	representative	streamflow	and	high-frequency	

water	quality	data	(Fig.	1).	The	first	location	is	upstream	of	Cochiti	Dam	within	the	White	

Rock	Canyon	River	Reach	(White	Rock).	Fish	assemblage	data	were	collected	during	

sixteen	surveys	conducted	over	5	years	of	monitoring	between	2010	and	2014	(SWCA	

2014)	at	the	Buckman	diversion	(29.6	river-km	upstream	of	Cochiti	Dam,	Fig	1).	Fish	were	

sampled	with	a	backpack	electrofishing	unit	(LR-24,	Smith	Root,	Inc.,	Vancouver,	

Washington)	along	seven	established	transects,	sampling	all	habitats	that	were	accessible	

with	chest	waders.	The	Las	Conchas	fire	burned	155	km2	upstream	of	Cochiti	Dam,	and	the	

distance	from	the	fish-monitoring	site	to	the	burn	was	24	river-km	(Table	1).	The	USGS	

streamflow	gage	at	Otowi	is	5.2	river-km	upstream	of	the	fish	monitoring	location.	The	

second	fish-monitoring	location	is	the	bridge	crossing	at	US	550	(US	550),	which	is	45.6	km	

downstream	of	Cochiti	Dam	(Fig.	1).	Fish	were	sampled	from	2006	to	2015	at	US	550	

(Dudley	et	al.,	2016	and	references	therein)	by	rapidly	drawing	a	3.1	m	x	1.8	m	small	mesh	

(ca.	5	mm)	seine	through	18	discrete	habitat	types	less	than	15	m	long.	Mesohabitats	with	

similar	conditions	that	did	not	exceed	depths/velocities	for	efficient	seining	were	sampled,	

regardless	of	streamflow	conditions.	Eighty-three	surveys	were	conducted	over	the	10	
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years	of	continuous	monitoring	(2006–2015),	but	there	was	a	gap	in	the	record	from	

January	to	August	2009.	The	Las	Conchas	fire	burned	228	km2	that	discharges	into	the	Rio	

Grande	downstream	of	Cochiti,	and	the	distance	from	the	fish-monitoring	site	to	the	burn	

was	50	river-km	(Table	1).	Streamflow	data	were	obtained	from	the	USGS	stream	gage	at	

San	Felipe	(08319000),	which	is	20.1	river-km	upstream	of	US	550	(Fig.	1).	At	both	sites,	all	

non-larval	fish	(>	~15	mm	Standard	Length)	were	identified	to	species	in	the	field	using	

taxonomic	keys	provided	in	Sublette	et	al.	(1990),	while	phylogenetic	classification	

followed	Nelson	et	al.	(2004).		

	 To	evaluate	water	quality	conditions,	we	obtained	15-minute	resolution	data	from	a	

network	of	continuously	deployed	multi-parameter	(dissolved	oxygen	[DO],	turbidity,	

specific	conductance	(SC),	pH,	and	temperature)	YSI	6920	or	EXO	sondes	(Yellow	Springs	

Instruments	Inc.	/Xylem	Inc.,	Yellow	Springs,	OH,	U.S.A.)	(Dahm	et	al.,	2013).	A	sonde	26.6	

river-km	downstream	of	Buckman	was	used	to	assess	post-fire	conditions	within	the	White	

Rock	Reach	(period	of	record	2012	-	present).	The	Las	Conchas	fire	burned	255	km2	

upstream	of	the	sonde,	and	the	distance	from	the	site	to	the	burn	was	7	river-km	(Table	1).	

To	evaluate	pre-	and	post-fire	water	quality	at	US	550,	data	was	used	from	a	sonde	

deployed	within	300	m	of	the	fish	sampling	location	(period	or	record	2006	-	present).	Site	

visits	were	made	every	two	to	four	weeks	to	clean	and	calibrate	the	sondes	following	USGS	

standard	operating	procedures	(Wagner	et	al.,	2006).	Water	quality	data	were	compiled,	

validated,	and	corrected	for	fouling	and	drift	using	Aquarius	Workstation	3.3	(Aquatic	

Informatics,	Vancouver,	British	Columbia,	Canada).		

We	focused	on	DO	only	for	this	study,	as	previous	studies	identified	that	DO	had	

frequently	deteriorated	to	levels	<	3	mg	L-1	upstream	and	downstream	of	Cochiti	on	the	Rio	

Grande	through	2013	(Reale	et	al.,	2015;	Van	Horn	et	al.,	2014).	Such	major	and	frequent	

sags	may	be	detrimental	to	the	fish	assemblage.	SC	and	pH	also	were	impacted	at	the	two	

sites	by	the	fire	(Reale	et	al.,	2015;	Van	Horn	et	al.,	2014),	but	not	to	levels	that	were	

exceeded	MRG	water	quality	standards	for	aquatic	life	(NMWQCC,	2000).	Turbidity	was	not	

evaluated,	due	to	a	high	pre-fire	background	(i.e.,	regularly	>200	NTU)	and	many	values	

greater	than	the	maximum	detection	limit	of	the	probes	deployed	at	US	550	(Reale	et	al.,	

2015).	The	Las	Conchas	fire	and	2013	flood	event	did	not	change	the	canopy	structure	of	
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the	open-canopy	Rio	Grande.	Thus,	fire-	or	flood-induced	impacts	to	water	temperature	

(via	loss	of	riparian	canopy	cover	and	increased	solar	radiation)	are	unlikely,	and	were	not	

evaluated	further.		

The	fish	assemblage	

The	MRG	fish	assemblage	is	dominated	by	native	cyprinids	(minnows)	and	non-

native	catostomids	(suckers)	(Dudley	et	al.,	2016;	Platania,	1991)	in	terms	of	richness	and	

abundance.	Native	cyprinids	are	predominantly	short-lived	(<	5	years)	and	capable	of	

completing	their	life	cycle	in	1	or	2	years	(Turner	et	al.,	2010).	Representative	non-native	

species	in	the	MRG	are	White	Sucker	(Catostomus	commersonii	(CATCOM))	and	Common	

Carp	(Cyprinus	carpio)	(Platania,	1991).	These	species	are	some	of	the	largest	and	long-

lived	species	in	the	MRG	(Turner	et	al.,	2010).		

Data	analysis	and	statistical	methods	

Non-larval	fish	count	data	were	expressed	as	the	total	number	collected	by	species	

at	each	site	during	each	survey.	Total	and	species-specific	abundance	data	(i.e.,	total	catch)	

were	analyzed.	To	quantify	assemblage	structure	for	each	survey,	we	calculated	diversity	

and	evenness	using	abundance	data.	We	calculated	Shannon’s	diversity	index	(H’)	values	

using	Equation	1	(Shannon	and	Weaver,	1949),	

H' = - p!ln p!

!

!!!

                                            (Equation 1)	

where	∑	is	the	sum	of	all	species	(S)	and	p!	is	the	proportional	abundance	of	species	i	(i.e.,	

n! N)	relative	to	all	individuals	(N).	H' combines	information	on	species	richness	and	the	

distribution	of	individuals	among	species	(Magurran,	2013).	A	greater	number	of	species	

and	a	more	even	distribution	of	species	both	result	in	an	increase	in	Shannon’s	diversity	

index.	The	maximum	value	for	Shannon’s	diversity	is	achieved	when	all	species	in	a	sample	

are	equally	abundant.	

Shannon’s	evenness	(J’)	values	were	calculated	for	each	survey	using	Equation	2	

(Pielou,	1966):	

J' = H'/ ln S 	 	 	 	 	 (Equation	2)		
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where	S is	the	total	number	of	species	encountered.	J’	expresses	how	evenly	the	individuals	

within	the	assemblage	are	distributed	among	different	species	(Heip	et	al.,	1998).	When	

there	are	similar	proportions	of	all	species,	Shannon’s	evenness	approaches	its	maximum	

value	of	one.	When	the	abundances	are	dissimilar	(a	mixture	of	rare	and	common	species),	

Shannon’sevenness	approaches	zero.	H’	and	J’	were	calculated	in	R	Studio	(RStudio	Team,	

2015)	using	the	package	vegan	(Oksanen	et	al.,	2007).		

To	define	pre-fire	conditions,	we	calculated	the	pre-fire	mean	value	and	90%	non-

parametric	confidence	intervals	(CI,	i.e.,	upper	(UCL)	and	lower	confidence	limit	(LCL))	for	

H’,	J’,	and	total	and	species-specific	abundance	for	both	sampling	sites.	We	selected	the	90th,	

rather	than	the	95th	percentile,	based	on	the	precautionary	principle	(e.g.,	Gray	1990;	

Fairweather	1991).	Confidence	intervals	were	calculated	using	the	package	boot	(Canty	and	

Ripley,	2016),	from	which	we	could	assess	pre-fire,	post-fire,	and	post-flood	changes	in	

species	and	assemblage	metrics.	

	

Results	

Analyses	of	fish	assemblage	data	at	the	Buckman	and	US	550	sites	are	dominated	by	

cypriniform	fishes,	and	show	moderate	overlap	in	commonly	detected	and	abundant	

species	prior	to	the	Las	Conchas	fire	(Table	2).	The	Buckman	assemblage	appears	to	be	a	

subset	of	the	550	assemblage	(Table	2).	These	analyses	are	consistent	with	previous	

comparisons	upstream	and	downstream	of	Cochiti	Dam	(Platania,	1991).	Native	cyprinids	

commonly	observed	at	both	sites	include	Fathead	Minnow	Pimephales	promelas	(PIMPRO),	

Flathead	Chub	Platygobio	gracilis	(PLAGRA),	and	Longnose	Dace	Rhinichthys	cataractae	

(RHICAT).	Red	Shiner	Cyprinella	lutrensis	(CYPLUT)	was	also	abundant	at	US	550,	but	not	at	

Buckman.	Mean	annual	discharge	for	the	period	of	analysis	at	Buckman	and	US	550	were	

similar	at	29.2	and	30.4	m3	s	-1,	respectively	(Table	1).	Based	on	the	definition	by	Lyons	et	

al.	(1996),	Buckman	and	US	550	are	classified	as	coldwater	sites	for	the	period	of	analysis	

with	an	annual	average	maximum	daily	temperature	of	15.2	and	15.8	°C,	respectively	

(Table	2).		
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Buckman	

	Prior	to	the	fire,	a	clear	snowmelt	pulse	was	observed	in	2010	but	largely	absent	in	

2011	(Fig.	2a).	DO	at	this	site	during	this	time	period	was	not	assessed,	as	a	sonde	was	not	

deployed	within	the	reach	until	2012	(Fig.	2b).	Pre-fire	total	fish	abundances	ranged	from	

49	to	122	with	a	mean	of	80	(Fig.	2c).	Mean	H’	(Fig.	2d)	and	J’	(Fig.	2e),	prior	to	the	fire	

were	2.7	and	0.77,	respectively.	The	species	CATCOM,	PLAGRA,	and	RHICAT,	were	collected	

in	each	of	the	four	pre-fire	surveys	with	pre-fire	mean	values	of	14,	17,	and	37	individuals,	

respectively	(Fig.	3a,	c	&	d).	The	pre-fire	mean	for	PIMPRO	was	10,	and	this	species	was	

detected	in	3	of	4	surveys.	CATCOM	abundance	peaked	in	the	July	survey	(Fig.	3a).	In	

contrast,	PIMPRO,	PLAGRA	and	RHICAT	did	not	exhibit	a	clear	seasonal	trend	(Fig.	3b-3d).	

In	the	fish	survey	at	the	end	of	the	monsoon	season	immediately	following	the	

wildfire	(2011),	total	catch	(Fig	2c),	H’	(Fig.	2d),	and	J’	(Fig.	2e)	were	below	the	pre-fire	

lower	confidence	limit.	Total	abundance	was	minimally	influenced,	with	a	drop	from	49	to	

38	between	the	survey	prior	to	the	onset	of	water	quality	events	and	survey	at	the	end	of	

the	2011	monsoon	season.	H’	and	J’	were	also	minimally	reduced	(i.e.,	from	2.4	to	1.9,	and	

0.8	to	0.5,	respectively)	prior	to	the	onset	of	water	quality	events	and	survey	at	the	end	of	

the	2011	monsoon	season.	Similar	declines	in	total	catch,	H,	and	J’,	were	observed	between	

the	July	and	September	surveys	the	previous	year	prior	to	the	fire	(Fig.	2c-2e).	The	species-

specific	response	(Fig.	3)	immediately	following	the	fire	was	muted,	as	CATCOM,	PIMRO	

and	PLAGRA	abundances	remained	constant	or	increased	in	comparison	to	the	previous	

survey	(Fig.	3a-3c).	The	lone	fish	species	at	the	Buckman	site	that	responded	strongly	

immediately	after	the	wildfire	was	RHICAT	abundance	(Fig.	3d).		

In	the	first	two	years	following	the	fire	(2012	and	2013),	spring	snowmelt	pulses	

were	largely	absent	from	the	hydrograph	(Fig.	2a).	During	this	time	period,	episodic	DO	

sags	were	observed	throughout	the	monsoon	seasons	of	2012	and	2013	with	minimum	DO	

concentrations	often	below	2	mg	L-1	(Fig.	2b).	Outside	of	the	monsoon	season,	DO	

concentrations	remained	above	5	mg	L-1	(Fig.	2b).	Post-fire,	mean	total	catch	(Fig.	2c),	H’	

(Fig.	2d),	and	J’	(Fig.	2e),	were	36,	1.9	and	0.5	respectively,	below	their	respective	pre-fire	

lower	confidence	limits.	CATCOM	and	PLAGRA	were	detected	in	each	of	the	8	post-fire	
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samples	with	mean	values	of	9	and	15	individuals,	respectively	(Fig.	3a	&	3c).	The	post-fire	

mean	for	PIMPRO	was	1.4,	and	this	species	was	detected	in	5	of	8	surveys	(Fig.	3b).	Mean	

post-fire	abundance	for	RHICAT	was	8	fish	per	survey,	and	it	was	observed	in	6	of	8	

samples	(Fig.	3d).	The	post-fire	mean	abundance	for	CATCOM	(Fig.	3a)	and	PLAGRA	(Fig.	

3c)	remained	within	the	pre-fire	CI.	In	contrast,	the	post-fire	mean	abundance	for	PIMPRO	

and	RHICAT	was	below	the	pre-fire	LCI	(Fig.	3b	&	3d,	respectively).	The	annual	peak	in	

CATCOM	abundance	in	July	persisted	post-fire	(Fig.	3a).	Post-fire,	PIMPRO,	PLAGRA,	and	

RHICAT	abundance	continued	to	exhibit	no	clear	seasonal	trend	(Fig.	3b-3d).		

The	day	prior	to	the	major	flood	event	of	September	2013	the	mean	daily	discharge	

estimate	was	14	m3	s-1	at	the	Otowi	gage	(Fig.	2a).	The	peak	instantaneous	and	daily	mean	

discharge	estimates	during	the	flood	event	were	226	and	97	m3	s-1,	respectively.	

Unfortunately,	the	sonde	measuring	water	quality	was	lost	during	the	event,	and	the	stilling	

well	was	buried	under	several	feet	of	sediment	(Dahm	et	al.,	2013).	In	the	three	fish	

assemblage	samples	following	the	large	flood	event,	total	catch,	H’	and	J’	were	the	lowest	

observed	during	the	period	of	analysis	(Fig	2c-2d).	As	a	result,	the	post-flood	mean	total	

abundance,	H’,	and	J’	(9,	0.8,	and	0.06,	respectively),	were	well	below	the	corresponding	

pre-fire	lower	confidence	limits	and	the	post-fire	mean	values	(Fig.	2c-2e).	CATCOM	was	

detected	in	each	of	the	four	post-flood	surveys,	and	a	seasonal	peak	in	July	persisted	(Fig.	

3a).	PLAGRA	(Fig.	3c)	and	RHICAT	(Fig.	3d)	were	not	detected	in	the	first	thee	sampling	

events	following	the	flood	of	September	2013.	

In	February	2014,	the	sonde	was	redeployed	and	DO	sags	were	observed	beginning	

in	July	2014,	with	concentrations	dropping	below	3	mg	L-1	(Fig.	2c).	Total	catch,	H’,	and	J’	

increased	during	the	July	2014	survey,	but	remained	below	the	pre-fire	lower	confidence	

limit	(Fig.	2c-2d).	PIMPRO	remained	absent	from	the	site	(Fig.	3b),	and	a	single	PLAGRA	

(Fig.	3c)	and	RHICAT	(Fig.	3d)	were	collected	during	the	July	2014	survey.	In	contrast,	

CATCOM	abundance	was	within	the	pre-fire	CI	(Fig.	3a).		

US	550	

	Hydrologic,	continuous	water	quality,	and	fish	assemblage	data	at	the	US	550	were	

assessed	prior	to	the	Las	Conchas	fire.	Hydrologic	conditions	were	comparable	to	those	
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observed	at	White	Rock	with	clear	snowmelt	pulses	occurring	in	2007-2010	(Fig.	4a).		

Spring	snowmelt	pulses	were	largely	absent	from	the	hydrograph	in	2006	and	2011	(Fig.	

4a).	Episodic	spikes	in	discharge	from	monsoonal	thunderstorms	were	observed	during	the	

summer	months,	with	a	varying	degree	of	frequency	and	severity	depending	on	the	

strength	of	the	monsoon	(Fig.	4a).	Dissolved	oxygen	concentrations	were	predominantly	

greater	than	6	mg	L-1	with	a	seasonal	peak	occurring	during	the	winter	months	(Fig.	4b)	

and	slight	(concentrations	did	not	drop	below	5.5	mg	L-1)	episodic	sags	in	July	through	

September	(Fig.	4b).		

Total	fish	abundance	at	the	US	550	site	varied	seasonally	(Fig.	4c)	with	values	

frequently	above	(during	the	summer	months)	and	below	(during	the	winter	months)	the	

pre-fire	mean	(126	fish	per	survey)	and	confidence	interval.	Mean	H’	(Fig.	4d)	and	J’	at	the	

US	550	site	during	the	pre-fire	period	were	0.99	and	0.67,	respectively	(Fig.	4e).	

Considerable	interannual	variability	in	both	H’	and	J’	was	observed	in	comparison	to	the	

pre-fire	mean	and	CI	(Fig.	4c	&	d).	We	were	unable	to	calculate	J’	for	three	surveys	pre-fire	

at	the	US	550	site	due	to	H’	values	of	zero	(when	total	fish	catch	was	zero).	An	annual	peak	

in	CATCOM	was	observed	in	July	each	year	pre-fire	in	those	years	where	July	data	were	

available	(Fig.	5a).	The	exception	to	this	pattern	was	in	2009	when	a	gap	in	the	record	

shifted	the	apparent	annual	peak	to	September	(Fig.	5a).	Outside	of	this	short-lived	

summer	spike,	CATCOM	abundance	(mean	of	23.4	±	61)	was	low	or	was	absent	(20	of	44	

surveys)	from	the	site	during	most	months	(Fig.	5a).	PIMPRO	was	also	an	uncommon	fish	

species	that	was	documented	in	only	14	of	44	surveys	pre-fire,	with	a	mean	abundance	of	

1.3.	PLAGRA	was	observed	in	42	of	44	pre-fire	surveys	with	a	mean	of	25	individuals	per	

survey	(Fig.	5c).	RHICAT	(Fig.	5d)	and	CYPLUT	(Fig.	5e)	also	were	commonly	detected	

(77%	and	88%	of	surveys,	respectively)	averaging	16.3	and	17.7	individuals	per	survey,	

respectively.		

Over	the	course	of	the	monsoon	season	in	2011,	numerous	episodic	DO	sags	were	

observed	at	the	US	550	site	with	10	sags	of	<	4	mg	L-1	in	July	and	August	(Fig.	4b).	Despite	

these	poor	water	quality	conditions	in	2011	immediately	following	the	fire,	we	did	not	

detect	a	statistically	significant	impact	on	the	fish	assemblage	(Fig	3c-3d)	or	to	specific	

species	(Fig.	4).		
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In	the	two	years	that	followed	the	fire	(i.e.,	2012	and	2013),	a	strong	spring	

snowmelt	pulse	was	absent	from	the	hydrograph	at	the	US	550	site	(Fig.	4a).	A	single	DO	

sag	was	documented	in	2012	below	3	mg	L-1	at	the	US	550	site	(Fig.	4b).	Multiple	sags	in	

2013	were	observed	during	the	monsoon	season,	with	minimum	values	near	3	mg	L-1	(Fig.	

4b).	The	post-fire	total	mean	abundance	was	187	fish	per	survey	(Fig.	4c)	at	the	site,	which	

was	greater	than	the	pre-fire	upper	confidence	limit	(157).	Post-fire,	the	mean	H’	was	1.05,	

and	remained	within	the	pre-fire	CI	(0.99-1.11,	Fig.	4d).	The	mean	J’	post-fire	was	slightly	

reduced	(by	0.06),	but	this	change	was	below	the	pre-fire	lower	confidence	limit	(0.68,	Fig.	

4e).	The	post-fire	mean	CATCOM	abundance	was	23	(within	the	pre-fire	CI).	CATCOM	was	

detected	in	16	of	20	post-fire	surveys	post-fire,	and	the	annual	peak	in	CATCOM	abundance	

was	observed	in	2012	and	2013	(Fig.	5a).	The	post-fire	mean	abundance	for	PIMPRO	was	5,	

greater	than	the	pre-fire	upper	confidence	limit,	and	this	species	was	detected	in	3	of	4	

surveys	(Fig.	5b).	PLAGRA	(Fig.	5c)	and	CYPLUT	(Fig.	5e)	were	detected	in	all	20	post-fire	

surveys	with	mean	values	of	46	and	53	individuals,	respectively.	These	values	were	both	

greater	than	the	pre-fire	upper	confidence	limit.	The	mean	post-fire	abundance	for	RHICAT	

(Fig.	5d)	was	19.	This	was	within	the	pre-fire	CI,	and	the	species	was	detected	in	16	of	20	

post-fire	surveys.		

	 Two	days	prior	to	the	first	of	several	high-flow	events,	the	daily	mean	discharge	

estimate	was	9	m3s-1	on	September	9,	2013	at	the	US	550	site	(Fig.		4a).	Between	September	

11th	and	17th,	five	high	flow	events	with	instantaneous	discharge	estimates	greater	than	56	

m3s-1	were	measured.		The	largest	event	exceeded	268	m3s-1.	Four	DO	sags	were	observed	

during	this	high	flow	period	with	minimum	DO	concentrations	between	4.8	and	5.4	mg	L-1	

(Fig.	4b).	Total	abundance	dropped	from	337	to	96	fish	in	the	survey	immediately	following	

the	flood.	The	abundance	drop	was	large,	but	remained	within	the	pre-fire	CI	(Fig.	5c).	H’	

and	J’	remained	relatively	unchanged	(a	0.05	and	0.11	increase,	respectively)	in	the	sample	

immediately	following	the	flood.	A	clear	species-specific	response	in	the	sample	

immediately	following	the	large	flood	event	was	not	detected	(Fig.	5).		

	A	strong	spring	snowmelt	pulse	in	2014	and	2015	was	absent	from	the	hydrograph	

at	the	US	550	site	(Fig.	4a).	Continued	episodic	spikes	in	discharge	and	less	severe	(i.e.,	

minimum	concentration	>5.4	mg	L-1)	DO	sags	were	observed	during	the	summer	months	in	
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2014	and	2015	(Fig.	5a).	The	mean	post-flood	total	fish	abundance	at	the	US	550	site	was	

97	fish	and	remained	within	the	pre-fire	CI	(Fig.	5c).	The	mean	post-flood	H’	decreased	

below	the	pre-fire	CI	with	values	of	zero	during	two	surveys	(Feb	and	March	2014)	while	J’	

remained	within	the	pre-fire	CI	(Fig.	5d).	An	annual	summer	spike	in	CATCOM	abundance	

was	absent	in	2014	and	dampened	in	2015	(Fig.	5a).	The	post-flood	mean	CATCOM	

abundance	was	4,	below	the	pre-fire	lower	confidence	limit	of	23.	Similarly,	mean	post-

flood	CPYLUT	abundance	also	dropped	below	the	pre-fire	lower	confidence	limit	(Fig.	5e).	

In	contrast,	the	mean	post-flood	abundance	for	PIMPRO,	PLAGRA	and	RHICAT	(8,	29,	and	

21,	per	survey)	were	within	or	greater	than	their	respective	pre-fire	confidence	intervals	

(Fig.	5	b-5d).		

	

Discussion	

This	study	used	long-term	fish	assemblage	data	with	supporting	high-frequency	

water	quantity	and	quality	data	to	evaluate	pre-	and	post-fire	variations	in	the	Rio	Grande	

fish	assemblage	at	two	sites	>	20	river-km	downstream	of	the	catastrophic	Las	Conchas	

wildfire.	We	assessed	the	immediate	(summer	and	fall	of	2011)	and	short-term	(years	two	

and	three	post-fire)	fish	assemblage	and	water	quality	responses	in	comparison	to	pre-fire	

conditions.	We	also	evaluated	the	effects	of	a	major	flood	event	(occurring	in	September	of	

2013	in	year	three	after	the	fire)	on	the	fish	assemblage	and	water	quality	in	a	post-fire	

environment.	We	determined	that	both	sites	are	classified	as	coldwater	sites.	However,	

both	reaches	are	dominated	by	support	a	combination	of	cool	and	warm	water	fish	species	

(Platania,	1991),	likely	due	to	a	wide	range	in	habitat	characteristics	(e.g.,	water	

temperature,	silt	loads,	water	velocity,	and	substrate	type).	This	research	adds	to	the	short	

list	of	studies	that	have	evaluated	the	response	of	a	non-salmonid	fish	assemblage	in	larger	

rivers	(≥	4th	order)	downstream	(i.e.,	≥	10	river-km)	of	a	wildfire	disturbance	(Lyon	and	

O'Connor,	2008;	Whitney	et	al.,	2015a).	Additionally,	this	is	the	first	study	to	use	long-term,	

high	frequency,	water	quality	data	to	help	understand	these	impacts.	

Post-fire	fish	assemblage	and	water	quality	responses	(August	2011-September	2013)	

During	the	monsoon	season	immediately	following	the	fire	in	2011,	several	
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precipitation	events	within	the	burn	scar	of	the	Las	Conchas	wildfire	resulted	in	severe	

flooding	and	debris	flows	(Fresquez	and	Jacobi,	2012;	Grimm	et	al.,	2013;	Tillery	and	Haas,	

2016;	USACE,	2012),	and	water	quality	impacts	(pH	and	DO	sags	and	turbidity	and	SC	

spikes)	within	the	headwater	streams	that	discharge	into	the	Rio	Grande	below	Cochiti	

Dam	(Reale	et	al.,	2015;	Sherson	et	al.,	2015).	The	magnitude	of	the	flood	pulses	from	these	

intermittent	rivers	were	largely	attenuated	once	they	reached	the	Rio	Grande,	resulting	in	

small	increases	(<	20	m3	s-1)	in	discharge	(Dahm	et	al.,	2015).	For	example,	large	DO	sags,	

but	no	flood	events,	were	documented	at	both	sites	for	two	years	following	the	wildfire.	

These	severe	and	frequent	DO	sags	propagated	at	least	90	river-km	on	the	Rio	Grande	

downstream	of	Cochiti	Dam	(Dahm	et	al.,	2015).	However,	at	the	550	site	we	did	not	detect	

a	notable	impact	to	the	total	fish	assemblage	(Fig	4c-4e)	or	to	specific	species	(Fig.	5)	

during	the	monsoon	season	immediately	following	the	fire,	despite	observed	fish	kills	at	

the	site	and	nearby	(Dudley,	2011;	Radford,	2011).	In	contrast,	fewer	fish	were	collected	

from	White	Rock	during	post-fire	surveys	than	during	pre-fire	surveys	(i.e.,	2010),	and	all	

the	tested	fish	assemblage	response	variables	were	lower	than	the	pre-fire	lower	

confidence	interval	(Fig.	2c-2e).	The	differential	fish	assemblage	response	between	sites	

could	be	attributed	to	the	suspended	concentrations	observed	within	the	two	reaches	

immediately	following	the	fire.	Concentrations	upstream	of	Cochiti	Dam	(>	28000	mg-1)	

were	nearly	2x	greater	than	downstream	(<	15000	mg-1)	during	the	initial	post-fire	pulses	

in	2011.	The	controlled	hypolimnetic	releases	from	Cochiti	Dam	likely	reduced	the	

suspended	sediment	load,	in	addition	to	removing	the	water	quality	fire-effects	from	

events	that	originated	upstream	(Dahm	et	al.,	2015).	Another	attribute	that	can	mitigate	

the	impacts	of	disturbances	on	fish	assemblages	is	access	to	refugia,	which	can	provide	

source	populations	for	recolonizing	streams	following	fire-induced	extirpation	(Whitney	et	

al.,	2017).	However,	both	the	Buckman	and	US	550	sites	lack	nearby	perennial	tributaries	

(Moore	and	Anderholm,	2002;	Ortiz	and	Lange,	1996)	which	serve	as	refugia	(Gresswell,	

1999;	Rieman	and	Clayton,	1997b),	and	thus	we	can	rule	out	this	possible	differentiating	

factor.		

A	more	likely	factor	that	may	contribute	to	this	site-specific	response	is	proximity	to	

the	burned	area.	In	a	study	from	an	aridland	river	in	Australia,	Lyon	and	O'Connor	(2008)	
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observed	a	95-100%	initial	reduction	in	fish	abundance	at	sites	less	than	55	river-km	from	

the	source	of	a	post-fire	sediment	slug	on	the	Buckland	River	(a	4th	order	river).	The	

reduction	in	fish	abundance	at	these	sites	was	sustained	for	up	to	12	months,	but	after	24	

months,	the	fish	assemblage	showed	signs	of	recovery.	In	contrast,	the	authors	observed	no	

measurable	short-	or	long-term	reduction	in	total	fish	abundance	following	a	post-fire	

sediment	slug	at	sites	greater	than	55	river-km	downstream,	despite	observing	dead	or	

dying	fish	and	measuring	a	DO	sag	that	remained	less	than	2	mg	L-1	for	greater	than	12	

hours	at	70	river-km	downstream	of	the	source	of	the	sediment	slug.	Similar	results	were	

documented	in	southern	NM	on	the	upper	Gila	River,	in	which	fire	impacts	to	fish	

assemblages	attenuated	with	increasing	distance	from	the	burned	area	(Whitney	et	al.,	

2015a;	Whitney	et	al.,	2015b).	Thus,	we	attribute	differences	in	fish	abundance	and	

assemblage	structure	across	sites	to	the	proximity	of	surveys	to	the	burn,	as	the	US	550	site	

is	nearly	twice	the	distance	from	the	burn	in	comparison	to	the	Buckman	site	(Table	1,	Fig.	

1).	In	addition,	there	are	notably	more	fire-impacted	intermittent	tributaries	within	close	

proximity	to	the	Buckman	site	(Fig.	1),	which	increased	the	probability	of	isolated	and	

intense	monsoon	storm	flow	events	transporting	burn	material	into	the	Rio	Grande.		

In	addition	to	impacting	abundance	and	general	assemblage	composition,	previous	

studies	of	post-fire	fish	assemblages	have	documented	differential	responses	of	native	

versus	non-native	species.	For	example,	following	two	consecutive	fires	in	the	upper	Gila	

River	in	southern	NM,	researchers	observed	a	reduction	in	native	fish	abundance,	biomass	

and	occupancy,	and	an	increased	probability	of	extinction	(Whitney	et	al.,	2015a;	Whitney	

et	al.,	2015b).	Lack	of	resiliency	was	attributed	to	the	extent,	severity	and	occurrence	of	

post-fire	events	that	exceeded	the	tolerance	range	of	these	species,	although	they	evolved	

in	a	system	with	considerable	hydrologic	variability.	Specifically,	the	colder	water	native	

fish	assemblage	of	the	Gila	River	have	been	found	to	be	severely	impacted	by	wildfires	and	

attributed	to	physiological	intolerance	to	post-fire	water	conditions,	specifically	hypoxic	

blackwater	conditions,	elevated	sedimentation	rates,	and	elevated	turbidity	(Brown	et	al.,	

2001;	Propst	et	al.,	1992;	Whitney	et	al.,	2015a).	In	contrast,	non-native	warmwater	fishes	

were	less	affected	in	terms	of	occupancy,	extinction	probability,	abundance,	and	biomass.	

The	authors	attributed	the	differential	response	to	the	tolerance	of	non-natives	to	harsh	
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abiotic	conditions,	and	to	being	classified	as	habitat	generalists.		

We	attribute	the	relative	lack	of	species-specific	responses	at	the	US	550	site	to	the	

composition,	physiological	tolerances	to	poor	water	quality,	resilience,	and	life	history	

strategies	of	the	MRG	fish	assemblage.		The	Rio	Grande	is	a	flashy	ecosystem	with	

ephemeral	and	intermittent	channels	contributing	surface	water	and	sediment	during	

monsoon	events	(Moore	and	Anderholm,	2002),	with	turbidity	often	>	4000	NTU	during	

such	events	(Reale	et	al.,	2015).	The	mean	suspended	sediment	concentration	on	the	Rio	

Grande	upstream	and	downstream	of	Cochiti	Dam	exceeded	900	mg	L-1	during	the	study	

(Table	1).	These	harsh	abiotic	conditions,	in	combination	with	flow	regulation,	habitat	

fragmentation,	and	habitat	alteration,	have	led	to	a	resilient	and	species	poor	MRG	fish	

assemblage	(Bestgen	and	Platania,	1991;	Dudley	and	Platania,	2007;	Hoagstrom	et	al.,	

2010;	Platania,	1991).	While	the	vulnerability	of	the	Buckman	assemblage	is	likely	driven	

by	habitat	fragmentation	of	the	Rio	Grande	(Dudley	and	Platania,	2007),		low	species	

diversity	within	the	reach	(Platania,	1991;	SWCA,	2014),	and	relative	isolation	from	

potential	sources	of	recolonizing	fish	(Pringle,	2003;	Pringle,	1997)	

Interannual	and	within-year	variability	in	abundance	and	species	diversity	of	MRG	

fishes	is	strongly	influenced	by	factors	related	to	spawning	seasonality	and	hydrologic	

conditions	within	a	given	year	(Krabbenhoft	et	al.,	2014;	Pease	et	al.,	2006;	Turner	et	al.,	

2010).	For	example,	PLAGRA	and	RHICAT	are	classified	as	intermediate	and	opportunistic	

spawners,	as	larvae	appear	after	the	descending	limb	of	the	snowmelt	pulse	(Turner	et	al.,	

2010).		Similarly,	PIMPRO	also	is	an	intermediate	spawner,	but	cues	in	on	periods	of	flow	

equilibrium	(Turner	et	al.,	2010).	While	CATCOM	is	classified	as	an	early	spawner	as	larvae	

first	appear	on	the	ascending	limb	of	the	snowmelt	pulse	(Turner	et	al.,	2010).	Lastly,	

CYPLUT	spawning	occurs	late	summer	during	stable	base	flow	conditions	(Turner	et	al.,	

2010).		This	variability	in	spawning	strategy	and	timing,	in	addition	to	hydrologic	

variability	within	a	given	year,	could	influence	the	fish	assemblage	response	post-fire.		

Post-flood	fish	assemblage	response	in	a	post-fire	environment	(2013)	

During	the	period	of	9-16	September	2013,	two	dissipating	tropical	storms,	one	

from	the	Pacific	Ocean	and	a	second	from	the	Gulf	of	Mexico,	converged	producing	
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sustained	and	heavy	rainfall	resulting	in	widespread	flooding	in	Colorado	and	NM	(Gochis	

et	al.,	2015;	Trenberth	et	al.,	2015).	Numerous	fire-impacted	and	proximal	watersheds	that	

discharge	into	the	Rio	Grande	upstream	of	Cochiti	(Fig.	1)	received	over	6	inches	of	

precipitation	within	24	hours	(i.e.,	greater-than-1000-yr	return	period	precipitation	

events).	This	resulted	in	widespread	and	severe	flooding	(Pinson	et	al.,	2014;	Walterscheid,	

2015).	Flooded	tributaries	provided	copious	amounts	of	sediment	at	confluences	

throughout	the	reach	(Wolf	Engineering,	2014),	including	the	fish	monitoring	sites	in	this	

study	(SWCA,	2014),	which	provided	a	unique	opportunity	to	investigate	the	impacts	of	a	

major	post-fire	flood	disturbance	on	downstream	fish	assemblages.	The	suspended	

sediment	concentrations	upstream	and	downstream	of	Cochiti	Dam	were	similar	during	

this	period	(53000	and	45000	mg	L-1,	respectively),	despite	several	sediment	sinks	(e.g.,	

Cochiti	Dam	and	Jemez	Canyon)	that	could	reduce	the	suspended	load	downstream.			

The	large	observed	post-flood	reduction	in	total	and	species-specific	fish	abundance,	

diversity,	and	evenness	at	the	upstream	Buckman	site	suggests	that	impacts	to	native	fishes	

in	particular,	were	intensified	by	this	post-fire	disturbance.	This	trend	was	evident	in	data	

for	three	native	minnows	(i.e.,	PIMPRO,	PLAGRA	and	RHICAT),	which	were	commonly	

collected	both	pre-	and	post-fire	at	Buckman,	but	were	absent	from	the	site	during	each	of	

the	first	three	surveys	after	the	flood	event.	In	fourth	survey	10	mo.	following	the	flood	

event,	only	a	single	individual	RHICAT	and	PLAGRA	were	collected,	and	PIMPRO	remained	

absent.		

This	response	is	of	interest,	as	native	fishes	are	often	considered	to	be	more	

resilient	to	flash	flooding	in	flood	prone	catchments	than	non-native	species	that	did	not	

evolve	under	these	conditions	(Minckley	and	Meffe,	1987).	A	variety	of	species-specific	

mechanisms	may	be	responsible	for	this	reduction	in	native	fishes.	First,	RHICAT	is	an	

obligate	gravel-cobble	riffle	species	that	seeks	shelter	(Sublette	et	al.,	1990)	and	forages	for	

benthic	macroinvertebrates	(Thompson	et	al.,	2001)	in	these	habitats.	Following	the	2013	

flood,	benthic	macroinvertebrate	density	decreased	and	the	Hilsenhoff	Biotic	Index	

increased	(a	lower	abundance	of	taxa	sensitive	to	water	quality	degradation)	at	the	

Buckman	sampling	site	(SWCA,	2014).	Thus,	we	hypothesize	that	degraded	water	quality,	

disturbed	benthic	sediments,	and	sediment	deposition	all	reduced	gravel-rock	riffle	habitat	
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and	food	availability	and	negatively	impacted	RHICAT	abundance.	In	contrast	to	RHICAT,	

PLAGRA	is	associated	with	a	natural	flow	regime,	strong	currents,	shifting	sand	substrate,	

and	turbid-river	environments	(Bonner	and	Wilde,	2000;	Cross	and	Moss,	1987;	Quist	et	al.,	

2004)	and	feeding	efficiencies	of	this	species	are	reportedly	un-impacted	by	high	turbidity	

levels	(Bonner	and	Wilde,	2002)	commonly	observed	during	post-fire	water	quality	events	

(Dahm	et	al.,	2015;	Reale	et	al.,	2015).		

These	adaptations	would	appear	to	buffer	this	species	from	the	effects	of	post-fire	

flood	events,	however,	this	species	also	feeds	on	benthic	macroinvertebrates	(Fisher	et	al.,	

2002;	Olund	and	Cross,	1961),	which	were	impacted	post-fire	and	post-flood	(Fresquez	and	

Jacobi,	2012;	SWCA,	2014),	may	be	responsible	for	the	observed	post-flood	declines.	

Similarly,	PIMPRO	has	a	high	tolerance	low	dissolved	oxygen	and	high	turbidity	(Ankley	

and	Villeneuve,	2006;	Klinger	et	al.,	1982;	Robb	and	Abrahams,	2003)	suggesting	that	it	

could	withstand	the	poor	water	quality	conditions	during	the	post-fire	flood	event.	

However,	the	elevated	sedimentation	rates	throughout	the	reach	(Wolf	Engineering,	2014),	

including	the	fish	monitoring	sites	in	this	study	(SWCA,	2014),	likely	reduced	recruitment	

of	this	nesting	minnow	(Sublette	et	al.,	1990).		In	contrast,	to	the	native	species,	a	non-

native	sucker	(CATCOM)	was	detected	in	each	of	the	four	surveys	immediately	after	the	

flood	at	the	Buckman	site,	and	this	species	exhibited	similar	seasonal	trends	comparable	to	

pre-	and	post-fire	years.		We	attribute	the	lack	of	a	post-flood	response	in	CATCOM	

abundance	to	1)	early	spawning	(Krabbenhoft	et	al.,	2014;	Turner	et	al.,	2010)	such	that	by	

September	young-of-year	CATCOM	were	able	to	withstand	the	harsh	abiotic	conditions	

(Lobón-Cerviá,	1996;	Pearsons	et	al.,	1992),	2)	adaptable	habitat	requirements	(Corbett	

and	Powles,	1986;	Twomey	et	al.,	1984)	and	diet	(Eder	and	Carlson,	1977;	Sublette	et	al.,	

1990),	3)	upstream	populations	repopulated	the	affected	reach,	particularly	given	the	

downstream	drift	of	larvae	(Corbett	and	Powles,	1986)	and	widespread	distribution	within	

the	Rio	Grande	(Platania,	1991).	In	addition,	large	body	size	and	mobility	(Bunt	et	al.,	

1999),	and	compensatory	reproductive	capacity	(Rose	et	al.,	2001)	are	also	factors	that	

could	contribute	to	rapid	recovery	of	CATCOM.			

As	with	the	immediate	post-fire	results,	the	fish	assemblage	at	the	downstream	550	

site	was	un-impacted	by	the	2013	flood	event.	This	lack	of	response	can	likely	be	attributed	
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to	several	water	quality	and	quantity	factors.	First,	the	Cochiti	and	Jemez	Canyon	dams	

dampened	flood	pulses	and	sediment	bed	load	on	the	mainstem	and	the	largest	tributary	in	

this	reach,	respectively,	unlike	at	the	Buckman	site	where	no	dampening	occurred.	

Additionally,	while	Peralta	Canyon	did	deposit	large	quantities	of	bed	material	into	the	

river	during	this	period	plugging	the	Rio	Grande	(AuBuchon	and	Bui,	2014),	the	inputs	

were	~	42	river-km	upstream	of	the	fish	sampling	site.	However,	due	to	the	low	stream	

gradient	of	the	Rio	Grande	downstream	of	Cochiti	Dam	(Ortiz,	2004),	the	river	likely	did	

not	have	the	stream	power	to	propagate	the	bed	load	downstream	to	the	fish	sampling	site.	

In	contrast,	the	flood	pulse	and	slugs	of	low	DO	propagated	a	much	greater	distance	and	

were	documented	far	downstream	(Fig.	2a	&	2b),	however,	these	water	quality	excursions	

were	less	severe	than	those	observed	immediately	following	the	fire	and	do	not	appear	to	

have	exceeded	the	tolerance	range	of	the	fish	assemblages	at	this	downstream	site.		

	

Conclusions	

1)	Immediately	following	a	catastrophic	wildfire,	similar	cypriniform	dominated	

assemblages	responded	differently	at	two	sites	on	a	large	(i.e.,	7th	order)	river	responded	

differently	depending	on	their	distance	from	the	burn.	

2)	Following	a	major	flood	three	years	later,	the	fish	community	at	the	downstream	fire-

resilient	site	remained	largely	unchanged,	whereas	multiple	native	fish	species	declined	

dramatically	at	the	upstream	assemblage	at	the	fire-impacted	site.	

3)	To	predict	the	response	of	a	downstream	fish	assemblage	following	a	wildfire,	one	must	

consider	proximity	to	the	burn,	total	area	burned	upstream	of	the	study	area,	the	proximity	

of	sediment	sinks	(e.g.,	upstream	lakes	or	reservoirs),	and	species-specific	life	history.			
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Figures	

	

Figure	1:	Maps	showing	the	Rio	Grande	(lower	right)	and	the	burn	perimeter	of	the	Las	

Conchas	(LC)	wildfire	in	north-central	NM,	USA.	The	main	water-quality	stations,	fish	

monitoring	locations,	streams	of	interest,	perimeter	of	the	LC	fire,	key	landmarks,	and	

watershed	boundaries	(i.e.,	Hydrologic	Unit	Codes	[HUC])	that	were	impacted	by	the	LC	fire	

are	shown.		
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Figure	2:	(a)	Daily	mean	stream	discharge	(m3	s-1)	measured	from	the	USGS	gage	at	Otowi	

(USGS	gage	No.	08313000),	(b)	dissolved	oxygen	(DO;	mg	L-1)	collected	at	15-minute	

increments	downstream	of	Cochiti	Canyon,	(c)	total	number	of	fish,	(d)	Shannon’s	diversity,	

and	(e)	Shannon’s	evenness	at	the	Buckman	Diversion	within	the	White	Rock	reach	of	the	

Rio	Grande.	The	red	vertical	dashed	line	represents	the	onset	of	degraded	water	quality	

events	following	the	Las	Conchas	fire.	The	red	dots	represent	fish	assemblage	sampling	

occasions.	The	blue	vertical	dashed	line	represents	the	September	2013	flood	event.	Grey	

horizontal	lines	represent	the	compiled	pre-fire	mean	values	and	90%	confidence	intervals.	

Red	and	blue	horizontal	dashed	lines	represent	the	compiled	post-fire	and	post-flood	mean	

values,	respectively.	The	date	(x-axis)	has	been	abbreviated	to	two	digits	(i.e.,	MM-YY).	
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Figure	3:	Total	abundance	of	(a)	White	Sucker	Catostomus	commersonii	(CATCOM),	(b)	

Fathead	Minnow	Pimephales	promelas	(PIMPRO),	(c)	Flathead	Chub	Platygobio	gracilis	

(PLAGRA),	and	(d)	Longnose	Dace	Rhinichthys	cataractae	(RHICAT)	collected	at	the	

Buckman	Diversion	within	the	White	Rock	reach	of	the	Rio	Grande.	The	red	vertical	dashed	

line	represents	the	onset	of	water	quality	events	following	the	Las	Conchas	fire.	The	red	

dots	represent	fish	assemblage	sampling	occasions.	The	blue	vertical	dashed	line	

represents	the	September	2013	flood	event.	Grey	horizontal	lines	represent	the	compiled	

pre-fire	mean	values	and	90%	confidence	intervals.	Red	and	blue	horizontal	dashed	lines	

represent	the	compiled	post-fire	and	post-flood	mean	values,	respectively.	The	date	(x-

axis)	has	been	abbreviated	to	two	digits	(i.e.,	MM-YY).	
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Figure	4:	(a)	Daily	mean	stream	discharge	(m3	s-1)	measured	from	the	USGS	gage	at	San	

Felipe	(USGS	gage	No.	0831900),	(b)	dissolved	oxygen	(DO;	mg	L-1)	collected	at	15-minute	

increments,	(c)	total	number	of	fish,	(d)	Shannon’s	diversity,	and	(e)	Shannon’s	evenness	

collected	at	the	U.S.	550	Bridge	on	the	Rio	Grande.	The	red	dots	represent	fish	assemblage	

sampling	occasions.	The	red	vertical	dashed	line	represents	the	onset	of	water	quality	

events	following	the	Las	Conchas	fire.	The	blue	vertical	dashed	line	represents	the	

September	2013	flood	event.	Grey	horizontal	lines	represent	the	compiled	pre-fire	mean	

values	and	90%	confidence	intervals.	Red	and	blue	horizontal	dashed	lines	represent	the	

compiled	post-fire	and	post-flood	mean	values,	respectively.	Post-fire	and	post-flood	mean	

values	were	jittered	to	reduce	overlap.	The	date	(x-axis)	has	been	abbreviated	to	two	digits	

(i.e.,	MM-YY).	
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Figure	5:	Total	abundance	of	(a)	White	Sucker	Catostomus	commersonii	(CATCOM,)	(b)	

Fathead	Minnow	Pimephales	promelas	(PIMPRO),	(c)	Flathead	Chub	Platygobio	gracilis	

(PLAGRA),	(d)	Longnose	Dace	Rhinichthys	cataractae	(RHICAT),	and	(e)	Red	Shiner	

Cyprinella	lutrensis	(CYPLUT)	collected	at	the	U.S.	550	Bridge	of	the	Rio	Grande.	The	red	

vertical	dashed	line	represents	the	onset	of	water	quality	events	following	the	Las	Conchas	

fire.	The	red	dots	represent	fish	assemblage	sampling	occasions.	The	blue	vertical	dashed	

line	represents	the	September	2013	flood	event.	Grey	horizontal	lines	represent	the	

compiled	pre-fire	mean	values	and	90%	confidence	intervals.	Red	and	blue	horizontal	

dashed	lines	represent	the	compiled	post-fire	and	post-flood	mean	values,	respectively.	

Post-fire	and	post-flood	mean	values	were	jittered	to	reduce	overlap.	The	date	(x-axis)	has	

been	abbreviated	to	MM-YY.	
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Tables	

	

	

	

	

	

	

	

	

	

	

Table	1:	Study	site	characteristics	of	the	Rio	Grande	at	White	Rock	and	U.S.	550.		Annual	

mean	river	discharge	was	calculated	from	nearby	USGS	gages	(Otowi	and	San	Felipe,	

respectively)	for	water	years	(i.e.,	1OCT-30SEP)	that	fish	data	were	analyzed.	Annual	mean	

suspended	sediment	was	calculated	from	nearby	USGS	gages	(Otowi	and	Albuquerque	

(USGGS	No.	08330000)),	respectively)	for	water	years	(i.e.,	1OCT-30SEP)	that	fish	data	

were	analyzed.	Maximum	mean	daily	temperature	was	calculated	using	all	available	sonde	

data	during	the	period	of	analysis.	Temperature	classifications	(cold	water	<22°C,	warm	

water	>24°C)	are	from	Lyons	et	al.	(1996).	Stream	order	was	determined	from	the	USGS	

National	Hydrography	Dataset	(NHD).	Total	area	burned	was	calculated	using	the	Las	

Conchas	burn	perimeter	in	ArcGIS.	Las	Conchas	distance	is	the	shortest	watercourse	

distance	from	the	sonde	to	the	perimeter	of	the	wildfire	and	was	measured	using	the	burn	

perimeter	in	Google	Earth.	Total	area	burned	and	Las	Conchas	distance	for	White	Rock	was	

calculated	from	the	fish	sampling	and	sonde	location,	as	these	sampling	points	are	not	co-

located.	The	values	inside	parentheses	represent	the	measurements	from	the	sonde.	Total	

area	burned	and	Las	Conchas	distance	for	U.S.	550	was	calculated	from	the	co-located	fish	

sampling	and	sonde	location.				

	 	

Measurement	 Units	 Buckman	 US	550	

Annual	mean	river	discharge	 m3	s	-1	 29.15	 30.4	

Annual	mean	suspended	sediment	 mg	L-1	 925	 940	

Maximum	mean	daily	temperature		 ⁰C	 15.2	 15.8	

Temperature	classification	 -	 Coldwater	 Coldwater	

Stream	order	 -	 7	 7	

Area	burned		 km2	 155	(255)	 228	

Las	Conchas	distance	 km	 24	(7)	 50	
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Scientific	Name	 Common	Name	 Abbrev.	

Native

?	

Buckma

n		 US	550	

Order	Clupeiformes	

	 	 	 	 	Family	Clupeidae	 herrings	

	 	 	 	Dorosoma	cepedianum	 Gizzard	Shad	 DORCEP	 Yes	

	

x	

	 	 	 	 	 	Order	Cypriniformes	

	 	 	 	 	

Family	Cyprinidae	

carps	and	

minnows	

	 	 	 	Carassius	auratus	 Goldfish	 CARAUR	 No	

	

x	

Cyprinus	carpio	 Common	Carp	 CYPCAR	 No	 x	 x	

Cyprinella	lutrensis	 Red	Shiner	 CYPLUT	 Yes	 x	 x	

Gila	pandora	 Rio	Grande	Chub	 GILPAN	 Yes	 x	 x	

Hybognathus	amarus	

Rio	Grande	Silvery	

Minnow	 HYBAMA	 Yes	

	

x	

Pimephales	promelas	 Fathead	Minnow	 PIMPRO	 Yes	 x	 x	

Platygobio	gracilis	 Flathead	Chub	 PLAGRA	 Yes	 x	 x	

Rhinichthys	cataractae	 Longnose	Dace	 RHICAT	 Yes	 x	 x	

	 	 	 	 	 	Family	Catostomidae	 suckers	

	 	 	 	Catostomus	commersonii	 White	Sucker	 CATCOM	 No	 x	 x	

Catostomus	[Pantosteus]	

plebeius	 Rio	Grande	Sucker	 CATPLE	 Yes	 x	

	Carpiodes	carpio	 River	Carpsucker	 CARCAR	 Yes	

	

x	

	 	 	 	 	 	Order	Siluriformes	

	 	 	 	 	

Family	Ictaluridae	

North	American	

catfishes	

	 	 	 	Ameiurus	melas	 Black	Bullhead	 AMEMEL	 No	

	

x	

Ameiurus	natalis	 Yellow	Bullhead	 AMENAT	 No	

	

x	

Ictalurus	punctatus	 Channel	Catfish	 ICTPUN	 No	 x	 x	
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	 	 	 	 	 	Order	Salmoniformes	

	 	 	 	 	

Family	Salmonidae	

trouts	and	

salmons	

	 	 	 	Salmo	trutta	 Brown	Trout	 SALTRU	 No	 x	 x	

	 	 	 	 	 	Order	

Cyprinodontiformes	

	 	 	 	 	Family	Poeciliidae	 livebearers	

	 	 	 	

Gambusia	affinis		

Western	

Mosquitofish	 GAMAFF	 No	 x	 x	

	 	 	 	 	 	Order	Perciformes	

	 	 	 	 	Family	Moronidae	 temperate	basses	

	 	 	 	Morone	chrysops	 White	Bass	 MORCHR	 No	

	

x	

	 	 	 	 	 	Family	Centrarchidae	 sunfishes	

	 	 	 	Lepomis	cyanellus	 Green	Sunfish	 LEPCYA	 No	 	 x	

Lepomis	macrochirus	 Bluegill	 LEPMAC	 Yes	 x	 x	

Micropterus	dolomieu	 Smallmouth	Bass	 MICDOL	 No	 x	

	Micropterus	salmoides	 Largemouth	Bass	 MICSAL	 No	 x	 x	

Pomoxis	annularis	 White	Crappie	 POMANN	 No	 x	 x	

	 	 	 	 	 	

Family	Percidae	

perches	and	

darters	

	 	 	 	Perca	flavescens	 Yellow	Perch	 PERFLA	 No	

	

x	

Sander	vitreus	 Walleye	 SANVIT	 No	

	

x	

	 	 	 	 	 		 	 	 	 	 	

	

Table	2:	Scientific	names,	common	names,	and	species	codes	for	fish	collected	in	the	Middle	

Rio	Grande	during	the	period	of	analysis	at	Buckman	and	U.S.	550.	Native	status	was	

determined	by	Propst	(1999).	
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	Epilogue	

	

Since	2006,	the	U.S.	Army	Corps	of	Engineers	(USACE)	has	funded	the	U.S.	

Geological	Survey	(USGS)	and	the	University	of	New	Mexico	(UNM)	to	collect	

continuous	water	quality	(i.e.,	temperature,	specific	conductance	(SC),	dissolved	oxygen	

(DO),	pH	and	turbidity)	data	using	multi-parameter	sondes	at	five	locations	on	the	Rio	

Grande	to	assess	temporal	and	spatial	trends.	During	the	same	time-period,	the	Valle	

Caldera	National	Preserve	(VCNP)	began	deploying	sondes	within	the	headwaters	of	the	

Jemez	Mountains.	Recognizing	the	importance	of	collecting	high-frequency	water	

quality	data,	a	proposal	was	submitted	to	the	New	Mexico	Experimental	Program	to	

Stimulate	Competitive	Research	(NM	EPSCoR)	to	develop	and	deploy	nutrient	and	

water	quality	sensors	for	the	monitoring	of	stream	waters	in	high	altitude	

environments	within	the	VCNP	to	investigate	controls	on	water	chemistry	in	a	changing	

climate.	This	proposal	was	funded	in	2009	and	the	instruments	were	lab	tested	in	2010	

and	field	deployed	in	2011.			

Fortuitously,	the	majority	of	this	instrumentation	was	in	place	prior	to	the	

summer	of	2011	when	the	Las	Conchas	fire	ignited	and	became	the	largest	wildfire	in	

New	Mexico	history.	Recognizing	the	potential	post-fire	impacts	on	water	quality,	

USACE	and	UNM	added	three	additional	sondes	upstream	of	Cochiti	Dam	on	the	Rio	

Grande	and	Rio	Chama	to	more	fully	assess	water	quality	conditions	within	the	

watershed	upstream	and	downstream	of	the	large	burn	scar.	These	datasets	provided	

the	opportunity	to	assess	the	impacts	of	a	major	catastrophic	wildfire	on	water	quality	

in	montane	and	aridland	rivers	with	state-of-the	art	measurements	and	excellent	

background	data	along	a	river	continuum.	Combining	these	datasets	with	long-term	

meteorological	and	fish	monitoring	data,	biological	responses	(i.e.,	whole-stream	

metabolism	and	fish	community)	were	also	evaluated	prior	to	and	following	the	Las	

Conchas	fire.		

In	Chapter	1,	The	effects	of	catastrophic	wildfire	on	water	quality	along	a	river	

continuum,	the	goals	of	the	study	were	to;	1)	evaluate	water	quality	(turbidity,	SC,	and	

DO)	before	and	immediately	following	the	Las	Conchas	fire	along	an	impacted	river	

continuum	(2nd	through	7th	order	streams	and	rivers),	and	2)	assess	the	water	quality	
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(turbidity,	SC	and	DO)	of	a	3rd-	and	a	7th-order	stream	in	a	single	watershed	for	five	

monsoon	seasons	before,	during,	and	after	the	wildfire.	This	chapter	documents	the	

importance	of	streamflow	pathways,	geomorphology,	physiochemical	properties	and	

biogeochemical	processes	in	mediating	water	quality	along	a	river	continuum	impacted	

by	a	major	wildfire.	Longer-term	effects	in	a	3rd	stream	and	7th	order	river	provide	

quantitative	information	on	the	initial	and	sustained	water	quality	impacts	of	a	major	

wildfire	on	streams	and	rivers	affected	by	the	burn	scars	for	multiple	years	following	

disturbance.	These	findings	highlight	the	need	to	collect	water-quality	data	at	time	

scales	that	effectively	capture	the	ecohydrological	dynamics	of	the	watershed	following	

a	major	wildfire.	This	chapter	was	published	in	Freshwater	Science,	as	part	of	a	special	

series	on	fire	ecology.		

In	Chapter	2,	Differential	responses	of	paired	catchments	to	catastrophic	wildfire:	

A	multi-year	study	of	water	quality	and	whole-stream	metabolism	throughout	the	

growing	season,	the	goals	of	the	study	were	to;	1)	assess	water	quality,	gross	primary	

productivity	(GPP),	and	ecosystem	respiration	(ER),	during	the	growing	season	for	

multiple	years	prior	to	the	Las	Conchas	fire	in	two,	nearly	identical	and	paired	

headwater	streams	in	the	Jemez	Mountains,	2)	determine	the	immediate	(year	one),	

shorter-term	(years	two	to	four)	and	longer-term	(years	five	and	six)	impacts	of	the	

wildfire	on	water	quality	and	whole-stream	metabolism,	and	3)	identify	mechanisms	

that	influence	in-stream	metabolic	processes	during	pre-	and	post-fire	conditions.	

Immediately	following	the	wildfire,	turbidity	and	specific	conductance	values	increased	

substantially,	and	measures	of	whole	stream	metabolism	declined	in	each	of	the	two	

streams.	A	differential	response	between	the	two	streams	was	observed	in	the	shorter-

term.	One	stream,	that	has	tight	hydrologic	connections	to	the	landscape,	experienced	

persistently	elevated	turbidity	and	suppressed	GPP	and	ER,	likely	due	to	light	

limitation.	In	contrast,	the	other	stream	had	much	lower	turbidity	levels	and	elevated	

GPP	and	ER,	likely	due	to	fertilization	of	stream	water	by	nutrient-rich	fire	debris.	By	

the	6th	year	after	the	fire,	water	quality	and	metabolism	values	returned	to	near	pre-fire	

levels	in	both	streams.	This	study	is	the	first	multi-year	water	quality	and	whole-stream	

metabolism	study	linked	to	a	major	wildfire.	It	emphasizes	the	need	for	long-term,	high-

frequency	data,	both	pre-	and	post-fire,	to	accurately	assess	the	impacts	of	wildfire	on	
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ecosystem	processes	in	aquatic	environments.	This	chapter	was	submitted	to	

Ecosystems,	and	the	paper	is	currently	undergoing	peer	review.		

In	Chapter	3,	The	effects	of	water	quality	degradation	from	wildfire	on	

downstream	fish	communities	in	an	aridland	river,	the	goals	were	to	1)	assess	the	

immediate	(year	one)	and	short-term	(years	two	to	five)	fish	community	and	water	

quality	responses	at	two	sites	on	the	Rio	Grande	(i.e.,	7th	order)	downstream	(i.e.,	>	20	

km)	of	the	Las	Conchas	fire,	and	2)	evaluate	the	effects	of	an	extreme	flood	event	

(occurring	in	year	three	after	the	fire)	on	the	fish	community	and	water	quality	in	a	

post-fire	environment.	During	the	first	three	years	following	the	fire,	large	DO	sags,	but	

no	major	flood	events,	were	documented	at	both	sites.	A	differential	between-site	

response	in	total	abundance	and	fish	community	variables	was	observed.	The	

community	at	the	downstream	site	appeared	to	be	generally	unimpacted	by	effects	

from	the	fire.	In	contrast,	declines	in	total	abundance,	diversity	and	evenness	were	

observed	post-fire	in	the	upstream	community.	Following	the	major	flood	event	in	

September	of	2013,	total	and	species-specific	abundance	and	fish	community	response	

variables	remained	unchanged	at	the	downstream	site,	while	reductions	in	abundance,	

diversity,	and	evenness	were	observed	at	the	upstream	site.	The	differential	post-fire	

and	post-flood	response	at	the	two	sites	with	similar	community	composition	and	flow	

regime	can	be	attributed	to	the	proximity	and	quantity	of	fire-impacted	watersheds	

upstream.	This	study	adds	to	the	very	few	studies	that	have	assessed	the	effects	of	

wildfire	on	non-salmonid	fish	communities	in	larger	rivers	(≥	5th	order)	downstream	

(i.e.	≥	10	river-km)	from	burn	scars.	This	chapter	will	be	submitted	to	the	Journal	of	Arid	

Environments.	

To	build	upon	the	findings	presented	in	this	dissertation,	future	research	should	

focus	on	topics	that	further	improve	our	understanding	of	the	effects	of	wildfire	on	

aquatic	ecosystems.	Post-wildfire	research	on	riverine	water	quality	and	whole-stream	

metabolism,	including	this	dissertation,	has	focused	on	wildfires	originating	in	

mountainous	coniferous-forested	catchments	in	western	North	America.	The	

development	of	long-term	and	high-frequency	water	quality	networks	in	streams	and	

rivers	in	other	biomes	(e.g.,	cerrados,	savannas,	rainforests,	boreal	forests,	and	arctic	

tundra)	within	fire-prone	geographical	regions	(e.g.,	South	America,	North	America,	
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Africa,	Asia,	and	Australia)	would	allow	for	inter-biome	comparisons.	It	would	also	

allow	for	a	comprehensive	global	assessment	of	the	risks	to	water	quality	and	

ecosystem	processes	in	fire-prone	biomes	at	a	global	scale.	To	improve	our	

understanding	of	how	fish	communities	respond	to	poor	water	quality	conditions	post-

fire,	a	series	of	mesocosm	experiments	could	be	conducted	that	emulate	the	abrupt,	

frequent	and	severe	dissolved	oxygen	sags	and	large	increases	in	suspended	sediment	

loads	observed	following	severe	wildfires.	These	data	will	allow	water	resource	

managers	to	evaluate	the	growth	and	survival	of	young-of-year	and	adult	fish	species.	

Such	studies	would	be	a	significant	step	forward	in	testing	the	impacts	of	fire	on	fish	

communities	in	a	more	realistic	manner,	as	compared	to	the	commonly	used	standard	

acute	toxicity	tests	(ASTM	2007).		

Water	scarcity,	water	quality	impairment	and	river	biodiversity	have	received	

considerable	attention	recently	as	global	threats	to	freshwater	quality	from	human	

impacts	(Jackson	et	al.	2001,	Vörösmarty	et	al.	2010).	We	must	include	catastrophic	

wildfires	as	potential	global	threats	to	freshwater	ecosystems	and	another	ecological	

risk	that	must	be	evaluated	in	a	changing	climate	(IPCC	2014).	This	is	particularly	of	

concern	as	the	size	and	duration	of	wildfires	and	the	length	of	the	wildfire	season	

increases	(Flannigan	et	al.	2009,	Flannigan	et	al.	2013).		

Overall,	the	research	in	this	dissertation	highlights	the	importance	of	long-term	

ecological	data	collection	using	advanced	instrumentation	that	can	be	used	to	evaluate	

the	effects	of	a	changing	climate	and	climate-mediated	disturbances	on	water	

resources.	Secondly,	these	studies	emphasize	the	need	to	collect	water	quality	and	

biological	data	at	temporal	and	spatial	scales	that	more	effectively	capture	the	

hydrology	and	water	quality	dynamics	of	landscape-scale	disturbances	that	are	

becoming	more	common	and	more	destructive	with	climate	change	and	growing	human	

impingement	on	forested	lands.	Thirdly,	this	research	highlights	the	importance	of	

evaluating	streamflow	pathways,	geomorphology,	physiochemical	properties	with	

biogeochemical	processes,	and	watershed-specific	hydrologic	connections	within	their	

landscapes	prior	to	and	following	landscape-scale	disturbance.		
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