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ABSTRACT

Shah, Setu. M.S.E.C.E., Purdue University, December 2018. Biomedical Concept
Association and Clustering Using Word Embeddings. Major Professors: Xiao Luo
and Mohamed El-Sharkawy.

Biomedical data exists in the form of journal articles, research studies, electronic

health records, care guidelines, etc. While text mining and natural language process-

ing tools have been widely employed across various domains, these are just taking off

in the healthcare space.

A primary hurdle that makes it difficult to build artificial intelligence models that

use biomedical data, is the limited amount of labelled data available. Since most

models rely on supervised or semi-supervised methods, generating large amounts of

pre-processed labelled data that can be used for training purposes becomes extremely

costly. Even for datasets that are labelled, the lack of normalization of biomedical

concepts further affects the quality of results produced and limits the application

to a restricted dataset. This affects reproducibility of the results and techniques

across datasets, making it difficult to deploy research solutions to improve healthcare

services.

The research presented in this thesis focuses on reducing the need to create la-

bels for biomedical text mining by using unsupervised recurrent neural networks.

The proposed method utilizes word embeddings to generate vector representations of

biomedical concepts based on semantics and context. Experiments with unsupervised

clustering of these biomedical concepts show that concepts that are similar to each

other are clustered together. While this clustering captures different synonyms of

the same concept, it also captures the similarities between various diseases and the

symptoms that those diseases are symptomatic of.



xix

To test the performance of the concept vectors on corpora of documents, a docu-

ment vector generation method that utilizes these concept vectors is also proposed.

The document vectors thus generated are used as an input to clustering algorithms,

and the results show that across multiple corpora, the proposed methods of concept

and document vector generation outperform the baselines and provide more mean-

ingful clustering. The applications of this document clustering are huge, especially

in the search and retrieval space, providing clinicians, researchers and patients more

holistic and comprehensive results than relying on the exclusive term that they search

for.

At the end, a framework for extracting clinical information that can be mapped

to electronic health records from preventive care guidelines is presented. The ex-

tracted information can be integrated with the clinical decision support system of

an electronic health record. A visualization tool to better understand and observe

patient trajectories is also explored. Both these methods have potential to improve

the preventive care services provided to patients.
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1. INTRODUCTION

In recent years, active research in the biomedical domain has generated a massive

number of documents and articles. Biomedical domain is among the most popular

areas of research with a large amount of textual data being generated. At the same

time, a lot of previously performed research is also being digitized and made available

online. Despite active research, there are relatively few studies which are implemented

in medical practice because it is not easy for medical practitioners to go through every

form of new literature published.

There is also a large amount of biomedical information stored in electronic health

records of patients. The usage of electronic health records throughout the world has

only been on the rise [1]. The patient data stored in electronic health records is

confidential and governed by laws like HIPAA that restrict access [2]. This makes it

imperative that all of the data be de-identified and scrubbed of personal information

before it is made available for research purposes.

At the same time, artificial intelligence (AI) research has also been growing in the

last two decades. The area of artificial intelligence research that focuses on process-

ing textual data, like the one from biomedical journals, articles and EHRs, is called

natural language processing (NLP). Natural language processing focuses on getting

computers to understand, analyze and process natural human language. NLP tech-

niques may use small or large amounts of data, based on the context and type of

application. While NLP started off as a way to get computers to understand the

structure of human language and parts of speech, recent advancements are focused

on more complicated problems like automating analysis of large amounts of textual

data, providing answers to questions, language models that generate language, and



2

using vectors as a representation of text. Like other AI models, NLP models may be

supervised, unsupervised or semi-supervised. And like other AI models, NLP models

are also computationally expensive.

With all this data, there is a continuous need for development of techniques to

discover, search, access and share knowledge. Even though a lot of the data is readily

available, the amount of data that is utilized for improving clinical outcomes remains

relatively low. The availability of biomedical data, a growing interest in AI-related

applications and reducing price of computation, there has brought about a spurt

in biomedical AI research. Research that is at the intersection of healthcare and

artificial intelligence is a lucrative opportunity for researchers because it helps in

solving complex problems that can improve the quality of life of patients. Research

also focuses on developing systems that can aid doctors, and medical professionals

into performing their jobs better. This process has brought out some fundamental

challenges in the biomedical space which make it necessary to modify existing general-

purpose solutions to fit the biomedical domain. Some of the challenges faced by

researchers being:

1. Unavailability of large amounts of labelled data

2. Multiple semantically-equivalent representations of the same concepts

3. Stringent regulations on storing and using patient data

4. Difficulty in evaluating, comparing and reproducing solutions across datasets

In this thesis, I present my research in trying to solve problems 1 and 2 noted

above. My work focuses on using unsupervised methods to generate mathematical

representations of biomedical concepts.

A discussion about word embeddings, the current state-of-art in word embeddings,

how they are generated and used, is presented in Chapter 2. Chapter 3 provides

details about the implementation of the different clustering algorithms used, and the
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evaluation and visualization metrics. A brief introduction of the external tools used

in this tool for pre-processing the text input is presented in Chapter 4. Chapter 5

contains information about the datasets used, and the pre-processing performed.

A discussion about the representation of biomedical concepts, and how they were

used in this work is presented in Chapter 6. Clustering results of disease and symp-

tom concepts is also presented in Chapter 6. Chapter 7 discusses the generation of

document vectors for biomedical documents, a proposed document weighting scheme,

document clustering and the results of these experiments. Experiments performed

towards improving patient care are presented in Chapter 8. Chapter 9 summarizes

the major contributions of this work, and Chapter 10 provides a direction for future

work in the area.
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2. WORD EMBEDDINGS

Word embeddings are a mathematical representation of every word in the text. This

mathematical representation may be a binary representation making an affirmation,

an integer representation where each word is represented by an integer, or a complex

vector that represents various properties of the word. While the concept of word

embeddings has existed for a long time, modern word embeddings have roots in

term frequency [3] (Section 2.2), singular value decomposition [4], latent semantic

analysis [5] and latent dirichlet allocation [6].

Recent advances in natural language processing have elaborated this concept of

word embeddings by using word vectors where each word is represented by a high-

dimensional word vector. These word vectors are based on co-occurrences of words

and phrases of the corpus used to generate these word vectors. These co-occurrences

are converted into a real number vector representation by using a probability model.

These word vectors are generated by using fairly straight-forward neural networks

with multiple layers, in an unsupervised way, by using large amounts of textual data.

Artificial intelligence applications rarely use non-numeric inputs, and thus con-

verting characters and strings from their raw form to a numbers becomes necessary.

Because of this limitation, it becomes necessary to convert the text input to a nu-

meric form. The strengths of word embeddings have made them a very lucrative

initial step in all types of machine learning pipelines. In a lot of complex deep neural

networks, word embeddings are used as inputs instead of raw text. This necessitates

the conversion of word vectors to phrase, sentence and even paragraph vectors.

Word embeddings have become popular because they have been observed to cap-

ture not just the probability distributions of word appearances, but also the semantics

and context of words within the original corpus. This was discovered by Mikolov, et

al. in their research describing how word vectors are also representative of linguistic
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properties of the corpus [7]. Their work noted that word embeddings carry forward

the relationships of the real world into the continuous vector space. They present ex-

amples like Equation 2.1 where addition and subtraction operations on word vectors

show how closely related the word vectors are:

king −man+ woman ≈ queen (2.1)

Similar experiments were performed on different verb tense pairs and country-

capital pairs. Dimensionality reduction is applied on these word vectors, and their

plot in 3D space (male-female and verb-tense examples) or 2D space (country-capital

examples) are shown in Figure 2.1 [8]. All of these show the effectiveness of word

embeddings in understanding the structure of natural language and learning from it.

Fig. 2.1.: Relationships between word vectors [8].

Alongside these results, the simple technique to train and generate word vectors

is also a significant reason behind their success. In general, word embeddings are

generated by training a simple neural network consisting of one input layer, one

hidden layer and one output layer to perform a certain task. The task that the neural

network is trained on is usually completely unrelated to the final task to perform.

However, the weights, specifically the input-hidden layer weights, learned by the

network as a part of the training process are used as ‘word vectors’.
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The forward and backward propagation of the neural network training process

helps train the network and thus generate the values for the weights. Usually, the

training process for word embeddings does not continue for a large number of epochs,

but the input corpus size is large. Word vectors also improve if the word appears

repeatedly within the corpus, and the words that are infrequent are pruned from the

dictionary. Similarly, extremely frequent words (articles, prepositions, etc.) are also

detrimental to the generation of word vectors, and are usually ignored.

The following sections describe the most popular methods for generating word

embeddings.

2.1 Bag of Words

Table 2.1.: Example of Bag-of-Words dictionary.

Word ID Count

John 1 1

likes 2 2

to 3 1

travel 4 1

Jane 5 1

is 6 1

fond 7 1

of 8 1

traveling 9 1

She 10 1

also 11 1

music 12 1

and 13 1

art 14 1
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The earliest and simplest forms of representing text in the form of embeddings is

by using a bag-of-words model that uses a numeric count for the number of times each

word appears in the query string [9]. The first step towards creating a BoW embedding

is to convert the given corpus into a dictionary such that each word corresponds to

its frequency in the document. A BoW dictionary is generally created from a corpus,

and applied at the sentence or document-level to generate vector representations. It

is important to note here that the BoW representation does not change with the

sequence of words, but only relies on the absolute frequency of the terms.

For example, let the below be an example corpus.

John likes to travel.

Jane is fond of traveling.

She also likes music and art.

The BoW dictionary would be as given in Table 2.1, and an enconding of the

sentence ‘John also likes art.’ is,

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]

where every index represents the ID of every word in the dictionary (Table 2.1), and

the integer value represents the frequency of the word in the query string.

Bag-of-Words are often also generated for n-grams – a combination of n words

that appear sequentially – to explore the most frequenct words and phrases from the

corpora.

2.2 Term Frequency

Term frequency (TF) is a simple form of creating word embeddings for a given

document [3]. The number of occurrences of a term in the document is called the

term frequency. In a word embedding model that uses term frequency, the number

of times the word appears in the document is used as the weight of the term.
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Documents in a corpus are coded by the number of times each word appears in

them, in a mapping between each word and its frequency, without focusing on the

semantics or context of the word. Term frequency is very similar to the bag-of-words

approach discussed in Section 2.1, with the only difference being the sequence of

appearance of the words in the document is maintained in the output vector, and the

words that do not appear are skipped.

The term frequency for a term t in document d is given as,

tft,d = ft,d (2.2)

where ft,d is the frequency of the term t in document d. Thus, term frequency is

different for different pairs of terms and documents in the same corpus.

A TF representation of the query string ‘John also likes art.’ with the same

dictionary as shown in Table 2.1 is,

[(1, 1), (11, 1), (2, 1), (14, 1)]

2.3 Term Frequency-Inverse Document Frequency

Term frequency gives frequent words like ‘the’, ‘a’, ‘an’, etc. higher weights, thus

biasing the weighing scheme without actually improving the results. A solution to

this was proposed by Sparck Jones by proposing an inverse relationship between the

term frequency and the number of documents a term appears in [10].

Inverse document frequency for a term t in a corpus of N documents is given as

Equation 2.3.

idft,D = log
|D|

|{d ∈ D; t ∈ d}|
(2.3)

where D indicates the number of documents containing the term t, and |{d ∈ D; t ∈

d}| is the number of documents in the corpus for which tft,d 6= 0 (Equation 2.2). It

is important to note that the idft,D value is the same for all the D documents in the

corpus that contain the term t and does not change depending on the term frequency.
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If a term that does not exist in the corpus is queried, the denominator becomes

0 which causes a division-by-zero error. To avoid the possibility of the denominator

becoming 0, 1 is added to the denominator, and the inverse document frequency

equation becomes,

idft,D = log
|D|

1 + |{d ∈ D; t ∈ d}|
(2.4)

The equation for term frequency-inverse document frequency (TF-IDF) is a mul-

tiplication of Equation 2.2 and Equation 2.4. The formula used to calculate the

TF-IDF weight of a term t in a document d in a corpus of size |D|, where t is present

in D documents is given as,

tfidft,d,D = ft,d · log
N

1 + |{d ∈ D; t ∈ d}|
(2.5)

This combination of TF-IDF is widely used to weigh terms in various corpora.

2.4 Word2Vec

Mikolov et al. presented their work of generating and calculating word vectors

and called their approach ‘Word2Vec’ [7]. In their work, they presented results of

using a recurrent neural network language model to generate word embeddings. The

simplest form of the network consisted of 3 layers, an input layer, a hidden layer and

an output layer. The input also consisted of a hidden layer that is carried forward

from the previous execution of the neural network. A framework of the recurrent

neural network is shown in Figure 2.2.

In Figure 2.2, w(t) is the input vector of vocabulary size N with a one-hot en-

coding, i.e. only one value is set to 1, others are set to 0. The hidden layer s(t) is a

vector of dimension D and the output layer y(t) is a vector of dimension N . s(t− 1)

represents the hidden layer from the previous iteration. U is a matrix of dimension

N ×D with weights for each input word in the vocabulary to the hidden layer. On

the other hand, V is a matrix of dimension D × N with weights for the connection

between the hidden layer and the output layer. The output is a log-likelihood of each
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Fig. 2.2.: Framework of a recurrent neural network language model [7].

possible word in the vocabulary to be the next possible word. The RNN is trained

with back-propagation to maximize this log-likelihood of the output layer for the

correct next word in the sentence [7].

The word vectors from this model were derived from the U matrix – the input-

hidde layer weights – and used for evaluation. The results showed that a continuous

vector space representation dervied from a language model captures the linguistic

regularities well. The work presented as a part of [7], paved the way for further ex-

ploration of word embeddings and Word2Vec was presented by modifying the training

procedures [11]. The training architectures presented were: 1) Continuous Bag-of-

Words and, 2) Skip-gram [11].
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2.4.1 Continuous Bag-of-Words

Continuous Bag-of-Words (CBOW) is a sliding window approach that uses 2k

one-hot encoded input context vectors of the vocabulary length (k before the query

word, k after the query word) for a window size of k.

These are used as an input to the hidden layer, and the output is a vector of

vocabulary length. The output vector for each word, given the context window k is

calculated using Equation 2.6.

1

T

k∑
t=1

logp(wt|wt−k, . . . , wt+k) (2.6)

where T is the vocabulary size, k is the window size, and wt is the context word.

softmax is applied to the output vector to generate the output vector. The

expected output vector is a one-hot encoded output context vector.

The CBOW framework is shown in Figure 2.3.

2.4.2 Skip-gram

Skip-gram is a reverse continuous bag-of-words approach where the input to the

network is a one-hot encoded input context vector for the query word and the output

is a vector of the length of the vocabulary, showing the possible probabilities of the

j context words surrounding it. In the case of skip-gram, the output values are

probabilities.

The Equation 2.7 is used to calculate the output probabilities for each word in

the vocabulary.

argmaxθ
1

T

T∑
t=1

∑
j∈c,j 6=0

logp(wt+j|wt; θ) (2.7)

where θ is a chosen parameter, and wt is the context word.
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Fig. 2.3.: Framework of the Word2Vec Continuous Bag-of-Words model [11].

The argmax function is used to calculate the maximum value of the log-likelihood

for each of the words in the vocabulary. These probabilities are compared with the

actual context words in the sentence that surround the query word, and are used

for back-propagation. The skip-gram framework used in the Word2Vec algorithm is

shown in Figure 2.4.

Mikolov et al. trained a word embeddings model on the Google News dataset

of ∼100 billion words and phrases, but the vocabulary was reduced to ∼300 million

words and phrases based on frequency of words. The model was trained using CBOW

and skip-gram and compared [11]. The skip-gram model was later made available on

their website [12] [13].
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Fig. 2.4.: Framework of the Word2Vec skip-gram model [11].

Since the introduction of Word2Vec, word embeddings quickly rose in popularity

in the natural language processing domain. Word embeddings were tested and used

in various fields including, but not limited to part-of-speech tagging [14], question-

answering [15], classification [16], entity recognition [17], word analogy tasks [7], neu-

ral machine translation [18], and especially in language models [19].

There has also been a lot of research into using word embeddings in various fields

that utilize NLP in some form, like cyber-security [20], biomedical [21], sentiment

classification [22] and parsing [23].
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Word embeddings have also been studied to see how many properties of linguistics

they carry forward. There has been a lot of research in trying to identify the properties

of language that are also seen in the word embeddings. Things like gender and racial

bias have been heavily studied and it has been observed that word embeddings learn

those exact biases that are present in the original corpora that they are trained from.

At the same time, this also brought about a new beginning towards creating

‘better’ word embeddings that learn faster, learn from smaller amounts of data, run

faster, can be monitored better, and more holistically represent the context.

2.5 GloVe

Global Vectors for word representations (GloVe [24]) was proposed by Pennington

et al. and attempts to explain the regularities in the vector space for word vectors [25].

They further describe the model properties required to generate these regularities in

the word vectors.

The authors of [25] go on to explain that there is little difference between count-

based and prediction-based architectures, since fundamentally, they both probe co-

occurrences. The resulting log-bilinear regression model proposed uses a word-word

co-occurrence matrix instead of a individual context windows. This model learns

word representations in an unsupervised way and outperforms Word2Vec’s skip-gram

model in tasks like word analogy, word similarity and named entity recognition.

2.6 FastText

Bojanowski et al. identified a limitation of Word2Vec (Section 2.4) and GloVe

(Section 2.5), whereby the morphological structure of the words and sentences is

ignored to create word embeddings. Instead, word embeddings are created off of the

sequence of words, with little to no pre-processing performed. To tackle this, the

authors proposed a new method of creating word vectors that relied on representing

words as a bag-of-character n-grams [26] [27]. The word vector is then aggregated
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for these character n-grams. Another advantage of this type of a training procedure

is that such word embeddings are capable of producing word vectors for words that

were not seen during the training.

2.7 Embeddings from Language Models

One of the major limitations of word embeddings was that they are not context

dependent. For a neural network learning word embeddings, the word ‘tears’ that

appears in the sentences ‘He shed tears’ and ‘She tears the paper’ is identical, even

though they are very different in connotation. While it is easy for a human to identify

the occurrence in the first sentences as the noun implying the action of crying, and

the second as a verb, it is a particularly tricky challenge to teach neural networks this

without labelled data.

Such examples introduced the need for word embeddings that learn from context.

A solution to this was proposed by Peters et al. using deep neural networks that rely

on language models. Because this method relied on learning word embeddings from

a language model with modifications, they call their approach ELMo [28] [29]. The

proposed model relies on syntax, semantics and language polysemy. The advantage

of such a model is that it generates a different vector for each word based on the

context and the sentence it appears in. Because of this, the same word in two different

sentences does not have the same word vector, which was the case in all the previously

word embeddings. However, this comes at a cost: computation. The model relies on

bi-directional long short-term memory neural networks and thus induces additional

overhead in the creation of word vectors.
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3. CLUSTERING, EVALUATION AND VISUALIZATION

Clustering is an important step of the proposed work. Clustering algorithms like

self-organizing maps (Section 3.1.1) and k-means clustering (Section 3.1.2) enable

grouping of concepts, documents and patient records.

Evaluation of the clustering performed is performed to understand the quality

of the clustering performed. Internal evaluation metrics like Davies-Bouldin index

(Section 3.2.1), and external evaluation metrics like F-measure (Section 3.2.3) and

purity (Section 3.2.2) are used.

Visualizing the results of the generated clusters allows for the evaluation of the

clustering performance in an observable way. Visualization is performed by using

visualization tools like U-matrix and hit histogram (Section 3.3.1) or by using dimen-

sionality reduction algorithms like Principal Component Analysis (Section 3.3.2) and

T-distributed Stochastic Neighbor Embedding (Section 3.3.3), and then using scatter

plots on 2-dimensional data.

3.1 Clustering

Clustering is the process of grouping sets of objects together based on the similarity

or differences between objects. Objects that appear in the same group have a degree

of similarity, whereas those in different groups have a higher degree of difference.

Each group of data objects is called a ‘cluster’.

Clustering algorithms, in general, are unsupervised and rely on mathematical

representations of data. Clustering is performed by repeated iterations that group and

re-group data until stability or maximum number of pre-defined iterations are reached.

Clustering can be generalized as a multi-class classification problem. Descriptions of

the clustering algorithms used in this work are presented in the following subsections.
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3.1.1 Self Organizing Map

Self-Organizing Map (SOM) is a type of neural network that is used for document

clustering and visualization [30]. SOM implements a topologically ordered display of

the data to facilitate understanding structures in the input data set. It is also readily

explainable and easy to visualize. Visualization of multi-dimensional data is one of

the main applications of SOM [31]. These features make SOM an appropriate choice

as a clustering algorithm for this work.

A basic SOM consists of M neurons located on a low dimensional grid (typically

2 dimensional) [31]. The algorithm responsible for the formation of the SOM involves

three basic steps after initialization - sampling, similarity matching, and updating.

These three steps are repeated until formation of the feature map is complete. Each

neuron i has a d-dimensional prototype weight vector Wi = Wi1,Wi1, ...,Wid. Given

X is a d-dimensional input vector, the algorithm can be summarized as follows:

1 Initialization: Choose random values to initialize all the neuron weight vectors

Wi(0) ∀ i = 1, 2, . . . ,M where M is the total number of neurons in the map.

2 Sampling: Draw a sample data X from the input space with a uniform prob-

ability.

3 Similarity Matching: Find the best matching unit (BMU) or winner neuron

of X, denoted here by b which is the closest neuron (map unit) to X in the

criterion of minimum Euclidean distance, at time step n (nth training iteration).

b = arg min
i
||X −Wi(n)||∀i = 1, 2, . . . ,M (3.1)

4 Updating: Adjust the weight vectors of all neurons by using the Equation 3.2,

so that the best matching unit and its topological neighbors are moved closer

to the input vector X in the input space.

Wi(n+ 1) = Wi(n) + η(n) · hb,i(n) · (X −Wi(n)) (3.2)
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where η(n) denotes the learning rate and hb,i(n) is the suitable neighborhood

kernel function centered on the winner neuron. The distance kernel function

can be, for example, Gaussian:

hb,i(n) = e
− ||rb−ri||

2

2σ2(n) (3.3)

where rb and ri denote the positions of neuron b and i on the SOM grid and

σ(n) is the width of the kernel or neighborhood radius at step n. σ(n) decreases

monotonically along the steps as well. The initial value of neighborhood radius

σ(0) should be fairly wide to avoid the ordering direction of neurons to change

discontinuously. σ(0) can be properly set to be equal to or greater than half the

diameter of the map. Equation 3.4 gives the initial value of the neighborhood

radius for a map of size a by b.

σ(0) =

√
a2 + b2

2
(3.4)

5 Continuation: Continue with steps 2-4 until no noticeable changes in the

feature map are observed or a pre-defined maximum number of iterations is

reached.

The results of an SOM can be directly projected onto a two-dimensional space

for visualization. For this reason, SOM is also a dimensionality reduction algorithm.

The most common visualization techniques used for visualizing and evaluating SOM

results are the U-matrix and Hit histogram, which are further detailed in Section

3.3.1.

3.1.2 k-means

k-means clustering algorithm [32] is straight-forward to implement and can be

applied to large and high dimensional data sets. It has been successfully used in

various application domains, such as text mining, computer vision and so on [33] [34].

k-means clustering algorithm tries to assign the data in the data set to one of the
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predefined number of clusters. The aim is to minimize the sum of distances of each

point within the cluster to the cluster center. Given x = x1, x2, . . . , xd is a set of

d-dimensional input vector, and C = C1, C2, . . . , Ck is a set of randomly initialized k

centers with d-dimensions, the algorithm is summarized as follows:

1 Assignment of cluster centers: Assign each data point xi to the cluster Cj

whose Euclidean distance from the cluster center is minimum of all the cluster

centers.

Cj = {xi : ||xi − Cj|| ≤ ||xi − Ci||,∀i, 1 ≤ i ≤ k} (3.5)

2 Update cluster centers: Set the new center of each cluster to the mean of

all data points belonging to that cluster.

µi =
1

|Ci|
∑
j∈Ci

xj,∀i (3.6)

3 Repeat: The steps 1-2 are repeated until convergence or until a pre-defined

maximum number iterations is reached.

k-means algorithm does not have the property of projecting the input vectors to

a low dimensional space for cluster visualization. The techniques used to reduce to

visualize the clustering output to a low dimensional space is described in Section 3.3.2

and Section 3.3.3.

3.2 Evaluation

Different evaluation metrics rely on different parts of the data, with some metrics

depending more heavily on intra-cluster distances, and others consider inter-cluster

distances more significantly.

Evaluation metrics that rely on properties of the data that are used for clustering

are called internal evaluation metrics. These metrics do not require external labels

and rely on the data itself. Often, these metrics also rely on the centroid of the

clusters. If the clustering algorithm does not specify the centroids, it can be quickly

calculated by taking a mean of the cluster members’ values.



20

External evaluation metrics rely on more than the data that is available to the

clustering. These metrics require the ‘ground truth’ labels describe the ideal result

of the clustering.

It should be noted that all of the evaluation results are calculated for the clustering

results, before any visualization or dimensionality reduction algorithms are applied.

3.2.1 Davies–Bouldin Index

Davies–Bouldin Index (DB index) [35] is built from the idea that cluster mem-

bers should have high similarity, whereas those in different clusters should have low

similarity. DB index is calculated as,

DB − Index =
1

C

C∑
i=1

max
j,j 6=i

SDi + SDj

||CLi − CLj||
(3.7)

where C is the total clusters, SDi is the standard deviation of the distance of samples

in a cluster to the respective cluster centroid, and ||CLi − CLj|| is the Euclidean

distance between centroids CLi and CLj.

The more distinct the clusters are from each other, smaller the Davies–Bouldin

index value is. Thus, the lower the value of DB index, the better the clustering. An

issue of using DB index as a validation metric is that it does not necessarily imply

the best information retrieval. Another drawback being the equal weight given to

each cluster, which skews the result towards larger clusters in dataset with unequal

classes.

3.2.2 Purity

Purity is a basic external evaluation metric that verifies the association of a clus-

tering result with the label [36]. For each cluster, the most frequent class is assumed

to be the class of the cluster. All the members of the cluster that belong to this

cluster are correct, while those that belong to any other class are incorrect.
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Purity is a sum over all clusters of the count of the maximum membership class.

For N datapoints clustered into C clusters, with D possible classes, purity can be

expressed as,

Purity =
1

N

∑
c∈C

max
d∈D
|c ∩ d| (3.8)

However, purity does not provide a complete picture of the accuracy of the system,

and is thus usually complimented with F-measure (Section 3.2.3), which builds on the

concept and provides a better evaluation metric for labelled data.

3.2.3 F-measure

F-measure (also called F-score, F1-score or F1-measure) is an external clustering

evaluation metric that relies on the true positives, true negatives, false positives and

false negatives of a binary classification to determine the accuracy of the classification

[37]. since clustering is an n-class classification problem, F-measure can be scaled to

suit more classes and accurately measure the results, provided the labels are available.

F-measure is formed with its 2 components, precision and recall. Precision is

calculated as the ratio of true positives to the total membership for each cluster

(Equation 3.9). Recall, on the other hand, is the ratio of true positives for each

cluster to all the datapoints that should be in that cluster (Equation 3.10).

precision =
tp

tp+ fp
(3.9)

recall =
tp

tp+ fn
(3.10)

In Equations 3.9 and 3.10, tp stands for the number of true positives, tn for the

number of true negatives, fp for the number of false positives, and fn for the number

of false negatives.
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In terms of clustering, precision and recall are calculated separately for each cluster

(or class), and then averaged together. Precision is similar to purity (Section 3.2.2),

but with one major difference: precision is calculated separately for each cluster, but

purity is calculated for the whole result.

F-measure is calculated using precision and recall as,

f =

(
precision−1 + recall−1

2

)−1
= 2 · precision · recall

precision+ recall
(3.11)

Equation 3.11 can be simplified in terms of true positives (tp), true negatives (tn),

false positives (fp) and false negatives (fn) as,

f = 2 · tp

2 · tp+ fp+ fn
(3.12)

3.3 Visualization

Clustering algorithms provide a ‘grouping’ of the data in the form of clusters.

However, they do not provide a visualization that can be used to decipher the clus-

tering results.

Clustering algorithms like self-organizing maps (Section 3.1.1) reduce the dimen-

sions on the clustered data to (typically) two dimensions, allowing for them to be

easily visualized. At the same time, data that is stored as a part of the SOM training

in the form of weights contains more information about the sample space and data set.

All of these can be plot and interpreted in the form of U-matrix and Hit histogram

(Section 3.3.1) to visually evaluate the results of the SOM clustering.

On the other hand, clustering algorithms like k-means (Section 3.1.2) provide a

classification of the data set on the same dimension as the input set. These clustering

results are applied dimensionality reduction algorithms like Principal Component

Analysis (PCA) (Section 3.3.2) and T-distributed Stochastic Neighbor Embedding (t-

SNE) (Section 3.3.3) to reduce the dimension of the data set and the cluster centroids

to 2D. The dimension reduced data and centroids can then be plot onto a 2D or 3D

space.
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3.3.1 U-Matrix and Hit Histogram

Fig. 3.1.: Sample U-matrix of a trained SOM.

The most commonly used visualization techniques of SOM are the U-Matrix and

Hit histogram. The U-matrix holds all distances between neurons and the immediate

neighbor neurons [31]. Figure 3.1 shows a sample U-matrix of a trained self-organizing

map on an input data set that has two clusters. The lighter the color in the hexagon

connecting any two neurons, the smaller is the distance between them. From the

U-matrix, two large light regions can be visualized. One is towards the left, while the

other is to the right. These regions present the two clusters obtained on training the

input data set. The U-matrix gives a direct visualization of the number of clusters

and their distribution.

The hit histogram of the input data set on the trained map provides a visualiza-

tion that details the distribution of input data across the clusters. Each input data

instance in the data set can be projected to the closest neuron on a trained SOM map.

The closest neuron is called the best matching unit (BMU) of the input data instance.
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Fig. 3.2.: Sample Hit histogram of a trained SOM.

The hit histogram is constructed by counting the number of hits each neuron receives

from the input data set. Figure 3.2 shows the hit histogram of a sample input data

set on a trained SOM. Each hexagon represents one neuron on the map. The size of

the marker indicates the number of hits the neuron receives. Thus, a larger marker is

representative of a larger number of hits on that neuron. Based on the hit histogram,

it is visualized that most of the input data hits neurons in the left and right regions.

These two regions correspond to the two clusters on the U-matrix shown in Figure

3.1.

3.3.2 Principal Component Analysis

Principal Component Analysis (PCA) uses an orthogonal linear transformation to

convert a set of correlated observations into uncorrelated principal components [38].

Principal components are a set of variables that are linearly uncorrelated.
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Applying principal component analysis to a dataset brings out the variations of

datapoints and draws an emphasis on the patterns in the dataset. Thus, principal

component analysis is very frequently used as a tool for dimensionality reduction and

visualization of large data sets.

The first co-ordinate in the new system contains the variable from the transfor-

mation with the greatest variance, the second co-ordinate contains the variable with

the second greatest variance, and the last co-ordinate in the new system contains the

variable with the least variance across the transformed data set.

When using PCA for dimensionality reduction to reduce the data set to d dimen-

sions, only the top d-dimensions from the transformed data set are chosen, and the

others are dropped. This means the top-d variables with the highest variances are

chosen, while the other variables with lower variances are truncated.

Dimensionality reduction with PCA is tricky when considering high dimensions

as it may lead to a loss of large amounts of valuable data in the truncated variables.

However, PCA serves as a reliable step in the dimensionality reduction process by

aiding the removal of variables that contain low variances. Thus, PCA suppresses

some noise without severely distorting the distances between data points.

In this work, PCA is used as an intermediary step while reducing the dimension-

ality of the high-dimensional k-means output data. The output of PCA is used as an

input to the t-SNE algorithm, which further reduces the dimensions and provides a

data set reduced to 2-dimensions, which can be visualized using scatter plots.

3.3.3 T-Distributed Stochastic Neighbor Embedding

T-Distributed Stochastic Neighbor Embedding (t-SNE) was proposed by Maaten

et al. [39] and is employed to visualize the clustering results. The t-SNE algorithm is

used for dimensionality reduction. The algorithm minimizes the sum of the Kullback-

Leibler divergences of all data points in the original dimensional space and the map-

ping space.
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Given a set of N inputs x1, . . . , xN , the goal of t-SNE is to learn a d-dimensional

map. The algorithm can be summarized as [39]:

1 Pairwise affinities: The affinity of datapoint xi and datapoint xj is based on

the probability of xi picking xj as its neighbor. This probability depends on the

variance of the Gaussian distribution centered at xi, σi. The pairwise affinities

can be mathematically represented as:

pj|i =
exp (

−||xi−xj ||2
2σ2
i

)∑
k 6=i exp (−||xi−xk||

2

2σ2
i

)
∀i,∀j (3.13)

2 Pairwise similarities: The pairwise similarities for each (i, j) pair are calcu-

lated as:

pij =


pj|i+pi|j

2N
i 6= j

0 i = j

(3.14)

3 Initial Solution: An initial solution is sampled as Y (0) = y1, . . . , yN such that

yi ∈ Rd.

4 Compute Low-Dimensional Affinities: The affinities of the output vari-

ables are calculated by the Equation 3.15:

qij =


(1+||yi−yj ||2)−1∑
k 6=l(1+||yk−yl||2)−1 i 6= j

0 i = j

(3.15)

5 Gradient: The gradient of the Kullback-Leibler divergence between pij and qij

is calculated as:

δC

δyi
= 4 ·

∑
j

(pij − qij) · (yi − yj) · (1 + ||yi − yj||2)−1 (3.16)

6 Update Solution: The solution is updated as:

Y (t) = Y (t−1) + η · δC
δyi

+ α(t)(Y (t−1) − Y (t−2)) (3.17)
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7 Repeat: Steps 4-6 are repeated until convergence or until a maximum number

of iterations are reached.

Thus, the locations of the input datapoints X on the d-dimensional map are

determined by minimizing the Kullback-Leibler divergence (Equation 3.16). This

minimization is performed by using gradient descent. The output of the t-SNE al-

gorithm, Y is a map that correlates the similarity of the input datapoints in the

low-dimensional space. The output Y can then be visualized using a scatter plot.

It must be noted that the computational cost of t-SNE is high when the original

dimensionality of the data is high. To speed up the process, Principle Component

Analysis (Section 3.3.2) is used to reduce the dimensionality to to a lower space

before t-SNE technique is applied to convert the lowered dimensional representation

to a two-dimensional map.



28

4. INFORMATION EXTRACTION

The data sets used as a part of this work are unlabeled and provide no informa-

tion between medically relevant and medically irrelevant parts of a sentence. While

training word embeddings and using word vectors does not require any labels, it is

necessary to figure out which words and phrases are relevant for further downstream

tasks (Chapters 7 and 8).

4.1 UMLS MetaMap

The United States National Library of Medicine (NLM) maintains a collection of

many popular vocabularies as a part of the Unified Medical Language System (UMLS)

[40]. UMLS provides a mapping between various terms and ontologies across different

vocabularies. This mapping through UMLS aims to provide a comprehensive and

exhaustive ontological representation of all of the biomedical concepts defined in any

of the vocabularies to make the vocabularies inter-operable. The UMLS vocabularies

are organized under different knowledge sources:

1 Metathesaurus: A large biomedical thesaurus that spans across UMLS vo-

cabularies. Vocabularies that are a part of Metathesaurus include SNOMED

CT, RxNorm, MeSH, ICD-10, etc. [41].

2 Semantic Network: A categorization framework for concepts within UMLS.

The Semantic Network also includes the ‘semantic types’ that biomedical con-

cepts are grouped into, and the relationships between these semantic types [42].

3 Specialist Lexicon: A set of many independent NLP tools designed to link

common English vocabulary with biomedical data. These tools are available as

a set of Java programs [43].
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In 2001, Dr. Alan Aronson and the NLM introduced MetaMap, a new tool to

provide a mapping from any text to biomedical concepts available in UMLS [44] [45]

[46]. MetaMap provides a correlation between input text and its representation in

UMLS. Since 2001, MetaMap is actively developed and maintained with bi-annual

releases.

MetaMap uses natural language processing and computational linguistic tech-

niques like parsing, phrase matching and word sense disambiguation to evaluate input

text and provide matches to biomedical lexicon from the UMLS Metathesaurus.

MetaMap is available to try interactively through the NLM’s website or can be

used locally with a command line interface or a Java API. MetaMap is extremely

configurable and can be configured to suit the requirements for the application.

MetaMap takes text as an input and outputs either a human-readable formatted

text or XML or JSON strings. For every word / phrase match from the input text,

MetaMap provides a list of output parameters in the output [47]. Some of these

output parameters are described in Table 4.1.

‘Candidate Matched’ and ‘Candidate Preferred’ output parameters from Table 4.1

are biomedical normalized representations of every phrase matched. The matched

concept is the closest representation as it appears in the original text. Whereas, the

preferred concept is the normalized representation of the biomedical concept in the

Metathesaurus. For example, for an input of ‘lung cancer’, the candidate matched

is ‘lung cancer’, but the preferred concepts are ‘malignant neoplasm of the lung’ and

‘carcinoma of lung’. The preferred candidate, thus, helps in normalizing the concepts

across the dataset.

The ‘Semantic Type’ output parameter of of MetaMap is among the most valuable

to this work. It provides one or more semantic types that the candidate concept is

categorized into. Some of the semantic types used are:

1. Disease or Syndrome

2. Neoplastic Process
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Table 4.1.: Description of some of MetaMap’s output parameters.

MetaMap tag / key Description

Candidate Matched The Metathesaurus concept candidate the phrase was

matched to.

Candidate Preferred The Metathesaurus preferred concept candidate for the

phrase.

Candidate Score The negative score of the concept match.

CUI The concept unique identifier ID.

Words Matched The words from the original text that were matched to

this candidate.

Semantic Type The semantic type of the concept from the categories de-

fined in the Semantic Network.

Sources The vocabularies from Metathesaurus that the candidate

concept is available in.

3. Sign or Symptom

4. Age Group

5. Clinical Attribute

6. Organism Attribute

7. Clinical Drug

8. Pharmacologic Substance

9. Qualitative Concept

10. Quantitative Concept

11. Temporal Concept
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Given the following paragraph from United States Preventive Services Task Force’s

‘Lung Cancer: Screening’ guidelines as an input [48], Table 4.2 shows a formatted

subset of the results of running MetaMap on the above sentence.

The USPSTF recommends annual screening for lung cancer with low-dose

computed tomography (LDCT) in adults aged [...].

In the scope of this work, MetaMap was used to extract biomedical concepts from

all of the different datasets described in Chapter 5. Throughout the work, MetaMap

was configured to only show outputs from a reduced set of semantic types. The disease

concepts were extracted by using the ‘Disease or Syndrome’ and ‘Neoplastic Process’

semantic types, and symtoms concepts are extracted using the ‘Sign or Symptom’

semantic type. For all the concepts identified, the words matched were replaced by

the candidate preferred.

A local instance of MetaMap is run using the command line and output format

is set to JSON. The JSON output was piped through a Python wrapper and parsed

further [49].

4.2 Stanford CoreNLP

Stanford CoreNLP is a suite of linguistic tools developed at Stanford University’s

Natural Language Processing group [50]. CoreNLP contains NLP tools to perform

part-of-speech tagging, named entity recognition, dependency parsing, open informa-

tion extraction, tokenization, etc. Except English, the CoreNLP suite is also available

in Arabic, Chinese, French, German and Spanish.

CoreNLP was used as a part of this work for pre-processing some of the data in

applications in Chapter 8. CoreNLP is available online as a demo [51], but is recom-

mended to be used locally for longer using a local instance of the Java API. A Python

wrapper for CoreNLP’s Java API developed by the NLP group was also used in this

project [52].
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Table 4.2.: Results of some of MetaMap’s output parameters for an example.

Words

Matched

Candidate

Matched

Candidate

Preferred

CUI Semantic

Type

Candidate

Score

recommends recommends Recommen-

dation

C0034866 Idea or

Concept

-1000

annual Annual Annual C0332181 Temporal

Concept

-593

screening,

for, lung,

cancer

Screening

for Lung

Cancer

Screening

for ma-

lignant

neoplasm

of lung

C0281477 Diagnostic

Procedure

-926

low, dose Low dose Low dose C0445550 Quantitative

Concept

-612

computed,

tomogra-

phy

Computed

Tomogra-

phy

X-Ray

Computed

Tomogra-

phy

C0040405 Diagnostic

Procedure

-778

adults Adults Adult C0001675 Age Group -581

aged Aged age C0001779 Organism

Attribute

-1000

aged aged Old age C1999167 Population

Group

-1000

aged Aged Elderly

(population

group)

C0001792 Population

Group

-1000
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The tools from CoreNLP used in this work, and their descriptions are:

1 Part-of-Speech Tagging: The part-of-speech (POS) tagger is one of the initial

tools developed for CoreNLP, and is also a crucial component [53]. The POS

tagger is a standard log-linear tagger that tags every word in the text with the

tags from the Penn Treebank [54].

Fig. 4.1.: An example result of CoreNLP’s part-of-speech tagger.

2 Dependency Parser: The dependency parser in CoreNLP uses a neural net-

work dependency parses [55]. The parser parses every part of a sentence and

describes links them between different parts of the sentences based on subject,

object, modifiers, roots, together with the part-of-speech tags.

Fig. 4.2.: An example result of CoreNLP’s dependency parser.

3 Named Entity Recognizer: The named entity recognition identifies names

of locations, people, organizations, etc. and miscellaneous entries like money,

percentages, numbers, dates and timestamps [56].

Fig. 4.3.: An example result of CoreNLP’s named entity recognizer.
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4 Open Information Extraction: The Open Information Extraction system in

CoreNLP identifies and extracts relation tuples and binary relationships from

text, without a pre-defined schema [57].

Fig. 4.4.: An example result of CoreNLP’s Open Information Extraction system.
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5. DATA SOURCES

Large repositories of freely medical articles and journals are available through the

National Institute of Health’s PubMed service [58] [59]. PubMed articles that include

access to full-text are included as a part of PubMed Central [60], whereas the database

that contains the citations and abstracts for articles are a part of MEDLINE [61].

PubMed’s MEDLINE, the largest biomedical abstracts and citations database, has

more than 26 million articles with thousands more added daily. MEDLINE documents

are also tagged and indexed with Medical Subject [62] [63].

Different subsets of PubMed have been developed and used for various types of

biomedical research over the years. The datasets described in Section 5.1 were gen-

erated for varied research purposes, and span more than 30 years. Section 5.1.3

describes the TREC Genomics dataset that was developed as a part of National In-

stitute of Standards and Technology’s Text REtrieval Conference series. PubMed

Central – Open Access (5.1.1) contains a subset of PubMed Central that is made

available openly for any research [60]. Ohsumed text collection (Section 5.1.2) con-

tains a dataset developed in late the 1990s for text categorization tasks.

These biomedical document corpora have been used repeatedly in the literature

for previous attempts at text classification and clustering, and are thus ideal datasets

for experimenting applications of research presented in this thesis.

Electronic Health Records (EHRs), also called Electronic Medical Records (EMRs),

are a method of collecting and storing patient information. Concisely, Electronic

Health Records are patient health records that are stored electronically and available

on a variety of devices. Most electronic health records are stored online and available

through web portals of hospitals.
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In recent years, Electronic Health Record systems have recently been adopted by

many countries [1]. Electronic Health Records are filled up by doctors, physicians,

nurses and therapists, and also used extensively for billing purposes. EHRs contain

extremely useful information which can help in improving the quality of patient care.

The information available in EHRs, however, contains identifiable patient infor-

mation. This is why such information must be dealt with extreme care to protect

confidentiality. As a part of this work, patient data from 500 patients over 15 years

was used to show a proof-of-concept of how natural language processing techniques

can be used towards improving patient care. Section 5.2 contains information about

the EHR data used.

5.1 Biomedical Documents

To evaluate the proposed biomedical document clustering framework (Chapter

7), three datasets of biomedical document collections from the NLM’s PubMed are

used [58]. The three datasets selected are very different from each other with respect

to the categories of documents, the size of corpora, the documents within the corpora,

etc.

One of these is a labeled dataset while the other two are unlabeled. This distinc-

tion between datasets helps in evaluating the performance of the framework across

datasets of different sizes. The performance of the framework on the labeled dataset

helps establish a baseline for comparison with other methods. Since most of the cor-

pora are unlabeled and large, testing the framework on varying sizes of datasets helps

in estimating its performance as the size of datasets scale up.

For all of the datasets, the focus of this work is on document-level clustering

based on concepts of diseases. Thus, the first step is extracting the disease concepts

by using UMLS MetaMap (Chapter 4, Section 4.1). For the extracted concepts, we

also present the distribution of concepts across the corpus, as well as the span of the

concepts across the number of words in the respective sections.
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In this research, only content in the ‘Title’ and ‘Abstract’ sections of the docu-

ments are input to proposed framework. Since we only use these short sections of

the documents, there are some documents from which no disease-related concepts

are identified by MetaMap. Such documents are excluded and not considered for

document vector generation (Chapters 6 and 7).

5.1.1 PubMed Central – Open Access

PubMed Central – Open Access is an unlabeled subset of over 1 million articles

from the total collection of articles in PubMed Central [60] [64]. The PubMed Central

– Open Access data set has been widely used in many research projects to examine

tasks of biomedical clustering and classification [34] [65]. PubMed Central is also a

part of the training corpus for the word embeddings model used in this research [21].

For this research, 600 articles were randomly selected from the ‘A-B’ subset which

includes articles from journals whose names start with letter ‘A’ or ‘B’. The number

of selected articles from each journal is shown in Table 5.1.

After retrieving disease concepts from the 600 documents in the dataset using

MetaMap, 658 unique concepts of diseases were identified. Figure 5.1 shows the

distribution of these concepts based on the number of words in each concept. It can

be seen that around 20% of the concepts identified are of single word length, whereas

another 50% of the concepts are two words in length. The concepts of length three

words are almost 20%, and the number of concepts greater than or equal to four

words in length are around 9%.

Figure 5.2 shows that about 73% of the concepts extracted appear in only 1

document from the PubMed Central – Open Access dataset, and 23.4% appear in

2-5 documents. Just over 3% of concepts appear in 6-14 documents, and only 0.6%

of the concepts appear in more than 15 documents. These document frequencies of

concepts show that the concept appearance through the corpus is much more sparse
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Table 5.1.: Journal-wise distribution of the documents in the PubMed Central – Open

Access dataset.

Name of journal Document

Count

American Journal of Hypertension 13

Augmentative and Alternative Communication 2

Ancient Science of Life 3

Bioinformatics and Biology Insights 45

Allergy and Asthma Proceedings 28

BoneKEy Reports 4

Anesthesia, Essays and Researches 135

Biological Trace Element Research 31

Bone Marrow Research 1

Brain and Language 1

American Journal of Physiology, Endocrinology and Metabolism 11

Aphasiology 3

Annals of Rehabilitation Medicine 323

than that of the TREC dataset (Section 5.1.3). Such sparsity of concepts occurs

usually in large, randomized and diverse corpora because of the uneven distribution

of concepts.

5.1.2 Ohsumed Collection

The Ohsumed text collection [66] is a subset of MEDLINE [61] from 1987-1991 [67].

The subset of the Ohsumed collection used here includes the abstracts of approxi-

mately 2400 articles. These articles are related to cardiovascular diseases.
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Table 5.2.: Category-wise distribution of the abstracts selected from Ohsumed col-

lection subset.

Category Number of documents

Bacterial Infections and Mycoses 100

Virus Diseases 94

Parasitic Diseases 65

Neoplasms 152

Musculoskeletal Diseases 92

Digestive System Diseases 111

Stomatognathic Diseases 100

Respiratory Tract Diseases 115

Otorhinolaryngologic Diseases 125

Nervous System Diseases 103

Eye Diseases 98

Urologic and Male Genital Diseases 106

Female Genital Diseases and Pregnancy Complications 106

Cardiovascular Diseases 108

Hemic and Lymphatic Diseases 104

Neonatal Diseases and Abnormalities 100

Skin and Connective Tissue Diseases 102

Nutritional and Metabolic Diseases 102

Endocrine Diseases 95

Immunologic Diseases 108

Disorders of Environmental Origin 108

Animal Diseases 92

Pathological Conditions, Signs and Symptoms 121

Total 2407
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Fig. 5.1.: Distribution of the number of words over every concept identified after

processing the PubMed Central – Open Access dataset with MetaMap.

In total, 3649 concepts of diseases are identified and extracted from just over 2400

abstracts. These abstracts are categorized into a category hierarchy which has 23

top level categories and the documents from each category, are given in Table 5.2.

However, since all documents are related to cardiovascular diseases, these categories

are not labels but categories to which the diseases and documents refer to. The

original category labels of the Ohsumed Collection are not assigned based on the

concepts of diseases, thus, these labels are used to evaluate the clustering performance.

Figure 5.4 shows the distribution of these concepts based on the number of words

in the concepts. From the 3649 concepts extracted, 20% concepts are single word,

just over 50% concepts consist of two words. About 20% concepts have 3 words, and

about 9% concepts have more than 4 or more words. This shows the distribution of

concepts is fairly similar across datasets (Figures 5.5 and 5.1).
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Fig. 5.2.: Distribution of the identified disease concepts over document frequency for

the PubMed Central – Open Access dataset.

Similarly, the distribution of concepts across documents is also fairly similar across

datasets, with almost 60% concepts appearing in only 1 document as seen in Figure

5.4. 34.2% of the concepts appear in 2-5 documents, and 5.1% concepts are present in

6-14 documents. Only 1.4% of the concepts are present in more than 15 documents.

Although the total number of concepts of diseases extracted from the Ohsumed col-

lection is large, the distribution of concepts across documents is very similar to that

of PubMed (Figure 5.2).

5.1.3 TREC 2005 Genomics

This corpus consists of a subset of documents from MEDLINE extracted as a

part of the TREC 2005 Genomics Track [68] [69]. This dataset includes documents

that were used for the Genomics TREC 2005 challenge. The documents contain

information about correlations between genes and their mutations, and relate them

to the diseases they cause.
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Fig. 5.3.: Distribution of the number of words over every concept identified after

processing the OHSUMED dataset with MetaMap.

Table 5.3.: Overview of the TREC genomics dataset.

Disease Number of documents

Multiple Sclerosis 554

Mad Cow Disease 447

Alzheimer’s Disease 1201

Colon Cancer 567

Parkinson’s Disease 769

Cerebral Amyloid Angiopathy 482

Breast Cancer 458

The documents are grouped by diseases, and thus every document’s label is a

disease. MetaMap is used to label the concepts of diseases in each of these documents

(Chapter 4, Section 4.1). However, not all documents have the concept of the disease

described in the ‘Title’ or ‘Abstract’. Such documents are removed from the dataset

and not used.
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Fig. 5.4.: Distribution of the identified disease concepts over document frequency for

the OHSUMED dataset.

The categories – document labels – used and the corresponding number of docu-

ments in each category from this dataset are detailed in Table 5.3.

By pre-processing the TREC dataset containing 4478 documents with MetaMap

(Chapter 4.1), 2693 concepts were extracted.

Figure 5.5 shows the distribution of these concepts based on the number of words

in each concept. About 12.5% of the concepts have one word, about 50% of the

extracted concepts of diseases contain two words, 25% have three words, and 13.2%

of them have more than four words.

This shows that a lot of concepts related to ‘diseases’ cannot be represented by a

single word, and must be represented by phrases. This is also why individual word

vectors are not sufficient in representing the frequencies of these multi-word concepts

in documents.
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Fig. 5.5.: Distribution of the number of words over every concept identified after

processing the TREC dataset with MetaMap.

Figure 5.6 shows the distribution of concepts by document frequency. Over 57% of

the concepts have document frequency 1, and only 7% of the concepts have document

frequency over 10. Since the content is fairly short, not many concepts of disease with

same words occur in more than 3 documents. Because of the distinct labels provided

as a part of the dataset, all of those labels appear in approximately as many documents

as extracted of that label.

The concept-document distribution for TREC Genomics 2005 is different from

Figures 5.2 and 5.4 because of the larger number of normalized concepts in the labelled

TREC dataset.
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Fig. 5.6.: Distribution of the identified disease concepts over document frequency for

the TREC 2005 Genomics dataset.

5.2 Electronic Health Records

The Health Information Technology for Economic and Clinical Health Act, HITECH

Act, enacted in 2009 pushed for the promotion and expansion of adopting technology

in health information. The HITECH Act pushed for healthcare reform that helped in

paving the way towards a more broadly available and accessible EHR systems. The

Act also defined three stages of meaningful use of EHRs.

• Stage 1 contained objectives like recording demographics, maintaining medi-

cations and allergy lists, computerizing medication orders, implementing drug

allergy checks, recording vital signs, record smoking status, etc.

• Stage 2 included provisions for letting patients view, download and transmit

information, sharing patient information across systems, organizations and pa-

tients.
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• Stage 3 is to improve population health outcomes, improve clinical outcomes,

improve security of healthcare systems and gain more robust research data on

health systems.

Fig. 5.7.: A sample framework of an Electronic Health Record system.

Figure 5.7 shows the primary functional modules in a typical EHR system. Many

of these modules, such as medication and diagnosis, contain structured data which

comprises of defined data types and is often ready to use for data mining applications.

The encounter notes (also called clinical notes) is a major component of the EHR

and also includes large amounts of unstructured data. These unstructured data are

mostly text written or dictated by physicians or nurses. Arguably, it is an important

part of the patient’s medical records. Sondhi et al. demonstrated the importance

of mining the clinical notes by detecting the symptoms of Congestive Heart failure
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(CHF) [70]. Previous studies also demonstrated the need for extracting clinical signs

and symptoms from patient medical records and further analyzing their associations

with specific diseases [71] [72].

In collaboration with Indiana University Health (IU Health), the patient data

for 500 adult patients was spanning 2003 to 2017. The approval of the Institutional

Review Board (IRB) was received for this study.

Some of the 500 patients have over 10 years of medical history. The dataset

provided included patient data from the Diagnosis, Social History, Family History,

Laboratory Results, Medications, Demographics, Vitals and Imaging modules of the

EHR. The dataset also included patient notes.

Table 5.4.: Top 10 most frequent diagnoses appearing in the IU Health EHR dataset.

Diagnosis in EHR Chart Patient Count

Essential (primary) hypertension 298

Hyperlipidemia unspecified 239

Unspecified Essential Hypertension 209

Atherosclerotic heart disease of native coronary artery without

angina pectoris

201

Other and Unspecified Hyperlipidemia 186

Heart failure unspecified 172

Type 2 diabetes mellitus without complications 154

Cough 153

Shortness of breath 153

Congestive Heart Failure Unspecified 137

The data available in the ‘Diagnosis’ module of the EHR contains diagnoses made

and entered into the EHR by the physician. The data from this module is also

used for the billing purposes. After analysis, we found that all 500 patients had

more than one diagnosis. Table 5.4 lists the most frequent diagnoses as extracted
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from the diagnosis module of the EHR system, and the number of patient’s records

those concepts appeared in. For this dataset, some patients had hypertension and/or

hyperlipidemia. It was also noticed that ‘cough’ and ‘shortness of breath’ are both

found in the diagnosis module with associated ICD codes.

Table 5.5.: Top 10 most frequent social history entries appearing in the IU Health

EHR dataset.

Social History in EHR Chart Patient Count

Tobacco amount per day 95

Work/School description 60

Tobacco number of years 50

Complex Living Situation 48

Tobacco started at age 29

Tobacco stopped at age 28

Caffeine intake 19

Tobacco total pack years 16

Number of current partners 11

Alcohol amount average 11

The data in the ‘Social History’ module contains information about the social his-

tory of the patient. This includes information about the patient’s tobacco consump-

tion, caffeine consumption, living conditions, work conditions, alcohol consumption,

sexual activity, etc. From the 500 patients, there is information about 204 patients’

social history. All of the entries in this module are prefixed with ‘SHX’. The most

frequent entries in the ‘Social History’ module are shown in Table 5.5, without the

prefix.
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‘Family History’ module of the EHR contains information about significant medi-

cal history of the patient’s family. Out of 500, 282 patients have family history data.

Table 5.6 contains the top 10 family history concepts that appeared in the EHR

dataset from IU Health, and their frequencies.

Table 5.6.: Top 10 most frequent social history entries appearing in the IU Health

EHR dataset.

Family History in EHR Chart Patient Count

Diabetes mellitus type 2 63

Breast cancer 49

Stroke 42

Hypertension 42

Heart disease.. 40

High blood pressure.. 37

Heart attack.. 37

Hypertension.. 24

Cancer of colon 24

Coronary artery disease.. 23

‘Laboratory Results’ and ‘Medications’ are other modules for which the EHR

data was available, with data for 494 patients and 498 patients in them. However,

the data from these modules was not used for this research and was only observed.

Thus, summaries of this data is not provided.

The data also included 154,738 notes from the ‘Clinical Notes’ module of the EHR,

for these 500 patients. These notes were most significant and are the focus of most

of the work in Chapter 6, Section 6.3 and Chapter 8, Section 8.4. An example note

is presented in Figure 5.8.
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Associated Diagnoses: None . 
Subjective:
11/30/15: 80 who presented to the hospital with 3 days history of fever and cough. She was 
diagnosed with CAP and was started on antibiotics. Unfortunately, she had a significant 
episode of hypoxemia and had to be intubated. Pinkish frothy sputum was reported after 
intubation. Patient has a remote history of smoking. 
…...
11/30/2015 06:00 Transparent Physical Examination General: intubated and sedated. Eye: 
Pupils are equal, round and reactive to light, Extraocular movements are intact. HENT: 
intubated and sedated. Neck: Supple, No lymphadenopathy. Respiratory: bilateral rales. 
Cardiovascular: Normal rate, Regular rhythm, No murmur. Gastrointestinal: Soft, Non-
distended. Musculoskeletal: intubated and sedated. Integumentary: Warm, Dry. Neurologic: 
intubated and sedated. Results Review Labs Last 24 Hrs SELECT Labs ONLY 
…...
12/01/2015 06:52 - XR Chest PA AP Portable IMPRESSION: Diffuse bilateral airspace 
opacities. Interval improvement. Impression and Plan 1- Acute respiratory failure 2- Bilateral 
infiltrate: pulm edema vs. worsening pneumonia vs. alveolar hemorrhage (bloody sputum 
and HB dropped 2 grs) 3- Pneumonia 4- COPD: seen on CT chest 2014 5- Troponin elevation: 
troponin went up to 2 due to her respiratory failure. However, her echo is very suggestive of 
CAD. Appreciate cardiology. 6- CHF: sudden bilateral infiltrates and high troponin Plan 
Increase diuresis US of left chest and tap if needed bronch…...

Fig. 5.8.: A sample note from the IU Health EHR system.

Most than 160 patients have 5 and 105 clinical notes, whereas only 40 of the 500

patients have more than 805 clinical notes over the period of 15 years. This means

that most of the patients have very few encounters recorded. This amounts to lesser

information in the EHR in every module. Because of this sparsity of information it

becomes imperative to extract information that is not stored in the structured EHR

modules.

The unstructured clinical notes need to be examined and information is extracted

from notes. Information pertinent to patient history that is not present in the other

EHR modules, like symptoms, but is of extreme importance to make clinical decisions

should be extracted from clinical notes. Moreover, information extracted from the
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Fig. 5.9.: A histogram showing the distribution of clinical notes per patient in the IU

Health EHR dataset.

notes can also help in auto-filling other modules of the notes and check for their com-

pleteness. Thus, information extraction (Chapter 4) from the unstructured clinical

notes is important.

As a part of this work, research was performed using word embeddings for con-

cepts and diseases extracted from the clinical notes, to examine associations between

clinical symptoms and identify patterns in their occurrence. Other research performed

includes clustering of the extracted concepts of symptoms and diseases (Chapter 6,

Section 6.3). Preliminary work was also done towards identifying patient populations

that are at a high risk of contracting diseases, based on their EHR records and pre-

ventive care guidelines. The identified patient population can then be targeted and

approached through their physicians, and steps taken actively to prevent the onset of

high risk diseases.
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5.3 Preventive Care Guidelines

Preventive care is the process of identifying and providing healthcare services to

patients so that they do not contract high-risk diseases. Preventive care includes

services provided as a part of immunizations to more complex studies that look at

risk of diseases like cancer and genetic diseases like Alzheimer’s disease.

Summary
The USPSTF recommends annual screening for lung cancer with low‐dose 
computed tomography (LDCT) in adults aged 55 to 80 years who have a 30 pack‐
year smoking history and currently smoke or have quit within the past 15 years.
…
Patient Population Under Consideration
The risk for lung cancer increases with age and cumulative exposure to tobacco 
smoke and decreases with time since quitting smoking.
…
Screening Tests
Low‐dose computed tomography has shown high sensitivity and acceptable 
specificity for the detection of lung cancer in high‐risk persons.
...

Fig. 5.10.: Abridged version of USPSTF’s Lung Cancer screening recommendation

statement [48].

The guidelines issued by the medical professionals and associations to generalize

and facilitate healthy preventive care practices are called preventive care guidelines.

These guidelines aim to answer the questions about the patient population that is at

risk, diagnosing the risk, quantifying the risk, and providing appropriate preventive

care services.

As a part of this research, a framework was developed to extract information from

the guidelines issued by the United States Preventive Services Task Force (USP-

STF) [74] [40]. USPSTF releases recommendations in the form of detailed preventive

care guidelines that can be used to identify at-risk patient populations, and the rec-
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Summary
The USPSTF recommends screening for abnormal blood glucose as part of 
cardiovascular risk assessment in adults aged 40 to 70 years who are overweight 
or obese.
…
Patient Population Under Consideration
This recommendation applies to adults aged 40 to 70 years seen in primary care 
settings who do not have symptoms of diabetes and are overweight or obese.
…
Persons who have a family history of diabetes, have a history of gestational 
diabetes or polycystic ovarian syndrome, or are members of certain racial/ethnic 
groups (that is, African Americans, American Indians or Alaskan Natives, Asian 
Americans, Hispanics or Latinos, or Native Hawaiians or Pacific Islanders) may be 
at increased risk for diabetes at a younger age or at a lower body mass index.
Screening Tests
Glucose abnormalities can be detected by measuring HbA1c or fasting plasma 
glucose or with an oral glucose tolerance test.
…
Screening Intervals
…
Cohort and modeling studies suggest that rescreening every 3 years may be a 
reasonable approach for adults with normal blood glucose levels.

Fig. 5.11.: Abridged version of USPSTF’s Type 2 Diabetes screening recommendation

statement [73].

ommended course to take to prevent the diseases. Some of the diseases USPSTF has

issued guidelines for include atrial fibrillation, cardiovascular disease, cervical cancer,

etc. Abridged versions of the USPSTF’s Lung Cancer [48] and Type 2 Diabetes Mel-

litus [73] recommendation statements are shown in Figures 5.10 and 5.11 respectively.

Extracting information from these preventive guidelines that can be integrated

into a module running in the background of an EHR can greatly assist in providing

better preventive care to patients.
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6. CONCEPT REPRESENTATION

Generating word embedding through using neural networks for biomedical concepts

has drawn attention in the areas of natural language processing and machine learning

[75] [76]. Based on the discussions about the various types of word embeddings

presented in Chapter 2, Word2Vec (Chapter 2, Section 2.4) was chosen for further

exploration during this work.

Word2Vec is a different approach from the other types of models, such as Latent

Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). The continuous

vector representation, as distributed representation of words are learned using a three-

layer recurrent neural network with a skip-gram model.

The skip-gram architecture of Word2Vec (Chapter 2, Section 2.4.2) is a robust

architecture that relies on the probabilities of a word to appear around its surrounding

words to generate a vector representation for every word in the corpus.

The output vector representations of the words preserve the distances between

words so that the words that have semantic and syntactic associations in the raw text

corpus are located in close proximity to one another. The dimension of the vectors

created depends on the number of neurons in the hidden layer of the neural network.

In this research, this recurrent neural network learning model is used to create the

distributed representation for biomedical concepts are extracted from the document

corpus.

Each extracted biomedical concept is treated as a word wt. At the end of the

training process, each word vector is represented as shown in Equation 6.1.

WV = (wv1, wv2, . . . , wvm) (6.1)
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where m is the dimension of the vector, which corresponds to the number of neurons in

the hidden layer of the recurrent neural network used in the training of the Word2Vec

algorithm.

Relationships between word vectors are derived based on either their word vectors

(Equation 6.1) or the similarity between word vectors. The similarity between word

vectors is calculated by the cosine distance between two word vectors. For two word

vectors WVi and WVj with m dimensions each, and θ angle between them, the cosine

distance is calculated as shown in Equation 6.2.

cos θ =
WVi ·WVj

||WVi|| · ||WVj||
(6.2)

Cosine distance is also called the cosine similarity and Equation 6.2 is further

simplified in terms of the vectors, to calculate the the cosine similarity, si,j as shown

in Equation 6.3.

cos θ = si,j =

∑m
k=1 WVik ·WVjk√∑m

k=1 WV2
ik ·
√∑m

k=1 WV2
jk

(6.3)

The value of the cosine similarity can be in the range [−1,+1]. A cosine similarity

of +1 represents words that are identical in the vector space, −1 represents concepts

that are opposite and 0 represents words that are orthogonal (or unrelated) to one

another. A higher cosine similarity between similar words, and lower cosine similarity

between unrelated words is the desired behavior of good, reliable word embeddings.

Even though word vectors can be created by using word embeddings, the essence

of this work relies on ‘concept vectors’. This extension of word embeddings to ‘phrase

vectors’ or ‘concept vectors’ that more accurately represent biomedical concepts.

The first step to representing biomedical concepts is by calculating vectors for

concepts, instead of words. Mikolov et al. presented a method to generate phrase

vectors using collocations [11]. The proposed method identifies phrases like publica-

tions (New York Times), airlines (Air China), countries (United States), cities (San
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Francisco), etc. However, because the phrase generation algorithm is rooted in collo-

cations, it works well only when the given set of words comprising a phrase, appear

multiple times in the training corpus.

For biomedical concepts, especially within smaller corpora, appear fewer times.

Another issue with biomedical concepts is the difference in their representation across

authors, publications and vocabularies. For example, ‘lung cancer’, ‘carcinoma of the

lung’, ‘lung carcinoma’ and ‘malignant neoplasm of the lung’ all mean the exact same

thing. A similar problem exists because of abbreviations (‘DM2’ for ‘Type 2 Diabetes

Mellitus’) and each doctor’s individual representation in the Electronic Health Record.

In a typical vector space, all of these concepts discussed above, would be treated

individually as separate vectors. Moreover, each word in the concept would be treated

as its own vector, influencing the results obtained in the downstream tasks dependent

on the word vectors.

Thus, biomedical concept vectors are generated for concepts using either an ag-

gregation of word vectors to create concept vectors (Section 6.1) or by training a word

embeddings model at the concept level (Section 6.2).

6.1 Word-Based Representation

Aggregated concept-based representations are calculated by summing individual

vectors of each word of the concept. Word vectors contain information about the word

in the form of numbers. Adding vectors together does not lead to a loss in informa-

tion, but in the addition of properties of multiple words. Aggregation by summing

and averaging are widely used methods of creating phrase, sentence, paragraph and

document vectors. However, summing may lead to a loss in information if the number

of word vectors added together are large.

In this work, because the length of concepts is not very long concept vectors are

generated by adding word vectors. Thus, the vector for the concept ‘lung cancer’ is

calculated as the sum of vectors of ‘lung’ and ‘cancer’. If the concept is a single word
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concept, its vector is as generated by the word embeddings model. For a concept

with i words, the vector for the aggregated word-based representation is generated as

shown in Equation 6.4.

CV =
l∑

k=1

(WVk1,WVk2, . . . ,WVkm) (6.4)

The word embeddings model used for base word embeddings were created using

a skip-gram model of Word2Vec. The training corpus for this model consisted of

abstracts from PubMed, full text articles from PubMed Central, and an English

Wikipedia dump. The word embeddings model was trained by Pyysalo, et. al [21],

and is available for download [77].

Preliminary tests to examine the quality of word vectors can best be performed

by measuring their cosine similarities against other word vectors. To do this, word

vectors are first calculated for each of the disease concepts appearing in the PubMed

(Chapter 5, Section 5.1.1) and Ohsumed (Chapter 5, Section 5.1.2) corpora.

A similarity matrix S is then computed that contains the similarity values for

every concepts, with every other concept using the similarity scores (Equation 6.3).

This matrix is extremely useful as it reduces the compute time during each iteration

to calculate the similarity scores for every concept against the whole dictionary. For

a concept dictionary of size N , Equation 6.5 shows an example similarity matrix.

S =


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...

sN,1 sN,2 · · · sN,N

 (6.5)

After calculating these concept vectors and computing the similarity matrix S,

some of the most frequent concepts are handpicked as primary concepts. The most

similar disease concepts by cosine distance to these primary concepts are then exam-
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Table 6.1.: Examples of concepts and the top 3 closest concepts based on the sim-

ilarity scores from pre-trained word embeddings with concept vectors generated by

aggregating word-based representations.

Primary Concept Most Similar Concepts Similarity Score

essential hypertension 0.813

hypertension hyperlipidaemia 0.692

dyslipidemia 0.659

dysfunction 0.739

endothelial dysfunction renal dysfunction 0.660

cortical dysfunction 0.639

bilateral carpal tunnel syndrome 0.970

carpal tunnel syndrome cts carpal tunnel syndrome 0.957

carpal tunnel 0.941

diabetes mellitus 0.918

diabetes diabetes mellitus type ii 0.868

dm diabetes mellitus 0.845

cardiac diseases 0.8181

cardiovascular disease metabolic diseases 0.8179

heart diseases 0.787

ined. It can be seen from Table 6.1 that for most of the primary concepts, the most

similar concepts are other either equivalent representations for the same biomedical

concept or other concepts that are highly similar to the primary concept.
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6.2 Concept-Based Representation

Concept based representations are calculated by considering the concept as a single

entity. Thus, the concept ‘diabetes mellitus type 2’ is considered as a single entity

instead of calculating the vectors of each word of the concept. The concept and the

context of the context is used as an input to the recurrent neural network as a single

unit and the vector of the concept is the same as the one output by the network.

The vector for the concept based representation thus generated is the same as

Equation 6.1, but at the concept-level, and is shown in Equation 6.6.

CV = (cv1, cv2, . . . , cvm) (6.6)

The input dataset for training includes PubMed Central’s Non-Commercial Open

Access (Chapter 5, Section 5.1.1), the subset of documents from MEDLINE that are

a part of TREC 2005’s Genomics Track (Chapter 5, Section 5.1.3) and the Ohsumed

collection (Chapter 5, Section 5.1.2). All of these models were trained either on

separate corpora or included other corpora. A variant of this model was also trained

on the clinical notes from IU Health (Chapter 5, Section 5.2). All of these models were

used individually to ensure equivalent comparison, and used based on application.

It is seen from the details about data sources (Chapter 5, Figures 5.6, 5.2, 5.4)

that a lot of concepts appear just once in the corpora. Normally, top 5% of the most

frequent words are dropped from the training, and so are words that do not appear

in the corpus more than a few times. However, in training the custom models, it was

ensured that none of the words from the vocabulary were truncated. This was done

to ensure that even concepts that appear a handful of times have concept vectors.

Training individual word embeddings model ensures that the whole vocabulary is a

part of the embeddings vocabulary.
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Words that match biomedical concepts are replaced with their preferred concept

from MetaMap (Chapter 4 Section 4.1), before using the text as an input to train the

word embeddings models. The training for these word embeddings model is performed

using the gensim library [78]. The training parameters were set to 300 hidden layer

nodes, and a variable window size.

Table 6.2.: Examples of concepts and the top 3 closest concepts based on the similarity

scores from embeddings trained as concept-based embeddings on the TREC Genomics

2005 corpus.

Primary Concept Most Similar Concepts Similarity Score

alzheimer disease

alzheimer 0.829

parkinson disease 0.813

huntington disease 0.688

multiple sclerosis

multiple sclerosis relapsing re-

mitting

0.661

ms 0.633

parkinson 0.600

cerebral amyloid angiopathy

caa 0.601

cerebral 0.486

hereditary cerebral hemor-

rhage with amyloidosis dutch

type

0.471

colon cancer

colorectal cancer 0.799

cancer of colon 0.755

cancer of the colon 0.724

The trained embedding includes vectors for the biomedical concepts. Upon com-

pletion of the training, concept vectors are queried and a similarity matrix similar to

Equation 6.5 is calculated with the concept-based representations. Table 6.2 shows
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the top 3 closest concepts for some of the handpicked primary concepts, after a sim-

ilarity matrix is generated using concept-based embeddings trained on the TREC

Genomics 2005 corpus (Chapter 5, Section 5.1.3).

On comparing Table 6.2 with Table 6.1, it is evident that the similarity scores for

concept-based representations are lower. At the same time, concept-based representa-

tions also capture similar disease concepts better, whereas word-based representations

apture synonym concepts better. The lower similarity scores require algorithms to

be modified in order for them to use the concept-based representations (discussed

in detail in Chapter 7). One noteworthy similarity score from Table 6.2 is that of

the concept ‘cerebral amyloid angiopathy’ with its own abbreviation, and other most

similar concepts. This influences the document clustering results in a big way, result-

ing in none of the discussed TREC Genomics 2005 results being able to successfuly

cluster ‘cerebral amyloid angiopathy’ documents into a separate cluster (Chapter 7,

Section 7.7.3 and 7.4.3).

6.3 Concept Clustering

Exploratory work towards using symptoms concepts in conjunction with disease

concepts was also performed [79]. However, there are limitations in how many symp-

tom and disease concepts appear in conjunction in biomedical documents since most

documents do not discuss trajectories, but focus on causes and treatment plan.

The corpus chosen for this exploratory work was the clinical notes data cohort

for 500 patients from IU Health (Chapter 5, Section 5.2). The dataset contains

154,738 clinical encounter notes for 500 patients, spanning 15 years. From the clinical

notes, disease and symptoms concepts are extracted and normalized using MetaMap

(Chapter 4, Section 4.1).
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The clinical notes are used as an input to the word embeddings algorithm to

create word vectors for the concepts using concept-based representations (Chapter 6,

Section 6.2). Using these word vectors, the similarity matrices of disease concepts

against other disease concepts (SD, and symptoms concepts against other symptoms

(SS) are calculated (Equation 6.5).

Clustering is performed at the concept level separately for the symptoms and

diseases concepts. The similarity matrices (SD and SS) were used as inputs to the

k-means clustering algorithm (Chapter 3, Section 3.1.2), results are presented for

k = 50.

6.3.1 Disease Concept Clustering

Examining the most similarity disease concepts against other disease concepts,

shows the relationships extracted from the clinical notes among the disease concepts.

These results are obtained from the similarity matrix for disease concepts SD.

The results of Table 6.3 show that the most similar concepts identified by training

a word embeddings model on concept-based representations are most often, other

disease concepts that are equivalent or closely related to the primary concept.

However, the similarity scores for these concepts are much lower than those seen in

the case of word-based representations (Table 6.1), and slightly lower than concept-

based representations trained on the TREC Genomics 2005 corpus of biomedical

documents (Table 6.2). These scores are lower on account of the unstructured and

free-form nature of clinical notes, which makes it harder to learn reliable word em-

beddings from this type of data.

After evaluating these similarity scores, an examination of the clustering per-

formed on the similarity matrix, to cluster concepts is performed. The clustering

results for some of the significant clusters are shown in a tabular form in Table 6.4.
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Table 6.3.: Examples of disease concepts and the top 3 closest disease concepts based

on the similarity scores from embeddings trained as concept-based embeddings on the

IU Health EHR clinical notes data.

Primary Disease Most Similar Diseases Similarity Score

chronic obstructive

pulmonary disease

severe chronic obstructive

pulmonary disease

0.518

pulmonary disease obstruc-

tive

0.496

chronic obstructive lung dis-

ease

0.471

diabetes mellitus type 2

diabetes type 2 0.629

diabetes mellitus type ii 0.582

diabetes type 2 on insulin 0.570

breast cancer

breast ductal carcinoma 0.642

breast cancer female 0.626

invasive ductal carcinoma

breast

0.622

coronary artery disease

coronary disease 0.662

peripheral arterial disease 0.538

coronary artery disease with

myocardial infarction

0.534

Investigating the disease concepts within the clustering results, it was found that

some of the clusters contained diseases that were highly related or the same disease

at different stages, such as different stages of chronic kidney disease, or different

representations of the same disease.
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Table 6.4.: Cluster-wise results of clustering disease concepts based on their similarity

scores.

Cluster 5 Cluster 6 Cluster 4

diabetes type 2 cardiomyopathy congestive heart failure

diabetes type ii stroke failure heart

diabetes mellitus type ii ischemic cardiomyopathy chronic systolic heart fail-

ure

type ii diabetes nonischemic dilated car-

diomyopathy

diastolic heart failure

hyperglycemia chronic atrial fibrillation acute heart failure

diabetes type 2 on insulin aortic stenosis biventricular failure

hypertension sinus tachycardia left ventricular failure

ESRD atrial fibrillation chronic heart failure

nonischemic dilated car-

diomyopathy

hypoxemic respiratory

failure

rapid atrial fibrillation chronic diastolic heart

failure

Cluster 5 contains different representations of ‘type 2 diabetes mellitus’, but ‘hy-

pertension’ is also included in that cluster. This occurs because a lot of encounter

notes contain ‘diabetes’ in conjunction with ‘hypertension’.

Cluster 6 is most representative of different types of ‘cardiomyopathy’ and diseases

related to heart muscles. The literature shows that ‘ischemic cardiomyopathy’, ‘atrial

fibrillation’ and ‘aortic stenosis’ are causes or conditions associated with ‘dilated

cardiomyopathy’ [80].

Cluster 4 contains different types of heart failures. This shows that the concept-

based representations built with word embeddings can distinguish sufficiently between

diseases of heart muscles and heart failures. However, ‘hypoxemic respiratory failure’



65

is also included in this cluster. After investigating the clinical notes of the patients,

it is found that the ‘hypoxemic respiratory failure’ co-occurred with heart failure in

some patients’ clinical notes.

Cluster 15 (not shown in Table 6.4) contains only one disease, erythema, which

means this disease did not co-occur with other diseases in this study cohort.

6.3.2 Symptom Concept Clustering

Table 6.5 shows the most similar symptom concepts to other symptom concepts

as extracted from the clinical notes of the IU EHR data.

Table 6.5.: Examples of symptom concepts and the top 3 closest symptoms concepts

based on the similarity scores from embeddings trained as concept-based embeddings

on the IU Health EHR clinical notes data.

Primary Symptom Most Similar Symptoms Similarity Score

dizziness 0.461

vertigo lightheadedness 0.415

headaches 0.370

chronic back pain 0.627

chronic pain back abdominal pain 0.517

intractable pain 0.487

cramps in legs 0.312

swollen legs swelling of legs 0.209

swollen feet 0.302

groin pain 0.635

breast pain rib pain 0.627

flank pain 0.604
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As seen from Table 6.5 symptom concepts that are similar, occur with similar

diseases or are occur in similar areas of the body.

Table 6.6.: Cluster-wise results of clustering symptoms concepts based on their simi-

larity scores.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

pitting edema headache chest tightness joint stiffness seizure

massive edema dizziness chest pain joint swelling spasm

pedal edema headaches chest discom-

fort

knees stiffness tremor

hand edema vertigo chest pressure costovertebral

angle tender-

ness

tremors

edema knees generalized

headache

pain in chest joint crepitus dystonia

postpartum

hemorrhage

global

headache

chronic chest

pain

decreased grip

strength

cramp

extremity

edema

chronic ver-

tigo

acute chest

pain

stiffness of

wrist

ataxia

bilateral pedal

edema

headache

throbbing

chest wall pain painful joints clonus

penile edema morning

headache

chest pain

angina

stiffness fin-

gers

asterixis

intermittent

dizziness

chest burn facet

arthropathy

shakes

Table 6.6 shows the results of clustering symptoms performed with using the

symptom similarity matrix (SS) as an input. The clustering is performed by setting

k = 50 using the k-means clustering algorithm.
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The results show that the symptoms clustered together are those that occur along-

side each other or in the progression of similar diseases. Each cluster demonstrated

here is associated with one category of symptom. For example, cluster 0 is about

different types of edema, cluster 1 is about headache and dizziness, cluster 2 is for

symptoms of the chest, and cluster 3 is about joints related symptoms. The cluster

4 contains a lot of single word symptoms. These single word symptoms were mostly

related to movement disorders in one or more parts of the body.
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7. DOCUMENT CLUSTERING

Document clustering is a text mining technique used to provide better document

search and browsing in digital libraries or online corpora. The large repositories of

unlabeled biomedical data and articles available online has led to a continuing need

for development of techniques to discover and search these documents and articles.

Biomedical document clustering based on the concepts of diseases can provide an

overview of the literature repository based on the diseases and relationships between

the diseases, so that researchers can further explore or review the articles in certain

clusters that are related to their research interests. Biomedical document clustering

is different from the general text document clustering task because in the latter,

semantic similarities between words or phrases are not usually considered.

A medical concept of disease might be represented in different forms, and some

medical concepts of diseases might be highly correlated. For example, ‘Type 2 Dia-

betes’ is the same concept of disease as ‘Diabetes Mellitus Type 2’. ‘Hypertension’

often co-occurs with ‘Stroke’. In order to capture the semantic similarities between

words or phrases, previous research on document representation reforming relies on

using existing ontology such as MeSH or WordNet to identify the semantic relation-

ships. However, this increases the dependence onto these ontologies and requires is

difficult without normalization of the disease concepts.

These limitations of previously used document clustering techniques in the biomed-

ical domain, make word embeddings an appropriate choice for further exploration. In

this chapter, a framework for biomedical text clustering and visualization based on

the concept embedding of diseases is proposed and evaluated. Concept representa-

tions were presented as a part of Chapter 6. Various clustering and visualization

techniques were discussed in Chapter 3. The document clustering framework can be

summarized as Figure 7.1.
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Biomedical Documents

Concepts of Disease Extraction

Document Representation

Self‐Organizing Maps

Disease Association Matrix Construction

K‐Means

U‐Matrix 
+

Hit Histogram

PCA 
+

TSNE

Clustering and Visualization

Distributed Representation for Concepts of Disease

Fig. 7.1.: A summary of the document clustering framework.

Further details about the document representation in the vector space are dis-

cussed in Section 7.2, whereas the document vector generation is described in Sections

7.3 and 7.5. The results of each of the proposed techniques are discussed in Sections

7.4 and 7.7 respectively.

7.1 Literature Review

A lot of research has been done in biomedical document clustering in the past

decades. Some of it focused on document presentation reforming with methods based

on medical ontology, or on using weighting schemes other than TF-IDF, while some

others focused on investigating various clustering algorithms.



70

Yoo et al. [81] used a graphical representation method to represent a set of doc-

uments based on the MeSH ontology, and proposed the document clustering and

summarization with this graphical representation. They gained comparable results

on clustering performance and also provided some visualization on the document’s

cluster model based on the relationships of the terms.

Similarly, Zhu et al. used a combination of semantic similarity described by the

MeSH thesaurus and similarities of documents to generate a similarity matrix between

documents [65]. The similarity matrix was calculated by comparing the distances

of the MeSH headings with the MeSH headings of other documents. The distance

measurement relies on the hierarchy of the MeSH thesaurus. Thereafter, the authors

used four spectral clustering algorithms to cluster the documents.

Both these two research provided visualizations of clusters of documents. However,

the visualization relied on the MeSH ontology and independent of the contents the

documents.

Zhang et al. reviewed three different ontology based term similarity measure-

ments: path-based [82], information content-based [83] and feature-based [84], and

then proposed their own similarity measurement and term re-weighting scheme [34].

The authors used k-means algorithm for document clustering. Based on the results,

some of them are slightly worse than the results from proposed word-based weighting

scheme [34]. The authors mentioned that the poor performance in certain cases could

be attributed to the limitation of the domain ontology, term extraction and sense

disambiguation [34]. Visualization of document clustering was not included in this

research.

Logeswari et al. proposed a concept weighting scheme based on the MeSH ontology

and tri-gram extraction to extract concepts from the text corpus [33]. The semantic

relationship between tri-grams are weighted through a heuristic weight assignment

of four predefined semantic relationships. The authors proposed a concept weight
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calculation framework based on identity and synonym relationships in MeSH. The

k-means clustering algorithm was used, but the visualization of the clustering results

was not investigated.

Gu et al. proposed a concept similarity measurement by using a linear combina-

tion of multiple similarity measurements based on the MeSH ontology and the local

content which includes TF-IDF weighting and co-efficient calculation between related

document sets [85]. A semi-supervised clustering algorithm was employed at the stage

of document clustering. Clustering visualization was not discussed.

Some research has been done about the visualization process to support biomedical

literature search. Gorg et al. developed a visual analytics system (Bio-Jigsaw) by

using the MeSH ontology [86]. This research demonstrated how visual analytics can be

used to analyze a search query on a gene related to breast cancer. Neither document

representation nor document clustering were discussed.

7.2 Document Representation

The first step for document clustering is to convert the textual documents to a

vector space representation that can be used as an input to the clustering algorithms.

Because the experiments conducted are based on the concepts of diseases, these con-

cepts are first extracted from the documents by using UMLS MetaMap (Chapter 4,

Section 4.1). All of the disease concepts that appear in these documents are used as

the vocabulary for the corpus.

A vector space model derived from the concept embeddings vector space, is used

to represent a biomedical document in a given corpus. Each document vector contains

the same number of units as the size of the corpus’ vocabulary. A generic document

vector is shown in Equation 7.1.

DV = (dv1, dv2, . . . , dvN) (7.1)
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A corpus of M documents can be represented in terms of these individual docu-

ment vectors as Equation 7.2.

CM = (DV T
1 , DV

T
2 , DV

T
3 , . . . , DV

T
M)

CM =


dv1,1 dv1,2 · · · dv1,M

dv2,1 dv2,2 · · · dv2,M
...

...
. . .

...

dvN,1 dvN,2 · · · dvN,M


(7.2)

A similarity matrix for the vocabulary of extracted concepts (S) is also calculated

(Chapter 6, Equation 6.5). The TF-IDF scores for the corpus, with the vocabulary

of extracted concepts are also calculated (Chapter 2, Section 2.3). Sections 7.3 and

7.5 discuss different weighing schemes used to combine the TF-IDF and vector simi-

larity scores to compute the values of the individual units of the corpus matrix CM

(Equation 7.2).

7.3 Document Weighting Scheme

Concepts are first distinguished as appearing or not appearing in the document.

All the concepts C that appear in the document d of corpus D have their TF-IDF

score non-zero, which implies Equation 7.3 [87].

tfci,d · log
|D|
dfci,D

6= 0 ∀ci ∈ C, ∀ci ∈ d, d ∈ D

tfidfci,d,D 6= 0 ∀ci ∈ C, ∀ci ∈ d, d ∈ D
(7.3)

where tfci,d is the term-frequency of concept ci in document d (Chapter 2, Equation

2.2), dfci,D is the document frequency of the concept ci in corpus D, and |D| is the

size of the corpus (Chapter 2, Equation 2.4).

For a concept ci that appears in the document, the value for the term dvi,d is cal-

culated by summing the similarity scores of all of the concepts (C = {c1, c2, . . . , cK})

that co-occur in the document and the tfidf score for that concept. On the other

hand, for concepts that do not appear in the document, the value for the term dvi,d
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is calculated by taking a weighted average of the most similar J terms that appear

in the document. For experiments conducted with this weighing scheme, J was set

to 3. The document weighing scheme can thus be summarized by Equation 7.4.

dvi,d =

tfidfci,d,D +
∑K

k=1 si,k tfidfci,d,D 6= 0∑J
j=1

J−(j−1)
J

si,j tfidfci,d,D = 0

(7.4)

where tfidfci,d,D is the tfidf value for concept ci in document d in corpus D (Equation

7.3, si,j is the similarity between concept ci and concept cj, ck is any concept that is

in document d and i 6= k, and cj is the jth most similar concept to ci such that cj is

in document d.

By using this weighting scheme, the representation measures the occurrences of

different representations of the same or similar concepts. For example, if ‘diabetes’

occurs in one document, but ‘diabetes mellitus’ occurs in another document, by using

TF-IDF weighting scheme, their values would be 0 for documents in which the concept

does not appear. However, by using the proposed weighting scheme, they are weighted

based on the similarity between the concept and its closest concepts. Thus, for the

document that does not contain the concept ‘diabetes mellitus’, instead of using 0,

the similarity score between ‘diabetes mellitus’ and other concepts that appear in the

document is used.

7.4 Preliminary Results

The document weighting scheme proposed (Section 7.3) is tested using the PubMed

Central – Open Access (Chapter 5, Section 5.1.1), Ohsumed (Chapter 5, Section 5.1.2)

and TREC 2005 Genomics track (Chapter 5, Section 5.1.3). After extracting concepts

and generating the document vectors, clustering is performed using self-organizing

maps.
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Self-organizing maps (Chapter 3, Section 3.1.1) have been used for document

clustering after concepts extraction and document representation using the proposed

weighting scheme. The size of the map is 10 by 10 which contains 100 neurons. The

training iterations are set to be 50,000. Upon the completion of the training and

clustering, DB index (Chapter 3, Section 3.2.1) is used to evaluate the best cluster-

ing. Self-organizing maps are best visualized with the U-matrix and his histogram

(Chapter 3, Section 3.3.1).

7.4.1 PubMed Central – Open Access

Through the U-matrix and hit histogram, 11 clusters (Clusters 2, 3, 4, 6, 7, 8, 9,

10, 11, 12 and 13 in Figure 7.2) are identified initially. A neuron of each cluster is

selected as centroid, then DB index based on the partitions is calculated to decide

whether the partition is optimal. The lower the DB index value is, the better the

partition is. It is observed that lower DB index value is returned when the neurons

with highest number of hits are chosen as the centroids. Figure 7.2 shows the major

clusters visualized on the SOM map. The centroids which are selected through the

calculation of the DB indexes are marked with a red dotted circle on the hit histogram.

The clusters are marked with a black boundary.

The visualized major clusters do not include all the input data. Some of the data

hit the neurons that are far away from the 14 centroids as visualized. In order to fully

evaluate the best number of clustering partitions to cover all the input data instances,

the number of clusters were increased by adding the neurons that are not covered by

the 14 clusters as centroids.

Figure 7.3 shows that the DB index value decreases as the number of clusters are

increased. That is because adding clusters to separate the data that is far away from

the existing centroids creates better cluster partitions.
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Fig. 7.2.: Clustering visualization for PubMed Central – Open Access using the doc-

ument weighting scheme and clustered with self-organizing maps.

Through further analysis on the major clusters, it is discovered the concepts of

diseases of each cluster as shown in Figure 7.2. A majority of documents in cluster 1

are articles that discuss neurological diseases like brain strokes, brain lesions, cerebral

palsy and diseases that lead to speech disorders; most of the documents in cluster 2

are related to cardiovascular diseases such as ‘hypertension’, ‘coronary artery disease’,

‘ischemic strokes’ and so on. Cluster 1 and cluster 2 have one overlapped neuron on

the top right of the map, it is because over half of the documents that hit this neuron

discuss both neurological and cardiological ‘strokes’ concepts. The distances between

the neurons within cluster 5 are larger than that of the other neurons. The dis-

eases discussed in the documents in this cluster include infections like ‘rhinosinusitis’,
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Fig. 7.3.: DB index evaluation for PubMed Central – Open Access using the document

weighting scheme and clustered with self-organizing maps.

‘epilepsy’, ‘eosinophilia’ and so on. Other concepts that are found in this cluster are

‘seizures’ and obstructions of intestines and throat. Although these concepts are not

very closely related, they are more closely related to each other than to the concepts

in other clusters. Cluster 6 has documents related to ‘obesity’, ‘diabetes’, ‘hyper-

tension’ and ‘hyperglycemia’. The concept ‘coronary artery disease’ is also discussed

in some documents of this cluster. It was found that this occurred because some

articles discuss ‘coronary artery disease’ as a possible outcome of ‘hypertension’, ‘hy-

perglycemia’ or their combination. Cluster 11 has neurons within short distances of

cluster 9. This proximity is also seen in the form of the diseases discussed by the

documents of these clusters, since muscle pain and orthopedic concepts are highly

related to each other. Cluster 12 is very closely located to cluster 4, 9 and 11. Upon

analyzing the documents in this cluster, it was found that genetic disorder related

diseases that are discussed in cluster 12 are related to neurological, paralytic and

orthopedic concepts which are discussed in cluster 4, 9 and 11 respectively. Cluster

14 has only 1 document. It is identified that this document is related to ‘metastasis’.
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It is worth mentioning that it was found that cluster 3 contains all the documents

in which the concepts of diseases tagged by UMLS MetaMap is ‘stroke’. However,

further analysis shows that most of the documents are not related to cardiological

or neurological ‘stroke’. This is also reflected on the U-matrix that cluster 3 is not

close to cluster 1 and 2. It confirmed that the proposed document presentation and

weight scheme based on the concept similarity measure can effectively differentiate

documents based on the concepts of diseases. On the other side, it also shows that

UMLS MetaMap might not accurately map all concepts to the corresponding phrases

through the lexion.

7.4.2 Ohsumed Collection

Cluster 7: Infections
Malaria, Hepatitis, Sexually Transmitted Diseases, 

Pyomyositis...

Cluster 1: Nervous System
Spinal Cord Ischemia, Paraplegia, Sphenoid Sinusitis...

Cluster 2: Cancer
Tumour, carcinoma, sarcoma, thymoma...

Cluster 8: Cardiovascular
Hypertension, Hyperglycemia, Stroke, CHD...

Cluster 3: Endocrine, Digestive, Orthopedic
Liver Cirrhosis, Pancreatitis, Arthritis, Myalgia...

Cluster 5: Immunologic
HIV, Tuberculosis, Cryptoccosis...

Cluster 4: Otorhinolaryngologic, Genetic
Headache, Migraine, Glaucoma, Anaemia...

Cluster 6: Metabolic, Gastro‐Intestinal
Diabetes, Hyperglycemia, Crohn’s Disease, Duodenal Ulcer...
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Fig. 7.4.: Clustering visualization for Ohsumed Collection using the document weight-

ing scheme and clustered with self-organizing maps.
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From the Ohsumed collection, a subset of ∼600 documents was used to evaluate

the proposed document clustering weighting scheme. Based on the original data set

description, all documents are related to cardiovascular diseases. This led to the

shorter distances between neurons which is reflected by the color of the U-matrix. By

analyzing the U-matrix and hit histogram of the trained map, 8 clusters are identified,

as seen in Figure 7.4. These clusters and their contents are described in Figure 7.4.

A majority of the documents in cluster 7 are about infections and infectious dis-

eases, with half of them from the categories of bacterial infections and mucoses, virus

diseases and parasitic diseases. The rest of the documents from this cluster discuss

other infections from categories like respiratory tract diseases and digestive system

diseases. There are also a few documents from immunologic diseases in this cluster.

Notably, all of the documents talk about infections of different types. Cluster 1 has

documents that discuss diseases about the nervous system. Whereas, the documents

in cluster 2 discuss neoplasms which include different types of cancers of the brain,

prostate, neck and so on. The documents in this cluster are from all the categories

except virus diseases and diseases of environmental origin. Cluster 3 includes doc-

uments about diseases related to hormone secretion and distribution. This cluster

also includes diseases of the bones and blood, since these concepts are closely related.

Cluster 4 contains documents with diseases about the ear, nose, throat, head and

surrounding areas of the face. Cluster 5 is the smallest cluster and the documents

concentrate on different types of tuberculosis and sexually transmitted diseases like

AIDS, HPV, etc. Documents about ‘cryptococcosis’, which is often seen in patients

with HIV whose immunity has been lowered, also fall in this cluster. Cluster 6 con-

sists of documents with concepts relating to diabetes. Documents containing concepts

like ‘nephropathy’, ‘impaired glucose tolerance’,‘non-insulin dependent diabetes’ are

in the left half of the cluster. Whereas, the right half of the cluster is dominated

by documents with concepts such as ‘Crohn’s disease’, ‘renal ulceration’, and ‘kidney

stone’. Cluster 8 has documents about diseases related to different heart conditions
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and obstruction in the flow of blood. Since the theme of documents in Ohsumed col-

lection is cardiovascular concepts, this cluster has documents from all of the categories

except parasitic diseases, neoplasms and digestive system diseases.

7.4.3 TREC Genomics 2005

The self-organizing maps algorithm does not provide the number of clusters and

cluster centroids, but rather identifies the distribution of the data. So, a centroid

identification process is employed based on the distribution of the data. First, major

visualizable clusters are identified initially through analyzing the U-matrix and hit

histogram. Second, the evaluation results from the DB index and purity values are

observed (Figures 7.5 and 7.6).

Fig. 7.5.: DB index evaluation for TREC Genomics 2005 corpus using the document

weighting scheme and clustered with self-organizing maps.
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Fig. 7.6.: Purity evaluation for TREC Genomics 2005 corpus using the document

weighting scheme and clustered with self-organizing maps.

The neuron of each cluster that has the highest hits is selected as the centroid.

However, there are data hits to the neurons that are not included in the major visu-

alizable clusters. In order to fully evaluate the best number of clustering partitions

to cover all the input data instances, additional clusters are added one by one on top

of the major visualized clusters to identify the optimum number of clusters.

Clustering with 29 clusters provides the best clustering performance based on the

observations from DB index and purity, for visualization demonstration purposes,

Figure 7.7 shows the large clusters from the 29 clusters in the SOM. The clusters and

the corresponding centroids are marked. Further analysis has been done to understand

the contents of the documents within those clusters.

Most of the documents in cluster 1 are of the disease concept ‘multiple sclerosis’.

Cluster 2 contains documents that discuss the concept ‘multiple sclerosis relapsing re-

mitting’. The proximity of this cluster to cluster 1 reflects from the proximity of this

concept to ‘multiple sclerosis’. Cluster 3 is a large cluster with most documents that

relate to different types of cancer, with majority of them belonging to ‘breast cancer’,
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Fig. 7.7.: Clustering visualization for TREC Genomics 2005 corpus using the docu-

ment weighting scheme and clustered with self-organizing maps.

‘lung cancer’ and other types of ‘cancer’. The documents of this cluster are spread

across all the categories. Cluster 9 contains documents about ‘breast cancer’ only.

Documents which discuss ‘Parkinson’s disease’ only are a part of cluster 4. Documents

discuss ‘parkinsonism’ related disease belong to cluster 13, which is close to cluster

14. Documents in cluster 14 talk about both ‘Parkinson’s disease’ and ‘Alzheimer’s

disease’. Cluster 5 contains documents that relate to ‘Alzheimer’s disease’. This

cluster is placed near cluster 14, showing the closeness of the concepts. Documents

that hit cluster 12 talk about ‘cerebral amyloid angiopathy’. Cluster 7 contains doc-

uments that belong to ‘colon cancer’ and ‘colorectal cancer’. Documents discussing

‘Adenomatous polyposis coli’, (APC gene) as a cause of ‘colorectal cancer’ are a part

of cluster 11. Cluster 8 contains various documents of the concept ‘prion diseases’
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and the various examples of this category of diseases like ‘Creutzfeldt-Jakob disease’,

‘bovine spongiform encephalopathy’ and ‘mad cow disease’. This cluster is made

up mostly of documents from the ‘mad cow disease’ category of the dataset. Docu-

ments in cluster 10 discuss ‘transmissible spongiform encephalopathy’, also known as

‘prion diseases’. The proximity of these clusters is indicative of the similarities of the

concepts discussed.

Fig. 7.8.: DB index evaluation for TREC Genomics 2005 corpus using the document

weighting scheme and clustered with k-means clustering.

The k-means clustering algorithm provides the clusters and centroids of clusters

by value k. There is no extra steps involved to identify them. However, selecting the

best clustering results involves evaluating the DB index and purity values over the

various cluster sizes (Figures 7.8 and 7.9.

Since k = 25 provides the best clustering results, Figure 7.10 shows the distribu-

tions of the 25 clusters given by k-means clustering algorithm and visualized through

a scatterplot after applying t-SNE (Chapter 3, Section 3.3.3). The original dimensions
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Fig. 7.9.: Purity evaluation for TREC Genomics 2005 corpus using the document

weighting scheme and clustered with k-means clustering.

are reduced to 900 using PCA (Chapter 3, Section 3.3.2) before t-SNE is applied. Al-

though some of the smaller clusters are overlapped by bigger clusters, most clusters

that can be clearly visualized are shown in the figure.

Cluster 2 has about 800 documents and majority of them have ‘Alzheimer’s dis-

ease’ discussed in the content. The documents in this cluster are mostly in cluster

5 of the SOM. Cluster 19 and 21 contain documents that discuss the ‘Creutzfeldt-

Jakob disease’, which is a rare form of dementia related to ‘Alzheimer’s disease’.

Documents having both ‘Alzheimer’s disease’ and ‘Parkinson’s disease’ as concepts

are within cluster 17. Cluster 17 is very similar to cluster 14 on the SOM. Cluster

23 has very few overlapping with other clusters. It has documents about ‘cerebral

amyloid angiopathy’ which is like the cluster 12 on the SOM. The documents in clus-

ter 15 contain the concepts of ‘Alzheimer’s disease’ and ‘Amyloid’. Thus cluster 15

is located between cluster 17 and 23, as the concepts of cluster 15 are an intersec-

tion of the concepts of clusters 17 and 23. Cluster 22 contains documents that have

‘parkinsonism’ as the primary identified concept, whereas cluster 5 contains docu-
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Fig. 7.10.: Clustering visualization for TREC Genomics 2005 corpus using the docu-

ment weighting scheme and clustered with k-means clustering.

ments that have ‘Parkinson’s disease’ discussed in the documents. There is a small

overlap between these clusters which reflect the proximity of the concepts the docu-

ments describe. Cluster 10 contains documents that talk about ‘multiple sclerosis’,

while cluster 3 consists of documents that discuss ‘multiple sclerosis relapsing remit-

ting’. Cluster 10 is similar to cluster 1 on the SOM, whereas cluster 3 is similar to

cluster 2 on the SOM. Cluster 7 consists of documents that are related to ‘Mad cow

disease’ and ‘Bovine spongiform encephalopathy’. Since these concepts are synonyms

of each other, this cluster is well formed. The concept ‘prion diseases’ belong to

the category of disease that affect the brain and nervous system, and are discussed

in cluster 4. The other concepts in this cluster include ‘Creutzfeldt-Jakob disease’

and ‘Bovine spongiform encephalopathy’. This cluster includes documents that be-

long to the categories ‘Alzheimer’s disease’ and ‘Mad Cow Disease’ of the original

document set. This cluster is very similar to cluster 8 on the map of SOM. ‘Colon

cancer’ documents are a part of cluster 8 which is similar to cluster 7 on the SOM.

Documents describing ‘Colorectal cancer’ resulting from the mutations in the ‘ade-
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nomatous polyposis coli’ (APC gene) form cluster 6 which is similar as cluster 11.

Cluster 12 contains documents that discuss both ‘breast cancer’ and ‘ovarian cancer’.

Documents from the set that discuss ‘lung cancer’ form cluster 20. Various other

documents that describe other forms of cancers and neoplasms form clusters 1 which

is similar as cluster 3 of SOM.

In summary, the clustering and visualization of both clustering algorithms show

similar results on clearly defined clusters. The documents that discuss the similar

concepts are clustered in the same cluster. It can be said that the proposed document

clustering and visualization framework works well on the representative corpora used

in this research.

However, there is a limitation with this document weighting scheme. Equation

7.4 considers all of the concepts that are present in the document. Some documents

may discuss unrelated concepts to draw comparisons, review work in other fields, and

to provide an insight into other applications of work. This adds to the noise in the

document vector, which further propagates down to the clustering results. It was

seen that such unrelated concepts appeared within a lot of the incorrectly clustered

documents, and to prevent the same the modified document weighting scheme is

proposed.

7.5 Modified Document Weighting Scheme

In this weighting scheme, Equation 7.4 remains the same except one significant

change: the similarity scores between concepts si,j are now subject to a threshold

τ [88] [89]. The modification implies that document vectors thus created now include

the sum of similarity scores that are greater than a set threshold, instead of the sum

of similarity scores of all of the concepts that appear in the document.

With this modification, the document weighting scheme changes to Equation 7.5.
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dvi,d =

tfidfci,d,D +
∑K

k=1 si,k tfidfci,d,D 6= 0, si,k >= τ∑K
k=1

K−(k−1)
K

si,k tfidfci,d,D = 0, si,k >= τ

(7.5)

Thus, if a concept ci occurs in a document, the sum of the similarity scores between

the concept ci and other concepts (ck, k = 1, . . . , K) that also occur within the

document, and are greater than the threshold τ is calculated. This sum is added to

the value of tfidfci,d,D to compute the value of the term dvi,d. By using this weighting

scheme, the vector representation measures the co-occurrences and associations of

concepts within each document, while ignoring concepts that do not appear in the

document or are not similar to the concept ci.

On the other hand, if a concept does not occur in a document, the weighting

scheme calculates the weighted average of the association scores between the concept

and all the concepts that appear in the document (ck, k = 1, . . . , K), that have a sim-

ilarity value greater than the threshold τ . This measurement ensures that concepts

that do not appear in the document, but are closely related to other concepts appear-

ing in each document have a non-zero weight. By using such a weighted measurement

for document representation, the importance of similar concepts is emphasized. The

process of selection of threshold is discussed in Section 7.6.

7.6 Threshold Selection

The threshold (τ) plays an important role in determining which concepts should

be considered as similar concepts, based on their similarity score. Using such a

threshold ensures that only relevant and similar concepts are considered while gen-

erating the vector for each document. For selecting the threshold, experiment with

different values of the threshold τ in Equation 7.5, for both the concept-based and

word-based representations, are performed. The following subsections describe the
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differences between the representations that cause the variances in the performance

of the threshold across them, whereas an in-depth comparison of their clustering and

evaluation performance is discussed in Section 7.7.

7.6.1 Word-based Representations

In the case of word-based representations, it is observed that the vector of the con-

cept is dominated by frequent words in the corpus. Words like ‘cancer’ and ‘disease’

that appear very frequently across documents in the corpus. Thus, when concept

vectors are generated from word-based representations (Chapter 6, Equation 6.4),

these higher frequency words have a larger impact on the vector.

For this reason, concepts like ‘colon cancer’ and ‘breast cancer’ are similar to each

other in terms of their similarity measurements, despite not being similar concepts. At

the same time, because the word-based representation is generated by adding vectors

of the individual words, their similarity values are higher than those for concept-based

representations.

For tackling both of these problems, results produced by using various thresholds

to generate the document vectors were tested. It was observed that using a higher

threshold gave better results for clustering when using word-based representations,

in all of the corpora, when compared to the concept-based representations.

7.6.2 Concept-based Representations

Concept-based representations have multiple representations of the same concept,

and each of them are treated as individual concepts. For instance, ‘lung cancer’,

‘cancer of the lung’, ‘malignant neoplasm of the lung’ are the same biomedical concept,

but are different concepts for the concept-based representation.
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Because of this, during the training as well, each of these concepts are less frequent

leading to lower individual vector values, and thus relatively lower similarity values

among semantically similar concepts. Thus, a lower threshold value better accounts

for concepts that are more closely related when using concept-based representations.

7.7 Results

Clustering of the documents is performed by using k-means clustering (Chapter 3,

Section 3.1.2). The clustering performance of both the concept representations (Word-

based ans Concept-based) is evaluated against the TF-IDF baseline. As discussed

above in section 7.6, the threshold values play an important role in the generation

of document vectors. Thus, both the representation methods for all values between

0.75 and 0.95 spaced at 0.05 are evaluated. For each corpus (PubMed Central – Open

Access, Ohsumed Collection, TREC Genomics 2005), each configuration of concept

vector calculation (word-based and concept-based) and threshold selection, clustering

is run for k values ranging from 2 to 30.

Results produced are compared against a baseline where TF-IDF is the only algo-

rithm used to generate document vectors. The baseline, too, is clustered for k values

from 2 to 30. Since there is no change in the document vectors for TF-IDF baseline

with changing threshold τ , changes in threshold value are not considered.

The internal evaluation metric DB index validates clustering by measuring the

similarity between all of the clustering results (Chapter 3, Section 3.2.1). Lower val-

ues of DB index imply lower similarities between clusters, and thus better results of

clustering. This helps us select the optimal values of clusters for the k-means clus-

tering used. On the other hand, F-measure relies on the true positive, true negative,

false positive and false negative results of clustering to give a score to the cluster-

ing (Chapter 3, Section 3.2.3). Higher the F-measure value, better the result of the

clustering is.
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7.7.1 PubMed

TF-IDF Baseline

Fig. 7.11.: DB index values for TF-IDF baseline for the PubMed Central – Open

Access corpus using the modified document weighting scheme and clustered with

k-means clustering.

From Figure 7.11 it can be seen that the DB index value is lowest for 2 clusters.

Low initial values do not indicate good clustering. The clustering for total clusters

from 9-14 have much lower values than other cluster sizes. The lowest value is seen

for cluster size 14. Based on these observations, evaluation of visualization of cluster

size 14 is presented below.

The visualization of clustering with 14 clusters (Figure 7.12) shows that there

is one major central cluster (black) with more than 3/4th of the documents. Most

of the documents in this central cluster contain the concept ‘stroke’ and the other

concepts within these documents are cardiac and neurological concepts. A lot of
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Fig. 7.12.: Clustering visualization for TF-IDF baseline for PubMed Central – Open

Access corpus using the modified document weighting scheme and clustered with

k-means clustering, with k = 14.

other documents with concepts that do not appear more than once in the dataset

also belong to this cluster. This shows the need for increasing the number of clusters

which can better distribute the large variety of concepts described within the dataset.

Except the above described cluster, other clusters have documents covering specific

diseases with the blue green cluster on the top right focused on pulmonary diseases

and the blue cluster on top containing documents describing cardiovascular diseases

and hypertension.
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Leaving aside a few clusters, most other clusters are randomly filled with concepts

that are not similar to each other or dependent on one another in any significant

way. This visualization, which is the best based on DB index values, show that a TF-

IDF approach to clustering documents is not very successful. The lack of inclusion

of contextual information in clustering is a challenge produced by the large number

of concepts, and exactly the kind of situation that the proposed weighting scheme

proposed algorithm aims to tackle.

Word-Based Representations

Fig. 7.13.: DB index values for the PubMed Central – Open Access corpus using the

modified document weighting scheme that relies on word-based representations and

clustered with k-means clustering.
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Figure 7.13 shows the variation of DB index as total clusters are changed from

2 to 30, over various threshold values. It is clear from the figure that the threshold

0.95 performs poorly and does not produce very good clusters. The performance of

threshold value 0.90 is slightly better than 0.95. At the same time, the performance

of the thresholds 0.75, 0.80 and 0.85 are very similar, especially for the higher number

of clusters. Based on the DB index graph, visualizations of 14 clusters for threshold

0.85 is chosen for further evaluation.

Stroke
Breast CancerMiscellaneous 

Diseases

Osteoarthritis

Diabetes, 
Diabetes Mellitus

Cerebral Palsy Tumour

ML III
ML II

Asthma

Carpal Tunnel 
Syndrome

Facial Palsy

Fig. 7.14.: Clustering visualization for the PubMed Central – Open Access corpus

using the modified document weighting scheme that relies on word-based representa-

tions and clustered with k-means clustering, with k = 14, τ = 0.85.
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It is clear from the visualizations shown in Figure 7.14 and its comparison with

Figure 7.16 that the central cluster is much smaller for a similar number of total

clusters. At the same time, individual clusters all around are more prominent and

densely packed together. Further, the Figure 7.14 shows that all of the documents

describing brain strokes, especially those with supplementary terms regarding the

nature of the stroke (ischemic stroke, chronic stroke, stroke with hemiparesis), all

belong to a single cluster (aqua). Similarly, all of the breast cancer-related documents

belong to the black cluster, while the osteoarthritis documents belong to the maroon

cluster on the top-left. Similar distinct clustering is observed for cerebral palsy (lime

green), diabetes (yellow), asthma (dark green), etc. All these clusters also include

some documents from other concepts that are either semantically equivalent or similar

to the concepts mentioned above.

These observations establish the performance of the algorithm and its ability to

identify relevant documents that describe a similar set of diseases and group them

together into the same cluster, despite not having the same keywords or concept.

Concept-Based Representations

Figure 7.15 shows the plot of DB index for varying total clusters for the concept-

based representation of words. It is visible from the figure that threshold 0.80 has

consistently low values of DB index, while 0.75 and 0.90 have higher values and spikes.

For evaluating the visualization, 14 clusters with threshold 0.85 is chosen.

One of the things that immediately stands out when looking at Figure 7.16, as

compared to Figure 7.14, is the tightly bound clusters. One major observation Figure

7.16 is the number of small, well-defined clusters. Upon evaluation, it is found that

most of these clusters contain documents with a very specific subset of concepts,

all very closely related to one another. For instance, the orange cluster on the top

right contains documents containing concepts like obesity, morbid obesity, obese and

coronary artery disease, which is a major risk for people with obesity. Similarly, the
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Fig. 7.15.: DB index values for the PubMed Central – Open Access corpus using the

modified document weighting scheme that relies on concept-based representations and

clustered with k-means clustering.

dark blue cluster on the top left contains documents describing hypertension, diabetes,

hypoglycemia, heart blockage, etc. most of which are very closely related to one

another. Pneumoperitoneum documents are in the green cluster on top left, chronic

low back pain in the dark green cluster in the center, and myofascial pain syndrome

documents in the lime green cluster on the top right. Stroke related documents form

the aqua blue cluster in the center, whereas the fuchsia pink cluster close to it contains

documents pertaining to ischemic stroke. This trend is seen across all the other small

clusters. This proves that a threshold value on the lower side produces better results

for the concept-based representations.
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Fig. 7.16.: Clustering visualization for the PubMed Central – Open Access corpus

using the modified document weighting scheme that relies on concept-based repre-

sentations and clustered with k-means clustering, with k = 14, τ = 0.85.

7.7.2 Ohsumed

TF-IDF Baseline

Figure 7.17 shows the variation of DB index as the number of clusters increases,

when the document vector generated consists of only the TF-IDF values. Despite the

consistently high values of DB index, indicative of poor clustering, this result shows

that the cluster size of 9 has a lower DB index values as compared to all of the other

clusters tested.
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Fig. 7.17.: DB index values for TF-IDF baseline for the Ohsumed Collection corpus

using the modified document weighting scheme and clustered with k-means clustering.

Figure 7.18 shows the visualizations for the cluster size of 9. The presence of a

large central cluster with a majority of documents shows that neither of them are

optimal cluster sizes with most of these documents being unrelated and grouped

together because they do not fit in any other cluster. Among the other clusters for

Figure 7.18, malignancy (black), recurrence (blue green on the bottom left), infection

(maroon), etc. are the most frequently occurring concepts, with very few similar

or semantically equivalent concepts in each cluster. Most clusters show the same

lack of disparateness of concepts within clusters. At the same time, these clusters

only represent a subset of documents describing the same / similar concepts. Other

documents from these clusters are in other mixed clusters.

This shows that TF-IDF alone is not a good method for generating document

vectors, especially for large, unlabeled datasets which have a variety of concepts.
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Diseases

Hypertension
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Human 
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Virus

Fig. 7.18.: Clustering visualization for TF-IDF baseline for Ohsumed Collection cor-

pus using the modified document weighting scheme and clustered with k-means clus-

tering, with k = 9.

Word-Based Representations

From Figure 7.19 it is evident that threshold 0.95 is not a very good threshold. In

fact, the range in which the DB index of 0.95 varies is very close to that of TF-IDF

(Figure 7.19). While all the other thresholds have DB index in the same range, 0.85

outperforms all of them as the cluster number increases, while 0.80 produces better

results with fewer clusters. Based on these observations, an evaluation of 10 clusters

for threshold 0.80 is presented.
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Fig. 7.19.: DB index values for the Ohsumed Collection corpus using the modified

document weighting scheme that relies on word-based representations and clustered

with k-means clustering.

The visualizations shown in Figure 7.20 show the trend seen with word-based

representation earlier with the tightly bound clusters. It is observed that most of

the documents in the dark blue cluster describe infection concepts like bacterial and

sexually transmitted diseases. On the other hand, most documents about ‘myocardial

infarction’ (blue green). There is a distribution of the cancer concepts and an overlap

is seen across clusters, which can also be seen through their visualization without a

clear boundary in the clusters in the bottom right. The grey cluster on the top left

contains documents with concepts related to heart failure. Many clusters including

those colored in brown, black, light green are labeled as ‘Miscellaneous Diseases’, since

the document frequencies of the concepts for those clusters show that none of them

contains documents related to a specific category disease. While these clusters aren’t

ideally separated, they are better than the TF-IDF approach and a lot of similar

concepts are closely placed to one another.
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Fig. 7.20.: Clustering visualization for the Ohsumed Collection corpus using the

modified document weighting scheme that relies on word-based representations and

clustered with k-means clustering, with k = 10, τ = 0.80.

Concept-Based Representations

For concept-based representations, the DB index chart shows that all threshold

values perform fairly well with results very close to each other. However, at the elbows

around 11 clusters, threshold 0.75 performs significantly better than any of the other

threshold values. One noteworthy observation about the visualizations for concept-

based representations (Figure 7.22) is about the density and tight packing of all of

the clusters within the same region. This is in stark contrast to that of word-based

representations (Figure 7.20), but follows the observations from Section 7.7.1.
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Fig. 7.21.: DB index values for the Ohsumed Collection corpus using the modified

document weighting scheme that relies on concept-based representations and clustered

with k-means clustering.

In the visualization of 11 clusters (Figure 7.22), the aqua blue cluster on the top

right consists of documents talking about cardiac diseases, while the black cluster

consists of a variety of unrelated concepts. The blue green cluster on the top right

contains documents describing different types of diabetes, obesity and hypertension.

These concepts often co-occur and thus are well related. At the same time, the

proximity of this cluster with that of the cardiac diseases cluster (aqua blue on the

top right) shows how there is some connection between these concepts as well. Lung

cancer (dark blue), infections (brown), HIV (red and grey) form other major clusters.

But these clusters also have a few other unrelated documents and concepts.

The similarity of concepts within the same cluster also shows that a lower threshold

does not deteriorate the performance of clustering for concept-based representation,

but in fact improves it.
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Fig. 7.22.: Clustering visualization for the Ohsumed Collection corpus using the

modified document weighting scheme that relies on concept-based representations

and clustered with k-means clustering, with k = 11, τ = 0.75.

7.7.3 TREC Genomics 2005

TF-IDF Baseline

The results obtained for this dataset help us understand the correlation between

the internal and external evaluation metrics, since this is the only labeled dataset.

Looking at the TF-IDF results obtained for various cluster sizes, it is seen (Figures

7.23 and 7.24) that clusters 7, 17 and 30 have better values of DB index and F-

measure than the rest of the cluster sizes. Clustering with 7 clusters is particularly
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Fig. 7.23.: F-measure values for TF-IDF baseline for the TREC Genomics 2005 corpus

using the modified document weighting scheme and clustered with k-means clustering.

important because that is the number of categories in our dataset. There is an elbow

in the graph at 7 clusters, which shows the trend of lower values of DB index and

higher values of F-Measure, starts after 7 clusters.

Visualizing the clustering of these values it is observed that for 7 clusters (Fig-

ure 7.25), Alzheimer’s disease (teal), colon cancer (black), mad cow disease (blue),

Parkinson’s disease (maroon), multiple sclerosis (orange) and breast cancer (red) are

the primary concepts for each of the clusters. The light blue cluster at the center

contains documents with multiple concepts, most of which appear few times in the

corpus. It is also seen that all of the documents belonging to the cerebral amyloid

angiopathy category are in the light blue cluster. This shows that while 7 clusters

separate out almost all of the primary categories into their individual clusters, but

the clustering can be improved further.
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Fig. 7.24.: DB index values for TF-IDF baseline for the TREC Genomics 2005 corpus

using the modified document weighting scheme and clustered with k-means clustering.

Word-Based Representations

From Figures 7.26 and 7.27, it can be seen that thresholds 0.80, 0.85 and 0.95

have the highest F measure values. At the same time, threshold 0.80 and 0.85 have

consistently lower DB index values than 0.95 (Figure 7.27). At the same time, for

lower values of clusters and at the elbow of 7 clusters, 0.80 has better DB index

value for a similar F-measure score. This shows that 0.85 is a better threshold for

generating the vectors if using higher cluster sizes, and 0.80 is better for lower cluster

sizes.

It can also be seen that 0.75 has the best results if only DB index is looked at.

However, F measure shows that the clustering results for that threshold are very poor.

On further analysis, it is seen that lower thresholds increases the number of similar

concepts calculated for each concept and thus even concepts that are not very closely

semantically equivalent are added together. Similarly, if only F-measure is looked at,
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Fig. 7.25.: Clustering visualization for TF-IDF baseline for TREC Genomics 2005

corpus using the modified document weighting scheme and clustered with k-means

clustering, with k = 7.

it is easy to assume 0.95 performs the best, when it actually has a much higher DB

index value. Based on this observation, the visualization of clustering with 7 clusters,

for a threshold value of 0.80 is explored further (Figure 7.28).

On comparing the differences between the word-based representation visualization

of 7 clusters (Figure 7.28), with the TF-IDF clustering visualization for 7 clusters

(Figure 7.25), it is apparent that the clusters for the word-based representation are

much more defined and well separated. That is a trend seen in all of the word-based

representations that the clusters are clear and distinct, with few overlaps. As the
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Fig. 7.26.: F-measure values for the TREC Genomics 2005 corpus using the modified

document weighting scheme that relies on word-based representations and clustered

with k-means clustering.

cluster number is increased, it is observed that a few clusters that do have overlap-

ping boundaries share the similar or same concepts and are sub-clusters of the same

concept, thus proving that the algorithm clusters and identifies similar concepts.

In Figure 7.28, each of the 7 clusters is a cluster of a different disease. Alzheimer’s

disease (cyan), Parkinson’s disease (black), multiple sclerosis (blue green), breast

cancer (blue), Mad Cow disease (orange), colon cancer (brown and red) describe all

of the clusters. Among the categories covered by the dataset (Table 5.3), cerebral

amyloid angiopathy (CAA) is the only category that does not have its own cluster.

Documents covering CAA are distributed across the clusters of Alzheimer’s disease,

Parkinson’s disease and Mad Cow disease. All these other clusters represent disorders

of the brain, just like CAA. This emphasizes the performance of the algorithm as it

clusters documents with similar concepts together.
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Fig. 7.27.: DB index values for the TREC Genomics 2005 corpus using the modified

document weighting scheme that relies on word-based representations and clustered

with k-means clustering.

Concept-Based Representations

With concept-based representations, it is seen from Figures 7.29 and 7.30 that

as the number of clusters increases, the F-measure for all of the thresholds is very

similar and plateaus. A similar trend is seen for DB-index, but the DB-index values

for 0.75 are generally lower than that of the rest of the thresholds. However, at the

elbow point of 7 clusters, the F-measure of threshold 0.90 is much higher than others,

and its DB index is similar to 0.75. Based on these observations, the evaluation of

visualizations of 7 clusters with 0.90 threshold is presented below.

While 7 clusters showed the elbow for the word-based and TF-IDF baseline, in

the case of concept-based representations, 8 clusters show an elbow for thresholds

≤ 0.85, while those > 0.85 have the elbow at 7 clusters. This is because for a higher

threshold for concept-based representations, there are very few concepts with a low
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Fig. 7.28.: Clustering visualization for the TREC Genomics 2005 corpus using the

modified document weighting scheme that relies on concept-based representations and

clustered with k-means clustering, with k = 7, τ = 0.80.

similarity value to other concepts and the document matrix generated looks largely

similar to the one generated by the TF-IDF baseline. There also aren’t many concepts

very similar to each other (similarity score ≥ 0.85), which is also why these values

have very similar DB-index and F-measure values to each other. As the threshold is

lowered, the semantically equivalent concepts and similar concepts are identified and

they appear in the document vectors.

From Figure 7.31, it can be seen that the concept-based representations are much

more densely packed to one another than Figure 7.28, while also having lesser over-

laps than Figure 7.25. This is characteristic of the visualization of concept-based
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Fig. 7.29.: F-measure values for the TREC Genomics 2005 corpus using the modified

document weighting scheme that relies on concept-based representations and clustered

with k-means clustering.

representations across various threshold values. All of the major concepts except

CAA have their own clusters, but the black cluster in the center is a collection of a

lot of documents across categories. Multiple sclerosis is in the maroon cluster and

breast cancer in the red cluster. The orange cluster contains documents from colon

cancer, colorectal cancer and the adenomatous polyposis coli gene that causes colon

cancer. The proximity between the clusters of Alzheimer’s disease (dark blue) and

Parkinson’s disease (blue green) is also because of their high similarity in the vector

space. There are also documents that contain both the diseases, and such documents

are a part of the large black clusters close to them.
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Fig. 7.30.: DB index values for the TREC Genomics 2005 corpus using the modified

document weighting scheme that relies on concept-based representations and clustered

with k-means clustering.

As the cluster size increases, all of the categories get divided into further sub-

categories. Each of the sub-categories concentrate on a specific concept or a combi-

nation of concepts, and the cluster is close to other clusters that contain documents

with similar concepts.
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Fig. 7.31.: Clustering visualization for the TREC Genomics 2005 corpus using the

modified document weighting scheme that relies on concept-based representations and

clustered with k-means clustering, with k = 7, τ = 0.90.
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8. IMPROVING PATIENT CARE

Most health systems were designed to wait for an individual to become sick before

they kick into reactive action. Hence, for the most part, health systems are designed

to diagnose and treat illnesses or injuries instead of preventing the onset of a disease.

Research also shows that this reactive model in health care is both expensive and, to

some degree, ineffective in meeting the needs of today’s population [90].

Preventing the onset of diseases is the key to improving people’s health and keeping

rising health care costs under control. General preventive health care guidelines

based on age and gender have been integrated with Electronic Health Record systems

through basic decision support systems and have led to improved performance in

health care delivery.

Advanced integration which considers factors such as ethnicity, social history,

medical history, family history need to be investigated. Integrating the preventive

health care guidelines with the EHR based on above factors requires the extraction

of the relevant information from these guidelines using text mining techniques.

Towards promoting the provision of preventive health care, the U.S. Preventive

Services Task Force (USPSTF) has been established to identify scientific, evidence-

based recommendations on dozens of clinical preventive health care services that are

intended to reduce the risk of heart diseases, cancer, infectious diseases as well as

improve the health of children, adults, and pregnant women [74].

However, despite the development and publication of these national preventive

care guidelines, the actual rates of delivery of preventive health care services remain

low [91]. Several studies have identified lack of time during the office visit as the most

common barrier to the implementation of preventive care [92] [93].
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The adoption of Electronic Health Record (EHR) systems has been encouraged

by governments in many countries during the past decade [1]. The purpose of EHR

is to help physicians better manage patient record and provide better health care.

A considerable added benefit can be achieved by extracting information from the

guidelines of clinical preventive health care services and automating their integration

into the EHR.

Clinicians receive reminders when patients are due for taking the screening tests

or exams. However, the criteria in these clinical decision support modules need to be

manually updated by an expert, and the criteria is limited to age, gender, screening

laboratory tests and / or diagnostic imaging exams and screening intervals.

None of the modifiable risk factors are extracted from the preventive guidelines

and the modifiable risk factors are not considered by the CDS modules. In recent

literature, researchers have identified that social history, including behavioral and

environmental factors, are increasingly recognized as key modifiable factors for many

causes of disease, disability, and mortality in the United States [90].

8.1 Literature Review

Clinical guidelines are “systematically developed statements to assist practitioner

and patient decision making about appropriate health care for specific clinical cir-

cumstances” [94]. Their aim is to improve the quality of health care and reduce cost.

Preventive health care guidelines guide physicians in helping patients prevent diseases

before they happen.

Several previous researchers have focused on extracting some patterns to model

medical guidelines. In 2007, Serban et al. developed a pattern extraction approach

based on an ontology-driven linguistic pattern identification in order to automatically

reconstruct the knowledge in the guidelines [95]. Other research work focused on

associating the guidelines with a health care plan based on a domain-specific ontology

[94]. It is not about extracting information from the content of the medical guidelines.
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Researchers have also analyzed the design pattern of the guidelines and proposed

better design patterns using computer-interpretable templates. For example, Peleg

et al. compared five different design patterns of clinical guidelines and proposed new

design patterns for two types of preventive care guidelines, namely, screening guide-

lines and immunization guidelines [96]. However, they focused on standardizing the

guidelines to support the screening process instead of extracting the modifiable risk

factors and integrating them with the EHR to provide more personalized preventive

care.

There are a few examples of research work that have made use of natural lan-

guage processing techniques to extract specific information from medical documents.

Meystre et al. developed a system that makes use of UMLS MetaMap and a negation

detection algorithm that used NegEx to extract different medical problems [97]. Ros-

ales et al. investigated extracting medical concepts or events from electronic medical

notes according to a pre-determined compound dictionary [98]. Li et al. proposed a

tool to recognize medical concept by first extracting nouns, then constructing noun

phrases from medical documents [99]. None of these researches investigated the ex-

traction of modifiable risk factors, such as social history or family history related

factors.

Previous research in creating associations between ontologies relied on using ex-

isting ontology that is a part of MeSH or WordNet to identify relationships between

different medical terms [33] [81] [34]. However, the ontologies that present the entity

and attribute relationships in a hierarchy without emphasizing the co-occurrences of

the terms based on the content of the text.

On the other hand, the ontologies often do not include the different representations

of the same medical term. For example, ‘Type II Diabetes’ and ‘DM2’ both represent

‘Type 2 Diabetes Mellitus’. Different representations for same terminology happen

quite often in the clinical notes within the Electronic Health Records (EHR), because

physicians have their own preferences of recording notes.
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In recent years, the distributed representation of word also called word embedding

has gained a lot of interest in the research areas of text mining, natural language

processing and health informatics (Chapter 2) [11] [25] [28]. Word embeddings have

also been used in biomedical text processing [21] [75]. Word embedding emphasize the

co-occurrences of the words based on the content of a given text document collection.

There are different ways to generate the distributed vector representations, which

include probabilistic models [100] and dimensionality reduction on the word co-

occurrence matrix [101]. Neural network is a new technique to generate the word

embedding. It has been recently studied for biomedical text classification and clus-

tering, where word is the basic unit for the text documents and word embedding is

learned through neural networks [75] [102].

However, in the biomedical domain, clinical or medical concepts often contain

more than one word. Especially, it is very hard to describe the symptoms using

one word. Hence, it is necessary to analyze the associations between disease and

symptom concepts based on their representations as more than one word. A system

for generating ‘concept’ vectors from word embeddings is presented in Chapter 6.

In general, there is limited previous research that focuses on extraction of informa-

tion from the guidelines. There is also no previous research on extraction of modifiable

risk factors from the healthcare guidelines, for the purpose of automated integration

with EHR. The integration with EHR is performed by using word embeddings.

Bridging the gap between preventive health care guidelines and EHR systems has

a great potential to improve health care delivery.

8.2 Information Extraction from Preventive Care Guidelines

A framework that focuses on extracting the modifiable risk factors from the pub-

lished clinical preventive health care services guidelines that includes demographic

information, social history, family history, non-acute disease history, medical history,

family history, preventive screening tests, etc. related information from the published
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Fig. 8.1.: Interchange structure for mapping between preventive care guidelines and

Electronic Health Records.
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USPSTF preventive healthcare guidelines, and organize this information into sections

of the proposed JSON data interchange structure according to standard EHR mod-

ules [103]. The interchange structure is shown in Figure 8.1, which is inspired from

the structure of Electronic Health Record (Chapter 5, Figure 5.7).

This information can then be integrated with the EHR to support personalized

preventive healthcare recommendation where modifiable factors are extracted from

patients medical records in EHR and compared with the ones that are extracted from

the preventive guidelines. The proposed framework consists of data pre-processing

steps and a rule engine that makes use of different natural language processing and

biomedical informatics modules. Through the proposed framework, modifiable risk

factors are extracted and mapped into the sections of the proposed data interchange

structure.

Preventive healthcare guidelines focus on disease prevention and provide details

about categorized preventive health care services such as screenings, counseling ser-

vices, or preventive medications. There are several challenges in information extrac-

tion from these guidelines such as distinguishing between screening tests and intervals

for different age groups of population. For example, the guideline for cervical can-

cer prevention recommends different screening tests and intervals for women who are

younger or older than 30 years.

Moreover, some guidelines describe preventive health care services that vary ac-

cording to the ethnicity, family history or medical history of an individual. Hence,

screening services also need to be adjusted based on an individual’s family history

and past medical history. Social history, family history and past medical history are

usually stored in different modules or sub-modules of the EHR. The objective of this

research is to extract information from the guidelines and prepare them for EHR

integration.

In Figure 8.1, the information into three categories: demographics, medical his-

tory and preventive screening services. The second level of the JSON file structure

corresponds to the modules of the EHR which include age, gender, ethnicity, labora-
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tory tests, diagnostic imaging tests and so on. The third level includes the detailed

items and the associated risk factor. The risk factor reflects how critical it is for

an individual to receive the preventive services. For example, if an individual has a

family history of diabetes, the risk factor of ‘type 2 diabetes’ increases. The original

USPSTF recommendation title and URL in the JSON file structure. The asterisk

(‘*’) represents the possibility of multiple entries.

The medical history section has all the modifiable risk factors. The Ethnicity

element in the demographics is also one of the modifiable risk factor, since individuals

of certain ethnicity have higher risk of getting the some preventable disease than the

others. Each modifiable risk factor has an associated element risk degree that reflects

how critical the risk factor is for an individual to receive the preventive services.

Guideline pre‐
processing Rule Engine 

JSON 
structure file

Stanford 
CoreNLP Word2VecBeautifulSoup

HTML‐Tidy UMLS 
MetaMap

MeSH
Thesaurus

Fig. 8.2.: Framework of information extraction architecture from preventive care

guidelines.

Figure 8.2 shows the proposed framework for information extraction and mapping

to the JSON file structure. It is worth mentioning that the rule engine applies dif-

ferent information extraction and mapping algorithms for different EHR modules. In

this research, algorithms have been implemented for all of the EHR modules except
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‘Counseling’. The absence of existing tools’ scope to identify clinical ‘Counseling’

services led us to reserve this module as a potential future implementation. Some of

these algorithms are presented in the following sections.

Pre-processing steps are applied to the guidelines before they are fed into the rule

engine. Once the entire guideline is downloaded as an HTML document from the

USPSTF website, the syntactical errors in the HTML document are corrected by using

the HTML-Tidy library [104]. Among all the sections of a full guideline published by

USPSTF, the sections ‘Summary Statement’ and ‘Clinical Considerations’ contain

the clinical details of preventive health care services, the associated time intervals

and the description of the patient population at risk [105]. These two sections are

extracted by using the Python library BeautifulSoup [106].

Table 8.1.: Semantic types of MetaMap used for information extraction from preven-

tive care guidelines.

EHR Modules Semantic Types

Age Group Age Group (aggp), Temporal Concept (tmco), Organism At-

tribute (orga)

Gender Organism Attribute (orga), Population Group (popg)

Ethnicity Population Group (popg)

Social History Clinical Attribute (clna), Finding (fndg), Individual Behavior

(inbe)

Problem History Disease or Syndrome (dsyn), Neoplastic Process (neop)

Symptoms Sign or Symptom (sosy)

Laboratory Tests Laboratory Procedure (lbpr), Laboratory or Test Result (lbtr)

Imaging Diagnostic Procedure (diap)

Procedure Diagnostic Procedure (diap)
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In order to extract information from the text-rich guidelines and map them to the

EHR modules, we develop a rule engine which makes use of natural language pro-

cessing or text mining modules: UMLS MetaMap (Chapter 4, Section 4.1), Stanford

CoreNLP (Chapter 4, Section 4.2) and Medical Subject Headings thesaurus [62].

Table 8.1 shows the semantic types available from MetaMap output used to iden-

tify terms related to the EHR modules. In addition to those listed, the semantic type

‘Idea or Concept(idcn)’ is used to extract the possible risk factor associated with the

extracted information. MetaMap makes use of various biomedical sources to map the

phrases or terms in the input text to different semantic types. MetaMap is highly

configurable with many options.

From Stanford CoreNLP, NLP tools such as the named entity recognizer and

the dependency parser and used to analyze the syntactical relationships between

words in a sentence. The dependency parser extracts relationships between words

are dependencies between a governor (also known as a head) and a dependent, and

displayed as a relationship’s abbreviation. For instance, the abbreviation ‘amod’

represents a dependency relationship between an adjective and a noun. The named

entity recognition tool is used to identify name entities within given phrases or terms

like durations and numbers. In addition, the relationships between words are labeled

using abbreviations. For example, word ‘years’ is in a ‘tmod’ relationship with word

‘aged’, which shows that ‘years’ is a temporal modifier of word ‘aged’.

A Word2Vec model is also employed in this section using the trained model from

[21]. The training was learned from two public corpora: PubMed and PubMed Central

(PMC) [107]. These two corpora contain a large number of medical and biomedical

words. Through the learned Word2Vec model, the most related words of a given

word can be identified by calculating the distances between the source word and other

targeted words. For example, given the word ‘family’, the most related words are:

‘parent’, ‘father’, ‘mother’, ‘guardian’, ‘spouse’, and ‘grandparent’. The similarity

scores for the most similar words for ‘father’ are presented in Table 8.2.
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Table 8.2.: Top closest words of ‘father’ and the similarity scores from a word em-

beddings model [21].

Concept Most Similar Concepts Similarity Score

father

grandmother 0.839

grandfather 0.836

uncle 0.826

aunt 0.817

brother 0.808

niece 0.802

nephew 0.795

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary pro-

duced by the National Library of Medicine (NLM) [62]. It is used for indexing,

cataloging, and searching biomedical and health-related information in documents.

Many synonyms, near-synonyms, and closely related concepts are included as entry

terms. These entry terms are organized in an ontology. This ontology is very help-

ful for seeking the most relevant medical subject terms or the upper level subject

category for a given concept. For example, given a term ‘Computed Tomography’,

related medical terms can be identified through MeSH. The MeSH ontology shows

that ‘Computed Tomography’ is a concept under the category ‘Diagnostic Imaging’.

This tool is used to map concepts into categories associated with EHR modules.

The rule engine applies different algorithms for information extraction and map-

ping to the corresponding EHR module. Six algorithms from those implemented in

the rule engine are described next. These algorithms are for the EHR modules: ‘Age

Group’, ‘Social History’, ‘Problem History’, ‘Family History’, ‘Risk Degree Extrac-

tion’ and ‘Diagnostic Imaging’. Along with the ‘Diagnostic Imaging’ screening tests,

the associated ‘Time Interval’ is also identified.



121

8.2.1 Age Group

Preventive health care services usually apply to a population of certain age group

and the age group is specified in the ‘Recommendation Summary’ section of the

guideline. All sentences of this section are passed through UMLS MetaMap to identify

the phrases that are mapped to the semantic types corresponding to ‘Age Group’

listed in table 8.1.

Based on all the phrases mapped to the semantic types of ‘Age Group’, extended

phrases (the mapped phrase, one phrase before the mapped phrase and one phrase

after the mapped phrase) are constructed and passed to Stanford CoreNLP’s NER

tool in order to extract the range identified as ‘Age Group’. If any of the words in

the extended phrases are tagged as ‘DURATION’ by the NER tool, it is processed to

extract the age range defined by minimum and maximum ages.

8.2.2 Social History

In the medical record, a patient’s social history addresses aspects of the patient’s

personal life that have the potential to be clinically significant [108]. It includes the

patient’s alcohol and tobacco consumption status, sexual preference, diet and exercise.

Social history also includes preconditions for some preventive services according to

the guidelines.

Identifying social history related information is more challenging than informa-

tion related to other EHR modules, especially when screening services vary based

on different social history statuses. For example, in the lung cancer screening guide-

lines [48], identifying ‘smoking history’ as a social history without additional qualifi-

cations describing the duration or frequency of the smoking habit will not be accurate.

Algorithm 8.1 presents the process of extracting social history information with these

necessary qualifications. The input (InputPhrases) to this algorithm is the set of
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Algorithm 8.1 Function to extract ‘Social History’ information from the preventive

care guidelines, ‘Social-History-Extraction(InputPhrases)‘.

1: OutputPhrases← {}

2: for Phrase in InputPhrases do

3: if (len(Phrase) > 1 word) and (Semantic Type of the Phrase is not ‘fndg’)

then

4: OutputPhrases← OutputPhrases ∪ {Phrase}

5: else

6: DependentWords← CoreNLP DP (Phrase)

7: p← location of first DependentWord

8: for word in Phrase do

9: if p >= location of word in Phrase then

10: Phrase← Phrase+ word

11: end if

12: end for

13: OutputPhrases← OutputPhrases ∪ {Phrase}

14: end if

15: end for

16: return OutputPhrases

phrases mapped to the semantic types that represent ‘Social History’ in Table 8.1.

The DP tool of Stanford CoreNLP (CoreNLP DP ) is used to analyze the dependen-

cies between words for each input.
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8.2.3 Diagnostic Imaging

Different diagnostic imaging procedures are specified in the preventive guidelines

as preventive health care services. For example, the breast cancer preventive guideline

mentions that a screening mammography should be done for women between ages of

50 and 74 every two years [74]. In this guideline, screening test mammography is a

diagnostic imaging test whereas ‘every two years’ is the time interval.

To extract the diagnostic imaging service mentioned in the guideline, the sentences

are fed into the UMLS MetaMap to extract the phrases or terms that are mapped

to the semantic type ‘Diagnostic Procedure’ as specified in Table 8.1. Based on the

experimental tests, it was found that all of the diagnostic imaging tests, such as ‘X-

Ray’, are mapped to the semantic type - ‘Diagnostic Procedure’. However, other

procedural tests, such as ‘Pap smear’, are also mapped to ‘Diagnostic Procedure’.

To differentiate between the phrases that belong to the diagnostic imaging cat-

egory and those belonging to procedures, the MeSH thesaurus is used. The disam-

biguation process works as follows: if any phrase or term is mapped to the semantic

type ‘Diagnostic Procedure’, it is then used as query phrase to the MeSH thesaurus.

If query phrase or a synonym of the phrase is located under the ‘Diagnostic Imaging’

branch in the MeSH ontology, the phrase is classified as diagnostic imaging, and not as

medical procedure. Otherwise, the query phrase is classified as a medical procedure.

subsubsectionTime Interval

In order to extract the time interval associated with a diagnostic imaging service,

the named entity recognition (NER) tool of Stanford CoreNLP is used to identify

the name entities in the sentence that contains the extracted diagnostic imaging

services. The terms that are tagged by NER as ‘DURATION’, ‘SET’ or ‘NUMBER’

are extracted as time interval.

For some guidelines, the screening interval is not mentioned along with the diag-

nostic imaging services within the same sentence, but included in a different subsection

titled ‘Screening Interval’. In these cases, the sentences of this subsection are used to



124

extract the time interval, and the extracted time interval is then applied to all the

preventive services extracted from the guidelines including the diagnostic imaging

services.

8.2.4 Problem History and Family History

An important aspect mentioned in healthcare guidelines is the presence of pre-

existing conditions or previous diseases in patients or family members that put them

at higher risk of a particular disease. The identification of such pre-existing conditions

or previous diseases is accomplished by extracting all the disease related concepts from

the guidelines that are tagged as two semantic types of UMLS MetaMap: ‘Disease or

Syndrome’ and ‘Neoplastic Process’.

After removing duplicates and the concepts that are the same as the preventive

disease within the recommendation statement (e.g. ‘lung cancer’ and ‘neoplasm of

the lung’ within the lung cancer recommendation statement [48]), the rest of the

disease concepts are either related to patient which should be identified and extracted

as problem history or related to a family member of the patient which should be

identified and extracted as family history.

Algorithm 8.2 presents the process of extracting problem and family history based

on the presence of family member related entity in the context. As discussed in

Section 8.2, a list of family member related words are identified through Word2Vec.

In this research, words ‘parent’, ‘mother’, ‘father’, ‘brother’ and ‘sister’ are used to

identify all other family member related words. If any word(s) within a sentence are

identified as family member related entity, the extracted disease concepts within the

same sentence are extracted as risk factors of family history. Otherwise, the extracted

disease concepts are extracted as risk factors of problem history.
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Algorithm 8.2 Function to extract ‘Problem History’ and ‘Family History’ infor-

mation from the preventive care guidelines, Problem-History-Extraction(Phrases −

In− a− Sentences)
FamilyWords ← Word2V ec(‘parent′) ∪ Word2V ec(‘mother′) ∪

Word2V ec(‘father′) ∪Word2V ec(‘brother′) ∪Word2V ec(‘sister′)

ProblemHistory ← {}

FamilyHistory ← {}

for Phrase in Phrases− In− a− Sentences do

flag = False

for word in FamilyWords do

if word in Phrase then

FamilyHistory ← Phrase

flag = True

end if

end for

if flag = False then

ProblemHistory ← Phrase

end if

end for

return ProblemHistory, FamilyHistory

8.2.5 Risk Factor

The risk degree associated with each risk factor such as social history or family

history is an attribute that determines the risk of a disease to an individual. For

example, individuals with a prior history of polycystic ovarian syndrome or gestational

diabetes are at a higher risk of diabetes [74]. Similarly, the risk degree of getting lung
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Algorithm 8.3 Function to extract ‘Risk Factor’ information from the preventive

care guidelines, Risk-Factor-Identification(Identified− risk − factors)
PhrasesToEval← {Phrase Before Identified−risk−factors}∪{Identified−

risk − factors} ∪ {Phrase After Identified− risk − factors}

if word ‘risk’ in PhrasesToEval then

for word in PhrasesToEval do

if word is tagged as ‘qnco’ then

RiskQuantifier ← word

return RiskQuantifier

end if

end for

end if

return None

cancer decreases after an individual quits smoking. Thus, risk degree is an important

indicator to determine if specific preventive care for certain diseases should be offered

to a patient at a different interval than the standard time interval.

The algorithm to extract the associated risk degree for risk factors are detailed

in Algorithm 8.3. The algorithm first locates all the identified risk factors, such as

social history, ethnicity, family history and problem history. Then, a phrase before

and after the identified risk factors are evaluated to see whether risk degree related

words can be located. If the word ‘risk’ is found in the any of the phrases, a word

that is tagged as the ‘Quantitative Concept’ by UMLS MetaMap is extracted as risk

degree for the corresponding risk factor.
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8.3 Extraction Results

Using the algorithms shown in Section 8.2, proof-of-concept extraction is per-

formed on the lung cancer [48] and diabetes [73] screening recommendation guide-

lines. The results are shown in the format of the interchange structure proposed in

Figure 8.1.

Only a segment of the guidelines are shown in Figures ?? and ?? from Chapter

5, Section 5.3. However, the input to the framework consists of all the paragraphs in

the guideline.

{ Guideline 
Info: 

{ Title: Lung Cancer Screening, 
   URL: https://www.uspreventiveservicestaskforce.org/
Page/Document/RecommendationStatementFinal/lung‐
cancer‐screening  } }

{ Demographics:  { Age:   { Min: 55,
   Max: 80 } }

{ Medical History:  { Social History:  
   [{name: cumulative exposure to tobacco smoke },
     { name: smoking },
     { name: 30 pack‐year smoking history },
     { name: current smokers },
     { name: 15 years of smoking cessation } ] } }

{ Preventive Screening Services: 

}

{ Diagnostic Imaging:  
   [{ Test: Computed Tomography,
    interval: 3 annual },
 { Test: Chest Radiography } ] },
{ Laboratory Test: 
   [{ Test: Sputum Cytology } ] }

{

Fig. 8.3.: Populated output in interchange structure of Lung Cancer Screening Guide-

line.
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Figure 8.3 shows the populated data interchange structure of the lung cancer

preventive guideline. The age range for lung cancer screening is different from that

of type 2 diabetes. The age range of 55 to 80 which is extracted from the guideline

and stored in the age group of JSON output interchange structure.

The preconditions for lung cancer screening are straight forward. They relate to

the smoking history of an individual. The detailed description of the smoking history

is provided in the guideline. This description will be mapped to the social history

of the EHR module. By using the social history extraction algorithm described in

Section 8.2.2, five different descriptions of smoking history are extracted: ‘cumulative

exposure to tobacco smoke’, ‘smoking’, ‘current smoker’, ‘30 pack-year smoking his-

tory’ and ‘15 years of smoking cessation’. These descriptions correspond to different

facts about the smoking behavior of the patient. So, they are included in the JSON

files as five entries under the social history.

Although these smoking history descriptions are similar, they reflect different facts

about the smoking behavior of the patient. ‘Current smoker’ details the current status

of social behavior of the patient, whereas ‘30 pack-year smoking history’ details their

history over a long period of time. The smoking history of a patient recorded in the

EHR might be in different forms. Same information extraction process can be applied

to medical records to extract the modifiable risk factors and word embedding models

can be used to measure the similarities between the concepts.

After applying the algorithms of the rule engine, two kinds of diagnostics imaging

tests are identified: computed tomography and chest radiography. They are included

in the diagnostic imaging section of the JSON interchange file. Only computed to-

mography is associated with a time interval which was extracted from the original

guideline. The laboratory test ‘sputum cytology’ is also extracted. ‘Chest radiogra-

phy’ and ‘sputum cytology’ are not assigned a time interval since time intervals for

these tests are not mentioned in the guideline.
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{ Guideline Info:  { Title: Abnormal Blood Glucose and Type 2 
Diabetes Mellitus: Screening , 
   URL: https://
www.uspreventiveservicestaskforce.org/Page/
Document/RecommendationStatementFinal/
screening‐for‐abnormal‐blood‐glucose‐and‐type‐
2‐diabetes } },

{ Demographics:  { Age:   { Min: 40,
   Max: 70 } },

{ Ethnicity: [ { ethnicity: African Americans,
risk factor: Increase },

              { ethnicity: American Indians,
risk factor: Increase },

              { ethnicity: Alaskan Natives,
risk factor: Increase },

              { ethnicity: Asian Americans,
risk factor: Increase },

              { ethnicity: Hispanics,
risk factor: Increase },

              { ethnicity: Latinos,
risk factor: Increase },

              { ethnicity: Native Hawaiians,
risk factor: Increase },

              { ethnicity: Pacific Islanders,
risk factor: Increase } ] } },

{ Medical History:  { Problem list: 
  [ { problem: Obese },
    { problem: Polycystic Ovarian Syndrome,
       risk factor: Increase },
    { problem: Cardiovascular Disesase (CVD),
      risk factor: Increase } ] }
{ Family History:  [ { name: Diabetes,

         risk factor: Increase }] },
{ Social History:  [ { name: Gestational Diabetes,

         risk factor: Increase }] },
{ Symptoms:  [ { symptom: Overweight } ] } },

{ Preventive Screening Services:  { Medical Procedure: 
 [ { Procedure: Body Mass Index,
      interval: every 3 years },
    { Procedure: Oral Glucose Tolerance Test,                               
       interval: every 3 years }] },
{ Laboratory Test:  [ { test: Plasma Glucose,

interval: every 3 years },
{ test: Hemoglobin A1C,
  interval: every 3 years },
{ test: Glucose Levels,
  interval: every 3 years }] } }

}

{

Fig. 8.4.: Populated output in interchange structure of Type 2 Diabetes Mellitus

Screening Guideline.
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As for type 2 diabetes mellitus screening guideline, the age group (minimum and

maximum age) mentioned in the guideline is extracted using the algorithm described

in Section 8.2, and results shown in Figure 8.4.

Ethnic groups are also extracted. There are eight different ethnicities mentioned

in the guideline. People belonging to these ethnic groups are at increased risk of

contracting type 2 diabetes. Hence, all these ethnicity groups are extracted along

with the risk factor ‘increase’.

The development of type 2 diabetes is affected by many factors. As described in

the guideline, if an individual has a medical problem, such as obesity, cardiovascular

disease (CVD) or polycystic ovarian syndrome, the risk of contracting type 2 diabetes

increases. These risk problems are extracted and used to populate the ‘Problem

History’, which is the non-acute diseases section of the interchange structure.

In addition, a family history of diabetes and a history of gestational diabetes

for women indicates an increased risk of contracting type 2 diabetes. Hence, this

information is also extracted and used to populate the corresponding elements of the

JSON output.

The preventive healthcare services mentioned in the guideline include blood tests

such as Plasma Glucose, Hemoglobin A1C and Glucose levels. These tests should

be performed every three years. The BMI measurement is extracted and stored as a

medical procedure, whereas the other blood tests are stored under laboratory tests.

To fully evaluate the correctness of the proposed framework, physicians or nurse

practitioners need to be recruited to manually evaluate the extracted information

against the information in the original guideline, to evaluate integration of the pro-

posed data interchange structure with the EHR, further research needs to be done

to extract the patient’s medical record from the EHR and compare the informa-

tion against that extracted from the preventive guidelines. However, the proposed

framework initiates the first step towards personalized preventive care by extracting

modifiable risk factors from the preventive healthcare guidelines. Furthermore, the
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proposed extraction process and algorithms can be applied to other narrative medical

files or guidelines where modifiable risk factors are critical to diseases’ prevention and

treatments.

By extracting all this information, the populated data interchange structure can be

compared against the patient’s medical records in the EHR to generate a personalized

preventive care plans for physicians to make final preventive care decision.

8.4 Note Concept Extraction

Using UMLS MetaMap (Chapter 4, Section 4.1) data for different EHR modules

is extracted from the clinical notes [79]. Doing this ensures that no data is lost in the

clinical notes, and helps create a better, organized picture of the patient’s medical

history.

Disease and symptoms concepts were extracted from the clinical notes as a part

of Chapter 6, Section 6.3. These extracted concepts were clustered separately, and

the results were presented in Chapter 6, Section 6.3 using the k-means clustering

algorithm (Chapter 3, Section 3.1.2) with k = 50 clusters for each subset of concepts.

The clustering results provide a picture of the relationships between disease and

symptom concepts, and their clusters. Table 8.3 also shows the most similar symp-

toms concepts to every disease concept. It is clear from Table 8.3 that there isn’t as

strong a relationship between the diseases and symptoms concepts, and the similarity

scores are low.

In order to validate the associations between the diseases and symptoms in the

vector space, the clinical notes were investigated to validate whether the diseases

occur in the same clinical notes with the associated symptoms. It was found that

indeed the diseases co-occur with the symptoms in the clinical notes.

However, often a few diseases were described in the notes as existing problems,

and are mentioned together in the clinical notes with the symptoms. Without other

interpretation, it is hard for the algorithm to determine which symptoms correspond
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Table 8.3.: Examples of disease concepts and the top 3 closest symptoms concepts

based on the similarity scores from embeddings trained as concept-based embeddings

on the IU Health EHR clinical notes data.

Diseases Most Similar Symptoms Similarity Score

chronic obstructive

pulmonary disease (COPD)

peptic ulcer symptoms 0.442

chronic pain 0.392

chronic cough 0.359

chronic back pain 0.339

chronic abdominal pain 0.338

chronic chest pain 0.306

gastroesophageal reflux dis-

ease symptoms

0.302

alzheimer disease
sleep disorders 0.467

groin tenderness 0.327

breast cancer

breast pain 0.458

breast discomfort 0.455

breast tenderness 0.424

coronary artery disease

(CAD)

coronary chest pain 0.471

peptic ulcer symptoms 0.426

coronary symptoms 0.334

diabetes mellitus type 2
symptom nausea 0.344

weakness of lower limb 0.310

to what diseases exactly. For example, if a clinical note describes that the patient

has peptic ulcer symptoms and a history of chronic obstructive pulmonary disease

(COPD) and coronary artery disease (CAD), it is hard to determine whether the

peptic ulcer symptoms were more associated with COPD or CAD without it being

interpreted by a physician in the presence of other information.



133

Fig. 8.5.: The disease and symptom progression timeline of a patient diagnosed with

Coronary Artery Disease.

If patients in the dataset had COPD and CAD with symptoms of peptic ulcer,

the peptic ulcer symptoms were found to be associated with both diseases, as shown

in Table 8.3. Literature was used to validate the diseases and symptoms associations

identified through our proposed methods. For example, we have searched literature

about type 2 diabetes and weakness of lower limb, and found that previous research

in diabetes has shown a decrease in lower-limb muscle strength in diabetic patients

[109] [110].

Through the concept extraction and concept association mining, we have gener-

ated clusters of diseases and symptoms, and also identified the diseases and associated

symptoms from the clinical notes. To support clinical decisions by efficiently making

use of the clinical notes, a two-dimensional visualization tool to visualize the develop-

ment of diseases and associated symptoms over time. The X-axis of the visualization

represents the time of the encounters, while the Y-axis represents the cluster index

of the disease(s).
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Fig. 8.6.: The disease and symptom progression timeline of a patient diagnosed with

Breast Cancer.

For example, if the clinical note mentions ‘ischemic cardiomyopathy’, it belongs

to cluster 6 according to Chapter 6, Table 6.4. So, 6 is the value for Y-axis.

Two patients to explore the visualization of diseases and symptoms extracted

from the clinical notes over time as demonstrated in Figures 8.5 and 8.6. These two

patients had a diagnosis of ‘ischemic cardiomyopathy’ and ‘breast cancer’ respectively

in the diagnosis module of the EHR.

Based on Figure 8.5, it is visualized that the patient had ‘Melanoma’ mentioned

in the clinical note only around 2009. However, there are no associated symptoms

mentioned during that period. ‘Melanoma’ is not mentioned in the clinical notes after

2009. Starting from 2015, this patient had CAD and related symptoms, such as ‘chest

pain’ and ‘cardiovascular symptoms’ mentioned in notes. Around 2016, the patient

had been diagnosed with ‘ischemic cardiomyopathy’. Following that, this disease and
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‘Chronic Systolic Heart Failure’ were both mentioned in the clinical notes along with

related symptoms. From this visualization, the development of the diseases along

with the symptoms can be clearly demonstrated.

Figure 8.6 shows the diseases and most related symptoms extracted from a patient

who had been diagnosed with ‘breast cancer’ in 2005. It shows that ‘breast cancer’

and the related symptoms have been mentioned in the clinical notes periodically from

2005 till late 2013. Other than ‘breast cancer’, gastric diseases and the most related

symptoms, such as ‘nausea’ are mentioned in the clinical notes periodically over the

years from 2006 to 2013.

This disease and symptom visualization can help physicians’ review the medical

problems of a patient. It is envisioned that if related medications and laboratory

tests can be added to the visualization, it will serve as a good decision support tool

for physicians.
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9. CONCLUSION

As a part of this thesis, different methods to generate biomedical concept word em-

beddings, and clustering of biomedical concepts are evaluated. The generated concept

vectors are evaluated by clustering concepts, and for clustering biomedical documents

based on concepts of diseases. Exploratory work is performed to extract information

from preventive healthcare guidelines. In the end, an extraction and visualizating

algorithm for biomedical concepts from EHR clinical notes was examined.

Word embeddings are among the primary technical concepts used as a part of this

thesis. Chapter 2 discusses the development of word embeddings from simple bag-of-

words representations to complex representations that have roots in neural networks

like recurrent neural networks and long short-term memory networks.

Part of the evaluation for concept vectors is generated by using unsupervised

clustering algorithms. The clustering algorithms used as a part of this research,

self-organizing maps and k-means clustering, are detailed in Chapter 3, Section 3.1.

Details about internal clustering evaluation metrics like Davies-Bouldin index, and

external evaluation metrics like purity and F-measure are provided in Chapter 3,

Section 3.2. The visualization procedure of these generated clusters is detailed in

Chapter 3, Section 3.3. These visualization techniques were used to visually evaluate

the clustering results.

Chapter 4 describes the third-party tools used in this work, like UMLS MetaMap

(Section 4.1) and Stanford CoreNLP (Section 4.2). UMLS MetaMap is a natural

language processing tool developed by the U. S. National Library of Medicine to

extract biomedical concepts from any text and map it to the entries in Metathesaurus.

Stanford CoreNLP is a suite of linguistic tools to extract relationships like part-of-

speech tags, dependencies, entities, etc. from text structure.
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The different data sources used in this thesis are detailed as a part of Chapter

5. This chapter discusses the different biomedical document sources derived from

PubMed like PubMed Central – Open Access (Chapter 5, Section 5.1.1), Ohsumed

text collection (Chapter 5, Section 5.1.2) and the TREC Genomics 2005 corpus (Chap-

ter 5, Section 5.1.3). A corpus of data from clinical EHR was also used in Chapters 6

and 8. This dataset included data from all of the different EHR modules, like diagno-

sis, medications, clinical notes, etc. Preventive care guidelines issued by the USPSTF

were also used in Chapter 8, and a short description of them is provided in Chapter

5, Section 5.3.

Word embeddings are generated by using Word2Vec’s skip-gram architecture and

used to generate concept representations of biomedical concepts (Chapter 6. The two

proposed methods to generate concept vectors are by aggregating word vectors to

concept vectors (Chapter 6, Section 6.1), and generating concept vectors by training

a Word2Vec model after pre-processing concepts into a single entity. The generated

word embeddings are also compared based on their similarity scores. Both concept

embedding generation approaches can capture the association of the concepts based on

the content of the training text collection. Section 6.3 of Chapter 6 shows the results

of clustering disease and symptom concepts separately. The results are promising and

show that similar concepts tend to be clustered together, because of the similarity

scores. The concept clustering also shows that concepts in similar parts of the body, or

ones that co-occur for related diseases or symptoms, are also clustered together. The

word embedding model successfully captures the associations between words based

on the co-occurrences of the word within the clinical notes.

In Chapter 7, a framework for biomedical document clustering and visualization

based on vectorizing concepts of diseases is proposed and evaluated. The concept

vectors generation was described in Chapter 6, but the document representation was

discussed in Section 7.2. Section 7.3 contains details about the first proof-of-concept

weighting scheme, and Section 7.4 shows the results of clustering generated by using

the proposed weighting scheme.
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The proposed representation of documents (Chapter 7, Section 7.3) considers the

local content and semantic similarity between the concepts within the documents is

used. The results show that the clustering occurs based on the concepts of similar na-

ture, similar area and organs of the body, and concepts which are synonymous to one

another. Nearby clusters are related in most cases, as well. This kind of visualization

will help researchers explore related articles based on concepts of diseases.

Modifications to the document weighting scheme, proposed in Chapter 7, Section

7.5, improve the clustering document vectors generated and the clustering results.

The modified weighting scheme is compared against baseline TF-IDF for text cluster-

ing and visualization. Results from three different biomedical text document collec-

tions demonstrate that the proposed weighting scheme using the concept embedding

achieve better much clustering performance than the baseline TF-IDF.

In Chapter 8, methods to extend the proposed concept representations towards

improving the quality of healthcare services provided to patients are discussed. In-

tegration of the preventive care guidelines into the EHR, by generating a directly

mappable structure from narrative guidelines. The process to convert text guidelines

into an interchange structure is proposed in Chapter 8, Section 8.2. In order to pro-

mote the personalized preventive healthcare services, we propose a modifiable risk

factor extraction framework that can be applied to the preventive healthcare guide-

lines to facilitate the integration of the guidelines with electronic health record (EHR)

systems. This framework extracts many factors, such as ethnicity, social history, fam-

ily history, medical history from the guidelines and populates the data interchange

structure for EHR integration.

The discussion in Chapter 8 also includes various methods that can help improve

patient outcome based on improved representations of the data stored within the

EHR (Chapter 8, Section 8.4). The proposed concept extraction method uses disease

and symptom concepts to represent the progression of diseases over the time period.

The Y-axis contains information about the clusters in which the given concept was

identified. The temporal visualization tool assists in visualizing the history of diseases
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along with the symptoms that are recorded in the narrative clinical notes. This

visualization tool can provide physicians an overview of the medical history of a

patient and support decision making.

In conclusion, the work presented as a part of this thesis has potential to improve

representation of biomedical concepts in word embeddings. The applications that

can benefit from such a vector representation of biomedical concepts like document

clustering, improving preventive healthcare, and in providing a holistic patient history

visualization technique.
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10. FUTURE WORK

The most profound limitations of this work is the requirement to first capture biomed-

ical concepts by pre-processing and then re-train a model based on the concepts ex-

tracted for a concept-based representation model. This increases the computation

time exponentially as the corpus size grows. This limitation is also accentuated by

the fact that there are multiple normalized representations for the same concept in

UMLS’ Metathesaurus, and provided after processing with UMLS MetaMap. A dif-

ferent pre-processing tool could help with simplifying the pre-processing required.

Another limitation is imposed if the corpus size is small. The model can not

accurately capture the associations between concepts when the number of instances

is very small, because the training samples are not enough to train the neural networks

to identify patterns. This problem is also known as the ‘curse of dimensionality’.

The word-based representations, on the other hand, do not require the model to

be retrained to ensure coverage across all of the concepts. At the same time, for

concept vectors generated from word-based representations, if two concepts have a

common word, these two concepts tend to be very close to each other, although they

might represent two different concepts. This is especially common for high frequency

words like ‘disease’, ‘cancer’, ‘pain’, among others.

Even for word-based representations, UMLS MetaMap still needs to run over

this model to extract the biomedical concepts. At the same time, word embeddings

that are representative of the corpus are difficult to find, since the input corpus

to word embeddings can change the behavior and relationships found among word

vectors. Preliminary tests with word embeddings trained on non-biomedical data

(news, Wikipedia dumps) showed issues with coverage of concept terms, and low

similarity scores.
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Future work in improving the quality of word embeddings may focus on using

newer word embeddings creation algorithms like ELMo, which relies on semantics

and synatical structure of each sentence to generate the word embeddings. ELMo

has shown promising results in tests that are often used to measure word embedding

performances such as association tasks, coreferencing, entity recognition and question-

answering.

With regards to the document clustering section, potential future work may in-

clude extending this framework to biomedical document clustering by including con-

cept embedding of other types of biomedical concepts, such as medications, diagnostic

and laboratory tests, treatments, etc.

Evaluating the visualization aid for the task of biomedical document search is also

another possible step in the direction of improving biomedical document clustering.

On the other hand, more complex clustering algorithms like hierarchical clustering

architecture can be explored for clustering and visualization of larger text collections.

The integration of the data extracted to the interchange structure from preventive

care guidelines with the EHR should be straight-forward with if-else conditional rules

that scan a patient’s history and previous medical records. This integration with

the clinical decision support system of the EHR is bound to improve the quality of

healthcare services provided and aid the prevention of onset of non-acute diseases.

The information extraction algorithms can also be customized and improved to

pull information from other preventive care guidelines like those from the Center for

Disease Control and Prevention, Health Resources & Services Administration, and

so on. Comparative evaluation towards other related methodologies on risk factor

extraction, developing concept similarities and association mining algorithms are also

other directions in which work in this domain can be concentrated.

On the whole, integrating the extracted information from healthcare guidelines,

with the stored information in the EHR systems facilitates building a personalized

preventive care recommendation engine for each patient.
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With respect to concept clustering and patient history representations from previ-

ously stored information in the clinical notes, future work may include working with

physicians or clinical annotators to evaluate the effectiveness of the concept associ-

ation mining model and visualization tool for decision support by including a large

number of clinical notes from the EHR system. The model can be expanded further

to analyze the associations of other clinical concepts, such as social history, family

history, medications, diagnostic tests and so on.

The field of biomedical natural language processing is at a nascent, exploratory

stage and in the long-run has the potential to transform the quality of healthcare

provided. Various directions for this include changes that can improve information is

consumed using document clustering techniques, or personalized care delivery with

automated integration with preventive care guidelines. Physician and doctors can also

be assisted by improving how they interact with, analyze and consume information

stored in the EHRs, and thus simplifying their work.
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