An-Najah National University

Faculty of Graduate Studies

Preparation of aromatic esters of 2-phenoxyethanol and exploring some of their biological activities

By

Nadine Mohammed Kamel Qalalweh

Supervisor Dr. Waheed J. Jondi Co-supervisor Dr. Orwa Housheya

This Thesis is submitted in Partial Fulfillment of the Requirements for the Degree of Master of Chemistry, Faculty of Graduate Studies, An Najah National University, Nablus- Palestine.

Preparation of aromatic esters of 2-phenoxyethanol and exploring some of their biological activities

By Nadine Mohammed Kamel Qalalweh

This Thesis was Defended Successfully on 29/9/2015 and approved by:

Defense Committee Members

1. Dr. Waheed J. Jondi / Supervisor

2. . Dr. Orwa Housheya/ Co- Supervisor

3. Dr. Siba Shanakand / External Examiner

4. Prof. Mohammed Al- Nuri / Internal Examiner

Vala J.J. Tond

iii **Dedication**

To my husband Waleed for his support, love, and encouragement.

To my daughters Loreen and Dania for their patience for being far from me, as I was busy all the time.

To my parents for helping, taking care and praying for me.

To my sister Haneen who supported me and shared my worries.

To my husband's family whom supported me and helped me by taking care of my daughters.

To my brothers for their love, sincere feelings and their moral support.

To my friends for their continuous support.

To all who prayed for me.

To all whom I loved and knew.

Acknowledgments

First, I need to express my deep gratitude to Almighty Allah who gifted me his blessings, and reconciled me to accomplish my studies and get the Master's degree. Thanks to Allah for granting me more than what I deserve, and for Allah's continuous care and generosity.

I would like to thank both of my supervisors Dr. Waheed J. Jondi and Dr. Orwa Houshia for their support throughout the several months of work of my Master thesis, keeping me going when times were tough, asking insightful questions, and offering invaluable advice.

I am also grateful to Dr. Ahmad Hussein for his continuous support and guidance from day one of my Master's work.

I am also grateful to my external and internal examiners, Dr. Siba Shanak and Prof. Mohammed Al- Nuri whom attendance of my defense is appreciated.

I also appreciate the lab technicians at An-Najah National University. In this respect, I especially thank Mr. Nafeth Dwekat. I am also thankful to the lab technicians at the Arab American University-Jenin (AAUJ), namely Eman Yasin, Reem Jalghoum, Yasmin Mar'i, and Yousef Shawareb.

My sincere indebtedness belongs to the Arab American University- Jenin for giving the chance to fulfill my graduate studies and improve myself. Very great help was also provided by NARC agricultural center for the measurements of MS data; and thanks extended to BERC Centre Til Village- Nablus for the study of the biological impact of my studied compounds.

Finally, it is my family, siblings, daughters and close friends who deserve my deep gratitude. Thank you for being in my life, what made this achievement and success possible. Lastly and exclusively, my warmest thanks must be to my husband, Waleed, for his continuous and unfailing love. With his support and understanding, he underpinned my persistence in my Master study and made the completion of my thesis possible.

أنا الموقع أدناه، مقدم الرسالة التي تحمل العنوان:

Preparation of aromatic esters of 2-phenoxyethanol and exploring some of their biological activities

أقر بأن ما شملت عليه هذه الرسالة إنّما هو نتاج جهدي الخاص، باستثناء ما تمّت الإشارة إليه حيثما ورد، وأنّ هذه الرسالة ككل، أو أيّ جزء منها لم يقدّم من قبل لنيل أيّ درجة أو لقب علميّ لدى أيّ مؤسسة تعليمية أو بحثية أخرى.

Declaration

The work provided in this thesis, unless otherwise referenced, is the researcher's own work, and has not been submitted elsewhere for any other degree or qualification.

Student's Name: Nadine Mohammed Kamel Ralatweh التوقيع: م Signature: التاريخ: 2015 / 29/ 29 Date:

vii List of Contents

No.	Subject	Page
	Dedication	iii
	Acknowledgements	iv
	Declaration	vi
	List of Tables	ix
	List of Figures	X
	List of Schemes	xi
	List of abbreviations	xii
	List of appendices	xi
	Abstract	xiii
	Chapter 1 : Introduction	1
1.1	Esterification	1
1.2	Natural esters	2
1.3	Esters as antioxidants	3
1.4	Phenoxyethanol	4
1.5	Carboxylic acids and carboxylic acid derivatives	5
1.6	Other benzoate esters	6
1.7	Chromatography	6
1.7.1	Thin layer chromatography (TLC)	6
1.7.2	Column chromatography	6
1.7.3	Dry column flash chromatography (DCFC)	6
1.8	Biological activity of some modified compounds	7
1.8.1	Anti-oxidants	8
1.8.2	Anti-microbial (antibacterial)	10
1.8.3	Anti-microbial (antifungal activities)	10
1.9	Aim of the study	11
	Chapter 2: Materials and Methods	13
2.1	Chemicals	13
2.2	Physical Measurements	14
2.3	General procedure for the syntheses of 2-phenoxyethyl	14
	benzoates	
2.3.1	Preparation of 2-phenoxyethyl 2-nitrobenzoate (I)	15
2.3.2	Preparation of 2-phenoxyethyl 3-nitrobenzoate (II):	16
2.3.3	Preparation of 2-phenoxyethyl 4-nitrobenzoate (III)	17
2.3.4	Preparation of 2-phenoxyethyl 2-bromobenzoate (IV)	17
2.3.5	Preparation of 2-phenoxyethyl 3-bromobenzoate (V)	18

	viii		
2.3.6	Preparation of 2-phenoxyethyl 4-bromobenzoate (VI)		
2.3.7	Preparation of 2-phenoxyethyl 2-methoxybenzoate		
	(VII)		
2.3.8			
	(VIII)		
2.3.9	Preparation of 2-phenoxyethyl 4-methoxybenzoate (IX) 2		
2.3.10	Preparation of 2-phenoxyethyl 3-aminobenzoate (X) 2		
2.3.11	Preparation of 2-phenoxyethyl 4-aminobenzoate (XI)	21	
3.3.12	Preparation of 2-phenoxyethyl 4-tertbutylbenzoate	22	
	(XII)		
2.4	General procedure of anti-fungal test for benzoate	22	
	compounds		
2.4.1	Preparation of samples for testing		
2.4.2	Antifungal testing		
2.5	General procedure of anti-oxidant test for benzoate 28		
	compounds		
2.6	General procedure of anti-bacterial test for benzoate 31		
	compounds 3.		
	Chapter 3: Results and Discussion	32	
3.1	Identification of 2-phenoxyethanol benzoates	32	
3.1.1	Mass Spectra	32	
3.1.2	Infra-red	39	
3.1.3	NMR		
3.2	Anti-fungal activity		
3.3	Anti-oxidant activity		
3.4	Antibacterial activity	52	
3.5	Suggestion for further work	55	
	References	56	
	Appendices	62	
	الملخص	Ļ	

ix List of Tables

No.	Subject	Page
1.1	Similar benzoate esters and its biological activity	6
1.2	Tinea infections range and its causative species	
2.1	Benzoate antifungal compounds	
2.2	Diameter zone (mm) of Trychophyton rubrum CBS 392.58 Netherland against three different concentration (c1,c2 andc3)	25
2.3	Diameter zone (mm) of Microsporum canis CBS 132.88 against three different concentration (c1,c2 and c3)	26
2.4	Diameter zone (mm) of Epidermophyton floccosum against three different concentration (c1,c2 and c3)	27
2.5	Absorbance for blank at different concentrations	29
2.6	Absorbance for the samples at different concentrations after the addition of benzoates	
3.1	Relative abundance of mass spectra of benzoate compounds in (%)	33
3.2	Frequencies of main functional groups of benzoate compounds in cm-1	41
3.3	Chemical shift in ppm, coupling constant, and splitting type of NMR spectra	43
3.4	Anti-fungal activity of benzoate compound against M. canis at three concentrations	
3.4.1	Anti-fungal activity of benzoate compound against T. rubrum at three concentrations	
3.4.2	Anti-fungal activity of benzoate compound against F	
3.5	percent inhibition of radicals by benzoate compounds at different concentrations	52

x List of Figures

No.	Subject	Page
1.1	General equation of Fischer esterification	1
1.2	Equations for classical methods of the formation and hydrolysis of esters	2
1.3	Examples on natural esters	3
1.4	Phenoxyethanol	
1.5	Dry column flash chromatography setup	7
1.6	Configuration of free radical	9
3.1	General naming of each carbon in benzoate compounds	44
3.2	Anti-fungal testing of compound number 12 against E. flaccosum	46
3.2.1	Anti-fungal testing of compound number 10 against T. rubrum	47
3.2.2	Anti-fungal testing of compound number 11 against E. flaccosum	47
3.2.3	Anti-fungal testing of compound number 10 against E. flaccosum	48
3.3	% Inhibition of benzoate compounds against three fungus at 375 μ g/ml	50
3.3.1	% Inhibition of benzoate compounds against three fungus at 750 μ g/ml	50
3.3.2	% Inhibition of benzoate compounds against three fungus at 1500 μ g/ml	51
3.4	% Inhibition of DPPH for the tested compounds	53
3.5	IC50 for tested compounds	
3.6	Anti-bacterial testing of benzoate compounds against Staphylococcus aureus	54
3.6.1	Anti-bacterial testing of benzoate compounds against Escherichia coli	55

xi List of Schemes

No.	Subject	Page
2.1	General equation for synthesis of 2-phenoxyethyl benzoates	14
3.1	Fragmentation of 2-phenoxyethyl x-nitrobenzoate	34
3.2	Fragmentation of 2-phenoxyethyl x-bromobenzoate	35
3.3	Fragmentation of 2-phenoxyethyl x-methoxybenzoate	36
3.4	Fragmentation of 2-phenoxyethyl x-aminobenzoate	37
3.5	Fragmentation of 2-phenoxyethyl 4-tertbutylbenzoate	38

List of Appendices

Number	Subject	Page
Ι	Infra-Red Spectroscopy (IR)	62
II	Nuclear Magnetic Resonance Spectroscopy (NMR)	68
III	Mass Spectroscopy (MS)	99

xii List of Abbreviations

Symbol	abbreviation	
RNS	Reactive nitrogen species	
ROS	reactive oxygen species	
BERC	Biodiversity & Environmental Research Center	
NARC	National Agriculture Research Center	
DPPH	1,1-Diphenyl-2-picryl-hydrazyl	
PABA	p-aminobenzoic acid	
_ ~ ~ ~		

DCFC Dry column flash chromatography

Preparation of aromatic esters of 2-phenoxyethanol and exploring some of their biological activities. By

Nadine Mohammed Kamel Qalalweh **Supervisors** Dr. Waheed J. Jondi Dr. Orwa Housheva

Abstract

2-Phenoxyethanol was reacted with twelve different benzoic acids to give the corresponding substituted benzoate esters (I - XII). The structures of these esters were established by Fourier Transform Infrared (FT-IR), Gas Chromatography Mass Spectrometry (GC-MS), and Proton Nuclear Magnetic Resonance (¹H-NMR).

The benzoate esters were tested for their anti-fungal, anti-oxidant, and antibacterial activity.

The fungus *M. canis* was 100% (completely inhibited) when treated with V, VI, VII, X, XI (1500 µg/ml); III (750 µg/ml); and XII (375 µg/ml).

Fungus T. rubrum was 100% inhibition when treated with IX (1500 μ g/m); and V, X, XII (750 μ g/ml).

The last fungus E. flaccosum was 100% inhibition when treated with V, IX, X, XII (1500 μ g/ml). The anti-oxidant test show very good results with compound XII which has $IC_{50}=22$ compared to ascorbic acid $IC_{50}=95$.

The anti-bacterial test show negative results compared with gentamicin. Biological activity of the esters has shown promising results.

xiii

Chapter One

Introduction

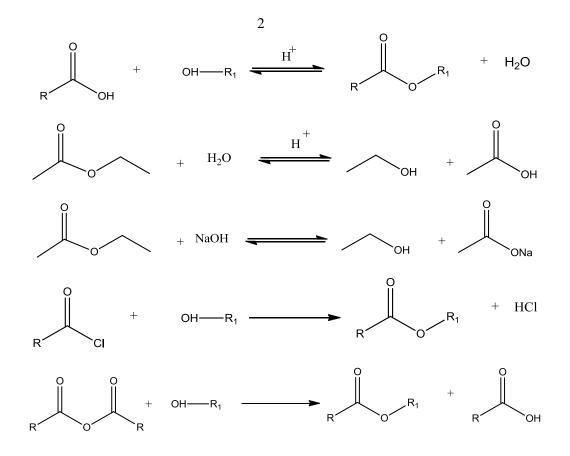
1.1 Esterification

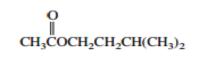
Esters are organic compounds derived from the reaction of an acid (organic or inorganic) and an alcohol catalyzed by small amount of concentrated sulfuric acid or hydrogen chloride through a condensation reaction known as Fischer esterification as illustrated in **Fig 1.1**. [1]

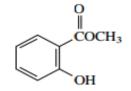
Figure 1.1: general equation of Fischer esterification

Fischer esterification is reversible with an equilibrium shifted forward in simple alcohols and simple carboxylic acids, but backward when one or both of the alcohol and the carboxylic acid are bulky. The hydrolysis is, also preferred in aqueous solutions [1, 2, 3].

A none reversible method for the preparation of none hindered esters is the reaction of alcohols with acid chloride [1, 4] or acid anhydrides, but the yield for the bulky esters still low [1]. Equations for classical methods of the formation and hydrolysis of esters are shown in **Fig. 1.2**



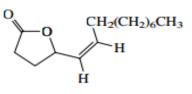

Figure 1.2: Equations for classical methods of the formation and hydrolysis of esters

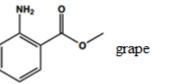

1.2 Natural esters

Natural esters are found in many fruits, flowers and vegetables, and responsible for the pleasant smell, taste and aroma. These esters are fairly volatile, as a result of their low molecular weights [5]. Aroma or fragrance is a chemical compound that has a scent or perfume. Aroma of oranges. For example, contains 30 different esters along with 10 carboxylic acids, 34 aldehydes, 34 alcohols, ketones, and 36 hydrocarbons [6]. Examples of natural esters are shown in **Fig.1.3**.

1.3 Esters as antioxidants

Esters can be used as food additives, preservative and flavoring agents. Easters containing phenolic functional groups may exhibit antioxidant activity. These antioxidants not only have a wide range of uses as food preservative, but also are used in cosmetics, pharmaceuticals and industrial products. Examples of such antioxidants are Octyl, Dodecyl, Tetradecyl, Hexadecyl, and Octadecyl gallates [7, 8].The antioxidant activity of phenolic acids alkyl esters also shows high levels of potency [9].




3-Methylbutyl acetate (contributes to characteristic odor of bananas) Methyl salicylate (principal component of oil of wintergreen)

н COCH₂CH₃ H Ő

Ethyl cinnamate (one of the constituents of the sex pheromone of the male oriental fruit moth)

(Z)-5-Tetradecen-4-olide (sex pheromone of female Japanese beetle)

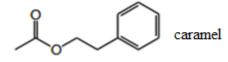
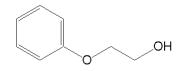



Figure 1.3: Examples on natural esters [6].

1.4 Phenoxyethanol

Phenoxyethanol**Fig.1.4** is a colorless liquid. It is used as a chemical preservative. Phenoxyethanol is an excellent and manageable alternative form of preservatives to the standard formaldehyde/phenol-based embalming fluids [10].

Figure 1.4: Phenoxyethanol

Other uses of phenoxyethanol include, skin disinfection during the first seven days of life in premature newborns [11].Phenoxyethanol is used in cosmetic products as a preservative and fixative. Literature suggests that dermal exposure to phenoxyethanol does not have severe toxic effects. Many human irritation patch tests have shown that skin irritation is rare, but some case reports have associated phenoxyethanol with skin dermatitis [12].

Several plants contain ingredients that have antibacterial, antifungal, and anticancer activities and Urticapilulifera is one of them. Traditional medicine uses plants due to their biological activity, such as antioxidant properties. Many herbs and spices have medicinal properties that alleviate symptoms or prevent disease. [13, 14].

Phenoxyethanol was extracted from Urticapilulifera, called (nettle) in Roman and (qurraus) in Palestine. It is known in many countries around the world as a traditional medicine for curing sore joints which can be done by mixing plant juice with oil. It also has a good antioxidant activity [15, 14].

1.5 Carboxylic acids and carboxylic acid derivatives

The carboxylic acid functional group can be an important constituent of a pharmacophore [16]. Carboxylic acid derivatives have varied applications. Formic acid, for example, is the simplest carboxylic acid and has an effective role in the treatment against warts under the trade name Vårtfri (="Wart free") [17]. Aspirin is the ester of salicylic acid. Omega-3 carboxylic acids (Epanova) [OM3-CA] is an adjunct in diets to lower triglyceride levels in patients [18].

PABA is ashort name of p-aminobenzoic acid. Its potassium salt is used as a drug against fibrotic skin disorders, as for example Peyronie's disease. The trade name of this drug is Potaba. PABA is found in the folic acid vitamin and in several foods including grains, milk, eggs, and meat. [19].p-Methoxybenzoic acid was found to possess significant antihepatotoxic activity [20].

1.6 Other benzoate esters

compounds	biological activity [15]
2-phenoxyethyl benzoate	anti-bacterial [15]
2-phenoxyethyl 4-hydroxybenzoate	anti-fungal and anti-cancer [15]
2-phenoxyethyl 3-hydroxybenzoate	anti-bacterial [15]
2-phenoxyethyl 2-hydroxybenzoate	anti-cancer [15]

Table 1.1Similar benzoate esters and its biological activity

1.7 Chromatography

Chromatography was employed by the scientist Mikhail Tsvet in 1906, when he tried to separate pigments of a colored leaf such as chlorophyll, carotenes, and xanthophylls. The different colors of these compound gave the techniques its name [15][21].

1.7.1 Thin layer chromatography: TLC is used for non-volatile mixtures.The stationary phase is a solid of silica gel, aluminum oxide, or cellulose.The mobile phase is liquid.

1.7.2 Column chromatography: CC is used for large amounts of samples; and the separation depends on the partition, i.e., solute distribution between the mobile phase and stationary phase.

1.7.3 Dry column flash chromatography: DCFC is a safe, powerful, and easily applied preparative chromatography technique. Similar to the column chromatography, the dry-column flash chromatography includes packing the column with TLC adsorbent grade, loading the sample, and

eluting the column with suction **Fig 1.5**. This will give the advantage of TLC in separation, and the advantage of column chromatography in quantities. it is similar to vacuum filtration that uses the same glassware. The column is a sintered glass funnel contain a "dry" bed of silica gel, and the elution occurs through suction. The column is then drained dry after each fraction, which makes it much easier to pack the column, and the person will not be worried about their columns going "dry" [22].

Figure 1.5: Dry column flash chromatography setup

1.8 Biological activity of some modified compound

Biological activity refers to substances having or producing an effect on the living tissue or its ability to effect a change in a biological process. The relation between the molecular entity and the biological activity can be tested by answering the following questions: (1) what is it? (2) What does it do? And (3) how much of it is present? These questions can express the activity of the compound. The importance of biological processes refers to the description of functional relationships between biological activities and the chemical substances that express them [23].

1.8.1 Anti-oxidants

Anti-oxidant "free radical scavengers" are substances that may prevent or delay some types of cell damage by reacting with and blocking the activity of free radicals and preventing them from causing the damage of scavengers so as to prevent/delay different diseased states. These free radicals are considered as highly reactive species that have an odd number of electrons, which gives them high potentials to cause damage to cells called cellular pathologies. Some of these damages may lead to cancer. In the biological system, oxygen gives rise to a large number of free radicals and other reactive species collectively known as 'reactive oxygen species' (ROS). 'Reactive nitrogen species' (RNS) are another group of reactive species that play a dual role as both deleterious and beneficial species.[24,25, 26].

Antioxidants are very important organic compounds especially in designing new novel drugs. Two types of free radicals exist. The first type is synthesized naturally by the body. The second type is introduced to our bodies through external sources. Sources of radicals are tobacco smoke, exposure to the sun, and other pollution forms of the body. This makes endogenous antioxidants, which are used to neutralize free radicals. However, the body also needs external sources of antioxidants called (exogenous) sources or dietary antioxidants like fruits and vegetables [15, 27]. The high potential of free radicals gives them the high reactivity which harms the cells. They are created when an atom or a molecule either gains or loses an electron (a small negatively charged particle found in atoms) **Fig 1.6.** [28].

As the concentrations of free radicals increase, their hazard on the body increases and causes the damage to all major components of cells, including proteins, DNA, and cell membranes. Many of these mutagens and carcinogens may act through the generation of oxygen radicals, as a result of the damage of DNA. Such conditions are suitable environments for the establishment and progression of cancer [29, 30].

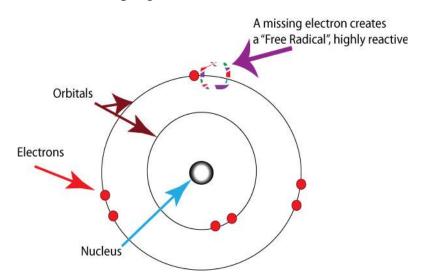


Figure 1.6: Configuration of free radical

Plants convert the solar energy into chemical energy so there's a hazard due to the excess energy and due to fear of oxidative damage of the plant cell. Nonetheless, the presence of antioxidant in plants will prevent the oxidative damage. Many of such compounds that protect plant cells are also found in human and protect human cells [31].

1.8.2 Anti-microbial (antibacterial)

Microbes are tiny organisms seen by a microscope. These microbes are found in air, soil, rock, plants, bodies and water. Microbes are known to replicate and spread rapidly. Microbial organisms include bacteria, viruses, fungi, and protozoa. Some microbes cause disease and are called parasites. However, many others exist in the body as normal flora without causing harm and may be beneficial [32].

Antimicrobial drugs are synthesized to inhibit the microbe without any side effects on the patients. [33].Antibiotics are one of the most important weapons we have in the fight against bacterial infections, and the manufacture of these antibiotics has a strong relationship with the nature of life associated with human health. But recently, these health benefits have become limitation because, and as a result of natural selection, bacterial resistance to these drugs is a major issue. In this respect, the development of medicines derived from natural sources play an important role in the prevention and treatment of human diseases [34].

1.8.3 Anti-microbial (antifungal activities)

An antifungal medicine is a drug that works selectively to eliminate fungal pathogens from a host with minimal toxicity to the host [26].Unlike bacterial disease, fungal diseases are more difficult to treat. Topical and oral treatments are long term and partially successful in controlling the fungus. Many of these infections will be chronic and if you are fortunate enough to rid the infection from your body, there is always the possibility of recurrence of the disease [15].

Fungal infections of the skin are the most abundant and widespread group of all mycoses. Skin mycoses affect more than 20–25% of the world's population, which makes them one of the most frequent forms of infections. [35].

The presentations of tinea infections range and its causative species are shown in the **Table 1.2**[36].

1.9 Aim of the study

The main objectives of this study are the following:

- 1- To prepare a series of substituted benzoates of 2-phenoxyethanol
- 2- To explore some of the biological activity of these esters
- 3- To enrich the literature with the physical data of these esters.

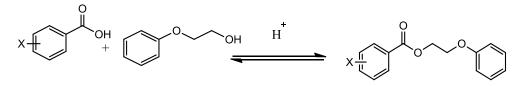
Tineainfections- type	Common causative species
Tineacapitis (scalp)	Trichophytontonsurans
	Microsporumandouinii
Tineacorporis	Microsporumcanis
(arms, legs and trunk)	Microsporumcanis
	Trichophytonrubrum
	M. Canis
Tineacruris (gorin)	T. tonsurans
	T. verrucosum
	T. verrucosum
	T. rubrum
	Epidermophytonfloccosum
Tineapedis (feet)	Epidermophytonfloccosum
	T. rubrum
	Trichophytonmentagrophytes
Tineamanuum(hand)	var <i>interdigitale</i>
	E. floccosum
	E. floccosum
	T. rubrum
Tinggunguium	T. rubrum
Tineaunguium (finger,nails,and toe	
nails)	
Tineaunguium	Trichophytonmentagrophytes
(finger, nails, and toe	var mentagrophyte
nails)	

Table 1.2Tinea infections range and its causative species.

¹³ Chapter Two Materials and Methods

2.1 Chemicals

The following chemicals were used: 2-nitrobenzoic acid, 3-nitrobenzoic acid, 4-nitrobenzoic acid, 2-bromobenzoic acid, 3-bromobenzoic acid, 4-bromobenzoic acid, 4-tertbutylbenzoic acid, 2-methoxy benzoic acid, 3-methoxy benzoic acid, 4-methoxybenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, agar, ethanol, Muller–Hinton agar, gentamicin, and econazole were purchased in purist form from Sigma-Aldrich. 2-phenoxyethanol, diethyl ether, cyclohexane, ethyl acetate were purchased from FRUTAROM. All chemicals and reagents were of analytical grade and used without further purification.


As for the microorganisms under microscope, all tested microorganisms in this work were obtained from Biodiversity & Environmental Research Village-Nablus. The included Center (BERC)Til bacteria were Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Klebsiellapneumoniae (ATCC 13883), Proteus vulgaris (ATCC 13315), Pseudomonas aeruginosa (ATCC 27853) and Escherichia coli (JM109). On the other hand, the fungi included in this study were *Microsporum can is* CBS 132. 88, Trichophytonrubrum CBS 392.58 and Epidermophytonfloccosum CBS 358.93, the isolates have been maintained on SDA (sabrose dextrose agar) Experimental cultures were kept on SDA media and subcultured on a monthly basis.

2.2Physical Measurements:

Melting point of each product was measured by stuart meting point apparatus, R00102618, ¹H –NMR was determined in Hashemite University/ Jordan (Bruker 500 MHz-Avance III). MS was done in the National Agriculture Research Center(NARC) by Thermofinnigan DSQ mass spectrometer. IR was performed through Fourier transform infrared spectrophotometer (Necolet Is5 - Id3).

2.3 General procedure for the synthesis of 2-phenoxyethyl benzoates:

The esters were prepared by the Fischer method according to the following equation:

Scheme 2.1: General equation for synthesis of 2-phenoxyethyl benzoates

Where X functional chemical group can be any of the following twelve entities:

I (X = 2-NO₂, 2-phenoxyethyl 2-nitrobenzoate)

II (X = 3-NO₂, 2-phenoxyethyl 3-nitrobenzoate)

III (X =4-NO₂, 2-phenoxyethyl 4-nitrobenzoate)

IV (X = 2-Br, 2-phenoxyethyl 2-bromobenzoate)

V (X = 3-Br, 2-phenoxyethyl 3-bromobenzoate).

VI (X = 4-Br, 2-phenoxyethyl 4-bromobenzoate).

VII (X= 2-OCH₃, 2-phenoxyethyl 2-methoxybenzoate).

VIII (X= 3-OCH₃, 2-phenoxyethyl 3-methoxybenzoate).

 $IX(X = 4 - OCH_3, 2 - phenoxyethyl 4 - methoxybenzoate).$

 $X(X=3-NH_2, 2-phenoxyethyl 3-aminobenzoate).$

XI (X = 4-NH₂, 2-phenoxyethyl 4-aminobenzoate).

XII (X= 4-*tert*-butyl, 2-phenoxyethyl 4-*tert*-butylbenzoate).

The proper amount of the corresponding substituted benzoic acid was mixed with a slight excess of 2-phenoxyethanol and one ml sulfuric acid, and refluxed for three hours in ultra-dry apparatus. The system was cooled to room temperature and allowed to stand overnight, then the solid product was collected and purified by Dry Column Flash Chromatography (DCFC) and by recrystallization.

2.3.1 Preparation of 2-phenoxyethyl 2-nitrobenzoate (I)

The condensation of 2-nitrobenzoic acid (13.3 g, 0.080 mol) and2phenoxyethanol (11 ml, 12.1g, 0.090mol) produced (I). (87.8%) (m.p.= 147-149 °C, lit. not found). **IR**:3030; 2800; 2927; 1734; 1602; 1536; 1354; 1281; 1236;1086; 1038; 734; 689 cm⁻¹.

Mass: m/z =287 ; 257 ; 195; 194; 150; 167; 165; 150;148; 104; 120; 122; 93; 77.

¹**H** NMR: $\delta = 8.08(1\text{H}, \text{ d}, J = 7.5 \text{ Hz})$; 7.85, (3H, m); 7.3 (2H, t, J = 8.01Hz); 6.97 (2H, d, J = 8.01 Hz); 6.95 (1H, t, J = 8.01 Hz); 4.62 (2H, t, J = 4.37 Hz); 4.28(2H, t, J = 4.37 Hz) ppm.

2.3.2 Preparation of 2-phenoxyethyl 3-nitrobenzoate (II)

The condensation of 3-nitrobenzoic acid (13.3 g, 0.080 mol) and 2-phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (II).(70.2%). (m.p.= 142-146 °C, lit. not found).

IR: 3050; 2831; 2974; 1718; 1686; 1580; 1486; 1275; 1242; 1098; 1040; 933; 749; 679; 544 cm¹.

Mass: m/z =287 ; 257 ; 195; 194; 150; 167; 165; 150; 148; 104; 120; 122; 93; 77.

¹**H NMR ppm:** δ = 8.62 (1H, s); 8.5 (1H, d, *J* =8.01 Hz); 8.36(1H, d, *J* =8.01 Hz); 7.84 (1H, t, *J* =8.01 Hz); 7.3 (2H, t, *J* =7.57 Hz); 7(t, 2H,, *J* = 7.57 Hz); 6.95(1H, t, *J* =7.57Hz); 4.69(2H, t, *J* = 4.50 Hz); 4.38 (2H, t, *J* = 4.50 Hz) ppm.

2.3.3 Preparation of 2-phenoxyethyl 4-nitrobenzoate (III)

The condensation of 4-nitrobenzoic acid (13.3 g, 0.080 mol) and 2-phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (III).(76.5%). (m.p.= 136-139°C, lit. not found).

IR:3053; 2970; 2890; 1719; 1599; 1522; 1498; 1344; 1439; 1274; 1085; 1063; 890; 754; 715; 508 cm⁻¹.

Mass: m/z = 287 ; 257 ; 195; 194; 150; 167; 165; 150; 148; 104; 120; 122; 93; 77.

¹**H NMR:** $\delta = 8.35(2H, d, J = 8.83 \text{ Hz})$; 8.19(2H, d, J = 8.83 Hz); 7.31(2H, t, J = 7.56 Hz); 6.99(2H, d, J = 7.56 Hz); 6.96 (1H, t, J = 7.56 Hz); 4.67 (2H, t, J = 4.4 Hz); 4.37(2H, t, J = 4.4 Hz) ppm.

2.3.4 Preparation of 2-phenoxyethyl 2-bromobenzoate (IV)

The condensation of 2-bromobenzoic acid (16 g, 0.080 mol) and 2phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (IV). (77.3%). (m.p.= 155-158 °C, lit. not found).

IR: 3010;2962; 2944; 1728; 1584; 1288; 1233; 1101; 1081; 1019; 928; 885; 743; 688; 641cm⁻¹.

Mass: m/z =322; 320; 229; 227; 185; 183; 165; 157; 155; 121; 104; 93; 77.

¹**H** NMR: $\delta = 7.76(2H)$; 7.5(2H); 7.3(2H, t, *J* = 7.66 Hz); 6.98 (2H, d, *J* = 7.66 Hz); 6.97(1H,t); 4.62 (2H); 4.33(2H) ppm.

2.3.5 Preparation of 2-phenoxyethyl 3-bromobenzoate(V)

The condensation of 3-bromobenzoic acid (16 g, 0.080 mol) and 2phenoxyethanol (11 ml, 12.1g, 0.090mol) produced (V).(70.3%). (m.p.= 160-163 °C, lit. not found).

IR:3055; 2949; 2854; 1715; 1589; 1565; 1489; 1453; 997; 893; 807; 792; 932; 760; 740; 722; 688; 669; 513 cm⁻¹.

Mass: m/z =321; 320; 229; 227; 185; 183; 165; 157; 155; 121; 104; 93; 77.

¹**H NMR:** δ = 8.05 (1H,s); 7.96 (1H, d, *J* =8.06 Hz);7.89 (1H, d, *J* =8.06 Hz); 7.76(2H); 7.51 (1H, t, *J* =8.06 Hz); 7.31 (2H, t, *J* =7.98 Hz);7(2H, d, *J* = 7.9 Hz);6.96 (1H, t, *J* =7.33 Hz); 4.62 (2H, t, *J* = 4.5 Hz); 4.36 (2H, t, *J* = 4.5 Hz) ppm.

2.3.6 Preparation of 2-phenoxyethyl 4-bromobenzoate(VI)

The condensation of 4-bromobenzoic acid (16 g, 0.080 mol) and 2-phenoxyethanol(11 ml, 12.1g, 0.090 mol) produced (VI).(65.6%). (m.p.= 165-167 °C, lit. not found).

IR:3047; 2954; 2881; 1715; 1589; 1566; 1489; 1453; 1294; 1244; 1084; 1130; 822; 807; 792; 760; 740; 688; 670 cm⁻¹.

Mass: m/z =321; 320; 229; 227; 185; 183; 165; 157; 155; 121; 104; 93; 77.

¹**H NMR**: δ = 7.88 (2H, d, *J* = 7.58Hz); 7.75(2H, d, *J* = 7.58Hz); 7.3 (2H); 6.99 (3H); 4.61(2H, t); 4.34 (2H, t) ppm.

2.3.7 Preparation of 2-phenoxyethyl 2-methoxybenzoate (VII)

The condensation of 2-methoxybenzoic acid (12.1g, 0.080 mol) and 2-phenoxyethanol (11 ml, 12.1g, and 0.090 mol) produced (VII). (84.7%). (m.p.= 134-137 °C, lit. not found).

IR: 3060; 2953; 2810; 1722; 1597; 1490; 1459; 1285; 1247; 1138; 1078; 1061; 760; 552 cm⁻¹.

Mass: m/z =227; 179; 165; 152; 135; 122; 107; 93; 77.

¹**H NMR:** $\delta = 7.64(1\text{H}, \text{d}, J = 7.67 \text{ Hz})$; 7.54(1H, t, J = 7.67 Hz); 7.3(2H, t, J = 7.84 Hz); 7.14(1H, d, J = 7.67 Hz); 7.02(1H, t, J = 7.67 Hz); 6.99(2H, d, J = 7.84 Hz); 6.95(1H, t, J = 7.84 Hz);4.55(2H, t, J = 4.3 Hz); 4.29(2H, t, J = 4.3 Hz); 3.8(3H,s) ppm.

2.3.8 Preparation of 2-phenoxyethyl 3-methoxybenzoate (VIII)

The condensation of 3-methoxybenzoic acid (12.1g, 0.080 mol) and 2-phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (VIII)(88.9%). (m.p.= 127-130 °C, lit. not found).

IR: 3050; 2942; 2831; 1718; 1686; 1581; 1486; 1428; 1306; 1243; 1098; 1041; 933; 749; 679; 544 cm⁻¹.

Mass: m/z = 227; 179; 165; 152; 135; 122; 107; 93; 77.

¹**H NMR:** $\delta = 7.55$ (1H, t, J = 7.7 Hz); 7.44 (2H, m); 7.3 (1H, t, J = 7.55Hz); 7.23 (1H, dd, $J_1 = 1.88$ Hz, $J_2 = 7.7$ Hz); 7.19 (1H, dd, $J_1 = 1.9$ Hz, $J_2 = 7.7$ Hz); 7 (2H, d, J = 7.55 Hz); 6.96(1H, t, J = 7.55 Hz); 4.61 (2H, t, J = 4.5 Hz); 4.34 (2H, t, J = 4.5 Hz); 3.81 (3H, s) ppm.

2.3.9 Preparation of 2-phenoxyethyl 4-methoxybenzoate (IX)

The condensation of 4-methoxybenzoic acid (12.1g, 0.080 mol) and 2-phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (IX) (82.9%). (m.p.= 123-126 °C, lit. not found).

IR:3040; 2927; 2842; 1708; 1604; 1497; 1456; 1279; 1249; 1167; 1084; 1029; 927; 844; 750; 689; 598; 567 cm⁻¹.

Mass: m/z= 227; 179; 165; 152; 135; 122; 107; 93; 77.

¹**H NMR:** δ = 7.92 (2H, d, *J* =8.85 Hz); 7.3 (2H, t, *J* =7.95 Hz); 7.05 (2H, d, *J* =8.85 Hz); 6.99 (2H, d, *J* =8 Hz); 6.96 (1H, t, *J* =7.33 Hz); 4.57 (2H, t, *J* = 4.5 Hz); 4.33 (2H, t, *J* = 4.5 Hz); 3.84(3H, s) ppm.

2.3.10 Preparation of 2-phenoxyethyl 3-aminobenzoate(X)

The condensation of 3-aminobenzoic acid (10.9g, 0.080 mol) and 2phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (X) (65.9%). (m.p.= 180-182 °C, lit. not found).

IR:3371; 3450;3050; 2924; 2875; 1702; 1598; 1454; 1289; 1240; 1082; 1043; 748; 688 cm⁻¹.

Mass: m/z= 321; 257; 207; 165; 164; 137; 122; 120; 93; 92; 77.

¹H NMR: δ = 7.31(2H, t, J =8.03Hz); 7.2 (1H, s); 7.15(1H, d, J = 7.5Hz);
7.11 (1H, t, J =7.5Hz); 6.99 (2H, d, J =8.03 Hz); 6.94 (1H, t, J = 8.03 Hz);
6.8 (1H, d, J =7.5 Hz); 5.38 (2H, s); 4.55 (2H, t, J = 4.2 Hz); 4.3 (2H, t, J = 4.2Hz) ppm.

2.3.11 Preparation of 2-phenoxy ethyl 4-amino benzoate (XI)

The condensation of 4-aminobenzoic acid (10.9g, 0.080 mol) and 2phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (XI) (81.4%). (m.p.= 107-110 °C), not found.

IR: 3349; 3214; 3035;3000; 2980; 1700; 1618; 1599; 1496; 1311; 1271; 1174;1153; 1053; 1027; 995; 880; 747; ;688; 526 cm⁻¹.

Mass: m/z = 321; 257; 207; 165; 164; 137; 122; 120; 93; 92; 77

¹**H NMR:** not measured.

2.3.12 Preparation of 2-phenoxy ethyl 4-tertbutyl benzoate (XII)

The condensation of 4-tertbutylbenzoic acid (14.2g, 0.080 mol) and 2-phenoxyethanol (11 ml, 12.1g, 0.090 mol) produced (XII) (85.2%). (m.p.= 151-154 °C, lit. not found).

IR: 2961; 2850; 1703; 1597; 1495; 1461; 1279; 1240; 1188; 1110; 1082; 1060; 1013; 924; 860 ; 751; 688; 605; 549 cm⁻¹.

Mass: m/z =298; 283; 205; 205; 191; 178; 165; 161; 146; 133; 120; 93; 77.

¹**H NMR:** δ = 7.9 (2H, d, *J* =8.45 Hz); 7.54 (2H, d, *J* =8.45 Hz); 7.3 (2H, t, *J* =7.57Hz); 6.99 (2H, d, *J* =7.54 Hz); 6.96 (1H, t, *J* = 7.33 Hz); 4.6 (2H, t, *J* = 4.5 Hz); 4.33(2H, t, *J* = 4.5 Hz); 1.3 (9H, s) ppm.

2.4 General procedure of anti-fungal test for benzoate compounds

2.4.1 Preparation of samples for testing

Eachcompound (100 mg) was dissolved in 10 mL of mixed solution (7 ml ethanol and 3 ml ethyl acetate), and the solution was sterilized using membrane filtration (0.45 µm millipore filters) for all of the following tests.

2.4.2 Antifungal testing

All benzoate compounds were tested at different concentrations **Table 2.1.** for their antifungal activities against the test pathogens by a modified "poisoned food" technique [37]. Different amounts of each compound were

incorporated in pre-sterilized SDA medium to prepare a series of concentrations of the compound (375, 750, 1500µg/ml). A mycelial agar disk of 5 mm diameter was cut out of 12 days old culture of the test fungus and inoculated on to the freshly prepared agar plates. In controls, sterile distilled water was used in place of the tested sample. Four replicate plates were used for each treatment (concentration).The inoculated plates were incubated in the dark at 24°C and the observations were recorded after 10 days. Percentage of mycelial inhibition was calculated using the following formula:

% mycelial inhibition = $\left(\frac{dc - ds}{dc}\right) \times 100\%$

where,

dc: colony diameter of the control

ds: colony diameter of the sample

As already introduced in the previous section, the twelve samples are listed in **Table** 2.1. The three mentioned fungi underwent the twelve different tests for the efficiency of benzoate treatment, namely Trychophyton rubrum **Table** 2.2,*Microsporum canis* **Table** 2.3,and Epidermophyton floccosum **Table** 2.4.

Sample number	Name of compound
Ι	2-phenoxyethyl 2-nitrobenzoate
II	2-phenoxyethyl 3-nitrobenzoate
III	2-phenoxyethyl 4-nitrobenzoate
IV	2-phenoxyethyl 2-bromobenzoate
V	2-phenoxyethyl 3-bromobenzoate
VI	2-phenoxyethyl 4-bromobenzoate
VII	2-phenoxyethyl 2-methoxy benzoate
VIII	2-phenoxyethyl 3-methoxy benzoate
IX	2-phenoxyethyl 4-methoxy benzoate
X	2-phenoxyethyl 3-aminobenzoate
XI	2-phenoxyethyl 4-aminobenzoate
XII	2-phenoxyethyl 4-tertbutyl benzoate

24 **Table 2.1 Benzoate antifungal compounds**

Table 2.2 Diameter zone (mm) of *Trychophyton rubrum* CBS 392.58 Netherland against three different concentration (c₁,c₂ and c₃)

Control	Diameter zone (mm) =22,21,23,22,23,23											
Compound	C1=1500ug/ml	Mean	C2=750ug/ml	Mean	C3=375ug/ml	Mean						
Ι	11,12,10,11	11	13,15,14,14	14	17,18,19,18	18						
II	10,9,10,11	10	14,15,13,14	14	17,18,19,17	17.75						
III	9,8,8,7	8	13,12,11,11	11.75	16,18,17,18	17.25						
IV	13,12,14,13	13	16,17,16,18	16.75	21,20,22,21	21						
V	V no growth no growth		no growth	no growth	12,11,13,12	12						
VI	12,13,11,11	11.75	17,16,18,17	17	20,21,19,20	20						
VII	11,10,9,10	10	17,18,15,16	16.5	17,18,20,19	18.5						
VIII	10,9,11,10	10	12,13,14,13	13	17,18,19,18	18						
IX	no growth	no growth	13,12,14,12	12.75	16,14,15,17	15.5						
Х	no growth	no growth	no growth	no growth	7,7,8,7	7.25						
XI	7,8,8,7	7.5	13,14,12,13	13	15,16,17,17	16.25						
XII	no growth	no growth	no growth	no growth	14,15,16,16	15.25						

Table 2.3 Diameter zone (mm) of Microsporumcanis CBS 132.88againstthreedifferentconcentration(c1,c2andc3)2- Microsporumcanis CBS 132.88

Control	Diameter zone (mm) =32,31,31,32,32,30 mean =31.3											
Compound	C1=1500ug/ml	mean	C2=750ug/ml	mean	C3=375ug/ml	mean						
I	15,14,16,14	14.75	20,21,20,20	20.25	23,22,22,21	22						
П	11,12,10,11	11	21,22,23,21	21.75	32,31,26,28	29.25						
Ш	Ш 0		0	0	10,12,11.13	11.5						
IV 17,16,18,17		17	23,24,25,25	24.25	30,29,31,29	29.75						
V 0		0	10,9,11,9	9.75	12,10,12,14	12						
VI	0	0	21,20,21,19	<mark>20.25</mark>	32,31,30,31	31						
XII	0	0	10,12,10,9	10.25	18,17,33,32	25						
VIII	10.11.11.12	11	12,14,11,11	12	15,14,16,14	14.75						
IX	15,14,13,13	<mark>13.7</mark> 5	20,21,20,22	20.75	31,31,32,31	<mark>31.2</mark> 5						
X	0	0	9,10,10,8	9.25	12,10,11,9	10.5						
XI 0		0	22,23,23,21	22.25	30,31,29,30	30						
XII	0	0	0	0	0	0						

Control	Diameter zone (mm) = 22,21,23,22,23										
Compound	C1=1500ug/ml	mean C2=750ug/ml		mean	C3=375ug/ml	mean					
Ι	11,12,10,11	11	13,15,14,14	14	17,18,19,18	18					
II	10,9,10,11	10	14,15,13,14	14	17,18,19,17	17.75					
III	III 9,8,8,7		13,12,11,11	11.75	16,18,17,18	17.25					
IV 13,12,14,13		13	16,17,16,18	16.75	21,20,22,21	21					
V no growth		no growth	no growth	no growth	12,11,13,12	12					
VI	VI 12,13,11,11		17,16,18,17	17	20,21,19,20	20					
XII	11,10,9,10	10	17,18,15,16	16.5	17,18,20,19	18.5					
VIII	10,11,12,11	11	16,14,17,17	16	17,18,19,18	18					
IX	no growth	no growth	13,14,14,12	13.25	16,14,15,17	15.5					
Х	X no growth		no growth	no growth	7,7,8,7	7.25					
XI	XI 7,8,8,7 7.5		13,14,12,13 13		15,16,17,17	16.25					
XII	no growth	no growth	no growth	no growth	14,15.16,16	15.25					

Table 2.4 Diameter zone (mm) of *Epidermophyton floccosum* against three different concentration $(c_1, c_2 \text{ and } c_3)$.

2.5 General procedure of anti-oxidant test for benzoate compounds

The hydrogen atom or electron donation abilities of the corresponding compounds were measured from the bleaching of the purple-colored methanolic solution of DPPH (1,1-Diphenyl-2-picryl-hydrazyl). This spectrophotometric assay uses the stable radical DPPH as a reagent [15].

One mL of various concentrations of the compounds (25,50,100,200,400 ug/ml) in (ethyl acetate and ethanol) was added to 4 mL of 0.004% methanol solution of DPPH. After 30 minutes of an incubation period at room temperature, the absorbance was read against a blank at 517 nm. The percent Inhibition I (%) of free radical by DPPH was calculated as follows:

$I(\%) = ((A_{blank} - A_{sample})/A_{blank}) \times 100\%$

where A_{blank} is the absorbance of the control reaction (containing all reagents except the test compound), and A_{sample} is the absorbance of the test compound. Compounds concentrations providing 50% inhibition (IC₅₀) were calculated from the plot of inhibition (%) against compound concentration. Tests were carried out in triplicates.The control is ascorbic acid.

	29
Table 2.5 Absorbance for	blank at different concentrations

Concentrationug/m	Abs	
C1	25	0.94
C2	50	0.78
C3	100	0.58
C4	200	0.26
C5	400	0.12

Table 2.6 Absorbance for the samples at different concentrations after the addition of benzoates

Sample number	Sample name	Absorbance (Mean)	Concentration ug/ml
Ι	2-phenoxyethyl 2-nitrobenzoate	0.65	25
		0.63	50
		0.62	100
		0.61	200
		0.42	400
II	2-phenoxyethyl 3-nitrobenzoate	0.66	25
		0.62	50
		0.61	100
		0.48	200
		0.45	400
III	2-phenoxyethyl4-nitrobenzoate	0.67	25
		0.62	50
		0.61	100
		0.6	200
		0.44	400
IX	2-phenoxyethyl2-bromobenzoate	0.65	25
		0.64	50
		0.61	100
		0.48	200
		0.46	400
V	2-phenoxyethyl 3-bromobenzoate	0.65	25
		0.64	50
		0.26	100
		0.52	200
		0.46	400

	30		
VI	2-phenoxyethyl 4-bromobenzoate	0.65	25
		0.63	50
		0.62	100
		0.6	200
		0.45	400
X / X		0.66	25
VII	2-phenoxyethyl 2-methoxybenzoate	0.66	25
	-	0.62	50
	-	0.6	100
		0.59	200
	-	0.45	400
VIII	2-phenoxyethyl3-methoxybenzoate	0.64	25
V III		0.63	50
		0.62	100
		0.62	200
	-	0.45	400
	-	0.45	400
IX	2-phenoxyethyl4-methoxybenzoate	0.64	25
		0.62	50
		0.61	100
		0.6	200
	-	0.42	400
		0.12	100
Х	2-phenoxyethyl3-aminobenzoate	0.64	25
		0.62	50
		0.58	100
		0.54	200
		0.45	400
XI	2-phenoxyethyl-4-aminobenzoate	0.65	25
		0.62	50
		0.61	100
		0.59	200
		0.46	400
		~ - /	~~
XII	2-phenoxyethyl-4-tertbutyl benzoate	0.54	25
	-	0.47	50
		0.41	100
		0.4	200
	_	0.33	400

2.6 General procedure of anti-bacterial test for benzoate compounds

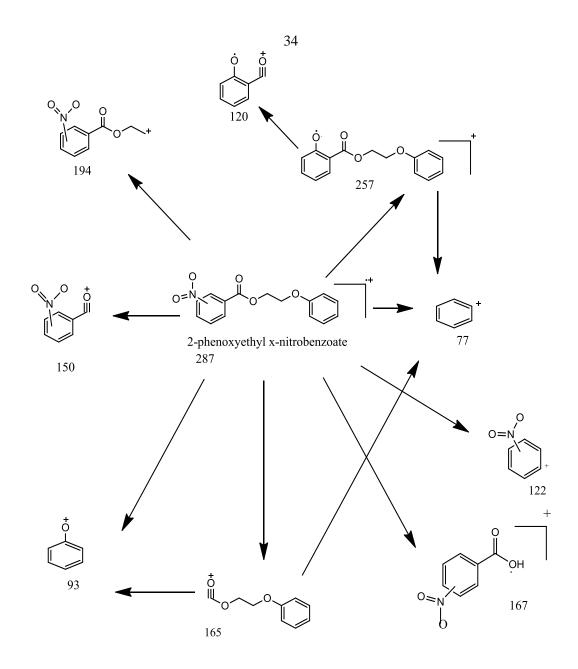
Antibacterial tests were then carried out by the disc diffusion method [38].Using an inoculums containing 10^6 bacterial cells/ml spread on Muller–Hinton agar plates (1 ml inoculums/plate). The discs (diameter= 6 mm) were impregnated with 2 ml of compounds(50 µg/disc) at a concentration of 10 mg/ml and placed on the inoculated agar and incubated at 37°C for 24 h. the control was gentamicin .

Chapter Three

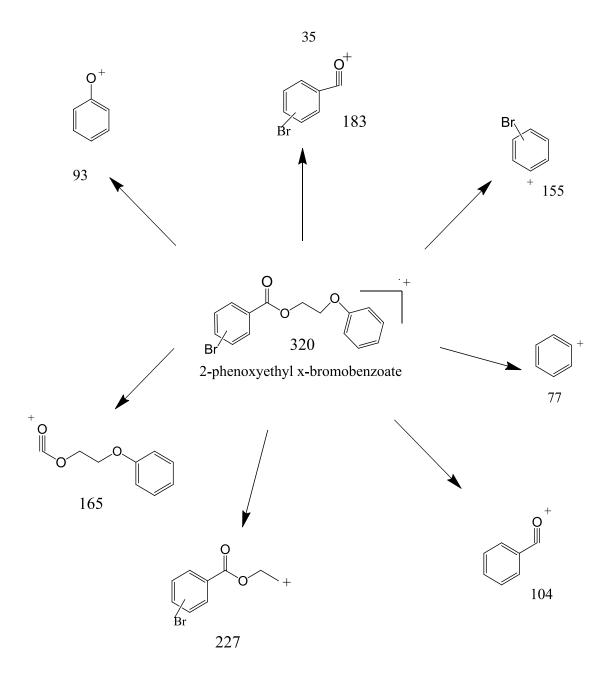
Results and Dissections

3.1 Identification of 2-phenoxyethanol benzoates:

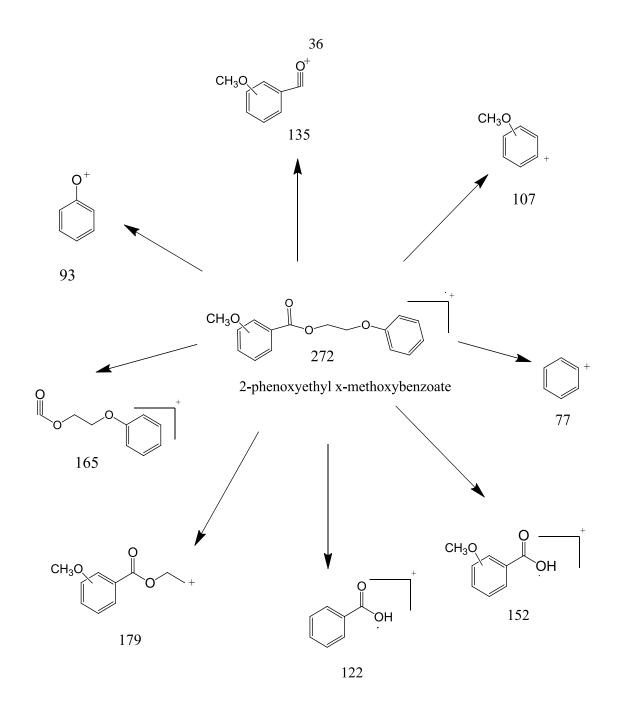
The structures of products were established by their Mass, Infra-red and Proton NMR spectral data.

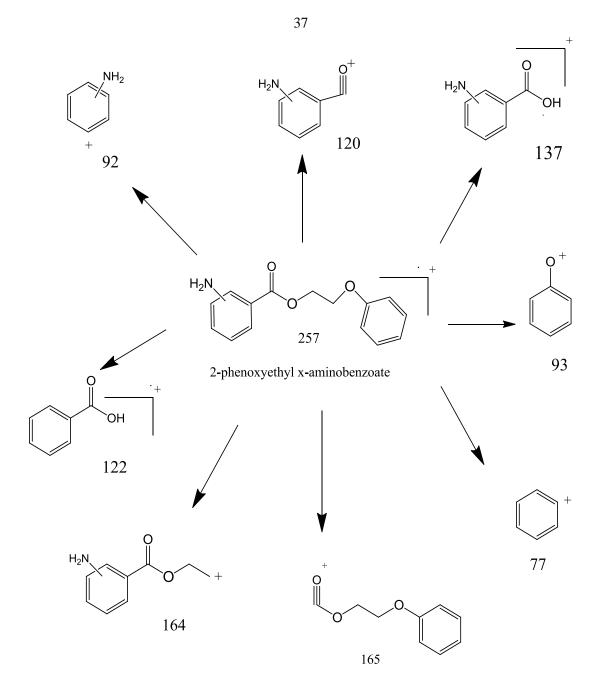

3.1.1 Mass Spectra:

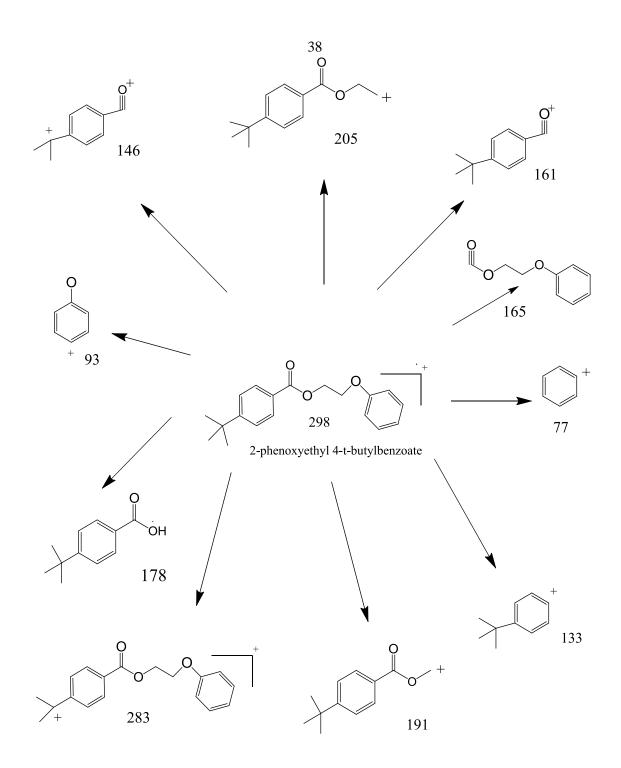
All esters are for the same alcohol, 2-phenoxyethanol, with substituted benzoic acids, so, the mass patterns are expected to be similar, except those fragments related to the type of substituent on the benzoic acid part of the ester **Table3.1**, **Schemes (3.1, 3.2, 3.3, 3.4, and 3.5)**, **Appendix I**.


The molecular ions are relatively stable as a result of the high number of functional groups and the high number of lone pairs and π -bonds. The oxonium ion resulting from the ester dissociation is the base peak in most cases. The McLafferty rearrangement is appearing in most structures. All spectra show the two aromatic fragments phenyl-from the phenoxy-group and the X-phenyl- from the carboxylic part of the ester. Other specific peaks resulting from the dissociation of the substituent, also, have been seen.

Cod	1	п	ш	IV	v	VI	VII	vш	IX	x	XI	хп
M+.	4	5	1	2	1.5	1	2.2	3.1	0.3	9	2.8	2.5
M-(Ph-O)	<u>100</u>	100	100	100	100	100	<u>100</u>	100	100	100	100	100
M-(Ph-X)	1.3	3	2.2	55	1993	10.00	<mark>0.1</mark>	0.1	0.1	8	11	3
phenoxy ion	6.2	5.11	2.8	2	1	1.2	4.6	3.1	1.5	5	5	10
a <i>romat</i> ic ion	20.8	34	24.4	34	26	20	80.5	53	25.5	13	27	85
(X-Ph)+	2.2	2	3.6	19.5	25.5	21	2.1	57	10	34.5	34	11
(X-Ph-C-	46.2	100	53	61.5	59	60	100	100	76	58	91.5	100
mclaffecte ion	4	0.5	0.5	-1	•	•	0.1	6	2.1	8	1	0.1
others	120 (13%) 257 (2.2%)	120 (13%) 257 (2.2%)	120 (34%)2 57 (0.5%)	104 (7.5%)	104 (11.5%)	104 (13.1%)	122 (2%)	122 (0.1%)		122 (2.1%)	122 (2%)	146 (51.5%) 191 (4%), 283 (4%)


 Table 3.1 Relative abundance of mass spectra of benzoate compounds in (%)


Scheme 3.1 Fragmentations of 2-phenoxyethyl x-nitrobenzoate


Scheme 3.2 Fragmentations of 2-phenoxyethyl x-bromobenzoate

Scheme 3.3 Fragmentations of 2-phenoxyethyl x-methoxybenzoate

Scheme 3.4 Fragmentations of 2-phenoxyethyl x-aminobenzoate

Scheme 3.5 Fragmentations of 2-phenoxyethyl 4-t-butylbenzoate

3.1.2 Infra-red

All IR spectra are in full agreement with the proposed structures **Table 3.2**, **Appendix I.**

All IR bands for all functional groups in the prepared compounds are seen obviously, even those small deviations due to the fine differences in structures can be explained. The -CH₂-CH₂- stretching (symmetric and asymmetric) bands appear clearly for all products in the range 2800-3000 cm⁻¹. The aromatic proton bond stretching bands are seen just above 3000 cm⁻¹. The bands for the carbonyl groups vary according to the specific structure of each compound.

The conjugated carbonyl group, with an aromatic ring, is expected to show bands in the range 1700-1710 cm⁻¹, this has been seen with exceptions for the ortho- products. The bulkiness of these groups prevent an ideal conjugation by distorting the planarity required for that and increasing the wave number. The C-C stretching for aromatic rings are found around 1590 and around 1490cm⁻¹. The C-O single bond of the ester stretches around 1240 cm⁻¹, that of the C-O of that with the aromatic ring is about 1280cm⁻¹, while that of the alcoholic C-O stretching is found around 1040 – 1060 cm⁻¹, in accordance with those found for esters of primary alcohols [39]. The out of plane pending of the aromatic C-H bonds for the monosubstituted ring have been found at around 690 and 750 cm⁻¹ and those for the di-substituted aromatic ring are clearly found at the expected frequency.

3.1.3 NMR

The proton NMR spectra of the esters I – XII have been obtained and analyzed. The high resolution of the machine (500 MHz) has approximated the expected very complex spectra, such as the AA'XX' and AA'BB' for aromatic system into simple A_2X_2 , AX_2 and so on. The simple coupling constants can be calculated even for the aromatic protons. Each spectrum is in complete consistence with corresponding compound **Table 3.3**, **Appendix II**. And each carbon in the benzoate compound are named as **Fig 3.1**.

The coupling constant were averaged because the resolution isn't enough to show the para and meta coupling.

The alcoholic part of the ester is the same and show very similar signals in their charts. The ethylene group shows two triplets at δ 4.2 -4.6 ppm with an average coupling constant (4.2-4.5 Hz).

Table 3.2 frequencies of main functional groups of benzoate compounds in cm⁻¹

Others	di- substituted	Mono- substituted	O-phenyl	O-C alcoholic	C-O carbony l	Aromatic C- C	C=O ester	C-H aromatic	CH ₂ CH ₂ stretching	SRd
N-O,1354 C-N,856	786	689 734	1281	1062	1236	1498 1536	1734	3030	2800 2927	I
N-O,1306 C-N,849	606,799	679,749	1275	1061	1242	1486 1537	1718	3050	2831 2974	П
N-0,1343 C-N,856	822	686,754	1274	1063	1240	1499 1522	1719	3053	2890 2970	Ш
C-Br,598	796	688,743	1288	1063	1233	1486 1585	1728	3010	2944 2962	IV
C-Br,599	670,760	688,722	1261	1064	1244	1489 1586	1715	3055	2854 2949	v
C-Br,599	837	683,750	1267	1066	1235	1483 1585	1702	3047	2881 2954	VI
CH3 bending 1380	522	693,760	1285	1062	1247	1490 1597	1722	3060	2810 2953	VII
CH3 bending 1366	606,799	679,748	1275	1061	1243	1486 1581	1718	3050	2831 2942	VIII
CH3 bending 1373	844	689,750	1279	1063	1249	1498 1604	1708	3040	2842 2927	IX
N-H 3450 3371	606,791	688,748	1289	1043	1240	1454 1598	1702	<mark>3050</mark>	2875 2924	x
N-H, 3349,3447	880	688,747	1271	1053	1271	1496,1599	1700	3035	2980 3000	XI
CH3bending 1370	826	688,751	1279	1060	1240	1495,1597	1703	848	2850 2961	XII

The peaks in nitro compounds found at the highest values about 8.5 ppm because the nitro group move the electron density away from the proton "deshielding" and the signal moves downfield (to the left).

Bromo group also is electron withdrawing group but less than the nitro one, the value of its chemical shift is about 8 ppm.

Methoxy group give lower chemical shift around 7.5 ppm because it is considered as electron releasing group which shield the protons moving the shift up-field (to the right).

Amino and tertiary butyl groups also are electron donating groups which were found at 7 and 7.9 ppm respectively.

Table 3.3: chemical shift in ppm, coupling constant, and splitting type of NMR spectra

cpd	С2-Н	С3-Н	С4-Н	С5-Н	С6-Н	C7-H	С8-Н	С10-Н	С11-Н	С12-Н	Х
I	_	8.08,d,1H J=7.5Hz	7.85,m Unresolvable	7.85,m Unresolvable	7.85,m Unresolvable	4.62,t,2H J = 4.37Hz	4.28,t,2H J = 4.37 Hz	6.97,d,2H J=8.01Hz	7.3,t,2H J=8.01Hz	6.95,t,1H, J=8.01	_
II	8.62,s, 1H	-	8.5, d,1H J=8.01Hz	7.84, t,1H J=8.01Hz	8.36,d,1H J=8.01Hz	4.69,t,2H J = 4.50Hz	4.38 ,t,2H J = 4.50 Hz	7,t, 2H J=7.57Hz	7.3,t,2H J=7.57Hz	6.95,t, 1H J=7.57 Hz	_
III	8.19,d,2H J=8.83Hz	8.35,d,2H J=8.83Hz	_	8.35,d,2H J=8.83Hz	8.19,d,2H J=8.83Hz	4.67,t,2H J = 4.4 Hz	4.37,t,2H J = 4.4 Hz	6.99,d,2H J=7.56Hz	7.31,t, 2H J=7.56Hz	6.96,t, 1H J=7.56 Hz	_
IV	-	7.76, 1H Low resolution	7.5, 1H low resolution	7.5, 1H low resolution	7.76,1H Low resolution	4.33 Low resolution	4.62 Low resolution	6.98,d,2H J=7.66 Hz	7.3,t,2H J=7.66	6.97,t,1H	_
v	8.05, s, 1H	_	7.96,d,1H J=8.06Hz	7.51,t,1H J=8.06Hz	7.89,d,1H J=8.06Hz	4.36,t,2H J = 4.5 Hz	4.62,t,2H J = 4.5 Hz	7,d,2H J=7.74Hz	7.31,t, 2H J=7.74Hz	6.96,t, 1H J=7.74 Hz	_
VI	7.75,d,2H, J=7.58Hz	7.88,d,2H, J=7.58Hz	_	7.88,d,2H, J=7.58Hz	7.75,d,2H, J=7.58Hz	4.34(2H) Low resolution	4.61,(2H) Low resolution	6.99(2H) Low resolution	7.3(2H) Low resolution	6.99(1H) Low resolution	_
VII	_	7.14,d,1H J=7.67Hz	7.02,t,1H J=7.67 Hz	7.54,t,1H J=7.67Hz	7.64,d,1H J=7.67Hz	4.55,t,2H J = 4.3 Hz	4.29,t,2H J = 4.3 Hz	6.99,d,2H J=7.84Hz	7.3,t,2H, J=7.84Hz	6.95,t,1H J=7.84 Hz	3.8,s 3H
VIII	7.44 (1H,s)	_	7.19,dd,1H J ₁ =1.9 Hz J ₂ =7.7 Hz	7.55, t,1H J=7.7Hz	7.23,dd,1H J=1.88 J=7.7 Hz	4.34,t,2H J = 4.5 Hz	4.61,t,2H J = 4.5 Hz	7,d,2H J=7.55Hz	7.3,t,2H J=7.55Hz	6.96,t,1H J=7.55Hz	3.81,s 3H.
IX	7.92,d,2H J=8.85Hz	7.05,d,2H J=8.85Hz	_	.05,d,2H J=8.85Hz	7.92,d,2H J=8.85Hz	4.33,t,2H J = 4.5 Hz	4.57,t,2H J = 4.5 Hz	6.99,d,2H J=7.76Hz	7.3,t,2H J=7.76Hz	6.96,t,1H J=7.76 Hz	3.84,s 3H

	44												
X	7.2, s,1H	_	6.8,d,1H J=7.5 Hz	7.11,t,1H J=7.5 Hz	7.15,d,1H J=7.5 Hz	4.3,t,2H J = 4.2Hz	4.55,t,2H J = 4.2Hz	6.99,d,2H J=8.03Hz	7.31,t,2H J=8.03Hz	6.94,t,1H J=8.03 Hz	5.38,s 2H		
X	I not measured	_	_	_	_	_	_	_	-	_	_		
X	I 7.9,d,2H J=8.45Hz		_	7.54,d,2H J=8.45Hz	7.9,d,2H J=8.45Hz	4.33,t,2H J = 4.5 Hz	4.6,t,2H J = 4.5 Hz	6.99,d,2H J=7.57Hz	7.3,t,2H J=7.57Hz	6.96,t,1H J=7.57 Hz	1.3,s 9H		

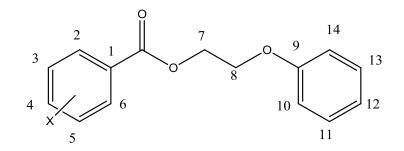


Fig 3.1 General naming of each carbon in benzoate compounds

3.2 Anti-fungal activity

Many anti-fungal substances are known and available in a few markets when compared to the antibacterial substances.

Anti-fungal medications for skin are also relatively unsatisfactory. The goal of this study is to find new anti-fungal compounds that are more powerful than the known fungal antibiotics used to fight a specific infections, e.g., skin infections. In drug discovery, the first aim is to find a *'lead* compound' that works as the 'active ingredient' of future medications that provoke fungal death. If our 'lead' compounds were found to cause fungal death, this may lead to the discovery of antifungal medicines as new chemical entities (NCE) that can have strong effect in killing some fungi [40].

Our compounds were tested for their antifungal activities against *M.* canis,*T.* rubrum, and *E.* flaccosum. **Tables 3.4, 3.4.1, 3.4.2**, respectively. The twelve tested compounds showed results as explained next. 2phenoxyethyl-4-nitrobenzoate showed complete inhibition against *M.* canis at 750 µg/ml, while the other two nitro compounds didn't show significant activity. 2-phenoxyethyl-3-bromobenzoate showed complete inhibition against *M.* canis at 1500 µg/ml acid and complete inhibition against *T.* rubrum at 750 µg/ml and at 1500 µg/ml for *E.* flaccosum. 2-phenoxyethyl 4-bromobenzoate showed complete inhibition against *M.* canis at 1500 µg/ml only, while the last bromo compound didn't show significant activity. 2-phenoxyethyl 2-methoxy benzoate showed complete inhibition complete inhibition against *T. rubrum*, and *E. flaccosum* at 1500 μ g/m. However, the last methoxy compound didn't show significant activity.

2-phenoxyethyl-3-aminobenzoate showed complete inhibition against *M. canis* at 1500 µg/ml, while*T. rubrum at* 750, and *E. flaccosum* at 1500 µg/ml. Fig 3.2.1.On the other hand, 2-phenoxyethyl-4-aminobenzoate showed complete inhibition only against *M. canis* at 1500 µg/ml. 2-phenoxyethyl-4-t-butylbenzoate showed complete inhibition against *M. canis* for the three concentrations and at 750 µg/ml for *T. rubrum* and for *E. flaccosum***Fig 3.2, 3.2.2, and 3.2.3.**

The type and the position of the functional group on the ring seems to affect the activity of the compound, although the three compounds have the same molecular weights and formulas.

Figure 3.2: Anti-fungal testing of compound number12 against E. flaccosum

Figure 3.2.1 : Anti-fungal testing of compound number 10 against *T. rubrum*

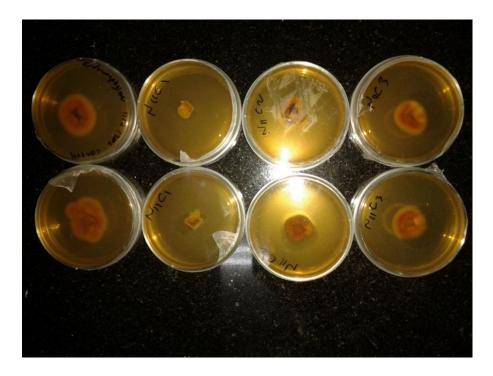


Figure 3.2.2 : Anti-fungal testing of compound number 11 against E. flaccosum

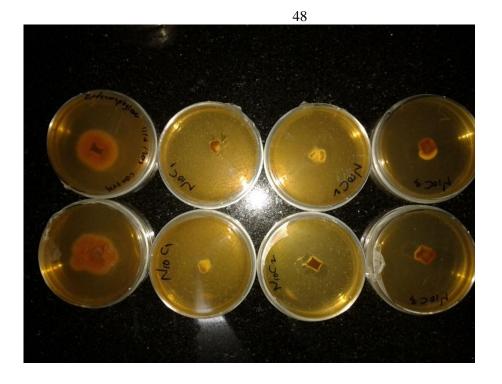


Figure 3.2.3 Anti-fungal testing of compound number 10 against E. flaccosum

Table 3.4Anti-fungal activity of benzoate compound against M. canis at	
three concentrations	

		M. canis					
no.	compound	375 μg/ml 750 μg/ml 1500 μg/m					
1	2-phenoxyethyl2-nitrobenzoate	29.7	35.3	52.9			
2	2-phenoxyethyl3-nitrobenzoate	6.5	30.5	64.8			
3	2-phenoxyethyl4-nitrobenzoate	63.2	100	100			
4	2-phenoxyethyl2-bromobenzoate	4.9	22.5	45.7			
5	2-phenoxyethyl3-bromobenzoate	61.7	68.8	100			
6	2-phenoxyethyl4-bromobenzoate	0.9	35.3	100			
7	2-phenoxyethyl2-methoxy benzoate	20.1	67.2	100			
8	2-phenoxyethyl3-methoxy benzoate	52.9	61.7	64.8			
9	2-phenoxyethyl4-methoxy benzoate	0.159	33.7	56.1			
10	2-phenoxyethyl3-aminobenzoate	66.4	70.4	100			
11	2-phenoxyethyl4-aminobenzoate	4.1	28.9	100			
12	2-phenoxyethyl4-t-butyl benzoate	100	100	100			

Table 3.4.1Anti-fungal activity of benzoate compound against T.

		T. rubrum				
no.	compound	375 μg/ml 750 μg/ml 1500 μg		1500 µg/ml		
1	2-phenoxyethyl2-nitrobenzoate	19.3	37.2	50.7		
2	2-phenoxyethyl3-nitrobenzoate	20.4	37.2	55.2		
3	2-phenoxyethyl4-nitrobenzoate	22.6	47.3	64.1		
4	2-phenoxyethyl2-bromobenzoate	5.8	24.9	41.7		
5	2-phenoxyethyl3-bromobenzoate	46.2	100	100		
6	2-phenoxyethyl4-bromobenzoate	10.3	23.8	47.3		
7	2-phenoxyethyl2-methoxy benzoate	17	26	55.1		
8	2-phenoxyethyl3-methoxy benzoate	19.3	41.7	55.1		
9	2-phenoxyethyl4-methoxy benzoate	30.5	42.8	100		
10	2-phenoxyethyl3-aminobenzoate	67.5	100	100		
11	2-phenoxyethyl4-aminobenzoate	27.1	41.7	66.4		
12	2-phenoxyethyl4-t-butyl benzoate	31.6	100	100		

rubrum at three concentrations

Table 3.4.2 Anti-fungal activity of benzoate compound against E.

flaccosum at three concentrations

		E. flaccosum					
no.	compound	375 µg/ml	750 µg/ml	1500 µg/ml			
1	2-phenoxyethyl 2-nitrobenzoate	18.9	36.9	50.4			
2	2-phenoxyethyl3-nitrobenzoate	20	36.9	54.9			
3	2-phenoxyethyl4-nitrobenzoate	22.3	47.1	64			
4	2-phenoxyethyl2-bromobenzoate	5.4	24.5	41.4			
5	2-phenoxyethyl3-bromobenzoate	45.9	100	100			
6	2-phenoxyethyl4-bromobenzoate	9.9	23.4	47.1			
7	2-phenoxyethyl2-methoxy benzoate	16.7	25.7	54.9			
8	2-phenoxyethyl3-methoxy benzoate	18.9	27.9	50.4			
9	2-phenoxyethyl4-methoxy benzoate	30.2	40.3	100			
10	2-phenoxyethyl3-aminobenzoate	67.3	100	100			
11	2-phenoxyethyl4-aminobenzoate	26.8	41.4	66.2			
12	2-phenoxyethyl4-t-butyl benzoate	31.3	100	100			

Figure 3.3: % Inhibition of benzoate compounds against three fungus at 375 µg/ml

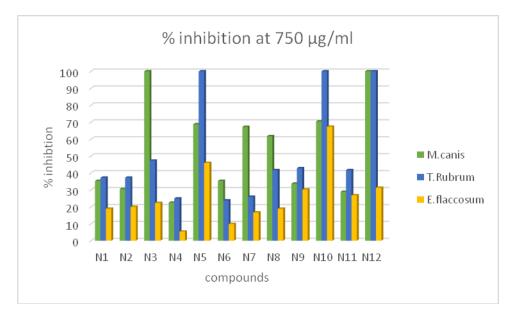


Figure3.3.1: % Inhibition of benzoate compounds against three fungus at 750µg/ml

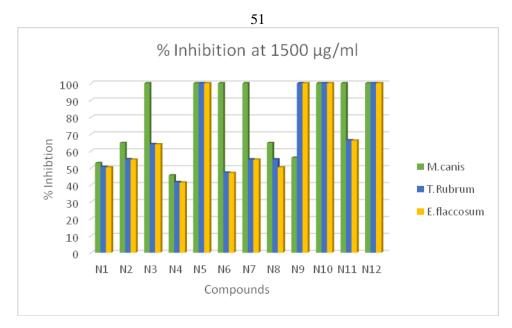


Figure 3.3.2 : % Inhibition of benzoate compounds against three fungus at 1500µg/ml

3.3 Anti-oxidant activity

DPPH (1,1-Diphenyl-2-picryl-hydrazyl) method was used to measure the anti-oxidant activity of benzoate compounds. Our compounds showed a reduction in the absorption of DPPH, but the differences in anti-oxidant activity between them were not sharp **Table 3.5**.

When antioxidants donate hydrogen atoms to the radicals, they lose their purple color. This in turn leads to a decreased absorption. The decrease in absorption is taken as a measure of the extent of radical scavenging. None of the compounds showed significant free radical scavenging activity, except compound XII which showed IC₅₀ at 22 μ g/ml this mean that the efficiency of compound XII is more than ascorbic acid. **Fig. (3.4), (3.5).** We also found that values of percent inhibition increased with increasing

concentrations. The values for free radical scavenging given by our compounds were lower than that of ascorbic acid.

The position of functional group as ortho-, *para-* or *meta-* has no or slight effect on the antioxidant activity. Our results are in good agreement with literature done on polyphenolic compounds, which showed that the structure not affect the antioxidant activity [41]. The 2-phenoxyethyl 4-t-butyl benzoate showed the highest anti-oxidant activity of our compounds.

Table	3.5Percent	inhibition	of	radicals	by	benzoate	compounds	at
differe	ent concentra	ations						

	Concentration	% Inhibition					
no.	μg/ml	25	50	100	200	400	
Ι	2-phenoxyethyl 2-nitrobenzoate	43	45	46	47	63	
II	2-phenoxyethyl 3-nitrobenzoate	43	46	47	58	61	
III	2-phenoxyethyl 4-nitrobenzoate	42	46	47	48	62	
IV	2-phenoxyethyl 2-bromobenzoate	43	44	47	58	60	
V	2-phenoxyethyl 3-bromobenzoate	43	44	46	55	60	
VI	2-phenoxyethyl 4-bromobenzoate		45	46	48	61	
VII	2-phenoxyethyl 2-methoxy benzoate		46	48	49	61	
VIII	2-phenoxyethyl 3-methoxy benzoate	44	45	46	48	61	
IX	2-phenoxyethyl 4-methoxy benzoate	44	46	47	48	63	
Х	2-phenoxyethyl 3-aminobenzoate	44	46	50	53	61	
XI	2-phenoxyethyl 4-aminobenzoate		46	47	49	60	
XII	2-phenoxyethyl 4-t-butyl benzoate	53	59	64	65	71	

3.4 Antibacterial activity

The benzoate compounds were tested against six bacteria that cause dermic and mucosal infections [42]. Results were negative and there was no activity against any of the tested types of bacteria at the concentration (10mg/ml) when compared with gentamicin **fig 3.6, 3.6.1**.

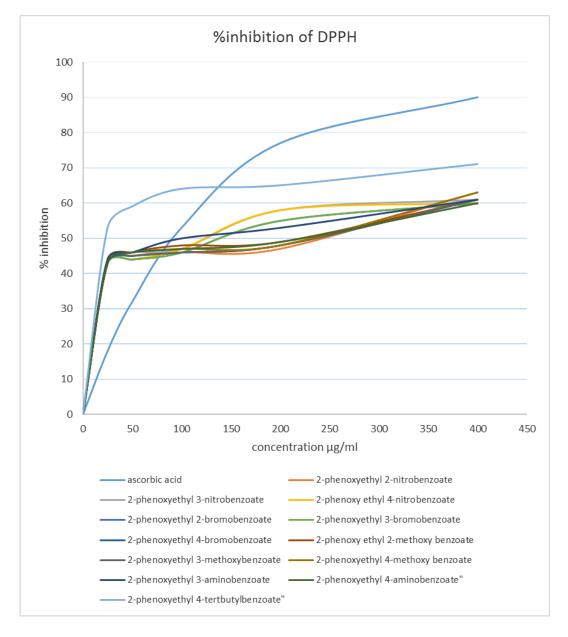


Figure 3.4 : % Inhibition of DPPH for the tested compounds

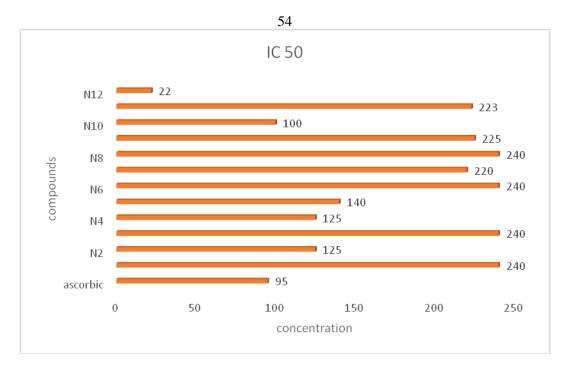


Figure 3.5: IC₅₀ for tested compounds

Figure 3.6 : Anti-bacterial testing of benzoate compounds against Staphylococcus aureus

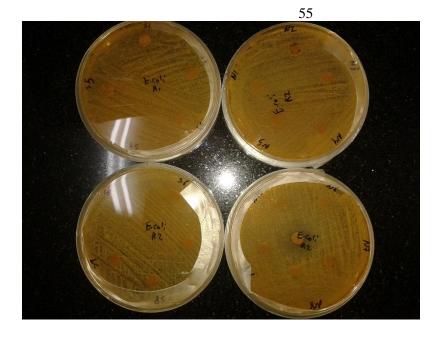


Figure 3.6.1: Anti-bacterial testing of benzoate compounds against Escherichia coli

Suggestion for further work

1-To prepare modified esters by adding functional group to the phenoxyethanol and react it with benzoic acid.

- 2-To prepare modified esters by exchanging the phenoxyethanol to 2-(phenylthio)ethanol
- 3- To do more tests on compound XII for example against internal fungi.
- 4- To test the compounds in the agrochemical industry, such as pesticides.

References

1. Solomons, G.T.W. (2004) **Organic Chemistry.** 8 ed. Wiley. New York, USA, 819.

2. Khurana, J.M., Chauhan, S. and Bansal, G. (2004) Facile hydrolysis of esters with KOH-methanol at ambient temperature. *Monatshefte Fur Chemie*, **135**, 83-87.

 Molinari, E. and Thomas, H. (1921). Treatis On General And Industrial Organic Chemistry.2 ed. Forgotten Books, London, Vol. 1, pp. 234.

4. Middleton, W.J. (1979) *One-step method for converting esters to acyl chlorides*. *Journal of Organic Chemistry*, **44**, 2291-2292.

5. Burdock, G.A. and Fenaroli, G. (2005) Fenaroli's handbook of flavor ingredients. 5 ed. CRC Press, Boca Raton, Fla.

 Carey, F. and Giuliano, R. (2010) Organic Chemistry. 8 ed. McGraw-Hill, Villanova University.

7. Vandermeeren, H.L.M. (1987) Dodecyl Gallate, permitted in food,is a strong sensitizer. *Contact Dermatitis*, 16, 260-262.

8. Morris, S.G., Kraekel, L.A., Hammer, D., Myers, J.S. and Riemenschneider, R.W. (1947) *Antioxidant properties of the fatty alcohol esters of gallic acid.* Journal of the American Oil Chemists Society, 24, 309-311.

Merkl, R., Hradkova, I., Filip, V. and Smidrkal, J. (2010)
 Antimicrobial and Antioxidant Properties of Phenolic Acids Alkyl Esters.
 Czech Journal of Food Sciences, 28, 275-279.

10. Wineski, L.E. and English, A.W. (1989) **Phenoxyethanol as a nontoxic preservative in the dissection laboratory.** Acta Anatomica, **136**, 155-158.

11. Buhrer, C., Bahr, S., Siebert, J., Wettstein, R., Geffers, C. and Obladen, M. (2002) *Use of 2% 2-phenoxyethanol and 0.1% octenidine as antiseptic in premature newborn infants of 23-26 weeks gestation*. Journal of Hospital Infection, 51, 305-307.

12. Park, H.-J., Kim, M.-J., Shin, M.-k., Lee, J.-D., Kim, J.-Y., Gwak, H.-M., Hyeon, J.-H., Um, Y.-M., Son, J.-Y., Kim, K.-S. *et al.* (2014) Human health risk assessment of phenoxyethanol in cosmetics. Toxicology Letters, **229**, S133-S133.

 Lai, P.K. and Roy, J. (2004) Antimicrobial and chemopreventive properties of herbs and spices. Current Medicinal Chemistry, 11, 1451-1460.

14. Husein, A., Jondi, W., Zatar, N. and Ali-Shtayeh, M. (2014) Synthesis and Biological Evaluation of Novel Mono Acid Esters Derived from the Constituents of Urtica pilulifera. Iranian journal of pharmaceutical research : *IJPR*, **13**, 1173-1181.

15. Husein, A. (2010), **Modification of Biologically Active Compounds from Selected Medicinal Plants in Palestine**. ph.D thesis, An-Najah National University, Palestine.

Ballatore, C., Huryn, D.M. and Smith, A.B., III. (2013) Carboxylic
 Acid (Bio)Isosteres in Drug Design. Chemmedchem, 8, 385-395.

17. Bhat, R.M., Vidya, K. and Kamath, G. (2001) *Topical formic acid puncture technique for the treatment of common warts*. International Journal of Dermatology, 40, 415-419.

 Blair, H.A. and Dhillon, S. (2014) Omega-3 Carboxylic Acids (Epanova((R))): A Review of Its Use in Patients with Severe Hypertriglyceridemia. American Journal of Cardiovascular Drugs, 14, 393-400.

19. Hussain, S., Abdul-Rahim, S. and Farooqui, M. (2014) *Potentiometric studies of p-amino benzoic acid with transition metal ions*. World journal of pharmacy and pharmaceutical sciences, **3**, 632-635.

20. Gadgoli, C. and Mishra, S.H. (1999) *Antihepatotoxic activity of pmethoxy benzoic acid from Capparis spinosa*. Journal of Ethnopharmacology, 66, 187-192.

21. Skoog, D.A., Holler, F.J. and Nieman, T.A. (1998) **Principles of instrumental analysis.** 5 ed. Saunders College Pub, Philadelphia.

22. Shusterman, A.J., McDougal, P.G. and Glasfeld, A. (1997) Drycolumn flash chromatography. Journal of Chemical Education, 74, 1222-1223.

23. Jackson, C.M., Esnouf, M.P., Winzor, D.J. and Duewer, D.L. (2007) **Defining and measuring biological activity: applying the principles of metrology. Accreditation and Quality Assurance, 12**, 283-294.

24. Diplock, A.T., Charleux, J.L., Crozier-Willi, G., Kok, F.J., Rice-Evans, C., Roberfroid, M., Stahl, W. and Vina-Ribes, J. (1998) Functional food science and defence against reactive oxidative species. British Journal of Nutrition, 80, S77-S112.

25. Vaidya, A.D.B. and Devasagayam, T.P.A. (2007) *Current status of herbal drugs in India: An overview*. Journal of Clinical Biochemistry and Nutrition, 41, 1-11.

26. Davies, K.J.A. and Pryor, W.A. (2005) **The evolution of Free radical biology & medicine: A 20-year history**. Free Radical Biology and Medicine, **39**, 1263-1264.

27. Halliwell, B. and Gutteridge, J.M.C. (1985) **Free radicals in biology and medicine. 2 ed. Clarendon Press,** Oxford.

28. Bouayed, J. and Bohn, T. (2010) Exogenous antioxidants-Doubleedged swords in cellular redox state Health beneficial effects at **physiologic doses versus deleterious effects at high doses.** Oxidative Medicine and Cellular Longevity, **3**, 228-237.

29. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M. and Telser, J. (2007) *Free radicals and antioxidants in normal physiological functions and human disease*. International Journal of Biochemistry & Cell Biology, **39**, 44-84.

30. Ames, B.N. (1983)Dietery carcinogens and anticarcinogensoxygen radicals and degenerative diseases. *Science*, **221**, 1256-1264.

31. Demmig-Adams, B. and Adams, W.W. (2002) Antioxidants in photosynthesis and human nutrition. *Science*, **298**, 2149-2153.

32. (U.S.), N.I.o.A.a.I.D. (2006). Understanding Microbes in Sickness and in Health National Institute of Allergy and Infectious Diseases, USA, pp. 4909-4914.

33. Aldomere, Y.A. (2015), Synthesis, Characterization, Antibacterial Activities of Novel Polydentate Schiff's Bases and Their Transition Metal Complexes, master's thesis, An-najah National University, Palestine.

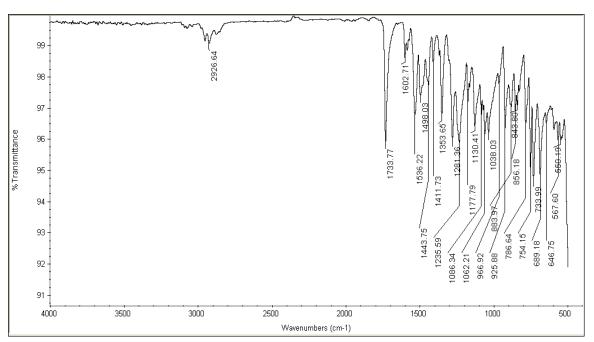
34. Bhalodia, N.R. and Shukla, V.J. (2011) Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant.
Journal of advanced pharmaceutical technology & research, 2, 104-109.

35. Havlickova, B., Czaika, V.A. and Friedrich, M. (2008) Epidemiological trends in skin mycoses worldwide. *Mycoses*, **51**, 2-15.

36. Noble, S.L. and Forbes, R.C. (1998) **Diagnosis and management of common tinea infections**. *American Family Physician*, **58**, 163-174.

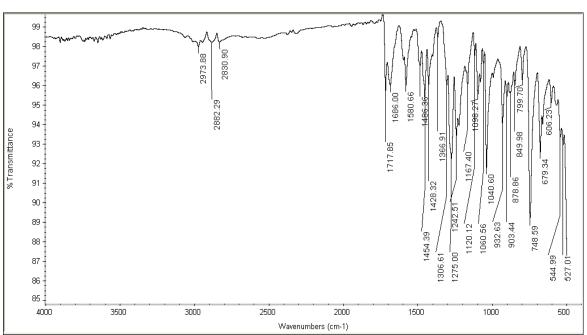
37. Dikshit, A. and Husain, A. (1984) Antifungal action of some essential oils against animal pathogens. *Fitoterapia*, , **3**, 171-176.

Cavalieri, S.J. (2009) Manual of Antimicrobial Susceptibility
 Testing. American Society for Microbiology, USA.


39. Silverstein, R.M., Webster, F.X., Kiemle, D. and Bryce, D.L. (2005)
Spectrometric Identification of Organic Compounds. 8 ed. John Wiley
& Sons, New york, USA.

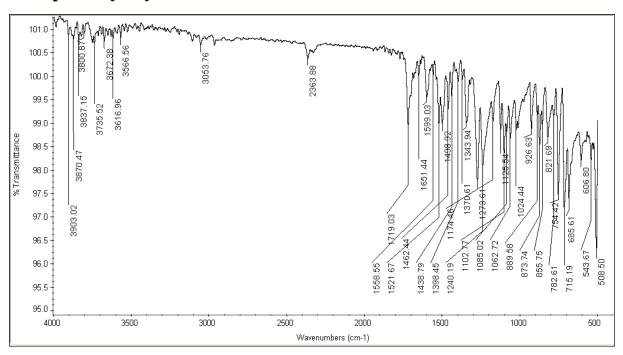
40. Husein, A.I., Al-Nuri, M., Zatar, N.A., Jondi, W. and Ali-Shtayeh,
M.S. (2012) Isolation and Antifungal Evaluation of *Rumex cyprius*Murb Extracts. J. Chem. Chem. Eng, 6, 547-550.

41. Vitalone, A., Guizzetti, M., Costa, L.G. and Tita, B. (2003) *Extracts* of various species of Ehilobium inhibit proliferation of human prostate cells. Journal of Pharmacy and Pharmacology, 55, 683-690.

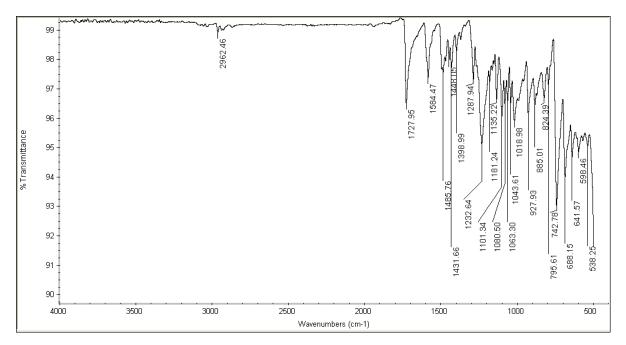

42. Evans, B.A.J., Griffiths, K. and Morton, M.S. (1995) *Inhibition of 5-alpha-reductase in genital skin fibroblasts and prostate tissue by dietary ligands and isoflavonoids*. Journal of Endocrinology, 147, 295-302.

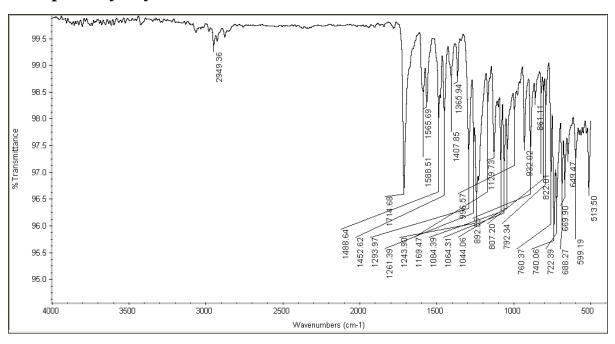
62 Appendices Appendix I: Infra-Red Spectroscopy (IR)

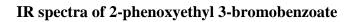

A1 2-phenoxyethyl 2-nitrobenzoate

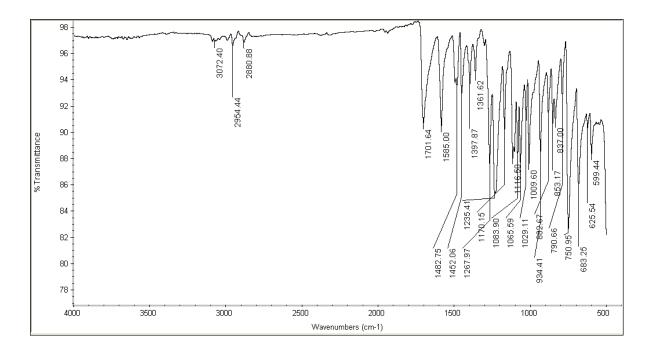

IR spectra of 2-phenoxyethyl 2-nitrobenzoate

A2 2-phenoxyethyl 3-nitrobenzoate

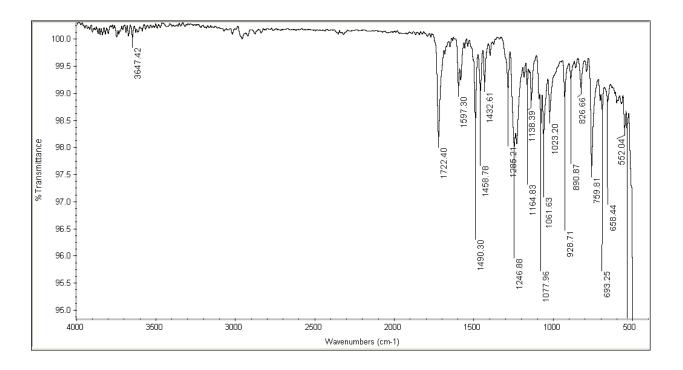

IR spectra of 2-phenoxyethyl 3-nitrobenzoate


IR spectra of 2-phenoxyethyl 4-nitrobenzoate

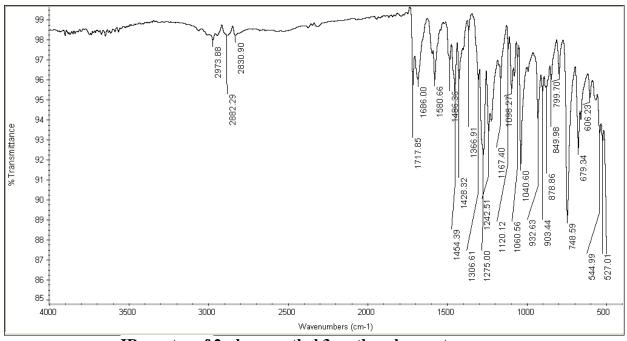

A4 2-phenoxyethyl 2-bromobenzoate


IR spectra of 2-phenoxyethyl 2-bromobenzoate

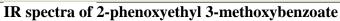
64 A5 2-phenoxyethyl 3-bromobenzoate

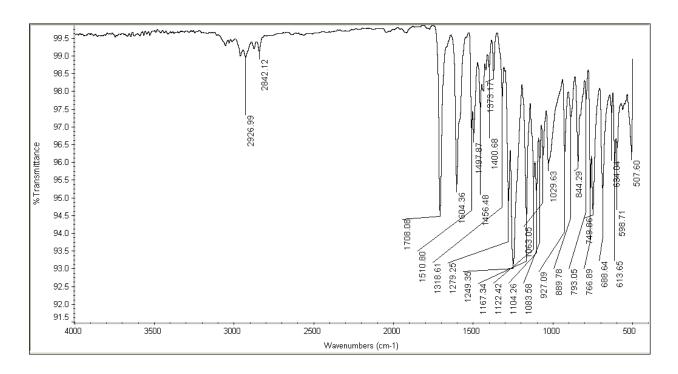


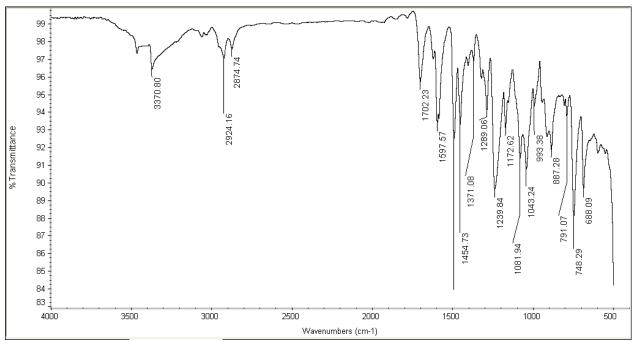
A6 2-phenoxyethyl 4-bromobenzoate

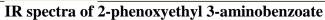


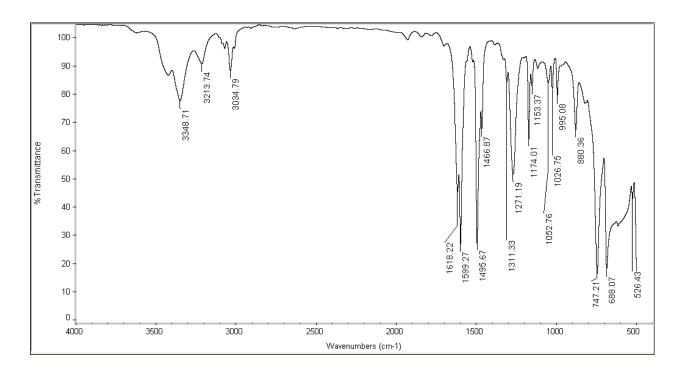
IR spectra of 2-phenoxyethyl 4-bromobenzoate

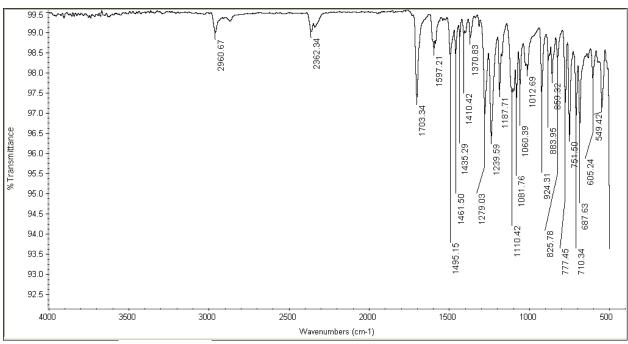

65 A7 2-phenoxyethyl 2-methoxybenzoate


IR spectra of 2-phenoxyethyl 2-methoxybenzoate


A8 2-phenoxyethyl 3-methoxybenzoate

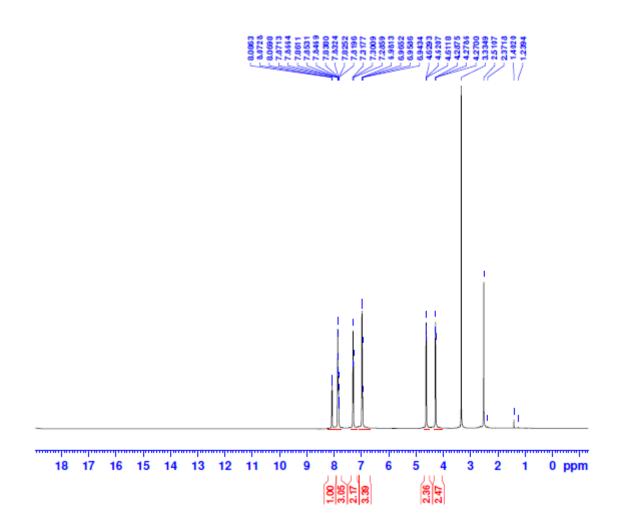

66 A9 2-phenoxyethyl 4-methoxybenzoate


IR spectra of 2-phenoxyethyl 4-methoxybenzoate

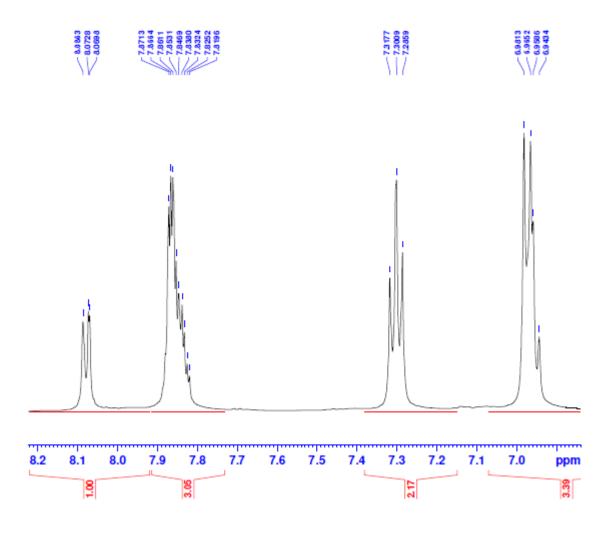

A10 2-phenoxyethyl 3-aminobenzoate

67 A11 2-phenoxyethyl 4-aminobenzoate

IR spectra of 2-phenoxyethyl 4-aminobenzoate



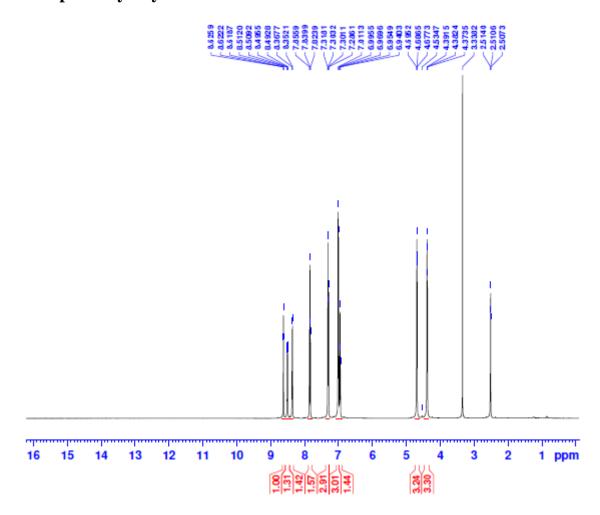
A12 2-phenoxyethyl 4-tertbutylbenzoate


IR spectra of 2-phenoxyethyl 4-tertbutylbenzoate

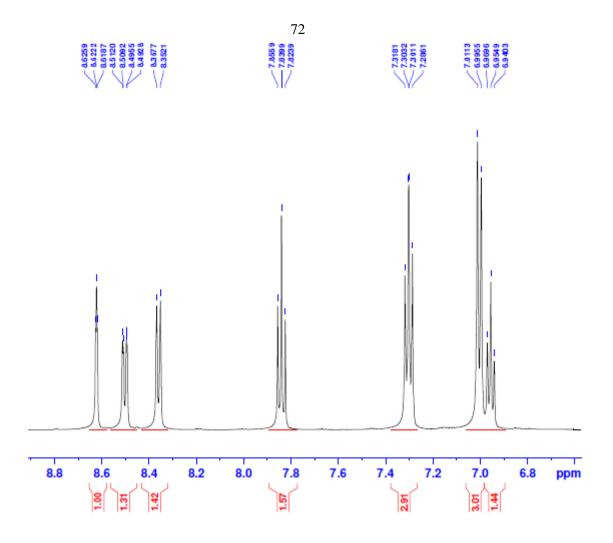
Appendix II: nuclear magnetic resonance Spectroscopy (¹H-NMR)

B1 2-phenoxyethyl 2-nitrobenzoate

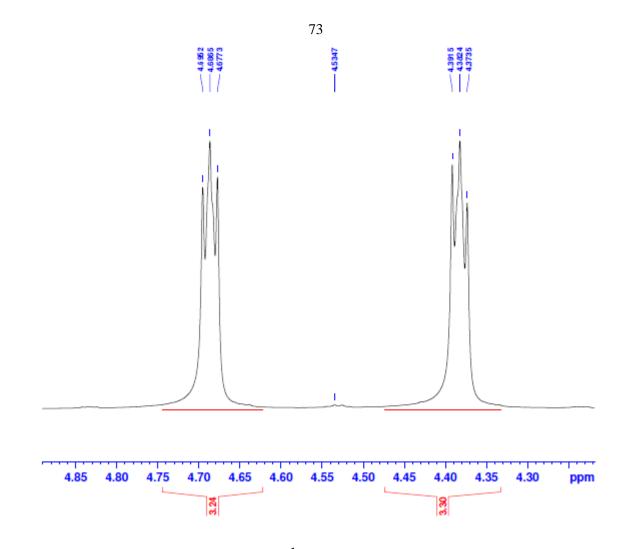
¹H-NMR spectrum of 2-phenoxyethyl 2-nitrobenzoate



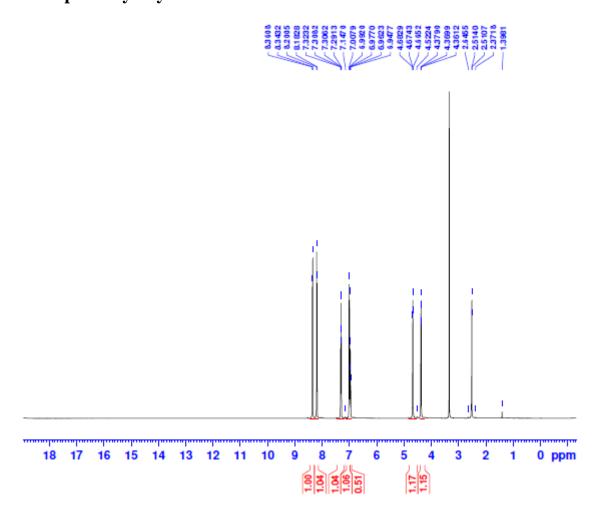
Expansion of aromatic region of ¹H- NMR spectrum of 2-phenoxyethyl 2nitrobenzoate



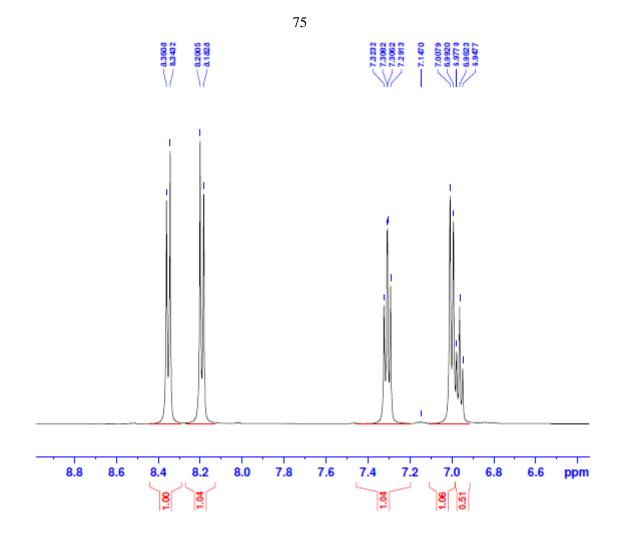
Expansion of aliphatic region¹H-NMR spectrum of 2-phenoxyethyl 2nitrobenzoate


B2 2-phenoxyethyl 3-nitrobenzoate

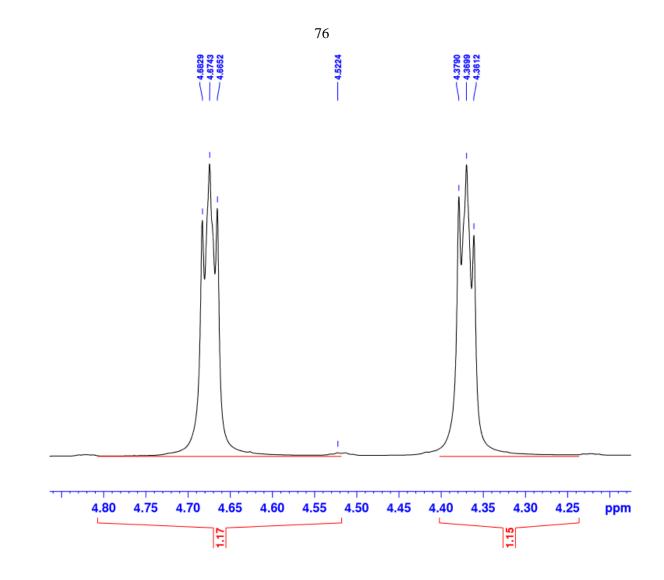
¹H-NMR spectrum of 2-phenoxyethyl 3-nitrobenzoate

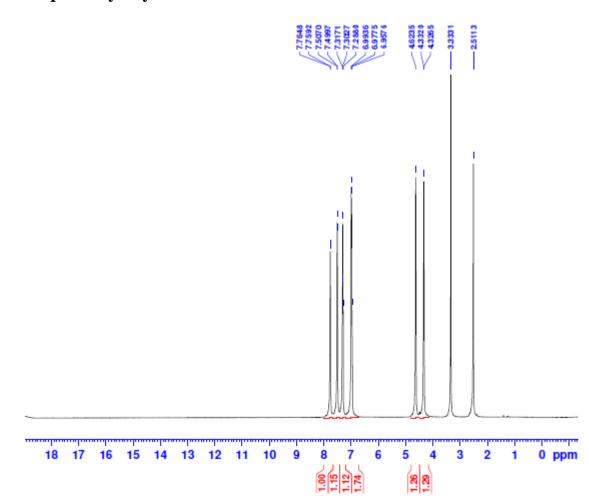


Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3nitrobenzoate

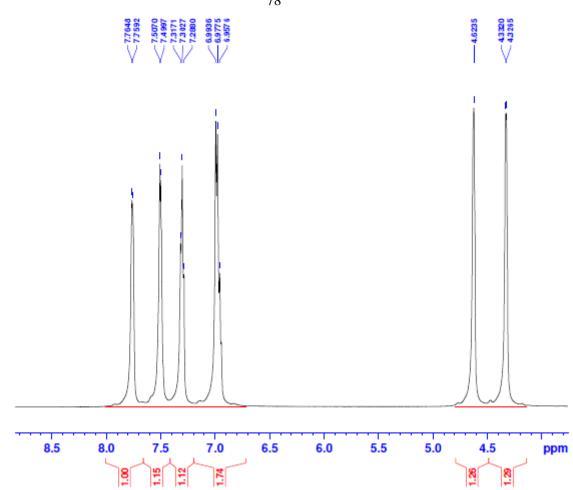


Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3nitrobenzoate

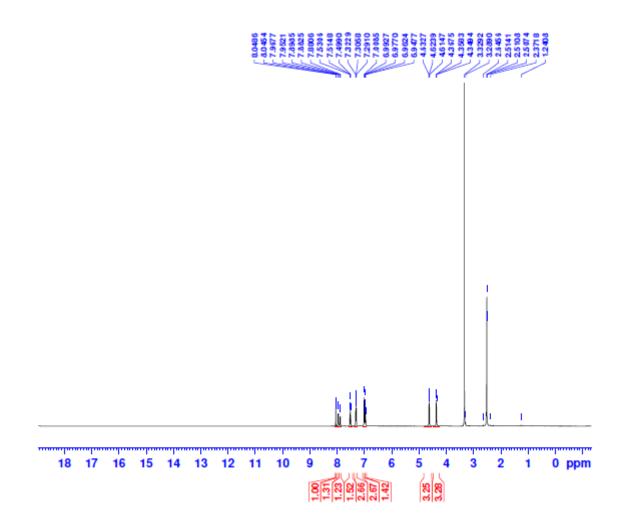

B3 2-phenoxyethyl 4-nitrobenzoate


¹H-NMR spectrum of 2-phenoxyethyl 4-nitrobenzoate

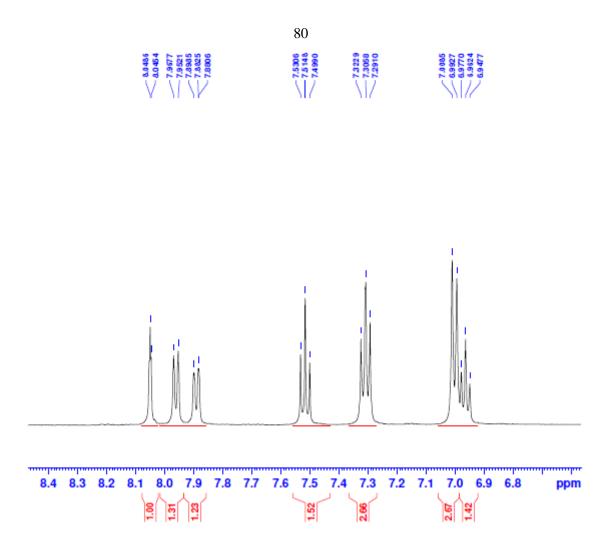
Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 4nitrobenzoate



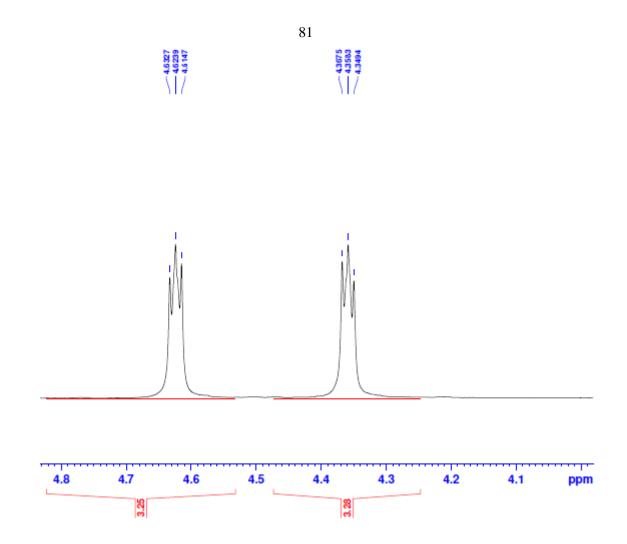
Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 4nitrobenzoate


B4 2-phenoxyethyl 2-bromobenzoate

¹H-NMR spectrum of 2-phenoxyethyl 2-bromobenzoate

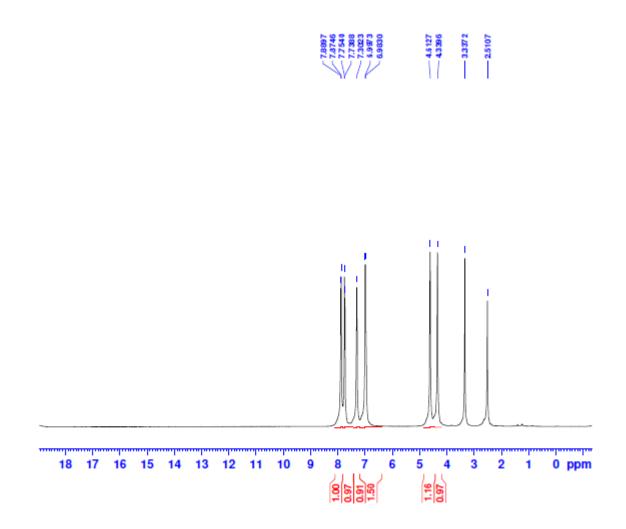

Expansion of aromatic and aliphatic regions of ¹H- NMR spectrum of 2phenoxyethyl 2-bromobenzoate

B5 2-phenoxyethyl 3-bromobenzoate

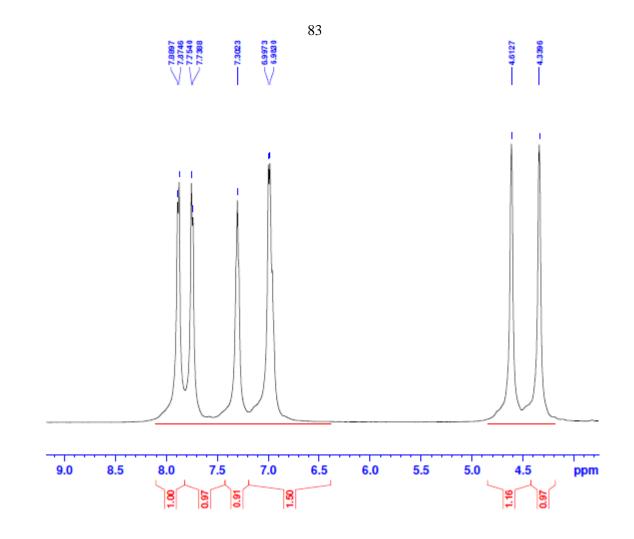


¹H-NMR spectrum of 2-phenoxyethyl 3-bromobenzoate

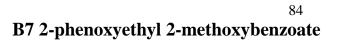
79

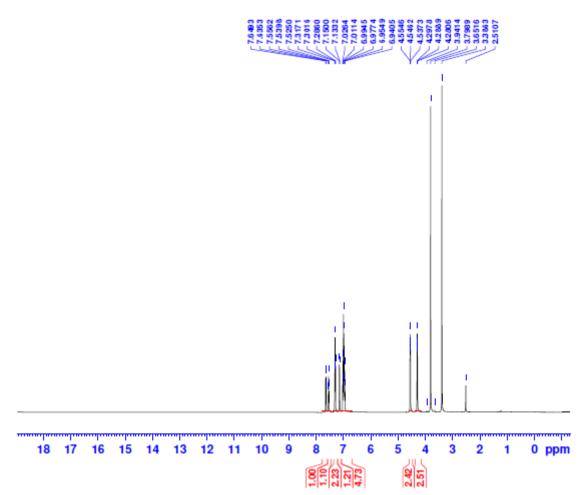


Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3bromobenzoate



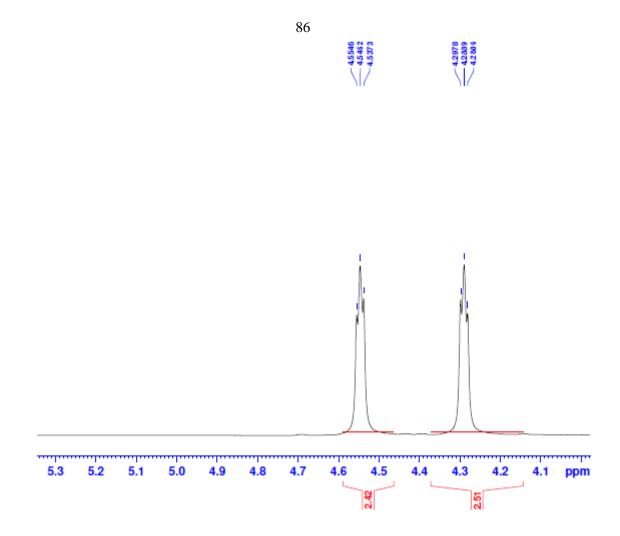
Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3bromobenzoate


82 **B62-phenoxyethyl 4-bromobenzoate**



¹H-NMR spectrum of 2-phenoxyethyl 4-bromobenzoate

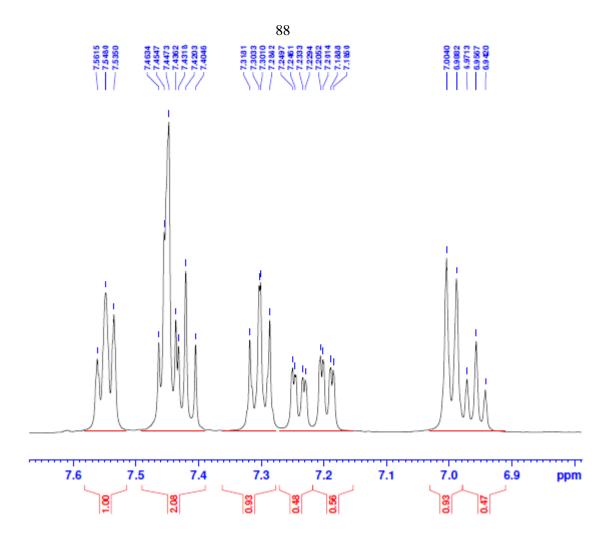
Expansion of aromatic and aliphatic region of ¹H-NMR spectrum of 2phenoxyethyl 4-bromobenzoate



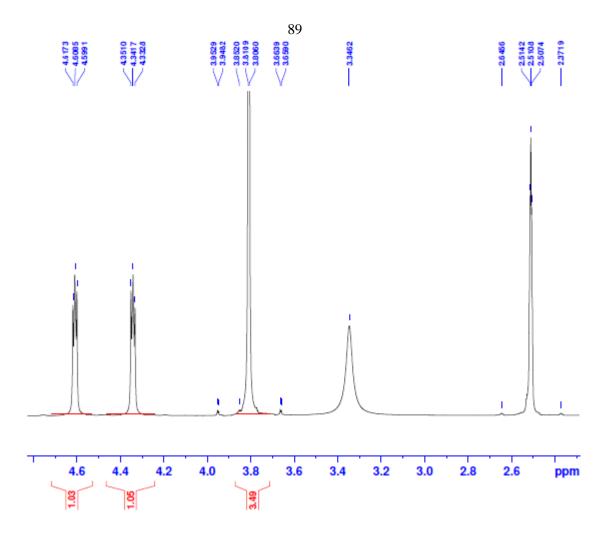
¹H-NMR spectrum of 2-phenoxyethyl 2-methoxybenzoate

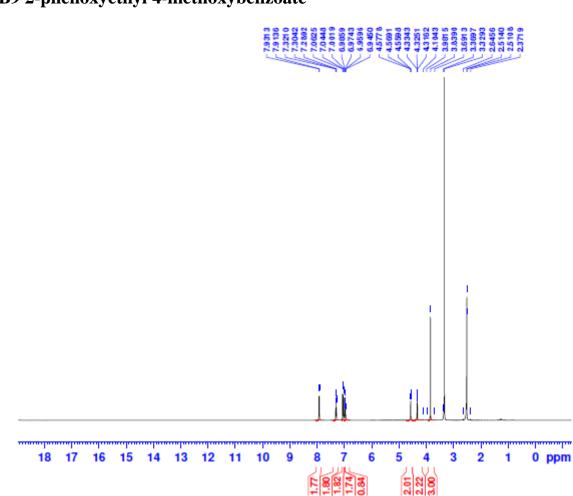


Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 2-methoxybenzoate

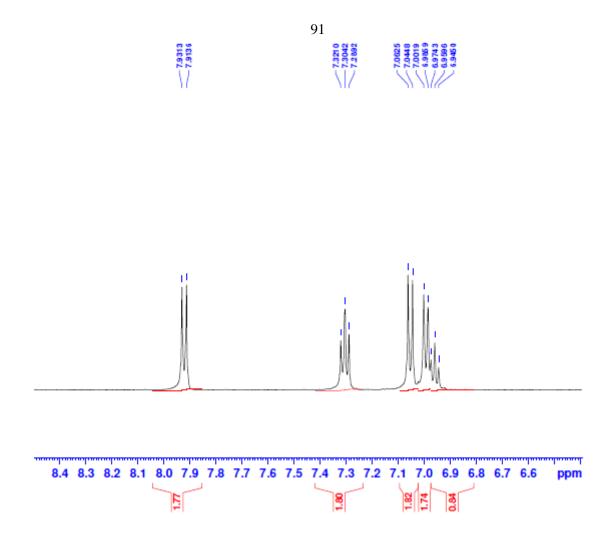


Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 2-methoxybenzoate

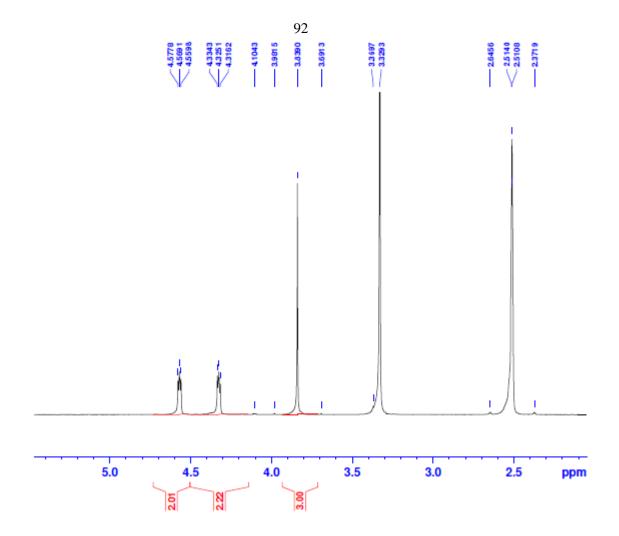

B8 2-phenoxyethyl 3-methoxybenzoate


¹H-NMR spectrum of 2-phenoxyethyl 3-methoxybenzoate

Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3-methoxybenzoate

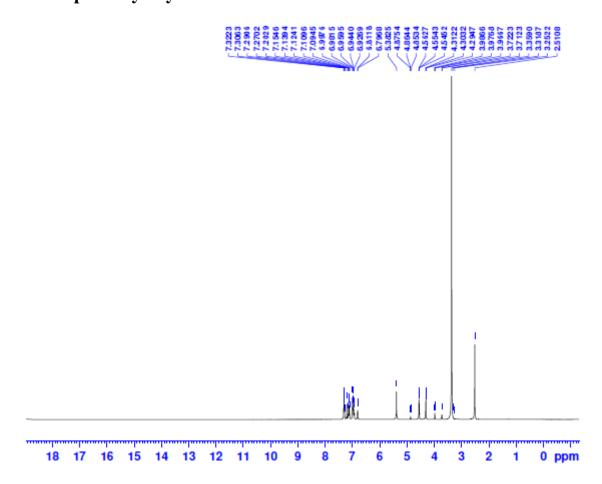


Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3-methoxybenzoate



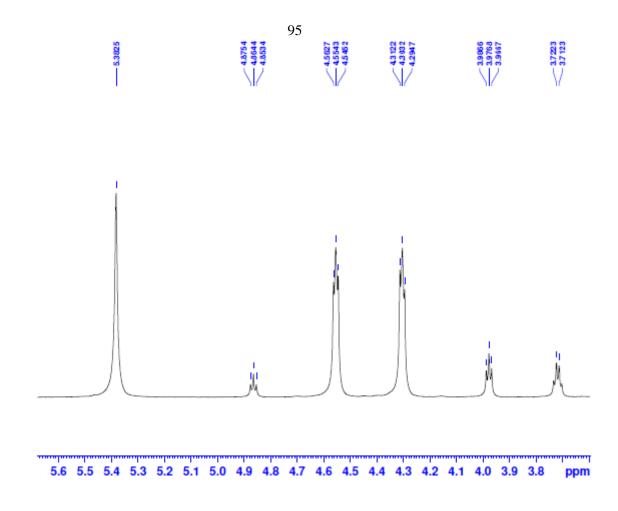
90 **B9 2-phenoxyethyl 4-methoxybenzoate**

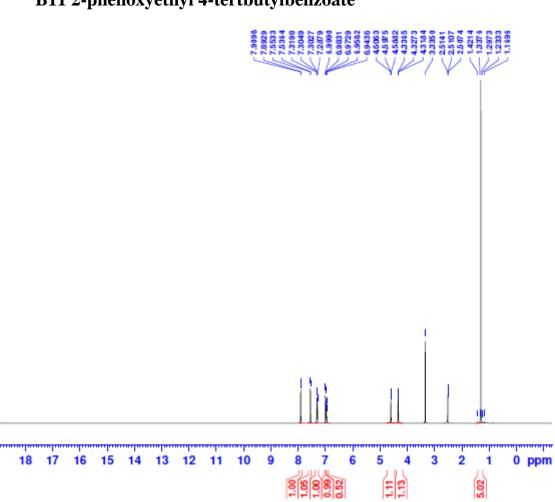
¹H-NMR spectrum of 2-phenoxyethyl 4-methoxybenzoate



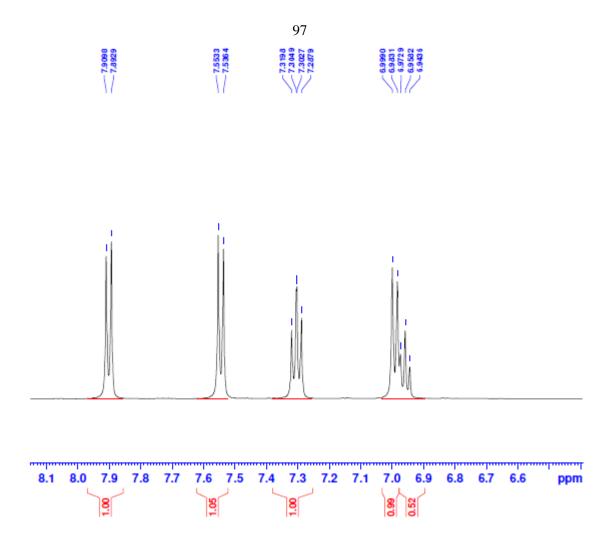
Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 4-methoxybenzoate

Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 4methoxybenzoate

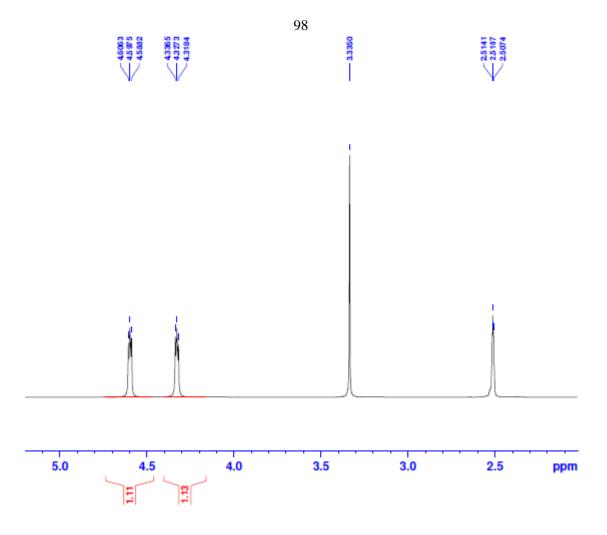

93 B10 2-phenoxyethyl 3-aminobenzoate


¹H-NMR spectrum of 2-phenoxyethyl 3-aminobenzoate

Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3aminobenzoate

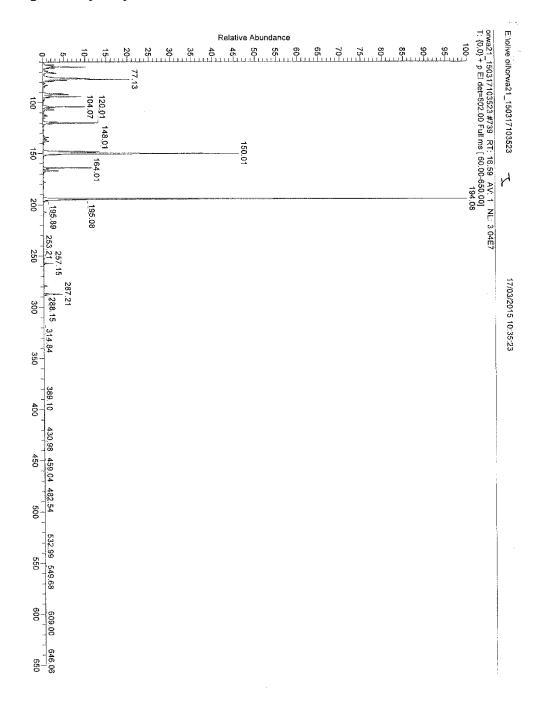


Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 3aminobenzoate

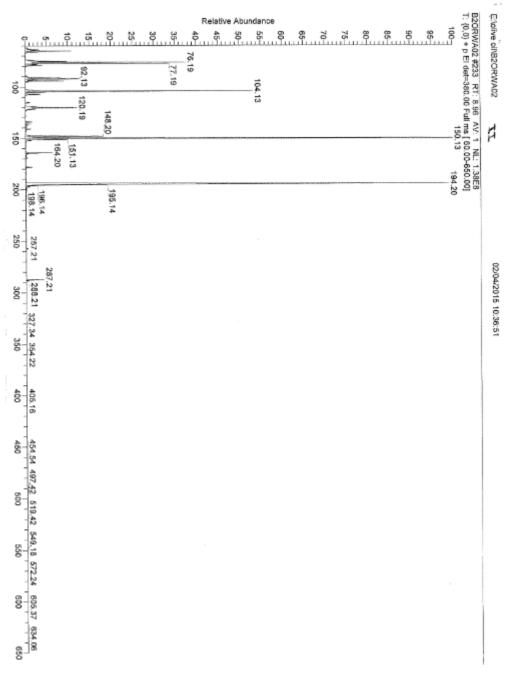


96 B11 2-phenoxyethyl 4-tertbutylbenzoate

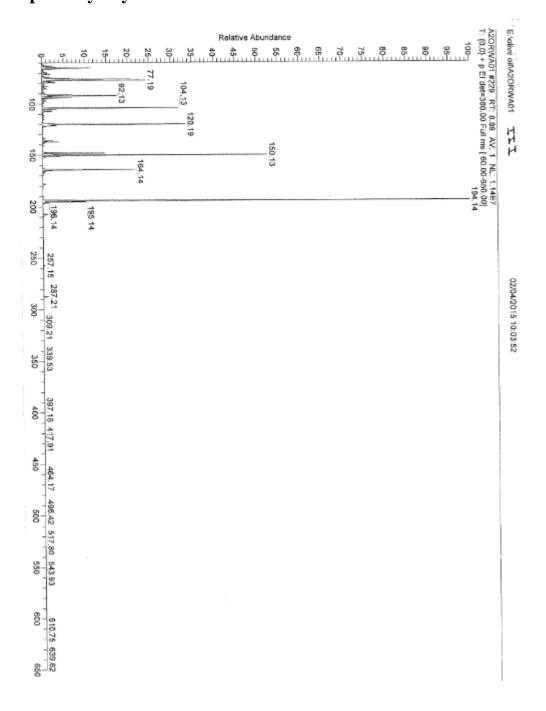
¹H-NMR spectrum of 2-phenoxyethyl 4-tertbutylbenzoate



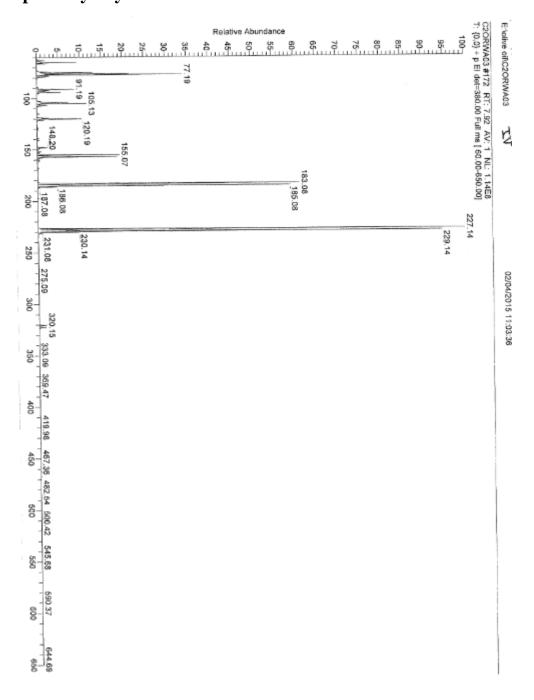
Expansion of aromatic region of ¹H-NMR spectrum of 2-phenoxyethyl 4-tertbutylbenzoate


Expansion of aliphatic region of ¹H-NMR spectrum of 2-phenoxyethyl 4-tertbutylbenzoate

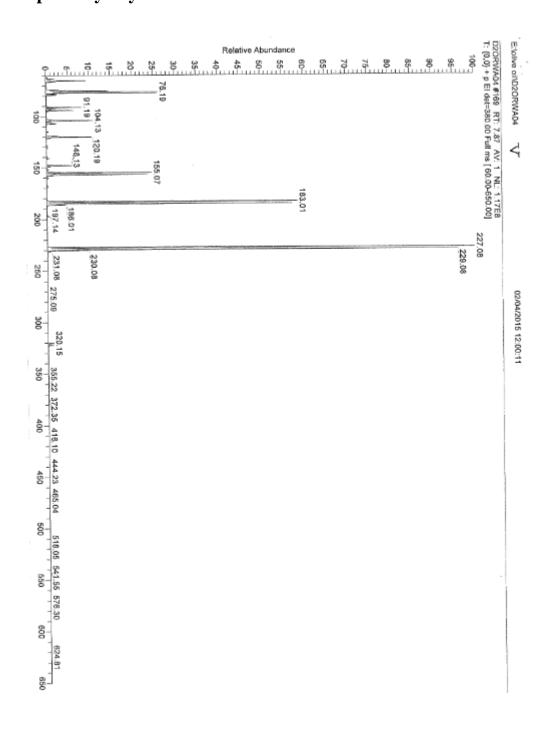
C1 2-phenoxyethyl 2-nitrobenzoate


MS spectrum of 2-phenoxyethyl 2-nitrobenzoate

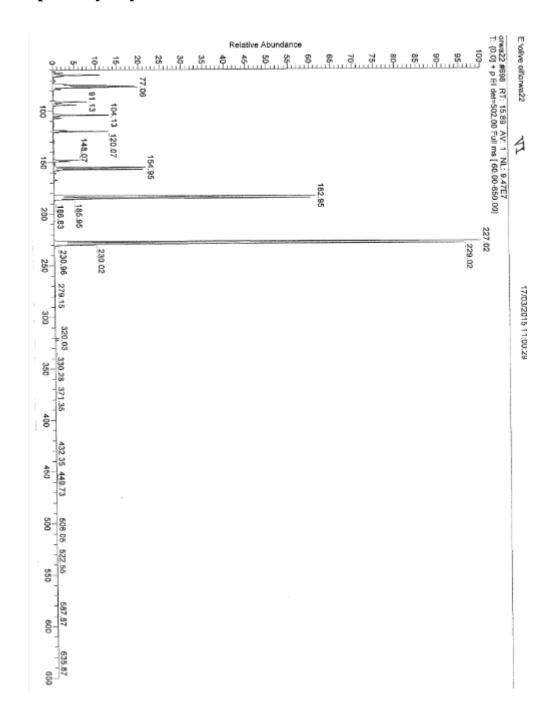
C2 2-phenoxyethyl 3-nitrobenzoate


MS spectrum of 2-phenoxyethyl 3-nitrobenzoate

C3 2-phenoxyethyl 4-nitrobenzoate

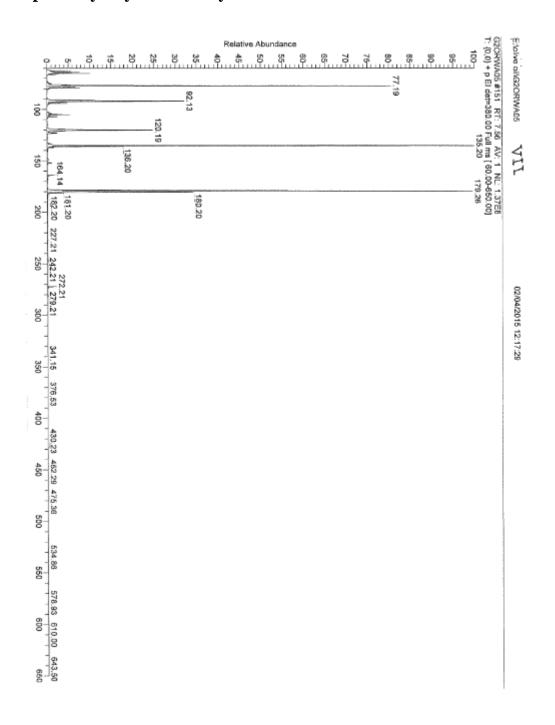

Ms spectum of 2-phenoxyethyl 4-nitrobenzoate

102 C4 2-phenoxyethyl 2-bromobenzoate

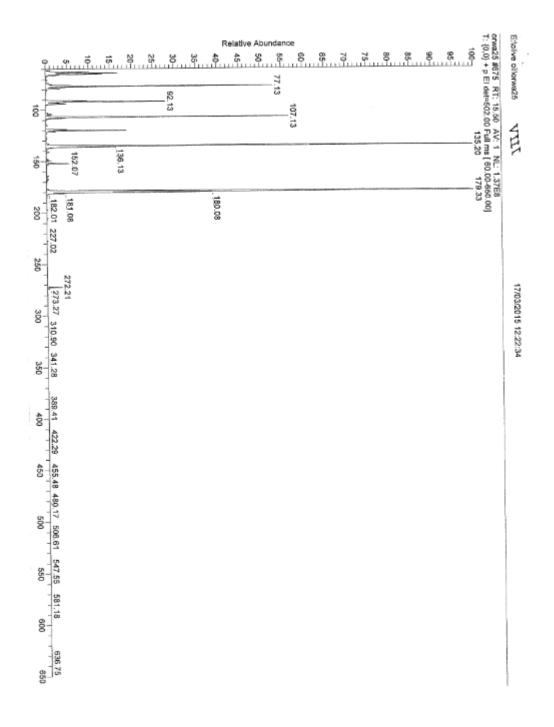


MS spectrum of 2-phenoxyethyl 2-bromobenzoate

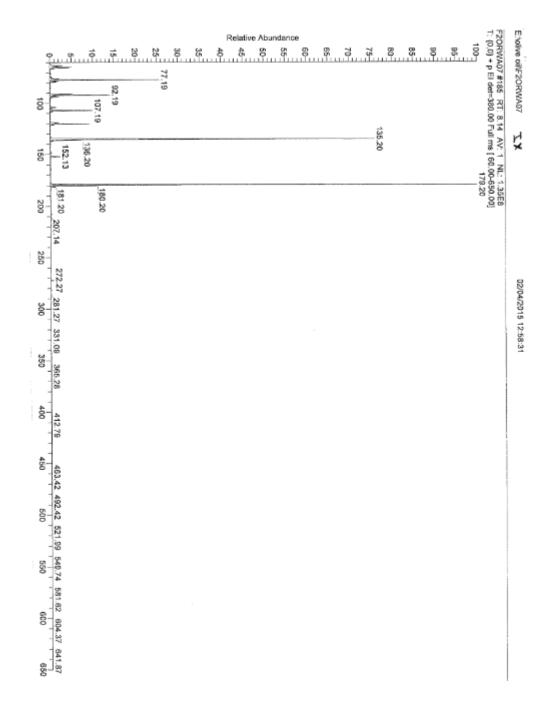
C5 2-phenoxyethyl 3-bromobenzoate



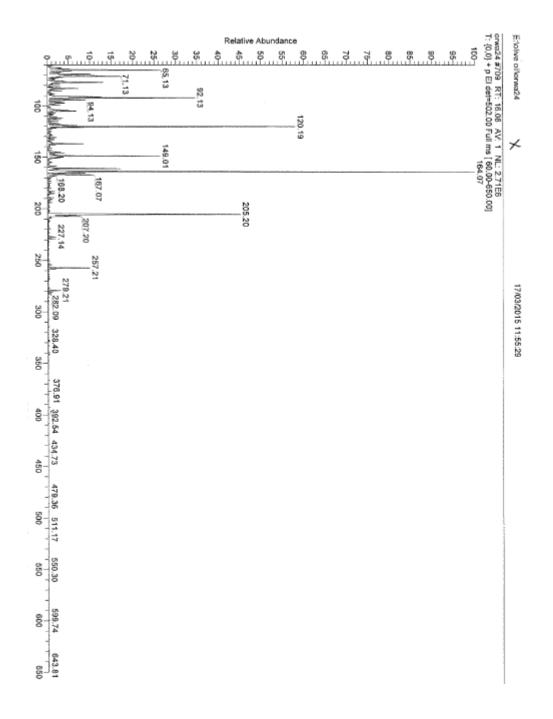
MS spectrum of 2-phenoxyethyl 3-bromobenzoate


C6 2-phenoxyethyl 4-bromobenzoate

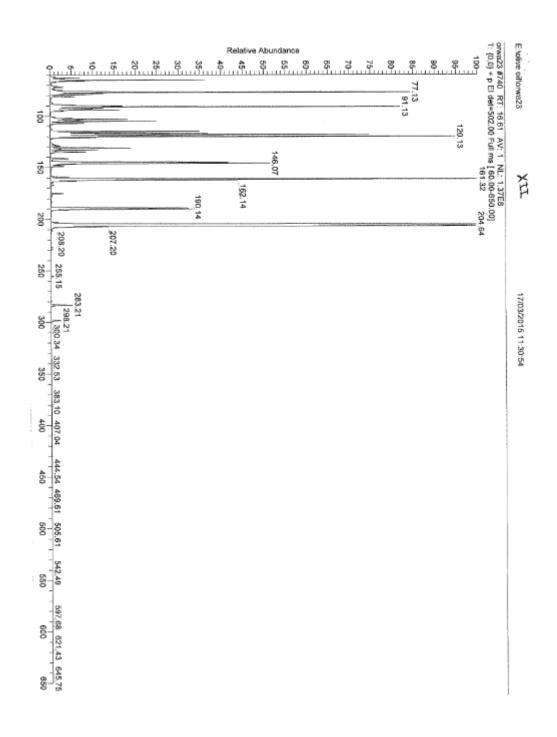
MS spectrum of 2-phenoxyethyl 4-bromobenzoate


C7 2-phenoxyethyl 2-methoxybenzoate

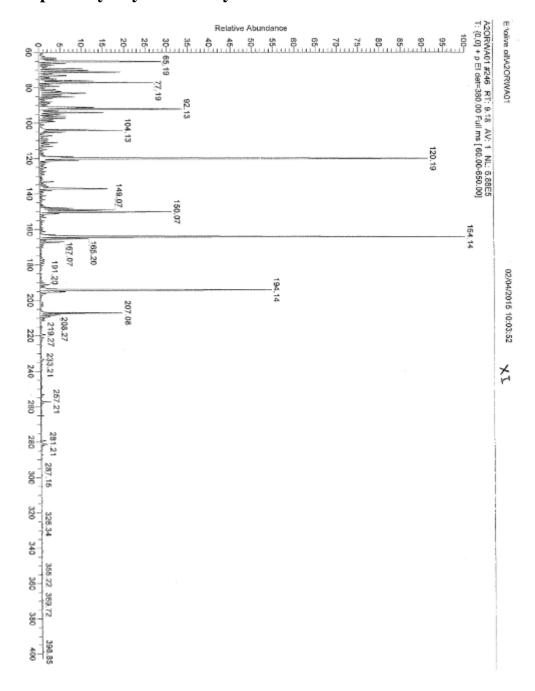
MS spectrum of 2-phenoxyethyl 2-methoxybenzoate


C8 2-phenoxyethyl 3-methoxybenzoate

MS spectrum of 2-phenoxyethyl 3-methoxybenzoate


C9 2-phenoxyethyl 4-methoxybenzoate

MS spectrum of 2-phenoxyethyl 4-methoxybenzoate


C10 2-phenoxyethyl 3-aminobenzoate

MS spectrum of 2-phenoxyethyl 3-aminobenzoate

C11 2-phenoxyethyl 4-aminobenzoate

MS spectrum of 2-phenoxyethyl 4-aminobenzoate

C12 2-phenoxyethyl 4-tertbutylbenzoate

MS spectrum of 2-phenoxyethyl 4-tertbutylbenzoate

جامعة النجاح الوطنية كلية الدراسات العليا

تحضير مركبات ايستر أروماتيه من كحول (2-فينوكسي ايثانول) ودراسة بعض أثارها البيولوجية

اعداد

ندين محمد كامل قلالوة

اشراف د. وحيد الجندي د. عروه حوشية

قدمت هذه الأطروحة استكمالا لمتطلبات الحصول على درجة الماجستير في الكيمياء بكلية الدراسات العليا في جامعة النجاح الوطنية في نابلس، فلسطين. 2015

تحضير مركبات ايستر أروماتيه من كحول (2-فينوكسي ايثانول) ودراسة بعض أثارها البيولوجية اعداد ندين محمد كامل قلالوة اشراف د. وحيد الجندي د. عروه حوشية الملخص


موضوع هذه الرساله هو تحضير اثنا عشر مركبا من المركبات الارومانيه الاستريه بتفاعل الكحول فينوكسي ايثانول مع ااثنا عشر نوعا من الكاربوكسيلك اسيد عبر تفاعلات الاستره وتتقيتها بتقنية ال Dry coloumn flash chromatography وجميع هذه المركبات تم وتتقيتها بتقنية ال H-NMR, MS،IR ، ومن ثم قمنا دراسة خصائها باستخدام القياسات الفيزيائيه التاليه : H-NMR, MS،IR ، ومن ثم قمنا مدراسة الاثار البيولوجيه متمثله بالفحوص التاليه: bacterial مدانها مدانها المدولية من المرابية المركبات المركبات المركبات مع وتتقيتها بتقنية المركبات المركبات مع وتتقيتها بتقنية المركبات المركبات مع وتتقيتها بتقنية المركبات مع وتتقيتها بتقنية المركبات المركبات مع وتتقيتها بتقنية المركبات المركبات مع وتتقيتها بتقنية المركبات المركبات مع مع مع التقيام المركبات المركبات المركبات مع مع المركبات المركبات مع من المركبات مع مع التقيام المركبات المركبات مع مع المركبات المركبات مع مع المركبات مع مع المركبات المركبات المركبات مع مع المركبات المركبات مع مع مع المركبات المركبات مع مع مع المركبات المركبات المركبات المركبات مع مع المركبات المركبات المركبات مع مع التالية المركبات المركبات المركبات مع مع المركبات مع مع المركبات المركبات

وقد اظهرت هذه المركبات نتائج مهمه ضد ثلاثة انواع من الفطريات، فعندما استخدمنا الفطر كانيس لاحظنا ان بعض المركبات ثبطت من نمو هذا الفطر بنسبة 100%ا ومن الامثله على تلك المركبات 5,6,7,10,11 على تركيز 1500 ميكروجرام /مل ، والمركب رقم 3 على تركيز 750 ميكروجرام/ مل والمركب رقم 12 على تركيز 375 ميكروجرام / مل.

وعندما استخدمنا الفطر روبيريوم فان المركب رقم 9 قام بتثبيط نمو الفطر بنسبة 100% على تركيز 1500 ميكروجرام / مل والمركبات 5,10,12 على تركيز 750 ميكرجرام /مل.

الفطر الاخير فلاكسوسيوم استخدم مع جميع المركبات ووجد ان الفطر رقم 9 قام بتثبيط نمو هذا الفطر بنسبة 100% على تركيز 1500 اما المركبات 5,10,12 على تركيز 750 ميكروجرام / مل. وعندما قمنا بفحص مركباتنا ضد الاكسده وجدنا ان المركب رقم 12 له خصائص جيده جدا حيث ان التركيز الذي يثبط نمو الفطر بنسبة 50% هو 22 مقارنة بالاسكوربيك اسيد الذي يمتلك قيمة تساوي 95.

واخيرا قمنا بفحص المركبات ضد ستة انواع من البكتيريا على تركيز 10 ميليجرام /مل مقارنة بالجينتامايسين ولكن لم تظهر مركباتنا اي اثر.

