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ABSTRACT 

 
Patterns of organismal diversity and evolution are often difficult to interpret with 

a high level of confidence. The number of mechanisms and processes that contribute to 

shaping patterns of diversity is extensive and is reflected in the many methods 

researchers have used to infer causation. Taxonomic groups that are well-studied can 

offer more precise interpretation of pattern and process due to the considerable amount of 

research addressing ecology, natural history, and behavior of the organisms. 

In this dissertation, I explore patterns of phylogenetic and phenotypic variation in 

Anolis lizards (anoles) by testing hypotheses that could have led to the observed 

variation. Anoles are prime test subjects to address my questions due to extensive 

background research on their ecology and evolution. I tested hypotheses at multiple 

scales. In my first chapter, I studied evolutionary, ecological, and geographic patterns in a 

closely related species complex, the silky anoles (A. sericeus group). For my second 

chapter, I examined broad patterns of sexual trait variation among distantly related anole 

species. Finally, in my third chapter I test the phylogenetic utility of a restriction-site 

associated DNA (RAD) molecular marker set on a selected group of anoles. Though 

anoles are well-studied relative to most taxonomic groups, my work reveals that there is 
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still a lot to learn about evolutionary patterns in Anolis, particularly in less studied 

taxonomic groups in mainland North and Central America. 
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INTRODUCTION 
 

 Determining patterns in the natural world and inferring underlying processes is an 

important but challenging part of understanding evolution. Anolis lizards (anoles) have 

been the focus of a disproportionate amount of evolutionary research (Losos 2009), 

though the bulk of that research has been on island species. However, mainland anoles 

offer similar opportunities for answering questions relating to the origin and maintenance 

of diversity and are vastly understudied in comparison to their island relatives (Poe et al. 

2017). This dissertation examines patterns of biological diversity at multiple levels; first 

of phylogeographic relationships of a species complex that occurs broadly throughout 

Mexico and Central America, then at sexual trait variation among the species present in 

Mexico, and finally at the evolutionary history of anoles in general. In an attempt to 

address these issues, I accumulated large morphological and molecular data sets from 

mainland anoles that I hope will contribute significantly to the growing body of 

knowledge of this under-studied system. 

 In Chapter 1, my coauthors and I set out to understand phylogeographic patterns 

in the silky anoles (Anolis sericeus complex). Silky anoles have long been a difficult 

system taxonomically (Stuart 1955; Lee 1980; Köhler & Vesely 2010; Lara-Tufiño et al. 

2016) that belied significant potential for the evolutionary biologist. Silky anoles occur 

continuously, or nearly so, in all lowland habitats from northern Costa Rica to northern 

Mexico. A handful of described forms have been synonymized (Lee 1980, Köhler & 

Vesely 2010), as relatedness of populations of these lizards was confounded by 

morphological conservatism overall while exhibiting some signs of local adaptation in 

certain environments (Lee 1980). Their distribution allows for rigorous testing of several 
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phylogeographic hypotheses, which was the primary focus of the chapter. I generated a 

large restriction-site associated DNA (RAD) marker set for the sampled specimens to 

infer phylogeographic relationships within the lineage. I found two deep divergences that, 

upon further investigation, were likely the result of past geographic isolation. I also used 

a coalescent modeling approach to address the demographic context of divergence, which 

suggested recent gene flow has occurred between populations of deeply divergent 

lineages that are parapatrically distributed. Two such lineages were found to have 

diverged in environmental niche metrics, which may be contributing to the maintenance 

of each lineage as independent evolutionary lineages. 

 In Chapter 2, I set out to test a longstanding hypothesis for the evolution of the 

male dewlap, a sexual signaling organ, in anoles (Fitch & Hillis 1984). In the original 

study, the authors gathered a large data set of male dewlap size composed entirely of 

mainland anoles. They found a significant statistical association between increased 

dewlap size and seasonality of the environment, which they related to sexual selection. 

They hypothesized that, in accordance with their results, anole species that lived in 

environments that constrained the breeding season would have larger dewlaps due to 

enhanced sexual selection on male signaling (Fitch & Hillis 1984). Two potentially 

damning problems were present in their data and analyses, however: they did not account 

for shared evolutionary history and their non-random sampling was biased towards 

species with large dewlaps in seasonal areas. I re-assessed the Fitch-Hillis Hypothesis 

(FHH) at two scales with entirely new data sets that I and collaborators collected 

throughout Mexico. With more complete sampling and accounting for phylogenetic 

relatedness of species, we found no support for the FHH. Our results are consistent with 
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other studies that have shown that macro-analyses investigating hypotheses generating 

dewlap diversity rarely find support (Losos & Chu 1998; Nicholson et al. 2007; Ingram et 

al. 2017). It is likely that the many factors playing a role in dewlap evolution confound 

the ability to find strong support for any one hypothesis (Losos & Chu 1998). 

 Chapter 3 aims to test the phylogenetic utility of a fairly new Next Generation 

DNA Sequencing marker type, restriction-site associated DNA (RAD) libraries, for 

resolving the evolutionary history of Anolis lizards. Thus far, phylogenetics of Anolis has 

depended heavily on signal in mtDNA sequences. Next Generation Sequencing methods 

that generate hundreds (or thousands) of loci for resolving phylogenetic problems are 

widely being used for a variety of taxonomic groups (McCormack et al. 2013) but had 

not yet been tested on a broad group of anoles. We selected species representing 

important anole lineages and built RAD libraries for sequencing. The resulting data set 

consisted of 396 loci that were utilized in a Bayesian framework to infer phylogenetic 

relationships of anoles. The consensus trees from analyses of the RAD data resolved a 

majority of nodes with high support, some for the first time in anole phylogenetics. These 

results suggest that, contrary to some expectations (Rubin et al. 2012), RAD markers may 

be a useful, cheap method for resolving evolutionary history in fairly old groups. 

 Inference of mechanisms for generating and maintaining patterns of diversity is 

difficult. With each investigation described above, some level of failure was apparent due 

to a number of complicating factors. But through excessive data collection, careful 

analysis, and logic, I hope that each chapter contains some wisdom regarding why these 

lizards exhibit the patterns they do in nature. 
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CHAPTER 1 

 

Phylogeography of a widespread lizard complex reflects patterns of both geographic 
and ecological isolation 

 
AUTHORS 
Levi N. Gray1, Anthony J. Barley2, Steven Poe1, Robert C. Thomson2, Adrián Nieto-
Montes de Oca3, and Ian J. Wang4 

 

1Department of Biology and Museum of Southwestern Biology, University of New 
Mexico, Albuquerque, NM 87131, USA 
2Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA 
3Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional 
Autónoma de México, México, D.F. 04510, México 
4Department of Environmental Science, Policy, and Management, University of 
California, Berkeley, CA 94705, USA 
 
ABSTRACT 

A primary challenge for modern phylogeography is understanding how ecology 
and geography, both contemporary and historical, shape the spatial distribution and 
evolutionary histories of species. Phylogeographic patterns are the result of many factors, 
including geology, climate, habitat, colonization history, and lineage-specific constraints. 
Assessing the relative influences of these factors is difficult because few species, regions, 
and environments are sampled in enough detail to compare competing hypotheses 
rigorously and because a particular phylogeographic pattern can potentially result from 
different evolutionary scenarios.  The silky anoles (Anolis sericeus complex) of Central 
America and Mexico are abundant and found in all types of lowland terrestrial habitat, 
offering an excellent opportunity to test the relative influences of the factors affecting 
diversification. Here, we performed a range-wide statistical phylogeographic analysis on 
restriction-site associated DNA (RAD) markers from silky anoles and compared the 
phylogeographic patterns we recovered to historical and contemporary environmental and 
topographic data. We constructed niche models to compare niche overlap between sister 
lineages and conducted coalescent simulations to characterize how the major lineages of 
silky anoles have diverged. Our results revealed that a deep genetic break is likely 
associated with historical geographic isolation, while a more recent break is associated 
with the contemporary environment. Moreover, comparisons of parapatric sister lineages 
suggest that recent niche divergence contributed to isolation by environment in this 
system, reflecting the natural history differences among populations in divergent 
environments. 
 
KEYWORDS 
 Phylogeography, isolation-by-environment, silky anoles, Nuclear Central 
America, ecological niche model, habitat isolation 
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INTRODUCTION 
 
 Patterns of evolutionary divergence result from many historical and contemporary 
factors. Phylogeography has traditionally focused on geographic factors—distance, 
topography, and physical landscape barriers—that can shape lineage diversification and 
the spatial distribution of lineages on a landscape (Avise 2000; Kidd & Ritchie 2006). 
However, isolating mechanisms that drive lineage divergence range from strictly abiotic 
to biotic (Coyne & Orr 2004; Mayr 1963; Nosil 2008), and thus, environmental and 
ecological variation between lineages can also generate phylogeographic structure 
(Kozak et al. 2008; Zellmer et al. 2012; Zink 2014; Paz et al. 2015). For instance, 
divergent natural selection in different environments can lead to isolation due to local 
adaptation, variation in reproductive timing tied to different environments can generate 
reproductive barriers, and novel habitat avoidance can lead to isolation between divergent 
environments (Coyne & Orr 2004). Although these alternative drivers of 
phylogeographic and population genetic structure are becoming more widely appreciated 
(Wang et al. 2013; Paz et al. 2015), relatively few studies have explicitly examined the 
relative roles of geographic and ecological factors in explaining phylogeographic patterns 
(Sexton et al. 2014), particularly at different stages of diversification. 

Moreover, geographic and ecological isolating factors can often act in concert, 
making it difficult to identify the primary mode of diversification (Mayr 1963; Coyne & 
Orr 2004; Nosil 2008; Wang & Bradburd 2014). For example, a pattern of ecologically 
divergent lineages occupying different parts of geographic space could result from 
several different processes. Allopatric lineages may diverge ecologically as a byproduct 
of evolving independently in different environments while geographically isolated (Mayr 
1963), or lineages may become geographically isolated because ecological divergence 
causes their distributions to shift apart due to the spatial structure of habitats and 
environmental variables (Wang & Bradburd 2014). Hence, populations may diverge 
ecologically during geographic isolation or may become geographically isolated due to 
ecological divergence, and the resulting spatial patterns may be indistinguishable. 
Therefore, identifying whether diversification results primarily from geographic isolation 
or ecological isolation (e.g. habitat isolation; Mayr 1942) has long been extremely 
difficult (Coyne & Orr 2004). Now, however, advances in ecological niche modeling and 
coalescent modeling make it possible to reconstruct the geographic distributions of 
lineages at different stages of their diversification. Species that are distributed widely 
across environmentally and geographically heterogeneous landscapes provide the power 
to distinguish between the processes driving phylogeographic patterns and are 
particularly valuable for understanding the geography and ecology of lineage 
diversification. 

Nuclear Central America is composed of the mountainous region east of the 
Isthmus of Tehuantepec (Mexico) to Honduras. This region is a biodiversity hotspot with 
complex topography and substantial environmental variation (Ramamoorthy et al. 1993; 
Morrone 2014), providing an excellent study landscape for phylogeographic analyses. 
Mountain chains of varying ages effectively separate lowland communities in the “core” 
of the region and contribute to the formation of disparate environmental regimes scattered 
across the area (Stuart 1966; Flores-Villela & Martínez-Salazar 2009). Species inhabiting 
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low elevations in southern Mexico and northern Central America encounter a variety of 
potential isolating mechanisms both ecological (in the form of environmental gradients 
and habitat transitions) and topographical (Hulsey et al. 2004; Rovito et al. 2012; 
Zaldivar-Riveron et al. 2004). The presence of these environmental and topographical 
barriers might explain the paucity of forms that occur on both the Caribbean and Pacific 
versants of Nuclear Central America (Morrone 2014). Habitat connectivity in lowlands 
between both versants occurs primarily around the margins of the southeastern and 
northwestern boundaries of Nuclear Central America: the “porous” and increasingly 
continuous lowlands of Honduras to the east and the low-lying Isthmus of Tehuantepec to 
the west (Fig. 1). The topography and environmental variation exhibited in this region 
offers excellent opportunities to investigate patterns of geographic and environmental 
isolation. 

Phylogeographic studies of species groups distributed widely and continuously 
across diverse environments play an important part in understanding how geographic and 
ecological isolation shape evolutionary histories. Few terrestrial vertebrate species are as 
widely and abundantly distributed in and around Nuclear Central America as the silky 
anoles (Anolis sericeus, A. unilobatus, A. ustus and A. wellbornae). The four species 
currently recognized (Köhler & Vesely 2010; Lara-Tufiño et al. 2016) are continuously 
distributed in nearly all types of lowland habitat from northern Mexico to northern Costa 
Rica (Stuart 1955; Henderson & Fitch 1975; Lee 1980). Silky anoles exhibit substantial 
external morphological conservation overall (Köhler & Vesely 2010) but considerable 
within- and between-population variation in certain traits surrounding the mountains of 
Chiapas, Mexico and Guatemala (Stuart 1955; Lee 1980; Köhler & Vesely 2010). Lee’s 
(1980) in-depth look at scale traits in the silky anoles suggested a pattern of local 
adaptation and concluded that “morphological similarity in populations is largely 
independent of geographical proximity.” Some geographically distant populations 
exhibited convergence in scale traits, which have been linked to variation in humidity or 
precipitation in other anole species (Malhotra & Thorpe 1997; Calsbeek et al. 2006). 
These environment-associated differences expressed by silky anole populations raise the 
interesting possibility that ecological divergence could contribute to genetic isolation. 
Recent methods for assessing niche divergence through the use of ecological niche 
models (ENMs) provide an opportunity to test relative niche divergence between 
populations or clades (Warren et al. 2008; Warren et al. 2010). Research on niche 
divergence in birds (Peterson et al. 1999) and Cuban Anolis lizards (Warren et al. 2008) 
has suggested environmental niche traits can be remarkably labile and may be associated 
with speciation events. However, the ability to investigate the importance of niche 
evolution for population divergence can be obstructed by difficulties related to sampling 
and environmental variation present within the distribution of the focal group (Peterson 
2011). For instance, some organisms either do not have enough occurrence data to allow 
for accurate characterization of their environmental niche or are not distributed across 
environments that are variable enough to detect differences using available methods. The 
silky anoles of Central America and Mexico fulfill the requirements for accurate, 
informative ENM comparisons that can shed light on whether niche divergence can be an 
important factor contributing to genetic isolation between phylogeographic lineages.   

In this study, we investigate the factors driving patterns of phylogeographic 
divergence in silky anoles based on large restriction site associated DNA sequence 
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(RADseq) and GIS datasets, phylogenetic reconstruction, coalescent model testing, 
ecological niche modeling, and explicit tests of niche divergence. We consider three 
hypotheses that describe the phylogeographic structure in this system: 1) 
phylogeographic structure reflects only geographic isolation (barriers) separating 
populations, 2) phylogeographic structure is associated with ecological niche divergence 
that is the byproduct of divergence in allopatry followed by secondary contact, and 3) 
phylogeographic structure resulted from environmental isolation due to ecological 
divergence between lineages that occurred either in allopatry or parapatry. In the first 
scenario, phylogenetic breaks occur in concert with geographic barriers rather than 
environmental transitions. Support for the second and third hypotheses can be informed 
by inference of past distributions, the degree of ecological niche divergence between 
lineages, and coalescent modeling—the distinction between these hypotheses is whether 
ecological divergence contributed to lineage divergence or was merely a byproduct of 
lineage divergence. We consider past and present physical geographic barriers and infer 
past environmental niche suitability to determine the likelihood of past geographic 
isolation events due to dramatic changes in climatic regimes. Using a diffusion 
approximation-based method for inferring demographic model parameters from single 
nucleotide polymorphism (SNP) allele frequency data, we evaluated the demographic 
context of divergence between lineages to determine the likelihood of a past geographic 
isolation event. For example, if a model for past divergence and secondary contact is 
preferred over a model for past gene flow and recent isolation between lineages abutting 
one another, it suggests that the genomic divergence likely occurred in allopatry. We 
weigh evidence from both the ENM analyses and coalescent analyses to evaluate whether 
ecological isolation has played a role in the diversification of a widespread, lowland, 
generalist lizard that experiences extreme differences in environment and habitat. 
 
METHODS 
 
Sampling for Phylogeographic Analyses 
 

We sampled 90 individuals from 46 localities throughout the distribution of the 
four species currently recognized in the Anolis sericeus complex (Fig. 2), from near the 
northwestern extent of the group in northern Mexico to near the southeastern extent close 
to the Nicaragua-Costa Rica border. Species boundaries for this clade are currently in 
flux (Lara-Tufiño et al. 2016); therefore, we focused more on geographic than taxonomic 
coverage. We were able to include samples spanning a broad range of habitats and 
environmental conditions inhabited by silky anoles. Some of the wettest and driest 
portions of the distribution were sampled, as both extremes occur in southern Mexico 
(Fig. S1, Supporting Information). GPS coordinates for each sample were collected in the 
field using Garmin GPS devices with accuracy of ~3-5 m. Sampling in the northwestern 
portion of the range (primarily southern Mexico) was more dense than sampling in the 
southeastern portion of the range (Fig. 2). One sample of A. laeviventris from Costa Rica 
was used as an outgroup for phylogenetic analyses. Anolis laeviventris has been 
identified as a closely related species within the Draconura clade in past phylogenetic 
studies (Nicholson et al. 2012; Poe et al. 2017). 
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Genomic library preparation and bioinformatics 
 

We extracted genomic DNA from liver and muscle tissue using Qiagen DNeasy 
Blood and Tissue kits (Qiagen, Valencia, CA). DNA was quantified using a Qubit 2.0 
Fluorometer and diluted to a concentration of 5 ng/ µL. We utilized a multiplexed 
shotgun genotyping protocol (Andolfatto et al. 2011; Monnahan et al. 2015) to generate a 
genomic library with 90 individuals (96 samples, with 6 duplicated due to lower 
concentrations of DNA present). DNA was digested with NdeI restriction enzyme (New 
England BioLabs, Ipswich, MA, USA) and unique barcode adapters (Monnahan et al. 
2015) were ligated onto each of the samples in the library. The library was then “size 
selected” in order to increase likelihood of sequencing homologous loci across samples. 
Fragments of size 475-525 bp were selected using a Pippin Prep (Sage Science, Beverly, 
MA, USA) and verified using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). Libraries were then amplified by PCR using Phusion High-Fidelity 
PCR Master Mix to increase quantities for final sequencing. The library was sequenced in 
one lane of an Illumina HiSeq 2500 sequencer using a single-end 100-bp read protocol. 

All raw data were demultiplexed, quality filtered, and de novo assembled using 
pyRAD v.3.0.66 (Eaton 2014). Briefly, pyRAD uses the program USEARCH (Edgar 
2010) to cluster reads and identify consensus loci using a predefined similarity threshold, 
and subsequently aligns the sequences for each locus using MUSCLE (Edgar 2004). We 
identified an optimal clustering threshold of 0.9 using the clustering threshold series 
approach described in Ilut et al. (2014).  pyRAD jointly estimates the mean 
heterozygosity and sequencing error rates using maximum likelihood (Lynch 2008), 
which are used to call SNPs (Li et al. 2008). We initially used default values for all other 
parameters, then explored the impact of changing the values for the minimum read depth 
(6-12), minimum coverages across samples (50-72), and maximum proportion of shared 
heterozygous sites (0.1-0.5) on our downstream phylogenetic analyses. 
 
Phylogenetic tree estimation 
 

We estimated phylogeographic relationships within the Anolis sericeus group in a 
likelihood framework using RAxML v8.0 (Stamatakis 2014) and a Bayesian framework 
using MrBayes (Ronquist et al. 2012). In order to identify the optimal partitioning 
scheme, and models of molecular evolution for each partition in our dataset, we used 
PartitionFinder v1.1 (Supporting Information). We used Akaike Information Criterion 
(AICc) to select a substitution model from among the 24 common models implemented 
in MrBayes. Each locus was input as a potential partition, and we used the “rcluster” 
algorithm option (Lanfear et al. 2014). We ran the MrBayes analysis for 20 million 
generations, sampling every 2,000 generations, and assessed convergence by assuring 
that all parameters had reached stationarity and sufficient effective sample sizes (>1000) 
using Tracer v1.4 (Rambaut & Drummond 2007). In the Maximum-likelihood analyses, 
we assigned a GTR + Γ nucleotide substitution model to each partition and analyzed the 
dataset using RAxML, with support determined by 1000 bootstrap replicates.   
 
Coalescent Analyses 
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In order to identify the primary mode of divergence among the lineages identified 
by our phylogenetic analyses, we used a coalescent modeling approach based on the joint 
allele frequency spectrum between populations (Gutenkunst et al. 2009). This approach 
(implemented in the program dadi) computes the expected frequency spectrum for a 
candidate model using a diffusion approximation to the one-locus, two-allele Wright-
Fisher process and estimates model parameters under a likelihood framework 
(Gutenkunst et al. 2009). We analyzed the two-dimensional joint site frequency spectrum 
for the divergence events between the Pacific and Caribbean lineages and between the 
North and South lineages. For each comparison, we examined four alternative 
demographic models: 1) divergence with no gene flow, 2) divergence with constant 
(symmetrical) gene flow between populations, 3) divergence with historical migration, 
and 4) secondary contact following divergence in isolation (see Results for model 
parameters). We assembled separate SNP datasets for each comparison (composed of 
2715 and 2770 SNPs for the Pacific-Caribbean and North-South comparisons, 
respectively), selecting loci for each comparison that had the least missing data. We also 
chose to use only a single SNP per locus and assumed loci were unlinked so that we 
could use the log-likelihood values as true likelihood values in our model comparisons 
(Portik et al. 2017). We projected allele sample sizes down to account for missing data in 
our analyses, maximizing the number of segregating sites for each population 
(Gutenkunst et al. 2009). 

We performed initial optimizations of the demographic parameters by generating 
50 sets of threefold randomly perturbed parameters, optimizing each using the Nelder-
Mead method (Gutenkunst et al. 2009). We ran each optimization step (three in total) for 
a maximum of 100 iterations. We then used these optimized parameter sets to simulate 
the joint site frequency spectrum for each model. We used the parameters from the 
replicate with the highest likelihood as starting values to run the second round of twofold 
perturbed parameter optimizations with 50 replicates, and used the optimal parameter 
values from this second round as starting parameters for a final onefold perturbed 
parameter optimization with 100 replicates. We compared models using the Akaike 
Information Criterion. 
 
Sampling for Niche Model Analyses 
 

To characterize the niche of monophyletic lineages inferred from our 
phylogenetic analyses within the silky anoles, we set out to assemble a minimum of 30 
localities for each lineage (Proosdij et al. 2016). Monophyletic sister lineages were 
selected for further analyses rather than species assignments because of uncertainty in 
taxonomy and species boundaries within silky anoles. We assembled point data for the 
Anolis sericeus group by pooling localities from museum collections with our own 
collection records. When georeferencing localities from museums, a record was only 
included in downstream analyses when LNG deemed the coordinates accurate and easy to 
interpret based on the description of the locality. Localities that were not sufficiently 
described by the collectors and thus not dependable were excluded from further analysis. 
Every coordinate from a museum was double-checked and new coordinates were 
georeferenced if the coordinate from the museum did not match the description of the 
locality. Sampling for each group is well within the range for which ENM production is 
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considered robust (Proosdij et al. 2016): 47 samples for the Pacific, 105 for the 
Caribbean, 64 for the South, and 153 for the North lineages, respectively (see below). All 
available localities were used for the construction of a model for the entire group. 

For each lineage inferred by the phylogeographic analyses (assigned “North”, 
“South”, “Pacific”, and “Caribbean”, Fig. 2; see below for justification), we included a 
coordinate only if it was assignable to the known distribution of the group. We 
acknowledge that the names of the clades are somewhat subjective, but believe they 
generally describe the distribution of each clade with respect to one another. For instance, 
the North lineage occurs the farthest north but the southern extent of the distribution 
overlaps significantly with the northern limits of the South clade. In several instances of 
locality assignment, such as near the eastern break between Caribbean and Pacific 
lineages, localities were assigned to lineage based on which side of the Northern 
Highlands of Chiapas (Fig. 1) they occurred. There were several localities that were 
therefore left out of the niche modeling analyses because the exact boundaries of each 
lineage are unknown, and the localities fell near a potential contact zone between two 
lineages. The exclusion of localities near contact zones will likely have the downstream 
effect of decreasing niche overlap values due to 1) a perceived geographic gap between 
lineages where none actually exists and 2) a tendency for Maxent to overfit data 
(Peterson et al. 2007; Phillips 2008). This decrease in niche overlap should more strongly 
affect the North-South comparisons because of less thorough genomic sampling of the 
South clade and near the putative contact zones in Guatemala. Despite these concerns, 
only a single coordinate was included in construction of the North ENM but not 
assignable to Pacific or Caribbean. Samples from the eastern portion of the Yucatan 
Peninsula were confidently placed within the Caribbean lineage based on a recent study 
(Lara-Tufiño et al. 2016), which found that the Yucatan lineage is morphologically 
distinct from other silky anoles and occurs widely throughout Belize. 

Finally, we used a subset of localities from a broad zone of parapatry between the 
Pacific and Caribbean lineages in order to examine niche divergence at a finer scale. For 
the estimated extent of the potential contact zone, which lies primarily at the Isthmus of 
Tehuantepec but continues to the east and west, we included all known localities that 
could be confidently assigned to one lineage or the other based on geographic distance 
and similarity in habitat type to nearby sequenced individuals. We compiled 30 localities 
for the Caribbean and 28 for the Pacific lineages, respectively. 
 
Ecological Niche Models 
 

Niche Models were constructed in Maxent using climate and elevation data from 
Worldclim (Hijmans et al. 2005). The first 19 “Bioclim” layers, reflecting aspects of 
precipitation and temperature, were used in addition to elevation—all are commonly used 
in ENM construction and have been deemed biologically relevant for a wide range of 
organisms. Default settings were utilized, with 25% of presence points withheld to train 
the model (Syfert et al. 2013). We withheld 25% of the localities rather than 10% to train 
the model because we had significantly more presence points than the minimum needed 
for accurate niche inference (Proosdij et al. 2016) and we wanted to minimize the known 
problem of model overfitting in Maxent (Warren & Seifert 2011). The model 
performance was based on the area under the receiver-operating characteristic curve 
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(AUC). With no absence data for these lizards, AUC scores represent the model’s 
effectiveness at distinguishing presence from the background (Phillips et al. 2006).  

To examine the long-term distributional stability of silky anoles in the lowlands 
surrounding Nuclear Central America, we also produced models for the North group and 
projected them onto two series of historical climate layers: mid-Holocene (~6000 ya) and 
last inter-glacial (~120-140,000 ya; Otto-Bliesner et al. 2006). Only the North group was 
used for this analysis, as the goal was to investigate whether lizards in that lineage might 
have been isolated geographically during different climate regimes. These two sets of 
climate layers span the longest segment of time currently available at a high resolution. 

Concerns of model overfitting are warranted in the construction of ENMs in 
Maxent (Peterson et al. 2007; Phillips 2008), but our broad sampling in our study should 
lead to the niche being appropriately characterized for our purposes (Peterson et al. 2011; 
Proosdij et al. 2016). Overfitting the input data should have the effect of reducing overall 
niche overlap metrics in our group ENM comparisons. Since we focus on relative niche 
divergence between groups in this study, biases affecting all groups equally should not be 
problematic. 
 
Niche Overlap/Divergence 
 

To evaluate niche divergence/overlap between sister clades inferred in the 
phylogeographic analyses, we compared ENMs produced for sister clades using 
ENMTools (Warren et al. 2008). Comparisons between well-supported, deeply divergent 
sister clades uncovered in the phylogenetic analyses were conducted so that only groups 
of equal age were compared. Niche Overlap tests were combined with Background Tests 
to determine 1) relative divergence in ecological niche space and 2) whether there is 
detectable niche conservation within the lineages we investigate. 

In ENMTools, we utilized two metrics for calculating niche overlap from the 
Maxent niche models: Schoener’s D (Schoener 1968) and Warren’s I statistic (Warren et 
al. 2008). Both metrics range 0 to 1, with 0 representing zero niche overlap and 1 
corresponding to identical niches between the two compared groups. Two sets of 
comparisons were done to evaluate levels of niche divergence/overlap. The first 
compares sister clades representing the deepest phylogenetic split within the group, 
which we named “North” and “South.” The second compares the more recent 
phylogenetic split involving subclades of the North group, named “Caribbean” and 
“Pacific” (after the versant in which each monophyletic group occurs).   

To determine the strength of niche conservatism in silky anoles, we used 
Background tests (Warren et al. 2010). Background tests are commonly used to quantify 
whether two lineages are more or less similar to one another in niche space based on the 
environmental conditions available to them. Background tests produce a null distribution 
that can be compared to niche overlap metrics, yielding a two-tailed test demonstrating 
whether the compared lineages are exhibiting niche conservation or divergence. We 
generated artificial occurrence points for the Background tests for each clade using the 
Resample from raster tool on ENMTools. We used a linear sampling function and 
provided the raster from our Maxent output, starting with 10,000 points for each clade 
and subsequently removed points that could be considered to fall too far from the known 
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distribution of the group. Final artificial occurrence points for clades ranged from 4992 
(North) to 7855 (Caribbean). 
 
RESULTS 
 
Phylogeography of the Anolis sericeus complex 
 

Summaries of genomic data quality were examined using FastQC (Andrews 
2012), which showed that sequence quality was generally high across the entire lengths 
of the 190,398,747 sequencing reads (average Phred score ~38). We removed 14 
individuals from the dataset that were only sequenced for a very small number of reads. 
Removed samples were likely due to degraded DNA, as the DNA extraction process 
demonstrated variability in quantity and quality of DNA. An average of 14,800 loci were 
assembled for each of the remaining individuals before filtering. There was no noticeable 
effect of changing the default values of the assembly/filtering parameters or the 
composition of the dataset on downstream phylogenetic analyses, so we used a minimum 
read depth of 10 and only included loci in the final dataset if they had data for at least 70 
individuals. Our final molecular data set consisted of 520 loci for 76 individuals (75 silky 
anole samples plus 1 outgroup sample). Loci were on averages ~94 bp in length resulting 
in a total of 48,947 aligned nucleotide positions. 

Our analyses reveal three relatively deeply divergent, geographically coherent, 
and well-supported clades (Fig. 2): one distributed from at least Honduras and Guatemala 
to Nicaragua and likely Costa Rica (South clade), another associated largely with the 
Caribbean versant of southern and central Mexico (Caribbean clade), and one found 
along the Pacific versant of southern Mexico (Pacific clade). The oldest divergence event 
occurs near the mountains of Nuclear Central America (Sierra de los Cuchumatanes, 
Sierra de las Minas, Sierra Madre de Guatemala), separating the North and South clades. 
Another strongly supported divergence occurs between the Caribbean and Pacific 
Versant-inhabiting populations within the North lineage, which appear to be 
parapatrically distributed from the Isthmus of Tehuantepec region to northwestern 
Chiapas. All relevant nodes discussed below have high support values, most with a 
posterior probability of 1.0 (Fig. 2). RAxML analyses yielded identical results to the 
MrBayes analyses with respect to the nodes and relationships discussed below. 

Though sampling was not as dense in the South clade, some interesting 
relationships were revealed in the phylogeny. Despite being relatively close 
geographically, samples from the Pacific lowlands of Guatemala and northwestern 
Honduras are relatively deeply divergent. The sample from the farthest south (southern 
Nicaragua) was sister to a clade of Honduran populations. 

We can draw stronger conclusions about phylogeographic structure within the 
North clade due mainly to more thorough geographic sampling. First, there is a strongly 
supported Caribbean clade that includes the sample from the Yucatan Peninsula as sister 
to all other samples in the clade. After the split of the Yucatan sample, there is a split 
dividing populations roughly north and south in the western part of the distribution, with 
the contact zone occurring slightly south of the eastern extent of the Mexican 
Transvolcanic Belt. The Isthmus of Tehuantepec does not appear to be a barrier east-west 
for the Caribbean populations. In the Pacific clade, there is strong support for a break at 
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the Isthmus of Tehuantepec. There is also a well-supported sister relationship between 
populations of the Ocote region of Chiapas and the rest of the Pacific plus the Central 
Depression of Chiapas.   
 
Ecological Niche Models in Maxent and Niche Overlap 
 

All four lineage ENMs (North, South, Pacific, and Caribbean) were characterized 
by high AUCs (>0.8), suggesting good performance of the models (Table 1). As 
expected, the models largely predicted high suitability for lowland areas throughout the 
region each clade occupies, with few exceptions (Fig. 3). The North clade shows suitable 
habitat extending far into the distribution of the South clade and vice versa, suggesting 
that either group would be able to expand its distribution in the absence of the other. 
Based on both Schoener’s D and Warren’s I, there is much stronger niche overlap 
(weaker niche divergence) between North and South clades (Schoener’s D = 0.32759; 
Warren’s I = 0.61622) than between the Pacific and Caribbean clades (Schoener’s D = 
0.16267; Warren’s I = 0.37839; Fig. 3). There is also substantial overlap among the 
environmental variables that describe the ecological niches in both models for the North 
and South clades (Table 1). The Pacific and Caribbean clade ENMs show little to no 
overlap into each other’s distribution. The models representing samples from the zone of 
parapatry between Pacific and Caribbean lineages show similar levels of niche overlap 
(Fig. S1, Supporting Information).   

Historical projections for the habitat suitability of the region immediately north 
and west of Nuclear Central America for silky anoles suggest a broad distribution over 
the last ~120-140K years (Fig. S2, Supporting Information). Background tests for every 
clade pairing demonstrate higher niche similarity than expected due to chance (p<0.01; 
Fig. 4). 
 
Coalescent analyses 
 

For both North-South and Pacific-Caribbean comparisons, model selection based 
on the Akaike Information Criterion (AIC) identified secondary contact following 
divergence in isolation as the best supported model (Table 2). The inferred parameters of 
these models suggest a relatively long time between the divergence of the North and 
South clades (unscaled time, T1 = 4.27; Table 2) and the Pacific and Caribbean clades 
(unscaled time, T1 = 3.88; Table 2) and the beginning of secondary contact, which 
occurred relatively recently (unscaled time, T2 = 0.55 and T2 = 0.12, respectively; Table 
2). Migration following secondary contact was inferred to be relatively high between the 
North and South clades (m = 0.14; Table 2) and fairly low between the Pacific and 
Caribbean clades (m = 0.04; Table 2), even though the Pacific and Caribbean clades are 
currently likely to be parapatric over a broad geographical area. 
 
DISCUSSION 
 
Phylogeography of silky anoles 
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Our phylogenetic analyses reveal strong phylogeographic structure, which may be 
unexpected a priori for a widespread and abundant lizard capable of living in a variety of 
habitats under a wide range of environmental conditions. Our results suggest that the 
Anolis sericeus complex may have originated near the mountains of Nuclear Central 
America (Sierra de los Cuchumatanes, Sierra de las Minas, etc.) and spread south and 
east into lower Central America and north and west into Mexico, becoming two major 
clades (North and South; Fig. 2). The mountains of Nuclear Central America have 
strongly influenced biogeographic patterns in the region for a wide range of taxa (Wake 
1987; Ramamoorthy et al. 2009; Flores-Villela & Martínez-Salazar 2009), and they 
appear to have been a key factor in the early diversification of silky anoles as well.  

The North clade exhibits relatively deep divergence between Caribbean and 
Pacific versant populations, despite the broad zone of parapatry between these lineages. 
The divide largely mirrors the environmental regimes associated with either versant—the 
Caribbean with its tendency toward year-round wet forests and the majority of the Pacific 
dominated by seasonally dry forests (Morrone 2014; Halffter & Morrone 2017). The 
transition of wet-to-seasonally-dry habitats occurs rather abruptly across Pacific and 
Caribbean versants from the west side of the Isthmus of Tehuantepec to northern Chiapas 
and corresponds with the abrupt transition from the Caribbean clade to the Pacific clade 
(Fig. S1, Supporting Information). 

Within the Caribbean clade, we also found evidence of strong phylogeographic 
structure. For instance, the Yucatan sample is deeply divergent from the rest of the 
Caribbean clade (Fig. 2).  Although the Yucatan is not a region of particularly high 
endemism when compared to other regions of Central America (Estrada-Loera 1991; 
Morrone 2014), it does harbor some endemic lineages (Ibarra-Manríquez et al. 2002; Lee 
2000). The strong overlap in species diversity between the Yucatan and lowland 
Caribbean forests of southern Mexico, Belize, and northern Guatemala indicates 
similarity in biotic communities (Estrada-Loera 1991; Morrone 2014), so an endemic 
lineage of silky anole in the Yucatan might not be expected. How this divergence 
originated could be related to different environmental regimes and plant communities or 
due to past geographic isolation at the Maya Mountains region during periods of higher 
sea levels (Fig. 1). Another phylogeographic split occurs within the Caribbean clade near 
the Mexican Transition Zone at the Transvolcanic Belt (Morrone 2010). The location of 
the contact zone is very close to where other researchers have noted a biotic transition 
(Zaldívar-Riverón et al. 2004; Morrone 2010; Bryson et al. 2011; Meza-Lázaro & Nieto-
Montes de Oca 2015), although the estimated zone of contact does not obviously appear 
to be associated with any geographic barriers.   

Within the Pacific clade, populations from the Central Depression of Chiapas are 
closely related to nearby Pacific coastal populations (Fig. 2). This result is consistent with 
commonly recognized biogeographic patterns (Johnson 2015; Morrone 2014), though it 
is noteworthy that individuals from the Ocote region of Chiapas appear to be members of 
the Pacific lineage. The Ocote region is particularly diverse, in some ways resembles 
Caribbean lowland communities in species composition (Urbina-Cardona & Flores-
Villela 2010) and does not contain many of the species found in the drier Central 
Depression and Pacific coastal regions of Chiapas (Johnson 1990). 

The Isthmus of Tehuantepec appears to have played little role in shaping 
phylogeographic structure in the Caribbean populations, whereas in the Pacific there is 
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reciprocal monophyly of populations on the east and west sides of the Isthmus. This same 
biogeographic pattern is reflected in the majority of studied plants and animals 
throughout the region (Morrone 2014; Halffter & Morrone 2017). In the Caribbean 
portion of the Isthmus, the environment and plant communities tend to be stable and 
continuous, with strong overlap in species diversity on the east and west sides (Escalante 
et al. 2007; Morrone 2014). The Pacific versant of the Isthmus, however, appears to be a 
strong dispersal barrier for lowland species (Bryson et al. 2011). The Anolis sericeus 
group is unlike any other anole species complex in Mexico in that it occurs throughout 
the Pacific versant east and west of the Isthmus (one possible exception, A. 
boulengerianus, has a distribution that does not extend far to the east and ends before 
reaching the state of Chiapas; Henderson & Fitch 1975). The anole communities on the 
west side are composed entirely of species from Mexican endemic clades and are deeply 
divergent from communities on the east side, which come from groups that are mostly 
Central American in origin (Gray, pers. obs.; Poe et al. 2017). The silky anole 
populations on either side could have been isolated in the past due to higher sea levels 
(Bryson et al. 2011), but the maintenance of strong phylogeographic structure after 
coming back into contact is noteworthy when there are no obvious morphological traits 
distinguishing the two sets of populations. Future work on this group should include 
locating the contact zone and investigating population dynamics between the eastern and 
western Pacific populations, as well as examining the dynamics of these populations 
relative to the presumably parapatric Caribbean lineage to the north. 

Phylogeographic patterns in the South clade are more difficult to interpret than 
those of the North clade due to sparse sampling, but a pattern of fine-scale structure near 
the mountains of Nuclear Central America is clear (Fig. 2). The paraphyly and deep 
divergence between populations in the Pacific of Guatemala is worth investigating since 
some other taxa have diversified within this region (Wake 1987; Barber & Klicka 2010; 
Gutiérrez-García & Vázquez-Domínguez 2012; Ornelas et al. 2014; Fig. 2). However, 
most taxa in those studies have more restricted habitat or niche requirements, and thus 
may be geographically isolated more easily. Given the topographic complexity of the 
region, both geographic and ecological processes could have contributed to the observed 
population divergence within the South clade. Some mountain valleys of Guatemala 
(such as the Motagua Valley) have notably drier environments than surrounding areas 
and could contribute to isolation among lineages. 
 
Ecological isolation and phylogeographic structure 
 

Two major divergence events stand out in the phylogeographic history of the silky 
anoles—one at the base of Nuclear Central America (North vs. South clades) and another 
associated with different environmental regimes in southern Mexico (Pacific vs. 
Caribbean clades; Fig. 2). The first of these divergence events (the North/South break) is 
consistent with past geographic isolation between two lineages (Dobzhansky 1937; Mayr 
1963; Avise 2000) and subsequent secondary contact, a scenario that was the best 
supported model in the coalescent analyses. Despite being on separate evolutionary 
trajectories for a longer period of time than the Pacific and Caribbean clades, niche 
divergence between North and South clades is not apparent. Background tests further 
demonstrate strong niche conservatism between the two groups (Fig. 4; Table 1). The 
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geographic distributions of the North and South lineages near mountains of Nuclear 
Central America are congruent with a role for geographic isolation in the past for these 
lowland-dwelling lizards. These results therefore support the hypothesis that the two 
lineages diverged in allopatry, maintained relatively conserved niches during isolation, 
and are now parapatric after coming back into secondary contact (Hypothesis 2).   

The mode of divergence between the Pacific and Caribbean clades is difficult to 
infer without the niche divergence and coalescent analyses. There are no known or 
suggested physical barriers likely to have cut off gene flow in the region inhabited by the 
North clade (Kesler 1971; Morrone 2014). A widespread lowland generalist occurring in 
southern Mexico over the last few million years should have had a continuous 
distribution spanning the Pacific and Caribbean versants in the Chimalapas region of 
Oaxaca and Ocote region of northwestern Chiapas, even in the event of raised sea levels 
and the closing of the Isthmus of Tehuantepec (Kesler 1971; Bryson et al. 2011; Blakey 
2011). None of the smaller Sierras present in the region reach high enough elevations to 
be uninhabitable for silky anoles based on their current distribution. Results from 
historical projections of the distribution of the silky anoles confirm the long-term stability 
of suitable habitat throughout the region (Fig. S2, Supporting Information). The deep 
genomic divergence between the Pacific and Caribbean lineages is surprising given the 
geographic history of the region and difficult to explain outside of ecologically-mediated 
divergence. Niche divergence between these two lineages is substantially more 
pronounced than between the North and South lineages (Fig. 3), and there is little overlap 
among the environmental variables that contributed most to the ENMs (Table 1), 
suggesting that these lineages may have experienced divergent niche evolution. This 
niche divergence is not merely a consequence of these clades being found in geographic 
regions with different environmental backgrounds. Although niche divergence is strong 
(Schoener’s D = 0.16267; Warren’s I = 0.37839), it is actually less than expected by 
chance based on the environmental backgrounds experienced by the two clades. This 
result suggests that these clades experienced differential natural selection between 
environments, leading to niche divergence despite some constraints on niche evolution. 
Our investigation into finer-scale niche overlap near the contact zone of the two lineages 
yielded similar or lower values relative to the comparisons between the entire clades (Fig. 
S3, Supporting Information), lending additional support for this finding. The results are 
consistent with niche divergence between Pacific and Caribbean clades, which could 
have evolved in parapatry, as suggested by the niche models and topography of the 
region (Fig. S2, Supporting Information), or in allopatry, as suggested by the coalescent 
analyses (Fig. 5). 

Whether the observed niche divergence between the Pacific and Caribbean 
lineages occurred in parapatry or in allopatry is difficult to answer using current methods. 
Silky anoles presently occur in every lowland habitat we have searched, often in great 
abundance and regardless of the amount of disturbance. This kind of “generalist” natural 
history would make it difficult for the lizards to become geographically isolated in 
lowlands in the absence of physical barriers. Historical projections of the distribution of 
the group under different climatic regimes provide further evidence that divergence could 
have occurred in parapatry. Yet the coalescent analyses strongly prefer the secondary 
contact model, which would most easily be explained by a period of allopatry for the 
Pacific and Caribbean lineages. While the coalescent models tested in our study are likely 
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overly simplistic with respect to the variety of complex demographic scenarios 
potentially experienced by silky anole lineages, the preferred model suggests more gene 
flow now than in the recent past. Given the body of evidence for divergence in allopatry, 
it would be unsurprising for the initial divergence to have occurred with geographic 
separation between the populations. One of the lines of evidence (the ENMs or the 
coalescent analyses) is likely misleading. However, reciprocal monophyly of the Pacific 
and Caribbean lineages suggests that the niche divergence, whether it evolved in 
allopatry or parapatry, is potentially playing a role in maintaining some level of 
reproductive isolation between the two lineages (Hypothesis 3). 

There are several avenues by which natural or sexual selection can lead to the 
pattern observed in the North clade. One possible mechanism underlying the 
environmentally associated isolation found between the Pacific and Caribbean clades is 
the distinct difference in reproductive timing between lizard populations in the two 
regions. In the relatively aseasonal environment experienced by the Caribbean lineage, 
populations are able to breed throughout most of the year like many tropical anoles 
(Smith et al. 1972; Fitch 1973a; Losos 2009). However, in the seasonally dry Pacific of 
southern Mexico, silky anoles may have a significantly shortened breeding season, a 
pattern that has been found in other anole species inhabiting drier parts of the tropics 
(Fitch 1973b; Fleming & Hooker 1975). The effect these differences would have on 
population dynamics could be profound, possibly initiating divergence (Räsänen & 
Hendry 2008) and certainly limiting reproductive opportunities that could lead to 
admixture between the two clades. The existence of multiple contact zones between 
morphologically-indistinguishable populations with varying levels of genomic 
divergence exhibiting little to no gene flow makes the silky anole system attractive for 
uncovering mechanisms leading to speciation (Coyne & Orr 2004). Seeking evidence for 
reinforcement or reproductive character displacement (Lambert et al. 2013) at the contact 
zones is likely to be informative. These factors have been documented in another 
morphologically conserved anole species group, the Anolis brevirostris complex in the 
Greater Antilles (Webster & Burns 1973; Lambert et al. 2013).   

We still know relatively little about rates of environmental niche evolution and 
what drives them (Warren et el. 2008), and there is much to learn about the role of the 
environment in the diversification of lineages. While revisiting a large data set on birds 
across the Isthmus of Tehuantepec (Peterson et al. 1999), Warren at al. (2008) found 
significant levels of environmental niche differentiation between most species pairs. 
Whether this is a taxonomically broad trend remains to be seen, as few studies have 
investigated rates of niche evolution or niche lability, especially at recent evolutionary 
timescales. In this study, we find that strong environmental niche evolution and 
divergence can occur despite some background level of niche conservatism in a species 
group as a whole. Yet just how important differences in environmental selection regimes 
can be in producing or strengthening reproductive isolation between populations is an 
open question. Thorpe and colleagues (Thorpe et al. 2008; Thorpe et al. 2010) found 
evidence for increased levels of reproductive isolation between populations experiencing 
different environments (xeric vs. mesic) in the Anolis roquet group on Martinique. Fine-
scale molecular investigations revealed that stronger isolation occurred between 
populations at the xeric/rainforest ecotone (Thorpe et al. 2010) than between lineages that 
had previously been isolated for up to 8 million years on separate paleo-islands that make 
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up the currently inhabited island of Martinique. Thus, evidence exists for environmental 
transitions playing an isolating role in anoles.   

In the silky anoles, the abrupt change in climate regimes between the Pacific and 
Caribbean versants of southern Mexico may have created a situation similar to Anolis 
roquet (Thorpe et al. 2008; Thorpe et al. 2010) for which near complete reproductive 
isolation resulted. However, there is an important difference between the A. roquet group 
on Martinique and the A. sericeus group: in the A. roquet group there are clear 
morphological differences between the two populations, most noticeably coloration, 
likely reflecting local adaptation. Silky anoles possess no obvious morphological 
differences associated with the starkly different environmental regimes the Pacific and 
Caribbean populations experience. How these populations have maintained such similar 
morphologies despite a broadly parapatric distribution (even in the conservation of a 
rather complex dewlap arrangement; see Fig. 2) remains to be investigated. Williams’ 
(1965) niche incumbency hypothesis might help explain why the two lineages have not 
invaded each other’s distributions. That is, the two lineages may exhibit similar niche 
requirements but be too similar to coexist, effectively preventing the invasion of one 
lineage into the distribution of the other.   
 
CONCLUSIONS 
 

In our molecular assessment of the evolutionary relationships of the silky anoles, 
we found evidence for both geographic factors and ecological processes shaping 
phylogeographic patterns. Recent studies highlighting the strength and ubiquity of 
isolation by environment (Sexton et al. 2013; Wang & Bradburd 2014) have typically 
focused on finer scales, mostly at the level of recent population differentiation. Although 
some studies have demonstrated relatively high lability in environmental niche traits 
between closely related species (Peterson et al. 1999; Warren et al. 2008), none have 
demonstrated environmental niche divergence as a major factor promoting broader 
phylogeographic divergence or speciation. Here we find evidence for lineage 
diversification related to divergent environmental niche evolution in an abundant and 
widespread lizard group that otherwise exhibits fairly strong niche and morphological 
conservatism. Coalescent modeling suggests that major divergence events were 
facilitated, at least in part, by periods of geographic isolation. Future work on other 
widespread clades is needed to assess whether such cryptic environment-driven 
divergence events are common in nature at the phylogeographic scale. 
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FIGURE CAPTIONS 
 
Figure 1. Topographic map of study region with important geographical features 
highlighted. 

 
Figure 2. Phylogenetic relationships of the silky anoles, highlighted by clade 
membership. Closed circles at nodes in phylogeny indicate Posterior Probability of 1 in 
Bayesian analysis, open circles indicate PP >0.8. Circles on the map with dark margins 
represent localities represented in the phylogenetic analyses. The North clade is 
composed of the Pacific + Caribbean clades, as that group is sister to the South clade. 
Photo for Yucatan by Brittney White, photo for Honduras by Tom Kennedy.  Photos for 
Pacific and Caribbean by Levi Gray. 
 
Figure 3. Ecological niche models constructed in Maxent for each group, along with 
niche overlap values for sister clade comparisons (South vs North and Pacific vs 
Caribbean) comparisons. 
 
Figure 4. Background similarity tests for each sister clade comparison, summarized from 
100 models generated from randomly drawn localities within the range of the appropriate 
clade. (a) and (b) represent North/South comparisons; (c) and (d) represent 
Pacific/Caribbean comparisons. All observed measures of niche overlap (indicated by 
arrows) were significantly higher than the null distributions, indicating niche 
conservatism in each group (P<0.01)
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TABLES 
 
Table 1. Top eight variables for each Maxent clade niche model arranged by permutation 
importance (PERM) and including percent contribution to the model (PCT). Variables 
that overlapped in sister clade comparisons are shaded in grey. 

  

  
  

North Clade (AUC = 0.850)  South Clade (AUC = 0.918) 

Variable PERM PCT  Variable PERM PCT 

Elevation 24.4 13.4  Temp seasonality 55.8 35.5 

Precip seasonality 21.1 12.2  Elevation 19.2 5.3 

Temp seasonality 20.1 9.3  Precip seasonality 5.8 4.4 

Temp annual range 5.3 13.9  Mean temp of wettest qtr 5.1 0.6 

Max temp of warmest month 4.4 4.5  Precip of warmest qtr 3.5 4.5 

Min temp of coldest month 4.1 19.7  Min temp of coldest month 3.4 13.2 

Isothermality 3.3 1.3  Mean diurnal range 2.2 1.6 

Mean diurnal range 2.1 3.3  Precip of coldest qtr 1.9 5.5 

       

Pacific Clade (AUC = 0.961)  Caribbean Clade (AUC = 0.833) 

Variable PERM PCT  Variable PERM PCT 

Isothermality 23.5 4.4  Temp seasonality 28.5 39.2 

Precip of coldest qtr 17.7 18.5  Precip seasonality 23.4 5.3 

Elevation 12.2 9.2  Precip of driest month 15.8 22.3 

Temp seasonality 11.8 2  Elevation 12.2 0.4 

Mean diurnal range 8.4 5.5  Temp annual range 6.3 0.3 

Precip seasonality 7.7 19.3  Min temp of coldest month 4.4 1.3 

Mean temp of wettest qtr 6.6 0.2  Precip of driest qtr 3.7 0.2 

Mean temp of driest qtr 5.3 3.2  Annual precip 2.9 12.1 
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Table 2.  Results of coalescent simulations using dadi. 
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FIGURES 
 
Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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SUPPLEMENTARY FIGURE CAPTIONS 
 
Figure S1. Map showing annual precipitation throughout the distribution of the Anolis 
sericeus group. Note the Tehuantepec region and the rapid transition from wet to dry 
environments, which correspond with the broad zone of parapatry between the Pacific 
and Caribbean lineages. 
 
Figure S2. Historical projections of ENMs for North clade. (a) is a projection of the niche 
model on climatic layers representing conditions during the last inter-glacial ~120-
140,000 years ago. (b) is a projection during the mid-Holocene ~6000 years ago. 
 
Figure S3. Ecological niche models constructed in Maxent and niche overlap for 
populations near the contact zone. 
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SUPPLEMENTARY FIGURES 
 
Figure S1. 
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Figure S2. 
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Figure S3. 
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CHAPTER 2 

 

Can the length of the breeding season explain evolution of a sexual signaling trait in 
a tropical lizard clade? 
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ABSTRACT 
            
            
 Sexually selected traits are expected to increase in importance when the period of 
sexual behavior is constrained. Seasonality may shorten breeding seasons and escalate 
competition for mates. Anolis lizard male dewlaps are classic examples of multifaceted 
signaling traits, with demonstrated reproductive function, and are the only known 
example of temporal constraint driving evolution of a sexual signal. A previous study by 
Fitch and Hillis suggested a correlation between dewlap size and seasonality in mainland 
Anolis. Here, we present two tests of the Fitch-Hillis Hypothesis using new phylogenetic 
and morphological data sets for Mexican Anolis. Once phylogenetic relationships are 
accounted for, the relationship between dewlap size and seasonality erodes. This loss of 
statistical support for a significant relationship between dewlap size and seasonality 
occurs at both a macroscale of most Mexican species and a microscale of the only species 
group to occur broadly over both environmental extremes: the silky anoles (sericeus 
group). Our results suggest that seasonality is not a strong driver of evolution of Anolis 
dewlap size in Mexico. Perhaps due to the remarkable variability in natural and sexually 
selective forces driving complex signaling traits such as the Anolis dewlap, a single, 
general mechanism is unlikely to explain their evolution. Although theoretically 
plausible, evidential support for temporal constraint driving evolution of sexually 
selected traits currently is lacking. 
 
KEYWORDS 
   Anolis, sexual selection, species recognition, sensory drive, dewlap, 
signaling trait evolution 
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INTRODUCTION 
 
  Signaling traits such as nuptial color in fish and bird songs are the focus of much 
research in evolutionary biology (1,2). Postulated mechanisms for the evolution of these 
traits span a variety of hypotheses of natural and sexual selection. Since many 
“successful” radiations exhibit such traits, they are also regularly identified as “key 
innovations” (3). Despite their apparent importance for evolution, determining selective 
drivers for signaling traits has proven difficult (2). 
  Anolis lizards are common research subjects in evolution (4). Among traits 
associated with Anolis, dewlaps are perhaps the most discussed and least understood. 
Males of almost all ~400 species have dewlaps, which are (usually) colorful flaps of skin 
used for species recognition, territorial behaviors, predator deterrence, and courtship (4). 
Dewlap size and color are incredibly variable in Anolis, and several attempts have been 
made to characterize general patterns (5-8). To date, these attempts have largely failed to 
find strong support for hypotheses expected to drive dewlap evolution. 
   Mechanisms suggested to play important roles in creating dewlap 
variation include species recognition (9), sensory drive (10,11), and sexual selection (5). 
The species recognition hypothesis suggests that dewlap variation evolved as a means for 
recognition of conspecifics (4). This hypothesis garners support from the observation that 
many anole assemblages are composed of multiple species with disparate dewlaps (4). 
Experimental and phylogenetic support for this hypothesis, however, has been elusive. 
Losos & Chu (6) and Nicholson et al. (7) tested for dewlap correlation with 
environmental, lineage, and assemblage factors across Anolis and found limited 
(nonsignificant; [6]) support for sensory drive and no support for other hypotheses. 
  Sexual selection is the only hypothesis that has been strongly supported in driving 
dewlap size across a broad sample of anoles. Fitch & Hillis (5) tested the hypothesis that 
dewlap size is correlated with length of the breeding season. They suggested that species 
with short breeding seasons have heightened levels of sexual selection relative to species 
that occupy aseasonal environments and breed almost year-round (5). Using data for 37 
species, they found that anoles in seasonal environments had larger dewlaps than 
aseasonal species (5). Additionally, species with larger dewlaps also exhibited stronger 
male-biased sexual size dimorphism, providing more support for their hypothesis. The 
one species (Anolis sericeus; now considered a species complex (12,14]) found in both 
seasonal and aseasonal habitats also exhibited the dewlap pattern, with populations in 
seasonal environments possessing significantly larger dewlaps than those from aseasonal 
environments. This study constitutes the only empirical support for temporal constraint 
driving the evolution of a sexually selected trait. 
  There are two potentially confounding factors in the Fitch & Hillis (5) study. 
First, they did not apply a phylogenetic correction to their data, as a reasonable 
phylogenetic hypothesis for their sampled species did not exist then. Additionally, their 
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incomplete and biased sampling may have misled results. For instance, 9 of the 16 
“seasonal” species were from a particular clade of west Mexican anoles that exhibits 
large dewlaps and occurs exclusively in seasonal areas, and there was also a notable lack 
of aseasonal species included.   
  Here, we aim to assess support for the Fitch-Hillis Hypothesis (FHH) of temporal 
constraint driving evolution of a sexual signaling trait. We do this at two scales. First, we 
test for a positive correlation between seasonality and dewlap size in Mexican anole 
species using phylogenetic regression. Second, we test for the same correlation within 
silky anoles (Anolis sericeus complex), the only species group that occurs broadly 
throughout highly seasonal and aseasonal environments in the region. We find no 
evidence for a significant relationship between seasonality and dewlap size once 
accounting for phylogenetic effects. 
 
METHODS 
 
Data collection and measurements 
 
  We took digital photographs of individuals collected in the field between 2010 
and 2017. Photos were taken by multiple investigators throughout Mexico, spanning all 
habitat types inhabited by anoles. We included images for which 1) a method of 
calibration for proper measurement was in the photo, 2) the lizard’s head was laid out 
flat, and 3) the individual was unquestionably a sexually mature male. As a proxy for 
lizard body size, we used head length (HL; 8). Measurements for HL (in mm) and dewlap 
area (mm2) were taken using ImageJ (16). Coordinates were taken at collection sites 
(error: 3-12 m). 
  We extracted seasonality data from the seasonality of precipitation (BIO15) layer 
available through WORLDCLIM (17) for each collection site using QGIS (18). These 
values represent the coefficient of variation of the precipitation data and should be tightly 
correlated with length of breeding season for anoles (Fig. 1). 
 
Macroanalyses  
 
  Mexican anole taxonomy has a long history of uncertainty (19,20). In our 
analyses, we included all Mexican species for which we had data, and for which previous 
research strongly supports their recognition (see supplementary material for details). To 
account for phylogeny in our macroanalyses, we used a recently published tree (15). We 
used the maximum clade credibility tree from the combined analysis of 46 morphological 
traits and 50 loci, trimming the tips to match the species for which we collected dewlap 
size data using the ‘ape’ package in R (21). 
  For each species, we averaged the relative dewlap size and seasonality values 
from the localities where a species was sampled. Because body size is a confounding 
variable for relative dewlap size (6), we ran a phylogenetic regression using the “gls” 
function in R (22) on log-transformed dewlap size with log-transformed HL for all 
species. We then used the residual values from that regression as relative dewlap size for 
each species. We performed another phylogenetic regression on the relative dewlap size 
against seasonality to test for a positive correlation between the two variables. We also 
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repeated the above analysis via standard (i.e., phylogenetically uncorrected) Ordinary 
Least Squares regressions. 
 
Microanalyses 
 
  In Mexico, the Anolis sericeus group consists of three divergent clades that may 
be considered separate species (but are monophyletic; 13; see Fig. 1 and online 
supplement). We averaged relative dewlap size for speciemens from each locality and 
performed a standard OLS regression of dewlap size and head length using all silky anole 
localities. Using the residuals from that regression as measures for relative dewlap size, 
we then ran a regression of those values against seasonality. Subsequently, we performed 
another regression analysis using localities from only the Pacific and Caribbean clades. 
The Yucatan population males are diagnosed by their small dewlaps, so by removing 
them, we tested whether the Yucatan is strongly influencing the results of the analysis 
when the group is analyzed as a whole. We also ran each lineage on its own to test for 
signal within each group. 
 
RESULTS 
 
Macroanalyses 
 
  Our sampling resulted in data for 181 adult male dewlaps representing 41 non-
silky anole species. Sampling within species ranged from 1-25 individuals from 1-19 
localities. Within-species variation in dewlap size and seasonality was minimal for 
species represented by multiple individuals and localities (online supplements; Table S1). 
  Our standard regression with no phylogenetic correction showed a significant 
positive correlation between relative dewlap size and seasonality (p = 0.02165; Fig. 2). 
Once accounting for the phylogenetic relationships, the correlation was nonsignificant (p 
= 0.3111; Fig. 2).   
 
Microanalyses 
 
  Our sampling for the silky anoles included 137 adult males representing 65 
populations/localities (20 Pacific, 27 Caribbean, and 18 Yucatan). The regression on the 
entire group resulted in a significantly positive correlation between relative dewlap size 
and seasonality (p = 0.00667, adjusted r2 = 0.097; Fig. 2). The regression incorporating 
only the Pacific and Caribbean lineages, however, fails to find a significant positive 
correlation between relative dewlap size and seasonality (p = 0.2498; Fig. 2). None of the 
single lineage analyses resulted in significant positive correlations between relative 
dewlap size and seasonality (online supplements; Fig. S1). 
 
DISCUSSION 
 

In our analyses at two evolutionary scales, the null hypothesis that dewlap size 
variation is unrelated to seasonality is accepted once shared evolutionary history is taken 
into account. In our macroanalysis, support without phylogenetic correction was much 
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weaker than in Fitch & Hillis (p = 0.02165 vs p < 0.001; 5), possibly reflecting more 
complete sampling in this study. The Yucatan silky anole lineage strongly influenced 
results of the micro-analysis because the lineage has a small dewlap and inhabits a region 
that is primarily aseasonal. The Caribbean lineage (sister to the Yucatan; 13) does not 
have a reduced dewlap and occurs in statistically indistinguishable seasonality 
environments (Table 1). If seasonality plays a large role in the evolution of dewlap size, 
we should see reduced dewlaps in both lineages found in relatively aseasonal 
environments or a significant increase in dewlap size in the lineage inhabiting highly 
seasonal environments. Neither of those observations obtains. 

Our results and those of others (6,7) suggest that sexual selection, species 
recognition, and sensory drive hypotheses are not supported as sole explanations driving 
dewlap variation in macroanalyses of anoles. However, certain undeniably important 
aspects of dewlap variation—in particular, color pattern and display mechanics—have 
been difficult to incorporate on a broad scale. Incorporating those factors is likely to be 
challenging. The variability in dewlap color, pattern, size, and use is truly remarkable in 
Anolis, and unlikely to be the result of a single selective force (6). 

With our finding of no strong association between dewlap size and seasonality, 
there currently is no support for temporal constraint driving evolution of sexual traits in 
any clade. Though Fitch & Hillis (5) suggested dewlap color could be a mitigating factor 
for size, our preliminary data do not support this idea. For instance, species with small 
dewlaps in seasonal environments do not have categorically “more bright” dewlaps than 
those with large dewlaps (supplementary material; Table S1). Mechanisms shaping the 
evolution of sexual traits are often difficult to determine in empirical systems (2). Perhaps 
approaches that incorporate more fine-scale inference of causal mechanisms (23) will 
find evidence for the FHH. Currently, however, the FHH remains theoretically plausible 
but is empirically unsupported. 
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FIGURE CAPTIONS 
 
Figure 1. (A) Map of sampling localities for the 41 species, with background raster 
reflecting seasonality (BIO15). (B) Sampling of the silky anoles, colored by clade. The 
Pacific clade (blue) occurs almost exclusively in the Pacific versant of southern Mexico, 
the Caribbean clade (purple) occurs south and west of the Yucatan in the Caribbean 
versant of Mexico, and the Yucatan clade (red) is only known to occur in the Yucatan 
Peninsula. These three clades form a monophyletic group to the exclusion of the rest of 
the silky anoles, which occur east and/or south of Mexico. 
 
Figure 2. (A) Plot showing standard Ordinary Least Squares (OLS) regression (black 
line; p = 0.02165) and Phylogenetic Least Squares regression (dotted red line; p = 0.26) 
of macro-analyses. (B) Plot showing OLS regression of all silky anole populations (black 
line; p = 0.00667) only Pacific and Caribbean silky anole populations (dotted red line; p 
= 0.1514). 
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TABLE 
 
Table 1. Silky anole sampling, along with average and range of seasonality experienced 
by each lineage. The Caribbean and Yucatan lineages occur in indistinguishable 
seasonality environments (t-test, p = 0.6377). 
 
Lineage Sample 

Number 
Number of 
Localities 

Average 
Seasonality 

Range of 
Seasonality  

Caribbean 58 27 71.1 44-103 
Pacific 39 20 96.2 76-111 
Yucatan 40 18 69.4 50-78 
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FIGURES 
 
Figure 1. 
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Figure 2. 
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SUPPLEMENTAL TEXT 
 
Taxonomic decisions 
 
Excluded taxa in macroanalyses 
 
The authors decided it would be premature to recognize several recently-described 
Mexican anole species that lacked strong evidence supporting their recognition. The main 
concern is that in recognizing lineages that do not properly reflect species-level diversity, 
we would potentially bias the results of our analyses. 
 
We excluded taxa that were described primarily on the basis of differences in hemipenial 
morphology between populations (Köhler & Veseley 2010; Köhler et al. 2010; Köhler et 
al. 2014). The reasoning for delimiting the populations as species by the authors is that 
hemipenial traits are likely to be associated with reproductive isolation. In the species 
groups that have been investigated with multiple lines of molecular and/or morphological 
evidence, this hypothesis has not been supported. For instance, there are now several 
documented examples of within-species and within-population variation in hemipenial 
morphology (Köhler et al. 2012; Phillips et al. 2015; Lara-Tufiño et al. 2016; Gray et al. 
2018). Finding variation in hemipenial morphology within species is to be expected due 
to high rates of hemipenial evolution (Klaczko et al. 2015) and the resulting likelihood of 
multiple hemipenial forms to exist prior to speciation (as expected with other traits not 
associated with reproductive isolation; Lara-Tufiño et al. 2016). Gray et al. (2018) used a 
large multilocus RAD data set to infer phylogeographic relationships in the silky anoles 
(Anolis sericeus complex) and found no association between population divergence and 
hemipenial morphology. The two taxa described based on hemipenial morphology that 
we excluded from analyses, A. carlliebi and A. sacamecatensis, were poorly sampled 
throughout the group’s continuous distribution, making it difficult to make a strong case 
in support of recognizing the putative species as valid at this point in time (Köhler et al. 
2014). 
 
We also excluded taxa that were described solely on the basis of varying levels of 
divergence among mitochondrial haplotypes (Köhler et al. 2014). There is an abundance 
of evidence that mtDNA haplotypes can exhibit strong patterns of divergence without 
barriers to gene flow (Irwin 2002; Funk & Omland 2003; Petit & Excoffier 2009), and 
anole systems have been known to show significant mitochondrial divergence between 
freely-interbreeding populations (Thorpe et al. 2008; Thorpe et al. 2010; Ng & Glor 
2011; Ng et al. 2016). Anole populations delimited as separate species by Köhler et al. 
(2014) exhibit far lower levels of mtDNA divergence than other populations known to 
maintain evolutionary cohesion (Thorpe et. al. 2008; Ng et al. 2011). Taxonomic 
conclusions were further confounded by not sampling near putative contact zones of the 
populations they described as separate species. A standard isolation-by-distance model 
explains the resulting phylogenetic structure in their analyses, and in the absence of 
evidence for reduced or absent gene flow it would be questionable to assume the 
populations are on independent trajectories. 
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For further information on species not recognized in our study, see Table S2. 
 
Microanalyses 
 
We grouped populations by clades recovered via phylogenetic analysis of a large 
multilocus genomic data set (Gray et al. 2018) rather than species delimited using 
hemipenial morphology (Köhler & Vesely 2010). The molecular data used in that study 
consists of over 500 restriction-site associated DNA (RAD) markers and attained strong 
resolution for clades within the silky anole group. The populations present in Mexico 
represent a monophyletic group that is deeply divergent from populations in Guatemala, 
Honduras, and to the southeast. Only the Yucatan lineage is morphologically distinct, 
which can be diagnosed by a smaller dewlap in males and a slightly larger dewlap in 
females (Lara-Tufiño et al. 2016). 
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SUPPLEMENTAL FIGURE CAPTION 
 
Figure S1. Figure showing best-fit Ordinary Least Square regression lines for each silky 
anole lineage. Red squares represent the Yucatan lineage, purple circles represent the 
Caribbean lineage, and blue triangles represent the Pacific lineage. The Caribbean 
regression line shows a positive slope, unlike the other two groups, but with a p-value of 
0.3964 it remains nonsignificant. 
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SUPPLEMENTAL FIGURE 
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SUPPLEMENTARY TABLES 
 
Table S1. Table providing details on per species sampling, range in dewlap size, 
seasonality of sampled localities, and dewlap color. For dewlap color, up to three colors 
are listed: primary color, secondary color, and tertiary color are ranked by proportion of 
each color in the dewlap. 
 
Anolis Species No. of 

Samples 
No. of 

Localities 
Range 

logdsize 
Range 

Seasonality 
Color 

alvarezdeltoroi 3 2 2.51-2.62 55-71 Red 
barkeri 3 3 2.69-3.13 44-65 Red/purple/white 
beckeri 6 5 1.68-2.36 44-54 Pink 
biporcatus 2 2 2.62-2.76 64-74 Blue/orange/white 
boulengerianus 10 8 1.94-2.46 106-115 Orange/yellow 
campbelli 2 1 2.4 65 Pink 
capito 3 3 2.01-2.22 68-71 Yellow 
compressicauda 3 3 2.37-2.41 44-57 Purple/yellow 
crassulus 4 3 2.13-2.47 75-85 Orange 
cristifer 1 1 2.27 86 Red 
cymbops 1 1 2.37 79 Pink 
dollfusianus 3 2 2.05-2.07 75-81 Yellow 
duellmani 7 3 1.97-2.37 63 Purple 
dunni 2 2 2.29-2.48 106-111 Red/yellow 
gadovii 1 1 2.78 108 Purple/pink 
hobartsmithi 2 2 2.23-2.25 47-50 Purple 
laeviventris 15 12 1.71-2.15 50-100 White 
lemurinus  16 12 1.84-2.4 53-76 Red/orange 
liogaster 2 2 2.21-2.52 102-103 Purple 
macrinii 1 1 3.14 90 Orange/white 
matudai 3 3 2.24-2.31 83-99 Purple 
megapholidotus 2 2 1.94-2 110-111 Pink 
microlepidotus 1 1 2.28 102 Orange/yellow 
milleri 1 1 2 81 Pink-purple 
naufragus 6 3 2.15-2.38 68-78 Orange-red 
nebuloides 13 10 1.97-2.63 93-109 Pink 
nebulosus 8 8 1.72-2.28 110-126 Orange 
omiltemanus 4 3 2.04-2.29 102-104 Orange 
parvicirculatus 2 2 2.38-2.41 80-83 Red/orange 
petersi 4 2 2.14-2.66 63-88 Red/black 
peucephilus 1 1 1.93 99 Orange 
purpuronectes 1 1 2.96 64 Purple 
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quercorum 3 2 2.26-2.41 87-90 Pink 
rodriguezii 25 19 1.67-2.03 44-89 Orange-

yellow/red 
rubiginosus 1 1 2.04 81 Pink 
schiedii 2 1 2.4-2.44 78 Orange 
serranoi 3 3 2.51-2.61 75-88 Red/black 
subocularis 6 6 2.46-2.87 107-113 Pink/yellow 
taylori 2 1 2.64-2.69 111 Red/mint 
tropidonotus 3 2 2.09-2.3 65 Yellow/red 
uniformis 3 2 1.95-1.97 53-64 Purple/pink 
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Table S2. Table  summarizing  evidence  for  and  against  recently  described  species  not  
recognized  in  this  study.  
  
 

 
 

 
 

Species not 
recognized 

Synonymous 
with 

Evidence for 
validity 

Evidence against 

Anolis nietoi Anolis 
nebuloides 

mtDNA 
clustering 

Phylogenetic trees not 
consistent using their 
markers; morphology and 
continuous distribution of 
population does not suggest 
reproductive isolation 

Anolis stevepoei Anolis 
nebuloides 

mtDNA 
clustering 

Phylogenetic trees not 
consistent using their 
markers; morphology and 
continuous distribution of 
population does not suggest 
reproductive isolation 

Anolis 
zapotecorum 

Anolis 
nebuloides 

mtDNA 
clustering 

Phylogenetic trees not 
consistent using their 
markers; morphology and 
continuous distribution of 
population does not suggest 
reproductive isolation 

Anolis carlliebi Anolis 
quercorum 

mtDNA 
clustering/hemi
penial 
morphology 

Morphology and only slight 
hemipenial differences. 
Molecular sampling 
missing many important 
localities. 

Anolis 
sacamecatensis 

Anolis 
quercorum 

mtDNA 
clustering/hemi
penial 
morphology 

Morphology and only slight 
hemipenial differences. 
Molecular sampling 
missing many important 
localities. 

Anolis 
immaculogularis 

Anolis 
subocularis 

Distinct in 
dewlap 
coloration from 
one species and 
in mtDNA 
divergence 
from another 

Phylogenetic trees show a 
clustering of a mix of 
immaculogularis and 
subocularis; the population 
described is not distinct in 
morphology or in mtDNA. 
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ABSTRACT 
 Anolis lizards (anoles) are common study subjects in ecology and evolution. They 
have been the focus of a large number of phylogenetic studies incorporating many 
different molecular and morphological data sets. Results from analyses of these data sets 
have been questioned based on problems of random and selective convergence, weak 
clade support, and the suspected inadequacy of the incorporated data types for resolving 
deep phylogenetic splits. Restriction-site associated DNA (RAD) markers are widely 
cited as being useful for phylogenetic inference of relatively young groups, not unlike 
mtDNA markers. However, few “old” groups have been investigated using these 
markers, and the sheer number of loci in RAD data sets has at times been used to useful 
phylogenetic effect. In this chapter, we attempt to assess the utility of RAD markers in 
resolving the phylogeny of a select group of anoles from across the clade and compare 
results from RAD analyses with phylogenetic inference of morphological and mtDNA 
data sets. We found that Bayesian phylogenetic analyses of our RAD markers produces a 
tree that is nearly completely resolved for most shallow and deep splits in anoles. 
Furthermore, the results are broadly congruent with our mtDNA analysis, suggesting, for 
the first time, some confidence in hypothesized deep phylogenetic relationships in anoles. 
Analysis of the morphological data set resulted in mostly unresolved relationships and 
produced no strong conflict with the molecular results. Our results suggest that RAD 
markers may be useful for lineages ~60 million years old, even when data matrices 
contain ~35% missing data. 
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INTRODUCTION 
 
 Anolis lizards have long been popular research subjects in biology. This 
popularity is due in part to Anolis being a classic example of an adaptive radiation, but 
other factors such as ease of study and relevance for sexual selection research are also 
responsible (Losos 2009). Two synapomorphic morphological traits—the dewlap, a 
sexual signaling organ, and toepads, expanded scales that facilitate climbing—are not 
unique to anoles but have nonetheless likely contributed to the diversification of the 
clade. Despite this extensive focus from researchers, known diversity within the genus is 
still underestimated. New species continue to be described, making it even clearer that a 
well-resolved, complete phylogeny of the group is not likely to be published soon. 
 Phylogenetics studies of Anolis have an extensive history and began, as studies of 
most groups have, with inference based on morphological traits (Etheridge 1959). The 
Etheridge work (1959) used skeletal traits to categorize groups of anoles, which were 
later expanded upon by Williams (1976). One influential finding of Etheridge (1959) was 
the discovery of a trait uniting the “Beta” anoles—transverse processes on the caudal 
vertebrae. “Alpha” anoles were species that lacked that trait. The first quantitative 
morphological phylogenetic analyses performed on a broad sampling of anoles 
incorporated a total of 27 species (Guyer & Savage 1992; see also Guyer & Savage 1986) 
and resulted in the suggested erection of new genera to accommodate what was clearly a 
diverse group of lizards. The genus Norops was applied to the monophyletic Beta anoles, 
a genus name that is still used by some workers (e.g. Nicholson et al. 2012). 
Morphological traits continue to be incorporated into phylogenetic analyses, though the 
characters used have changed a fair amount through time (Poe 2004; Poe et al. 2017). 

The first molecular phylogenetic analyses of anoles were aimed at resolving 
various subgroups of Anolis (Gorman 1973; Shochat & Dessauer 1981; Burnell & 
Hedges 1990), and greatly improved our understanding of evolutionary relationships. But 
the work that set the baseline for what marker would be sequenced during the Sanger 
sequencing period is Jackman et al.’s (1999) attempt at addressing broad relationships 
among anoles. In that work, they presented a new mtDNA data set composed primarily of 
the NADH dehydrogenase subunit 2 (ND2) and found that the several recent splits were 
strongly resolved in their analyses (Jackman et al. 1999). Moving forward, researchers 
built on the ND2 dataset (as well as the morphological data set) in attempts to resolve the 
phylogenetic relationships of anoles (Poe 2004; Nicholson et al. 2012), of which the 
recent culmination is Poe et al’s (2017) work that estimated phylogeny for all 379 species 
of Anolis that those authors judged to be valid at the time of that work. Although many 
other molecular markers, both mitochondrial and nuclear, have been added through time, 
the phylogenetic signal in ND2 has played an important role in phylogenetic inference of 
Anolis to date, and indeed of squamates in general (Townsend et al. 2004). 
 With the advent of Next Generation Sequencing (NGS) technologies, the ability 
to amass large nuclear genomic data sets has advanced research in phylogenetics 
(McCormack et al. 2013). Though various NGS data sets have been incorporated into 
multiple Anolis studies (Campbell-Staton et al. 2016; Manthey et al. 2016a; Tollis et al. 
2018), a data set has not yet been used to attempt to resolve broad phylogenetic 
relationships using Restriction-site Associated DNA (RADseq) or Ultra-Conserved 
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Elements (UCEs). Considering the dependence on the signal exhibited by mtDNA 
markers for understanding phylogenetic relationships of anoles, use of a large data set of 
highly variable and unlinked nuclear markers for anole phylogeny is warranted. 
Furthermore, such a data set could be very informative regarding the utility of the 
mtDNA signal for resolving older splits in this diverse group. 
 The aim of this paper is to assess the utility of a RAD marker data set in resolving 
evolutionary relationships of 43 species of Anolis in a Bayesian framework. Given 
expressed and demonstrated concerns about RAD data sets (Rubin et al. 2012), the RAD 
analysis may prove to have the same apparent limitation of the ND2 analysis—difficulty 
in finding support for branching order of deep splits (but see Harvey et al. 2016; Manthey 
et al. 2016). We also compared the consensus RAD tree to results of morphological and 
mtDNA analyses. The morphological analysis was not expected to provide much 
resolution with only 46 traits, but the mtDNA has been shown to provide reasonable 
support for the recent splits within Anolis. Comparison of the RAD and ND2 data sets 
should be informative for determining which recovered relationships are likely to reflect 
the true history of the group (Swofford 1991), and for testing the utility of these data sets 
for resolving deep splits in an old, diverse group (~46-64 mya; Poe et al. 2017).  
 
METHODS 
 

Samples chosen for sequencing were selected to maximize resolving deep splits in 
the Anolis tree based on Poe et al. (2017). Raw sequence reads were demultiplexed, 
quality filtered, and de novo assembled using pyRAD v3.0.66 (Eaton 2014). We followed 
the same methods as in Gray et al. (2018), exploring changes in parameters (minimum 
read depth, minimum coverage across samples, and maximum proportion of shared 
heterozygous sites) to see how they affected downstream results. 

Two data sets were compiled—one for all species for which we had >20% of the 
selected loci, and another for only the species that we also had both ND2 and 
morphological data. 
 
ND2 and morphological data 
 

The morphological data set of 46 traits and ND2 mtDNA sequences were taken 
from the Poe et al. (2017) data matrix. The ND2 data set was trimmed to 1037 bps shared 
by most samples. 
 
Phylogenetic analyses in MrBayes 
 

For the morphological analysis, 42 of the traits were ordered and 4 unordered. 
Gamma-distributed rate variation was allowed with six categories, as in Poe et al. (2017). 

For the ND2 and RAD analyses, we used PartitionFinder v1.1 to find an optimal 
partitioning scheme. There were three partitions for the ND2 analysis (one for each 
codon) and each locus was treated as a potential partition in the RAD data set. The best 
substitution model was selected via Akaike Information Criterion (AICc) from the 
models available in MrBayes. We also used “model-averaging” for RAD analyses in 
MrBayes (Stamatakis 2006; Moyle et al. 2012; Poe et al. 2017). 
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We ran all analyses for 10 million generations, sampling every 1000 generations, 
and used Tracer v1.4 (Rambaut & Drummond 2007) to verify convergence. 
 
Comparing trees 
 

Support for shared clades among consensus phylogenetic estimates was compared 
at nodes supported in the RAD tree by Posterior Probabilities (PP) of 0.95 and higher and 
at 0.99 and higher.   
 
RESULTS 
 

The 43 taxon RAD tree was very well-resolved, with 32/40 nodes resolved at 
>0.99 PP and 34/40 resolved at >0.95 (Figure 1; Table 1). A series of very short 
internodes exposes the difficulty of resolving branching order early on in the lineage 
sister to Anolis auratus. 

The Bayesian analysis of the morphological traits, as expected, did not lead to a 
well-supported tree. Two clades were recognized with very weak support (PP > 0.8), one 
clade with PP > 0.95 (Fig. 1), and none of those groups were supported by the ND2 or 
RAD trees. 

The ND2 tree had weak support for most clades (only 9 out of 24 nodes resolved 
with high PP > 0.95) and exhibited two major polytomies where branching order could 
not be resolved. One of these polytomies represents an inability to resolve branching 
order deep in the anole tree, while a second polytomy has seven branches and occurs at a 
shallower portion of the tree. 
 
DISCUSSION 
 
RAD markers and their utility in phylogenetic inference of old, diverse groups 
 

The most surprising result of this study is the strength of phylogenetic resolution 
of anole relationships for the 43 (mostly) distantly-related species. In Figure 3, we 
highlight the clades that are for the first time well-supported (PP > 0.99) in a broad 
sampling of anoles. Jackman et al. (1999) discussed evidence for a hard polytomy deep in 
the anole tree, but our RAD results do not support this inference. The most difficult to 
resolve portion of anole evolutionary history based on the RAD tree does not appear to be 
deep in the tree, but rather sorting the branching order of a series of mainland Draconura 
clades (Fig. 1). This result might be expected due to the large number of Mexican and 
Central American species included here and our sparse sampling of Caribbean lineages. 
Regardless of sampling effects, the deep branches in the anole tree appear, for the first 
time, to be strongly-supported. 

 
Patterns of Anolis phylogeny 

 
Our findings are significant in that the diversification of Draconura (the Norops 

lineage that re-invaded the mainland) is understudied but might represent fertile ground 
for testing several general evolutionary patterns. For instance, a large portion of the 
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species diversity within Anolis is in the Draconura clade, and these forms might 
constitute an adaptive radiation as shown classically among anoles in the Greater Antilles 
(Poe et al. 2018).  

Biogeographic patterns pointing to further testing also are evident in our RAD 
tree. Species represented in the strongly supported clades within that radiation are found 
throughout the mainland, from South America to Mexico. The sister to this putative rapid 
radiation event is Anolis auratus, a species with the bulk of its distribution in South 
America but reaches Central America in Panama. This relationship was found in Poe et 
al. (2017) but with weaker support (PP = 0.81). The finding suggests that after reinvading 
the mainland (believed to be within modern Mexico and Central America; Nicholson et 
al. 2005; Poe et al. 2017) from Jamaica, the next divergence event took place between 
Central and South America. Without a terrestrial bridge between Central and South 
America, the lineage would need to disperse over the ocean to reach South America. 
Once there, the ancestor of Anolis auratus and relatives (such as the A. chrysolepis series) 
diversified to a much lesser extent than its sister group in Central America. It is possible 
that the presence of anoline lizards in South America hindered the diversification of the 
auratus-chrysolepis lineage as compared to the rest of the Draconura in Central America 
and Mexico, where a significant portion of anoline diversity occurs. 
 
Phylogenetic analyses of mtDNA vs RAD markers 
 

Analyses of both ND2 and RAD markers supported a deep split between Dactyloa 
lineage anoles and the rest (Fig. 3). Generally, there is strong concordance between the 
two preferred trees. Nearly all clades supported with PP of >0.99 in the RAD analyses 
were either supported or not contradicted in the ND2 analyses (24 nodes out of 25 total). 
Only one node was strongly contradicted: in the RAD tree, Anolis macrolepis and A. 
lionotus were sister species, with A. gaigei as sister to them. In the ND2 tree, A. 
macrolepis was strongly supported as sister to A. gaigei, with A. lionotus as the outgroup. 
Since both analyses have PP above 0.99, the correct biological interpretation of this 
inconsistency may be past mitochondrial introgression between A. macrolepis and A. 
gaigei. Analyses of both data sets struggle to resolve the cluster of mainland lineages 
(marked Draconura on Fig. 3) that correspond with the re-invasion of the mainland from 
the Greater Antilles. However, it is worth noting that the polytomy in the 34 taxon RAD 
tree is partially resolved with the addition of more taxa in the 43 taxon tree (Figure 1). 
This result provides evidence that the addition of more taxa might further resolve 
branching order issues in the tree. 

The major difference between the RAD and ND2 trees is in overall node support 
(Fig. 3; Table 1). Analyses of the RAD data set provided much stronger resolution to 
clades at all levels of divergence. Relationships that had previously been weakly 
supported (Nicholson et al. 2012; Poe et al. 2017), such as A. extremus as being sister to a 
group of mainland Dactyloa anoles, are very strongly supported for the first time in our 
RAD tree. Matters of support notwithstanding, ND2 appears not to have been particularly 
misleading in phylogenetic studies of Anolis, as analysis of our nuclear data set consisting 
of hundreds of loci is largely congruent with the ND2 analysis. 
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CONCLUSIONS 
 

This first attempt at resolving phylogeny of anoles using an NGS data set suggests 
that RAD markers may be more useful than expected for phylogenetic inference of old 
and diverse groups (Rubin et al. 2012). It also verifies that ND2 has been a very useful 
and informative marker for inferring phylogeny of anoles, as the majority of supported 
relationships inferred from that gene are supported by analysis of a large number of 
nuclear loci. The comparatively cheap cost of RAD library preparation and sequencing 
may make this approach an appealing option for researchers aiming to uncover 
evolutionary relationships of relatively old lineages. In this study, we have found strong 
support for several evolutionary relationships in a difficult taxonomic group for the first 
time despite the old evolutionary history and high species diversity of this group. 
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FIGURE CAPTIONS 
 
Figure 1. Consensus tree of the 43 anole taxa from MrBayes analysis of RAD markers. 
 
Figure 2. (A) Consensus tree of 34 anole taxa based on MrBayes analysis of 46 
morphological traits, with monophyletic lineages from morphological analyses 
highlighted on ND2 (B) and RAD (C) trees. 
 
Figure 3. (A) Consensus tree of the 34 anole taxa based on MrBayes analysis of ND2 and 
(B) consensus of RAD analysis. Red dots indicate PP > 0.99, orange dots indicate PP 
0.99 > x > 0.95, and blue dots indicate PP < 0.95. 
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TABLE 
 
Table 1. Table summarizing congruence between 34-taxon RAD and ND2 trees. 
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Figure 2. 
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Figure 3. 
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CONCLUSIONS 
 

 In this dissertation I examined patterns of diversity and evolution in mainland 
Anolis lizards (anoles). In chapter one, I inferred phylogeographic relationships of a 
widespread species complex and delved into mechanisms of divergence. In chapter two, I 
tested a commonly-cited hypothesis for dewlap evolution using new data sets and 
methodology. In chapter three, I tested a new molecular marker set for phylogenetic 
utility in an old and speciose group. Each chapter, in its own way, demonstrated the 
potential for evolutionary investigations using mainland anoles as study subjects. 


