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Abstract 

 Pleistocene glacial-interglacial cycles resulted in population isolation that led to 

inter- and intra- specific genetic divergence in many North American species. The 

magnitude of isolation also influenced species response to these climatic changes and set 

the stage for contemporary gene flow. We can refine our understanding of species 

response to historical climate change by identifying regions of ice-free persistence and 

refugia during glacial maxima, and geographic locations and genetic dynamics of post-

glacial secondary contact.  This dissertation examines the role of glacial cover, 

geographic barriers, habitat fragmentation as a result of changes in sea level, and 

insularity on the contemporary genetic structure of three widespread, co-distributed, and 

ecologically distinct small mammals across western North America, with emphasis on the 

Pacific Northwest. Previous work on long-tailed voles (Microtus longicaudus), 

northwestern deer mice (Peromyscus keeni), and dusky shrews (Sorex monticolus) was 

used to formulate hypotheses of geographic distribution of genetic variation, timing of 

divergence, and regions of glacial persistence. This dissertation uses multilocus genetic 

data and historical climatic conditions to address these hypotheses. I identify regions of 

glacial persistence, the effects of historical sea levels on island connectivity, and regions 
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of post-glacial secondary contact of divergent lineages within M. longicaudus, P. keeni 

and S. monticolus. Additionally, I assess levels of endemism for the islands of Southeast 

Alaska. The collective findings of this dissertation improve our understanding of effects 

of historical range fragmentation and insularity on contemporary genetic diversity. 
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CHAPTER 1 

Introduction 

 

Genetic variability and taxonomic diversity are fundamental components of 

effective conservation planning. Understanding drivers of evolutionary diversification is 

important because it better equips ecosystem managers to make preemptive, rather than 

reactive, decisions. Increased knowledge of past responses of species to vicariant events 

(e.g., glaciation, orogeny), as well as an understanding of current population dynamics, 

allow us to investigate how and why genetic variation is partitioned across the landscape 

(Carstens et al. 2013; Soltis et al. 1997).  

One of the primary drivers of extant boreal diversity was Quaternary (2.6 Ma to 

present) climatic fluctuation, especially the strong glacial cycles of the Late Pleistocene 

that have been implicated in the diversification of many North American species 

(Carstens et al. 2005; Godbout et al. 2008; Lee-Yaw et al. 2007). Repeated glacial and 

interglacial periods caused isolation due to fragmentation of species, resulting in lineage 

divergence of allopatric populations (Guralnick 2007; Knowles & Richards 2005; Small 

et al. 2003) and ultimately initiating speciation across a diverse set of organisms (Loehr 

et al. 2006; Mengel 1964; Soltis et al. 1997). 

The Laurentide and Cordilleran ice sheets (Carrara et al. 2007; Dyke & Prest 

1987; Roberts 1991) of the Last Glacial Maxima (LGM) covered most of North America 

with ice free regions to the north (Beringia) and south (Hafner & Sullivan 1995; Marr et 

al. 2008). Additionally, as a result of lower sea levels, exposed continental shelf along the 

west coast of the ice has been hypothesized to support additional refugia (Burg et al. 
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2005; MacDonald & Cook 1996) including the Alexander Archipelago (AA) of Southeast 

Alaska (Carrara et al. 2007; Mobley 1988). Post-glacial recolonization provided the 

opportunity for fragmented populations to reestablish geographic contact. The genetic 

footprints of these species help to clarify biogeographic history (Brunsfeld et al. 2001; 

Hewitt 1996; Riddle 1996).  

Other than the few exceptions for extremely wide ranging species (Aubry et al. 

2009; Fleming & Cook 2002; Godbout et al. 2008), most glacial persistence was either in 

Beringian for high-latitude and Holarctic species (Brunhoff et al. 2003) or in the southern 

portions of the continent (Good & Sullivan 2001). Species with wide geographic ranges 

provide the opportunity to explore the possibility of persistence in multiple refugia and 

ice-free regions. Additionally, paleoendemics for British Columbian Haida Gwaii and the 

AA are proposed (Conroy & Cook 2000; Fleming & Cook 2002) as a result of the 

existence of coastal refugia (Fladmark 1979). However, this has been a point of 

contention (Byun et al. 1999; Byun et al. 1997; Demboski et al. 1999). Although these 

high latitude islands are continental islands, they present unusual colonization and 

extinction dynamics as a result of glacial cover and recolonization from not only the 

mainland, but also coastal refugia (Whittaker & Fernández-Palacios 2007).  

The major goal of my dissertation is to explore the role of historic climate in 

shaping genetic diversity and post-glacial dynamics of divergent lineages of three 

widespread, ecologically distinct, small mammals across both western North America and 

within the AA. I use a multifaceted approach that utilizes multiple independent loci and 

incorporates Geographic Information Systems (GIS), hypothesis testing, and statistical 

phylogeography to address questions related to evolutionary drivers of diversification in 
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Microtus longicaudus (long-tailed vole) Peromyscus keeni (northwest deer mouse), and 

Sorex monticolus (dusky shrew). 

 Chapter 2 uses multilocus DNA sequences to explore the genetic effects of glacial 

cover and test previous estimates of divergence among major mitochondrial DNA clades 

of M. longicaudus. Additionally, I explore current levels of gene flow among these 

lineages across the highly fragmented AA. I focus on the geographic region of Haines, 

Alaska to evaluate admixture and incomplete lineage sorting between the two northern 

mtDNA lineages. Lastly, genetic data, genetic diversity, demographic statistics, and 

species distribution models (SMDs) are used to determine the geographic origin of each 

cyt b clade.  

 Chapter 3 surveys genetic variation at the northwestern extent of Peromyscus in 

North America with respect to the effects of glacial fragmentation and persistence in 

multiple refugia. Previous work (Hogan et al. 1993; Lucid & Cook 2007; Wike 1998) 

suggests secondary contact in Yukon and identified cryptic genetic forms. I expand 

sampling across the geographic range and add independent loci to estimate levels of 

genetic differentiation and current genetic exchange, and then assess differentiation 

within the context of climatic niche predictions. 

 Chapter 4 is a comparative study that focuses on the impacts of historical climate 

and extent of insularity on current genetic variation across the islands of the Alexander 

Archipelago. By exploring genetic signatures across three ecologically distinct, co-

distributed species, I aim to determine the effects of island size and isolation (MacArthur 

& Wilson 1967) in a high latitude islands system on genetic diversity (Johnson et al. 

2000; Lomolino et al. 2006). Furthermore, I use SDMs and paleo-shoreline 
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reconstructions to formally test the possibility of glacial coastal refugia. The species-

specific Chapters 2 and 3 provide the current genetic landscape necessary to more 

thoroughly explore contemporary dynamics.   

 Chapter 5 summarizes the findings of my dissertation, while highlighting 

important parallels among chapters 2, 3 and 4. I emphasize the conservation and 

management implications of each chapter and potential ecosystem management 

challenges for fragmented habitats, like that of the AA. In the face of future climate 

change, as confounded by anthropogenic land use, it is imperative we provide an 

understanding of how historic climate change impacted organisms in Northwest North 

America.  

 My doctoral dissertation contributes to the fundamental understanding of the need 

for comprehensive, multi-taxa, multi-technique approach to phylogeography with regard 

to the influences of historical climate. If we hope to preserve species and communities 

under future climate change, it is imperative we appreciate the diversity and complexity 

of species response to past changes.   
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CHAPTER 2 

 

Phylogeographic effects of refugia and post-glacial  

pathways in Microtus longicaudus  

 

Abstract 

Vicariant barriers as a result of Quaternary climate fluctuations resulted in population 

isolation and intraspecific divergence in many North American species. Identifying 

where these populations were isolated, the dynamics of post-glacial recolonization and 

subsequent contact, and effects of insularity can help us understand the drivers of 

evolution in northern taxa. Incorporating a multilocus approach under a Bayesian 

coalescent framework, we explored signatures of divergence and post-glacial 

colonization within a wide-ranging vole, Microtus longicaudus (n=143), to identify 

glacial refugia, effects of insularity, and dynamics of secondary contact. Through a 

combination of genetic data and species distribution models, we found that both historical 

climate and geographic topography influenced contemporary genetic variation in this 

species. Multiple geographic locations for glacial persistence were identified, including 

Beringian (Northern), Southeast Alaska (Coastal), and southern continental North 

American regions. We detected high levels of island endemism and new locations of 

secondary contact between the Island and Northern clades. Integrative phylogeographic 

approaches helped identify previously undocumented refugia and intralineage genetic 

diversity. 
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Introduction  

Population isolation can occur through vicariant events, including but not limited 

to glaciation and orogeny. Climatic fluctuations of the Quaternary (2.6 million years ago 

to present) included repeated Pleistocene glacial-interglacial cycles which affected 

divergence and speciation processes (Carstens et al. 2005; Godbout et al. 2008; Lee-Yaw 

et al. 2007). During glacial phases, large portions of North America were covered by 

glaciers, including the most recent Laurentide and Cordilleran ice sheets (Carrara et al. 

2007; Dyke & Prest 1987; Roberts 1991), resulting in major geographic rearrangements 

of temperate and arctic species (Lyons 2003). In addition to northern (e.g., Beringia) and 

southern ice-free areas, there were refugial regions along the coast of British Columbia 

and in southeastern Alaska (Loehr et al. 2006; Pielou 1991; Sawyer et al. submitted).  

As glaciers receded, deglaciated areas were recolonized by previously isolated 

populations. Across various taxa, the most common regions of secondary contact of 

divergent lineages which are postulated to have persisted both south of the ice and in 

coastal refugia are restricted to regions in southern Canada or the main continent in the 

United States (Galbreath et al. 2009; Good & Sullivan 2001; Nielson et al. 2001). 

Additionally, a few studies have reported contact between lineages in the northern extent 

of Southeast Alaska near Haines (Conroy & Cook 2000; Demboski & Cook 2001). We 

hypothesize this northern contact zone reflects post-glacial contact between coastal 

refugial populations of limited mobility with either a rapidly colonizing southern 

continental lineage or a northern refugial population that persisted in Beringia.  

Vicariant events can lead to changes in demography and allopatric isolation, 

which impact genetic relationships among postglacial populations (Hewitt 1996; Ibrahim 
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et al. 1996; Lessa et al. 2003). Refugial populations generally experienced population 

bottlenecks (Rand 1954; Shafer et al. 2010; Stewart et al. 2010). Descendent populations 

in previously glaciated regions show signs of rapid population expansion (Hundertmark 

et al. 2002; Lessa et al. 2003; Walker et al. 2009) and have reduced levels of genetic 

variation with little intralineage diversification compared to conspecific lineages that 

persisted in non-glaciated regions (Hayes & Harrison 1992; Hewitt 2004; Marr et al. 

2012). However, reconstructing recolonization patterns is complex (Godbout et al. 2008) 

because of the presence of cryptic refugia (Shafer et al. 2010) or phalanx expansion 

(Hewitt 2000). Also, genetic variation may be higher than expected if there are multiple 

lineages in a given region, or there is admixture due to secondary contact between 

lineages expanding from independent refugia into the same region (Fleming & Cook 

2002; Marr et al. 2008; Petit et al. 2003). 

The broad range of M. longicaudus, spanning 35 degrees of latitude across 

western North America, provided an excellent opportunity to explore how historic events 

and insularity shaped endemism and geographic genetic variation across western North 

America. Microtus longicaudus occupies montane and mesic herbaceous habitats 

(Lomolino et al. 1989; Smolen & Keller 1987). Previous work based on variation in a 

single mitochondrial gene identified a series of geographically discrete lineages with 

divergence resulting from late Quaternary glacial-interglacial cycling and potential 

secondary contact in Haines, Alaska (Conroy & Cook 2000). Conroy and Cook (2000) 

suggested the Island clade experienced recent expansion from a Southeast Alaska 

refugium with low levels of gene flow among islands. The Northern clade indicated pre-
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Last Glacial Maximum (LGM) isolation followed by recent expansion and colonization, 

while the Central and Southern clades were the result of mid-Pleistocene isolation. 

We test previous genetic relationships within M. longicaudus (e.g., Conroy & 

Cook 2000; Spaeth et al. 2009) and identify drivers of genetic diversification, timing of 

divergence, refugial locations, and post-colonization pathways and dynamics by 

expanding prior sampling and employing a multilocus approach and species distribution 

models (SDM). We focus on the genetic dynamics of this species at the northern extent of 

its geographic range because of the complex biogeographical history of the region, 

potential for contact among divergent lineages within species, and the possibility that 

populations persisted in previously undetected refugia (Conroy & Cook 2000; Heaton et 

al. 1996; Klein 1965; Sawyer et al. submitted).  

We explore the multilocus distinction between the mitochondrial Northern and 

Island clades and relationships among populations across the Alexander Archipelago 

(AA). We also explore the possibility of gene flow among insular populations and also 

populations representing divergent lineages. Finally, we refine the extent and location of 

northern contact zones, including contact in the Haines region of Alaska, as we begin to 

identify underlying evolutionary processes that have structured this widely distributed 

species. Conservation design and implementation (Malaney & Cook 2013) can benefit 

from identifying historical refugia, endemism on islands, and instances of secondary 

contact within high latitude species, which are crucial to the understanding of 

contemporary dynamics of gene flow. 
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Materials and methods 

Sampling and laboratory procedures 

Most museum specimens used in this work were obtained via fieldwork 

conducted annually since 1991. Frozen heart or liver tissues from these specimens are 

archived at the Museum of Southwestern Biology at the University of New Mexico 

(n=52) and the University of Alaska Museum of the North (n=91). Sampling was 

expanded from previous studies, now representing 46 general collecting localities 

spanning the geographic range of M. longicaudus. We focused most intensively on 

northern coastal sampling to explore population structure across the AA and identify 

potential contact between the Island and Northern clades near Haines Alaska (n=28) 

(Table 1; Figure 1). Samples represented 11 of the 15 currently recognized subspecies of 

M. longicaudus (Figure 1; Hall 1981). Additional cytochrome b gene (cyt b) sequences 

were obtained from GenBank for 67 individuals of M. longicaudus, one for each 

outgroup (M. pennsylvanicus and M. montanus), as well as a single Rag1 sequence for M. 

pennsylvanicus (Table 1). All sequences were deposited in GenBank (Table 1). 

Genomic DNA was extracted using either Omega Bio-Tek (Norcross, GA) 

E.Z.N.A. tissue extraction kits or standard salt extraction (Fleming & Cook 2002), with 

final concentrations adjusted to 50ng µl
-1

. We amplified the complete mitochondrial 

(mtDNA) cyt b (767-1143 bp, n=118) and partial nuclear (nuDNA) gene sequences, 

including Protein C-est-2 (ETS2, 731 bp, n=71), β-fibrinogen (FGB, 600 bp, n=101), and 

Recombination Activating Protein 1 (Rag1, 1059 bp, n=83; Table 2). Polymerase chain 

reaction (PCR) mixtures were 1µl DNA extract, 1 µl of each primer (2mM), 1.5 µl PCR 

buffer (10x), 1.5 µl MgCl2 (25mM), 1.25 µl of dNTP’s (10mM), 1.25 µl of Bovine Serum 
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Albumen (BSA, 1.5mM), and 0.08 µl of AmpliTaq DNA polymerase (Applied 

Biosystems, Foster City, CA, USA) and was adjusted to a final volume of 15 µl with 

ddH2O. PCR products were cleaned using ExoSap-IT (Affymetrix, Santa Clara, CA) 

prior to sequencing at either the High Throughput Genomic Center (Seattle, WA, USA) 

or using an Applied Biosystems 3110 DNA sequencer (Molecular Biology Facility, 

UNM) using original PCR primers and BigDye v3.1 (Applied Biosystems) terminator 

reaction chemistry.  

Sequences were visualized and edited in SEQUENCHER v4.2 (GeneCodes 

Corporation). PHASE v2.1 (Stephens & Scheet 2005; Stephens et al. 2001) was used to 

infer alleles of nuclear heterozygotes. Five runs of 1,000 iterations with different seeds, 

and a burn-in of 1,000 were conducted and the iterations with the best goodness-of-fit 

were chosen. Posterior probabilities for nucleotides ≥0.85 were chosen; otherwise each 

ambiguous site was coded as N and aligned in MEGA v5.2 (Tamura et al. 2011) using the 

MUSCLE algorithm and checked by eye.  

 

Species Distribution Models 

We generated SDMs for M. longicaudus to identify regions of climate suitability 

across western North America. Because of relatively small sample sizes for sequence 

data across the southern continental portion of their range, we were not able to generate 

clade-specific models. Models included bioclimatic variables obtained from WORLDCLIM 

(www.worldclim.org, Hijmans et al. 2005) at a resolution of 2.5 arc-minutes for current, 

as well as mid-Holocene (~6ka,) and Last Glacial Maximum (LGM; ~21 ka, 

http://pmip2.lsce.ipsl.fr/, Braconnot et al. 2007), and the last inter-glacial (LIG; ~120 – 
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140 ka). To avoid over-parameterization of the model, we used ENMTOOLS (Warren et 

al. 2008; Warren et al. 2010) to eliminate highly correlated variables (Pearson correlation 

≥0.75). Final bioclim variables were selected based on their biological significance for M. 

longicaudus. Locality data were obtained in October 2013 from natural history 

collections databases (e.g., ARCTOS http://arctos.data-base.uaf.edu and MaNIS 

http://manisnet.org/; Stein & Wieczorek 2004). To moderate spatial autocorrelation 

which can lead to over-fitting of the model (Reddy & Davalos 2003), we reduced sample 

points to 50 km apart by removing intervening samples (Hope et al. 2011) which resulted 

in 149 sample localities.  

SDMs were constructed for each time period using MAXENT v3.3.3k (Elith et al. 

2006; Phillips et al. 2006; Phillips & Dudik 2008). Basic assumptions were: no 

topographic change has occurred, niche conservatism (Wiens & Graham 2005), 

environmental data adequately predicts species occurrence (Kozak et al. 2008; 

McCormack et al. 2010), and sampling records effectively captured the entire niche 

breadth of the species (Pearson et al. 2007). Final runs used bioclim variables 1, 6, 7, 9 

and 11 and were performed using cross-validation across 10 runs, with a regularization 

parameter of 5 (e.g., Hope et al. 2011; Warren & Seifert 2011) and 1,000 iterations; all 

other values were default. Mean and median models were not significantly different from 

each other, so mean models based on MIROC and CCM models of LGM were averaged 

in ARCGIS 10.1 (ESRI, Redlands, CA, USA) using the raster calculator. The minimum 

threshold values for climate suitability were the low median threshold values over all 

replicates (Pearson et al. 2007). 
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Phylogenetic analyses and estimation of divergence times 

Phylogenetic reconstructions using cyt b were estimated within Maximum 

Likelihood (ML) and Bayesian frameworks. The TrN+I+G model of evolution had the 

lowest AIC value using MODELTEST (Posada & Buckley 2004; Posada & Crandall 1998). 

ML estimations were performed in MEGA with 1,000 bootstrap replicates. To generate the 

Bayesian phylogeny and divergence dates for major clades we used BEAST v1.7.5 

(Drummond et al. 2012) and input files prepared in BEAUTI v1.7.5. A mutation rate of 

4% Myr
-1

 was assigned based on previous estimates of 3-5% Myr
-1

 (Brunhoff et al. 2003; 

Conroy & Cook 1999; Hope et al. 2013). We applied a coalescent constant size 

(Kingman 1982) tree prior with a random start tree, using an uncorrelated lognormal 

relaxed clock for 60 million generations (sampled every 2000). Time to Most Recent 

Common Ancestor (TMRCA) was determined with a 95% posterior probability 

distribution in TRACER v1.5 (Rambaut & Drummond 2007). For each tree, convergence 

statistics were assessed with effective sample size (ESS) values ≥200 in TRACER. Three 

independent runs were checked for convergence in the trace graphs then combined using 

LOGCOMBINER v1.7.5, with a 10% burin-in. Tree files were annotated in 

TREEANNOTATOR v1.7.5, and topologies were visualized in FIGTREE v1.4.0 (Rambaut 

2009). Net genetic divergence among major clades was calculated in MEGA. 

We used a multilocus approach to explore species relationships (Carstens & 

Knowles 2007; Edwards et al. 2007; Maddison 1997). The species tree was estimated in 

*BEAST (Heled & Drummond 2010), which uses a Bayesian Markov chain Monte Carlo 

(MCMC) coalescent approach to coestimate multiple gene trees embedded within the 

corresponding species tree topology. Because one of our goals was to explore the 
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relationship of major cyt b clades, a priori groups were based on supported cyt b clades. 

Independent, unlinked loci were partitioned and set to appropriate substitution models 

(Table 3), calculated in MODELTEST. An uncorrelated lognormal relaxed clock was 

employed for cyt b at a mutation rate of 4% Myr
-1

 and strict clocks were set for 

estimations of phased nuclear loci based on cyt b. The tree priors were set to a Species 

Tree Yule Process with a piecewise linear and constant root population size model and 

random start tree. MCMC chain was run for 2 billion iterations, sampling every 2 million. 

TRACER, LOGCOMBINER and TREEANNOTATOR were used as above.  

 

Migration estimates 

We used BAYESASS v3.0.3 (Wilson & Rannala 2003) to determine recent levels 

of gene flow among populations representing the major cyt b clades and across the 

islands of Southeast Alaska, as well as among northern populations with secondary 

contact or in close geographic proximity. BAYESASS uses a non-equilibrium, multilocus 

Bayesian approach to estimate migration rates under a MCMC algorithm. We used 

phased multilocus data and ran 200 million iterations with a 20 thousand burn-in and 

sampling every 2 thousand. Mixing parameters of allele frequencies, inbreeding 

coefficient, and migration rates were adjusted following the program guidelines. 

 

Demographic analyses 

To explore signatures of stability and post-glacial expansion through phased 

multilocus historical demography for each well-supported major cyt b clade, we 

reconstructed Extended Bayesian Skyline Plots (EBSP) and cyt b Bayesian skyline plots 
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(Heled & Drummond 2008) implemented in BEAST. Colorado Plateau and North Pacific 

Coast, COP and NPC respectively, were omitted due to low sample sizes. Strict 

molecular clocks for all phased loci and appropriate models of evolution (Table 3) 

assigned for each of three independent runs per data set included a MCMC chain of 2 

billion steps, sampled every 2 million steps. TRACER was used to assess convergence. 

Significant population size change occurred in EBSPs if zero was excluded from the 95% 

confidence interval (CI) of the estimate of the number of size-change steps (Lim & 

Sheldon 2011). To test for recent demographic fluctuation in cyt b major clades for each 

locus, we calculated a series of population genetic summary statistics (segregating sites 

(S), haplotype diversity (Hd), and nucleotide diversity (π)) in DNASP 5.10.1 (Librado & 

Rozas 2009). Historic demographic change or selection potential were assessed through 

Tajima’s D (1989), Fu’s Fs (1997), and Ramos-Onsin and Rosas’ R2 (Ramos-Onsins & 

Rozas 2002) with 10 thousand coalescent simulations. Selection potential was assessed 

through the HKA Test (Hudson et al. 1987).  

 

Results 

Phylogenetic and network analysis 

Cyt b nucleotide base composition was similar to that previously observed for 

mammals in general (Irwin et al. 1991) and for M. longicaudus more specifically 

(Conroy & Cook 2000; Spaeth et al. 2009), with an overall deficit of guanine (13.2%, A 

30.7%, C 26.9%, and T 29.1%). We found strong geographic structure within cyt b across 

the geographic range of M. longicaudus (Figures 1 - 3). Cutoff values for topological 

support in the phylogenetic trees were ≥0.7 ML bootstrap support and ≥0.95 Bayesian 
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posterior probability. All phylogenies recovered a Southern clade comprised of two 

internal lineages (S1: Colorado and Wyoming; S2: New Mexico, Colorado and Arizona), 

a Central clade (California, Idaho, Montana and Wyoming), and a clade composed of a 

COP clade (Arizona into Idaho). Also, a northwestern clade consisting of a ML and 

Bayesian supported NPC clade (British Columbia, Oregon and Washington), Bayesian 

supported Northern clade (interior Alaska, through Yukon and British Columbia), and 

Island clade (south-central Alaska, southern Yukon, and Southeast Alaska). Within the 

AA, Prince of Wales Island representatives appear in both a supported lineage with 

Tuxekan Island, as well as within the Island clade without further distinction. Mainland 

Southeast Alaska locations, including Haines and Juneau, have representatives of both 

the Northern and Island clades. Cyt b variation across the range of M. longicaudus was 

not consistent with current subspecies designations (Figure 1).  

Both the Northern and Island clades showed substantial internal structure (Figure 

2). Haines populations were represented by five supported lineages (four in the Island 

clade and one in the Northern), as well as four Island clade and five Northern clade 

individuals without additional lineage support. Net genetic distance (Table 4) between 

outgroups and major clades within M. longicaudus ranged from 8.3% ± 0.7% (Southern 

to M. montanus) to 10.5% ± 0.9% (Southern to M. pennsylvanicus). Within M. 

longicaudus, the mean net genetic distance was 2.7% ± 0.4%, with the least divergence 

between Northern and NPC (0.5% ± 0.1%) and the largest divergence between the S1 

clade and Northern, NPC, Island, and Central clades (3.3% ± 0.4%).  

The species tree identified a single supported clade consisting of the Island, 

Northern and NPC cyt b clades. No other significant support was detected (Figure 4). 
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Nuclear gene haplotypes (Figure 5) are either lineage specific or shared across a large 

number of individuals and are not dependent on geographic proximity, including Haines. 

This suggests the lack of species tree resolution may be the result of incomplete lineage 

sorting, rather than hybridization (Toews & Brelsford 2012),but additional methods are 

needed to accurately distinguish between these two processes. ETS2 has the most 

structure; however, none of the nuclear genes provided full diagnostic variation.  

 

Genetic diversity, demographic analyses and current levels of gene flow 

Nuclear loci had varying amounts of genetic diversity within M. longicaudus 

(Table 3). No selection was detected in the HKA tests for all loci. ETS2 contained one 

indel of one base, two of two bases, and a single four base indel. FGB contained three 

single base indels and one seven base indel. Rag1 did not have indels. Outgroup 

sequences for FGB and M. montanus sequences for ETS2 and Rag 1 were not generated. 

All Ramos-Onsin and Rozas R2 values were significant for all loci. Based on 

degree of genetic variation, significance of expansion statistics (Table 3) and both cyt b 

skyline plots and EBSPs (Figure 6), we inferred population demographic history. 

Populations that experienced recent expansion generally have low Hd, while high Hd and 

π are indicative of stability, and low Hd and high π for population bottlenecks. The Island 

clade is consistent with a founder event that then experienced rapid growth, with high cyt 

b Hd a result of genetic drift in the small populations of the fragmented island system. 

The Northern clade is also consistent with reduced ancestral population size followed by 

rapid expansion. The small sample sizes for the NPC and COP clades make inference 

difficult. The Central clade was historically stable with post-glacial expansion. The 
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Southern clade represents a glacially stable population that may have experienced a 

bottleneck at some point in time, although signals of the bottleneck are only present in the 

cyt b data. 

The mean of three runs for the Bayesian estimates of migration indicated low 

levels of gene flow between major cyt b clades (Table 5). The Island clade was the most 

genetically isolated of the major clades. Gene flow (proportion of migrants derived from 

other populations) among geographically proximate populations of divergent cyt b clades 

was highest from populations in the Northern clade in Haines, and Juneau into Haines for 

the Island clade (Table 6; Figure 7). Insular populations within the Island clade contained 

populations that have no more than 0.0187 proportion of migrants between any given 

island or adjacent mainland pair (Table 7).  

 

Divergence times and alternate models of glacial refugia and postglacial recolonization 

Using the average rodent mutation rate, cyt b TMRCAs detected for M. 

longicaudus and all clades (except S2) were before the LIG, and for S2 before the LGM. 

The multilocus estimations also place both M. longicaudus and the North/Island clade 

TMRCAs before the LIG.  

SDMs had predictive performances with a mean AUC value of 0.834 (standard 

deviation 0.04) for the training and test data. The LIG SDM suggests M. longicaudus was 

restricted to coastal or extreme southern locations with an increase in climate suitability 

for the LGM, allowing northward and eastward movement. By the mid-Holocene, climate 

conditions were suitable to cover most of the current range of M. longicaudus. Because 

the SDMs are conservative (i.e., limited by a minimum threshold value) with fewer 
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northern continental localities, not all localities currently occupied are predicted in the 

models (Figure 3). 

 

Discussion 

Through the use of multilocus data and SDMs, we explored how historic climatic 

events structured genetic variation within M. longicaudus across western North America 

and the islands of Southeast Alaska. Typical post-glacial colonization is from southern 

ice-free regions northward, resulting in classic genetic signatures of expansion. Northern 

populations are relatively homogenous while southern populations are more variable 

(Hewitt 2000; Lessa et al. 2003; Malaney & Cook 2013). Based on previous studies of M. 

longicaudus, we expected to detect similar genetic signatures across the range of this 

species, but our results only partially correspond with that expectation in that the northern 

clades are not genetically homogeneous.  

 

Biogeographic drivers of isolation, glacial refugia and postglacial recolonization 

The multilocus estimate for TMRCA of M. longicaudus is well before the LIG 

(Table 9) and comparable to single locus estimates from previous studies (340 ± 70 ka, 

Conroy & Cook 2000). This estimate predates the fossil record of M. longicaudus which 

includes fossils dated to the Wisconsinan glaciation in Idaho, Wyoming, Colorado and 

New Mexico (Smolen & Keller 1987) and post-glacial locations in Alberta and British 

Columbia (Harington 2011b). The absence of a richer fossil record, especially at the 

northern extent of their range may be a result of poor preservation or difficulty in precise 

identification of ancient remains (e.g., isolated teeth, Harington 2011a).  
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Contrary to conclusions drawn by Spaeth et al. (2009), we detected cyt b 

intralineage variation and substantial spatial and temporal patterns of genetic 

differentiation. Also, divergence between major lineages of M. longicaudus was likely 

reinforced through subsequent glacial isolation, as indicated by the SDMs (Figure 3). The 

southern clades appear stable resulting in deeper genetic structure, while the northern 

clades have shallow structure due to recent range expansion. This pattern is consistent 

with persistence and stability of southern clades for greater periods of time, in contrast to 

the more dynamic history of colonization seen in the northern lineages.  

This expanded view of M. longicaudus phylogeography largely corroborates 

previous work based on much more limited geographic and genetic sampling (Conroy & 

Cook 2000; Spaeth et al. 2009), but there are notable discrepancies due to this refined 

view of how intraspecific variation is partitioned. Spaeth et al. (2009) focused on the 

Greater Yellowstone Ecosystem and identified subfossils from both the Northern and 

Central clades within Yellowstone (Figure 8) that support the post-glacial presence of M. 

longicaudus south of the ice. “Northern” sampling in Spaeth et al. (2009) was limited, 

however, and could represent COP individuals being genetically associated with their 

“Northern” clade as result of the sampling scheme, suggested by the wide geographic 

range of the Northern clade.  

Our findings are consistent with previous suggestions that the Island clade 

persisted in coastal refugia during the LGM, followed by expansion and subsequent 

isolation on multiple islands (Figure 8). Heaton and Grady (2007) found abundant M. 

longicaudus fossils from On Your Knees Cave on Prince of Wales Island (Figure 8) that 

radiocarbon date to the middle Wisconsin Interstadial (38 – 25 ka), but fossil evidence 
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disappeared by the LGM due to glacial advance onto this island. Microtus longicaudus 

reappeared in On Your Knees and El Capitan and Bumper caves on Prince of Wales 

Island by the early Holocene (Heaton et al. 2003), which suggests that it re-colonized 

shortly after the LGM. Microtus longicaudus may have re-colonized the islands from as 

many as three coastal (exposed continental shelf) refugia in the AA (Sawyer et al. 

submitted), rather than from mainland populations. Fossil support for refugial locations in 

the AA will be difficult to locate, as much of the coast that was exposed during the LGM 

is now under up to 165 m of water.  

SDMs, levels of cyt b variation, and multilocus genetic signals suggest that M. 

longicaudus persisted in multiple refugia within the AA. Lack of connectivity between 

insular populations produced extensive inter-island structure, with populations on 13 of 

the 19 islands displaying significantly divergent mtDNA. Also, within the AA, M. 

longicaudus is the only vole that ranges across most of the islands, with the exception of 

Baranof Island. On the mainland it co-occurs with two congeners, M. oeconomus (root 

vole) and M. pennsylvanicus (meadow vole). These congeners appear to be spatially 

associated with the Continental and Beringian clades of Mustela erminea (ermine) 

(Dawson et al. 2014; Fleming & Cook 2002; MacDonald & Cook 2007). For M. 

longicaudus, there is no clear association with a single clade of this vole-specialist 

predator (Verts & Carraway 1998); rather, the island lineage of M. longicaudus co-occurs 

with all three major clades (Continental, Beringian and Island) of ermine.  

The Island and Northern clades of M. longicaudus appear to have two points of 

secondary contact (Haines and Juneau) and multiple regions of geographic proximity 

southward along the mainland coast of Southeast Alaska (Figure 7). These multiple 
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points of contact spread along the coast may lend support for the hypothesis that Island 

refugial populations followed glacial retreat to recolonize the adjacent mainland through 

multiple colonization pathways (Figure 8), but more detailed assessment of these 

mainland sites with increased sampling is needed. A broad region of contact and 

introgression along the coast may be similar to the broad area of introgression along the 

coast detected in red-backed voles of the genus Myodes (Runck et al. 2009). Contrary to 

previous suggestions that the Northern clade expanded from a single interior route from 

south of the ice, we conclude that the Northern clade persisted in Beringia and recently 

expanded southward into previously glaciated regions of southern Alaska, Yukon and 

northern BC (Figure 8). Although SDMs do not indicate regions north of the ice for 

Northern populations, the models were conservative and built on relatively limited 

northern sampling. High levels of intralineage genetic diversity, net genetic distance 

among other clades, and the restriction of the range of this clade to high latitudes are 

consistent with persistence in a northern refugium. Other studies on both mammalian and 

non-mammalian taxa have identified genetic signatures that poin toward the influence of 

an eastern Beringia refugium during glacial periods (Sawyer et al. submitted; Fleming & 

Cook 2002; Stamford & Taylor 2004).  

SDMs also support the persistence of M. longicaudus along the coast of Oregon 

and Washington (NPC clade) during glacial advances. The Central and Southern clades 

have been effectively isolated and relatively demographically stable since the mid- to 

late- Pleistocene. Lastly, the COP clade, previously identified from a limited region in 

northern Arizona, occurs northward into Utah and potentially contacts both the S2 and 

Central clades.  
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Contemporary genetic structure and current levels of gene flow 

Disentangling signatures of incomplete lineage sorting versus secondary 

admixture is important to understand the effects of historical climate across contemporary 

distributions and factors influencing genetic diversification. Recent diversification within 

M. longicaudus, including Haines populations, is reflected in the poorly resolved species 

tree for populations from northern regions. Future studies could use alternate genetic data 

to infer if admixture has occurred between ndivergent populations (Qu et al. 2012).  

Generally, intraspecific cyt b net genetic distance is less than 2% while 

interspecific distances are above 10% in mammals (Bradley & Baker 2001). Values 

between 2 and 10% warrant further study given the potential for incipient speciation 

(Hope et al. In Press). Low levels of cyt b net genetic distance among the Island, 

Northern, NPC and COP clades fall within the levels of intraspecies variation. The 

taxonomic status of these clades in relation to the Central and Southern lineages, 

however, should be clarified. Shallow divergence and levels of genetic differentiation 

between the Northern clade into Island clade populations near Haines may be explained 

by the geographic proximity, recent (Holocene) secondary contact, and incomplete 

lineage sorting of Island and Northern populations. As with net genetic distance, gene 

flow values between 0.035 and 0.10 warrant further investigation because they are 

between observed values for inter and intra specific estimates, respectively (e.g. 

Nakajima et al. 2012; Ross et al. 2010). The geographic distribution of genetic variation 

does not correspond to current subspecies designations. 
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Clear segregation of the Northern, NPC and Island clades from the COP, Central 

and Southern clades is reflected both the species tree (Figure 4) and recent estimates of 

migration (Table 5). On the mainland, no detectible levels of admixture are present in the 

Haines populations but further work using more rapidly evolving loci is needed. Lower 

levels of gene flow from the Island clade into Haines likely reflect physical barriers to 

movement (i.e., ocean straits, extant glaciers). Genetic exchange among island 

populations is limited, likely due to oceanic barriers. Seawater has probably inhibited 

gene flow among island populations in the AA due to sea level rise during the Holocene 

(c. 14 - 8 ka bathymetric reconstruction, Baichtal & Carlson 2010).  

The Haines region has experienced dynamic changes that reflect post-glacial 

expansion by both Island and Northern clades. Contact or geographic proximity should 

be further explored along the central and northern coast of Southeast Alaska northward to 

Haines. Increased sampling and geographic coverage in this study corroborated the 

previously identified region of secondary contact in Haines (Conroy & Cook 2000) and 

extended potentially admixed sites southward to at least Juneau.  

 

Conclusions 

 The dynamic influence of Pleistocene climate variation and glacial cover, as 

played out over the complex topography of western North America, can be tied to the 

geographic distribution of genetic variation in M. longicaudus. As expected, the mid-

Pleistocene onset of diversification is consistent with that observed in other taxa. As with 

other boreal species, genetic variation and structure is highest in the southern portions of 

this species range. On the other hand, mtDNA in northern populations also is structured 
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and reflects both persistence in multiple northern refugia (coastal and eastern Beringia) 

and subsequent isolation on multiple islands of the Alexander Archipelago. Similar 

refugial regions were recently identified for ermine (Dawson et al. 2014). 

Phylogeographic breaks generally do not correspond with current subspecies 

designations (Hall 1981). This is the first study to more intensively examine genetic 

variation of M. longicaudus across the AA (19 islands), as well as extending our view of 

structure across the entire range of the species using multiple nuclear perspectives. Future 

sampling in central and southern British Columbia and along the southern periphery of 

the long-tailed vole’s range will expand our view of both diversification and admixture 

processes. Further incorporation of ancient DNA from fossils could further extend our 

exploration of genetic variability through time, as observed in areas such as the Greater 

Yellowstone Ecosystem (Spaeth et al. 2009). Identifying the effects of historical climate 

change on contemporary species sets a powerful stage for predictions for future biotic 

responses. 
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Figures and Tables 

Figure 1. Current range and subspecies of M. longicaudus. Light gray is the current 

range, black outlined regions with numbers are the subspecies, and dots are sampling 

locations colored by major cyt b lineages. (a) Entire range, (b) Haines and Southeast 

Alaska. Subspecies modified from Hall 1981. 
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Figure 2. Dated Bayesian cytb trees. Posterior probability ≥0.95 represented with open 

circles and Maximum Likelihood bootstraps of ≥0.7 with asterisks are shown on 

branches. Vertical gray bars represent the LIG (left) and LGM (right). Geographic 

locations for supported intralineage clades are provided. NPC = North Pacific Coast; 

COP = Colorado Plateau. See Table 8 for abbreviations. 
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Figure 3. Sampling scheme and SDM output. (a) LIG (~125 ka), (b) LGM (~20 ka), (c) 

Mid-Holocene (~6 ka), and (d) Current time periods. Sampling localities are major cytb 

lineage (color: Island=I, Northern=N, NPC=North Pacific Coast, COP=Colorado Plateau, 

Central=C, and S1 and S2 = Southern). The thick black line in the Current map is the 

current range for M. longicaudus. The solid blue coloring at the LGM is glacial ice cover. 

SDM climate suitability at each time period is limited by minimum median threshold 

values over all replicates. Because the SDMs are conservative, not all current localities 

are predicted in the models. 
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Figure 4. Phased multilocus Bayesian Species Tree. Posterior probabilities of ≥0.95 are 

represented with open circles on branches of the solid consensus tree. Blue = Island, 

green = Northern, dark green = NPC, light green = COP, golden = Central, orange = S1, 

and red = S2. Horizontal gray bars represent divergence date estimates and vertical bars 

indicate approximate time for the LIG and LGM. 
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Figure 5. Phased Bayesian gene trees for (a) ETS2, (b) FGB, and (c) Rag1 nuclear loci 

with posterior probabilities of ≥0.95 represented with open circles on branches of the 

solid consensus tree. Black dots are Haines individuals. Blue = Island, middle green = 

Northern, dark green = NPC, light green = COP, gold = Central, orange = S1, and red = 

S2. Geographic locations (Table 8) for supported intralineage clades are provided. 
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Figure 6. EBSPs (i) and cyt b Bayesian skyline plots (ii) for the major cytb lineage 

populations: (a) Central, (b) Island, (c) North and (d) South, excluding NPC and COP. 

EBSP Central line indicates mean change in effective population size through time, with 

upper and lower lines sowing the 95% posterior density. The x-axis right-to-left from past 

(TMRCA) to present and is scaled in millions of years and the y-axis is effective 

population size scaled by generation time. Vertical gray bars indicate the LIG (when 

applicable, right) and LGM (left) for reference. 
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Figure 7. Phased nuclear haplotype distribution in Northern and Island lineages of M. 

longicaudus. (a) ETS2, (b) FGB, and (c) Rag1. Thick black line delimits Island (left) and 

Northern (right) lineages with sympatry indicated with black sample locations and 

haplotype variety indicated with adjoining lines. Each color within a locus represents a 

unique haplotype. 
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Figure 8. Proposed post-glacial colonization routes (arrows) for M. longicaudus based on 

genetic signatures and SDMs. Plus (+) = fossil (SE Alaska)/subfossil (Yellowstone) 

locations and arrow colors correspond to current cyt b lineages: dark green = North 

Pacific Coast, green = Northern, and blue = Island. Northern and Island lineage refugial 

locations and post-glacial colonization with locations of secondary contact indicated with 

the wavy line. Blue line indicates extent of glacial ice at LGM.  
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Table 1. Specimens examined. Major cytb lineage C=Central, I=Island, and N=Northern.  

Museum number acronyms are MSB= Museum of Southwestern Biology; 

UAM=University of Alaska Museum of the North, Fairbanks. GenBank numbers 

correspond to cytb, and each allele for ETS2, FGB, and Rag1, respectively, –= not 

applicable. GenBank in bold were obtained from other studies.
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Table 2. Primer list and PCR annealing temperatures. Primers used for amplification and 

sequencing mtDNA Cytochrome B (cytb), and nuclear loci Protein C-est-2 (ETS2), β-

fibrinogen (FGB), and Recombination Activating Protein 1 (Rag1) in M. longicaudus and 

outgroup taxa, with annealing temperatures (
o
C) indicated in parentheses. 
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mammals. Journal of Molecular Evolution 32, 128-144. 
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Lyons LA, Laughlin TF, Copeland NG, et al. (1997) Comparative anchor tagged 

sequences (CATS) for integrative mapping of mammalian genomes. Nature 

Genetics 15, 47-56. 

Matocq MD, Shurtliff QR, Feldman CR (2007) Phylogenetics of the woodrat genus 

Neotoma (Rodentia: Muridae): Implications for the evolution of phenotypic 

variation in male external genitalia. Molecular Phylogenetics and Evolution 42, 

637-652. 

Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of 

rapid radiations in muroid rodents based on multiple nuclear genes. Systematic 

Biology 53, 533-553. 
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Table 3. Diversity indices, expansion statistics and models of evolution. n = haploid 

sample size; L = length of sequence; S = variable sites; Eta = #mutations; h = 

#haplotypes; Hd = haplotype diversity; π = nucleotide diversity; D = Tajima's D; Fs = 

Fu's FS; r = raggedness index; R2 = Ramos-Onsin's R2; Model = model of evolution as 

selected by MODELTEST. Bold values are significant at p<0.05 (p<0.02 for FS). 
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Table 4. Between group net genetic distance. The number of base differences per site 

from estimation of net average between groups of sequences are shown. Standard error 

estimate(s) is above the diagonal. All ambiguous positions were removed for each 

sequence pair. Evolutionary analyses were conducted in MEGA5. 
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Table 5. Major cytb lineage Bayesian migration estimates determined in BAYESASS. 

Non-migrants within each population are indicated in bold along the diagonal. Values are 

the proportion of migrant genes donated from source populations (columns) into sink 

populations (rows). 
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Table 6. Island and Northern cytb lineage populations near the geographic regions of 

contact (Haines and Juneau, Alaska). Bayesian migration estimates determined in 

BAYESASS. Non-migrants within each population are indicated in bold along the 

diagonal. Values are the proportion of migrant genes donated from source populations 

(columns) into sink populations (rows). 
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Table 7. Bayesian migration estimates for Southeast Alaska populations determined in 

BAYESASS for M. longicaudus. Non-migrants within each population are indicated in 

bold along the diagonal. Values are the proportion of migrant genes donated from source 

populations (columns) into sink populations (rows). Location abbreviations are in Table 

11 and I = Island and N = Northern lineages.
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Table 8. Locality abbreviations. Standard state and province abbreviations apply for 

unlisted locations. 
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Table 9. Cyt b and phased multilocus divergence date estimates. 
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CHAPTER 3 

 

Deer mice at high-latitudes: genetic consequences of refugia and insularity in 

response to historical climate change 

 

ABSTRACT 

Aim We surveyed genetic data for the northern geographic extent of deer mice (genus 

Peromyscus) to identify lineage diversification as a result of occupancy in uncommon, 

multiple ice-free regions, and rapid post-glacial colonization. 

 

Location North America, with a focus on northwestern North America (British 

Columbia, Alaska, and Yukon). 

 

Methods We used sequences from one mitochondrial and three nuclear loci from 390 

deer mouse specimens, including P. maniculatus, P. keeni, and Peromyscus sp. nov. 

(Yukon), to assess species limits, population structure, and demographic change as a 

result of historical climate change. Historical migration estimates and phylogenetic gene 

tree and species tree estimates used a Bayesian approach. Species distribution models 

were built to explore niche overlap of major clades. 

 

Results Divergence among the three clades began prior to the last interglacial. Both the 

cyt b and multilocus species trees strongly support P. keeni and Peromyscus sp. nov. 

(Yukon) as independent from P. maniculatus; however, P. maniculatus likely represents 
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multiple species. Substantial substructure was observed for P. keeni and P. maniculatus. 

Northern clades differ in potential distributions. 

 

Main conclusions Northwestern species of deer mice persisted in at least three ice-free 

regions (Beringia, Southeast Alaska and southern continent) throughout the Pleistocene 

glacial cycles. In Southeast Alaska, there is limited gene flow among island populations 

of P. keeni. Taxonomic revisions are needed for P. maniculatus. No sympatric locations 

were identified, but are likely to be detected with additional sampling in regions of close 

proximity. 
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INTRODUCTION 

Vicariant events that result in genetic differentiation are a major focus in 

phylogeographic studies. Pleistocene (2.5 Ma – 11.7 ka) vicariant events seem to have 

initiated speciation in a diversity of northwestern North American animals and plants, 

including North American warblers (Parulidae, Mengel, 1964), mountain sheep (Ovis sp., 

Loehr et al., 2006), grasshoppers (Melanoplus, Carstens & Knowles, 2007a), and plants 

(angiosperms and a fern, Soltis et al., 1997). For many northern organisms, glacial-

interglacial cycles drove instances of landscape fragmentation and population isolation, 

often followed by secondary contact. Those events left distinct genetic signatures of 

stability for populations that persisted in ice-free regions and expansion for populations 

descendent from postglacial colonizers (Hewitt, 1996; Lessa et al., 2003).  

During glacial periods, most western North America species persisted in ice-free 

regions either north in Beringia  or south of the ice (Rand, 1954; Jorgensen et al., 2003; 

Eddingsaas et al., 2004). Glacial refugia along the northwestern coast of North America, 

the result of lower sea levels and exposed continental shelf, have also been proposed 

(Fladmark, 1979; Hewitt, 1996; Fleming & Cook, 2002), but remain the subject of 

extensive debate (Cook & MacDonald, 2013). Generally, only widespread species such 

as the red fox (Vulpes vulpes, Aubry et al., 2009), alpine groundsel (Packera pauciflora, 

Bain & Golden, 2005), and ermine (Mustela erminea, Fleming & Cook, 2002)], persisted 

in both southern and northern ice-free regions. Most species were limited to proximate 

regions (e.g., Southern and southern Northwest Coast, Beringia and northern Northwest 

Coast). Identifying the constituent species and characterizing the communities that 

persisted in glacial refugia provides a basis for understanding the temporal and spatial 
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dynamics of biotic response to climate change (Soltis et al., 1997; Carstens et al., 2013) 

and for the development of effective conservation strategies (Cook et al., 2006).  

The genetic footprints of populations can provide insight into the late Pleistocene 

history of isolation, expansion, and in some cases, secondary contact (e.g., Lucid & 

Cook, 2007; Weksler et al., 2010). Common regions of secondary contact in western  

North America are in areas between and along the Coastal and Rocky mountain ranges 

(Remington, 1968; Swenson & Howard, 2005). To date, only a handful of studies 

identify regions where multiple lineages contact in northwestern North America. Arctic 

grayling (Thymallus sp.), for example, persisted in two ice-free regions in Beringia, 

resulting in three distinct mtDNA lineages from Northern Beringia, Southern Beringia, 

and Yukon (Stamford & Taylor, 2004). Alpine groundsel (Packera pauciflora, Bain & 

Golden, 2005), spruce beetles (Dendroctonus rufipennis, Maroja et al., 2007), and shrews 

(Sorex cinereus complex, Hope et al., 2012) persisted in both Beringia and on the 

continent south of the ice, while lake trout (Salvelinus namaycush, Wilson & Hebert, 

1998), ermine (Mustela erminea, Fleming & Cook, 2002), lodgepole pine (Pinus 

contorta, Godbout et al., 2008), and the long-tailed vole (Microtus longicaudus, Sawyer 

and Cook submitted), endured glacial periods in ice-free areas in Beringia, southern 

continent (south of the ice) and coastal refugia. Additionally, based on a previously 

identified clade restricted to Yukon, deer mice are hypothesized to have persisted south 

of the Cordilleran and Laurentide ice, in Pacific coastal refugia and potentially in 

Beringia (Wike, 1998; Lucid & Cook, 2007). 

Deer mice of the genus Peromyscus (Cricetidae, Neotominae) are among North 

America’s most species-rich, widespread, and well-studied terrestrial small mammals. 
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The taxonomic and phylogeographic history of Peromyscus in the Pacific Northwest was 

first addressed with recognition of P. keeni (as P. sitkensis, Merriam, 1897) as distinct 

from P. maniculatus by Cowan (1935). Since then, various genetic approaches (Hogan et 

al., 1997; Dragoo et al., 2006; Gering et al., 2009) and analysis of phallic and bacular 

morphology (Sullivan et al., 1990) confirmed the separation of P. maniculatus (Wagner, 

1845) from P. keeni (Rhoads, 1894) or identified areas of sympatry (Gunn & Greenbaum, 

1986; Hogan et al., 1993; Zheng et al., 2003). Across the broad, continental distribution 

of P. maniculatus , considerable variation in morphological characters exists and is likely 

related to wide habitat variation ranging from scrublands to deserts, forests, and swamps 

(Hall, 1981; Carleton, 1989; Hogan et al., 1993). Six well-supported mtDNA lineages 

were identified throughout this range (Dragoo et al., 2006; Kalkvik et al., 2012): clade 1) 

Pacific Northwest and Rocky Mountain States, 2) Plains States, 3) West Coast, 4) 

southern New Mexico and Mexico, 5) northeast United States and eastern Canada, and 6) 

northeast and north-central United Sates and south-central Canada. Patterns of 

phylogeographic structure are consistent with those uncovered in other mammals that 

experienced Pleistocene range fluctuations in North America (Brant & Orti, 2003; Runck 

& Cook, 2005), but high levels of mitochondrial differentiation call into question the 

validity of P. maniculatus as a single species (Dragoo et al., 2006). 

Relative to P. maniculatus, P. keeni occurs within 200 km of the Pacific Coast, 

from northern Washington to southern Yukon, and is found on large islands in British 

Columbia (Vancouver Island, Haida Gwaii) and the Alexander Archipelago (AA) of 

Southeast Alaska. Peromyscus keeni prefers open canopy forests from coastal lowlands 

through high-elevation and alpine forest. Where their distributions overlap, P. keeni can 
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be found at higher elevations (Hall, 1981; Hogan et al., 1993). Studies suggest that P. 

keeni survived the Pleistocene in coastal refugia in either British Columbia or Southeast 

Alaska (Zheng et al., 2003; Lucid & Cook, 2004; Walker, 2005). 

The northwestern extent of the ranges of both P. maniculatus and P. keeni is in 

Yukon (Hall, 1981; Hogan et al., 1993; Wike, 1998). Analyses of DNA restriction 

fragment length polymorphisms and sequences suggest the presence of a previously 

unidentified species in Yukon (Peromyscus sp. nov.), with comparable divergence times 

with either P. maniculatus or P. keeni that pre-date the Wisconsinan glaciation (Wike, 

1998; Lucid & Cook, 2007). The dynamics, both within and among P. keeni, P. 

maniculatus and Peromyscus sp. nov., allow us to study the impact of Pleistocene range 

fragmentation into multiple refugia and potential post-glacial secondary contact of these 

divergent clades. 

We explore the effects of Pleistocene glacial-interglacial cycles on speciation and 

lineage diversification for the P. maniculatus complex at the northern extent of their 

range. We hypothesize signatures of three regions of glacial persistence will be present: 

far-eastern Beringia for Peromyscus sp. nov. (Wike, 1998); Pacific Northwest Coast (e.g., 

British Columbia, Southeast Alaska) for P. keeni (Zheng et al., 2003; Lucid & Cook, 

2004); and southern continent for P. maniculatus (Zheng et al., 2003; Yang & Kenagy, 

2009). Occupation in all of these ice-free regions during the LGM would represent an 

uncommon pattern of glacial persistence, subsequent diversification, and location of 

secondary contact when compared to other glacial relics (Cook et al., 2001; Cook et al., 

2006; Shafer et al., 2010). We also evaluate strength of genetic divergence as a result of 

isolation on levels of contemporary gene flow and genetic differentiation both within and 
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among clades. Lastly, we evaluate differences in niche requirements among Peromyscus 

sp. nov., P. keeni and P. maniculatus for signs of differentiation in climatic requirements 

in response to historical climate and regions of glacial persistence.  

 

MATERIALS AND METHODS 

Sampling and DNA sequencing 

A total of 390 specimens representing 69 localities and all six clades identified in 

previous work on P. maniculatus (Dragoo et al., 2006; Kalkvik et al., 2012) were 

analyzed. These spanned the geographic range of P. maniculatus, P. keeni, with focused 

sampling in Yukon and Southeast Alaska (Table 1 and Fig. 1). Most specimens were 

collected over 25 years of fieldwork and deposited at either the University of Alaska 

Museum of the North (n=235) or the Museum of Southwestern Biology at the University 

of New Mexico (n=140). The University of Washington Burke Museum (n=8) and Gwaii 

Haanas National Park Reserve and Haida Heritage Site (n=7) also provided material. Of 

these, 71 specimens of P. keeni were used only for clade specific assessments of 

migration analyses. Seven of eight subspecies of P. keeni and 17 of 27 subspecies of P. 

maniculatus are represented. In additional to sequences generated, we obtained one P. 

keeni, 54 P. maniculatus, and P. leucopus (outgroup) cyt b sequence, and for β-fibrinogen 

(FGB) and interphotoreceptor retinoid-binding protein (IRBP) for P. melanotis from 

GenBank (outgroup; Table 1). Lastly, for migration estimates within P. keeni, additional 

shorter cyt b sequences (479 bp; n=220) from across the geographic range of P. keeni 

were downloaded from GenBank (Zheng et al., 2003; Lucid & Cook, 2004). 
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Using either Omega Bio-Tek (Norcross, GA) E.Z.N.A. kits or through standard 

salt methods, we extracted total genomic DNA to a final concentration of 50ng µl
-1

. The 

complete mitochondrial (mtDNA) cytochrome b gene (cyt b, 1143 bp, n=204) was 

amplified using primers L14734 (Ohdachi et al., 2001) and CytBRev (Anderson & Yates, 

2000). The following partial nuclear genes (nuDNA) were also sequenced (Table 2): 

FGB (587 bp, n=169), IRBP (459 bp, n=160), and zona pellucida 3 (ZP3, 314 bp, 

n=176). Polymerase chain reaction (PCR) experiments used 1µl DNA extract, 1 µl of 

each primer (2mM), 1.5 µl PCR buffer (10x), 1.5 µl MgCl2 (25mM), 1.25 µl of dNTP’s 

(10mM), 1.25 µl of Bovine Serum Albumen (BSA, 1.5mM), and 0.08 µl of AmpliTaq 

DNA polymerase (Applied Biosystems, Foster City, CA, USA) and adjusted to a final 

volume of 15 µl with ddH2O. PCR products were cleaned using ExoSap-IT (Affymetrix, 

Santa Clara, CA). We used original PCR primers for automated sequencing at either the 

High Throughput Genomic Center (Seattle, WA, USA) or using an Applied Biosystems 

3110 DNA sequencer (Molecular Biology Facility, UNM) with BigDye v3.1 (Applied 

Biosystems) chemistry.  

Alleles of heterozygotes were inferred using five independently seeded runs of 

1000 iterations with an initial burn-in of 1000 implemented in PHASE v2.1 (Stephens et 

al., 2001; Stephens & Scheet, 2005). The iterations with the best goodness-of-fit were 

chosen. Posterior probabilities for nucleotides ≥0.85 were chosen, otherwise ambiguous 

sites were coded as N. Only phased sequences were used for analysis. Sequences were 

edited in SEQUENCHER v4.2 (GeneCodes Corporation), aligned in MEGA v5.2 (Tamura et 

al., 2011) using the MUSCLE algorithm and checked by eye.  
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Inferences of population history 

Extended Bayesian skyline plots (EBSP, Heled & Drummond, 2008) and 

Bayesian skyline plots were implemented in BEAST to explore multilocus and cyt b 

historical demography, respectively, for each major cyt b clade. Loci were unlinked and 

partitioned to their respective substitution models (Table 3), as determined using 

MODELTEST (Posada & Crandall, 1998). All loci were set to strict molecular clocks and 

rates for phased nuclear loci were estimated based on cyt b with a rate of 4% Myr
-1

 

(rodent rate of 6-10% Myr
-1

, Brunhoff et al., 2003; Hope et al., 2013). Three independent 

runs per data set included Markov chain Monte Carlo (MCMC) chains of 2 billion steps, 

sampled every 2 million. We used TRACER v1.5 (Rambaut & Drummond, 2007) to assess 

convergence. Significant population size change occurred if zero was excluded from the 

95% confidence interval (CI) of the estimate of the number of size-change steps (Lim & 

Sheldon, 2011). 

 To test for recent demographic fluctuation, we used DNASP 5.10.1 (Librado & 

Rozas, 2009) to calculate standard diversity indices for the major cyt b clades for each 

phased locus, including segregating sites (S), haplotype diversity (Hd), and nucleotide 

diversity (π). Additionally, we calculated Tajima’s D (1989), Fu’s Fs (1997), and R2 

(Ramos-Onsins & Rozas, 2002) with 10 thousand coalescent simulations to assess 

historic demographic change or selection. Selection potential was also assessed through 

an HKA Test (Hudson et al., 1987). Cyt b net genetic distance among major clades was 

calculated in MEGA. 
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Phylogenetic analyses and timing of divergence 

 Phylogenetic relationships of Peromyscus in Yukon were initially evaluated for 

cyt b using Maximum Likelihood (ML) and Bayesian frameworks. Models of evolution 

(Table 3) were inferred in MODELTEST (Posada & Crandall, 1998; Posada & Buckley, 

2004) and ML calculations with 1000 bootstrap replicates were achieved in MEGA. 

Divergence dates for major clades and a Bayesian phylogeny were simultaneously 

estimated using BEAST v1.7.5 (Drummond et al., 2012) with input files prepared in 

BEAUTI v1.7.5. Settings for three independent runs were 2 billion generations, sampled 

every 2 million generations and using an uncorrelated lognormal relaxed clock. Tree 

priors were a speciation Yule Process (Yule, 1925; Gernhard, 2008) using a random start 

tree. Time to Most Recent Common Ancestor (TMRCA) was determined with a 95% 

posterior probability distribution in TRACER v1.5. Runs with trace convergence and 

acceptable effective sample size (ESS; minimum of 200) were combined using 

LOGCOMBINER v1.7.5, with a 10% burn-in and annotated in TREEANNOTATOR v1.7.5. 

Topologies were visualized in FIGTREE v1.4.0 (Rambaut, 2009). 

A multi-locus approach to phylogenetics provides independent signals that 

contribute to the discovery of species’ relationships (Maddison, 1997; Carstens & 

Knowles, 2007b; Edwards et al., 2007). Using a coalescent Bayesian MCMC method 

implemented in BEAST, *BEAST (Heled & Drummond, 2010) co-estimates species trees 

and contained gene trees. A priori groups were based on supported cyt b lineages and 

data were partitioned by independent, unlinked loci using an uncorrelated, lognormal 

relaxed clocks for cyt b at a rate of 4% Myr
-1

 while estimated nuclear loci used strict 

molecular clocks. Models of evolution (Table 3) were determined using MODELTEST. 
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Two billion iterations, sampled every 200 thousand were performed using a random start 

tree under a species tree: Yule process tree prior, with a piecewise linear and constant 

root population size model. TRACER, LOGCOMBINER and TREEANNOTATOR were used as 

above.  

 

Migration estimates 

We estimated recent migration and gene flow among Yukon and surrounding 

populations of Peromyscus, as well as Southeast Alaska populations of P. keeni using 

BAYESASS v3.0.3 (Wilson & Rannala, 2003). BAYESASS uses a non-equilibrium, 

multilocus Bayesian approach to estimate recent migration rates, under a MCMC 

algorithm. We ran 200 million iterations with a 20 thousand burn-in sampling every 

2000. Mixing parameters of allele frequencies, inbreeding coefficient and migration rates 

were adjusted following the program guidelines. Additionally, to help identify the 

location of coastal refugia, we added 220 previously published cyt b for P. keeni across 

their entire distribution, trimmed our sequences to match the minimal length (479 bp), 

and partitioned the data into three different population pairs. Models 1 and 2 are 

consistent with Zheng et al. (2003). The three models were: 1) Southern coastal 

refugium: Washington versus the remaining range, 2) either Southern or Northern coastal 

island refugium: Southern (southern British Columbia, Vancouver Island and 

Washington) versus Northern (northern British Columbia, Yukon and Alaska), and 3) 

Southeast Alaska coastal refugium: Southeast Alaska islands versus all mainland 

populations. 
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Ecological differentiation 

The three major clades surveyed here (P. keeni, P. maniculatus and Peromyscus 

sp. nov.) are found in close proximity, which could lead to potential ecological 

differentiation. To assess the degree of differentiation with respect to climatic 

requirements, we generated Species Distribution Models (SDMs) for P. keeni, P. 

maniculatus West and Peromyscus sp. nov. for both western North America and areas 

north of central British Columbia. Nineteen bioclimatic variables for current conditions 

were obtained from WORLDCLIM (www.worldclim.org, Hijmans et al., 2005) at a 

resolution of 2.5 arc-minutes. To avoid over-parameterization of the model, we used 

ENMTOOLS v.1.4.3 (Warren et al., 2008; Warren et al., 2010) to eliminate highly 

correlated variables (Pearson correlation coefficient ≥0.75), with final selection based on 

variables most biologically relevant to Peromyscus. Species localities were determined 

with cyt b sequences rather than museum point localities because of potential mis-

identification among the three clades. All non-repetitive sampling localities for 

Peromyscus sp. nov. (n=14), P. keeni (n=74) and P. maniculatus (n=47) were used.  

SDMs were constructed using MAXENT v3.3.3k (Elith et al., 2006; Phillips et al., 

2006; Phillips & Dudik, 2008) under the following assumptions: no topographic change, 

niche conservatism (Wiens & Graham, 2005), environmental data adequately predicts 

species occurrence (Kozak et al., 2008; McCormack et al., 2010), and sampling records 

effectively capture the niche breadth of the species (Pearson et al., 2007). Final runs used 

bioclim variables 1, 6, 7, 9 and 11 and were performed using cross-validation across 10 

runs, with a regularization parameter (Hope et al., 2011; Warren & Seifert, 2011) of 1 for 

Peromyscus sp. nov. and 5 for P. keeni and P. maniculatus with 1000 iterations, all other 
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values were left as default. Minimum threshold values were the low median threshold 

values over all replicates (Pearson et al., 2007). Using ENMTOOLS we conducted a 

comparison of niche similarity, by calculating Schoener’s D (Schoener, 1968), the I 

statistic (Warren et al., 2008), and relative rank (RR; Warren & Seifert, 2011) between 

clades. Highly similar ranges have values approaching 1.0, while no range similarity is 0.  

 

RESULTS 

Sampling 

Nucleotide base variation was as expected for mammals for the 260 cyt b 

sequences analyzed (Irwin et al., 1991) and consistent with previous studies of 

Peromyscus (Zheng et al., 2003; Lucid & Cook, 2004; Dragoo et al., 2006) with an 

overall guanine deficit (13.0%, A 32.1%, C 26.5% and T 28.4%). Varying levels of 

nucleotide composition were observed across all loci (Table 3). FGB and IRBP had no 

indels, whereas Zp3 had one indel of eight base pairs and one of a single base position. 

Evidence of selection for all loci was not detected as indicated by non-significant HKA. 

 

Phylogenetic analyses and timing of divergence:  

The cyt b phylogenetic reconstruction was largely consistent with previously 

observed relationships (Dragoo et al., 2006; Lucid & Cook, 2007; Kalkvik et al., 2012). 

Peromyscus maniculatus was composed of four major clades (Western, Eastern, 

Southern, and Southwest, previously clades 1 & 2, 5 & 6, 4, and 3, respectively), but 

lacking reciprocal monophyly with respect to other species of Peromyscus (Fig. 1 and 

Fig. 2). We considered posterior probabilities ≥0.95 and bootstrap values ≥0.7 to be 
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significant support. We detected support for a Southern clade (previously clade 4) from 

southern New Mexico and Mexico, a Southwest clade (previously clade 3) from Baja 

California, California and Nevada, an Eastern clade (previously clades 5 & 6) ranging 

from the Plains states to the East Coast and northward into Canada but with three 

additional subclades (East - a, previously 5; East - b, previously 5 & 6; East - c, 

previously 6), and a Western clade (previously clade 1) that also includes a Plains states 

subclade (previously clade 2) that extends northward to central Yukon. Additionally, the 

Western clade contains a lineage for northern British Columbia and southern Yukon. 

Both P. keeni (Washington up through Yukon) and Peromyscus sp. nov. (Yukon only) 

were supported. Most of the divergence date estimates (TMRCA) for each of these major 

clades occurred between 128.9 and 221.5 ka (Table 4). 

The species tree reconstruction (Fig. 3) yielded support for P. keeni, Peromyscus 

sp. nov., a clade consisting of P. keeni and Peromyscus sp. nov., and the British 

Columbia/Yukon clade within P. maniculatus West. All other cyt b clades remained 

unresolved. Multilocus estimates of divergence times for these supported clades are 

estimated at between 34 and 90 ka (Table 4). Furthermore, cyt b clades generally are 

detected across each nuclear locus, but evidence of incomplete lineage sorting and recent 

diversification is reflected in the short branches in nuclear trees (Fig. 4).  

 

Inferences of population history  

A combination of expansion statistics, genetic variation (Table 3), Bayesian 

skyline plots and EBSPs (Fig. 5) were used to assess whether populations representing 

major cyt b clades experienced stable conditions historically and whether there are 
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detectable signs of expansion. High Hd and π indicate stability, low Hd and high π for 

population bottlenecks, and low Hd and π for recently expanded populations. Inferences 

for all P. maniculatus East lineages, and the Southwest and Southern clades were difficult 

due to low sample sizes. Peromyscus maniculatus West was initially stable, but 

experienced demographic expansion. Peromyscus keeni experienced demographic 

expansion. The high Hd for cyt b could be a result of the fragmented distribution with 

limited connectivity across the islands of the AA coupled with the smaller effective 

population size for mitochondrial loci. Peromyscus sp. nov. contained mixed signals 

across loci, but skyline plots suggest this clade experienced recent expansion. Net genetic 

distance (Table 5) based on cyt b ranges from 0.5% ± 3.6% between P. keeni and P. 

maniculatus Southwest to 4.8% ± 0.6% between Peromyscus sp. nov. and P. maniculatus 

East - c, in addition to the 9.20 - 14% (± 0.8 – 1%) between this complex and the 

outgroups of P. leucopus and P. melanotis. 

 

Migration estimates 

The Bayesian estimates of recent migration (mean across three runs) between 

Yukon and northern British Columbian populations indicate Peromyscus sp. nov. has the 

highest proportion of immigrants from Yukon P. keeni at 0.0959, and only 0.0098 from 

P. maniculatus West from Yukon (Table 6). Peromyscus keeni in Yukon has a proportion 

of 0.0116 migrant genes from Peromyscus sp. nov. and 0.008 from P. maniculatus West 

from Yukon, and Yukon P. maniculatus West has  0.0239 immigrant genes from Yukon 

P. keeni and 0.013 from Peromyscus sp. nov. Peromyscus keeni gene flow valuations 

revealed no greater than a 0.0185 proportion of genes donated from any given island or 
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adjacent mainland population pairwise comparison (Table 7). For tests of refugial 

locations, there is only slightly higher migration from islands of the AA onto the 

mainland, with minimal proportions in either direction (0.0049 and 0.0019, respectively). 

Much greater differences in gene flow were detected in the other two models, with a clear 

north to south migration (Table 8). 

 

Ecological differentiation 

 Predictive performance for SDMs was determined through the use of ≥0.75 AUC 

values of model performance. Highest climate suitability (Fig. 6) for Peromyscus sp. nov. 

occurs in higher latitudes, along the West Coast for P. keeni, and non-montane regions 

across the West for P. maniculatus. Greatest potential range overlap is between 

Peromyscus sp. nov. and P. maniculatus West with average overlap of 0.836. Least 

overlap is between Peromyscus sp. nov. and P. keeni with average overlap of 0.498 

(Table 9).  

 

DISCUSSION 

 Pleistocene climatic fluctuations influenced diversification in many North 

American species. Wide ranging species that were subsequently segregated into refugial 

populations may reflect increased phylogeographic structure. For Peromyscus of 

northwestern North America, late Pleistocene glacial cycling heavily influenced 

demography and diversification. Gene tree analysis of cyt b sequences identified four 

clades of P. maniculatus (West, East, South and Southwest); yet these clades lack 

reciprocal monophyly in both the cyt b and species trees. Support for distinctive P. keeni 
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and Peromyscus sp. nov. was recovered in both the cyt b and multilocus species trees 

with divergence initiated prior to the LGM.  

 

Effects of glacial persistence and migration on genetic and ecological differentiation 

Three major geographic regions were detected for glacial persistence within the 

Peromyscus complex: 1) Southern for P. maniculatus, 2) Coastal for P. keeni, and 3) 

Northern/Beringia for Peromyscus sp. nov. All P. maniculatus lineages show signs of 

stable populations during the LGM, with the addition of post-glacial expansion in the 

Western clade. Peromyscus sp. nov., although now occupying a limited range, apparently 

persisted in eastern Beringia during the confluence of the Laurentide and Cordilleran ice 

sheets in central Yukon and subsequently expanded southward into southern Yukon. 

Fossil Peromyscus from Thistle Creek at the southern end of the Klondike Gold Fields in 

Yukon date to the LIG (Fig. 1; G.D. Zazula, pers. comm.; Storer, 2003). We predict that 

Peromyscus fossils dating to the LGM will be found in other regions in Yukon and east-

central Alaska that remained ice- free.  

Contemporary SDMs identify northern regions as optimal environmental 

conditions for Peromyscus sp. nov., coastal regions for P. keeni and non-montane 

continental areas for P. maniculatus West. High niche overlap may be influenced by 

methods based on raw output models that include areas of low suitability, combined with 

limited sampling for Peromyscus sp. nov. and very broad sampling for P. maniculatus 

West.  

Although other species (e.g., Microtus longicaudus  and Sorex monticolus )show 

sympatry between divergent mtDNA lineages near Haines and Juneau, Alaska, (Conroy 
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& Cook, 2000; Demboski & Cook, 2001; Sawyer and Cook submitted; Sawyer et al. 

submitted), Peromyscus clades are geographically proximal east of the Coast Range (Fig. 

1 and 8). No localities in Yukon have been identified yet with more than a single species 

of Peromyscus  (Fig. 7). We would expect to find sympatry in Yukon between Kluane 

National Park and Reserve and Whitehorse, with Peromyscus sp. nov. to the north, P. 

keeni to the south and southwest, and P. maniculatus to the west and southwest. 

Peromyscus keeni and P. maniculatus are both found east of the Coast Mountains in 

British Columbia, and also overlap in Washington (Fig. 1), as previously detected (Zheng 

et al., 2003).  

Our ability to detect refugia is essential component of rigorous study of biotic 

diversity at high latitudes (Ashcroft, 2010; Stewart et al., 2010; Dawson et al., 2014). 

Peromyscus keeni occupied coastal refugia throughout glacial cycles, but now ranges 

from Washington, northward through southern Yukon. We agree with Lucid and Cook 

(2004) that the high levels of differentiation of P. keeni populations of the AA are a result 

of P. keeni occupying coastal refugia in the AA during the LGM followed by isolation 

and differentiation on individual islands. Peromyscine fossils found in karst systems, 

specifically Devil’s Canopy and On Your Knees Caves, by Heaton and Grady (2003; 

2007) suggest this region was recolonized in the early Holocene before higher sea levels 

fragmented the islands. However, the lack of genetic diversity throughout the southern 

portion (i.e., Washington, southern British Columbia) of the range of P. keeni, combined 

with greater structure in the North (i.e., AA) may be a result of either coastal refugia or 

faster rates of genetic drift due to the fragmented landscape. The mtDNA tree places 

Vancouver Island and Washington specimens basal to most populations of the AA; 
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however, Washington individuals are sister to the “ABC” (Admiralty, Baranof and 

Chichagof) and Haida Gwaii island clades, while other Washington individuals are found 

with the main AA group. 

By expanding sampling to include previously published sequences, we were able 

to explore direction of colonization across the entire range of P. keeni. Zheng et al. (2003) 

concluded that P. keeni persisted in southern coastal refugia near Vancouver Island; 

however, their northern sampling was limited. In this study, there is substantial support 

for southward colonization from north coastal refugia. Lack of gene flow from the AA 

populations onto the mainland reflects oceanic barriers to movement, as the low levels of 

interisland exchange also suggest. Given the highly structured mtDNA tree, divergence 

dates, fossil evidence and directionality tests of colonization, we conclude that P. keeni 

persisted in coastal refugia in Southeast Alaska, and perhaps Haida Gwaii, throughout the 

Pleistocene glacial cycles. 

Hibbard (1968) noted that fossil records for Peromyscus are scant and suggests 

the P. maniculatus group represents a late Pleistocene radiation. The contact of southern 

(P. maniculatus), coastal (P. keeni) and northern (Peromyscus sp. nov.) refugial 

populations in south central Yukon is unusual for North American mammals, especially 

for a species group with such a broad geographic range (e.g., Swenson & Howard, 2005; 

Shafer et al., 2010). Within Yukon, higher estimates of gene flow are also likely the result 

of historical exchange rather than contemporary gene flow, given the support for distinct 

clades in the multilocus analysis, with higher estimates between P. keeni and Peromyscus 

sp. nov. the result of historic proximity and timing of secondary contact for post-glacial 

colonizers. However, our data suggest there is not enough gene flow between these two 
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species to prohibit differentiation. Our estimates of gene flow fall between the 

interspecific (0.035) and intraspecific (0.10) ranges (Table 6), thus warrant further 

investigations regarding the validity of species level designation (e.g., Ross et al., 2010; 

Nakajima et al., 2012).  

 

CONCLUSIONS 

Cryptic species and glacial refugia often elude detection, but spatially extensive sampling 

and use of phylogenetic coalescent analysis, multilocus sequence data, and environmental 

modeling, can provide signatures of diversification that provide insight into refugial 

locations and dynamics that are the result of historic climate change and glaciation. Our 

analyses provided perspectives on the evolution of northern Peromyscus. Glacial-

interglacial cycling over the past 300 ka played a role in the diversification of three 

distinctive clades of Peromyscus in Yukon. These clades are the result of long-term 

separation in three ice-free regions: far-eastern Beringia (Peromyscus sp. nov.), coasts of 

Southeast Alaska and possibly Haida Gwaii (P. keeni), and southern continental (P. 

maniculatus). We detected geographic proximity, but no contact among these species in 

south central Yukon. More intensive sampling and assessment of deer mice from southern 

Yukon and northern British Columbia will refine the geographic range of this new 

Peromyscus, potential sympatry with P. keeni or P. maniculatus, and the degree of 

differentiation from P. keeni and P. maniculatus. We suggest that coastal refugia for P. 

keeni existed near Southeast Alaska, and Haida Gwaii, as proposed by Lucid and Cook 

(2004), but not Vancouver Island as proposed by Zheng et al. (2003). Further work 

should focus on refining the number of coastal refugia, their location (northern AA, 
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southern AA or Haida Gwaii), and their contribution to extant diversity. The clade that is 

sister to most other P. keeni in our analyses included individuals from Haida Gwaii (Fig. 

2). Lack of reciprocal monophyly, support for multiple lineages, and diversification 

within each clade of P. maniculatus, suggest multiple regions of incipient diversification 

distributed across the United States south of the glacial extent, but a clear picture of 

structure in P. maniculatus will require much more extensive sampling of geography and 

genes. Peromyscus sp. nov. has a limited distribution, P. keeni is primarily restricted to 

the fragmented islands of the Alexander Archipelago, and diversity within P. maniculatus 

warrants further study. Lastly, we concur with previous work that suggested the endemic 

northern clade of Peromyscus is a distinct species and worthy of formal taxonomic 

recognition under the evolutionary and genealogical concordance species concepts.   
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Tables and Figures 

Figure 1. Sampling scheme for Peromyscus. The thick yellow line is the current range 

for P. maniculatus and the blue line is P. keeni. The solid blue coloring is the LGM 

glacial ice cover. (a) Sampling localities are shown by both major cytb lineage (see key 

for colors, numbers in parenthesis indicate previously designated lineage numbers from 

Dragoo et al. 2006), (b) Yukon sampling, and (c) P. keeni sampling with near-by P. 

maniculatus West. Pluses indicate known pre-LGM fossil localities. The map is projected 

in North America Albers Equal Area Conic. 
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Figure 2. Dated Bayesian cyt b trees. Posterior probability ≥0.95 represented with open 

circles and Maximum Likelihood bootstraps of ≥0.7 with asterisks are shown on 

branches. Numbers in parentheses indicate previously designated lineage numbers 

(Dragoo et al. 2006).  Horizontal gray bars indicate divergence dates (95% HPD) and 

vertical gray bars represent the LIG (left) and LGM (right). Geographic location for 

supported intra-lineage clades are immediately right of taxon tips (see table 1 for 

abbreviations). Outgroups = P. melanotis and P. leucopus. 
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Figure 3. Multilocus Bayesian Species Tree. Posterior probabilities of ≥0.95 are 

represented with open circles on branches of the solid consensus tree. Black = outgroups 

(P. melanotis and P. leucopus). Horizontal gray bars represent divergence date estimates 

and vertical bars indicate approximate time for the LIG and LGM. 
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Figure 4. Bayesian gene trees for Peromyscus FGB, IRBP and Zp3 nuclear loci with 

posterior probabilities of ≥0.95 represented with open circles. Yukon samples are 

indicated with black dots. Geographic locations (see table 1 for abbreviations) for 

supported intra-lineage clades are provided. Blue = P. keeni, green = Peromyscus sp. nov., 

yellow-green = P. maniculatus Southwest, golden = P. maniculatus West, orange = P. 

maniculatus East - a, light brown = P. maniculatus East - b, dark brown = P. maniculatus 

East - c, red = P. maniculatus South, and black = outgroups (P. melanotis and P. 

leucopus).
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Figure 5. EBSPs (i) and cyt b skyline (ii) plots for Peromyscus sp. nov., P. keeni, and P. 

maniculatus West. Central line indicates mean change in effective population size 

through time, with upper and lower lines sowing the 95% posterior density. The x-axis is 

read right-to-left from past (TMRCA) to present and is scaled in millions of years and the 

y-axis is the effective population size scaled by generation time. Vertical gray bars 

indicate the LGM for reference. 
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Figure 6. SDM habitat suitability for (a) Peromyscus sp. nov., (b) P. keeni, and (c) P. 

maniculatus - West with low habitat suitability at the minimum median threshold values 

over all replicates. 
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Figure 7. Yukon, Southeast Alaska and British Columbian Peromyscus. The arrow 

indicates an area of sympatry and the box representing a region of close proximity among 

major lineages. Black lines are major roads, circles are sampling localities: green = 

Peromyscus sp. nov., blue = P. keeni, and yellow = P. maniculatus. 
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Table 1. Specimens examined. Museum number acronyms are MSB= Museum of 

Southwestern Biology, UAM=University of Alaska Museum of the North, Fairbanks, 

HG= Gwaii Haanas National Park Reserve and Haida Heritage Site, and 

UWBM=University of Washington Burke Museum. GenBank numbers correspond to cyt 

b, and each allele for FGB, IRBP and Zp3, respectively, –= not applicable. GenBank in 

bold were previously obtained from other studies. Asterisk = additional P. keeni used for 

BAYESASS analyses. Location abbreviations are in parenthesis following locality name. 
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Table 2. Primer list and PCR annealing temperatures. Primers used for amplification and 

sequencing mtDNA Cytochrome B (cyt b), and nuclear loci β-fibrinogen (FGB), 

interphotoreceptor retinoid-binding protein (IRBP) and zona pellucida 3 (ZP3) in 

Peromyscus, with 
o
C annealing temperatures indicated in parentheses. 
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monophyly. Molecular Phylogenetics and Evolution, 1, 148-160. 

Turner, L.M. & Hoekstra, H.E. (2006) Adaptive evolution of fertilization proteins within 

a genus: Variation in ZP2 and ZP3 in deer mice (Peromyscus). Molecular Biology 
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Table 3. Diversity indices, expansion statistics and models of evolution. n=haploid 

sample size; L=length of sequence; S=variable sites; Eta=#mutations; h=#haplotypes; 

Hd=haplotype diversity; π=nucleotide diversity; D=Tajima's D; FS=Fu's FS; R2=Ramos-

Osnin's R2; Model=model of evolution as selected by MODELTEST. Bold values are 

significant at p<0.05 (p<0.02 for FS). 
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Table 4. Cyt b and multilocus divergence date estimates for Peromyscus. 
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Table 5. Cyt b between group net genetic divergences in Peromyscus. The number of 

base differences per site from estimation of net average between groups of sequences is 

shown. Standard error estimate(s) are shown above the diagonal. All ambiguous positions 

were removed for each sequence pair. 
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Table 6. Yukon populations of Peromyscus sp. nov., P. keeni and P. maniculatus West 

cytb lineage populations. Bayesian migration estimates determined in BAYESASS. Non-

migrants within each population are indicated in bold along the diagonal. Values are the 

proportion of migrant genes donated from source populations (columns) into sink 

populations (rows). 
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Table 7. Southeast Alaskan population Bayesian migration estimates determined in 

BAYESASS for P. keeni and nearby Peromyscus. Non-migrants within each population are 

indicated in bold along the diagonal. Values are the proportion of migrant genes donated 

from source populations (columns) into sink populations (rows). Location abbreviations 

are in Table 1 and preceding notations are: Y=Peromyscus sp. nov., K=P. keeni and 

MW=P. maniculatus West. 
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Table 8. Recent historical migration rates under three models of hypothesized migration 

based on potential refugial locations for P. keeni. 1) Southern coastal refugium: 

Washington versus the remaining range, 2) either Southern or Northern coastal island 

refugium: Southern (southern British Columbia, Vancouver Island and Washington) 

versus Northern (northern British Columbia, Yukon and Alaska), and 3) Southeast 

Alaska coastal refugium: Southeast Alaskan islands versus all mainland populations. 

Non-migrants within each population are indicated in bold along the diagonal. Values are 

the proportion of migrant genes donated from source populations (columns) into sink 

populations (rows). 
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Table 9. Measures of niche overlap (ecological exchangeability) for Peromyscus sp. nov., 

P. keeni and P. maniculatus - West . Schoener’s D, Warren’s I and Relative Ranks (RR) 

between lineages. Values near 1.0 reflect highly exchangeable niches 263 whereas near 

0.0 are considered in-exchangeable. 
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CHAPTER 4 

 

Living on the edge: exploring the role of coastal refugia and 

 island biology in the Alexander Archipelago of Alaska 

 

Abstract 

Although islands are of long-standing interest to biologists, only a handful of studies have 

investigated the roles of island area, isolation, and climatic history in shaping 

evolutionary diversification in high latitude archipelagos. In this study of the Alexander 

Archipelago (AA) of Southeast Alaska, we address the degree of insularity and the 

impact of historical climate variability on geographic structure using multiple loci for 

three co-distributed mammals throughout the AA and adjacent mainland. We examined 

mitochondrial and nuclear loci for long-tailed voles (Microtus longicaudus), northwestern 

deer mice (Peromyscus keeni), and dusky shrews (Sorex monticolus), and integrated 

Species Distribution Models, reconstructions of paleo-shorelines, and island area and 

isolation. Changes in sea level and glacial cover resulted in genetic signatures of coastal 

refugia, with varying influence of island isolation and area on genetic diversity. All three 

species were determined to have paleoendemic clades that originated from multiple 

coastal refugia within the AA during the Late Pleistocene. This approach can be extended 

to other island systems or fragmented habitats to help identify and conserve regionally 

distinct biota and ecosystems. 
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Introduction 

The varied features of island biomes such as isolation, area, topography, and 

biogeographic history, make them of long-standing interest to studies in evolution, 

ecology and conservation biology (Berry 1986; Fattorini 2009). Limited connectivity can 

lower genetic exchange between islands, leading to divergent populations and potentially 

higher endemism (Dobzhansky 1963; Adler 1992; Whittaker 1998). However, because 

many insular biomes remain understudied diversity is poorly documented and islands 

may account for a greater proportion of biodiversity than currently appreciated (Bickford 

et al. 2007).  

Genetic diversity is often influenced by both physical geographic features and 

historical climate. Tropical oceanic islands have provided key insights into our 

understanding of diversity, especially in relation to how island area and isolation may 

shape species richness, community assembly, or diversification (e.g., Hamilton 1963; 

Gifford and Larson 2008; Gillespie et al. 2008). Additionally, in high latitudes, 

Quaternary (2.6 Ma – present) climate change impacted species’ distributions and altered 

genetic variation and associated demographic signatures (Eddingsaas et al. 2004; 

Lomolino et al. 2006; Hope et al. 2010). However, few studies have investigated the role 

of island area, isolation, and climatic history in evolutionary diversification in high 

latitude archipelagos (e.g., Sota and Nagata 2008; Pedreschi et al. 2014).  

During the Last Glacial Maximum (LGM; between 26.5 kya and 19 kya) ice 

covered most of North America (Dyke and Prest 1987; Mandryk et al. 2001), restricting 

distributions to ice-free regions in the north (Beringia), south, or along the coasts (Marr et 

al. 2008). As the glaciers receded, periglacial populations re-colonized previously 
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glaciated regions, greatly influencing the genetic composition of these newly formed 

communities (Eddingsaas et al. 2004). Due to eustatic and isostatic fluxes at the LGM, 

the Alexander Archipelago (AA) of Alaska and Haida Gwaii of British Columbia 

experienced sea levels up to 165 meters lower (Mobley 1988; Hetherington et al. 2003; 

Baichtal et al. 2008). Although many of the islands were buried under 1000 m of ice, 

potential refugia existed along the western edge where continental shelf was exposed 

(Carrara et al. 2007; Baichtal and Carlson 2010).  

Colonization and extinction dynamics of the land bridge islands of the AA more 

closely resemble those of oceanic islands (Conroy et al. 1999; Whittaker and Fernández-

Palacios 2007) in that glacial cover effectively created a clean slate, with multiple ice-

free regions (Beringian, southern continental) proposed as potential sources for 

colonization in the Holocene. Recolonization from these regions partially shaped the 

contemporary genetic structure of coastal biota. More controversial is the contribution of 

coastal refugia as a source for recolonization of deglaciated areas in Northwestern North 

America (Byun et al. 1997; Byun et al. 1999; Demboski et al. 1999). 

In addition to recolonization dynamics, as glaciers receded and sea levels rose 

during the late Pleistocene-early Holocene (14 kya to 10 kya), the connectivity across the 

islands of the AA became highly fragmented (Carrara et al. 2007). Subsequent in situ 

diversification may have produced endemic populations on islands across the AA for 

either long-term occupants of the region (paleoendemic) or recent colonizers from 

outside the region (neoendemic) (Cook et al. 2006; MacDonald and Cook 2007; Cook 

and MacDonald 2013). 
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The AA is one of the planet’s most extensive archipelagos with >1,100 named 

islands including 7 of the 15 largest United States islands. Most of this archipelago is 

within the Tongass National Forest (6.9 million ha; United States Geological Survey 

2010). Together with Haida Gwaii to the south, these archipelagos support part of the 

largest remaining coastal temperate rainforest worldwide (Ecostrust and Conservation 

International 1992; DellaSala et al. 2011). Many of these islands have been highly 

modified by industrial timber harvesting and associated road building over the past 60 

years (List 2000; Schoen and Dovichin, eds. 2007; Albert and Schoen 2013). The rugged 

and ice-laden Coastal and Wrangell-St. Elias mountain ranges border the adjacent 

mainland, which acted as barriers to dispersal and effectively filtered the species that 

colonized the islands from the continent (Cook and MacDonald 2013).  

Previous regional studies identified divergent, endemic populations of various 

taxa including, but not limited to, vascular and non-vascular plants (Soltis et al. 1997; 

Brodo and Sloan 2004; Hannon et al. 2010), terrestrial invertebrates (Clarke et al. 2001), 

several fish (O'Reilly et al. 1993; Kondzela et al. 1994; Smith et al. 2001), birds (Barry 

and Tallmon 2010; Bull et al. 2010; de Volo et al. 2013), and an array of terrestrial 

mammals, including northern flying squirrels (Glaucomys sabrinus) (Bidlack and Cook 

2002), red-backed voles (genus Myodes) (Runck et al. 2009), ermine (Mustela erminea) 

(Fleming and Cook 2002; Dawson et al. 2014), black bear (Ursus americanus) (Peacock 

et al. 2007), and mountain goats (Oreamnos americanus) (Shafer et al. 2011). 

In this study, we use multiple DNA loci to explore the interplay of insularity and 

historical climate variability on contemporary genetic structure of three mammals that are 

widely co-distributed throughout the AA and adjacent mainland. Microtus longicaudus, 
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Peromyscus keeni, and Sorex monticolus were chosen because they are widespread and 

preliminary analyses identified inter-population variation across the mainland and 

Alexander Archipelago (Conroy and Cook 2000; Demboski and Cook 2001; Lucid and 

Cook 2004). These species are sympatric, but Microtus longicaudus prefers open 

herbaceous habitats, P. keeni prefers a variety of forest and scrub habitats, and S. 

monticolus prefers forested and non-forested habitats with dense ground cover (Smolen 

and Keller 1987; Smith and Belk 1996; Zheng et al. 2003). Comparative study of 

multiple species allows us to explore the combination of climatic variability and 

individual niches (abiotic requirements) to genetic structure across this fragmented 

landscape. If all three species expanded from shared refugia, genetic signatures should 

track the common influence of climatic events, regardless of individual niche 

requirements. 

We also evaluate how genetic structure is partitioned in these species across the 

islands of Southeast Alaska to determine the role of island size and isolation. The theory 

of island biogeography (MacArthur and Wilson 1967; Brown 1971) has been expanded to 

reflect expectations for the distribution of genetic diversity (Kimura and Weiss 1964; 

Johnson et al. 2000). We focus on how island area and isolation, in combination with the 

potential role of coastal refugia as historical sources for colonization, shaped diversity 

across the archipelago.  

More specifically, we ask: are the genetic signatures of M. longicaudus, P. keeni, 

and S. monticolus a result of shared historical climatic and geologic events? Based on 

species distribution models (SDMs; Figure 1) and historical bathymetric reconstructions 

(Figure 2; see Methods and Results) we identify potential refugia in the AA during the 
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LGM for each species. We hypothesize all three species have similar phylogenetic 

topologies and similar signatures of demographic and spatial expansion. We explore the 

possibility of coastal refugia west of the ice in the AA and predict deeper genetic 

divergence in the populations in refugial regions proposed by the coastal refugia 

hypothesis (CRH; Fladmark 1979). Additionally, gene trees may reflect changes in island 

connectivity due to lowered sea-levels during glacial periods. Signatures of expansion 

should be observed in hypothesized non-refugial island populations as a result of post-

glacial colonization.  

Lastly, we assess genetic divergence among insular populations of each species to 

determine whether island remoteness and area conform to models of island biogeography. 

Genetic signals should be driven by island colonization (as expected for oceanic islands) 

and we expect a nested pattern, such that intra-island genetic diversity will decrease with 

increasing geographic distance from the mainland source population (Kimura and Weiss 

1964). If genetic signals are influenced by extinction (as expected for land-bridge 

islands), we expect a non-nested pattern and decrease in genetic diversity with decrease 

in island area (Dawson and Hamner 2005; Zhang et al. 2012).  

Phylogeographic studies help us understanding how climate has influenced the 

genetic structure of insular communities and provide the historical context necessary to 

investigate endemism and island biology (Grant and Grant 2003).  Environmental 

changes, such as habitat conversion or those predicted under climate-warming scenarios 

elevate the extinction risk for small insular populations due to their limited mobility and 

modest ranges (Olson 1989; Fahrig 2003; Christensen et al. 2007). The genetic footprints 

of M. longicaudus, P. keeni, and S. monticolus aid the assessment of the paleoecology of 
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past refugial locations that harbored endemic lineages and geographic barriers that 

structured populations. In addition to investigating historical climatic and island effects 

on a high latitude archipelago, we also utilize SDMs to identify regions of conservation 

priority under future climate change scenarios. 

 

Materials and Methods 

Sample collection and sequencing 

Specimens were collected between 1991 and 2012 and archived at the Museum of 

Southwestern Biology (MSB), University of New Mexico and the University of Alaska 

Museum of the North (n= 137 M. longicaudus, 146 P. keeni, and 149 S. monticolus; 

Table 1). Tissues were also loaned from the University of Washington Burke Museum 

and Gwaii Haanas National Park Reserve and Haida Heritage Site (13 P. keeni, and 3 S. 

monticolus). Sampling covered 44 localities across Southeast Alaska and Haida Gwaii. 

All recognized subspecies (Hall 1981) found in or near Southeast Alaska for each study 

species were represented. Outgroup taxa (n= 3 Microtus, 40 Peromyscus, and 9 Sorex) 

were also included. Additionally, we used GenBank sequences representing 41 M. 

longicaudus, and 18 outgroup P. maniculatus (Table 1). 

We extracted total genomic DNA to a final concentration of 50ng µl
-1

 using either 

Omega Bio-Tek (Norcross, GA) E.Z.N.A. or standard salt extraction (Fleming and Cook 

2002). Polymerase chain reactions (PCR) amplified mitochondrial (mtDNA) cytochrome 

b (cyt b) and three nuclear loci per genus (Microtus: Protein C-est-2 (ETS2), β-fibrinogen 

(FGB), and Recombination Activating Protein 1 (Rag1); Peromyscus: β-fibrinogen 

(FGB), interphotoreceptor retinoid-binding protein (IRBP) and zona pellucida 3 (ZP3); 
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Sorex: Alcohol Dehydrogenase 2 (ADH2), Apolipoprotein B (ApoB) and β-fibrinogen 

(FGB); Table 2) with reaction mixtures of 1µl DNA extract, 1 µl of primer each (2mM), 

1.5 µl PCR buffer (10x), 1.5 µl MgCl2 (25mM), 1.25 µl of dNTP’s (10mM ), 1.25 µl of 

Bovine Serum Albumen (BSA, 1.5mM), and 0.08 µl of AmpliTaq DNA polymerase 

(Applied Biosystems, Foster City, CA, USA) and were adjusted to a final volume of 15 

µl with ddH2O. After cleaning PCR products with ExoSap-IT (Affymetrix, Santa Clara, 

CA), automated sequencing was conducted at either the High Throughput Genomic 

Center (Seattle, WA, USA) or using an Applied Biosystems 3110 DNA sequencer 

(Molecular Biology Facility, UNM) using original PCR primers and BigDye v3.1 

(Applied Biosystems) terminator reaction chemistry.  

Nuclear heterozygotes were inferred with PHASE v2.1 (Stephens et al. 2001; 

Stephens and Scheet 2005) using five runs with 1000 iterations (different seeds) and a 

burn-in of 1000. Iterations with the best goodness-of-fit were chosen. Posterior 

probabilities for nucleotides ≥0.85 were chosen; otherwise ambiguous sites were coded as 

N. All analysis used phased sequence data. Sequences were edited in SEQUENCHER v4.2 

(GeneCodes Corporation), aligned in MEGA v5.2 (Tamura et al. 2011) using the MUSCLE 

algorithm and confirmed by eye.  

 

Phylogenetic and demographic analyses 

 To explore the phylogenetic relationship within each species, we performed 

Maximum Likelihood (ML) and Bayesian phylogenetic reconstructions for cyt b for each 

species. We used MODELTEST (Posada and Crandall 1998; Posada and Buckley 2004) to 

determine genetic models of evolution for each locus (Table 3). ML estimations were 
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performed in MEGA with 1000 bootstrap replicates. Using BEAST v1.7.5 (Drummond et 

al. 2012), we generated Bayesian phylogenies and divergence dates estimates with input 

files prepared in BEAUTI v1.7.5., part of the BEAST software package. A mutation rate of 

4% Myr
-1

 was assigned to M. longicaudus and P. keeni (Conroy and Cook 1999; 

Brunhoff et al. 2003) and a rate of 5.5% Myr
-1

 for S. monticolus (Hope et al. 2013). We 

applied a coalescent constant size tree prior with a random start tree, using an 

uncorrelated lognormal relaxed clock because relationships with non-insular populations 

are deeper in time, for 60 million generations, sampled every 2000. Time to Most Recent 

Common Ancestor (TMRCA) was determined with a 95% posterior probability 

distribution in TRACER v1.5 (Rambaut and Drummond 2007). For each tree, convergence 

statistics were assessed with both a minimum effective sample size (ESS) value of 200 

and trace graphs in TRACER. Three independent runs were combined using 

LOGCOMBINER v1.7.5, with a 10% burin-in and tree files were annotated in 

TREEANNOTATOR v1.7.5 (part of BEAST software package). Tree topology was visualized 

in FIGTREE v1.4.0 (Rambaut 2009). 

Species history, rather than individual gene accounts, can be obtained even for 

recently diverged taxa through the use of a multilocus coalescent approach (Maddison 

1997; Carstens and Knowles 2007; Edwards et al. 2007) such as *BEAST (Heled and 

Drummond 2010) which co-estimates species trees and gene trees using a Bayesian 

Markov chain Monte Carlo (MCMC) algorithm implemented in BEAST. Phased loci were 

assigned as independent and unlinked and set with substitution models calculated in 

MODELTEST (Table 3). A priori groupings were designated based on cyt b Bayesian 

supported lineages (≥0.95 posterior probability). Cyt b was designated a lognormal 
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relaxed clock with the same rates as the BEAST analysis, while all rates for phased nuclear 

loci were estimated and assigned strict clocks . Each run consisted of random start trees 

with a Species Tree: Yule process prior and piecewise linear and constant root population 

size model with MCMC chain lengths of 2 billion iterations, sampling every 2 million. 

TRACER, LOGCOMBINER and TREEANNOTATOR were used as above. PHYLOGEOVIZ (Tsai 

2011) was used to visualize phased nuclear haplotype frequencies across the landscape. 

Net genetic distances among major clades of cyt b were calculated in MEGA. To 

test for recent demographic change, we computed standard summary statistics 

(segregating sites (S), number of haplotypes (h), haplotype diversity (Hd), and nucleotide 

diversity (π)), and selection and expansion statistics Tajima’s (1989) D, Fu’s (1997) Fs, 

and R2 (Ramos-Onsins and Rozas 2002) with 10 thousand coalescent simulations for 

each phased locus in DNASP 5.10.1 (Librado and Rozas 2009). Selection potential was 

also assessed through an HKA Test (Hudson et al. 1987). Additionally, we computed 

pairwise mismatch distributions for cyt b data. 

To identify signals of population fluctuation, we estimated historical demography 

for the Island clades with both a multilocus Extended Bayesian Skyline Plots (EBSP, 

Heled and Drummond 2008) implemented in BEAST. Three runs per analysis used a 

MCMC chain of 2 billion steps, sampled every 2 million, with strict molecular clocks and 

models of evolution (Table 3) calculated via MODELTEST. As above, TRACER was used to 

assess convergence. For EBSPs, we determined that significant population size change 

occurred if zero was excluded from the 95% confidence interval (CI) of the estimate of 

the number of size-change steps (Lim and Sheldon 2011).  
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If M. longicaudus, P. keeni and S. monticolus experienced shared effects of 

climatic change and glacial cover, we would expect the phylogenetic topologies to be 

similar. To test for congruence in Island clades across the three species, we performed 

three Shimodaira-Hasegawa tests (1999) using each respective species as the constrained 

tree, implemented in PAUP*. Compared to the phylogenetic trees produced above, a 

priori ML and Bayesian trees were generated using two individuals per island, limited to 

islands with at least two of the three species (Table 4). These trees included four Northern 

clade and three Southern clade representatives, with sequences comprised of ambiguous 

bases used as place holders when island representatives were not available (e.g., S. 

monticolus for Chichagof). Trees were constructed in MEGA (ML) with 1000 replicates 

and BEAST (Bayesian) as above. 

 

Testing phylogenetic models under the coastal refugia hypothesis 

If species persisted in refugia, genetic relationships between refugial island 

populations will be similar to those found on land-bridge systems (Cardillo et al. 2008) 

with measures of divergence larger than the divergence between non-refugial island 

populations. As above, cyt b net genetic divergences between hypothesized refugial and 

non-refugial island populations were calculated in MEGA and standard demographic 

statistics and mismatch distributions (cyt b only) were calculated in DNASP for all phased 

loci to test for varying histories between potentially refugial and non-refugial insular 

populations. Populations were designated as refugial or non-refugial based on paleo-

shoreline reconstructions (see below).  
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To determine if climatic conditions in the AA were within each species’ 

threshold, we generated SDMs for each species under current, mid-Holocene (~6ka), 

LGM (~21 kya) (http://pmip2.lsce.ipsl.fr/; Braconnot et al. 2007), last inter-glacial (LIG; 

~120 – 140 kya), and future conditions (twice the current levels of CO2, ~2080, 

Christensen et al. 2007). Bioclimatic variables were obtained from WORLDCLIM 

(www.worldclim.org, Hijmans et al. 2005) at a resolution of 2.5 arc-minutes and clipped 

to incorporate only Southeast Alaska and the surrounding mainland. ENMTOOLS (Warren 

et al. 2008; Warren et al. 2010) was used to determine highly correlated variables 

(Pearson correlation coefficient ≥0.75), which we then selected based on those most 

biologically relevant, which may over-parameterize models. We obtained species 

localities from natural history collection databases (e.g., ARCTOS http://arctos.data-

base.uaf.edu and MaNIS http://manisnet.org/, Stein and Wieczorek 2004) in October 

2013 and removed those <12 km distant by removing intervening samples (Hope et al. 

2011) to reduce potential spatial autocorrelation from sampling bias, leading to over-

fitting of the model (Reddy and Davalos 2003). This resulted in 127 M. longicaudus, 150 

P. keeni, and 145 S. monticolus sample localities. SDMs for each species were 

constructed at each time period using MAXENT v3.3.3k (Elith et al. 2006; Phillips et al. 

2006; Phillips and Dudik 2008). Final runs were performed using cross-validation across 

10 replicates, with a regularization parameter of 5 (Hope et al. 2011; Warren and Seifert 

2011) and 1000 iterations. All other values were set as default. Models of LGM were 

averaged for final results using raster calculator in ARCGIS 10.1 (ESRI, Redlands, CA, 

USA). Climate suitability was limited by the low median threshold values over all 

replicates (Pearson et al. 2007).  
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We estimated potential island refugia, connectivity, and potential colonization 

pathways at different points since the LGM. To do so, we used ARCGIS 10.1 to change 

Southeast Alaska sea levels to levels suggested by estimates of historic sea levels and 

current bathymetry information (Baichtal and Carlson 2010; Baichtal pers. com.) to re-

create paleo-shorelines at 20 kya which included LGM glacial cover, 14 kya and 10 kya 

(Ehlers and Gibbard 2004; Carrara et al. 2007). 

 

Testing models under the equilibrium and non-equilibrium island biogeography 

To test for influences of island area and isolation on genetic diversity within 

islands, we performed regression analyses with MICROSOFT EXCEL (2010). Values for 

island area and isolation were obtained either from literature (Conroy et al. 1999; Lucid 

and Cook 2004; Cook and MacDonald 2013) or island isolation was calculated by hand 

using GOOGLE EARTH (Google Inc. 2013) as the shortest over-water distance between 

each island and from the mainland (Conroy et al. 1999), which assumes the mainland as 

the location of source populations (Table 4). Because of the low variability in the nuclear 

loci, cyt b genetic diversity measures (S, h, Hd and π obtained above) were used to test 

for associations with log area and log distance to mainland for Island clades of both 

continental (mainland Southeast Alaska, central British Columbia through southern 

Yukon and south-central Alaska) and insular populations of M. longicaudus, P. keeni, 

and S. monticolus. We performed Holm-Bonferroni sequential corrections for multiple 

comparisons (Holm 1979) on resulting p-values to determine if isolation and area 

significantly affected genetic variation.  
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Results 

Sampling and phylogenetic and demographic analyses 

All loci across all species had varying levels of polymorphism and genetic 

diversity (Table 3), with the mtDNA cyt b the most variable locus. Among Island clades 

of all three species, M. longicaudus had the highest mtDNA haplotype diversity (98.4%), 

followed by P. keeni (97.8%), and S. monticolus (76.4%). Nuclear haplotype diversity for 

M. longicaudus ranged from 12.4 – 18.2%, for P. keeni 6.5 – 39.1%, and for S. 

monticolus 4.1 – 33.8%. Selection was not detected through the HKA tests. 

Cyt b phylogenetic reconstructions supported an Island clade within both M. 

longicaudus and S. monticolus, while P. keeni represents the Island clade in the 

peromyscine phylogeny (Figure 3). Populations of the M. longicaudus Island clade are 

restricted to Southeast Alaska, southern Yukon, and south-central Alaska (Figure 4). This 

species is notably absent from Baranof Island as well as Haida Gwaii and Vancouver 

Island to the south. The M. longicaudus Island clade contains 16 lineages and is restricted 

to mainland Southeast Alaska, adjacent British Columbia and south-central Alaska 

(Figure 4). Representatives of the Island and Northern clades make contact in the 

vicinities of Haines and Juneau and are in close geographic proximity along the central 

and southern mainland coast. 

Peromyscus keeni ranges from southern Yukon through Southeast Alaska and 

coastal British Columbia to Washington’s Olympic Peninsula (Figure 4) and contains 

substantial structure (25 lineages). There is contact with P. maniculatus in British 

Columbia along the east side of the Coast Mountains and in northern Washington, and 
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close geographic proximity to P. maniculatus and Peromyscus sp. nov. (Sawyer et al. 

submitted) in southern Yukon. 

The S. monticolus Island clade is highly structured (10 lineages), ranging from 

Southeast Alaska (but not Chichagof, Baranof or other outer northern islands) and eastern 

British Columbia southward into Washington, with possible contact with the Northern 

clade near Haines and Juneau, Alaska and Washington (Figure 4).  

Within M. longicaudus, the Island clade is sister to the North Pacific Coast (NPC) 

and Northern clades at 1.2 ± 0.3% net genetic distance, and highly diverged from the 

Southern clade (3.7 ± 0.5%; Table 5). For P. keeni, the coastal group of P. maniculatus 

(2.3 ± 0.4%) is closest, followed by the Yukon Peromyscus sp. (3.6 ± 0.5%), and the rest 

of P. maniculatus (3.8 ± 0.5%). The Island clade of S. monticolus is least diverged from 

the Northern clade (4.8 ± 0.5%), and most diverged from the Southern clade (5.4 ± 

0.6%).  

The multilocus species trees (Figure 5) for M. longicaudus reveals a single 

supported clade which contains the Island and Northern cyt b clades. The species tree for 

Peromyscus supports the Island clade (P. keeni) and the Peromyscus sp. nov. clade. 

Species tree for S. monticolus supports the Island clade and the Southern clade, and 

indicates that S. monticolus is monophyletic.  

Nuclear haplotypes within the AA are broadly distributed across the archipelago 

and exhibit little geographic structure for all loci and all species, with the exception of 

ETS2. Microtus longicaudus populations on Forrester and Chichagof Island each have 

unique haplotypes for this locus (Figures 6 and 7). Multilocus divergence dates (Table 6) 

for the Island-Northern clade of M. longicaudus are post-LGM, although cyt b TMRCA 
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for the Island clade is well before the LIG. Peromyscus keeni multilocus TMRCA places 

divergence around the LIG, with cyt b TMRCA well before this. The Island clade for S. 

monticolus diverged between the LGM and LIG, with cyt b estimates around the LIG. 

Overall, measures of genetic diversity for the Island clades were low for all three 

species (Table 3), indicative of population demographic expansion or selection. Although 

significant expansion statistics can indicate selection, negative HKA tests suggest 

significantly negative D and FS for all cyt b, a result of recently expanded populations. 

Cyt b mismatch distributions for all species are unimodal with a multimodal tail for M. 

longicaudus suggesting reduced ancestral populations (Figure 8).  

Shared geologic histories should result in congruent phylogenetic topologies. The 

Shimodaira Hasegawa test (Table 7) when performed on the ML trees alone, identified 

the P. keeni topology (p<0.01) as optimal for all three species. However, when performed 

on only the Bayesian trees or in combination with ML trees, each test selected their 

respective tree as the best (p<0.01) with the exception of P. keeni, which indicated both 

P. keeni trees as equally likely (p=0.52 ML versus Bayesian, p<0.01 for all other tree 

comparisons). Topologies are similar in that populations of each species represent an 

Island clade restricted to high-latitude coastal and island regions, a Northern clade that 

occupies high latitudes and southern continental clades. The calculation of nodal support 

in ML analysis compared to Bayesian methods (Douady et al. 2003) can result in less 

structured ML topology.    
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Testing phylogenetic models under the coastal refugia hypothesis  

Mean net genetic divergence was greatest between non-refugial populations of M. 

longicaudus and P. keeni and least divergent for S. monticolus (Table 9). Contrary to 

expectations, refugial to non-refugial divergence was not statistically different than 

refugial to refugial or non-refugial to non-refugial populations. Fu’s FS and Tajima’s D 

and diversity indices (Table 3) varied in significance and (Figure 8) for all non-refugial 

and refugial populations not noticeably different from each. The mismatch distributions 

(Figure 8) for all non-refugial locations, and M. longicaudus refugial populations, were 

unimodal, with a bimodal topology for refugial populations of P. keeni and S. monticolus.  

Predictive performance for SDMs had mean AUC values of 0.801 ± 0.067 for M. 

longicaudus, 0.777 ± 0.080 for P. keeni, and 0.754 ± 0.082 for S. monticolus across 

replicate runs. No model clamping was detected. Suitable climate conditions for all three 

species in Southeast Alaska were present across all four time periods (Figure 1), 

including in areas west of the glacial ice during the LGM. Greatest suitability was for P. 

keeni for all historic periods. Future distributions suggest a decrease in habitat suitability 

for the outer southern islands and increased suitability for mainland regions for all three 

species (Figure 9). Paleo-shoreline reconstructions (Figure 2) suggest a northern coastal 

refugium and a southern coastal refugium at the LGM, four major island groupings (outer 

northern, inner northern, inner southern, and outer southern and middle islands) at 10 

kya, and by 8 kya contemporary island topography was present. Post-glacial interisland 

colonization pathways from refugial locations were inferred from island connectivity 

(Figure 10). 
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Testing genetic models under the theory of island biogeography  

The relationship of genetic diversity and island area and isolation (Figure 11 and 

Table 8), detected significant (Holm-Bonferroni corrected p-value ≤0.05) effects of island 

area on M. longicaudus S, h, Hd, and π, and P. keeni S. Island isolation significantly 

affected M. longicaudus π, and P. keeni S and h.  All other relationships among genetic 

diversity indices and island area and isolation were non-significant. Although eight 

significant relationships were detected, adjusted R
2
 values were no greater than 0.515. 

 

Discussion 

Few studies have explored the effects of both contemporary insularity and 

historical climate dynamics on genetic structure of the biota of high latitude island 

systems. We found that northern island inhabitants maintain signals of colonization 

history, thus providing the ability to study how historical climate has structured 

populations. In the case of the AA, terrestrial mammalian genetic diversity was primarily 

influenced by glacial cover and lower sea levels that resulted in endemic glacial relics 

acting as source populations that had persisted in coastal refugia to the west of this 

archipelago. In contrast, in the case of M. longicaudus, and possibly S. monticolus, the 

adjoining mainland to the east was primarily recolonized by populations that crossed the 

Coastal Range. However, island area and distance to mainland have influenced some of 

the genetic structure. 
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Shared geologic and climatic history 

SDMs indicate that suitable environmental conditions existed in Southeast Alaska 

for M. longicaudus, P. keeni and S. monticolus during both the LIG and LGM (Figure 1). 

Suitability is consistent with signals of long-term persistence for the insular populations 

found in each of these species. Multilocus estimates of divergence for M. longicaudus, P. 

keeni and S. monticolus suggest pre-LGM initiation of regional divergence (Table 6). 

Other signals (i.e., EBSP, diversity indices) within M. longicaudus suggest a deeper 

history in Southeast Alaska, including persistence and divergence in coastal refugia. 

Recent divergence of M. longicaudus could also reflect geographic proximity and 

admixture between contemporary populations representing the Island and Northern cyt b 

clades, rather than post-glacial expansion into the AA. The Island clade of S. monticolus 

is highly differentiated from other conspecific clades, more so even than between the two 

peromyscine species, P. keeni and P. maniculatus. Within each Island clade, P. keeni has 

the most intralineage structure which is consistent with longer term persistence in the 

region, while the Island clade of S. monticolus had the least variability and relatively 

shallow intraclade relationship (Figures 3 and 5).  

EBSPs and expansion statistics indicate demographic expansion in Island clades 

of all three species, which is consistent with deglaciation of these areas (Figure 8; Table 

3). Consistent with recent expansion, all three Island clades have lower estimates of 

mitochondrial and nuclear diversity compared to their continental counterparts. However, 

if populations are in Hardy-Weinberg equilibrium, but have a  fragmented structure like 

those of islands, heterozygosity may appear artificially low (Wahlund 1928).  Higher 
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heterozygosity and more interisland differentiation are in accordance with continued 

habitation in the region for much of the late Pleistocene for all three species.  

Tree topologies across the three species are generally similar, with identifiable 

southern continental clades, Northern clade populations that occupy high latitudes, and 

Island clade populations restricted to coastal and high-latitude island regions. Also, some 

island-specific lineages are consistently recorded among the three species for Forrester, 

Noyes and Revillagigedo islands. There are distinct island-specific lineages for 

Coronation, Dall, Kuiu, Lulu, Prince of Wales, and Zarembo between M. longicaudus 

and P. keeni, and San Fernando between P. keeni and S. monticolus (Figure 3; Table 4). 

Supported island lineages for Kupreanof, Suemez and Wrangell were unique to M. 

longicaudus; Admiralty, Baranof, Chichagof, Gravina, Heceta, and Warren were unique 

to P. keeni; and Etolin was unique to S. monticolus.  Within P. keeni, the presence of a 

lineage representing the northern islands of Admiralty, Baranof and Chichagof islands is 

consistent with proposed biogeographic subregions (Swarth 1936; but see MacDonald 

and Cook 1996). Relatively high numbers of endemic lineages within each species may 

be due to extended persistence in the region, differential selective pressures on distinct 

islands, and genetic drift that is accentuated by the fragmented nature of the islands.   

Lack of multilocus geographic structure across the region for all three species 

(Figures 5 -7), coupled with their limited migration among islands (Sawyer and Cook, 

submitted; Sawyer et al., submitted) is most likely due to incomplete lineage sorting 

rather than contemporary gene flow. We hypothesize that repeated genetic exchange 

during periods of lowered sea levels throughout the late-Pleistocene and early Holocene 

was followed by segregation. This hypothesis is contrary to our original predictions that 
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P. keeni would have relatively high levels of gene flow across the region because it is the 

most widely distributed mammalian species in the AA. Overall, there are signals of 

shared history across M. longicaudus, P. keeni and S. monticolus, but individualistic 

responses to historical climate, timing of isolation in the AA, and colonization pathways 

are potentially recorded in the incongruent phylogeographic patterns and levels of 

variation. 

 

Coastal refugia hypothesis 

Although much remains unknown, a growing number of studies have suggested 

the importance of northern coastal refugial isolation on contemporary genetic structure 

(e.g., Hannon et al. 2010; Shafer et al. 2011; de Volo et al. 2013), including that of 

humans and their colonization of the Americas (e.g., Fladmark 1979; Baichtal and 

Carlson 2010). Reconstruction of paleo-shorelines, historical island connectivity, and 

potential colonization pathways suggests multiple regions of LGM glacial refugia within 

the region of Southeast Alaska (Figures 2 and 10): 1) mainland near Glacier Bay, 2) outer 

Baranof and Chichagof islands, 3) Forrester refugial complex, which would result post-

glacial colonization through Prince of Wales, Zarembo and Mitkof, 4) Coronation 

refugial complex, colonization through Kuiu and Kupreanof, or 5) Annette-Duke 

refugium, south of Gravina. Re-colonization of Admiralty, as well as Wrangell and Etolin 

would necessarily be from the mainland originating from one of the refugial regions.  

Each species’ SDM (Figure 1) suggest suitable climate offshore on the exposed 

shelf and select western islands (Table 4) since at least the LIG. Given the climate 

suitability, level of genetic differentiation, and timing of divergence within M. 
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longicaudus and S. monticolus, these species most likely persisted in at least two southern 

AA refugia throughout the glacial-interglacial cycles, not just that of the LGM. 

Peromyscus keeni however, likely persisted in a combination of northern and southern 

refugia in the AA, as suggested by the distinct cyt b lineage for the northern islands and 

differentiation across the southern islands. The unique haplotypes for P. keeni individuals 

from the islands of Haida Gwaii present the option of coastal refugia within Haida Gwaii.  

Cowan (1935) suggested both P. keeni and S. monticolus survived the 

Wisconsinan glaciation in coastal refugia in the AA. Although Heaton and Grady (2007) 

conclude all small mammals failed to survive the LGM (Heaton et al. 2003; Heaton and 

Grady 2007), there are pre-LGM, as well as some undated, fossil evidence from Prince of 

Wales Island suggests the possibility that all three species occupied the region prior the 

LGM, but. The lack of fossils on Prince of Wales immediately surrounding the LGM 

does not eliminate the possibility, however, that these species persisted further west in 

coastal refugia, rather than on Prince of Wales Island, throughout Pleistocene glacial 

cycles, including the LGM. 

The Island clade of M. longicaudus is limited to the AA and nearby mainland, a 

geographic range consistent with paleoendemism in the region (Figure 4). Although there 

are wider distributions in both P. keeni and the Island clade of S. monticolus (south to 

Washington), divergence dates, net genetic distance, genetic diversity, and expansion 

statistics, as well as opposing models of refugial migration for P. keeni (Sawyer et al. 

submitted) suggest paleoendemism. The cyt b phylogenies indicate most, but not all, 

refugial areas supported lineages for all three species. Furthermore, there is genetic 

evidence of coastal refugia followed by rapid expansion; however, both the mtDNA and 
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multilocus relationships suggest a deeper than LGM influence for all three species.  The 

repeated connectivity and fragmentation of the AA has undoubtedly contributed to the 

loss of clear specific refugial island signatures. That is, higher gene flow during periods 

of low sea level would eliminate island-specific genetic signatures. 

 

The Alexander Archipelago and island biogeography 

The effects of island area and isolation on the genetic diversity of M. longicaudus, 

P. keeni and S. monticolus are mixed. Given the number of supported lineages without 

predictable geographic distribution in the cyt b phylogenies (Figure 3), the distribution of 

genetic variation would suggest vicariance played a large role in shaping the observed 

patterns (Whittaker 1998).   

There is an increase in genetic diversity with increased island area and proximity 

to the mainland, as expected, but most of the relationships are not statistically significant 

(Figure 11, Table 8). Although the regression analysis detected significant effects of 

island area on all diversity indices for M. longicaudus, isolation on π for M. longicaudus, 

and S and h for P. keeni, a maximum of only 50% of the variation observed is explained 

by either island area or isolation.   

The isolation measurement assumes the source population is from the mainland. If 

source populations were actually from coastal refugia, this changes the expected 

distribution of variation. However, we cannot simply invert the distance measurements 

because of the possibility of multiple refugial locations and post-colonization pathways 

(Figure 10). For example, the distance of Admiralty populations would traditionally be 

measured from the mainland, but if the source population was from Chichagof refugia, or 
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perhaps Forrester or Coronation complexes, the determination of distance to source 

populations is much less certain and more complex. Overall, isolation and area appear to 

be factors influencing some of the observed genetic variation, but it is clear these 

attributes are not the only variables at play in the AA. 

 

Conclusion 

Historical climate (coastal refugia) and island topography (area and isolation) 

contribute to the genetic diversity of the high-latitude islands of the Alexander 

Archipelago. Multiple lines of evidence suggest all three species in this study are 

paleoendemic to the region with earliest habitation by P. keeni, followed by M. 

longicaudus, and finally S. monticolus. Failure to detect clear genetic signatures of 

specific island refugia within the coastal region or relationships with island area and 

isolation is most likely the result of repeated connectivity and fragmentation across the 

AA, plus non-equilibrium populations and recent diversification as indicated by 

incomplete lineage sorting.  

A closer analysis of genetic structure within an array of species between islands 

can help provide a framework for scientifically defensible management decisions 

(Gutrich et al. 2005; Pritchard et al. 2007), especially in the context of historical 

divergence patterns and predicted climate change. For example, the outer islands of the 

AA not only house a disproportionate number of endemic lineages, mammalian and 

otherwise, but future SDMs predicted that these three species on these islands will be 

seriously impacted by future climate change (Figure 9). Additionally, regional endemics 
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(Cook and MacDonald 2001; Sikes and Stockbridge 2013) face challenges posed by 

anthropogenic activities that are facilitating habitat conversion.  

More generally, similarities across species are more readily identifiable through 

the use of multiple analyses (i.e., phylogenetic reconstructions, EBSP, SDMs) rather than 

assumptions or decisions based on any single characteristic (i.e., life history 

characteristics) or result (i.e., relationship with island area and isolation). Ultimately, this 

comparative and integrative multi-locus approach can be extended to various taxa in 

other high-latitude island systems or fragmented habitats, like those of the Haida Gwaii 

(Reimchen and Byun 2006), the Japanese Archipelago (Millien-Parra and Jaeger 1999), 

and British Isles (Vincent 1990) to help identify and conserve species, ecosystems, and 

regionally distinct biota experiencing dynamic environmental change (Avise 2008; 

Hendry et al. 2010).  
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Figures and Tables 

Figure 1. . SDM for M. longicaudus, P. keeni and S. monticolus from the LIG to Current. 

Solid blue covering at the LGM is glacial ice cover. SDM’s climate suitability at each 

time period. 
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Figure 2. Islands and surrounding mainland Alaska locations, paleo-shorelines, and 

hypothesized island groups (also see Table 4). 
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Figure 3. . Dated Bayesian cytb trees for M. longicaudus, P. keeni and S. monticolus. 

Posterior probability ≥0.95 represented with open circles and Maximum Likelihood 

bootstraps of ≥0.7 with asterisks are shown on branches. Vertical light gray bars represent 

the LIG (left) and LGM (right). Dark gray horizontal bars = 95% CI for TMRCA for the 

Island clade for each species. Geographic location (Table 4) for supported intralineage 

clades are immediately right taxon tips.  Major lineage abbreviations are: COP=Colorado 

Plateau; NPC=North Pacific Coast, PeMa=P. maniculatus, E (East), W (West) and SW 

(Southwest); S=South.  
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Figure 4. Sampling scheme, range maps and North American LGM glacial cover. 

Sampling localities are shown by major cytb lineage. The thick black lines are the current 

range for each species, with the addition of P. maniculatus (white line) on the Peromyscus 

map. The light blue in the bottom right image is LGM glacial ice cover. NPC=North 

Pacific Coast; COP=Colorado Plateau. 
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Figure 5. Multilocus Bayesian Species Tree. Posterior probabilities of ≥0.95 are 

represented with open circles on branches of the consensus tree. A priori groupings were 

designated based on cyt b Bayesian supported (≥0.95 posterior probability) clades. Blue = 

Island/P. keeni, bright green = Northern/Peromyscus sp. nov. (Yukon), dark green = North 

Pacific Coast, light yellow-green = Colorado Plateau/ P. maniculatus Southwest, golden = 

Central/P. maniculatus West, orange = Southern/P. maniculatus East, black = outgroups. 

Horizontal gray bars represent divergence date estimates and vertical bars indicate 

approximate time for the LIG and LGM. 
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Figure 6. Island phased nuclear haplotype distribution for M. longicaudus, P. keeni and S. 

monticolus as prepared by PHYLOGEOVIZ. 
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Figure 7. Bayesian gene trees for phased nuclear loci for M. longicaudus (a. ETS2, b. 

FGB, and c. Rag1), Peromyscus (d. FGB, e. IRBP, and f. Zp3) and S. monticolus (g. 

ADH2, h. ApoB, and i. FGB) with posterior probabilities of ≥0.95 represented with open 

circles on branches. Geographic locations for supported intralineage clades are provided. 

Blue = Island/P. keeni, bright green = Northern/Peromyscus sp. (Yukon), dark green = 

North Pacific Coast, light yellow-green = Colorado Plateau/ P. maniculatus Southwest, 

golden = Central/P. maniculatus West, orange = Southern/P. maniculatus East, black = 

outgroups.   
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Figure 8. Cyt b mismatch distributions and EBSPs for P. keeni and Island lineages of M. 

longicaudus, S. monticolus, as well as Refugial islands and non-refugial islands (see 

Table 4). Observed curves (dotted line) and expected curves (solid line) are the number of 

pairwise differences under rapid population growth. EBSP (Island/P. keeni insets) central 

line indicates mean change in effective population size through time, with upper and 

lower lines sowing the 95% posterior density. The x-axis (right-to-left) extends from past 

(TMRCA) to present and is scaled in millions of years and the y-axis is the effective 

population size scaled by generation time. Vertical gray bars indicate the LIG (when 

applicable, right) and LGM (left) for reference.  
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Figure 9. SDM for M. longicaudus, P. keeni and S. monticolus for Current and Future, as 

well as the change in climate suitability between the two time periods.  
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Figure 10. Historical island connectivity and potential colonization across the Alexander 

Archipelago as a result of change in sea level and glacial cover. 
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Figure 11. Cyt b genetic diversity (S, h, Hd and π) by log island area and isolation for M. 

longicaudus (red), P. keeni (blue) and S. monticolus (green) with regression lines. See 

Table 8 for regression results. 
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Table 1. Specimens examined. Museum number acronyms are MSB= Museum of 

Southwestern Biology, UAM=University of Alaska Museum of the North, Fairbanks, 

HG= Gwaii Haanas National Park Reserve and Haida Heritage Site, and 

UWBM=University of Washington Burke Museum. GenBank numbers correspond to cyt 

b, and each phased allele for M. longicaudus (ETS2, FGB and Rag1), Peromyscus (FGB, 

IRBP and Zp3) and S. monticolus (ADH2, ApoB and FGB) respectively, –= not 

applicable. GenBank in bold were previously obtained from other studies. 
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Table 2. Primer list and PCR annealing temperatures. Primers used for amplification and 

sequencing mtDNA Cytochrome B (cytb), and nuclear loci Alcohol Dehydrogenase 2 

(ADH2), Apolipoprotein B (ApoB), Protein C-est-2 (ETS2), β-fibrinogen (FGB), 

interphotoreceptor retinoid-binding protein (IRBP), Recombination Activating Protein 1 

(Rag1) and zona pellucida 3 (ZP3) for species indicated, including outgroups in each 

genus, with annealing temperatures (
o
C) indicated in parentheses. 
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Table 3. Diversity indices, expansion statistics and models of evolution. n=haploid 

sample size; L=length of sequence; S=variable sites; Eta=#mutations; h=#haplotypes; 

Hd=haplotype diversity; π=nucleotide diversity; D=Tajima's D; Fs=Fu's FS; 

r=raggedness index; R2=Ramos-Osnin's R2; Model=model of evolution as selected by 

MODELTEST. Bold values are significant at p<0.05 (p<0.02 for FS). Refugia = refugial 

islands, Non-refugia = non refugial islands (see Table 4). 
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Table 4. Locality information and abbreviations. Refugia = potential refugial islands and 

hypothesized island groups = island and adjacent mainland populations based on paleo-

shoreline reconstruction and LGM glacial cover.  ̶ = not included in the analyses that 

require the given information. Localities included in the Shimodaira-Hasegawa tests are 

indicated with asterisk. 
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Table 5. Between group net genetic divergences among major cyt b lineages of M. 

longicaudus, Peromyscus and S. monticolus. The number of base differences per site from 

estimation of net average between groups of sequences is shown. Standard error 

estimate(s) are shown above the diagonal. All ambiguous positions were removed for 

each sequence pair. Evolutionary analyses were conducted in MEGA5. 
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Table 6. Divergence date estimates for the island lineages of M. longicaudus, P. keeni and 

S. monticolus based on both cyt b and phased multi-locus analysis. 

 

 

Table 7. Cyt b Shimodaira and Hasegawa tests for M. longicaudus, P. keeni and S. 

monticolus for both Bayesian and Maximum Likelihood trees. *=significant p-value at 

α≤0.05. 
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Table 8. Regression analysis for M. longicaudus, P. keeni and S. monticolus cyt b genetic 

variation (S, h, Hd and π) tested against log island size and log isolation. Significant at 

α≤0.05 Holm-Bonferroni corrected p-values (p’) are in bold. 
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Table 9. Between group net genetic divergences of cyt b among refugial and non-refugial 

Southeast Alaskan populations lineages of M. longicaudus, P. keeni and S. monticolus. 

The number of base differences per site from estimation of net average between groups of 

sequences is shown. Standard error estimate(s) are shown above the diagonal. All 

ambiguous positions were removed for each sequence pair. Evolutionary analyses were 

conducted in MEGA5. 
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CHAPTER 5 

Conclusion 

Glacial-interglacial oscillation over the past 2.5 million years has promoted both 

speciation and intraspecies diversification. Species range, geographic features (e.g., 

mountains, fragmented habitat), and historical climate all play a part in contemporary 

population dynamics. Segregation of conspecific populations as a result of historic 

climatic fluctuations, and enhanced by geographic barriers, results in local adaptation 

which further promotes diversification upon post-glacial contact (Demboski & Cook 

2001; Galbreath et al. 2009). Contact of divergent lineages in high latitudes is a rarity and 

often goes undocumented. Likewise, complex interplay of varying degrees of 

connectivity across such islands can result in endemic lineages.  

 With the use of genetics and GIS techniques, it is possible to tease apart species 

history leading to diversification and often uncover previously unrecognized variation or 

endemics (Lucid & Cook 2007; Weksler et al. 2010). Non-refugial populations generally 

show signs of rapid expansion with reduced genetic variation and minimal diversification 

when compared to refugial populations (Hewitt 2004; Lessa et al. 2003; Marr et al. 

2012).  Genetic differences across island inhabitants, with limited connectivity and 

smaller effective population sizes can be a result of either cryptic refugia or rapid genetic 

drift (Adler 1992; Dobzhansky 1963; Whittaker 1998), either resulting in high levels of 

endemism. 

 Previous work on Microtus longicaudus, Peromyscus keeni and Sorex monticolus 

was based on a single mitochondrial maker and focused on describing observed 

phylogeographic variation, rather than identifying the drivers of said variation. 
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Additionally, sampling was limited in scope for both across the entire range of each 

species and within Southeast Alaska. My dissertation work used this foundational 

research as a basis for hypothesis testing and the identification of evolutionary drivers of 

diversification in these three small mammals. Chapters 2 and 3 highlight the complexity 

and identify idiosyncratic responses to glacial variation and subsequent colonization and 

contact. Chapter 4 highlights the interwoven relationship between physical island 

characteristics and past flux of connectivity.   

 Although chapter 2 found “typical” post-glacial colonization patterns in M. 

longicaudus across western North America with regards to southern genetic diversity, 

northern genetic diversity, the number of refugia, and location of secondary contact were 

far from ordinary. Pleistocene climate variability was the primary driver of the observed 

variation; however geographic features, such as mountain ranges, played a significant 

role in colonization pathways and current lineage range limitations. Through the use of 

SDMs, genetic diversity, signals of demographic change, and phylogeographic 

relationships, four major locations were identified for glacial persistence of M. 

longicaudus: 1) southern continental, 2) southern coastal, 3) northern coastal refugia in 

Southeast Alaska, and 4) Beringia in south-central Yukon. Most major lineage 

diversification began prior to the last interglacial. The Northern and Island lineages, 

although distinctive based on mtDNA, share nuclear alleles as a result of incomplete 

lineage sorting, rather than introgression, hybridization or current gene flow. 

 Global discovery rates of non-marine mammals are estimated at about 10%, with 

only one species between 1993 and 2009 in high latitudes (Ceballos & Ehrlich 2009). 

Chapter 3 found strong genetic support for the formal description of a new Peromyscus in 
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central and southern Yukon (revision in preparation). Additionally, this species appears to 

have persisted in cryptic northern refugia and remains geographically limited, with 

geographic proximity to its congeners, P. keeni, which occupied coastal refugia 

throughout the glacial cycles of the Pleistocene, and P. maniculatus from western North 

America. The persistence of Peromyscus in unglaciated regions south and north of the ice 

and in northern coastal refugia is highly uncommon, especially for North America 

restricted taxa.  

 The signatures of northern coastal refugia was explored in chapter 4. 

Disentangling confounding signals of coastal refugia and island biogeographic patters 

proved challenging, but M. longicaudus, P. keeni and S. monticolus have endemic 

lineages in the Alexander Archipelago, regardless of the driving force. The dynamics of 

this high latitude island system emphasize the importance of understanding both 

individual species response and community composition prior to implementing regional 

management plans. Life history characteristics, intraspecific genetic variation and gene 

flow, and SDMs each provide independent lines of evidence as to the effects of historical 

climate and island connectivity for each species across this fragmented habitat. 

Predictions of future climate change coupled with current levels of endemism and 

migration provide a starting point for defensive management of such a unique system as 

the Tongass National Forest.   

 The questions now become: What are the dynamics among other populations of 

M. longicaudus that have experienced post-glacial secondary contact? And, how does that 

contribute to our understanding of southern refugial taxa? What do bacular and 

karyotypic analysis suggest about the Yukon Peromyscus? And, what are the population 
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level dynamics among the paraphyletic lineages of P. maniculatus? Across the Alexander 

Archipelago, what major biogeographic breaks can be identified using multilocus data? 

Finally, can population level markers (e.g., microsatellites, SNP analyses) more 

specifically identify refugial locations? More generally, we can also revisit our methods 

for subspecies identification to better reflect species history, rather than single gene or 

phenotypic patterns.   

Climate change and conservation are terms that have gained momentum over the 

last few decades, but for good reason. Effects of anthropogenic habitat modification and 

shifting climate patterns can already be observed in many taxa, bringing the need for 

predictive and flexible conservation strategies to the forefront of biology.  Understanding 

how and where a species or lineage came from can help us determine where it might go.  

Through the unification of fields both within biology (e.g., molecular techniques, 

ecological studies) and independently (e.g., computer science, economics), we can be 

better equipped to handle the uncertainty that lies ahead.  

  



205 

References 

Adler GH (1992) Endemism in Birds of Tropical Pacific Islands. Evolutionary Ecology 6, 

296-306. 

Ceballos G, Ehrlich PR (2009) Discoveries of new mammal species and their 

implications for conservation and ecosystem services. Proceedings of the 

National Academy of Sciences of the United States of America 106, 3841-3846. 

Demboski JR, Cook JA (2001) Phylogeography of the dusky shrew, Sorex monticolus 

(Insectivora, Soricidae): insight into deep and shallow history in northwestern 

North America. Molecular Ecology 10, 1227-1240. 

Dobzhansky T (1963) Biological evolution in island populations. In: Man's place in the 

island ecosystem. A symposium. (ed. Fosberg FR), pp. 65-74. Bishop Museum. 

Galbreath KE, Hafner DJ, Zamudio KR, Agnew K (2009) Isolation and introgression in 

the Intermountain West: contrasting gene genealogies reveal the complex 

biogeographic history of the American pika (Ochotona princeps). Journal of 

Biogeography 37, 344–362. 

Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. 

Philosophical Transactions of the Royal Society B-Biological Sciences 359, 183-

195. 

Lessa EP, Cook JA, Patton JL (2003) Genetic footprints of demographic expansion in 

North America, but not Amazonia, during the Late Quaternary. Proceedings of the 

National Academy of Sciences of the United States of America 100, 10331-10334. 



206 

Lucid MK, Cook JA (2007) Cytochrome-b haplotypes suggest an undescribed 

Peromyscus species from the Yukon. Canadian Journal of Zoology-Revue 

Canadienne De Zoologie 85, 916-919. 

Marr KL, Allen GA, Hebda RJ, McCormick LJ (2012) Phylogeographical patterns in 

the widespread arctic–alpine plant Bistorta vivipara (Polygonaceae) with 

emphasison western North America. Journal of Biogeography 40, 847–856. 

Weksler M, Lanier HC, Olson LE (2010) Eastern Beringian biogeography: historical and 

spatial genetic structure of singing voles in Alaska. Journal of Biogeography 37, 

1414-1431. 

Whittaker RJ (1998) Island biogeography: ecology, evolution, and conservation Oxford 

University Press, Oxford. 

 


