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ABSTRACT 
 
 

Drought can flip ecosystems between states and in the process alter key systems such as plant 

biomass and carbon balance. Many drought-related studies have focused on plant responses or charismatic 

megafauna. Less work has addressed drought in the context of aboveground-belowground feedbacks. 

Impacts of drought are increasing, particularly in arid environments such as the southwestern United States. 

Major tree species of these regions, such as piñon pine, are adapted to a wetter and more predictable 

climate than the projected future climate. The effects of drought on piñon and its ectomycorrhizae have 

been studied observationally and in laboratories. Soil depth has also been established in other systems to be 

an important driver of soil processes, but has thus far been ignored in the piñon-juniper system. Our study 

is the first to address the effects of long-term experimental moisture manipulation and associated piñon 

mortality on the soil fungal community of the piñon-juniper woodland as well as that of piñon’s obligate 

ectomycorrhizal partners across soil depth. 

We used Illumina sequencing to profile the fungal community of piñon pine at two soil depths 

along an experimentally imposed moisture-stress gradient from 2008-2013 including drought, ambient, and 

irrigated treatments. We used field collected soil samples expected to include roots, spores, and free-living 

mycelia to address fungal change community-wide. We found significant effects of moisture treatment and 

depth in structuring the overall fungal community of piñon-juniper soils. The drought treatment reduced 

richness by 20% and 38% in surface and deep soils, respectively. We used FUNGUILD to assign 

functional roles and found a significant reduction in the proportion of ectomycorrhizal fungi in drought 

plots, particularly on plots with high piñon mortality.  



 v 

The change in guild dominance suggests significant impacts of plant mortality coupled with 

environmental pressures on ectomycorrhizal fungi. Shifts in climate and plant mortality are likely to alter 

the distribution of members of the belowground community, particularly ectomycorrhizal fungi, which in 

turn may limit the establishment and/or recovery of plant species. Based on our findings, we predict greater 

patchiness of fungi, particularly ectomycorrhizal taxa, in drought-impacted habitats and/or significant 

retractions in plant and fungal geographic ranges. 
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Chapter 1 

Introduction 

Piñon pine (Pinus edulis Engelm.) may vanish from much of its present range 

over the next 50 years due to the combined effects of increasingly severe droughts 

(McDowell and Allen 2015) coupled with drought-induced changes in its microbial 

community, i.e. belowground legacies of disturbance. Feedbacks between 

microorganisms and megafauna are increasingly recognized as critical to understanding 

living systems in a holistic context. For example, work on the human micro-biome has 

shown the species composition of the gut flora to influence disease susceptibility and 

weight status (Turnbaugh et al. 2007; Cho and Blasser 2012). Such work demonstrates 

the importance of profiling and understanding the contributions of microbes such as soil 

fungi to eukaryotic organisms and ecosystems at large. A key question is: how do 

feedbacks between the aboveground plant community and belowground microbial 

community influence the successional trajectory of an ecosystem after a major 

disturbance event?  

Drought is a major environmental disturbance affecting regions across the globe. 

While drought may be most common in arid land environments, it is by no means limited 

to these regions, as recent droughts in places such as Western Europe and the 

northwestern United States have shown (Cook et al. 1999; Ciais et al. 2003). Drought in 

the arid southwestern United States is a recurring environmental stressor (Milne et al. 

2003) that is predicted to increase in duration and intensity as climate change progresses 

(Houghton et al. 1996; Seager et al. 2007; Pachauri 2014). Severe drought in 2002-2003 

greatly affected the performance and survival of piñon pine across the western United 
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States (Shaw et al. 2005 McDowell et al. 2008; Adams et al. 2009). Mortality rates of 

mature piñon trees as high as 100% have been recorded in some stands. (Breshears et al. 

2005; Mueller et al. 2005; Royer et al. 2011; Redmond and Barger 2013). 

Absence or loss of key soil organisms such as mycorrhizal fungi can lead to poor 

establishment or low vigor of associated plant species, while lack of plant species can 

constrain the mycorrhizae present in a system (Molina et al. 1992; Parker 2001; Haskins 

and Gehring 2005; Nunez et al. 2009). Over 80% of land plants associate with some form 

of mycorrhizal fungi (Allen 1991; Smith and Read 1997). Mycorrhizal fungi provide 

plants with increased access to limiting resources such as nutrients and water (Lambert et 

al. 1979; John and Coleman 1983; Allen 1991). Such aboveground-belowground 

interactions and their feedbacks are increasingly recognized as critical to understanding 

ecosystems in a holistic context (Wardle et al. 2004). In agricultural systems, soil 

organisms such as Rhizobia bacteria and arbuscular mycorrhizal fungi are often used to 

boost crop yields (Biswas et al. 2000; Johansson et al. 2004; Gosling et al. 2006). 

Manipulation of mycorrhizal fungi and other microbial symbionts has been used by land 

managers for reforestation efforts in disturbed landscapes (Perry et al. 1987; Cordell et al. 

2002; Urgiles et al. 2009). Likewise, lack of a traditional plant host is often found to lead 

to local extinctions of once dominant microbial soil symbionts (Warner and Mosse 1980; 

Oehl et al. 2004; Nguyen et al. 2012). Most mycorrhizal fungi, both ectomycorrhizal 

fungi (EMF) and arbuscular mycorrhizal fungi (AMF), cannot complete their lifecycle 

without a plant partner to provide carbon (Janos 1980; Allen 1991; Tinker et al. 1994; 

Smith and Read 1997). 
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Mutualistic aboveground-belowground feedbacks such as mycorrhizal symbiosis 

are just only type of soil community change that can occur following a disturbance event. 

Soil pathogens, decomposers, and other soil guilds may be affected by a disturbance and 

in turn alterations in these communities may feed back to the aboveground community. 

For example, fire has been established to lead to a pulse of decomposer activity 1-4 

months after burn (Arianoutsou-Faraggitaki and Margaris 1982) which leads to renewed 

access to soil resources for later plant colonists. Other work has found pathogenic soil 

microorganisms to proliferate in water-stressed environments (Crist and Schoeneweiss 

1975). These pathogens can then infect plants and cause changes to the overall landscape 

due to plant mortality and associated successional series. Hence to gain a full picture of 

the feedbacks between the aboveground community and soil fungi, studies should include 

mycorrhizal fungi and other functional guilds, such as pathogens (e.g. Hewitt et al. 2016).  

As all members of the genus Pinus that have been directly tested are obligately 

ectomycorrhizal (ECM)(Molina et al. 1992; Smith et al. 2009; Karst et al. 2014), we 

expect the same is true of piñon pine across its range throughout the nearly 15 million 

acres of piñon-juniper (PJ) woodland in the United States (Little 1965; Grabherr et al. 

1995; Breshears et al. 2005). Over most of its range, regardless of the presence or 

absence of other ECM plants, piñon is the dominant ECM host plant. This system thus 

confronts us with several key questions about belowground legacies of disturbance: What 

effects, if any, do drought and associated piñon mortality have on the total fungal 

community of PJ soils? What happens to the obligate ECM fungal partners of the piñon 

pine when the system experiences severe drought coupled with piñon mortality? What are 
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the implications for the successional trajectory of the PJ system following tree mortality, 

i.e. piñon regeneration, given drought impacts on belowground communities? 

A significant amount of work has been done to characterize the EMF community 

of piñon pine at sites in northern Arizona through observational studies and greenhouse 

manipulations (Gehring and Whitham 1994a; Gehring and Whitham 1994b; Gehring et al. 

1998; Swaty et al. 1998; Swaty et al. 2004; Haskins and Gehring 2005; Mueller et al. 

2005; Gehring et al. 2014). In general, piñon have been demonstrated to benefit from 

their association with ECM, particularly in stressed environments (Gehring and Whitham 

1994). Sites affected by drought and other abiotic stressors such as soil type have been 

demonstrated to have different EMF communities than lower stress sites. Observations 

included a shift from Basidomycota to Ascomycota along a gradient of increasing stress 

and reduced diversity of ECM at the most stressful sites (Gehring et al. 1998; Swaty et al. 

2004; Mueller et al. 2005; Gordon and Gehring 2011). A marked shift of the EMF 

community of piñon pine has been demonstrated to occur in natural settings and seedling 

bioassays as drought and associated piñon mortality differentially affected certain 

genotypes of piñon (Gehring et al. 2014). Hence it was shown that natural variation in the 

aboveground community and its biotic interactions can cause feedbacks to the 

belowground community. The filtering of the fungal community by stress likely reduces 

its functional diversity through selection for fungal species that can tolerate the harsh 

conditions; this filtering may reduce the ability of the EMF community to confer certain 

benefits (Gordon and Gehring 2011).  

Less work has profiled the overall fungal community of piñon pine (i.e. all guilds, 

not just EMF), particularly with respect to fungi. Kruske et al. (2003) offers one of the 
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only studies of the non-ECM microbial community of piñon pine. The Kruske study 

evaluated the differences in the piñon rhizosphere community between a high stress 

cinder site and a lower stress sandy-loam site. The study used culture-based techniques, 

and focused primarily on bacterial members of the microbial soil community. The study 

did examine fungal heterotrophs and finds little correlation with heterotroph abundance 

and site/stress. However, the fungal heterotrophs were closely associated with the piñon 

rhizosphere and declined with distance from piñon. In general, there is little information 

on how the non-ECM community may respond to drought and piñon mortality despite the 

importance of these groups in nutrient cycling and other ecosystem functions 

(VanDerPutten et al. 2001; Wardle et al. 2004). 

In profiling the mycorrhizal community and the non-mycorrhizal community, 

some methods are biased against different types of fungal material capable of forming an 

ecologically relevant living fungus, i.e. inoculum. Certain types of fungal inoculum, 

especially spores, can possess traits that allow them to persist in harsh conditions for long 

periods of time (Gallo et al. 1996; Hong et al. 1997; Taylor and Bruns, 1999; Bruns et al. 

2009). Most spores, particularly those of basidiomycete EMF taxa (Galante et al. 2011), 

are dispersed locally, though some taxa have been found to produce spores particularly 

well suited for long distance dispersal (Peay et al. 2012). Quantity and frequency of spore 

production is also highly species specific (Peay et al. 2012), but is generally thought to be 

low and infrequent in arid land systems due to the low availability of water throughout 

most of the growing season (Sato et al. 2012), though no studies have specifically 

measured spore production of EMF in arid lands. Work in Pinus muricata forests has 

shown resistant propagules, such as spores, to be the primary agents of mycorrhizal 
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fungal inoculum after wildfire disturbance (Baar et al. 1999). Even in situations where 

resistant propagules are available as an inoculum source, poor establishment of ECM 

seedlings has been linked to the lack of an existing ECM mycelial network (Dickie et al. 

2002; Onguene et al. 2002; Nara 2006; Booth and Hoeksema 2010). Live mycelia are 

likely to survive a much shorter period of time in the absence of a mycorrhizal plant 

(Jasper et al. 1993). Previous work has shown that piñon seedlings had little inoculum 

available in juniper-dominated woodland where there were few existing ECM plant 

species (Haskins and Gehring 2005). Considering the harsh conditions fungi may 

experience under prolonged drought and other disturbance events it is more informative 

to use methods that can profile changes in both resistant propagules and live mycelia.  

Fungal inoculum potential may also be related to soil depth. Deeper soil horizons 

present unique challenges for dispersal and colonization, but are sheltered from UV 

pressure, freeze/thaw cycles, aeolian disturbance, and intense desiccation of surface soils, 

all of which are particularly strong in arid lands. Other abiotic factors which typically 

vary with depth include: O2 concentration, CO2 concentration, percent organic matter, 

and pH. These factors, along with biotic factors such as root density, have been found to 

lead to a different mycorrhizal fungal community in deeper soil horizons relative to the 

organic horizon community (Taylor and Bruns 1999; Dickie et al. 2002; Landeweert et 

al. 2003; Rosling et al. 2003). A key study by Lindahl et al. (2007) found a strong spatial 

segregation of decomposers and EMF with decomposers generally higher in the soil 

profile. Deep soil mycorrhizal species distributions are also expected to be more patchy, 

given the difficulty of dispersing to deeper layers of the soil profile (Ferrier and 

Alexander 1985; Grogan et al. 2000; Tedersoo et al. 2003).  
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In the PJ system, juniper (Juniperus Monosperma, Engelm.) fine roots often 

dominate the top layers of soil along with their obligate AMF, which are incompatible 

with piñon (Haskins and Gehring 2005). The dominance of juniper roots at the surface 

likely causes a segregation of actively growing ECM mycelia deeper in the soil profile 

(Haskins and Gehring 2005). These findings along with the rapid elongation of the piñon 

taproot (Harrington 1987) suggest that the deep soil species pool of EMF may be 

particularly important to piñon. However, the largest and oldest piñon trees, which are 

most likely to provide ECM networks, are also the most vulnerable to drought-induced 

mortality (Redmond and Barger 2013). With regard to non-EMF fungi, we might expect 

their distribution to be more cosmopolitan in accordance with their diverse functional 

roles and particular substrate preferences, but little is known about this community in the 

PJ system.  

In the piñon-juniper biome within the Sevilleta LTER site, a unique long-run 

precipitation manipulation experiment presented an opportunity to test the effects of 

drought and intimately associated piñon mortality on the soil fungal community. We also 

evaluated the interaction between moisture treatments and soil depth. Together with 

previous findings in this system, our study stands to fill several gaps. Though general 

trends of ECM community response to drought have been documented, this experimental 

manipulation provided the opportunity to explicitly test the effects of moisture-stress 

while avoiding some of the biases and confounding factors encountered in greenhouse 

and observational studies. Furthermore, to our knowledge, our study is the first to 

examine depth as a potential factor in structuring the fungal community in this aridland 

system. The methods we used can detect a broad range of fungal inoculum from resting 
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spores to live root tips, thus revealing community-wide changes. Lastly, while focusing 

on EMF due to their close association with piñon pine, we also profile the soil fungal 

community at large. Based on the results from our study, we attempt to draw inferences 

about the ability of piñon to regenerate under permissive climatic conditions.  

Drought and associated plant-stress/mortality is predicted to cause shifts in the 

soil fungal community due to increases in litter from piñon mortality and decreases in soil 

carbon deposition due to tree carbon starvation during drought. In the absence of healthy, 

mature piñon trees to provide fungal associates with carbon, together with the direct 

effects of water deficit, we predict that the EMF community will be strongly filtered. 

Only a subset of species that can tolerate the more hostile conditions and lack of a plant 

partner will remain relative to controls. In addition to the elimination of a direct sugar 

supply by the trees, extreme piñon mortality, and prolonged drought exposes soil fungal 

communities to greater UV pressure, increased desiccation, and increased freeze-thaw 

cycles. The major soil community co-inhabitants of the piñon system, particularly 

pathogens and decomposers, are predicted to increase in relative proportion due to a 

likely increase in favorable niche space for these guilds, such as dead wood and stressed-

plants.  

Surface soils are subject to near constant homogenization by wind and water 

while deep soils are subject to rare and stochastic fungal colonization. Surface soils also 

see high inputs of organic matter, while the main source of organic matter in deep soils is 

roots. Hence we predict a strong distinction in fungal community composition between 

surface horizon soils and deeper soils. Due to inaccessibility of deeper soil, we predict 

lower fungal species richness compared to the surface horizon. On the other hand, we 
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predict that the communities of the deeper horizons are somewhat buffered from the 

effects of drought and piñon die-off because the abiotic stresses are less intense. Hence 

deep soils are likely to see less alteration in community composition across treatments. 

We predict that drought will decrease dominance of EMF across all soil types, but more 

so in the surface soils. Decomposers and other fungal guilds are likely to proliferate as 

ECM niche space opens, but richness is likely to decline overall as inputs to the system 

decline. Lastly we predict that soils receiving additional water, which saw similar levels 

of piñon mortality as controls, will not see greatly altered fungal communities resulting 

from a weak release from ambient moisture availability (Pangle et al. 2015). We test the 

following hypotheses: 

1. Drought reduces the total soil fungal community richness of piñon pine 

2. Drought alters the overall composition of the soil fungal community  

3. Deep soil harbors a more patchy and altered fungal community relative to 

surface soils. 

4. Drought alters the ECM community composition 

5. Deep soil EMF taxa show less decline than surface soil taxa exposed to severe 

drought 

6. Soil decomposers and soil pathogens increase with moisture-stress 

 
 
 
 
 
 
 
 
 



 10 

Chapter 2 

Materials and Methods 

Site Description 

Our study was conducted within a long-term precipitation manipulation 

experiment located on the Sevilleta Long Term Ecological Research site (LTER) at the 

Sevilleta National Wildlife Refuge near Socorro, NM, USA. Detailed descriptions of the 

plots, setup, and rationale for the manipulation can be found in Pangle et al. (2012) and 

Plaut et al. (2012). The study site is located on the eastern slopes of the Los Piños 

mountains (34°23’11” N, 106°31’46’’ W) at an elevation of approximately 1911 m. 

Mean annual precipitation in the area over a 20 year period (1991 – 2011) was 362.7 

mm/yr. Temperatures ranged from a daily minimum of -3.3°C to a daily maximum of 

31.0°C.  

 Piñon pine and juniper dominate this mature (50+ years of ungrazed growth) 

piñon-juniper woodland. The understory includes several species of shrubs (Fallugia 

paradoxa, Rhus spp., Mahonia spp., and Quercus spp), grasses (Bouteloua spp.), and 

cacti (Cylindropuntia spp., Opuntia spp., and Yucca spp.). The manipulation experiment 

was comprised of twelve 40 x 40 m plots, which were grouped into 3 blocks and assigned 

to 4 treatments. The treatments were an ambient control, a cover control, drought, and 

irrigation (see Supplemental Figure 1 for site map). Blocks varied in slope and aspect 

with one north facing, one south facing, and one flat block. Both sloped blocks had 

rocky, shallow soils, while the flat block soils were a sandy loam in texture and 

comparatively deep. Ambient control plots were not manipulated other than 

instrumentation to measure target tree physiology and environmental variables. Drought 
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plots were equipped with upward-facing plastic troughs, reducing natural precipitation 

delivered to plots by 45.5% (Pangle et al. 2012). Cover control plots used identical 

infrastructure as the drought plots, but with downward-facing troughs to test the effect of 

the plastic infrastructure while allowing full precipitation to reach the plot. Cover 

controls and drought plots had air and soil temperatures that were consistently elevated 

1°-3°C above controls and irrigation plots (Pangle et al. 2012). We opted not to sample 

cover control plots because of the relatively minor effect of infrastructure observed. The 

warming provided by the drought infrastructure also provided a proxy for climate-

change-induced drought where warming is coupled with decreased precipitation. 

Irrigation plots were equipped with overhead sprinklers to add an amount of water 

approximately 73mm above ambient rainfall over a season, roughly a 20% increase from 

the 20 year average (Pangle 2012). Irrigation events coincided with several pulse events 

during the growing season (April-October).  

Infrastructure was installed in the summer of 2007, the drought treatment began in 

August 2007 and the irrigation treatment began in the summer of 2008. Drought 

treatments were maintained through the duration of this study. Irrigation treatments were 

decommissioned in October of 2013. We sampled soils during February of 2015. The 

experiment also included instrumentation of target trees to measure physiological 

parameters and soil instrumentation to measure abiotic factors (Pangle et al. 2012). 

Abiotic conditions were recorded under piñon canopy, juniper canopy, and inter-canopy 

areas, including soil temperature at 5cm depth, air temperature at 10cm above soil, and 

volumetric water content at 5cm depth. All measurement sites were located inside a 10m 

buffer zone to avoid plot edge effects.  



 12 

 
 
Supplemental Figure 1: 
 

 
 
Supplemental Figure 1: Layout of original PJREx manipulation as described in Pangle et al. (2012) and 

others. Flat block plots are numbered 1-4. North block plots are numbered 5-8. South block plots numbered 

9-12. We did not sample cover control plots (3, 7, and 11), which are not shown. Irrigation infrastructure 

was dismantled in October 2013. 
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           During much of the experiment there was a moderate to severe natural drought 

ongoing in the region, which affected all plots simultaneously (US Drought Monitor June 

2007 – October 2013, accessed online 4/01/2016). Most plots experienced some level of 

piñon mortality, including irrigation plots. Mature piñon mortality was 100% in drought 

plots on hill slopes (both North and South facing) within approximately 11months of the 

initiation of the drought treatment (Plaut et al 2012). Some juvenile (<10 years of age) 

piñon trees persisted on the sloped drought plots. Heavy juniper canopy loss also 

occurred in drought plots on hill slopes, although the juniper decline occurred over a 

longer time period than piñon mortality, and appears to consistent of partial canopy 

dieback rather than death of the entire tree. Many mature piñon trees persisted on the flat 

drought plot and there was little juniper canopy loss.  

Piñon canopy cover prior to experimental setup as measured by basal area at 

30cm stem height (m2/ha) was 5.2 for irrigated plots, 1.9 for drought plots, and 2.4 for 

ambient control plots (Pangle et al. 2012). Juniper canopy cover prior to experimental 

setup was 19.1 for irrigated plots, 15.7 for drought plots, and 17.7 for ambient control 

plots (Pangle et al. 2012). In the 2012 basal area census, piñon basal area revealed a 10% 

reduction for irrigated plots, 68% reduction for drought plots, and a 9% reduction for 

ambient control plots (Pangle et al. 2015). The 2012 juniper basal area census revealed no 

change for irrigated plots, a 26% reduction for drought plots, and a <1% reduction for 

ambient control plots (Pangle et al 2015). 

Plot Data 

Each soil sampling point was designated as juniper canopy, piñon canopy, or inter 

canopy. These designations were used to weight the number of each type of 
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moisture/temperature sensor used in statistical analysis. Data were removed from analysis 

if more than 10% of the data range was not available. Of the remaining probes available, 

data were trimmed by date to span the start of each treatment through the sampling date, 

in order to account for the cumulative effects environmental variables on a given 

treatment. Measurements were recorded every 15 minutes. In the case of the irrigation 

treatment this allowed us to capture the effect of added moisture during the treatment, but 

also account for the ~2 years between the termination of the irrigation treatment and our 

sampling.  

Average soil temperature (°C), average air temperature (°C), and average soil 

moisture (%VWC) were analyzed as covariates along with soil nutrient data. 

Approximately 237 ml of homogenized plot x depth soil combination was sent for 

manure/compost nutrient analysis (Soil, Water and Plant Testing Laboratory, Colorado 

State University, Fort Collins, Colorado, USA). Nutrient and soil properties in the 

analysis included: percent organic matter, pH (1:5), total N (ammonium + nitrate + 

organic), total P (mineral + ortho + organic), total K (mineral + organic + soluble), and 

C:N ratio. 

Sampling Design 

We sampled soils from all irrigation, ambient control, and drought plots between 

2/21/2015 and 3/1/2015. We assigned 20 sampling points within each plot using a 

haphazard stratified-random spatial design, as follows. Four people, each with five disks, 

chose a plot corner and then moved toward the plot center roughly 15m. From this 

position, each person threw his or her disks in random directions. Disks were re-thrown if 

they fell within the 10m edge-buffer or if they landed in a spot that was inaccessible, i.e. 



 15 

bole of a tree, center of a cactus, or on a large rock. Acceptable points were then flagged 

and numbered 1-20 on each plot for sampling.  

 At each point, a soil pit approximately 20cm long by 20cm wide by 25cm deep 

was excavated. Pits were offset from the flag by roughly 5cm. All instruments were 

sterilized with 70% ethanol between plots. A new “face” was added to each pit at the 

time of sampling with a sterile trowel. The top face was added and the surface soil was 

sampled before facing and sampling the deep soil. Instruments used for surface sampling 

were never used for deep sampling and vice versa to avoid cross contamination between 

soil depths. Surface soil samples were taken from the surface to approximately 5cm deep. 

Deep samples were collected at approximately 18-23cm deep. We used homemade PVC 

and galvanized pipe corers that were easily field sterilized and durable enough to 

withstand the hard, rocky soils at our site. Roughly 120ml of soil/rock mix was taken 

from each depth at each sampling point for a total of approximately 2.4 liters of soil/rock 

mix per depth per plot. All soil from each plot by depth combination was combined in 

sterile plastic containers.  

 Plastic containers were vigorously shaken and mixed by hand with a sterile trowel 

to homogenize the soil. Sterile pots were filled with homogenized soil in the field for a 

parallel greenhouse experiment. Two sterile 50ml falcon tubes (VWR International, 

Radnor, Pennsylvania, USA) were filled in the field with sieved soil. Each tube was 

considered a technical replicate of its plot by depth combination. Sieves were constructed 

from ¾ inch PVC and window screen with 2mm diameter mesh openings. Sieves were 

easily sterilized in the field. Falcon tubes were immediately put on ice and stored at -80˚C 
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no more than 6 hours after collection. Remaining soil/rock mixture was bagged and 

stored at -80˚C for soil nutrient analysis. 

Bench Methods 

Genomic DNA was extracted from approximately 5 grams of soil per technical 

replicate using the Mo Bio Powersoil kit (MO BIO Laboratories, Carlsbad, California, 

USA) according to the manufacturer’s instructions. DNA extracts were checked visually 

by gel electrophoresis and via nano drop (NanoDrop-2000, Thermo Scientific, Waltham, 

Massachusetts, USA) to approximate DNA concentration. We utilized a two-step 

polymerase chain reaction (PCR) approach to amplify the ITS2 region of the nuclear 

internal transcribed spacer and then add indexes and Illumina sequencing adaptors (Craig 

et al. 2008).  The first-step reactions contained 5ul 5x HFbuffer (Thermo Scientific, 

Waltham, Massachusetts, USA), 0.5ul 10mM dNTPs (New England Biolabs, Ipswich, 

Massachusetts, USA), 0.125ul of each 50mM primer, 0.25ul Phusion DNA polymerase 

(Thermo Scientific, Waltham, Massachusetts, USA), 14ul sterile PCR water, and 5ul of 

1:10 diluted template DNA in a total volume of 25ul. The core primers (in bold) were 

ITS4_Fun 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCCTCCGCTTATTGATA

TGCTTAART) and 5.8S_Fun 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACTTTYRRCAAYGGAT

CWCT) with universal Nextera adaptor sequences (underlined) (Taylor et al. 2016-under 

review). The following thermocycling protocol was used in the first-step PCR: 30 

seconds at 98°C, followed by 24 cycles of 10 seconds 98°C, 10 seconds 58°C, and 4 

minutes 60°C, lastly 1 round of 20 minutes at 60°C and incubation at 4°C. All PCR 
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reactions were carried out using a C1000 touch thermal cycler (Bio-Rad, Hercules, 

California, USA) or a SimpliAmp thermal cycler (Applied Biosystems, Foster City, 

California, USA). Amplified fragments were visualized on a 1.5% agarose gel. Positive 

PCR controls, a mock community control (described in detail in Taylor et al. 2016, 

under-review), and negative controls were included in all PCR runs (Lindahl et al. 2013; 

Nguyen et al. 2015). Positive controls were discarded after confirming successful PCR 

amplification. We used the lowest possible number of cycles that still amplified a visible 

fragment to reduce PCR bias and potential chimera formation (Polz and Cavanaugh 1998; 

Sipos et al. 2007; Gibson et al. 2009; Lahr and Katz et al. 2009; Lindahl et al. 2013). For 

all samples that did not yield visible fragments, we increased the number of PCR cycles 

to 26 (i9m1, i9m2, d2m1, d2m2, d6m1, d6m2, d10o2, c4m1, and c4m2). D10o2 required 

a 1:100 dilution of template DNA at 26 cycles to yield a visible amplified fragment.  

Each sample was amplified in four PCR replicates, which were pooled following 

the PCR. All negative controls were also pooled. By pooling multiple PCR replicates we 

sought to average across stochastic events in any one reaction that might have contributed 

to bias (Lindahl et al. 2013, but see also Smith and Peay, 2014). All pooled samples were 

run through the Zymo Clean and Concentrator-5 kit according to the manufacturer 

instructions (Zymo Research Corporation, Irvine, California, USA). Samples were eluted 

in 50-ul TE elution buffer. After cleaning and pooling all samples were arrayed on a 

1.5% agarose gel for approximate quantification of DNA. Dilutions were calculated 

based on visual analysis in Microsoft Paint (Microsoft Corporation, Redmond, 

Washington, USA) to dilute all samples to the approximate strength of the weakest 

samples. Each sample was replicated for sequencing by placing 22-ul of each normalized 



 18 

sample into two separate sterile 1.5-ml micro centrifuge tubes (USA Scientific Inc., 

Ocala, Florida, USA). Hence each sample had two replicates sent for sequencing e.g. 

i1o1a and i1o1b, each of which utilized a different pair of forward and reverse indexes 

(see below). 

All samples were sent to the Genome Sequencing and Analysis Facility (The 

University of Texas, Austin, Texas, USA) for Illumina MiSeq paired-end sequencing. 

The second round PCR at UT was prepared in 96 well plates with each reaction 

containing 15 uL NEBNext 2x master mix, 5 uL Hyb_Barcoded Primers, and 10 uL 

amplified DNA for a total of 30 uL per PCR reaction. The second round thermal cycler 

conditions were as follows: 98 °C for 30 seconds 1x, 98 °C for 30 seconds followed by 

62 °C for 30 seconds, followed by 72 °C for 30 seconds with these 3 steps repeated 7 

times, then 72 °C for 5 minutes, and lastly incubate at 4 °C.  Following thermal cycling, 

samples were cleaned using AMPure bead XP purification. qPCR was used to determine 

sample concentrations. Products were pooled following qPCR and pooled samples were 

then run on a BioAnalyzer DNA chip to check for successful second round amplification 

and purity. The pooled samples were then run for 500 cycles on an Illumina MiSeq 

instrument using an Illumina kit (MS-102-3003-MiSeq® Reagent Kit v3). 

Bioinformatics 

Most bioinformatics processing was performed using QIIME version 1.9.1-

20150604 (Caporaso et al. 2010). For each sample, the sequencing center provided a 

forward and reverse read in fastq format along with corresponding index files. Overall 

sequence quality was initially examined with FASTQC (Andrews 2010). Our mock 

community contained eight species of fungi (one chytrid, one zygomycete, one 
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ascomycete and five basidiomycetes) combined in known proportional abundances 

spanning three orders of magnitude (Taylor et al. 2016 -in review). All QIIME settings 

were established using our mock community dataset with the goal of clustering to obtain 

one OTU corresponding to each community member in approximately the correct 

proportions (Nguyen et al. 2015).  

 We first performed the split_libraries_fastq.py command using lax quality settings 

(q=1, p=.01, r=5, n=5) to filter out sequences with barcode mismatches without greatly 

reducing sequence length through quality trimming. The convert_fastaqual_fastq.py 

script was used to convert split_libraries_fastq.py output into fastq format prior to joining 

paired-end reads. The resulting sequences were then run through the join_paired_ends.py 

script (j=40 p=10); the forward un-joined reads and joined reads were then combined for 

further processing. We did not want to bias against taxa that have longer ITS2 regions 

and would therefore be less likely to successfully join at this step, so we elected to use 

both joined and forward reads (Nguyen et al. 2015). The forward read is from the ITS4 

end of the amplicon. Forward and reverse primers were removed using the 

extract_barcodes.py script. The resulting sequences were run through split_librarties.py 

again using strict quality filtering parameters tuned to the mock community (q=19, p=.23, 

n=0).  

Sequences were clustered using the pick_open_reference.py command. Pre-

filtering of sequences was enabled to remove the vast majority of non-fungal sequences 

by requiring a match to a sequence in the UNITE 97 database version 7 updated 1/8/2015 

(Kõljalg et al. 2005) at the 50% identity threshold. USEARCH 6.1, a complete-linkage 

clustering algorithm, (Edgar 2010) with s=94 was used as the clustering algorithm. The 
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UNITE 97 database was also used as the reference database for clustering. Representative 

sequences were assigned based on the most abundant read present in an OTU. The 

assign_taxonomy.py script with the blast method was used to match the representative 

sequences for each OTU to the UNITE 97 database. OTUs that did not return a UNITE 

97 blast hit, with more than 100 sequences were manually blasted against the GenBank 

database. For OTUs returning a GenBank blast hit, taxonomy was assigned according to 

GenBank with a preference against uncultured submissions. This manual assignment was 

only used for the Funguild analysis described below. The final OTU table was created 

with the make_otu_table.py script. Biom_convert was used to change the format of the 

OTU table from standard QIIME .biom format to .csv format for further analysis.  

Statistical Methods 

Species richness was compared among treatments and depths using EstimateS 

software (Colwell 2006). Estimate S was also used to generate OTU accumulation curves 

for each sample to provide an estimate of how thoroughly the fungal community was 

sampled in each treatment by depth combination.  

All further statistical analyses were performed in PRIMER 6 unless otherwise noted 

(Anderson et al. 2008). Data were standardized by sample totals (McCune et al. 2002; 

Nguyen et al. 2015). A Bray-Curtis similarity matrix was calculated to compare 

community composition across samples (Bray and Curtis 1957; McCune et al. 2002). 

Non-metric multi-dimensional scaling (ordination) was used to visualize the similarity of 

different samples using a kruskal fit scheme of 1, a minimum stress of 0.01, and 9,999 

restarts (Carroll and Chang 1970; McCune et al. 2002). Various factors, sample 

groupings, and covariate vectors were overlaid on these plots with specific 



 21 

methods/parameters described below. Grouping by similarity was performed using the 

group average cluster mode with groups overlaid at various similarity levels. The 

PERMDISP function in PRIMER was used to test for heterogeneity in groups defined by 

a given factor i.e. depth or treatment. Distances were tested relative to centroid mean and 

p-values were calculated from 9,999 permutations. 

A nested, hierarchical permutational MANOVA, or perMANOVA, was used to test 

for differences among samples in relation to predefined factors (Anderson et al. 2005). 

PerMANOVA is a statistical test for the simultaneous response of one or more variables 

to one or more factors in an ANOVA experimental design on the basis of a chosen 

resemblance method (Anderson et al. 2005). Factors included depth (fixed, n=9), 

treatment (fixed, n=3), plot (random-nested in treatment, n=1), and aspect (fixed, n=3). 

We used the Bray-Curtis similarity matrix as our resemblance method with a type III 

(partial) sum of squares, permutation of residuals under a reduced model, and 9,999 

permutations.  

Continuous covariates were normalized and a Euclidian distance similarity matrix 

was calculated between samples (McCune et al. 2002). The covariate similarity matrix 

was compared to the OTU x site similarity matrix using a Mantel test under the BEST 

function in Primer with the spearman rank correlation method (Smouse et al 1986). 

Covariates were also analyzed with Pearson correlation vectors overlaid on ordination 

plots (Lawrence and Lin 1989). Further analysis of environmental covariates was not 

performed due to low replication inherent in the original experimental design and issues 

of co-linearity associated with many of our environmental variables (Belsley et al. 2005).  
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We used a SIMPER analysis in Primer to examine the contribution of individual 

species (OTUs) to average similarity among treatment groups. We used a one-way design 

with groups defined by treatment factor and a cut off for low contributions of 90%.  

Phylum level taxonomy was assigned in QIIME and analyzed and plotted by 

treatment and depth combination. Guild assignments were made in Funguild (Nguyen et 

al. 2015). Guilds were combined as follows: other = ericoid mycorrhizal + lichenized + 

arbuscular mycorrhizal + endophyte; ectomycorrhizal = ectomycorrhizal; pathogen = 

plant pathogen + animal pathogen + mycoparasite; saprotroph = soil saprotroph + litter 

saprotroph + undefined saprotroph + wood saprotroph. These combinations were made to 

reflect our key questions about fungal community change resulting from drought that 

might result in feedbacks relating to piñon pine regeneration.  

Differences in proportions of EMF, saprotrophs and pathogens were calculated between 

pairs of blocked controls and drought treatments within a soil depth. In order to compare 

guild changes between treatments we subtracted percent of a given guild in the drought 

treatment from percent of a given guild in the control treatment within a given 

block/aspect. These differences were tested against a null hypothesis of no difference 

between pairs using a Wilcoxon signed-rank test with a 95% confidence interval, p<0.05 

(Wilcoxon and Wilcox 1964). All graphs and figures were created in PRIMER, Microsoft 

Excel, or R (R Core Team 2014).
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Chapter 3 

Results 

Quality Control 

Raw read quality, as visualized with FastQC, was generally best between base 25 

and 200. Number of raw reads per sequencing replicate ranged from 205 reads to 27,308 

reads. We obtained a total of 889,032 raw reads for all non-control samples combined. 

The quality filtering parameters above resulted in removal of 25% of the raw reads. The 

median per sample number of reads after filtering was 9,509 with a minimum of 26 reads 

and a maximum of 20,653 reads.   

Negative control A and negative control B, had 1,087 raw reads and 788 raw 

reads respectively. After quality filtering, negative control A had 11 total reads and 

negative control B had 6 reads. These reads fell into 5 and 2 OTUs, respectively. Due to 

the small number of reads and OTUs in our negative controls, indicating very little 

contamination, we felt it was unnecessary to correct species abundances in our samples 

based on the negative controls (see Nguyen et al. 2015). 

Mock Community Analysis  

  The “mock b” sample had 7,979 reads prior to bioinformatics processing. After 

barcode filtering, paired-end joining, and quality truncation 82% of reads were retained. 

The final parameters resulted in recovery of 7 of the 8 mock community members as 

distinct OTUs. We did not recover an OTU corresponding to the least abundant fungal 

genus of the mock community (Mortierella) under any parameters. Only one sequence 

from this taxon occurred in the original raw reads, but was removed during quality 

filtering. Except for the least abundant taxon, our final parameters reflected the known 
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community in both composition and relative abundance. A total of 14 fungal OTUs were 

recovered from the mock b community dataset, with 7 of these OTUs being the expected 

OTUs in correct proportional abundance. Of the “extra” OTUs, two returned blast hits 

similar to two of the expected OTUs, but having only 4 reads combined. Repeated 

attempts to correct this over-splitting by changing parameters led to a loss of expected 

OTUs, so we proceeded with the parameters above. The remaining fungal OTUs were 

likely contaminants, but occurred at such low proportional abundances that they were not 

considered further.  

The “mock a” dataset, a sequencing replicate of mock b, had just 586 reads before 

quality filtering. Using the parameters tuned to the mock b dataset, the number of reads 

was reduced to 194 through read joining and quality trimming. We elected to not use this 

sample for parameter tuning, as this dataset was too small. However, using the 

parameters from mock b we recovered 6 of the 8 mock community members in correct 

proportions. Reads corresponding to the 2 missing known community members were not 

found in the mock a dataset. The two missing community members were the lowest and 

second lowest abundance community members. 

Clustering and Taxonomy 

After bioinformatics processing in QIIME using a 94% species identity, we found 

5,147 OTUs across all samples. The complete-linkage clustering method of the 

USEARCH algorithm we used generally creates more OTUs than the more widely used 

single-linkage method at a given percent identity (Lindahl et al 2013), supporting our 

decision to use a lower absolute species identity than is commonly applied in studies 

utilizing single-linkage methods. Sequences occurring only once across all samples were 
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represented by 1,525 OTUs (29.6% global singletons). Global singletons were removed 

from further analysis. Non-singleton OTUs that did not match a sequence in the UNITE 

97 database or blast to a sequence in the database accounted for 19% sequences.  OTUs 

which did not return a UNITE 97 match or blast hit in QIIME accounted for 8.59% of 

clustered OTUs. The median number of reads per unassigned OTU was 8. The maximum 

number of reads for an unassigned OTU was 4,560. 82 unassigned OTUs had 100 or 

more reads.  

Preliminary 2d and 3d ordination showed no observable effect of sequencing 

replicate on the fungal community observed. We therefore combined sequencing 

replicates for all analyses (minimum number of reads per sequencing replicate was 26 

with a maximum number of reads of 20,653). A major benefit of this approach was that 

sequencing depth per sample was more even and much higher with a minimum number 

of sequences per technical replicate of 9,096 and a maximum of 130,808 sequences per 

sample. Technical replicates also showed considerable similarity in the location of 

samples within ordination space; we elected to not combine these replicates as they were 

derived from discrete subsamples of soil. 

 Ascomycota was the dominant phylum in all treatments and soil horizons except 

for irrigated deep soils where Basidiomycota was dominant with 47.27% of sequences 

(Figure 1). Ascomycota was dominant in the drought surface horizon soils with 74.54% 

of reads compared to 10.93% of reads for Basidiomycota. Basidiomycota reads generally 

accounted for a larger percentage of sequences in deep soils than in surface soils. The 

“other” phyla category accounted for 4% of sequences across both soil horizons, this 
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category includes sequences assigned to Glomeromycota, Zygomycota, Chytridiomycota, 

and Rozellomycota.  

 
 
Figure 1: Phylum level taxonomic composition of pooled treatment and soil horizon combinations by 
percent of reads assigned to a given fungal phylum according to UNITE 97 blast taxonomy assignment in 
QIIME. Ascomycota were the dominant phylum across treatment and soil horizon except in irrigated deep 
soils where Basidiomycota were dominant (47.27%). Note that Basidiomycota percent abundance generally 
declined across the experimental moisture gradient and that Basidiomycota are generally higher in percent 
abundance in deep soils relative to surface soils. “Other” phyla included sequences assigned to: 
Glomeromycota, Zygomycota, Chytridiomycota, and Rozellomycota. Unidentified sequences were 
sequences that did not return a blast hit, which accounted for 8.6% of post-QC, non-singleton reads. 
 
OTU Accumulation Curves 

 

The surface drought treatment had an average reduction in richness of 36% 

relative to the control treatment in that soil layer and an average reduction of 19% 

relative to the irrigated treatment (Figure 2). Richness of the deep drought treatment was 

reduced an average of 18% relative to the deep soil control treatment and an average of 
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14% relative to the deep soil irrigated treatment. Richness is 50% lower in deep soils 

compared to surface soils, averaged across treatments. The surface soil control 

community had the highest level of richness, with an average richness 21% greater than 

the irrigated treatment. In deep soils, the control and irrigated communities had smaller 

differences in richness, with an average 5% reduction in richness in irrigated plots. The 

deep soil OUT accumulation curves approach saturation, indicating that our sampling of 

the fungal community in this horizon was fairly thorough. The surface soil curves 

indicate a less thorough sampling of the community, with a positive slope at the 

maximum sequencing depth.  

Precipitation Manipulation Effects 

Drought treatment samples generally group together, while controls and irrigated 

samples cluster away from drought plots along the X-axis of ordinations at both soil 

depths (Figure 3 and Figure 4). The drought plots in the deep soil horizon have an even 

stronger separation relative to surface soils along the X-axis from other treatments 

(Figure 3). The block effect is evident along the Y-axis of the deep soil horizon 

ordination, where the flat block/aspect plots d2, c4, and i1 are all aligned towards the top 

of the plot away from the other blocks (Figure 4). In addition to ordination, the full 

perMANOVA model including depth 

 

 
 
 



 28 

 
 
Figure 2: OTU accumulation curves by treatment and soil horizon. Vertical lines indicate 95% confidence 
intervals. Fungal richness is greater in surface soils than in deep soils. Drought soils have reduced fungal 
richness relative to control/irrigation treatments across depths.  
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Figure 3: Non-metric multi-dimensional scaling (ordination) with depth and treatment overlaid. The 
ordination is based on a Bray-Curtis similarity matrix with samples standardized by total. Spheres represent 
group average clusters using a 15% similarity threshold. Highly similar points with the same label are 
technical replicates. Sample labels are as follows: d=drought, i=irrigated, c=control. Note the strength of 
the depth effect on the structure of the fungal community as revealed by the two distinct clusters that 
separate along the x-axis. The y-axis appears is related to treatment wherein drought soils cluster away 
from other treatments near the bottom of the plot. Surface soils were much more similar to each other 
regardless of treatment while deeper soils were more heterogeneous in composition.  
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Figure 4: 
 

 
Figure 4: NMDS (ordination) with separate plots for each soil depth. The ordinations are based on Bray-
Curtis similarity matrices with OTU abundances standardized by sample totals to account for variation in 
sequencing depth. Symbols represent treatment groups with letter labels corresponding to aspect (f=flat, 
n=north, s=south). Highly similar points with the same label are technical replicates. Pearson correlation 
vectors with correlation circle are overlaid for major environmental variables. Length and direction of line 
indicate strength and direction of correlation. Surface Soil Horizon: The effect of the drought treatment on 
the fungal community is evident from the independent drought grouping. This group also correlates 
strongly with increased soil temperature, decreased soil water content, increased K, and increased P. 
Control and irrigation treatment plots do not cluster by treatment, but sample locations in species space 
appear correlated with several environmental variables (pH, N, C/N, and organic matter). Visual 
differences in the dispersion patterns of the drought treatment and others were corroborated by PERMDISP 
test (P=0.0006, F=13.376, df1:2, df2: 15). Deep Soil Horizon: A strong drought treatment effect on the 
fungal community is reflected along the x-axis and in the grouping of all drought plots together. The 
drought treatment also correlates strongly with increased soil T, decreased soil water, and increased 
potassium. The statistically significant aspect effect in this horizon (P=0.0004, F=2.6781) is reflected along 
the y-axis where the flat block plots aggregate towards the top of the graph. These flat plots are also 
correlated with increased soil organic matter, and greater C/N. PERMDISP dispersion tests did not indicate 
a significant difference between treatments (P=0.3181, F=1.1139, df1=2, df2= 15) 
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indicates a significant treatment effect (P=0.0001, F=5.734). In our reduced model, 

examining the surface soil horizon community only, we found a significant treatment 

effect (P=0.001, F=14.28). We did not find a significant block/aspect effect in the surface 

horizon (P=0.0849, F=1.6752). Our perMANOVA model for the deep soil indicated a 

significant treatment effect (p=0.001, F=11.832). This model also indicated a significant 

effect of block/aspect on fungal community composition (P=0.001, F=10.631).  

 Drought plots were grouped much more closely together in sample space than the 

controls or irrigated treatments, i.e. there was less dispersion in drought treatments 

(P=0.0006, F=13.376, df1: 2, df2: 15). In pairwise comparisons we found significant 

differences in patterns of dispersion between drought and control plots (P=0.003, 

t=4.069) and drought and irrigated plots (P=0.0024, t=3.9687). No significant difference 

was found in the patterns of dispersion between control and irrigated plots (P=0.378, 

t=0.63558). In the deep soil horizon community, there was also no significant difference 

in dispersion between treatment groups (P=0.3181, F=1.1139, df1: 2, df2: 15). 

Depth Effects 

In tandem with a strong depth effect on richness (Figure 2), perMANOVA and the 

ordination of all samples and depths (Figure 3) also indicated a highly significant depth 

effect on the composition of the fungal community (P=0.0001, F=25.363). In fact, depth 

appeared to have a stronger effect on the fungal community than treatment (Figure 3). 

Due to the strength of the depth effect, with little overlap between shallow and deep soil 

taxa, we elected to run separate analyses for each soil depth. The visible differences in 

dispersion (Figure 3) indicate that the inter-sample distances in community space are 

greater in deep soils. PERMDISP tests in PRIMER supported the contention that 
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dispersion patterns were significantly different between soil depths (P=0.001, F=39.59, 

df1: 1, df2: 34). 

Indicator species 

Between soil horizons, higher species dissimilarity values are generally associated 

with deep soil communities than surface soil communities, corroborating the dispersion 

patterns reported above. The largest dissimilarity in the surface horizon community is 

between drought and irrigated treatments (dissimilarity=65.14). Within the surface soil 

horizon, control and irrigated treatments are the most similar in species composition 

(dissimilarity= 55.09). In the deep soil horizon, the largest dissimilarity is again between 

drought and irrigated treatments (dissimilarity= 81.06). In the deep soil horizon the 

smallest overall dissimilarity was between control and irrigated treatments 

(dissimilarity=70.65).  More ECM species contributed to overall dissimilarity in the deep 

horizon than in the surface horizon (Table 1). Average abundance was generally higher 

for dominant species in the surface community than dominant species in the deep soil 

community. In the surface horizon, Geopora spp. and Pleosporales spp. are major 

contributors to dissimilarity and are also highly abundant taxa in this soil community. In 

the deep soil horizon Geopora spp. and Inocybe spp. played a major role in structuring 

dissimilarity between treatments and also tended to be highly abundant in this horizon.  
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Table 1: Fungal species percent abundance between treatments in the surface soil and deep soil horizons. 
Only species with percent contributions to average dissimilarity >1.5% are shown. Starred taxa are EMF. 
Surface soil: Dissimilarity values were generally lower for a given pairwise comparison in the surface 
horizon than in the deep soil horizon, indicating a more homogeneous surface community. Changes in the 
EMF taxa Geopora sp. and Tuber sp. and the non-MF Pleosporales sp. drove the differences between 
treatments in surface soil. Deep Soil:  In general, dissimilarity values were higher for the deep soil horizon 
comparisons than the same pairwise treatment comparison for a surface soil horizon, indicating a more 
patchy deep soil community. Changes in the average abundance of ECM species dominate the major 
contributions to dissimilarity in this soil horizon. Changes in Geopora sp., Inocybe sp., and other ECM taxa 
abundance drive major differences in community composition in this soil horizon. 

 

 
Table 1: Indicator Species: Species % Abundance By Treatment and Depth 
Shallow Soils (5cm) 

    

 
Species 

Irrigated % 
Abundance 

Control % 
Abundance 

Drought % 
Abundance 

 
Chaetothyriales sp. 4.67 4.89 4.75 

 
Clavulina sp.* 1.85 2.78 3.66 

 
Curvularia sp. 1.52 0.82 1.07 

 
Geopora sp1.* 12.43 10.45 0.23 

 
Geopora sp2.* 6.25 2.29 0 

 
Knufia sp. 3.06 4.33 3.21 

 
Pleosporales sp. 2.31 3.24 17.2 

 

Tuber rufum f. 
nitidum* 0.14 0.27 2.68 

Deep Soils (20cm) 
    

 
Clavulina sp. 1* 5.47 2.71 0.12 

 
Clavulina sp. 2* 3.44 2.01 0.05 

 

Eremiomyces 
echinulatis* 0.62 2.91 4.08 

 
Geopora sp. 1* 9.43 8.34 0.82 

 
Geopora sp. 2* 0.99 4.93 0.01 

 
Inocybe cf. rimosa* 3.58 6.28 0.96 

 

Inocybe niveivelata* 7.61 0.28 0 

 
Pleospora sp. 0.56 1.09 4.37 

 

Rhizopogon 
guzmanii* 3.9 1.37 0.05 

 
Russula cessans* 5.3 0.16 0 

 
Russula sp.* 0.65 3.44 0 

 

Tricholoma 
myomyces* 1.8 0.82 5.45 

 

Tuber rufum f. 
nitidum* 2.9 0.51 0 
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Guild Changes 

OTUs for which we were able to assign taxonomy in QIIME were run through the 

Funguild database for guild assignment. Of the OTUs run through Funguild, 49% 

returned hits to the Funguild database. The OTUs not assigned to a guild accounted for 

53% of all sequences with taxonomy assigned in QIIME. In surface soils, reads not 

assigned a guild accounted for 60.5 ± 0.6% of total reads assigned taxonomy, while deep 

soil reads lacking guild designation accounted for 44.0 ± 2.0% of reads assigned 

taxonomy. Overall there was no significant difference between any of the treatments in 

the percentage of reads not assigned a guild, but a 2 sample t-test indicated that surface 

soils had significantly more unassigned guild reads than deep soils (p=0.0078, n=9). 

Considering the relative dominance of EMF in structuring the deep soil community 

(Table 1), the difference in proportions of assigned reads between surface and deep soils 

may be due to a bias of the Funguild database towards ectomycorrhizal taxa. Due to the 

significant percentage of reads not assigned a guild, we opted to not examine richness at 

the guild level.   

Sequences belonging to the “other” guild class accounted for an average of 3.7% 

of total reads across all treatments, while sequences belonging to the pathogen guild 

accounted for an average of 21% of assigned reads. In general, pathogen guild members 

were more abundant in surface horizon soils (26.6%) than in deep horizon soils (11.6%). 

The dominant guild in surface soil was the saprotroph guild. In the deep soil horizon, the 

dominant guild was generally the EMF fungi, except in drought soil, where saprotrophs 

were dominant (44.2%). However, none of these differences in guild relative abundance 
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were statistically significant (described below), likely due to high variance between 

treatments caused by the strong block effect.  

The Wilcoxon signed-rank test, however, demonstrated a significant change in 

guild percent abundance between drought and control plots paired by block/aspect. There 

were no significant differences between control and drought plots in the percent of fungi 

assigned to the pathogen or saptroph guilds (p=.1291, W=9; p=.9999, W=18, 

respectively). In contrast, all drought plots had a lower percent ECM than the paired 

control plot except for the deep flat drought plot (p=0.04934, W=30; Figure 5). The 

average shallow soil drought reduction in ECM was 6.7%, or 9.5% if we exclude the flat 

aspect. We believe it is justifiable to exclude the flat aspect due to its status as a drought 

outlier with little piñon mortality and a net increase in proportion EMF. The average deep 

soil drought reduction in EMF was 23.3%, or 49% with exclusion of the flat aspect pair. 

Environmental Covariates 

In both soil horizons, increased soil temperature and decreased volumetric soil 

water content were strongly correlated with drought treatment community composition 

(Figure 4). In the surface horizon, larger quantities of total potassium and total 

phosphorous were correlated with drought communities. In the deep soil horizon, only 

increased total potassium was correlated with the drought communities. The surface soil 

horizon irrigation and control treatment fungal communities exhibited correlations with 

higher total nitrogen, pH, C/N, percent organic matter, soil water content, and lower soil 

temperature. The deep soil horizon irrigation and control treatment fungal communities 

were weakly correlated with higher total nitrogen and higher C/N. The block effect of the 
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flat plot community composition in the deep soil horizon was strongly correlated with 

higher percent soil organic matter. 

Figure 5: 

 
 
Figure 5: The percent change (paired control minus treatment) in proportion of the fungal community 
composed of EMF by block/aspect and soil horizon. Plots on the sloped blocks exhibited a large decrease 
in EMF relative to controls, while the plots in the flat block exhibited little change at the surface and an 
increase in EMF in the deep horizon. Overall, shallow soils revealed less dramatic swings in EMF relative 
abundance, while deep soils displayed the largest changes in percent EMF. Note that the flat drought plot 
experienced little piñon mortality, while sloped plots suffered nearly 100% mortality.
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Chapter 4 

Discussion 

With climate change predicted to increase the proportion of land under moisture 

stress globally, addressing the effects of drought on fungal communities is an urgent 

priority. Substantial prior work in the PJ system has addressed the relationships between 

drought and fungal community composition through the use of observational studies and 

greenhouse bioassays (Gehring and Whitham 1994 AJB; Gehring and Whitham 1994 

Trends; Gehring et al. 1998; Swaty et al. 1998; Swaty et al. 2004; Haskins and Gehring 

2005; Mueller et al. 2005; Gehring et al. 2014). Our study contributes to this growing 

body of knowledge through our use of next-generation sequencing, which allowed us to 

profile the total soil fungal community of piñon pine, including both mycorrhizal and 

non-mycorrhizal taxa and both resting structures and growing mycelia. In addition, by 

utilizing an experimentally imposed moisture-stress gradient and examining soil depth, 

we were able to minimize confounding environmental variation and definitively pinpoint 

drivers of community change. Our study also expands the geographic range of our 

knowledge on the microbial community of piñon pine, as most prior work has been 

conducted in northern Arizona. 

Hypothesis 1: Drought reduces total fungal richness 

Drought treatment reduced fungal richness regardless of soil depth (Figure 2). 

This finding is consistent with our predictions that the pressures of plant mortality 

coupled with more stressful environmental conditions would reduce overall niche space 

in the system for fungi. The lower richness in the irrigated plots relative to control plots is 

notable.There are numerous potential explanations for this observation. First, the 
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decreased richness may also be a result of a fungal “crash” resulting from the cessation of 

irrigation two years prior, but this seems unlikely in light of the next point. Second, the 

increase in basidiomycetes found in irrigated plots (Figure 1), particularly in deep soils, 

suggests that the irrigated piñon trees allocated more energy/carbon to their fungal 

mutualists, as basidiomycetes tend to be more costly symbionts. We can infer that this 

increase is due to primarily EMF taxa based on our indicator species analysis showing a 

proliferation of basidiomycete EMF taxa in irrigated plots. Many of these basidiomycete 

mutualists may be better competitors that excluded diverse ascomycetes under these 

conditions (Bruns 1995). Third, the regional drought that occurred over most of the 

experiment likely offset most benefits of the irrigation treatment, so the differences may 

be stochastic. In support of this reasoning, irrigated plots did not exhibit any major 

“relief” from drought stress reflected in piñon mortality (9% in controls 10% in irrigated 

plots). Lastly, the irrigated plots began with a higher piñon density, which might explain 

some of the dominance of basidiomycetes relative to controls.  

Hypothesis 2: Drought alters the overall composition of the soil fungal community 

As predicted, the experimental drought treatment, which reduced ambient 

precipitation, increased soil temperature, and led to high piñon mortality, had a 

significant effect on the fungal community of piñon-juniper soils across soil depth. A 

strong drought effect was evident in the full model including both soil depths as well as 

in the reduced models for individual soil depths. The fungal communities of drought 

treatment plots clustered independently from other treatments in the surface soil and were 

also distinct in the deep soil. Visually, the surface soil drought treatment communities 

were very similar in “community space” indicating that the drought treatment applied an 
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intense, homogenizing filter to this community regardless of aspect. Dispersion testing 

also indicated that the drought treatment drove these communities toward a more 

homogenous composition in the surface soils. The lack of a strong drought-driven 

dispersion pattern in the deep soil community is consistent with a strong depth effect and 

concomitant distinctiveness of each plot at depth. Depth likely buffers deeper microbial 

communities from homogenizing factors such as wind and rainfall.  

Hypothesis 3: Deep soil harbors a more patchy and altered fungal community 

composition relative to surface soils  

 Depth had a strong effect on the fungal community found in piñon-juniper soils, 

as illustrated by differences in species accumulation curves (richness), NMS ordination, 

perMANOVA testing, and dispersion patterns. The deep horizon samples had lower 

richness than the surface samples. The ~38% reduction in richness of drought treatments 

relative to ambient controls in the surface soil horizon was greater than the ~20% 

reduction in fungal species richness observed in the deep soil horizon. The greater 

richness reduction in surface soils is consistent with previous findings that deeper soils 

are more buffered from environmental changes (Brady and Weil 1996). The greater 

species turnover across plots in the deep horizon relative to the surface horizon (Figure 3) 

further indicates a strong depth effect on the fungal community of PJ soils. We speculate 

that this may be due to the lower probability of dispersal to deeper soil, leading to greater 

spatial patchiness of the community in deep soil (Ferrier and Alexander 1985; Grogan et 

al. 2000; Tedersoo et al. 2003). The richness effect, coupled with the differences in the 

dispersion patterns between soil horizon communities, indicates that depth structures the 

fungal community of PJ soils, as has been shown previously in other ECM systems 
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(Taylor and Bruns 1999; Dickie et al. 2002; Rosling et al. 2003; Izzo et al. 2005). 

However, our study is the first, to our knowledge, to directly address the effects of depth 

on the fungal community of an aridland forest system.  

 The contrasting effects of aspect also illustrate the significance of depth in 

structuring the fungal community. In the surface soils, there was no block/aspect effect. 

In the deep soil horizon, the flat block stands out from the other blocks. This effect is 

correlated with higher organic matter in the flat block soils, likely due to the deep 

sandy/loam in this block. North and south blocks had shallow soils that quickly 

transitioned to partially weathered bedrock, which likely explains the higher tree 

mortality on these plots (Plaut et al. 2012; Gaylord et al. 2013). Soil organic matter and 

soil texture have been previously established as strong drivers of fungal community 

composition in other systems (Saksena 1955; Harvey et al. 1987; Lauber et al. 2008; 

Tedersoo et al., 2012) and in piñon pine (Gehring et al. 1998). While we cannot tease 

apart the indirect effects of tree mortality from the direct effects of drought and soil 

structure, the combined effects of these three factors strongly influenced the fungal 

communities of these soils. 

Hypothesis 4: Drought alters the ECM community composition   

The reduction of percent EMF in drought treatments relative to paired controls 

indicated that the direct effects of drought compounded with extensive piñon mortality on 

most plots had a strong negative impact on the ECM community. While nearly all piñon 

trees suffered rapid mortality on the sloped plots, the flat drought plot experienced little 

piñon mortality (Pangle 2012). The surface soil of the flat drought plot had low ECM 

inoculum, but the deep soil of this plot was visually more similar in community 
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composition to its flat block control in NMS ordination than to the other drought plots. 

This was also the only drought plot that had a higher proportion of EMF relative to its 

paired flat block control. Though greater replication would be needed to validate this 

trend, this observation suggests that indirect effects of drought on EMF due to host tree 

mortality are more important than direct effects due to lowered soil moisture. The 

proliferation of ascomycete fungi and decline of basidiomycete fungi across depth under 

experimental drought mirrors the change we found in guild relative abundances. This 

trend of increasing ascomycete dominance under moisture stress has been previously 

reported in the piñon system (Gordon and Gehring 2011).  

While the percent abundance of Basidiomycota did not vary greatly between 

treatments in surface soils (Figure 1), the percent abundance of EMF does not decline as 

much in drought surface soils as in in deep soils (Figure 5). With the high piñon mortality 

on the drought plots it seems unlikely that these sources of EMF inoculum in the drought 

plots are live mycelia, particularly since piñon roots have been generally found to occupy 

deeper soils than co-occurring juniper (Haskins and Gehring 2005). While we did not 

expect active ECM root tips to proliferate in this soil horizon under drought conditions, 

some fungal spores have the ability to resist disturbance, including fire and soil 

compaction, for a prolonged period of time (Taylor and Bruns 1999; Peay et al. 2009). 

Considering our methods should detect (but do not distinguish between) both resting 

spores and actively growing mycelia, we speculate that this EMF inoculum represents 

resistant propagules that have increased in relative abundance due to an overall decline in  

absolute  fungal abundance.  
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 The changes seen in guild percent abundance, particularly that of EMF, also 

correlate well with general changes in percent abundance of EMF indicator species 

(Table 1). There was a steep decline in the percent abundance of Geopora sp. in the 

drought treatment soils. Geopora is a genus of ECM ascomycete fungi previously 

demonstrated to be highly drought tolerant and common associates of piñon pine (Gordon 

and Gehring 2011; Flores-Renteria et al. 2014 Gehring et al. 2014). The ECM 

ascomycete genus Tuber vanished completely in the deep drought soils, suggesting a loss 

of live mycelia. The functional implications of the sharp increase in order Pleosporales 

are less obvious, because the ecological roles of members of this order are diverse. In 

general, this order is not considered to include ECM species (Bates et al; 2010; Marquez 

et al. 2012). The slight increase in the genera Clavulina and Tuber along the moisture-

stress gradient in surface soils is notable in that many members of these genera are ECM, 

particularly considering the sharp decline of these genera in the deep soil community. 

The increase of these taxa in surface soils is in agreement with our theory that these 

sequences originated from resistant propagules that survived in the surface soil in the face 

of a decline in overall fungal abundance.  

Hypothesis 5: Deep soil EMF taxa show less declinethan surface soil taxa exposed to 

severe drought 

In general, we did not find evidence to support deep soil acting as a reservoir of 

ECM species, since many ECM species were absent in deep drought soils while present 

in control and irrigated soils. In the deep soil horizon, there was a gradient of declining 

basidiomycete relative abundance as moisture stress increased (Figure 1). This decline is 

consistent with previous research indicating that some ascomycetes do well in disturbed 
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areas (Danielson and Pruden 1989; Danielson 1991; Finlay 2006; Gordon and Gehring 

2011; Treseder et al. 2014). The decline in basidiomycete abundance mirrors the decline 

in EMF abundance along the same moisture-stress gradient shown in Figure 5. While 

these guild designations are broad and are by no means unambiguous, the general trend 

that EMF declined under the drought treatment across soil depth in our piñon pine study 

site is clear. 

Indicator species analyses also demonstrated a decline in members of the EMF 

guild in the deep soil horizons with increasing moisture stress. Much as in the surface 

soil, important EMF genera such as Geopora declined or were eliminated from the 

species pool by the drought treatment. Several other EMF genera also declined 

significantly along the deep soil moisture-stress gradient, including Inocybe, Russula, 

Rhizopogon, and Clavulina. Interestingly, all of these are basidiomycete genera. The 

decline of Clavulina in the deep soil horizon was in contrast to the increase of this genus 

in the surface horizon. The relative increases in the EMF genera Eremiomyces and 

Tricholoma are also notable in drought treated soils. Eremiomyces is a drought-tolerant 

ascomycete truffle found in harsh desert environments such as the Kalahari (Trappe et al. 

2008; Trappe et al. 2014). Hence it is not surprising that this genus would perform 

comparatively well under extreme drought and associated competitive release from less 

drought tolerant competitors. Tricholoma myomyces is a common ECM basidiomycete of 

many conifers (Shanks 1996; Kernaghan and Harper 2001) also found to expand its 

relative influence in our drought soils. The occurrence of Tricholoma myomyces (also 

identified as Tricholoma terreum) under extreme drought is not surprising considering its 

widespread identification on root tips in stressed cinder soils of the PJ woodland in 
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northern Arizona (Gehring et al. 1998; Haskins and Gehring 2004; Swaty et al. 2004; 

Sthultz et al. 2009; Gehring et al. 2014). However, as mentioned above, we have no 

means of discriminating live mycelia from resistant propagules, or of discerning whether 

this result reflects an absolute increase in these species or merely a relative increase; due 

to the high tree mortality, we suspect the latter.   

Hypothesis 6: Soil decomposers and soil pathogens increase with moisture-stress as 

plant-stress and plant mortality increase 

A general shift to saprotrophic and pathogenic fungal species and away from 

EMF was correlated with the decline of living piñon along the moisture-stress gradient, 

though this shift was not statistically significant. Other trophic guilds may have expanded 

to occupy the fundamentally different niche comprised of dead piñon roots and dead 

ectomycorrhizal hyphae. It is notable that the “other” guild classification, which included 

arbuscular mycorrhizal fungi associated with juniper and many other plant taxa of this 

system, did not appear to change significantly across the moisture gradient. The only 

guild that changed significantly was EMF, which declined under drought, aside from the 

flat block. The flat block underwent little piñon mortality. Pathogens and saprotrophs 

generally increased with drought, but the increase was not uniform in magnitude or 

direction, and thus was statistically non-significant. Again we note the confounding effect 

of the flat drought block, which exhibited opposite trends in guild changes due to a 

limited response to the drought treatment. This lack of significant differences in 

abundances of other guilds corresponds with indicator species analysis (Table 1), which 

showed most of the OTUs driving community change were EMF taxa. 

Experimental Limitations 
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To our knowledge this is the first study to explicitly test the effects of drought on 

the whole fungal community using a long-term drought experiment. Our approach 

allowed us to detect changes in both live and resting fungal tissues across depths. While 

the use of high-throughput sequencing for community level analysis has exploded in 

recent years, the availability of suitable bioinformatics tools and data analysis tools has 

lagged behind (Pop and Salzberg, 2008; Gonzalez and Knight 2012; Preheim et al. 2013; 

Nguyen et al. 2015). We recognize inherent limitations in several of our methodologies, 

as discussed in the following sections. 

The drought experiment was originally designed to address plant ecophysiology. 

Due to logistical constraints, the design did not include the high level of replication that 

would be desirable for addressing alterations in patchy, hyper-diverse soil fungal 

communities. As a result, our analyses were limited in statistical power and may have 

failed to detect some important drivers of fungal community composition. Nevertheless, 

replication was sufficient to reveal strong drought and soil horizon effects. 

Most previous work using paired-end sequencing has utilized only the joined 

reads (Bartram et al. 2011; Glassman et al. 2015; Oliver et al. 2015). However, in our 

case, the forward reads were generally of sufficiently high quality that leaving them out 

would exclude a large amount of putatively legitimate data (Nguyen et al. 2015). Using 

only joined reads may also exert a bias in favor of species with a shorter ITS2 region; 

hence using forward reads when they did not pair with the reverse read was an attempt to 

circumvent this bias (Nguyen et al. 2015). While many of our QIIME parameters were 

strict (i.e. q=19, r=0, n=0), some, such as p=.23 (minimum proportion of consecutive 

high quality base calls to include a read) and our clustering species identity of 94% are 
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relatively low. However, our use of a mock community to tune settings justified these 

parameters (Lindahl et al. 2013; Nguyen et al. 2015). Furthermore, different clustering 

methods produce different sizes of clusters and numbers of OTUs, even at the same 

identity threshold. USEARCH is a complete-linkage clustering method, which makes our 

94% threshold roughly comparable to a 97% threshold with a single-linkage method. 

The FUNGUILD database is a relatively new tool for assigning functional roles to 

taxonomic output of high-throughput sequence processing. This database is constrained 

by both the limited literature available on fungal guilds and the uncertainty of guild 

assignments at various taxonomic levels, but considering the large quantity of sequences 

generated with Illumina sequencing, we found it to be a helpful tool in assigning 

ecological meaning to observed patterns. The fact that only 49% of our OTUs (53% of 

reads total) submitted to FUNGUILD returned a guild assignment demonstrates current 

limitations of this tool, but the strong correlation between changes seen in guild structure 

and changes in phylum level taxonomy and indicator species analysis suggests that the 

guild assignment process was relatively non-biased, even if it was incomplete. In addition 

to missing taxa, the assignment of guilds to ‘known’ taxa is challenging. Incorrect 

taxonomy assignment may occur due to GenBank and/or UNITE errors. In addition, 

errors in the FUNGUILD database may also inflate this issue as taxa submitted might be 

incorrectly named and/or trophic status may be incorrectly assigned. Hence we 

acknowledge that the guild/functional role assignment is nebulous at best, but the general 

trend we see in our data aligns with other metrics of fungal community change in our 

system, particularly the indicator species analyses which definitively delineate impacts on 

EMF taxa.  
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Future directions 

Some systems, such as the North American boreal forest and Arctic tundra have 

been reasonably well profiled (Brockett et al. 2012; Taylor et al. 2014; Timling et al. 

2014), but most systems around the world have not (Hawkswork 2001; Tedersoo et al. 

2012). For example, little work has been carried out to profile fungal communities in 

locations with outsized ecological roles such as urban environments and areas of the 

developing world (Newbound et al. 2010). Profiling communities is only the first step 

toward understanding the broader implications of changes in fungal community structure. 

Time series and spatial series are also important to understanding how fungal 

communities diverge and turn over. While our long-running drought and infrastructure 

associated soil warming experiment was costly and difficult to set up, man-made global 

climate change provides an opportunity to test many of our findings across different 

systems and time scales over the next century. Hence, profiling an array of fungal 

communities across the globe now should be a major priority to establish a baseline 

before the major impacts of climate change are manifest. 

 The limitations we encountered in assigning functional/guild roles to fungal taxa 

indicated a need to improve and further develop guild assignment tools. The functional 

role of many fungi is poorly understood, and most functional classifications either come 

from direct observation, i.e. a fungal hypha penetrating a root cell, or from laboratory 

isolation and manipulation.  Both of these methods have certain biases and should be 

carried out in conjunction with enzymatic or metagenomics profiling of natural systems 

(Courty et al. 2005; Cravat et al. 2008). Only with a thorough understanding of a species 
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functional role(s) in a system can we understand the consequences of shifts in community 

structure.  

 In general, our findings further underscore the need to incorporate plant-fungal 

interactions into climate change predictions (see Kivlin et al 2013). In the piñon-juniper 

system specifically, we need to better understand the traits and roles of the fungi 

surviving prolonged drought, particularly the EMF. For arbuscular mycorrhizal fungi 

associated with juniper and most other plants in this system, there are a number plant 

partner options in the event of plant mortality; for EMF there is generally only piñon pine 

and the occasional scrub oak (Quercus spp). How long the EMF survive, and by what 

mechanisms, may be of great importance to understanding to ability of piñon to 

regenerate following drought. While some work has been done on piñon regeneration 

following drought-induced mortality (see Redmond and Barger 2013), explicit tests of the 

germination and survival of piñon seedlings following prolonged drought are also 

necessary in order to draw explicit conclusions about the ecological roles of fungi in 

piñon regeneration. 

Conclusions 

Our results indicate that drought can significantly alter fungal communities. Such 

alterations are likely to cause feedbacks to the aboveground plant community, in our 

system resulting in changes in the distribution of piñon pine, and globally altering the 

distribution of ECM plants. Such alterations are likely to lead to further shifts in other 

plant and fungal taxa filling former ECM niche space. The steep decline of EMF in deep 

soils (Figure 5) and surface soils experiencing prolonged experimental drought does not 
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bode well for the reestablishment of the obligately ECM piñon pine (Haskins and 

Gehring 2005). 

Our findings confirm previously demonstrated differences in ECM colonization 

of piñon roots at sites differing in soil texture, among other characteristics (Swaty et al. 

1998). We demonstrate the importance of soil characteristics in controlling whether piñon 

seedlings experience favorable conditions if they are able to disperse to a drought-

disturbed site. For example, if a seedling germinates on a site that has deep soil with high 

organic matter, it stands a better chance of reaching suitable EMF inoculum as its taproot 

elongates into the soil profile. On the other hand, it may be increasingly difficult for 

piñon to recolonize soils that are shallow, where surface inoculum has been dramatically 

reduced by drought. Hence we might expect that as climate change progresses, piñon 

habitat will become increasingly fragmented, only persisting in areas where soil 

characteristics provide deep refuge for suitable ECM inoculum. More generally our 

findings reinforce the importance of aboveground-belowground feedbacks when 

modeling change resulting from disturbance factors. 
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