University of New Mexico UNM Digital Repository

Biology ETDs

Electronic Theses and Dissertations

7-1-2014

LIVING ON THE EDGE: A COMPARATIVE PHYLOGEOGRAPHIC STUDY OF REFUGIAL AND INSULAR FRAGMENTATION

Yadeeh Sawyer

Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds

Recommended Citation

Sawyer, Yadeeh. "LIVING ON THE EDGE: A COMPARATIVE PHYLOGEOGRAPHIC STUDY OF REFUGIAL AND INSULAR FRAGMENTATION." (2014). https://digitalrepository.unm.edu/biol_etds/99

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Yadéeh E. Sawyer

Candidate

Biology Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Joseph A. Cook, Chairperson

Christopher C. Witt

Steven Poe

Enrique P. Lessa

LIVING ON THE EDGE: A COMPARATIVE PHYLOGEOGRAPHIC STUDY OF REFUGIAL AND INSULAR FRAGMENTATION

by

YADÉEH ESCOBEDO SAWYER

B.S., Biology, University of New Mexico, 2004

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy Biology

The University of New Mexico Albuquerque, New Mexico

July, 2014

DEDICATION

To my family: For your continued support, encouragement and confidence in me.

ACKNOWLEDGMENTS

Above all I thank my husband, Justin Sawyer, for his unwavering love, friendship, support, patience, encouragement and mental breaks (adventures) and my son, Atlas, who has brought indescribable happiness to my life. I express my gratitude to my advisor, Joe Cook, for his guidance, financial support in both laboratory work and research assistant positions, and continued confidence in my ability to complete this dissertation. I acknowledge my committee members, Chris, Steven and Enrique, for their support and advice.

I recognize the Cuervo lab members and associates for both technical support and comments on drafts of this dissertation, especially Brittany Barker and Jolene Rearick for friendship, technical assistance and good conversation, analytical guidance from Jason Malaney, Andrew Hope and Eric Waltari, and laboratory assistance from David Banks-Richardson, Sophia Thompson, William Kanagy and April Chavez. Thank you to Steve MacDonald for his enthusiastic and continued interest in my research and his dedication to Alaskan field work.

I am grateful to the various personnel associated with the field work and museum curation at the University of New Mexico's (UNM) Museum of Southwestern Biology and the University of Alaska's Museum of the North. Thank you Thomas Hanley for your interest in my research, James Baichtal for advice, guidance, and data associated with paleo-shorelines of Southeast Alaska, and Tom Jung for essential samples and long-term interest in Yukon *Peromyscus*.

iv

I could not have gotten through this without the love and support of my various family and friends who have encouraged me and allowed me to stay positive with a little laughter and adventure. I especially thank my parents, Reverie and Raul Escobedo for their resolute confidence in me and for encouraging me to follow my dreams, my brother Sahaih, and my in-laws, Linda and Don Sawyer, for their dedication to my success and help in providing me with time to work. Thank you Chris Himes and Dani Swenton for your friendships and continued support, and Kendrick Dane for helping Justin get through this dissertation.

Lastly, I would like to thank UNM Department of Biology's Molecular Biology Facility and the University of Alaska, Fairbanks Life Science Informatics for technical support. I am grateful to my various funding agencies and families who have made this work possible: the Gaudin and Hertel families, UNM Graduate and Professional Student Association, the Biology Graduate Student Association, the Biology Department, the Office of Graduate Studies, and the Department of Earth and Planetary Science at the University of New Mexico, T&E Inc, the American Society of Mammalogists, USDA Forest Service (Tongass National Forest and PNW Forest Sciences Lab) and National Science Foundation through the GK-12 and Undergraduate Opportunities (UnO) programs.

V

LIVING ON THE EDGE: A COMPARATIVE PHYLOGEOGRAPHIC STUDY OF REFUGIAL AND INSULAR FRAGMENTATION

By

Yadéeh Escobedo Sawyer B.S., BIOLOGY, UNIVERSITY OF NEW MEXICO, 2004 PH.D., BIOLOGY, UNIVERSITY OF NEW MEXICO, 2014

Abstract

Pleistocene glacial-interglacial cycles resulted in population isolation that led to inter- and intra- specific genetic divergence in many North American species. The magnitude of isolation also influenced species response to these climatic changes and set the stage for contemporary gene flow. We can refine our understanding of species response to historical climate change by identifying regions of ice-free persistence and refugia during glacial maxima, and geographic locations and genetic dynamics of postglacial secondary contact. This dissertation examines the role of glacial cover, geographic barriers, habitat fragmentation as a result of changes in sea level, and insularity on the contemporary genetic structure of three widespread, co-distributed, and ecologically distinct small mammals across western North America, with emphasis on the Pacific Northwest. Previous work on long-tailed voles (*Microtus longicaudus*), northwestern deer mice (Peromyscus keeni), and dusky shrews (Sorex monticolus) was used to formulate hypotheses of geographic distribution of genetic variation, timing of divergence, and regions of glacial persistence. This dissertation uses multilocus genetic data and historical climatic conditions to address these hypotheses. I identify regions of glacial persistence, the effects of historical sea levels on island connectivity, and regions

of post-glacial secondary contact of divergent lineages within *M. longicaudus*, *P. keeni* and *S. monticolus*. Additionally, I assess levels of endemism for the islands of Southeast Alaska. The collective findings of this dissertation improve our understanding of effects of historical range fragmentation and insularity on contemporary genetic diversity.

CHAPTER 1 – Introduction		
	References	5
CHAI	PTER 2 – Phylogeographic effects of refugia and post-glacial pathways in	
	Microtus longicaudus	8
	Abstract	8
	Introduction	9
	Materials and Methods	12
	Results	17
	Discussion	21
	References	28
	Figures and Tables	35

TABLE OF CONTENTS

CHAPTER 3 – Deer mice at high-latitudes: genetic consequences of refugia and

insularity in response to historical climate change	61
Abstract	<u>61</u>
Introduction	63
Materials and Methods	67
Results	73
Discussion	76
References	82
Figures and Tables	90

island biology in the Alexander Archipelago of Alaska	
Abstract	
Introduction	
Materials and Methods	128
Results	134
Discussion	139
References	146
Figures and Tables	
Figures and Tables	

CHAPTER 4 – Living on the edge: exploring the role of coastal refugia and

CHAPTER 5 – Conclusion	
Deferences	205
References	203

CHAPTER 1

Introduction

Genetic variability and taxonomic diversity are fundamental components of effective conservation planning. Understanding drivers of evolutionary diversification is important because it better equips ecosystem managers to make preemptive, rather than reactive, decisions. Increased knowledge of past responses of species to vicariant events (e.g., glaciation, orogeny), as well as an understanding of current population dynamics, allow us to investigate how and why genetic variation is partitioned across the landscape (Carstens *et al.* 2013; Soltis *et al.* 1997).

One of the primary drivers of extant boreal diversity was Quaternary (2.6 Ma to present) climatic fluctuation, especially the strong glacial cycles of the Late Pleistocene that have been implicated in the diversification of many North American species (Carstens *et al.* 2005; Godbout *et al.* 2008; Lee-Yaw *et al.* 2007). Repeated glacial and interglacial periods caused isolation due to fragmentation of species, resulting in lineage divergence of allopatric populations (Guralnick 2007; Knowles & Richards 2005; Small *et al.* 2003) and ultimately initiating speciation across a diverse set of organisms (Loehr *et al.* 2006; Mengel 1964; Soltis *et al.* 1997).

The Laurentide and Cordilleran ice sheets (Carrara *et al.* 2007; Dyke & Prest 1987; Roberts 1991) of the Last Glacial Maxima (LGM) covered most of North America with ice free regions to the north (Beringia) and south (Hafner & Sullivan 1995; Marr *et al.* 2008). Additionally, as a result of lower sea levels, exposed continental shelf along the west coast of the ice has been hypothesized to support additional refugia (Burg *et al.*

2005; MacDonald & Cook 1996) including the Alexander Archipelago (AA) of Southeast Alaska (Carrara *et al.* 2007; Mobley 1988). Post-glacial recolonization provided the opportunity for fragmented populations to reestablish geographic contact. The genetic footprints of these species help to clarify biogeographic history (Brunsfeld *et al.* 2001; Hewitt 1996; Riddle 1996).

Other than the few exceptions for extremely wide ranging species (Aubry *et al.* 2009; Fleming & Cook 2002; Godbout *et al.* 2008), most glacial persistence was either in Beringian for high-latitude and Holarctic species (Brunhoff *et al.* 2003) or in the southern portions of the continent (Good & Sullivan 2001). Species with wide geographic ranges provide the opportunity to explore the possibility of persistence in multiple refugia and ice-free regions. Additionally, paleoendemics for British Columbian Haida Gwaii and the AA are proposed (Conroy & Cook 2000; Fleming & Cook 2002) as a result of the existence of coastal refugia (Fladmark 1979). However, this has been a point of contention (Byun *et al.* 1999; Byun *et al.* 1997; Demboski *et al.* 1999). Although these high latitude islands are continental islands, they present unusual colonization and extinction dynamics as a result of glacial cover and recolonization from not only the mainland, but also coastal refugia (Whittaker & Fernández-Palacios 2007).

The major goal of my dissertation is to explore the role of historic climate in shaping genetic diversity and post-glacial dynamics of divergent lineages of three widespread, ecologically distinct, small mammals across both western North America and within the AA. I use a multifaceted approach that utilizes multiple independent loci and incorporates Geographic Information Systems (GIS), hypothesis testing, and statistical phylogeography to address questions related to evolutionary drivers of diversification in

Microtus longicaudus (long-tailed vole) *Peromyscus keeni* (northwest deer mouse), and *Sorex monticolus* (dusky shrew).

Chapter 2 uses multilocus DNA sequences to explore the genetic effects of glacial cover and test previous estimates of divergence among major mitochondrial DNA clades of *M. longicaudus*. Additionally, I explore current levels of gene flow among these lineages across the highly fragmented AA. I focus on the geographic region of Haines, Alaska to evaluate admixture and incomplete lineage sorting between the two northern mtDNA lineages. Lastly, genetic data, genetic diversity, demographic statistics, and species distribution models (SMDs) are used to determine the geographic origin of each cyt *b* clade.

Chapter 3 surveys genetic variation at the northwestern extent of *Peromyscus* in North America with respect to the effects of glacial fragmentation and persistence in multiple refugia. Previous work (Hogan *et al.* 1993; Lucid & Cook 2007; Wike 1998) suggests secondary contact in Yukon and identified cryptic genetic forms. I expand sampling across the geographic range and add independent loci to estimate levels of genetic differentiation and current genetic exchange, and then assess differentiation within the context of climatic niche predictions.

Chapter 4 is a comparative study that focuses on the impacts of historical climate and extent of insularity on current genetic variation across the islands of the Alexander Archipelago. By exploring genetic signatures across three ecologically distinct, codistributed species, I aim to determine the effects of island size and isolation (MacArthur & Wilson 1967) in a high latitude islands system on genetic diversity (Johnson *et al.* 2000; Lomolino *et al.* 2006). Furthermore, I use SDMs and paleo-shoreline

reconstructions to formally test the possibility of glacial coastal refugia. The speciesspecific Chapters 2 and 3 provide the current genetic landscape necessary to more thoroughly explore contemporary dynamics.

Chapter 5 summarizes the findings of my dissertation, while highlighting important parallels among chapters 2, 3 and 4. I emphasize the conservation and management implications of each chapter and potential ecosystem management challenges for fragmented habitats, like that of the AA. In the face of future climate change, as confounded by anthropogenic land use, it is imperative we provide an understanding of how historic climate change impacted organisms in Northwest North America.

My doctoral dissertation contributes to the fundamental understanding of the need for comprehensive, multi-taxa, multi-technique approach to phylogeography with regard to the influences of historical climate. If we hope to preserve species and communities under future climate change, it is imperative we appreciate the diversity and complexity of species response to past changes.

References

- Aubry KB, Statham MJ, Sacks BN, Perrine JD, Wisely SM (2009) Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. *Molecular Ecology* 18, 2668-2686.
- Brunhoff C, Galbreath KE, Fedorov VB, Cook JA, Jaarola M (2003) Holarctic phylogeography of the root vole (*Microtus oeconomus*): implications for late Quaternary biogeography of high latitudes. *Molecular Ecology* **12**, 957-968.
- Brunsfeld S, Sullivan J, Soltis D, Soltis P (2001) Comparative phylogeography of Northwestern North America: A synthesis. In: *Integrating ecological and evolutionary processes in a spatial context* (eds. Silvertown J, Antonovics J), pp. 319–339. Blackwell Science, Oxford.
- Byun AS, Koop B, Reimchen TE (1999) Coastal refugia and postglacial recolonization routes: A reply to Demboski, Stone, and Cook. *Evolution* **53**, 2013-2015.
- Byun SA, Koop BF, Reimchen TE (1997) North American black bear mtDNA phylogeography: Implications for morphology and the Haida Gwaii glacial refugium controversy. *Evolution* **51**, 1647-1653.
- Carrara PE, Ager TA, Baichtal JF (2007) Possible refugia in the Alexander Archipelago of southeastern Alaska during the late Wisconsin glaciation. *Canadian Journal of Earth Sciences* 44, 229-244.
- Carstens BC, Brennan RS, Chua V, *et al.* (2013) Model selection as a tool for phylogeographic inference: an example from the willow Salix melanopsis. *Molecular Ecology* **22**, 4014-4028.
- Carstens BC, Brunsfeld SJ, Demboski JR, Good JM, Sullivan J (2005) Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: Hypothesis testing within a comparative phylogeographic framework. *Evolution* **59**, 1639-1652.
- Conroy CJ, Cook JA (2000) Phylogeography of a post-glacialcolonizer: *Microtus longicaudus* (Rodentia : Muridae). *Molecular Ecology* **9**, 165-175.
- Demboski JR, Stone KD, Cook JA (1999) Further perspectives on the Haida Gwaii glacial refugium. *Evolution* **53**, 2008-2012.
- Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene History of the Laurentide Ice Sheet. *Géographie physique et Quaternaire* **42**, 237-263.

- Fladmark KR (1979) Routes: alternate migration corridors for early man in North America. *American Antiquity* **44**, 55-69.
- Fleming MA, Cook JA (2002) Phylogeography of endemic ermine (*Mustela erminea*) in southeast Alaska. *Molecular Ecology* 11, 795-807.
- Godbout J, Fazekas A, Newton CH, Yeh FC, Bousquet J (2008) Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. *Molecular Ecology* 17, 2463-2475.
- Good JM, Sullivan J (2001) Phylogeography of the red-tailed chipmunk (*Tamias ruficaudus*), a northern Rocky Mountain endemic. *Molecular Ecology* **10**, 2683-2695.
- Guralnick R (2007) Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. *Global Ecology and Biogeography* **16**, 14-23.
- Hafner DJ, Sullivan RM (1995) Historical and ecological biogeography of nearctic pikas (Lagomorpha, Ochotonidae). *Journal of Mammalogy* **76**, 302-321.
- Hetherington R, Barrie JV, Reid RGB, *et al.* (2003) Late Pleistocene coastal paleogeography of the Queen Charlotte Islands, British Columbia, Canada, and its implications for terrestrial biogeography and early postglacial human occupation. *Canadian Journal of Earth Sciences* **40**, 1755-1766.
- Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. *Biological Journal of the Linnean Society* **58**, 247-276.
- Hogan KM, Hedin MC, Koh HS, Davis SK, Greenbaum IF (1993) Systematic and taxonomic implications of karyotypic, electrophoretic, and mitochondrial DNA variation in *Peromyscus* from the Pacific Northwest. *Journal of Mammalogy* 74, 819-831.
- Johnson KP, Adler FR, Cherry JL (2000) Genetic and phylogenetic consequences of island biogeography. *Evolution* **54**, 387-396.
- Knowles LL, Richards CL (2005) Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. *Molecular Ecology* 14, 4023-4032.
- Lee-Yaw JA, Irwin JT, Green DM (2007) Postglacial range expansion from northern refugia by the wood frog, *Rana sylvatica*. *Molecular Ecology* **17**, 867-884.

- Loehr J, Worley K, Grapputo A, *et al.* (2006) Evidence for cryptic glacial refugia from North American mountain sheep mitochondrial DNA. *Journal of Evolutionary Biology* **19**, 419-430.
- Lomolino MV, Riddle BR, Brown JH (2006) *Biogeography*, 3, illustrated, revised edn. Sinauer Associates, Sunderland.
- Lucid MK, Cook JA (2007) Cytochrome-b haplotypes suggest an undescribed *Peromyscus* species from the Yukon. *Canadian Journal of Zoology-Revue Canadienne De Zoologie* **85**, 916-919.
- MacArthur RH, Wilson EO (1967) *The Theory of Island Biogeography* Princton University Press, New Jersey.
- Marr KL, Allen GA, Hebda RJ (2008) Refugia in the Cordilleran ice sheet of western North America: chloroplast DNA diversity in the Arctic-alpine plant Oxyria digyna. *Journal of Biogeography* **35**, 1323-1334.
- Mengel RM (1964) The probable history of species formation in some Northern Wood Warblers (Parulidae). *Living Bird* **1964**, 9-43.
- Mobley CM (1988) Holocene sea levels in Southeast Alaska preliminary results. *Arctic* **41**, 261-266.
- Riddle BR (1996) The molecular phylogeographic bridge between deep and shallow history in continental biotas. *Trends in Ecology & Evolution* **11**, 207-211.
- Roberts BL (1991) Modeling the Cordilleran ice-sheet. *Geographie Physique Et Quaternaire* **45**, 287-299.
- Small MP, Stone KD, Cook JA (2003) American marten (Martes americana) in the Pacific Northwest: population differentiation across a landscape fragmented in time and space. *Molecular Ecology* 12, 89-103.
- Soltis DE, Gitzendanner MA, Strenge DD, Soltis PS (1997) Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. *Plant Systematics and Evolution* **206**, 353-373.
- Whittaker RJ, Fernández-Palacios J (2007) *Island biogeography: ecology, evolution, and conservation*, Second edition edn. Oxford University Press, Oxford, UK.
- Wike MJ (1998) *Mitochondrial DNA variation among populations of Peromyscus from Yukon, Candada and Southeast Alaska*, Texas A&M University.

CHAPTER 2

Phylogeographic effects of refugia and post-glacial pathways in *Microtus longicaudus*

Abstract

Vicariant barriers as a result of Quaternary climate fluctuations resulted in population isolation and intraspecific divergence in many North American species. Identifying where these populations were isolated, the dynamics of post-glacial recolonization and subsequent contact, and effects of insularity can help us understand the drivers of evolution in northern taxa. Incorporating a multilocus approach under a Bayesian coalescent framework, we explored signatures of divergence and post-glacial colonization within a wide-ranging vole, *Microtus longicaudus* (n=143), to identify glacial refugia, effects of insularity, and dynamics of secondary contact. Through a combination of genetic data and species distribution models, we found that both historical climate and geographic topography influenced contemporary genetic variation in this species. Multiple geographic locations for glacial persistence were identified, including Beringian (Northern), Southeast Alaska (Coastal), and southern continental North American regions. We detected high levels of island endemism and new locations of secondary contact between the Island and Northern clades. Integrative phylogeographic approaches helped identify previously undocumented refugia and intralineage genetic diversity.

Introduction

Population isolation can occur through vicariant events, including but not limited to glaciation and orogeny. Climatic fluctuations of the Quaternary (2.6 million years ago to present) included repeated Pleistocene glacial-interglacial cycles which affected divergence and speciation processes (Carstens *et al.* 2005; Godbout *et al.* 2008; Lee-Yaw *et al.* 2007). During glacial phases, large portions of North America were covered by glaciers, including the most recent Laurentide and Cordilleran ice sheets (Carrara *et al.* 2007; Dyke & Prest 1987; Roberts 1991), resulting in major geographic rearrangements of temperate and arctic species (Lyons 2003). In addition to northern (e.g., Beringia) and southern ice-free areas, there were refugial regions along the coast of British Columbia and in southeastern Alaska (Loehr *et al.* 2006; Pielou 1991; Sawyer *et al.* submitted).

As glaciers receded, deglaciated areas were recolonized by previously isolated populations. Across various taxa, the most common regions of secondary contact of divergent lineages which are postulated to have persisted both south of the ice and in coastal refugia are restricted to regions in southern Canada or the main continent in the United States (Galbreath *et al.* 2009; Good & Sullivan 2001; Nielson *et al.* 2001). Additionally, a few studies have reported contact between lineages in the northern extent of Southeast Alaska near Haines (Conroy & Cook 2000; Demboski & Cook 2001). We hypothesize this northern contact zone reflects post-glacial contact between coastal refugial populations of limited mobility with either a rapidly colonizing southern continental lineage or a northern refugial population that persisted in Beringia.

Vicariant events can lead to changes in demography and allopatric isolation, which impact genetic relationships among postglacial populations (Hewitt 1996; Ibrahim

et al. 1996; Lessa *et al.* 2003). Refugial populations generally experienced population bottlenecks (Rand 1954; Shafer *et al.* 2010; Stewart *et al.* 2010). Descendent populations in previously glaciated regions show signs of rapid population expansion (Hundertmark *et al.* 2002; Lessa *et al.* 2003; Walker *et al.* 2009) and have reduced levels of genetic variation with little intralineage diversification compared to conspecific lineages that persisted in non-glaciated regions (Hayes & Harrison 1992; Hewitt 2004; Marr *et al.* 2012). However, reconstructing recolonization patterns is complex (Godbout et al. 2008) because of the presence of cryptic refugia (Shafer *et al.* 2010) or phalanx expansion (Hewitt 2000). Also, genetic variation may be higher than expected if there are multiple lineages in a given region, or there is admixture due to secondary contact between lineages expanding from independent refugia into the same region (Fleming & Cook 2002; Marr *et al.* 2008; Petit *et al.* 2003).

The broad range of *M. longicaudus*, spanning 35 degrees of latitude across western North America, provided an excellent opportunity to explore how historic events and insularity shaped endemism and geographic genetic variation across western North America. *Microtus longicaudus* occupies montane and mesic herbaceous habitats (Lomolino *et al.* 1989; Smolen & Keller 1987). Previous work based on variation in a single mitochondrial gene identified a series of geographically discrete lineages with divergence resulting from late Quaternary glacial-interglacial cycling and potential secondary contact in Haines, Alaska (Conroy & Cook 2000). Conroy and Cook (2000) suggested the Island clade experienced recent expansion from a Southeast Alaska refugium with low levels of gene flow among islands. The Northern clade indicated pre-

Last Glacial Maximum (LGM) isolation followed by recent expansion and colonization, while the Central and Southern clades were the result of mid-Pleistocene isolation.

We test previous genetic relationships within *M. longicaudus* (e.g., Conroy & Cook 2000; Spaeth *et al.* 2009) and identify drivers of genetic diversification, timing of divergence, refugial locations, and post-colonization pathways and dynamics by expanding prior sampling and employing a multilocus approach and species distribution models (SDM). We focus on the genetic dynamics of this species at the northern extent of its geographic range because of the complex biogeographical history of the region, potential for contact among divergent lineages within species, and the possibility that populations persisted in previously undetected refugia (Conroy & Cook 2000; Heaton *et al.* 1996; Klein 1965; Sawyer *et al.* submitted).

We explore the multilocus distinction between the mitochondrial Northern and Island clades and relationships among populations across the Alexander Archipelago (AA). We also explore the possibility of gene flow among insular populations and also populations representing divergent lineages. Finally, we refine the extent and location of northern contact zones, including contact in the Haines region of Alaska, as we begin to identify underlying evolutionary processes that have structured this widely distributed species. Conservation design and implementation (Malaney & Cook 2013) can benefit from identifying historical refugia, endemism on islands, and instances of secondary contact within high latitude species, which are crucial to the understanding of contemporary dynamics of gene flow.

Materials and methods

Sampling and laboratory procedures

Most museum specimens used in this work were obtained via fieldwork conducted annually since 1991. Frozen heart or liver tissues from these specimens are archived at the Museum of Southwestern Biology at the University of New Mexico (n=52) and the University of Alaska Museum of the North (n=91). Sampling was expanded from previous studies, now representing 46 general collecting localities spanning the geographic range of *M. longicaudus*. We focused most intensively on northern coastal sampling to explore population structure across the AA and identify potential contact between the Island and Northern clades near Haines Alaska (n=28) (Table 1; Figure 1). Samples represented 11 of the 15 currently recognized subspecies of *M. longicaudus* (Figure 1; Hall 1981). Additional cytochrome *b* gene (cyt *b*) sequences were obtained from GenBank for 67 individuals of *M. longicaudus*, one for each outgroup (*M. pennsylvanicus* and *M. montanus*), as well as a single Rag1 sequence for *M. pennsylvanicus* (Table 1). All sequences were deposited in GenBank (Table 1).

Genomic DNA was extracted using either Omega Bio-Tek (Norcross, GA) E.Z.N.A. tissue extraction kits or standard salt extraction (Fleming & Cook 2002), with final concentrations adjusted to 50ng μ l⁻¹. We amplified the complete mitochondrial (mtDNA) cyt *b* (767-1143 bp, n=118) and partial nuclear (nuDNA) gene sequences, including Protein C-est-2 (ETS2, 731 bp, n=71), β-fibrinogen (FGB, 600 bp, n=101), and Recombination Activating Protein 1 (Rag1, 1059 bp, n=83; Table 2). Polymerase chain reaction (PCR) mixtures were 1µl DNA extract, 1 µl of each primer (2mM), 1.5 µl PCR buffer (10x), 1.5 µl MgCl₂ (25mM), 1.25 µl of dNTP's (10mM), 1.25 µl of Bovine Serum

Albumen (BSA, 1.5mM), and 0.08 µl of Ampli*Taq* DNA polymerase (Applied Biosystems, Foster City, CA, USA) and was adjusted to a final volume of 15 µl with ddH₂O. PCR products were cleaned using ExoSap-IT (Affymetrix, Santa Clara, CA) prior to sequencing at either the High Throughput Genomic Center (Seattle, WA, USA) or using an Applied Biosystems 3110 DNA sequencer (Molecular Biology Facility, UNM) using original PCR primers and BigDye v3.1 (Applied Biosystems) terminator reaction chemistry.

Sequences were visualized and edited in SEQUENCHER v4.2 (GeneCodes Corporation). PHASE v2.1 (Stephens & Scheet 2005; Stephens *et al.* 2001) was used to infer alleles of nuclear heterozygotes. Five runs of 1,000 iterations with different seeds, and a burn-in of 1,000 were conducted and the iterations with the best goodness-of-fit were chosen. Posterior probabilities for nucleotides \geq 0.85 were chosen; otherwise each ambiguous site was coded as N and aligned in MEGA v5.2 (Tamura *et al.* 2011) using the MUSCLE algorithm and checked by eye.

Species Distribution Models

We generated SDMs for *M. longicaudus* to identify regions of climate suitability across western North America. Because of relatively small sample sizes for sequence data across the southern continental portion of their range, we were not able to generate clade-specific models. Models included bioclimatic variables obtained from WORLDCLIM (www.worldclim.org, Hijmans *et al.* 2005) at a resolution of 2.5 arc-minutes for current, as well as mid-Holocene (~6ka,) and Last Glacial Maximum (LGM; ~21 ka, http://pmip2.lsce.ipsl.fr/, Braconnot *et al.* 2007), and the last inter-glacial (LIG; ~120 –

140 ka). To avoid over-parameterization of the model, we used ENMTOOLS (Warren *et al.* 2008; Warren *et al.* 2010) to eliminate highly correlated variables (Pearson correlation \geq 0.75). Final bioclim variables were selected based on their biological significance for *M. longicaudus*. Locality data were obtained in October 2013 from natural history collections databases (e.g., ARCTOS http://arctos.data-base.uaf.edu and MaNIS http://manisnet.org/; Stein & Wieczorek 2004). To moderate spatial autocorrelation which can lead to over-fitting of the model (Reddy & Davalos 2003), we reduced sample points to 50 km apart by removing intervening samples (Hope *et al.* 2011) which resulted in 149 sample localities.

SDMs were constructed for each time period using MAXENT v3.3.3k (Elith *et al.* 2006; Phillips *et al.* 2006; Phillips & Dudik 2008). Basic assumptions were: no topographic change has occurred, niche conservatism (Wiens & Graham 2005), environmental data adequately predicts species occurrence (Kozak *et al.* 2008; McCormack *et al.* 2010), and sampling records effectively captured the entire niche breadth of the species (Pearson *et al.* 2007). Final runs used bioclim variables 1, 6, 7, 9 and 11 and were performed using cross-validation across 10 runs, with a regularization parameter of 5 (e.g., Hope *et al.* 2011; Warren & Seifert 2011) and 1,000 iterations; all other values were default. Mean and median models were not significantly different from each other, so mean models based on MIROC and CCM models of LGM were averaged in ARCGIS 10.1 (ESRI, Redlands, CA, USA) using the raster calculator. The minimum threshold values for climate suitability were the low median threshold values over all replicates (Pearson *et al.* 2007).

Phylogenetic analyses and estimation of divergence times

Phylogenetic reconstructions using cyt b were estimated within Maximum Likelihood (ML) and Bayesian frameworks. The TrN+I+G model of evolution had the lowest AIC value using MODELTEST (Posada & Buckley 2004; Posada & Crandall 1998). ML estimations were performed in MEGA with 1,000 bootstrap replicates. To generate the Bayesian phylogeny and divergence dates for major clades we used BEAST v1.7.5 (Drummond et al. 2012) and input files prepared in BEAUTI v1.7.5. A mutation rate of 4% Myr⁻¹ was assigned based on previous estimates of 3-5% Myr⁻¹ (Brunhoff *et al.* 2003; Conroy & Cook 1999; Hope et al. 2013). We applied a coalescent constant size (Kingman 1982) tree prior with a random start tree, using an uncorrelated lognormal relaxed clock for 60 million generations (sampled every 2000). Time to Most Recent Common Ancestor (TMRCA) was determined with a 95% posterior probability distribution in TRACER v1.5 (Rambaut & Drummond 2007). For each tree, convergence statistics were assessed with effective sample size (ESS) values ≥ 200 in TRACER. Three independent runs were checked for convergence in the trace graphs then combined using LOGCOMBINER v1.7.5, with a 10% burin-in. Tree files were annotated in TREEANNOTATOR v1.7.5, and topologies were visualized in FIGTREE v1.4.0 (Rambaut 2009). Net genetic divergence among major clades was calculated in MEGA.

We used a multilocus approach to explore species relationships (Carstens & Knowles 2007; Edwards *et al.* 2007; Maddison 1997). The species tree was estimated in *BEAST (Heled & Drummond 2010), which uses a Bayesian Markov chain Monte Carlo (MCMC) coalescent approach to coestimate multiple gene trees embedded within the corresponding species tree topology. Because one of our goals was to explore the

relationship of major cyt *b* clades, *a priori* groups were based on supported cyt *b* clades. Independent, unlinked loci were partitioned and set to appropriate substitution models (Table 3), calculated in MODELTEST. An uncorrelated lognormal relaxed clock was employed for cyt *b* at a mutation rate of 4% Myr⁻¹ and strict clocks were set for estimations of phased nuclear loci based on cyt *b*. The tree priors were set to a Species Tree Yule Process with a piecewise linear and constant root population size model and random start tree. MCMC chain was run for 2 billion iterations, sampling every 2 million. TRACER, LOGCOMBINER and TREEANNOTATOR were used as above.

Migration estimates

We used BAYESASS v3.0.3 (Wilson & Rannala 2003) to determine recent levels of gene flow among populations representing the major cyt *b* clades and across the islands of Southeast Alaska, as well as among northern populations with secondary contact or in close geographic proximity. BAYESASS uses a non-equilibrium, multilocus Bayesian approach to estimate migration rates under a MCMC algorithm. We used phased multilocus data and ran 200 million iterations with a 20 thousand burn-in and sampling every 2 thousand. Mixing parameters of allele frequencies, inbreeding coefficient, and migration rates were adjusted following the program guidelines.

Demographic analyses

To explore signatures of stability and post-glacial expansion through phased multilocus historical demography for each well-supported major cyt *b* clade, we reconstructed Extended Bayesian Skyline Plots (EBSP) and cyt *b* Bayesian skyline plots

(Heled & Drummond 2008) implemented in BEAST. Colorado Plateau and North Pacific Coast, COP and NPC respectively, were omitted due to low sample sizes. Strict molecular clocks for all phased loci and appropriate models of evolution (Table 3) assigned for each of three independent runs per data set included a MCMC chain of 2 billion steps, sampled every 2 million steps. TRACER was used to assess convergence. Significant population size change occurred in EBSPs if zero was excluded from the 95% confidence interval (CI) of the estimate of the number of size-change steps (Lim & Sheldon 2011). To test for recent demographic fluctuation in cyt b major clades for each locus, we calculated a series of population genetic summary statistics (segregating sites (*S*), haplotype diversity (*Hd*), and nucleotide diversity (π)) in DNASP 5.10.1 (Librado & Rozas 2009). Historic demographic change or selection potential were assessed through Tajima's *D* (1989), Fu's *Fs* (1997), and Ramos-Onsin and Rosas' *R*₂ (Ramos-Onsins & Rozas 2002) with 10 thousand coalescent simulations. Selection potential was assessed through the HKA Test (Hudson *et al.* 1987).

Results

Phylogenetic and network analysis

Cyt *b* nucleotide base composition was similar to that previously observed for mammals in general (Irwin *et al.* 1991) and for *M. longicaudus* more specifically (Conroy & Cook 2000; Spaeth *et al.* 2009), with an overall deficit of guanine (13.2%, A 30.7%, C 26.9%, and T 29.1%). We found strong geographic structure within cyt *b* across the geographic range of *M. longicaudus* (Figures 1 - 3). Cutoff values for topological support in the phylogenetic trees were \geq 0.7 ML bootstrap support and \geq 0.95 Bayesian

posterior probability. All phylogenies recovered a Southern clade comprised of two internal lineages (S1: Colorado and Wyoming; S2: New Mexico, Colorado and Arizona), a Central clade (California, Idaho, Montana and Wyoming), and a clade composed of a COP clade (Arizona into Idaho). Also, a northwestern clade consisting of a ML and Bayesian supported NPC clade (British Columbia, Oregon and Washington), Bayesian supported Northern clade (interior Alaska, through Yukon and British Columbia), and Island clade (south-central Alaska, southern Yukon, and Southeast Alaska). Within the AA, Prince of Wales Island representatives appear in both a supported lineage with Tuxekan Island, as well as within the Island clade without further distinction. Mainland Southeast Alaska locations, including Haines and Juneau, have representatives of both the Northern and Island clades. Cyt *b* variation across the range of *M. longicaudus* was not consistent with current subspecies designations (Figure 1).

Both the Northern and Island clades showed substantial internal structure (Figure 2). Haines populations were represented by five supported lineages (four in the Island clade and one in the Northern), as well as four Island clade and five Northern clade individuals without additional lineage support. Net genetic distance (Table 4) between outgroups and major clades within *M. longicaudus* ranged from 8.3% \pm 0.7% (Southern to *M. montanus*) to 10.5% \pm 0.9% (Southern to *M. pennsylvanicus*). Within *M. longicaudus*, the mean net genetic distance was 2.7% \pm 0.4%, with the least divergence between the S1 clade and Northern, NPC, Island, and Central clades (3.3% \pm 0.4%).

The species tree identified a single supported clade consisting of the Island, Northern and NPC cyt *b* clades. No other significant support was detected (Figure 4). Nuclear gene haplotypes (Figure 5) are either lineage specific or shared across a large number of individuals and are not dependent on geographic proximity, including Haines. This suggests the lack of species tree resolution may be the result of incomplete lineage sorting, rather than hybridization (Toews & Brelsford 2012),but additional methods are needed to accurately distinguish between these two processes. ETS2 has the most structure; however, none of the nuclear genes provided full diagnostic variation.

Genetic diversity, demographic analyses and current levels of gene flow

Nuclear loci had varying amounts of genetic diversity within *M. longicaudus* (Table 3). No selection was detected in the HKA tests for all loci. ETS2 contained one indel of one base, two of two bases, and a single four base indel. FGB contained three single base indels and one seven base indel. Rag1 did not have indels. Outgroup sequences for FGB and *M. montanus* sequences for ETS2 and Rag 1 were not generated.

All Ramos-Onsin and Rozas R_2 values were significant for all loci. Based on degree of genetic variation, significance of expansion statistics (Table 3) and both cyt *b* skyline plots and EBSPs (Figure 6), we inferred population demographic history. Populations that experienced recent expansion generally have low *Hd*, while high *Hd* and π are indicative of stability, and low *Hd* and high π for population bottlenecks. The Island clade is consistent with a founder event that then experienced rapid growth, with high cyt *b Hd* a result of genetic drift in the small populations of the fragmented island system. The Northern clade is also consistent with reduced ancestral population size followed by rapid expansion. The small sample sizes for the NPC and COP clades make inference difficult. The Central clade was historically stable with post-glacial expansion. The Southern clade represents a glacially stable population that may have experienced a bottleneck at some point in time, although signals of the bottleneck are only present in the cyt b data.

The mean of three runs for the Bayesian estimates of migration indicated low levels of gene flow between major cyt *b* clades (Table 5). The Island clade was the most genetically isolated of the major clades. Gene flow (proportion of migrants derived from other populations) among geographically proximate populations of divergent cyt *b* clades was highest from populations in the Northern clade in Haines, and Juneau into Haines for the Island clade (Table 6; Figure 7). Insular populations within the Island clade contained populations that have no more than 0.0187 proportion of migrants between any given island or adjacent mainland pair (Table 7).

Divergence times and alternate models of glacial refugia and postglacial recolonization

Using the average rodent mutation rate, cyt *b* TMRCAs detected for *M*. *longicaudus* and all clades (except S2) were before the LIG, and for S2 before the LGM. The multilocus estimations also place both *M. longicaudus* and the North/Island clade TMRCAs before the LIG.

SDMs had predictive performances with a mean AUC value of 0.834 (standard deviation 0.04) for the training and test data. The LIG SDM suggests *M. longicaudus* was restricted to coastal or extreme southern locations with an increase in climate suitability for the LGM, allowing northward and eastward movement. By the mid-Holocene, climate conditions were suitable to cover most of the current range of *M. longicaudus*. Because the SDMs are conservative (i.e., limited by a minimum threshold value) with fewer

northern continental localities, not all localities currently occupied are predicted in the models (Figure 3).

Discussion

Through the use of multilocus data and SDMs, we explored how historic climatic events structured genetic variation within *M. longicaudus* across western North America and the islands of Southeast Alaska. Typical post-glacial colonization is from southern ice-free regions northward, resulting in classic genetic signatures of expansion. Northern populations are relatively homogenous while southern populations are more variable (Hewitt 2000; Lessa *et al.* 2003; Malaney & Cook 2013). Based on previous studies of *M. longicaudus*, we expected to detect similar genetic signatures across the range of this species, but our results only partially correspond with that expectation in that the northern clades are not genetically homogeneous.

Biogeographic drivers of isolation, glacial refugia and postglacial recolonization

The multilocus estimate for TMRCA of *M. longicaudus* is well before the LIG (Table 9) and comparable to single locus estimates from previous studies $(340 \pm 70 \text{ ka}, Conroy & Cook 2000)$. This estimate predates the fossil record of *M. longicaudus* which includes fossils dated to the Wisconsinan glaciation in Idaho, Wyoming, Colorado and New Mexico (Smolen & Keller 1987) and post-glacial locations in Alberta and British Columbia (Harington 2011b). The absence of a richer fossil record, especially at the northern extent of their range may be a result of poor preservation or difficulty in precise identification of ancient remains (e.g., isolated teeth, Harington 2011a).

Contrary to conclusions drawn by Spaeth *et al.* (2009), we detected cyt *b* intralineage variation and substantial spatial and temporal patterns of genetic differentiation. Also, divergence between major lineages of *M. longicaudus* was likely reinforced through subsequent glacial isolation, as indicated by the SDMs (Figure 3). The southern clades appear stable resulting in deeper genetic structure, while the northern clades have shallow structure due to recent range expansion. This pattern is consistent with persistence and stability of southern clades for greater periods of time, in contrast to the more dynamic history of colonization seen in the northern lineages.

This expanded view of *M. longicaudus* phylogeography largely corroborates previous work based on much more limited geographic and genetic sampling (Conroy & Cook 2000; Spaeth *et al.* 2009), but there are notable discrepancies due to this refined view of how intraspecific variation is partitioned. Spaeth *et al.* (2009) focused on the Greater Yellowstone Ecosystem and identified subfossils from both the Northern and Central clades within Yellowstone (Figure 8) that support the post-glacial presence of *M. longicaudus* south of the ice. "Northern" sampling in Spaeth *et al.* (2009) was limited, however, and could represent COP individuals being genetically associated with their "Northern" clade as result of the sampling scheme, suggested by the wide geographic range of the Northern clade.

Our findings are consistent with previous suggestions that the Island clade persisted in coastal refugia during the LGM, followed by expansion and subsequent isolation on multiple islands (Figure 8). Heaton and Grady (2007) found abundant *M*. *longicaudus* fossils from On Your Knees Cave on Prince of Wales Island (Figure 8) that radiocarbon date to the middle Wisconsin Interstadial (38 – 25 ka), but fossil evidence

disappeared by the LGM due to glacial advance onto this island. *Microtus longicaudus* reappeared in On Your Knees and El Capitan and Bumper caves on Prince of Wales Island by the early Holocene (Heaton *et al.* 2003), which suggests that it re-colonized shortly after the LGM. *Microtus longicaudus* may have re-colonized the islands from as many as three coastal (exposed continental shelf) refugia in the AA (Sawyer *et al.* submitted), rather than from mainland populations. Fossil support for refugial locations in the AA will be difficult to locate, as much of the coast that was exposed during the LGM is now under up to 165 m of water.

SDMs, levels of cyt *b* variation, and multilocus genetic signals suggest that *M. longicaudus* persisted in multiple refugia within the AA. Lack of connectivity between insular populations produced extensive inter-island structure, with populations on 13 of the 19 islands displaying significantly divergent mtDNA. Also, within the AA, *M. longicaudus* is the only vole that ranges across most of the islands, with the exception of Baranof Island. On the mainland it co-occurs with two congeners, *M. oeconomus* (root vole) and *M. pennsylvanicus* (meadow vole). These congeners appear to be spatially associated with the Continental and Beringian clades of *Mustela erminea* (ermine) (Dawson *et al.* 2014; Fleming & Cook 2002; MacDonald & Cook 2007). For *M. longicaudus*, there is no clear association with a single clade of this vole-specialist predator (Verts & Carraway 1998); rather, the island lineage of *M. longicaudus* co-occurs with all three major clades (Continental, Beringian and Island) of ermine.

The Island and Northern clades of *M. longicaudus* appear to have two points of secondary contact (Haines and Juneau) and multiple regions of geographic proximity southward along the mainland coast of Southeast Alaska (Figure 7). These multiple

points of contact spread along the coast may lend support for the hypothesis that Island refugial populations followed glacial retreat to recolonize the adjacent mainland through multiple colonization pathways (Figure 8), but more detailed assessment of these mainland sites with increased sampling is needed. A broad region of contact and introgression along the coast may be similar to the broad area of introgression along the coast detected in red-backed voles of the genus Myodes (Runck et al. 2009). Contrary to previous suggestions that the Northern clade expanded from a single interior route from south of the ice, we conclude that the Northern clade persisted in Beringia and recently expanded southward into previously glaciated regions of southern Alaska, Yukon and northern BC (Figure 8). Although SDMs do not indicate regions north of the ice for Northern populations, the models were conservative and built on relatively limited northern sampling. High levels of intralineage genetic diversity, net genetic distance among other clades, and the restriction of the range of this clade to high latitudes are consistent with persistence in a northern refugium. Other studies on both mammalian and non-mammalian taxa have identified genetic signatures that poin toward the influence of an eastern Beringia refugium during glacial periods (Sawyer *et al.* submitted; Fleming & Cook 2002; Stamford & Taylor 2004).

SDMs also support the persistence of *M. longicaudus* along the coast of Oregon and Washington (NPC clade) during glacial advances. The Central and Southern clades have been effectively isolated and relatively demographically stable since the mid- to late- Pleistocene. Lastly, the COP clade, previously identified from a limited region in northern Arizona, occurs northward into Utah and potentially contacts both the S2 and Central clades.

Contemporary genetic structure and current levels of gene flow

Disentangling signatures of incomplete lineage sorting versus secondary admixture is important to understand the effects of historical climate across contemporary distributions and factors influencing genetic diversification. Recent diversification within *M. longicaudus*, including Haines populations, is reflected in the poorly resolved species tree for populations from northern regions. Future studies could use alternate genetic data to infer if admixture has occurred between ndivergent populations (Qu *et al.* 2012).

Generally, intraspecific cyt *b* net genetic distance is less than 2% while interspecific distances are above 10% in mammals (Bradley & Baker 2001). Values between 2 and 10% warrant further study given the potential for incipient speciation (Hope *et al.* In Press). Low levels of cyt *b* net genetic distance among the Island, Northern, NPC and COP clades fall within the levels of intraspecies variation. The taxonomic status of these clades in relation to the Central and Southern lineages, however, should be clarified. Shallow divergence and levels of genetic differentiation between the Northern clade into Island clade populations near Haines may be explained by the geographic proximity, recent (Holocene) secondary contact, and incomplete lineage sorting of Island and Northern populations. As with net genetic distance, gene flow values between 0.035 and 0.10 warrant further investigation because they are between observed values for inter and intra specific estimates, respectively (e.g. Nakajima *et al.* 2012; Ross *et al.* 2010). The geographic distribution of genetic variation does not correspond to current subspecies designations.

Clear segregation of the Northern, NPC and Island clades from the COP, Central and Southern clades is reflected both the species tree (Figure 4) and recent estimates of migration (Table 5). On the mainland, no detectible levels of admixture are present in the Haines populations but further work using more rapidly evolving loci is needed. Lower levels of gene flow from the Island clade into Haines likely reflect physical barriers to movement (i.e., ocean straits, extant glaciers). Genetic exchange among island populations is limited, likely due to oceanic barriers. Seawater has probably inhibited gene flow among island populations in the AA due to sea level rise during the Holocene (*c.* 14 - 8 ka bathymetric reconstruction, Baichtal & Carlson 2010).

The Haines region has experienced dynamic changes that reflect post-glacial expansion by both Island and Northern clades. Contact or geographic proximity should be further explored along the central and northern coast of Southeast Alaska northward to Haines. Increased sampling and geographic coverage in this study corroborated the previously identified region of secondary contact in Haines (Conroy & Cook 2000) and extended potentially admixed sites southward to at least Juneau.

Conclusions

The dynamic influence of Pleistocene climate variation and glacial cover, as played out over the complex topography of western North America, can be tied to the geographic distribution of genetic variation in *M. longicaudus*. As expected, the mid-Pleistocene onset of diversification is consistent with that observed in other taxa. As with other boreal species, genetic variation and structure is highest in the southern portions of this species range. On the other hand, mtDNA in northern populations also is structured
and reflects both persistence in multiple northern refugia (coastal and eastern Beringia) and subsequent isolation on multiple islands of the Alexander Archipelago. Similar refugial regions were recently identified for ermine (Dawson *et al.* 2014).

Phylogeographic breaks generally do not correspond with current subspecies designations (Hall 1981). This is the first study to more intensively examine genetic variation of *M. longicaudus* across the AA (19 islands), as well as extending our view of structure across the entire range of the species using multiple nuclear perspectives. Future sampling in central and southern British Columbia and along the southern periphery of the long-tailed vole's range will expand our view of both diversification and admixture processes. Further incorporation of ancient DNA from fossils could further extend our exploration of genetic variability through time, as observed in areas such as the Greater Yellowstone Ecosystem (Spaeth *et al.* 2009). Identifying the effects of historical climate change on contemporary species sets a powerful stage for predictions for future biotic responses.

References

- Baichtal JF, Carlson RJ (2010) Development of a model to predict the location of Early-Holocene habitation sites along the western coast of Prince of Wales Island and the Outer Islands, Southeast Alaska. *Current Research in the Pleistocene* 27, 64-67.
- Braconnot P, Otto-Bliesner B, Harrison S, *et al.* (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum Part 1: experiments and large-scale features. *Climate of the Past* **3**, 261-277.
- Bradley RD, Baker RJ (2001) A test of the genetic species concept: Cytochrome-b sequences and mammals. *Journal of Mammalogy* **82**, 960-973.
- Brunhoff C, Galbreath KE, Fedorov VB, Cook JA, Jaarola M (2003) Holarctic phylogeography of the root vole (*Microtus oeconomus*): implications for late Quaternary biogeography of high latitudes. *Molecular Ecology* **12**, 957-968.
- Carrara PE, Ager TA, Baichtal JF (2007) Possible refugia in the Alexander Archipelago of southeastern Alaska during the late Wisconsin glaciation. *Canadian Journal of Earth Sciences* **44**, 229-244.
- Carstens BC, Brunsfeld SJ, Demboski JR, Good JM, Sullivan J (2005) Investigating the evolutionary history of the Pacific Northwest mesic forest ecosystem: Hypothesis testing within a comparative phylogeographic framework. *Evolution* **59**, 1639-1652.
- Carstens BC, Knowles LL (2007) Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: An example from *Melanoplus* grasshoppers. *Systematic Biology* **56**, 400-411.
- Conroy CJ, Cook JA (1999) MtDNA Evidence for Repeated Pulses of Speciation Within Arvicoline and Murid Rodents. *Journal of Mammalian Evolution* **6**, 221-245.
- Conroy CJ, Cook JA (2000) Phylogeography of a post-glacialcolonizer: *Microtus longicaudus* (Rodentia : Muridae). *Molecular Ecology* **9**, 165-175.
- Dawson NG, Hope AG, Talbot SL, Cook JA (2014) A multilocus evaluation of ermine (*Mustela erminea*) across the Holarctic, testing hypotheses of Pleistocene diversification in response to climate change. *Journal of Biogeography* 41, 464-475.
- Demboski JR, Cook JA (2001) Phylogeography of the dusky shrew, *Sorex monticolus* (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. *Molecular Ecology* **10**, 1227-1240.

- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution* **29**, 1969-1973.
- Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene History of the Laurentide Ice Sheet. *Géographie physique et Quaternaire* **42**, 237-263.
- Edwards SV, Liu L, Pearl DK (2007) High-resolution species trees without concatenation. *Proceedings of the National Academy of Sciences of the United States of America* **104**, 5936-5941.
- Elith J, Graham CH, Anderson RP, *et al.* (2006) Novel methods improve prediction of species' distributions from occurrence data. *Ecography* **29**, 129-151.
- Fleming MA, Cook JA (2002) Phylogeography of endemic ermine (*Mustela erminea*) in southeast Alaska. *Molecular Ecology* **11**, 795-807.
- Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. *Genetics* **147**, 915-925.
- Galbreath KE, Hafner DJ, Zamudio KR, Agnew K (2009) Isolation and introgression in the Intermountain West: contrasting gene genealogies reveal the complex biogeographic history of the American pika (*Ochotona princeps*). Journal of Biogeography 37, 344–362.
- Godbout J, Fazekas A, Newton CH, Yeh FC, Bousquet J (2008) Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. *Molecular Ecology* 17, 2463-2475.
- Good JM, Sullivan J (2001) Phylogeography of the red-tailed chipmunk (*Tamias ruficaudus*), a northern Rocky Mountain endemic. *Molecular Ecology* **10**, 2683-2695.
- Hall ER (1981) The mammals of North America. Volume 2. *The mammals of North America. Volume 2.*, 601-1181.
- Harington CR (2011a) Pleistocene vertebrates of the Yukon Territory. *Quaternary Science Reviews* **30**, 2341–2354.
- Harington CR (2011b) Quaternary cave faunas of Canada: a review of the vertibrate remains. *Journal of Cave and Karst Studies* **73**, 162-180.
- Hayes JP, Harrison RG (1992) Variation in mitochondrial DNA and the biogeographic history of woodrats (*Neotoma*) of the eastern United States. *Systematic Biology* 41, 331-344.

- Heaton TH, Grady F (2007) The Vertebrate Fossil Record of On Your Knees Cave, Prince of Wales Island, Southeast Alaska. *Quaternary International* **167-168**, 160.
- Heaton TH, Grady F, Schubert BW, Mead JI, Graham RW (2003) The Late Wisconsin vertebrate history of Prince of Wales Island, southeast Alaska. In: *Ice Age cave faunas of North America*. (eds. Schubert BW, Mead JI, Graham RW), pp. 17-53. Indiana University Press, Indiana.
- Heaton TH, Talbot SL, Shields GF (1996) An Ice Age refugium for large mammals in the Alexander Archipelago, southeastern Alaska. *Quaternary Research* **46**, 186-192.
- Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. *BMC Evolutionary Biology* **8**, 289-303.
- Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. *Molecular Biology and Evolution* **27**, 570-580.
- Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405, 907-913.
- Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. *Biological Journal of the Linnean Society* **58**, 247-276.
- Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. *Philosophical Transactions of the Royal Society B-Biological Sciences* **359**, 183-195.
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology* 25, 1965-1978.
- Hope AG, Takebayashi N, Galbreath KE, Talbot SL, Cook JA (2013) Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals. *Journal of Biogeography* **40**, 415-429.
- Hope AG, Waltari E, Fedorov VB, *et al.* (2011) Persistence and diversification of the Holarctic shrew, *Sorex tundrensis* (Family Soricidae), in response to climate change. *Molecular Ecology* **20**, 4346-4370.
- Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. *Genetics* **116**, 153-159.
- Hundertmark KJ, Shields GF, Udina IG, *et al.* (2002) Mitochondrial phylogeography of moose (*Alces alces*): Late Pleistocene divergence and population expansion. *Molecular Phylogenetics and Evolution* **22**, 375-387.

- Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. *Heredity* **77**, 282-291.
- Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the Cytochrome b Gene of Mammals. *Journal of Molecular Evolution* **32**, 128-144.
- Kingman JFC (1982) The coalescent. *Stochastic Processes and their Applications* **13**, 235-248.
- Klein DR (1965) Postglacial distribution patterns of mammals in southern coastal regions of Alaska. *Arctic* 18, 7-20.
- Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. *Trends in Ecology & Evolution* 23, 141-148.
- Lee-Yaw JA, Irwin JT, Green DM (2007) Postglacial range expansion from northern refugia by the wood frog, *Rana sylvatica*. *Molecular Ecology* **17**, 867-884.
- Lessa EP, Cook JA, Patton JL (2003) Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. *Proceedings of the National Academy of Sciences of the United States of America* **100**, 10331-10334.
- Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* **25**, 1451-1452.
- Lim HC, Sheldon FH (2011) Multilocus analysis of the evolutionary dynamics of rainforest bird populations in Southeast Asia. *Molecular Ecology* **20**, 3414-3438.
- Loehr J, Worley K, Grapputo A, *et al.* (2006) Evidence for cryptic glacial refugia from North American mountain sheep mitochondrial DNA. *Journal of Evolutionary Biology* **19**, 419-430.
- Lomolino MV, Brown JH, Davis R (1989) Island biogeography of montane forest mammals in the American southwest. *Ecology* **70**, 180-194.
- Lyons SK (2003) A quantitative assessment of the range shifts of Pleistocene mammals. *Journal of Mammalogy* **84**, 385-402.
- MacDonald SO, Cook JA (2007) Mammals and amphibians of southeast Alaska. *Special Publication the Museum of Southwestern Biology* **8**, i-viv, 1-191.

Maddison WP (1997) Gene trees in species trees. Systematic Biology 46, 523-536.

- Malaney JL, Cook JA (2013) Using biogeographical history to inform conservation: the case of Preble's meadow jumping mouse. *Molecular Ecology* **22**, 6000-6017.
- Marr KL, Allen GA, Hebda RJ (2008) Refugia in the Cordilleran ice sheet of western North America: chloroplast DNA diversity in the Arctic-alpine plant *Oxyria digyna. Journal of Biogeography* **35**, 1323-1334.
- Marr KL, Allen GA, Hebda RJ, McCormick LJ (2012) Phylogeographical patterns in the widespread arctic–alpine plant *Bistorta vivipara* (Polygonaceae) with emphasis on western North America. *Journal of Biogeography* **40**, 847–856.
- McCormack JE, Zellmer AJ, Knowles LL (2010) Does niche divergence accompany allopatric divergence in *Aphelocoma* jays as predicted under ecological speciation?: Insights from tests with niche models. *Evolution* **64**, 1231-1244.
- Nakajima Y, Nishikawa A, Iguchi A, Sakai K (2012) The population genetic approach delineates the species boundary of reproductively isolated corymbose acroporid corals. *Molecular Phylogenetics and Evolution* **63**, 527-531.
- Nielson M, Lohman K, Sullivan J (2001) Phylogeography of the tailed frog (*Ascaphus truei*): Implications for the biogeography of the Pacific Northwest. *Evolution* **55**, 147-160.
- Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. *Journal of Biogeography* **34**, 102–117.
- Petit RJ, Aguinagalde I, de Beaulieu JL, *et al.* (2003) Glacial refugia: Hotspots but not melting pots of genetic diversity. *Science* **300**, 1563-1565.
- Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. *Ecological Modelling* **190**, 231-259.
- Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. *Ecography* **31**, 161–175.
- Pielou E (1991) After the Ice Age: the Return of Life to Glaciated North America University of Chicago Press, Chicago.
- Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. *Systematic Biology* **53**, 793-808.
- Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. *Bioinformatics* 14, 817-818.

- Qu YH, Zhang RY, Quan Q, *et al.* (2012) Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the Vinous-throated parrotbill (Paradoxornis webbianus). Molecular Ecology **21**, 6117-6133.
- Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. *Molecular Biology and Evolution* **19**, 2092-2100.
- Rand AL (1954) The ice age and mammal speciation in North America. Arctic 7, 31-35.
- Reddy S, Davalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. *Journal of Biogeography* **30**, 1719-1727.
- Roberts BL (1991) Modeling the Cordilleran ice-sheet. *Geographie Physique Et Quaternaire* **45**, 287-299.
- Ross KG, Gotzek D, Ascunce MS, Shoemaker DD (2010) Species delimitation: a case study in a problematic ant taxon. *Systematic Biology* **59**, 162-184.
- Runck AM, Matocq MD, Cook JA (2009) Historic hybridization and persistence of a novel mito-nuclear combination in red-backed voles (genus *Myodes*). *BMC Evolutionary Biology* **9**, 114.
- Shafer ABA, Cullingham CI, Cote SD, Coltman DW (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. *Molecular Ecology* **19**, 4589-4621.
- Smolen MJ, Keller BL (1987) Microtus longicaudus. Mammalian Species 271, 1-7.
- Spaeth PA, van Tuinen M, Chan YL, Terca D, Hadly EA (2009) Phylogeography of *Microtus longicaudus* in the tectonically and glacially dynamic central Rocky Mountains. *Journal of Mammalogy* **90**, 571-584.
- Stamford MD, Taylor EB (2004) Phylogeographical lineages of Arctic grayling (*Thymallus arcticus*) in North America: divergence, origins and affinities with Eurasian *Thymallus*. *Molecular Ecology* 13, 1533-1549.
- Stein BR, Wieczorek J (2004) Mammals of the world: Manis as an example of data integration in a distributed network environment. *Biodiversity Informatics* 1, 14-22.
- Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. *American Journal of Human Genetics* **76**, 449-462.

- Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. *American Journal of Human Genetics* 68, 978-989.
- Stewart JR, Lister AM, Barnes I, Dalen L (2010) Refugia revisited: individualistic responses of species in space and time. *Proceedings of the Royal Society B-Biological Sciences* 277, 661-671.
- Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* **123**, 585-595.
- Tamura K, Peterson D, Peterson N, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology and Evolution* 28, 2731-2739.
- Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. *Molecular Ecology* **21**, 3907-3930.
- Verts BJ, Carraway LN (1998) Land mammals of Oregon University of California Press.
- Walker MJ, Stockman AK, Marek PE, Bond JE (2009) Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus *Narceus*: evidence from population genetic, phylogeographic, and paleoclimatic data. *BMC Evolutionary Biology* 9, 25-35.
- Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. *Evolution* **62**, 2868-2883.
- Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. *Ecography* **33**, 607–611.
- Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. *Ecological Applications* 21, 335–342.
- Wiens JJ, Graham CH (2005) Niche conservatism: Integrating evolution, ecology, and conservation biology. *Annual Review of Ecology Evolution and Systematics* **36**, 519-539.
- Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. *Genetics* **163**, 1177-1191.

Figures and Tables

Figure 1. Current range and subspecies of *M. longicaudus*. Light gray is the current range, black outlined regions with numbers are the subspecies, and dots are sampling locations colored by major cyt *b* lineages. (a) Entire range, (b) Haines and Southeast Alaska. Subspecies modified from Hall 1981.

Figure 2. Dated Bayesian cyt*b* trees. Posterior probability ≥ 0.95 represented with open circles and Maximum Likelihood bootstraps of ≥ 0.7 with asterisks are shown on branches. Vertical gray bars represent the LIG (left) and LGM (right). Geographic locations for supported intralineage clades are provided. NPC = North Pacific Coast; COP = Colorado Plateau. See Table 8 for abbreviations.

Figure 3. Sampling scheme and SDM output. (a) LIG (~125 ka), (b) LGM (~20 ka), (c) Mid-Holocene (~6 ka), and (d) Current time periods. Sampling localities are major cyt*b* lineage (color: Island=I, Northern=N, NPC=North Pacific Coast, COP=Colorado Plateau, Central=C, and S1 and S2 = Southern). The thick black line in the Current map is the current range for *M. longicaudus*. The solid blue coloring at the LGM is glacial ice cover. SDM climate suitability at each time period is limited by minimum median threshold values over all replicates. Because the SDMs are conservative, not all current localities are predicted in the models.

Figure 4. Phased multilocus Bayesian Species Tree. Posterior probabilities of ≥ 0.95 are represented with open circles on branches of the solid consensus tree. Blue = Island, green = Northern, dark green = NPC, light green = COP, golden = Central, orange = S1, and red = S2. Horizontal gray bars represent divergence date estimates and vertical bars indicate approximate time for the LIG and LGM.

Figure 5. Phased Bayesian gene trees for (a) ETS2, (b) FGB, and (c) Rag1 nuclear loci with posterior probabilities of ≥ 0.95 represented with open circles on branches of the solid consensus tree. Black dots are Haines individuals. Blue = Island, middle green = Northern, dark green = NPC, light green = COP, gold = Central, orange = S1, and red = S2. Geographic locations (Table 8) for supported intralineage clades are provided.

Figure 6. EBSPs (i) and cyt b Bayesian skyline plots (ii) for the major cyt*b* lineage populations: (a) Central, (b) Island, (c) North and (d) South, excluding NPC and COP. EBSP Central line indicates mean change in effective population size through time, with upper and lower lines sowing the 95% posterior density. The x-axis right-to-left from past (TMRCA) to present and is scaled in millions of years and the y-axis is effective population size scaled by generation time. Vertical gray bars indicate the LIG (when applicable, right) and LGM (left) for reference.

Figure 7. Phased nuclear haplotype distribution in Northern and Island lineages of *M. longicaudus*. (a) ETS2, (b) FGB, and (c) Rag1. Thick black line delimits Island (left) and Northern (right) lineages with sympatry indicated with black sample locations and haplotype variety indicated with adjoining lines. Each color within a locus represents a unique haplotype.

Figure 8. Proposed post-glacial colonization routes (arrows) for *M. longicaudus* based on genetic signatures and SDMs. Plus (+) = fossil (SE Alaska)/subfossil (Yellowstone) locations and arrow colors correspond to current cyt *b* lineages: dark green = North Pacific Coast, green = Northern, and blue = Island. Northern and Island lineage refugial locations and post-glacial colonization with locations of secondary contact indicated with the wavy line. Blue line indicates extent of glacial ice at LGM.

Table 1. Specimens examined. Major cytb lineage C=Central, I=Island, and N=Northern.
Museum number acronyms are MSB= Museum of Southwestern Biology;
UAM=University of Alaska Museum of the North, Fairbanks. GenBank numbers
correspond to cytb, and each allele for ETS2, FGB, and Rag1, respectively, — not
applicable. GenBank in bold were obtained from other studies.

cyth lineage	Specimen Number	Locality	Latitude	Longitude	GenBank Accession Numbers
Central (C)	UAM77991	California	41.409	-122.194	AF187176, -/-,-/-,-/-,-/-
	UAM77992		41.409	-122.194	AF187174, -/-, -/-, -/-, -/-
	UAM77993		41.409	-122.194	AF187175,-/-,-/-,-/-
	UAM77994		41.409	-122.194	AF187177,-/-,-/-,-/-
	MSB227995	Idaho	44.659	-113.216	KF948609,KF948677/KF948678,KF948845/KF948846,KF949027/KF949028
	UAM77997		46.732	-117.000	AF187173, -/-, -/-, -/-, -/-
	MSB156351	Montana	45.731	-112.676	KF948534, -/ - , -/ - , -/ -
	UAM34299		45.520	-108.820	AF187172, -/-, -/-, -/-,
	MSB225915	Wyoming	44.226	-107.235	KF948607,KF948673/KF948674,KF948841/KF948842,KF949023/KF949024
Colorado Plateau (COP)	MSB61434	Arizona	35.954	-112.157	AF187162 , -/-,KF948853/KF948854, -/-
	MSB61436		35.954	-112.157	AF187161, -/ -, KF948855/KF948856, -/ -
	MSB61443		36.463	-112.118	AF187160, -/ - ,KF948857/KF948858,KF949033/KF949034
	MSB143745	Idaho	43.553	-111.243	KF948533, -/-, KF948785/KF948786, -/-
	MSB227146	Nevada	39.238	-114.689	KF948608,KF948675/KF948676,KF948843/KF948844,KF949025/KF949026
	MSB76827	Utah	38.344	-112.491	KF948610, -/-,KF948859/KF948860, -/-
	MSB77127		40.186	-111.140	KF948611,KF948683/KF948684,KF948861/KF948862,KF949035/KF949035
Island (I)	UAM30499	Alaska - Glacier Bay	58.450	-135.917	AF187225, -/ -, KF948897/KF948898, KF949071/KF949072
	MSB193312	Alaska - Haines	59.218	-135.448	KF948589, -/ - , KF948807/KF948808, -/ -
	MSB193325		59.267	-135.603	KF948590, -/ -, KF948809/KF948810, KF948997/KF948998
	MSB193328		59.267	-135.603	KF948591,KF948655/KF948656,KF948811/KF948812,KF948999/KF949000
	MSB193329		59.267	-135.603	KF948592,KF948657/KF948658,KF948813/KF948814,KF949001/KF949002
	MSB193396		59.218	-135.448	KF948593,KF948659/KF948660,KF948815/KF948816,KF949003/KF949004
	MSB193439		59.267	-135.603	KF948594,KF948661/KF948662,KF948817/KF948818,KF949005/KF949006
	MSB193445		59.267	-135.603	KF948595, KF948663/KF948664, KF948819/KF948820, KF949007/KF949008
	MSB193446		59.267	-135.603	KF948596,KF948665/KF948666,KF948821/KF948822,KF949009/KF949010
	MSB193447		59.267	-135.603	KF948597.KF948667/KF948668.KF948823/KF948824.KF949011/KF949012
	MSB193544		59.218	-135.448	KF948552/ KF948825/KF948826.KF949013/KF949014
	MSB195072		59.267	-135.600	KF948598. =/ = .KF948827/KF948828. =/ =
	MSB195212		59.246	-135 175	KF948600 = /KF948831/KF948832.KF949015/KF949016
	MSB195220		59 300	-135.704	KF948601 KF948833/KF948834 KF949017/KF949018
	UAM20577		59.433	-135.950	KF948614, KF948689/KF948690, KF948871/KF948872, KF949045/KF949046
	UAM31114		59.575	-136.157	AF187217///-
	UAM52711		59.262	-135.560	KF964341 [KF948749]KF948750 [KF948947][KF948948]KF949119][KF949120]
	UAM64491		59.286	-136.108	KF948576/KF948963/KF948964/-
	UAM64609		59.415	-136.062	KF948632.KF948763/KF948764.KF948965/KF948966/
	UAM64616		59.415	-136.062	KF948633.KF948765/KF948766.KF948967/KF948968.KF949133/KF949134
	UAM64624		59.366	-135.798	KF948545.KF948767/KF948768.KF948969/KF948970.KF949135/KF949135
	UAM68284		59.163	-135.778	KF948636.KF948773/KF948774.KF948975/KF948976.KF949141/KF9491412
	UAM3553	Alaska - interior	61.500	-142.833	AF187216, -/-,-/-,-/-,
	UAMS7777		61.318	-144.235	KF948628,KF948751/KF948752,KF948949/KF948950,KF949121/KF949122
	MSB148983	Alaska - Island	56.642	-133.701	KF948546,KF948647/KF948648,KF948793/KF948794,KF948991/KF948992
	MSB149385		56.668	-134.266	KF948547///
	MSB221332		55.488	-133.631	KF948602, -/-, -/-, -/-, -/-
	MSB221340		55.488	-133.631	KF948603,KF948669/KF948670,KF948835/KF948836,KF949019/KF949020
	MSB221446		55.469	-133.426	KF948553,KF948671/KF948672,KF948837/KF948838,KF949021/KF949022
	MSB221498		55.469	-133.426	KF948604, -/-, -/-, -/-, -/-
	MSB221521		55.469	-133.426	KF948605, -/-, -/-, -/-, -/-
	MSB221545		55.469	-133.426	KF948606, -/ -, KF948839/KF948840, -/ -
	UAM20507		58.067	-135.233	AF187211, -/ -, KF948867/KF948868, KF949041/KF949042
	UAM20611		56.417	-132.833	KF948544, -/-,KF948873/KF948874,KF949047/KF949048
	UAM20918		56.867	-133.317	AF187208,-/-,-/-,-/-
	UAM20919		56.867	-133.317	KF948554, -/-, -/-, -/-, -/-
	UAM22912		56.410	-134.033	AF187224 ,KF948691/KF948692, -/ - , -/ -
	UAM22915		56.410	-154.055	KF948555, -/ - "KF948875/KF948876, KF949049/KF949050

UAM22918	56.583	-132.833	KF948556.KF948693/KF948694.KF948877/KF948878.KF949051/KF949052
UAM22920	55.918	-134.321	KF964335///-
UAM22921	55.918	-134.321	AF187223,-/-,-/-,-/-,-/-
UAM23063	56.350	-132.333	KF948536,KF948695/KF948696,KF948879/KF948880,KF949053/KF949054
UAM23410	55.918	-134.321	AF187222 , -/-,-/-,-/-,
UAM23455	55.502	-131.028	KF964344, -/-, -/-, -/-, -/-
UAM23606	55.918	-134.321	AF187213 , KF948697/KF948698, KF948883/KF948884, KF949057/KF949058
UAM23659	55.452	-133.660	KF948615, -/ -, KF948885/KF948886, KF949059/KF949060
UAM23726	54.767	-132.183	KF948616, -/-, -/-, -/-, -/-
UAM23727	54.767	-132.183	KF948557, -/ -, -/ -, -/ -
UAM23728	54.783	-132.867	AF187206 .KF948699/KF948700.KF948887/KF948888.KF949061/KF949062
UAM23804	55.767	-131.017	AF187212, -/-, -/-, -/-, -/-
UAM23871	56.975	-133.941	AF187227///-
UAM23943	55.817	-131.367	KF964336,KF948703/KF948704,KF948891/KF948892,KF949065/KF949066
UAM23944	55.817	-131.367	KF948617,KF948705/KF948706,KF948893/KF948894,KF949067/KF949068
UAM30504	55.415	-131.696	KF948618, -/-, -/-, -/-, -/-
UAM30506	56.150	-133.350	KF948559, -/ -, -/ -, -/ -, -/ -
UAM30507	56.150	-133.350	KF948560,KF948709/KF948710,KF948899/KF948900,KF949073/KF949074
UAM30508	56.150	-133.350	KF948561, KF948711/KF948712, KF948901/KF948902, KF949075/KF949076
UAM30721	56.150	-133.350	KF948619, -/-, -/-, -/-, -/-
UAM31755	55.875	-133.842	KF948542,KF948713/KF948714,KF948903/KF948904,KF949077/KF949078
UAM31784	55.875	-133.842	AF187218, -/-, -/-, -/-, -/-
UAM31785	55.875	-133.842	KF948537, -/-, -/-, -/-, -/-, -/-
UAM31786	55.875	-133.842	AF187214///
UAM31787	55.875	-133.842	KF948543///
UAM31788	55.875	-133.842	KF948538.KF948715/KF948716.KF948905/KF948906.KF949079/KF949080
UAM31826	55.100	-132,833	AF187230 -////-
LIAM32929	57.817	-136.150	AF187205///-
11AM37937	57 817	-136.150	KF9642738
26270000 26270000	56.174	071.021-	KF948671 - /
0929EWV11	58.079	135.478	AF187719 KF048770/KF048730 KF048071/KF048077 KF040063/KF040004
UAM36579	56.167	-133.317	AF187215. KF948731/KF948732. KF948923/KF948924. KF949095/KF949096
UAM41767	55.461	-132.692	AF187207///
UAM41768	55.283	-133.307	AF187226.KF948733/KF948734.KF948925/KF948926.KF949097/KF949098
UAM42372	54.744	-132.771	KF948622///-
UAM42375	56.417	-132.833	KF948539,KF948735/KF948736,KF948927/KF948928,KF949099/KF949100
UAM42376	56.321	-134.072	KF948565, =/ = , = / - , - / -
UAM42377	56.583	-134.000	KF948640, -/-, -/-, -/-, -/-
UAM42380	54.821	-133.521	KF948566.KF948737/KF948738.KF948929/KF948930.KF949101/KF949102
UAM42381	54.821	-133.521	AF187221.KF948739/KF948740/KF949103/KF949104
UAM42385	55.919	-133.685	KF948567,-/-,-/-,-/-,-/-
UAM42392	55.267	-133.272	KF948623, -/ -, -/ -, -/ -, -/ -
UAM42393	55.267	-133.272	KF948568, -/-, -/-, -/-, -/-
UAM42429	55.216	-133.138	KF948569, -/-, -/-, -/-
UAM42727	54.821	-133.521	KF948624, -/-, -/-, -/-, -/-
UAM42728	54.821	-133.521	KF948581, -/-, KF948931/KF948932, -/-
UAM43227	55.267	-133.272	KF948582,-/-,-/-,-/-
UAM49638	55.283	-133.307	KF948578,KF948745/KF948746,KF948943/KF948944,KF949115/KF949116
UAM49658	54.807	-132.769	KF948579, KF948747/KF948748, KF948945/KF948946, KF949117/KF949118
UAM49660	54.807	-132.769	KF948627, -/-, -/-, -/-, -/-
UAM51686	57.958	-134.307	KF964342, -/-, -/-, -/-, -/-
UAM52256	55.950	-133.383	AF187209, -/-, -/-, -/-, -/-
UAM52262	55.900	-133.333	AF187220, -/-, -/-, -/-
UAM62899	56.233	-132.133	KF948540,KF948755/KF948756,KF948953/KF948954,KF949125/KF949126 vroatesen vroateser
UAM /0245	24.888	000701-	KF9485//2,KF948//0///Y448//0,N/Y448//0,N/Y448//0//CF1848//8,N/S/X4948//2/

	11AM77153		56 218	137 286	KE048541 -/ -//-
	080200011		55 344	-131 408	K F948575 - / / / / / / / / / / / / / / / / / -
	MSR156000	Alaska - Imean	58 343	-134 640	KF948550 KF948653/KF948654 KF948803/KF948804 KF948995/KF948996
	11ANAT24	Alacha combaact	C12675	734 521	VE048573 VE048770/VE048770/VE048081/VE048097 VE040147/VE040149
	U/U/U//1/202	Alaska - souulcast	10010	104.001-	NF9403/3,NF940/79/NF946/00,NF940901/NF940902,NF94914//NF949140 VE040630 / / /
	CIANT/4265		100.10	704.001-	NF948036, -/ -, -/ -, -/ - VE048636 VE048781/VE048782 VE048082 VE048084 VE040146 VE040150
		10 - TA	105.15	104.001-	NF948039, NF948/81/NF948/82/NF948983/NF948983/NF948984, NF948149/NF94919U A F187473 ST048735 ST048735 ST048015 ST048015 ST048045 ST0480454
	117AM54297	tunos - nonu t	60.400	000.721-	0606464N/6206464N/01626464N/61626464N/07/2464N/67/2464N, 277/214V C000764A/1000764A 8108764A/L108764A 8668764A/L668764A 6666244V
Sorthern (N)	LOSTEWVII	Alaska - Glacier Bay	65 228	-144 500	AF187190 -//// -
1	UAM34594		65.228	-144.500	AF187189 / KF948919/KF948920 / -
	MSB195109	Alaska - Haines	59.267	-135,600	KF948599/KF948829/KF948830/-
	UAM20576		59.433	-135.950	KF948613.KF948687/KF948688.KF948869/KF948870.KF949043/KF949044
	UAM31113		59.575	-136.157	AF187202///
	UAM48471		59.500	-135.354	KF964340,KF948743/KF948744,KF948939/KF948940,KF949111/KF949112
	UAM64427		59.623	-136.089	KF948630,KF948757/KF948758,KF948955/KF948956,KF949127/KF949128
	UAM64428		59.623	-136.089	KF948570,KF948759/KF948760,KF948957/KF948958,KF949129/KF949130
	UAM64429		59.623	-136.089	KF948631,-/KF948959/KF948960,-/-
	UAM64442		59.623	-136.089	KF948571,KF948761/KF948762,KF948961/KF948962,KF949131/KF949132
	UAM70791		59.540	-136.106	KF948637.KF948777/KF948778.KF948979/KF948980.KF949145/KF949146
	UAM60319	Alaska - interior	65.303	-142.037	KF948629.KF948753/KF948754.KF948951/KF948952.KF949123/KF949124
	UAM65747		63.699	-142.250	KF948634,KF948769/KF948770,KF948971/KF948972,KF949137/KF949138
	UAM32822	Alaska - Juneau	58.183	-133.317	AF187203///-
	UAM34292		58.533	-133.683	KF948563.KF948719/KF948720.KF948909/KF948910.KF949083/KF949084
	UAM34293		58.533	-133.683	KF948564,KF948721/KF948722,KF948911/KF948912,KF949085/KF949086
	UAM34294		58.533	-133.683	KF964337.KF948723/KF948724.KF948913/KF948914.KF949087/KF949088
	UAM75497		58.307	-134.417	KF948574.KF948783/KF948784.KF948985/KF948986.KF949151/KF949152
	UAM23496	Alaska - southeast	56.083	-131.086	AF187191/ KF948881/KF948882.KF949055/KF949056
	UAM23552		56.083	-131.086	KF964339///-
	UAM23751		55.750	-132.183	AF187198 -///-
	UAM23752		55.750	-132.183	KF964343.KF948701/KF948702.KF948889/KF948890.KF949063/KF949064
	UAM23883		55.767	-130.883	AF187199///-
	UAM30495		55.750	-132.183	KF948558,KF948707/KF948708,KF948895/KF948896,KF949069/KF949070
	11AM30496		57 008	-132 983	AF187193 -///-
	11AM30497		57 008	-137 983	AF187201 -//// -
	P8CFEWPII		54 944	-130 334	KE948565 KF948717/KF948718 KF948007/KF948908 KF949081/KF949082
	SSCEEMAIL		54 944	-130 334	$X = \frac{1}{2} - $
	SCEEMET 1		54 044	-130 334	AF187104 -//- =/-
	11AM48474		56.027	-130.071	AF187200 -///-
	11AM76246		55 767	-130 883	AF187197 -///-
	UAM48463	Alaska - White Pass	59.614	-135.167	AF187192///-
	UAM48465		59.614	-135.167	KF948625,KF948741/KF948742,KF948933/KF948934,KF949105/KF949106
	UAM48466		59.614	-135.167	KF948580, -/ -, KF948935/KF948936, KF949107/KF949108
	UAM48467		59.614	-135.167	KF948626, -/- , KF948937/KF948938, KF949109/KF949110
	MSB155622	British Columbia	57.837	-131.390	KF948549, -/-, -/-, -/-, -/-
	MSB158060		58.045	-129.955	KF948551, -/KF948805/KF948806, -/-
	MSB158239		56.496	-129.425	KF948535/ -, -/ -, -/ -, -/ -
	UAM52714		57.866	-131.284	AF187204, -/-, -/-, -/-, -/-
	UAM52715		57.855	-131.369	AF187195/-,-/-,-/-
	UAM68182		59.529	-134.908	KF948635,KF948771/KF948772,KF948973/KF948974,KF949139/KF949140
	MSB144359	Yukon	60.065	-128.619	KF948583,KF948641/KF948642,KF948787/KF948788,-/-
	MSB144391		60.065	-128.619	KF948584,KF948643/KF948644,KF948789/KF948790,KF948987/KF948988
	MSB144481		63.841	-135.461	KF948585,KF948645/KF948646,KF948791/KF948792,KF948989/KF948990
	MSB149145		61.996	-132.609	KF948586, = / = ,KF948795/KF948796, - / -
The Design Const MIDO	MSB149156	Dutteh Calumbia	966.13	-132.607	KP48587, -/ - , KP487/9//KP487/98, -/ - • • • • • • • • • • • • • • • • • • •
NOTH FACING CUBSENINE CI	tototiATATA	DIJUSH COMMUNI	+01.60	100.001-	AFIO/190

KF948577, -/ -, -/ -, -/- AF187184, -/ -, -/ -, -/- AF187185, -/ -, -/ -, -/- AF187183, -/ -, -/ -, -/- AF187183, -/ -, -/ -, -/- AF187182, -/ -, -/ -, -/- AF187182, -/ -, -/ -, -/- AF187181, -/ -, -/ -, -/- KF187181, -/ -, -/ -, -/- KF187181, -/ -, -///-	AF187164, -/-, .KF948849/KF948850,KF949029/KF949030 AF187165, -/-, -/-, -/- -, -/, .KF948865/KF948866,KF949039/KF949040 KF948548, -/-, .FF948801.KF948802, -/- AF187166, -/-,/-, -/-,/,/,/,/,/-,/-,/-,/-,/,/-,/,/,/,/,/,/,/,/,/,/,/,/,/,/,//,/	AF187169 -////- AF187167 -///- AF187170 -///- AF187176 -///- AF187176 -///- AF187171 -////- AF187171 -////-	KF948532/-,-/-,-/- AF119280/-,-/-,-/- KF948531/-,-/-,-/- -,KF948650/-,-/- AF119279,-/-,-/-,-/- -,-/-,-/-,-/211465/-
-133.667 -118.967 -120.467 -118.967 -118.967 -123.720 -123.861 -123.861 -120.993 -121.917	-110.043 -109.419 -109.881 -107.759 -106.523	-106.325 -106.325 -106.325 -106.325 -10.404 -107.000	
59.734 50.817 50.817 50.817 50.817 50.817 44.329 44.329 47.200 47.000	34.125 33.795 32.669 37.239 35.813 35.767	38.529 38.529 38.529 38.529 41.037 41.037	
Oregon Washington	Arizona Colorado New Mexico	Colorado Wyoming	
UAM52717 UAM67039 UAM67078 UAM69491 UAM69491 UAM69491 UAM69492 UAM694165 MSB43445 MSB43445 MSB43445 MSB43445 MSB43445 MSB43445	MSB50495 MSB5359 MSB83783 MSB85783 MSB455726 MSB43689 MSR436701	UAM41634 UAM43522 UAM43523 UAM43524 MA8155085 UAM69038	MSB121523 MSB110998 MSB149290
	Southern (S1)	Southern (S2)	M. montanus M. montanus M. pennsylvanicus M. pennsylvanicus M. pennsylvanicus M. pennsylvanicus

Table 2. Primer list and PCR annealing temperatures. Primers used for amplification and sequencing mtDNA Cytochrome B (cyt*b*), and nuclear loci Protein C-est-2 (ETS2), β -fibrinogen (FGB), and Recombination Activating Protein 1 (Rag1) in *M. longicaudus* and outgroup taxa, with annealing temperatures (°C) indicated in parentheses.

Primer	Sequence (5'-3')	Reference
cytb (50)		
L14724		(Irwin et al. 1991; Kocher & White 1989)
Vole 14		(Conroy & Cook 1999)
ETS2 (63)		
ETS2F		(Lyons et al. 1997)
ETS2R		(Lyons et al. 1997)
FGB (65)		
MSB MFGBF	CGTTTGGATTGGCGGAGTGG	This study, modified from Matocq et al. (2007)
MSB_MFGBR	GCACGTACGACAGGGACAACG	This study, modified from Matocq et al. (2007)
Rag1 (60)		
MSB Rag1F	GCAGTCTCCTTTAGTTCCAGAC	This study, modified from Steppan et al .(2004)
MSB_Rag1R	CCAACAGGAACAACGTCAAGC	This study, modified from Steppan et al .(2004)

- Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the Cytochrome *b* gene of mammals. *Journal of Molecular Evolution* **32**, 128-144.
- Kocher TD, White TJ (1989) Evolutionary analysis via PCR Stockton Press, New York.
- Conroy CJ, Cook JA (1999) MtDNA evidence for repeated pulses of speciation within Arvicoline and Murid rodents. *Journal of Mammalian Evolution* **6**, 221-245.
- Lyons LA, Laughlin TF, Copeland NG, et al. (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. *Nature Genetics* **15**, 47-56.
- Matocq MD, Shurtliff QR, Feldman CR (2007) Phylogenetics of the woodrat genus *Neotoma* (Rodentia: Muridae): Implications for the evolution of phenotypic variation in male external genitalia. *Molecular Phylogenetics and Evolution* 42, 637-652.
- Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. *Systematic Biology* 53, 533-553.

Table 3. Diversity indices, expansion statistics and models of evolution. n = haploid sample size; L = length of sequence; S = variable sites; Eta = #mutations; h = #haplotypes; Hd = haplotype diversity; π = nucleotide diversity; D = Tajima's D; Fs = Fu's FS; r = raggedness index; R2 = Ramos-Onsin's R2; Model = model of evolution as selected by MODELTEST. Bold values are significant at p<0.05 (p<0.02 for FS).

51

Group	Gene	u	Г	s	h	Ηd	Pi	D	Fs (p<.02)	Н	R2	Model of Evolution
All Samples	Cytb	196	1143	175	127	0660	0.01409	-0.100	-0.776	-0.182	0.082	TrN+I+G
	ETS2	80	733	I	Ĩ	Ī.	I	Ì	1	т	Ĩ	GTR+I+G
	FGB	110	600	Ī	Ĭ	ï	Ĩ	I	1	I	t	HKY+G
	Ragl	182	963	Ĵ	J	Ĵ	1	Ĵ	1	3	3	нкү
No Outgroups	Cytb	192	1143	133	123	066.0	0.01137	-0.075	-0.656	-0.001	0.082	
	ETS2	78	733	4	S	0.169	0.00026	-0.005	-0.143	0.003	0.097	
	FGB	108	600	13	13	0.126	0.00024	-0.05	-0.252	0.002	0.091	
	Ragl	89	963	10	11	0.162	0.00020	-0.028	-0.186	0.002	0.095	
Central	Cytb	16	1143	37	14	0.975	0.00761	-0.073	0.031	0.051	0.140	HKY+I
	ETS2	6	733	3	4	0.654	0.00117	-0.014	0.187	-0.004	0.167	GTR+I
	FGB	6	600	17	13	0.928	0.00793	-0.105	0.055	0.015	0.138	GTR+I
	Ragl	8	963	ξ	4	0.350	0.00039	-0.022	0.266	0.000	0.190	нкү
Colorado Plateau	Cytb	7	1143	22	7	1.000	0.00877	-0.055	0.503	-0.100	0.190	
	ETS2	0	733	12	2	0.667	0.01103	-0.046	0.962	0.081	0.266	
	FGB	2	600	8	2	0.879	0.00354	-0.043	0.179	0.000	0.163	
	Ragl	n	963	-	2	0.333	0.00035	-0.005	0.324	-0.002	0.305	
Island	Cytb	101	1143	70	61	0.983	0.00470	-0.079	-0.319	0.013	0.092	HKY+I+G
	ETS2	43	733	7	4	0.113	0.00044	-0.024	-0.039	0.003	0.109	нкү
	FGB	55	600	8	6	0.157	0.00028	-0.005	-0.080	0.006	0.107	HKY+I
	Ragl	50	963	ξ	4	0.116	0.00013	-0.019	-0.117	0.000	0.110	TrN
North	Cytb	46	1143	53	29	0.961	0.00395	-0.094	-0.153	-0.002	0.108	HKY+I
	ETS2	20	733	16	8	0.501	0.00043	-0.073	-0.087	-0.006	0.113	HKY+I
	FGB	29	600	5	L	0.728	0.00192	-0.053	-0.016	0.002	0.109	GTR+I
	Ragl	22	963	ŝ	4	0.452	0.00052	-0.018	060.0	-0.002	0.130	нкү
North Pacific Coast	Cytb	11	1143	16	8	0.945	0.00511	-0.063	0.169	-0.019	0.163	
	ETS2	0	733	Π	3	0.833	0.00989	-0.025	0.911	0.048	0.268	
	FGB	С	600	11	4	0.867	0.01002	-0.046	0.493	-0.008	0.213	
	Ragl	5	963	0		0.000	0.00000	Ĩ	I	I	I	
South	Cytb	11	1143	36	6	0.945	0.01378	-0.090	0.330	0.009	0.156	HKY+I
	ETS2	2	733	17	3	0.833	0.01551	-0.050	1.161	-0.009	0.257	нкү
	FGB	S	600	2	7	0.867	0.00501	-0.056	0.192	0.004	0.179	HKY+I
	Ragl	4	963	4	5	0.893	0.00156	-0.030	0.289	-0.012	0.221	HKY

Table 4. Between group net genetic distance. The number of base differences per site from estimation of net average between groups of sequences are shown. Standard error estimate(s) is above the diagonal. All ambiguous positions were removed for each sequence pair. Evolutionary analyses were conducted in MEGA5.

	Central	Colorado Plateau	Island	North Pacific Coast	Northern	Southern	M. pennsylvanicus	M. montanus
Central		0.40%	0.40%	0.40%	0.40%	0.40%	0.80%	0.70%
Colorado Plateau	2.30%		1.10%	0.80%	0.30%	0.40%	0.80%	0.70%
Island	2.50%	0.20%		0.30%	0.30%	0.40%	0.80%	0.70%
North Pacific Coast	2.30%	0.20%	1.10%		0.10%	0.40%	0.80%	0.80%
Northern	2.60%	1.10%	1.10%	0.50%		0.50%	0.80%	0.70%
Southern	3.30%	2.90%	3.30%	3.30%	3.30%		6.90%	7.70%
M. pennsylvanicus	10.20%	9.80%	10.00%	10.10%	10.00%	0.80%		0.60%
M. montanus	8.70%	8.40%	8.50%	9.00%	8.80%	0.70%	4.70%	

Table 5. Major cytb lineage Bayesian migration estimates determined in BAYESASS.Non-migrants within each population are indicated in bold along the diagonal. Values arethe proportion of migrant genes donated from source populations (columns) into sinkpopulations (rows).

	Migratio	on rates	into				
From	Central	Island	Northern	NPC	COP	S1	S2
Central	0.730	0.041	0.078	0.040	0.038	0.036	0.037
Island	0.004	0.974	0.005	0.004	0.004	0.004	0.004
Northern	0.009	0.027	0.928	0.009	0.009	0.009	0.009
NPC	0.037	0.032	0.089	0.735	0.036	0.035	0.036
СОР	0.045	0.029	0.064	0.046	0.732	0.042	0.043
S1	0.048	0.032	0.042	0.049	0.047	0.734	0.047
S2	0.045	0.035	0.056	0.046	0.043	0.043	0.732

Table 6. Island and Northern cyt*b* lineage populations near the geographic regions of contact (Haines and Juneau, Alaska). Bayesian migration estimates determined in BAYESASS. Non-migrants within each population are indicated in bold along the diagonal. Values are the proportion of migrant genes donated from source populations (columns) into sink populations (rows).

,	Mi	gration rates into		r)			
From	I-interior AK	I-Glacier Bay	/ I-Ha	ines	-Juneau	I-SE AK	I-Yukon
I-interior AK	0.682	0.014	0.0	25	0.014	0.014	0.014
I-Glacier Bay	0.015	0.682	0.0	26	0.015	0.014	0.015
I-Haines	0.008	0.008	0.8	30	0.008	0.008	0.008
I-Juneau	0.014	0.015	0.0	27	0.682	0.014	0.014
I-SE AK	0.013	0.013	0.0	46	0.013	0.680	0.013
I-Yukon	0.014	0.014	0.0	35	0.014	0.014	0.681
N-interior AK	0.014	0.014	0.0	29	0.014	0.014	0.014
N-Glacier Bay	0.014	0.014	0.0	18	0.014	0.014	0.014
N-Haines	0.012	0.012	0.0	74	0.012	0.011	0.012
N-Juneau	0.013	0.013	0.0	63	0.013	0.013	0.013
N-SE AK	0.010	0.010	0.0	30	0.010	0.010	0.010
N-Yukon	0.013	0.013	0.0	49	0.013	0.013	0.013
				Mion	ation rates in	nto	
N interior AL	N Clasica Day	N Hoince	Innoon N	N CL AL	N V		
N-Interior AN	IN-Glacier bay	N-Haines	N-Juneau	N-SE AF	N-YUK	OR From	
0.014	0.014	0.014	0.014	0.022	0.014	+ I-interio	r AK
0.015	0.015	0.015	0.015	0.015	0.015	I-Glacie	r Bay
0.008	0.008	0.008	0.008	0.009	0.00	3 I-Haines	
0.014	0.015	0.015	0.015	0.016	0.015	5 I-Juneau	-
0.013	0.013	0.013	0.013	0.023	0.013	I-SE AK	
0.014	0.014	0.014	0.014	0.017	0.014	t I-Yukon	
0.681	0.014	0.015	0.014	0.020	0.014	l N-interio	or AK
0.014	0.682	0.015	0.014	0.025	0.015	N-Glacic	er Bay
0.011	0.012	0.681	0.011	0.026	0.012	2 N-Haine	S
0.013	0.013	0.013	0.680	0.019	0.013	8 N-Junea	
0.010	0.010	0.010	0.010	0.770	0.011	N-SE AI	K
0.013	0.013	0.013	0.013	0.022	0.680) N-Yukoi	u

Table 7. Bayesian migration estimates for Southeast Alaska populations determined in BAYESASS for *M. longicaudus*. Non-migrants within each population are indicated in bold along the diagonal. Values are the proportion of migrant genes donated from source populations (columns) into sink populations (rows). Location abbreviations are in Table 11 and I = Island and N = Northern lineages.

EV I SMZ	097 0.0092	100 0.0091	102 0.0090	099 0.0092	098 0.0092	101 0.0091	098 0.0092	098 0.0092	095 0.0092	096 0.0092	107 0.0090	096 0.0092	095 0.0092	099 0.0092	093 0.0093	097 0.0092	093 0.0093	102 0.0090	1600.0 667	101 0.6768	093 0.0093	000 0 000	7400.0 640	097 0.0092	097 0.0092 102 0.0090	097 0.0090 102 0.0090 096 0.0092	2000.0 700 2000.0 700 2000.0 0.0090 2000.0 700 2000.0 700 2000.0 700	2000.0 200 2001 0.0090 102 0.0090 097 0.0092 096 0.0092	2000.0 20	2000.0 20	2000.0 20	70000 700000 7000000 700000000	007 0.0072 007 0.0092 007 0.0092 007 0.0092 0097 0.0092 0093 0.0092 0093 0.0093 0093 0.0093 0093 0.0093 0093 0.0093 0094 0.0092 094 0.0092	007 0.0072 007 0.0092 010 0.0092 007 0.0092 0097 0.0092 0097 0.0092 0097 0.0092 0097 0.0092 0097 0.0092 0092 0.0092 0093 0.0093 0094 0.0092 0094 0.0092 0095 0.0093 0094 0.0093 0093 0.0093	007 0.0072 007 0.0092 007 0.0092 007 0.0092 007 0.0092 0097 0.0092 0097 0.0092 0097 0.0092 0097 0.0092 0092 0.0092 0093 0.0092 0093 0.0093 0094 0.0092 0095 0.0093 0095 0.0093 0095 0.0093	007 0007 0007 007 0.0092 0.0092 007 0.0092 0.0092 007 0.0092 0.0092 0097 0.0092 0.0092 0097 0.0092 0.0092 0097 0.0092 0.0092 0092 0.0092 0.0093 0092 0.0092 0.0092 0092 0.0092 0.0092 0092 0.0092 0.0092 095 0.0092 0.0092 095 0.0092 0.0092 095 0.0092 0.0092 095 0.0092 0.0092 095 0.0092 0.0092 095 0.0092 0.0092
OW I R	0.0 9600	0.0 9600	0.0 8600	0.0 7900	0.0 7900	0.0 9900	0.0 2600	0.0 9600	0.0 2000	0.04 0.0	0100 0.0	0.0 4600	0.0 5000	0.0 2600	0.0 2003	0.0 9600	0.0 5000	6783 0.0	0.0 2005	0.0 8600	0.0 2000	0.0	0.0 2600	0.0 5 0.0 0094 0.0	0093 0.0 0094 0.0 0099 0.0	0093 0.0 0094 0.0 0099 0.0 0095 0.0	0095 0.0 0094 0.0 0095 0.0 0095 0.0	0.05 0.0 0094 0.0 0095 0.0 0095 0.0 0095 0.0	0095 0.0 0094 0.0 0095 0.0 0095 0.0 0095 0.0 0095 0.0 0092 0.0	0093 0.0 0094 0.0 0095 0.0 0095 0.0 0095 0.0 0095 0.0 0092 0.0 0093 0.0	0.095 0.0 0094 0.0 0095 0.0 0095 0.0 0095 0.0 0093 0.0 0093 0.0	0.095 0.0 0094 0.0 0095 0.0 0095 0.0 0095 0.0 0095 0.0 0093 0.0 0099 0.0 0096 0.0	0.093 0.093 0.0 00094 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00092 0.0 0.0 00093 0.0 0.0 00994 0.0 0.0 00995 0.0 0.0 00996 0.0 0.0 00946 0.0 0.0	0.093 0.093 0.0 00094 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00095 0.0 0.0 00092 0.0 0.0 00093 0.0 0.0 00994 0.0 0.0 00995 0.0 0.0 00994 0.0 0.0 00944 0.0 0.0 00935 0.0 0.0	0.095 0.095 0.0 0.0094 0.0 0.0 0.095 0.0 0.0 0.095 0.0 0.0 0.095 0.0 0.0 0.095 0.0 0.0 0.095 0.0 0.0 0.096 0.0 0.0 0.095 0.0 0.0 0.095 0.0 0.0 0.095 0.0 0.0 0.093 0.0 0.0 0.093 0.0 0.0	0.03 0.0 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RI I P	0.0 980	0.0 980	0.0 0.0	0.0 0.00	0.0 0.00	0.0 880	0.0 0.00	0.0 0.0	0.0 1000	0.0 1600	0.0 280	0.0 1600	0.0 2600	0.0 0600	0.0 200	0.0 0600	5762 0.0	0.0 780	0.0 780	0.0 0.0	0.0 2600	0 2600	1	0.0 1600	0.0 10.0	0.0 1600 0.0 1600 0.0 1600	0.0 1600 0.0 1600 0.0 1600	0.0 1900 0.0 1900 0.0 1900 0.0 1900 0.0 1900	0.0 0.0 0087 0.0 0091 0.0 0091 0.0 0091 0.0	0091 0.0 0091 0.0 0091 0.0 0091 0.0 0092 0.0 0092 0.0	0091 0.0 0091 0.0 0091 0.0 0091 0.0 0092 0.0 0092 0.0 0086 0.0	0091 0.0 0091 0.0 0091 0.0 0092 0.0 0092 0.0 0092 0.0 0086 0.0 0088 0.0	0091 0.0 0091 0.0 0091 0.0 0092 0.0 0092 0.0 0092 0.0 0086 0.0 0088 0.0 0092 0.0	0091 0.0 0087 0.0 0091 0.0 0092 0.0 0092 0.0 0088 0.0 0092 0.0 0092 0.0 0092 0.0	091 0.00 087 0.00 091 0.00 092 0.00 092 0.00 088 0.0 092 0.0 092 0.0 092 0.0 091 0.0	001 0.0 0087 0.0 0091 0.0 0091 0.0 0091 0.0 0091 0.0 0092 0.0 0092 0.0 0088 0.0 0092 0.0 0092 0.0 0092 0.0 0092 0.0 0092 0.0 0092 0.0 0092 0.0 0092 0.0 0092 0.0
NYS I C	0093 0.0	0.0 5000	0094 0.0	0093 0.0	0094 0.0	0094 0.0	0094 0.0	0093 0.0	0093 0.0	0093 0.0	0094 0.0	0093 0.0	0093 0.0	0093 0.0	0092 0.0	6767 0.0	0.093 0.0	0.093 0.0	0093 0.0	0.093 0.0	0.093 0.0	0092 0.0		0093 0.0	0.0 5000 0.0	0.093 0.0 0.093 0.0 0.093 0.0	0.0 5000 0.0 5000 0.0 5000 0.0 5000 0.0 5000	0.0 5000 0.0 5000 0.0 5000 0.0 5000 0.0 5000 0.0 5000	0.0 5000 0.0 000 0.0 000 0.0 000 0.0 0.0	0.0 5000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0092 0.0 0092 0.0	0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0092 0.0 0092 0.0 0094 0.0 0093 0.0	0.093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0092 0.0 0094 0.0 0093 0.0 0093 0.0	0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0094 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0	0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0092 0.0 0094 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0	0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0092 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0 0093 0.0
MLSEN 1	0.0088 0.	0.0088 0.	0.0088 0.	0.0088 0.	0.0089 0.	0.0088 0.	0.0089 0.	0.0089 0.	0.0091 0.	0.0092 0.	0.0084 0.	0.0091 0.	0.0092 0.	0.0089 0.	0.6762 0.	0.0089 0.	0.0092 0.	0.0087 0.	0.0086 0.	0.0088 0.	0.0092 0.	0.0092 0.		0.0000 0.	0.0090 0.0.086 0.	0 0600.0 0 0800.0 0 0600.0	0 0600.0 0 0800.0 0 1600.0	0 00000 0 00086 0 0 00000 0 00000 0 00000 0 00000	0.0090 0. 0.0086 0. 0.0090 0. 0.0091 0. 0.0090 0. 0.0090 0. 0.0092 0.	0.0090 0. 0.0086 0. 0.0090 0. 0.0091 0. 0.0092 0. 0.0092 0. 0.0093 0.	0.0090 0. 0.0086 0. 0.0090 0. 0.0091 0. 0.0092 0. 0.0093 0. 0.0086 0.	0.0090 0. 0.0086 0. 0.0090 0. 0.0091 0. 0.0092 0. 0.0086 0. 0.0086 0.	0.0090 0. 0.0086 0. 0.0090 0. 0.0092 0. 0.0092 0. 0.0087 0. 0.0087 0. 0.0087 0.	0.0090 0. 0.0086 0. 0.0091 0. 0.0092 0. 0.0092 0. 0.0087 0. 0.0087 0. 0.0087 0. 0.0087 0. 0.0092 0.	0.0090 0. 0.0086 0. 0.0090 0. 0.0092 0. 0.0092 0. 0.0087 0. 0.0087 0. 0.0087 0. 0.0092 0. 0.0093 0.	0.0090 0. 0.0086 0. 0.0090 0. 0.0092 0. 0.0092 0. 0.0087 0. 0.0087 0. 0.0092 0. 0.0093 0. 0.0093 0. 0.0093 0. 0.0093 0.
I MLSEC I	0.0090	0600.0	0.0089	0.0091	0600.0	0.0089	0.0091	0.0091	0.0092	0.0092	0.0088	0.0092	0.0092	0.6763	0.0092	1600.0	0.0092	0600.0	0600.0	0600.0	0.0092	0.0092	.0000	1600.0	1600.0	1600.0 6800.0 1900.0	1600.0 0.0089 1600.0 0.0091	1600.0 1600.0 1900.0	1900.0 0.0089 1900.0 1900.0 1900.0 1900.0 2900.0	0.0091 0.0089 0.0091 0.0091 0.0092 0.0092 0.0092	0.0091 0.0089 0.0091 0.0092 0.0092 0.0092 0.0089	0.0091 0.0089 0.0091 0.0092 0.0092 0.0089 0.0089	0.0089 0.0089 0.0091 0.0091 0.0092 0.0092 0.0089 0.0089 0.0089	0.0089 0.0089 0.0091 0.0091 0.0092 0.0092 0.0089 0.0089 0.0089	0.0089 0.0089 0.0091 0.0091 0.0092 0.0092 0.0089 0.0089 0.0089 0.0089 0.0083 0.0083	0.0089 0.0089 0.0091 0.0092 0.0092 0.0092 0.0089 0.0089 0.0089 0.0093 0.0093 0.0093
I MLS	0.0090	0.0089	0.0088	0.0089	0600.0	0.0088	0.0089	0.0089	0.0091	0.0092	0.0086	0.0091	0.6761	0600.0	0.0092	0600.0	0.0092	0.0087	0.0088	0.0088	0.0092	0.0092	0 0000	N/00'0	0.0087	0.0087	1600.0 1000.0	0.0000 0.0001 0.0000 0.0000	0.0087 0.0087 0.0091 0.0090 0.0092	0.0087 0.0087 0.0091 0.0090 0.0092 0.0092	0.0087 0.0087 0.0091 0.0090 0.0092 0.0092 0.0087	0.0087 0.0087 0.0091 0.0092 0.0092 0.0087 0.0088	0.0087 0.0091 0.0091 0.0092 0.0092 0.0092 0.0087 0.0088 0.0088	0.00037 0.0091 0.0090 0.0092 0.0092 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087	0.0097 0.0091 0.0091 0.0092 0.0092 0.0087 0.0087 0.0088 0.0092 0.0092 0.0092 0.0092	0.0097 0.0091 0.0091 0.0092 0.0092 0.0087 0.0087 0.0092 0.0092 0.0092 0.0091 0.0090
ONFIN	0.0089	0.0089	0.0089	0600.0	0.0090	0.0089	0.0090	0.0090	0.0092	0.0091	0.0087	0.6760	0.0092	0.0090	0.0092	0600.0	0.0092	0.0088	0.0087	0.0089	0.0092	0.0092	0 0090	A PANA A	0.0088	0.0088	0.0091	0.0090 0.0091 0.0090	0.0088 0.0091 0.0091 0.0090 0.0090	0.0088 0.0091 0.0091 0.0090 0.0092 0.0092	0.0088 0.0091 0.0091 0.0090 0.0092 0.0092 0.0092	0.0088 0.0091 0.0090 0.0092 0.0092 0.0087 0.0088	0.0088 0.0091 0.0092 0.0092 0.0092 0.0087 0.0088 0.0088	0.0088 0.0091 0.0092 0.0092 0.0092 0.0092 0.0088 0.0088 0.0092 0.0092	0.0087 0.0091 0.0092 0.0092 0.0092 0.0087 0.0087 0.0088 0.0092 0.0092 0.0092	0.0087 0.0091 0.0092 0.0092 0.0092 0.0087 0.0088 0.0088 0.0092 0.0092 0.0091 0.0091
I MLHNS	0.0106	0.0106	0.0111	0.0103	0.0103	0.0110	0.0101	0.0104	0.0100	7600.0	0.6821	0.0100	0.0095	0.0102	0.0094	0.0104	0.0093	0.0113	0.0107	0.0108	0.0094	0.0093	0.0097		0.0113	0.0113	0.0113 0.0100 0.0101	0.0100 0.0100 0.0096	0.0113 0.0100 0.0096 0.0093	0.0113 0.0100 0.0101 0.0096 0.0093 0.0093	0.0113 0.0100 0.0101 0.0095 0.0093 0.0093 0.0115	0.0113 0.0100 0.0101 0.0095 0.0093 0.0115 0.0103	0.0113 0.0100 0.0101 0.0095 0.0093 0.0115 0.0115 0.0103	0.0113 0.0100 0.0096 0.0093 0.0093 0.0093 0.0093 0.0103 0.0093 0.0093	0.0113 0.0100 0.0005 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0100	0.0113 0.0100 0.0005 0.0093 0.0093 0.0093 0.0093 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103
I MLGB	0.0089	0.0088	0.0087	0.0090	0.0089	0.0088	0.0089	0.0089	0.0091	0.6761	0.0086	0.0092	0.0092	0.0090	0.0092	0.0090	0.0092	0.0087	0.0088	0.0088	0.0092	0.0092	0.0091		0.0087	0.0087 0.0091	0.0087 0.0091 0.0090	0.0087 0.0090 0.0090 0.0090	0.0087 0.0090 0.0090 0.0090 0.0090	0.0087 0.0090 0.0090 0.0090 0.0091 0.0093	0.0087 0.0091 0.0090 0.0090 0.0093 0.0037	0.0087 0.0091 0.0090 0.0091 0.0093 0.0087 0.0087	0.0087 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0	0.0087 0.0091 0.0090 0.0091 0.0093 0.0087 0.0087 0.0087 0.0087 0.0091 0.0092	0.0087 0.0091 0.0090 0.0090 0.0093 0.0087 0.0087 0.0087 0.0087 0.0092 0.0092	0.0087 0.0091 0.0090 0.0090 0.0093 0.0087 0.0087 0.0087 0.0087 0.0092 0.0092 0.0092
I MIT	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0.0089	0600.0	0.6761	0.0092	0.0087	0.0091	0.0091	0600.0	0.0092	0600.0	0.0092	0.0087	0.0087	0.0089	0.0093	0.0092	1600'0		0.0087	0.0087	0.0087 0.0091 0.0091	0.0087 0.0091 0.0091 0.0090	0.0087 0.0091 0.0090 0.0090 0.0090 0.0091	0.0087 0.0091 0.0091 0.0090 0.0091 0.0092	0.0087 0.0091 0.0090 0.0090 0.0092 0.0092 0.0088	0.0087 0.0091 0.0090 0.0091 0.0092 0.0088 0.0088	0.0087 0.0091 0.0091 0.0091 0.0092 0.0088 0.0088 0.0088	0.0087 0.0091 0.0091 0.0092 0.0092 0.0088 0.0088 0.0088 0.0088	0.0087 0.0091 0.0090 0.0091 0.0092 0.0088 0.0088 0.0088 0.0088 0.0088 0.0092 0.0092	0.0087 0.0091 0.0091 0.0090 0.0092 0.0088 0.0088 0.0088 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092
I LUL	0.0091	0.0091	0.0091	0.0092	0.0092	0.0091	0.0091	0.6767	0.0092	0.0092	0600.0	0.0092	0.0092	0.0092	0.0093	0.0092	0.0093	0.0091	0.0091	0.0091	0.0093	0.0093	0.0092		0600.0	0.0090	0.0090 0.0092 0.0092	0.0090 0.0092 0.0092 0.0092	0.0090 0.0092 0.0092 0.0092 0.0092	0.0090 0.0092 0.0092 0.0092 0.0093 0.0093	0.0092 0.0092 0.0092 0.0092 0.0093 0.0093	0.0092 0.0092 0.0092 0.0092 0.0093 0.0093 0.0091 0.0091	0.0092 0.0092 0.0092 0.0093 0.0093 0.0093 0.0091 0.0091 0.0091 0.0091	0.0092 0.0092 0.0092 0.0093 0.0093 0.0091 0.0091 0.0091 0.0092	00000 020002 0.0022 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	00000 02000 02000 02000 0000 0000 0000
I KUI	0.0092	0.0091	0.0091	0.0092	1600.0	0.0091	0.6770	0.0092	0.0092	0.0092	0.0088	0.0092	0.0092	1600.0	0.0093	0.0092	0.0093	1600.0	0600.0	0.0091	0.0093	0.0092	0.0093		0600.0	0.0090	0.0090 0.0092 0.0091	0.0090 0.0092 0.0091 0.0092	0.0090 0.0092 0.0091 0.0092 0.0092	0.0090 0.0092 0.0092 0.0092 0.0093	0.0090 0.0092 0.0092 0.0092 0.0093 0.0093	0.0090 0.0092 0.0092 0.0092 0.0093 0.0093 0.0090	0.0090 0.0092 0.0092 0.0092 0.0093 0.0092 0.0092 0.0092 0.0092	0.0090 0.0092 0.0091 0.0093 0.0093 0.0093 0.0092 0.0092 0.0093	0,0000 0,0092 0,0092 0,0093 0,0092 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093	0,0000 0,0092 0,0092 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0093 0,0092 0,0002 0,0092 0,0002 0,0092 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0092 0,00000000
I KSC	0.0094	0.0094	0.0095	0.0094	0.0094	0.6774	0.0094	0.0094	0.0094	0.0093	0.0095	0.0093	0.0093	0.0095	0.0093	0.0095	0.0093	0.0094	0.0094	0.0095	0.0093	0.0092	0.0094		0.0094	0.0094 0.0094	0.0094 0.0094 0.0093	0.0094 0.0094 0.0093 0.0093	0.0094 0.0093 0.0093 0.0094 0.0093	0.0094 0.0093 0.0093 0.0094 0.0093 0.0093	0.0094 0.0093 0.0093 0.0093 0.0093 0.0092 0.0095	0.0094 0.0093 0.0093 0.0094 0.0092 0.0092 0.0095 0.0095	0.0094 0.0093 0.0093 0.0093 0.0092 0.0095 0.0095 0.0095 0.0095	0.0094 0.0093 0.0093 0.0093 0.0093 0.0092 0.0095 0.0095 0.0095 0.0093 0.0093	0.0094 0.0093 0.0093 0.0093 0.0092 0.0095 0.0095 0.0093 0.0003 0.00	0.0094 0.0093 0.0093 0.0093 0.0092 0.0095 0.0093 0.00
KRF	0.0094	0.0094	0.0094	0.0094	0.6774	0.0095	0.0095	0.0095	0.0093	0.0093	0.0095	0.0093	0.0093	0.0094	0.0093	0.0094	0.0093	0.0095	0.0094	0.0094	0.0093	0.0093	0.0093		0.0095	0.0095	0.0095 0.0093 0.0094	0.0095 0.0093 0.0094 0.0094	0.0095 0.0093 0.0094 0.0094 0.0093	0.0095 0.0094 0.0094 0.0094 0.0093 0.0093	0.0095 0.0094 0.0094 0.0093 0.0093 0.0093 0.0093	0.0095 0.0094 0.0094 0.0093 0.0093 0.0093 0.0095 0.0095	0.0095 0.0093 0.0094 0.0094 0.0093 0.0095 0.0095 0.0095 0.0095	0.0095 0.0094 0.0094 0.0093 0.0093 0.0093 0.0095 0.0095 0.0093 0.0093	0.0095 0.0093 0.0094 0.0094 0.0093 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0094 0.0093 0.0093 0.0094 0.0093 0.0003 0.00003 0.00003 0.0000000 0.000000 0.000000000000	0.0095 0.0093 0.0094 0.0094 0.0095 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0095 0.0094 0.0095 0.0005 0
FST	0.0093	0.0094	0.0095	0.6772	0.0092	0.0094	0.0093	0.0094	0.0093	0.0094	0.0095	0.0093	0.0093	0.0095	0.0093	0.0093	0.0093	0.0095	0.0095	0.0094	0.0092	0.0092	0.0093		0.0094	0.0094	0.0094 0.0093 0.0094	0.0094 0.0093 0.0094 0.0092	0.0094 0.0093 0.0094 0.0092 0.0093	0.0094 0.0093 0.0092 0.0093 0.0093	0.0094 0.0093 0.0092 0.0092 0.0093 0.0092	0.0094 0.0093 0.0092 0.0093 0.0093 0.0092 0.0092	0.0094 0.0093 0.0092 0.0093 0.0092 0.0092 0.0092 0.0092	0.0094 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092	0.0094 0.0093 0.0092 0.0092 0.0092 0.0092 0.0092 0.0093 0.0093 0.0093	0.0094 0.0093 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092 0.0093 0.0093 0.0093 0.0093
DAL 1	0.0092	0.0093	0.6769	0.0093	0.0092	1600.0	0.0093	0.0092	0.0092	0.0093	0600.0	0.0092	0.0093	0.0092	0.0093	0.0092	0.0093	0.0092	1600.0	0.0093	0.0092	0.0092	0.0092		1600'0	0.0091	0.0091	0.0091 0.0093 0.0093 0.0093	0.0091 0.0093 0.0093 0.0093 0.0093	0.0091 0.0093 0.0093 0.0093 0.0093 0.0093	0.0091 0.0092 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093	0.0091 0.0092 0.0093 0.0093 0.0093 0.0093 0.0093	0.0091 0.0092 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093	0.0091 0.0092 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093	0.0091 0.0092 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093	0.0091 0.0092 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0092 0.0092
CRN 1	0.0094	0.6779	9600.0) 9600'(0.0094 () 9600.0	0.0094	0.0095	0.0093) 6600.0) 2600.0	0.0094 () 0094	0.0094 (0.0093 (0.0094) 26003) 9600.0) 9600.0	0.0095 (0.0093	0.0093	0.0094 (9600.0	0.0096 ().0096 ().0094 ().0094 (0.0096 (0.0094 (0.0094 (0.0094 (0.0094 (0.0094 (0.0094 (0.0093 (0.009))))))))))))	0.0096 (0.0094 (0.0094 (0.0093 (0.009))))))))))))	0.0096 (0.0094 (0.0094 (0.0094 (0.0093 (0.0093 (0.0093 (0.0093 (0.0093 (0.0093 (0.0093 (0.0093 (0.0092 (0.0093 (0.0092 (0.0093 (0.009))))))))))))	00096 (00094 (00094 (00094 (00093 (0000)	00096 (00094 (00094 (00094 (00093 (00093 (00093 (00093 (00093 (00093 (00093 (00095 (000000000))))))))))))	1,0096 (1,0094 (1,0093 (1,0093 (1,0093 (1,0095 (1,0005 (1,0	1,0096 (0000000000000000000000000000000000	1,0096 1,0094 1,0094 1,0093 1,0093 1,0093 1,0095 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0093 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0094 1,0093 1,0094 1,0093 1,0094 1,0093 1,0003 1,	(10095 (100095 (10095 (10095 (10095 (10095 (10095 (10095 (10095 (
CGF I	0.6773 (0.0092 (0.0093 (0.0092 (0.0093 (0.0093 (0.0093 (0.0093 (0.0092 (0.0092 (0.0095 (0.0092 (0.0093 (0.0092 (0.0093 (0.0093 (0.0093 (0.0093 (0.0094 (0.0093 (0.0092 (0.0092 (0.0093 (0.0093 (0.0093 (0.0093 (0.0093 0.0093 0.0093 0.0093 0.0093 0.0092 0.0	0.0093 0 0.0093 0 0.0092 0 0.0094 0	0.0093 0 0.0093 0 0.0092 0 0.0094 0 0.0093 0	0.0093 0 0.0093 0 0.0092 0 0.0094 0 0.0093 0 0.0093 0	0.0093 0 0.0093 0 0.0092 0 0.0094 0 0.0093 0 0.0092 0 0.0093 0	0.0093 0 0.0093 0 0.0094 0 0.0094 0 0.0093 0 0.0093 0 0.0093 0 0.0093 0 0.0093 0 0.0093 0	0.0093 0 0.0093 0 0.0092 0 0.0092 0 0.0093 0 0.0092 0 0.0092 0 0.0092 0 0.0092 0 0.0092 0	0.0093 0 0.0093 0 0.0092 0 0.0092 0 0.0093 0 0.0093 0 0.0092 0 0.0092 0 0.0092 0 0.0092 0 0.0092 0 0.0093 0 0.0093 0 0.0093 0 0.0093 0 0	0.0093 0 0.0093 0 0.0092 0 0.0094 0 0.0093 0 0 0.0093 0 0 0.0093 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0.0093 0 0 0 0.0093 0 0 0.0093 0 0 0.00003 0 0 0.00000 0 0.0000000000	0.0093 0 0.0093 0 0.0092 0 0.0094 0 0.0093 0 0.0094 0 0.0093 0 0 0.0093 0 0 0.0093 0 0.0093 0 0.00003 0 0.00003 0 0.00003 0 0.00003 0 0.00003 0 0.00003 0 0.00003 0 0.00003 0 0.00003 0 0.0000000000
From	I CGF	I_CRN	1_DAL	I_FST	I_KRF	I_KSC	I_KUI	I_LUL	TIMIT	I_MLGB	I_MLHNS	ONLLIN	I_MLS	I_MLSEC	I MLSEN	I_NYS	I_ORI	I_POW	I_REV	I_SMZ	I_SWN	I_TXN	I_WRG		I_WRN	I_WRN I_YTS	I_WRN I_YTS I_ZRB	I_WRN I_YTS I_ZRB N_MLCP	I_WRN I_YTS I_ZRB N_MLCP N_MLCB	I_WRN I_YTS I_ZRB N_MLCP N_MLCP N_MLGB N_MLHNS	L WRN L YTS L ZRB N_MLCP N_MLGB N_MLHNS N_MLJNO	LWRN LYTS LZRB N_MLCP N_MLCP N_MLHNS N_MLHNS N_MLMFD	LWRN LYTS LZRB N_MLCP N_MLCP N_MLHNS N_MLHNS N_MLMFD N_MLSEC	LWRN LYTS LZRB NMLCP NMLCP NMLHNS NMLHNO NMLHNO NMLMFD NMLSEC NMLSES	LWRN LYTS LZRB NMLCP NMLCP NMLCP NMLHNS NMLHNS NMLMFD NMLSES NMLSES NMLSES	LWRN LYTS LZRB NMLCP NMLCP NMLGB NMLHNO NMLHNO NMLHSE NMLMFD NMLSES NMLSES NMLYR NMLWP

	From	1_CGF	I_CRN	I_DAL	I_FST	I_KRF	I_KSC	I_KUI	ILLUL	TIM_I	I_MLGB	I MLHNS	ONT IN I	I MLS	I MLSEC	I_MLSEN	I_NYS	I_ORI	I_POW	I_REV	I_SMZ	NWS_I	ITXN	I_WRG	I_WRN	I_YTS	I_ZRB	N_MLCP	N_MLGB	N_MLHNS	ONITIM N	N_MLMFD	N_MLSEC	N_MLSES	N_MLTYR	N_MLWP	N_YTC
s into	N YTC	0.0089	0.0089	0.0088	0.0089	0.0088	0.0088	0.0089	0.0089	0.0092	0.0091	0.0085	0.0091	0.0092	0.0091	0.0092	0.0090	0.0093	0.0087	0.0087	0.0089	0.0092	0.0092	0.0091	0.0087	0.0091	0600.0	0.0090	0.0092	0.0092	0.0087	0.0087	0.0092	0.0092	0.0091	0.0089	0.6761
ration rate	MLWP	0.0096	0.0095	0.0096	0.0096	0.0095	0.0097	0.0097	0.0096	0.0094	0.0093	0.0097	0.0094	0.0093	0.0096	0.0093	0.0095	0.0093	0.0096	0.0098	0.0096	0.0093	0.0093	0.0095	0.0096	0.0094	0.0095	0.0096	0.0093	0.0093	0.0098	0.0099	0.0093	0.0093	0.0093	0.6772	0.0094
Mig	MLTYR N	0.0000	0.0089	0.0089	0.0090	0.0089	0.0090	0.0089	0.0090	0.0092	0.0092	0.0089	0.0092	0.0092	0.0091	0.0093	0.0091	1600.0	0.0089	0.0088	0.0090	0.0092	0.0092	0.0091	0.0088	0.0091	1600.0	0.0090	0.0092	0.0092	0.0089	0.0088	0.0092	0.0092	0.6761	0600.0	0.0092
	MLSES N	0600.0	0.0088	0.0088	0600.0	0600.0	0.0088	0600.0	0600.0	0.0091	0.0091	0.0086	0.0091	0.0092	0.0089	0.0093	0.0089	0.0093	0.0088	0.0088	0.0089	0.0092	0.0092	0.0091	0.0087	0.0091	0.0091	0600.0	0.0092	0.0092	0.0087	0.0088	0.0092	0.6762	0.0091	0.0090	0.0091
	MLSEC N	0.0091	0600.0	0.0089	0.0089	1600.0	0.0089	0600.0	0.0090	0.0091	0.0092	0.0085	1600.0	0.0092	0600.0	0.0092	0600.0	0.0092	0.0088	0.0087	0.0089	0.0092	0.0093	0.0091	0.0087	0.0091	0.0091	0.0091	0.0093	0.0092	0.0086	0.0089	0.6764	0.0092	1600.0	0.0090	0.0092
	MLMFD N	0.0098	0.0098	0.0098	7600.0	0.0098	0.0098	0.0099	0.0098	0.0094	0.0094	0.0100	0.0095	0.0094	0.0097	0.0094	0.0096	0.0094	0.0100	0.0102	0.0098	0.0093	0.0093	7600.0	0.0099	0.0095	0.0095	0.0098	0.0094	0.0093	0.0102	0.6797	0.0095	0.0093	0.0094	0.0099	0.0095
	MLJNO N	0.0093	0.0095	0.0097	0.0095	0.0095	0.0095	0.0093	0.0094	0.0095	0.0095	0.0100	0.0095	0.0092	0.0096	0.0092	0.0094	0.0092	0.0098	0.0099	0.0096	0.0093	0.0093	0.0094	0.0097	0.0094	0.0095	0.0093	0.0093	0.0092	0.6781	0.0095	0.0092	0.0093	0.0094	0.0093	0.0094
	MLHNS N	0600.0	0600.0	0.0089	0600.0	0600.0	0.0089	0.0091	0600.0	0.0091	0.0091	0.0085	0.0091	0.0092	0600.0	0.0093	0.0091	0.0092	0.0088	0.0087	0600.0	0.0093	0.0093	0.0092	0.0089	0.0091	1600.0	0.0091	0.0093	0.6762	0.0085	0.0089	0.0092	0.0092	0.0092	0600.0	0.0091
	MLGB N	0.0090	0600.0	0.0089	0.0090	0.0090	0.0089	0.0091	0.0090	1600.0	0.0091	0.0086	1600.0	0.0092	0.0090	0.0092	0.0090	0.0092	0.0088	0.0089	0.0089	0.0093	0.0092	0.0091	0.0088	1600.0	1600.0	0.0092	0.6765	0.0092	0.0087	0.0090	0.0092	0.0092	0.001	0.0090	0.0092
	N MLCP	0.0092	0600.0	0.0091	0.0091	1600.0	1600.0	0.0093	1600.0	0.0092	0.0092	0.0087	0.0092	0.0092	0.0091	0.0093	0.0092	0.0093	0.0091	1600.0	0600.0	0.0092	0.0093	0.0092	0.0089	0.0092	1600.0	0.6771	0.0093	0.0093	0.0090	1600.0	0.0093	0.0093	0.0092	0.0092	0.0092
	I ZRB	1600.0	0600.0	0600.0	0600.0	0600.0	0.0091	0600.0	0.0092	0.0091	0.0092	0.0089	0.0092	0.0092	0.0092	0.0092	1600.0	0.0093	0600.0	0600.0	0.0090	0.0092	0.0093	0.0092	0.0089	1600.0	0.6762	1600'0	0.0092	0.0093	0600.0	0600.0	0.0092	0.0092	0.0092	0.0091	0.0092
	I YTS	0.0089	0.0088	0.0088	0.0089	0.0089	0.0088	0.0089	0.0089	0.0091	0.0091	0.0084	0.0090	0.0092	0.0089	0.0092	0.0090	0.0092	0.0087	0.0086	0.0088	0.0092	0.0092	0600.0	0.0087	0.6761	0600.0	0.0091	0.0092	0.0092	0.0086	0.0087	0.0092	0.0092	1600.0	0.0089	0.0091
	I WRN	0.0099	0.0099	0.0101	0.0099	0.0098	0.0101	0.0098	0.0099	0.0096	0.0095	0.0105	0.0095	0.0094	0.0099	0.0093	0.0098	0.0093	0.0103	0.0101	0.0101	0.0093	0.0093	0.0097	0.6797	0.0096	0.0096	9600.0	0.0093	0.0093	0.0104	0.0101	0.0094	0.0093	0.0096	0.0099	0.0095
	I WRG	0.0091	0.0091	0600.0	0.0091	0.0091	0.0089	0.0091	0.0091	0.0092	0.0092	0.0089	0.0092	0.0092	0.0091	0.0093	0.0091	0.0093	0600.0	0600.0	0.0090	0.0092	0.0092	0.6765	0.0089	0.0092	0.0092	0.0091	0.0092	0.0093	0600.0	0.0089	0.0092	0.0092	0.0092	0.0091	0.0092
	I TXN	0.0089	0.0089	0.0089	0600.0	0600.0	0.0089	0.0090	0.0089	0.0092	0.0091	0.0085	1600.0	0.0092	0600.0	0.0093	0600.0	0.0092	0.0087	0.0087	0.0089	0.0092	0.6762	1600.0	0.0087	0.0091	0.0091	0.0091	0.0091	0.0092	0.0087	0.0088	0.0092	0.0092	1600.0	0600.0	0.0091
	I_SWN	0.0090	0.0090	0.0089	0.0090	0600.0	0.0089	0.0090	0.0091	0.0092	0.0092	0.0088	0.0092	0.0092	0600.0	0.0092	0.0090	0.0092	0.0089	0.0088	0.0089	0.6762	0.0092	0600.0	0.0089	0.0091	0.0091	1600.0	0.0092	0.0092	0.0088	0.0089	0.0092	0.0092	0.0092	0.0091	0.0091

Table 8. Locality abbreviations. Standard state and province abbreviations apply	/ for
unlisted locations.	

Region	Location
Alaskan Islands	Chichagof (CGF)
	Coronation (CRN)
	Dall (DAL)
	Forrester (FRS)
	Kosciusko (KSC)
	Kuiu (KUI)
	Kupreanof (KRF)
	Lulu (LUL)
	Mitkof (MIT)
	Noyes (NYS)
	Orr (ORI)
	Prince of Wales (POW)
	Revillagigedo (REV)
	Suemez (SMZ)
	Sukkwan (SWN)
	Tuxekan (TXN)
	Warren (WRN)
	Wrangell (WRG)
	Zarembo (ZRB)
mainland	British Columbia (BC)
	Mainland Southeast Alaska (MLSE)
	Northern mainalnd Southeast (MLSEN)
	Cleveland Peninsula (CP/MLCP)
	Foggy Bay (FB/MLFB)
	Glacier Bay (GB/MLGB)
	Haines (HNS/MLHNS)
	Interior Alaska (IAK/MLS)
	Juneau (JNO/MLJNO)
	Klukwan (KLU/MLKLU)
	Misty Fjords (MFD/MLMFD)
	Southeast Central (SEC AK/MLSEC)
	Southeast North (SEN AK/MLSEN)
	Southeast South (SES AK/MLSES)
	Skagway (SKW/MLSKW)
	Taiya River (TYR/MLTYR)
	White Pass (WP/MLWP)
	British Columbia - Central (BCC)
	British Columbia - North (BCN)
	British Columbia - South (BCS)
	Washington (WA)
	Yukon Territory - Central (YTC)
	Yukon Territory - South (YTS)

	6	cytb		2	multilocus	
Lineage	95% HPD lower	mean	95% HPD upper	95% HPD lower	mean	95% HPD upper
M.longicaudus	775,600	1,115,100	1,561,100	220,800	296,400	402,200
Southern	371,700	727,600	1,106,900			
SI	160,800	307,900	487,200			
S2	23,737	78,589	142,200			
Central/North/Island	459,600	661,200	906,300			
Central	128,500	217,000	314,400			
Colorado Plateau	171,400	294,300	420,500			
North/Island	306,400	435,400	581,900	124,200	150,000	188,000
North Pacific Coast	169,500	294,200	169,500			
North	105,000	159,000	221,600			
Island	164,600	225,100	294,200			

Table 9. Cyt b and phased multilocus divergence date estimates.

CHAPTER 3

Deer mice at high-latitudes: genetic consequences of refugia and insularity in response to historical climate change

ABSTRACT

Aim We surveyed genetic data for the northern geographic extent of deer mice (genus *Peromyscus*) to identify lineage diversification as a result of occupancy in uncommon, multiple ice-free regions, and rapid post-glacial colonization.

Location North America, with a focus on northwestern North America (British Columbia, Alaska, and Yukon).

Methods We used sequences from one mitochondrial and three nuclear loci from 390 deer mouse specimens, including *P. maniculatus, P. keeni*, and *Peromyscus* sp. nov. (Yukon), to assess species limits, population structure, and demographic change as a result of historical climate change. Historical migration estimates and phylogenetic gene tree and species tree estimates used a Bayesian approach. Species distribution models were built to explore niche overlap of major clades.

Results Divergence among the three clades began prior to the last interglacial. Both the cyt *b* and multilocus species trees strongly support *P. keeni* and *Peromyscus* sp. nov. (Yukon) as independent from *P. maniculatus*; however, *P. maniculatus* likely represents

multiple species. Substantial substructure was observed for *P. keeni* and *P. maniculatus*. Northern clades differ in potential distributions.

Main conclusions Northwestern species of deer mice persisted in at least three ice-free regions (Beringia, Southeast Alaska and southern continent) throughout the Pleistocene glacial cycles. In Southeast Alaska, there is limited gene flow among island populations of *P. keeni*. Taxonomic revisions are needed for *P. maniculatus*. No sympatric locations were identified, but are likely to be detected with additional sampling in regions of close proximity.
INTRODUCTION

Vicariant events that result in genetic differentiation are a major focus in phylogeographic studies. Pleistocene (2.5 Ma – 11.7 ka) vicariant events seem to have initiated speciation in a diversity of northwestern North American animals and plants, including North American warblers (Parulidae, Mengel, 1964), mountain sheep (*Ovis* sp., Loehr *et al.*, 2006), grasshoppers (*Melanoplus*, Carstens & Knowles, 2007a), and plants (angiosperms and a fern, Soltis *et al.*, 1997). For many northern organisms, glacialinterglacial cycles drove instances of landscape fragmentation and population isolation, often followed by secondary contact. Those events left distinct genetic signatures of stability for populations that persisted in ice-free regions and expansion for populations descendent from postglacial colonizers (Hewitt, 1996; Lessa *et al.*, 2003).

During glacial periods, most western North America species persisted in ice-free regions either north in Beringia or south of the ice (Rand, 1954; Jorgensen *et al.*, 2003; Eddingsaas *et al.*, 2004). Glacial refugia along the northwestern coast of North America, the result of lower sea levels and exposed continental shelf, have also been proposed (Fladmark, 1979; Hewitt, 1996; Fleming & Cook, 2002), but remain the subject of extensive debate (Cook & MacDonald, 2013). Generally, only widespread species such as the red fox (*Vulpes vulpes*, Aubry *et al.*, 2009), alpine groundsel (*Packera pauciflora*, Bain & Golden, 2005), and ermine (*Mustela erminea*, Fleming & Cook, 2002)], persisted in both southern and northern ice-free regions. Most species were limited to proximate regions (e.g., Southern and southern Northwest Coast, Beringia and northern Northwest Coast). Identifying the constituent species and characterizing the communities that persisted in glacial refugia provides a basis for understanding the temporal and spatial

dynamics of biotic response to climate change (Soltis *et al.*, 1997; Carstens *et al.*, 2013) and for the development of effective conservation strategies (Cook *et al.*, 2006).

The genetic footprints of populations can provide insight into the late Pleistocene history of isolation, expansion, and in some cases, secondary contact (e.g., Lucid & Cook, 2007; Weksler et al., 2010). Common regions of secondary contact in western North America are in areas between and along the Coastal and Rocky mountain ranges (Remington, 1968; Swenson & Howard, 2005). To date, only a handful of studies identify regions where multiple lineages contact in northwestern North America. Arctic grayling (Thymallus sp.), for example, persisted in two ice-free regions in Beringia, resulting in three distinct mtDNA lineages from Northern Beringia, Southern Beringia, and Yukon (Stamford & Taylor, 2004). Alpine groundsel (Packera pauciflora, Bain & Golden, 2005), spruce beetles (*Dendroctonus rufipennis*, Maroja et al., 2007), and shrews (Sorex cinereus complex, Hope et al., 2012) persisted in both Beringia and on the continent south of the ice, while lake trout (Salvelinus namaycush, Wilson & Hebert, 1998), ermine (Mustela erminea, Fleming & Cook, 2002), lodgepole pine (Pinus contorta, Godbout et al., 2008), and the long-tailed vole (Microtus longicaudus, Sawyer and Cook submitted), endured glacial periods in ice-free areas in Beringia, southern continent (south of the ice) and coastal refugia. Additionally, based on a previously identified clade restricted to Yukon, deer mice are hypothesized to have persisted south of the Cordilleran and Laurentide ice, in Pacific coastal refugia and potentially in Beringia (Wike, 1998; Lucid & Cook, 2007).

Deer mice of the genus *Peromyscus* (Cricetidae, Neotominae) are among North America's most species-rich, widespread, and well-studied terrestrial small mammals.

The taxonomic and phylogeographic history of *Peromyscus* in the Pacific Northwest was first addressed with recognition of P. keeni (as P. sitkensis, Merriam, 1897) as distinct from *P. maniculatus* by Cowan (1935). Since then, various genetic approaches (Hogan *et* al., 1997; Dragoo et al., 2006; Gering et al., 2009) and analysis of phallic and bacular morphology (Sullivan et al., 1990) confirmed the separation of P. maniculatus (Wagner, 1845) from P. keeni (Rhoads, 1894) or identified areas of sympatry (Gunn & Greenbaum, 1986; Hogan et al., 1993; Zheng et al., 2003). Across the broad, continental distribution of *P. maniculatus*, considerable variation in morphological characters exists and is likely related to wide habitat variation ranging from scrublands to deserts, forests, and swamps (Hall, 1981; Carleton, 1989; Hogan et al., 1993). Six well-supported mtDNA lineages were identified throughout this range (Dragoo *et al.*, 2006; Kalkvik *et al.*, 2012): clade 1) Pacific Northwest and Rocky Mountain States, 2) Plains States, 3) West Coast, 4) southern New Mexico and Mexico, 5) northeast United States and eastern Canada, and 6) northeast and north-central United Sates and south-central Canada. Patterns of phylogeographic structure are consistent with those uncovered in other mammals that experienced Pleistocene range fluctuations in North America (Brant & Orti, 2003; Runck & Cook, 2005), but high levels of mitochondrial differentiation call into question the validity of *P. maniculatus* as a single species (Dragoo *et al.*, 2006).

Relative to *P. maniculatus, P. keeni* occurs within 200 km of the Pacific Coast, from northern Washington to southern Yukon, and is found on large islands in British Columbia (Vancouver Island, Haida Gwaii) and the Alexander Archipelago (AA) of Southeast Alaska. *Peromyscus keeni* prefers open canopy forests from coastal lowlands through high-elevation and alpine forest. Where their distributions overlap, *P. keeni* can

be found at higher elevations (Hall, 1981; Hogan *et al.*, 1993). Studies suggest that *P. keeni* survived the Pleistocene in coastal refugia in either British Columbia or Southeast Alaska (Zheng *et al.*, 2003; Lucid & Cook, 2004; Walker, 2005).

The northwestern extent of the ranges of both *P. maniculatus* and *P. keeni* is in Yukon (Hall, 1981; Hogan *et al.*, 1993; Wike, 1998). Analyses of DNA restriction fragment length polymorphisms and sequences suggest the presence of a previously unidentified species in Yukon (*Peromyscus* sp. nov.), with comparable divergence times with either *P. maniculatus* or *P. keeni* that pre-date the Wisconsinan glaciation (Wike, 1998; Lucid & Cook, 2007). The dynamics, both within and among *P. keeni*, *P. maniculatus* and *Peromyscus* sp. nov., allow us to study the impact of Pleistocene range fragmentation into multiple refugia and potential post-glacial secondary contact of these divergent clades.

We explore the effects of Pleistocene glacial-interglacial cycles on speciation and lineage diversification for the *P. maniculatus* complex at the northern extent of their range. We hypothesize signatures of three regions of glacial persistence will be present: far-eastern Beringia for *Peromyscus* sp. nov. (Wike, 1998); Pacific Northwest Coast (e.g., British Columbia, Southeast Alaska) for *P. keeni* (Zheng *et al.*, 2003; Lucid & Cook, 2004); and southern continent for *P. maniculatus* (Zheng *et al.*, 2003; Yang & Kenagy, 2009). Occupation in all of these ice-free regions during the LGM would represent an uncommon pattern of glacial persistence, subsequent diversification, and location of secondary contact when compared to other glacial relics (Cook *et al.*, 2001; Cook *et al.*, 2006; Shafer *et al.*, 2010). We also evaluate strength of genetic divergence as a result of isolation on levels of contemporary gene flow and genetic differentiation both within and

among clades. Lastly, we evaluate differences in niche requirements among *Peromyscus* sp. nov., *P. keeni* and *P. maniculatus* for signs of differentiation in climatic requirements in response to historical climate and regions of glacial persistence.

MATERIALS AND METHODS

Sampling and DNA sequencing

A total of 390 specimens representing 69 localities and all six clades identified in previous work on P. maniculatus (Dragoo et al., 2006; Kalkvik et al., 2012) were analyzed. These spanned the geographic range of P. maniculatus, P. keeni, with focused sampling in Yukon and Southeast Alaska (Table 1 and Fig. 1). Most specimens were collected over 25 years of fieldwork and deposited at either the University of Alaska Museum of the North (n=235) or the Museum of Southwestern Biology at the University of New Mexico (n=140). The University of Washington Burke Museum (n=8) and Gwaii Haanas National Park Reserve and Haida Heritage Site (n=7) also provided material. Of these, 71 specimens of P. keeni were used only for clade specific assessments of migration analyses. Seven of eight subspecies of P. keeni and 17 of 27 subspecies of P. maniculatus are represented. In additional to sequences generated, we obtained one P. *keeni*, 54 *P. maniculatus*, and *P. leucopus* (outgroup) cyt b sequence, and for β -fibrinogen (FGB) and interphotoreceptor retinoid-binding protein (IRBP) for *P. melanotis* from GenBank (outgroup; Table 1). Lastly, for migration estimates within P. keeni, additional shorter cyt b sequences (479 bp; n=220) from across the geographic range of P. keeni were downloaded from GenBank (Zheng et al., 2003; Lucid & Cook, 2004).

Using either Omega Bio-Tek (Norcross, GA) E.Z.N.A. kits or through standard salt methods, we extracted total genomic DNA to a final concentration of 50ng μ l⁻¹. The complete mitochondrial (mtDNA) cytochrome b gene (cyt b, 1143 bp, n=204) was amplified using primers L14734 (Ohdachi et al., 2001) and CytBRev (Anderson & Yates, 2000). The following partial nuclear genes (nuDNA) were also sequenced (Table 2): FGB (587 bp, n=169), IRBP (459 bp, n=160), and zona pellucida 3 (ZP3, 314 bp, n=176). Polymerase chain reaction (PCR) experiments used 1μ l DNA extract, 1μ l of each primer (2mM), 1.5 µl PCR buffer (10x), 1.5 µl MgCl₂ (25mM), 1.25 µl of dNTP's (10mM), 1.25 µl of Bovine Serum Albumen (BSA, 1.5mM), and 0.08 µl of AmpliTaq DNA polymerase (Applied Biosystems, Foster City, CA, USA) and adjusted to a final volume of 15 μ l with ddH₂O. PCR products were cleaned using ExoSap-IT (Affymetrix, Santa Clara, CA). We used original PCR primers for automated sequencing at either the High Throughput Genomic Center (Seattle, WA, USA) or using an Applied Biosystems 3110 DNA sequencer (Molecular Biology Facility, UNM) with BigDye v3.1 (Applied Biosystems) chemistry.

Alleles of heterozygotes were inferred using five independently seeded runs of 1000 iterations with an initial burn-in of 1000 implemented in PHASE v2.1 (Stephens *et al.*, 2001; Stephens & Scheet, 2005). The iterations with the best goodness-of-fit were chosen. Posterior probabilities for nucleotides ≥ 0.85 were chosen, otherwise ambiguous sites were coded as N. Only phased sequences were used for analysis. Sequences were edited in SEQUENCHER v4.2 (GeneCodes Corporation), aligned in MEGA v5.2 (Tamura *et al.*, 2011) using the MUSCLE algorithm and checked by eye.

Inferences of population history

Extended Bayesian skyline plots (EBSP, Heled & Drummond, 2008) and Bayesian skyline plots were implemented in BEAST to explore multilocus and cyt *b* historical demography, respectively, for each major cyt *b* clade. Loci were unlinked and partitioned to their respective substitution models (Table 3), as determined using MODELTEST (Posada & Crandall, 1998). All loci were set to strict molecular clocks and rates for phased nuclear loci were estimated based on cyt *b* with a rate of 4% Myr⁻¹ (rodent rate of 6-10% Myr⁻¹, Brunhoff *et al.*, 2003; Hope *et al.*, 2013). Three independent runs per data set included Markov chain Monte Carlo (MCMC) chains of 2 billion steps, sampled every 2 million. We used TRACER v1.5 (Rambaut & Drummond, 2007) to assess convergence. Significant population size change occurred if zero was excluded from the 95% confidence interval (CI) of the estimate of the number of size-change steps (Lim & Sheldon, 2011).

To test for recent demographic fluctuation, we used DNASP 5.10.1 (Librado & Rozas, 2009) to calculate standard diversity indices for the major cyt *b* clades for each phased locus, including segregating sites (*S*), haplotype diversity (*Hd*), and nucleotide diversity (π). Additionally, we calculated Tajima's *D* (1989), Fu's Fs (1997), and R₂ (Ramos-Onsins & Rozas, 2002) with 10 thousand coalescent simulations to assess historic demographic change or selection. Selection potential was also assessed through an HKA Test (Hudson *et al.*, 1987). Cyt *b* net genetic distance among major clades was calculated in MEGA.

Phylogenetic analyses and timing of divergence

Phylogenetic relationships of *Peromyscus* in Yukon were initially evaluated for cyt *b* using Maximum Likelihood (ML) and Bayesian frameworks. Models of evolution (Table 3) were inferred in MODELTEST (Posada & Crandall, 1998; Posada & Buckley, 2004) and ML calculations with 1000 bootstrap replicates were achieved in MEGA. Divergence dates for major clades and a Bayesian phylogeny were simultaneously estimated using BEAST v1.7.5 (Drummond *et al.*, 2012) with input files prepared in BEAUTI v1.7.5. Settings for three independent runs were 2 billion generations, sampled every 2 million generations and using an uncorrelated lognormal relaxed clock. Tree priors were a speciation Yule Process (Yule, 1925; Gernhard, 2008) using a random start tree. Time to Most Recent Common Ancestor (TMRCA) was determined with a 95% posterior probability distribution in TRACER v1.5. Runs with trace convergence and acceptable effective sample size (ESS; minimum of 200) were combined using LOGCOMBINER v1.7.5, with a 10% burn-in and annotated in TREEANNOTATOR v1.7.5. Topologies were visualized in FIGTREE v1.4.0 (Rambaut, 2009).

A multi-locus approach to phylogenetics provides independent signals that contribute to the discovery of species' relationships (Maddison, 1997; Carstens & Knowles, 2007b; Edwards *et al.*, 2007). Using a coalescent Bayesian MCMC method implemented in BEAST, *BEAST (Heled & Drummond, 2010) co-estimates species trees and contained gene trees. *A priori* groups were based on supported cyt *b* lineages and data were partitioned by independent, unlinked loci using an uncorrelated, lognormal relaxed clocks for cyt *b* at a rate of 4% Myr⁻¹ while estimated nuclear loci used strict molecular clocks. Models of evolution (Table 3) were determined using MODELTEST.

Two billion iterations, sampled every 200 thousand were performed using a random start tree under a species tree: Yule process tree prior, with a piecewise linear and constant root population size model. TRACER, LOGCOMBINER and TREEANNOTATOR were used as above.

Migration estimates

We estimated recent migration and gene flow among Yukon and surrounding populations of *Peromyscus*, as well as Southeast Alaska populations of *P. keeni* using BAYESASS v3.0.3 (Wilson & Rannala, 2003). BAYESASS uses a non-equilibrium, multilocus Bayesian approach to estimate recent migration rates, under a MCMC algorithm. We ran 200 million iterations with a 20 thousand burn-in sampling every 2000. Mixing parameters of allele frequencies, inbreeding coefficient and migration rates were adjusted following the program guidelines. Additionally, to help identify the location of coastal refugia, we added 220 previously published cyt b for P. keeni across their entire distribution, trimmed our sequences to match the minimal length (479 bp), and partitioned the data into three different population pairs. Models 1 and 2 are consistent with Zheng et al. (2003). The three models were: 1) Southern coastal refugium: Washington versus the remaining range, 2) either Southern or Northern coastal island refugium: Southern (southern British Columbia, Vancouver Island and Washington) versus Northern (northern British Columbia, Yukon and Alaska), and 3) Southeast Alaska coastal refugium: Southeast Alaska islands versus all mainland populations.

Ecological differentiation

The three major clades surveyed here (*P. keeni*, *P. maniculatus* and *Peromyscus* sp. nov.) are found in close proximity, which could lead to potential ecological differentiation. To assess the degree of differentiation with respect to climatic requirements, we generated Species Distribution Models (SDMs) for *P. keeni*, *P. maniculatus* West and *Peromyscus* sp. nov. for both western North America and areas north of central British Columbia. Nineteen bioclimatic variables for current conditions were obtained from WORLDCLIM (www.worldclim.org, Hijmans *et al.*, 2005) at a resolution of 2.5 arc-minutes. To avoid over-parameterization of the model, we used ENMTOOLS v.1.4.3 (Warren *et al.*, 2008; Warren *et al.*, 2010) to eliminate highly correlated variables (Pearson correlation coefficient \geq 0.75), with final selection based on variables most biologically relevant to *Peromyscus*. Species localities were determined with cyt *b* sequences rather than museum point localities because of potential misidentification among the three clades. All non-repetitive sampling localities for *Peromyscus* sp. nov. (n=14), *P. keeni* (n=74) and *P. maniculatus* (n=47) were used.

SDMs were constructed using MAXENT v3.3.3k (Elith *et al.*, 2006; Phillips *et al.*, 2006; Phillips & Dudik, 2008) under the following assumptions: no topographic change, niche conservatism (Wiens & Graham, 2005), environmental data adequately predicts species occurrence (Kozak *et al.*, 2008; McCormack *et al.*, 2010), and sampling records effectively capture the niche breadth of the species (Pearson *et al.*, 2007). Final runs used bioclim variables 1, 6, 7, 9 and 11 and were performed using cross-validation across 10 runs, with a regularization parameter (Hope *et al.*, 2011; Warren & Seifert, 2011) of 1 for *Peromyscus* sp. nov. and 5 for *P. keeni* and *P. maniculatus* with 1000 iterations, all other

values were left as default. Minimum threshold values were the low median threshold values over all replicates (Pearson *et al.*, 2007). Using ENMTOOLS we conducted a comparison of niche similarity, by calculating Schoener's D (Schoener, 1968), the *I* statistic (Warren *et al.*, 2008), and relative rank (RR; Warren & Seifert, 2011) between clades. Highly similar ranges have values approaching 1.0, while no range similarity is 0.

RESULTS

Sampling

Nucleotide base variation was as expected for mammals for the 260 cyt *b* sequences analyzed (Irwin *et al.*, 1991) and consistent with previous studies of *Peromyscus* (Zheng *et al.*, 2003; Lucid & Cook, 2004; Dragoo *et al.*, 2006) with an overall guanine deficit (13.0%, A 32.1%, C 26.5% and T 28.4%). Varying levels of nucleotide composition were observed across all loci (Table 3). FGB and IRBP had no indels, whereas Zp3 had one indel of eight base pairs and one of a single base position. Evidence of selection for all loci was not detected as indicated by non-significant HKA.

Phylogenetic analyses and timing of divergence:

The cyt *b* phylogenetic reconstruction was largely consistent with previously observed relationships (Dragoo *et al.*, 2006; Lucid & Cook, 2007; Kalkvik *et al.*, 2012). *Peromyscus maniculatus* was composed of four major clades (Western, Eastern, Southern, and Southwest, previously clades 1 & 2, 5 & 6, 4, and 3, respectively), but lacking reciprocal monophyly with respect to other species of *Peromyscus* (Fig. 1 and Fig. 2). We considered posterior probabilities ≥ 0.95 and bootstrap values ≥ 0.7 to be

significant support. We detected support for a Southern clade (previously clade 4) from southern New Mexico and Mexico, a Southwest clade (previously clade 3) from Baja California, California and Nevada, an Eastern clade (previously clades 5 & 6) ranging from the Plains states to the East Coast and northward into Canada but with three additional subclades (East - a, previously 5; East - b, previously 5 & 6; East - c, previously 6), and a Western clade (previously clade 1) that also includes a Plains states subclade (previously clade 2) that extends northward to central Yukon. Additionally, the Western clade contains a lineage for northern British Columbia and southern Yukon. Both *P. keeni* (Washington up through Yukon) and *Peromyscus* sp. nov. (Yukon only) were supported. Most of the divergence date estimates (TMRCA) for each of these major clades occurred between 128.9 and 221.5 ka (Table 4).

The species tree reconstruction (Fig. 3) yielded support for *P. keeni*, *Peromyscus* sp. nov., a clade consisting of *P. keeni* and *Peromyscus* sp. nov., and the British Columbia/Yukon clade within *P. maniculatus* West. All other cyt *b* clades remained unresolved. Multilocus estimates of divergence times for these supported clades are estimated at between 34 and 90 ka (Table 4). Furthermore, cyt *b* clades generally are detected across each nuclear locus, but evidence of incomplete lineage sorting and recent diversification is reflected in the short branches in nuclear trees (Fig. 4).

Inferences of population history

A combination of expansion statistics, genetic variation (Table 3), Bayesian skyline plots and EBSPs (Fig. 5) were used to assess whether populations representing major cyt b clades experienced stable conditions historically and whether there are

detectable signs of expansion. High *Hd* and π indicate stability, low *Hd* and high π for population bottlenecks, and low *Hd* and π for recently expanded populations. Inferences for all *P. maniculatus* East lineages, and the Southwest and Southern clades were difficult due to low sample sizes. *Peromyscus maniculatus* West was initially stable, but experienced demographic expansion. *Peromyscus keeni* experienced demographic expansion. The high *Hd* for cyt *b* could be a result of the fragmented distribution with limited connectivity across the islands of the AA coupled with the smaller effective population size for mitochondrial loci. *Peromyscus* sp. nov. contained mixed signals across loci, but skyline plots suggest this clade experienced recent expansion. Net genetic distance (Table 5) based on cyt *b* ranges from 0.5% ± 3.6% between *P. keeni* and *P. maniculatus* Southwest to 4.8% ± 0.6% between *Peromyscus* sp. nov. and *P. maniculatus* East - c, in addition to the 9.20 - 14% (± 0.8 – 1%) between this complex and the outgroups of *P. leucopus* and *P. melanotis*.

Migration estimates

The Bayesian estimates of recent migration (mean across three runs) between Yukon and northern British Columbian populations indicate *Peromyscus* sp. nov. has the highest proportion of immigrants from Yukon *P. keeni* at 0.0959, and only 0.0098 from *P. maniculatus* West from Yukon (Table 6). *Peromyscus keeni* in Yukon has a proportion of 0.0116 migrant genes from *Peromyscus* sp. nov. and 0.008 from *P. maniculatus* West from Yukon, and Yukon *P. maniculatus* West has 0.0239 immigrant genes from Yukon *P. keeni* and 0.013 from *Peromyscus* sp. nov. *Peromyscus keeni* gene flow valuations revealed no greater than a 0.0185 proportion of genes donated from any given island or

adjacent mainland population pairwise comparison (Table 7). For tests of refugial locations, there is only slightly higher migration from islands of the AA onto the mainland, with minimal proportions in either direction (0.0049 and 0.0019, respectively). Much greater differences in gene flow were detected in the other two models, with a clear north to south migration (Table 8).

Ecological differentiation

Predictive performance for SDMs was determined through the use of ≥ 0.75 AUC values of model performance. Highest climate suitability (Fig. 6) for *Peromyscus* sp. nov. occurs in higher latitudes, along the West Coast for *P. keeni*, and non-montane regions across the West for *P. maniculatus*. Greatest potential range overlap is between *Peromyscus* sp. nov. and *P. maniculatus* West with average overlap of 0.836. Least overlap is between *Peromyscus* sp. nov. and *P. maniculatus* sp. nov. and *P. keeni* with average overlap of 0.498 (Table 9).

DISCUSSION

Pleistocene climatic fluctuations influenced diversification in many North American species. Wide ranging species that were subsequently segregated into refugial populations may reflect increased phylogeographic structure. For *Peromyscus* of northwestern North America, late Pleistocene glacial cycling heavily influenced demography and diversification. Gene tree analysis of cyt *b* sequences identified four clades of *P. maniculatus* (West, East, South and Southwest); yet these clades lack reciprocal monophyly in both the cyt *b* and species trees. Support for distinctive *P. keeni*

and *Peromyscus* sp. nov. was recovered in both the cyt *b* and multilocus species trees with divergence initiated prior to the LGM.

Effects of glacial persistence and migration on genetic and ecological differentiation

Three major geographic regions were detected for glacial persistence within the *Peromyscus* complex: 1) Southern for *P. maniculatus*, 2) Coastal for *P. keeni*, and 3) Northern/Beringia for *Peromyscus* sp. nov. All *P. maniculatus* lineages show signs of stable populations during the LGM, with the addition of post-glacial expansion in the Western clade. *Peromyscus* sp. nov., although now occupying a limited range, apparently persisted in eastern Beringia during the confluence of the Laurentide and Cordilleran ice sheets in central Yukon and subsequently expanded southward into southern Yukon. Fossil *Peromyscus* from Thistle Creek at the southern end of the Klondike Gold Fields in Yukon date to the LIG (Fig. 1; G.D. Zazula, pers. comm.; Storer, 2003). We predict that *Peromyscus* fossils dating to the LGM will be found in other regions in Yukon and east-central Alaska that remained ice- free.

Contemporary SDMs identify northern regions as optimal environmental conditions for *Peromyscus* sp. nov., coastal regions for *P. keeni* and non-montane continental areas for *P. maniculatus* West. High niche overlap may be influenced by methods based on raw output models that include areas of low suitability, combined with limited sampling for *Peromyscus* sp. nov. and very broad sampling for *P. maniculatus* West. West.

Although other species (e.g., *Microtus longicaudus* and *Sorex monticolus*) show sympatry between divergent mtDNA lineages near Haines and Juneau, Alaska, (Conroy

& Cook, 2000; Demboski & Cook, 2001; Sawyer and Cook *submitted*; Sawyer et al. *submitted*), *Peromyscus* clades are geographically proximal east of the Coast Range (Fig. 1 and 8). No localities in Yukon have been identified yet with more than a single species of *Peromyscus* (Fig. 7). We would expect to find sympatry in Yukon between Kluane National Park and Reserve and Whitehorse, with *Peromyscus* sp. nov. to the north, *P. keeni* to the south and southwest, and *P. maniculatus* to the west and southwest. *Peromyscus keeni* and *P. maniculatus* are both found east of the Coast Mountains in British Columbia, and also overlap in Washington (Fig. 1), as previously detected (Zheng *et al.*, 2003).

Our ability to detect refugia is essential component of rigorous study of biotic diversity at high latitudes (Ashcroft, 2010; Stewart *et al.*, 2010; Dawson *et al.*, 2014). *Peromyscus keeni* occupied coastal refugia throughout glacial cycles, but now ranges from Washington, northward through southern Yukon. We agree with Lucid and Cook (2004) that the high levels of differentiation of *P. keeni* populations of the AA are a result of *P. keeni* occupying coastal refugia in the AA during the LGM followed by isolation and differentiation on individual islands. Peromyscine fossils found in karst systems, specifically Devil's Canopy and On Your Knees Caves, by Heaton and Grady (2003; 2007) suggest this region was recolonized in the early Holocene before higher sea levels fragmented the islands. However, the lack of genetic diversity throughout the southern portion (i.e., Washington, southern British Columbia) of the range of *P. keeni*, combined with greater structure in the North (i.e., AA) may be a result of either coastal refugia or faster rates of genetic drift due to the fragmented landscape. The mtDNA tree places Vancouver Island and Washington specimens basal to most populations of the AA;

however, Washington individuals are sister to the "ABC" (Admiralty, Baranof and Chichagof) and Haida Gwaii island clades, while other Washington individuals are found with the main AA group.

By expanding sampling to include previously published sequences, we were able to explore direction of colonization across the entire range of *P. keeni*. Zheng et al. (2003) concluded that *P. keeni* persisted in southern coastal refugia near Vancouver Island; however, their northern sampling was limited. In this study, there is substantial support for southward colonization from north coastal refugia. Lack of gene flow from the AA populations onto the mainland reflects oceanic barriers to movement, as the low levels of interisland exchange also suggest. Given the highly structured mtDNA tree, divergence dates, fossil evidence and directionality tests of colonization, we conclude that *P. keeni* persisted in Southeast Alaska, and perhaps Haida Gwaii, throughout the Pleistocene glacial cycles.

Hibbard (1968) noted that fossil records for *Peromyscus* are scant and suggests the *P. maniculatus* group represents a late Pleistocene radiation. The contact of southern (*P. maniculatus*), coastal (*P. keeni*) and northern (*Peromyscus* sp. nov.) refugial populations in south central Yukon is unusual for North American mammals, especially for a species group with such a broad geographic range (e.g., Swenson & Howard, 2005; Shafer *et al.*, 2010). Within Yukon, higher estimates of gene flow are also likely the result of historical exchange rather than contemporary gene flow, given the support for distinct clades in the multilocus analysis, with higher estimates between *P. keeni* and *Peromyscus* sp. nov. the result of historic proximity and timing of secondary contact for post-glacial colonizers. However, our data suggest there is not enough gene flow between these two

species to prohibit differentiation. Our estimates of gene flow fall between the interspecific (0.035) and intraspecific (0.10) ranges (Table 6), thus warrant further investigations regarding the validity of species level designation (e.g., Ross *et al.*, 2010; Nakajima *et al.*, 2012).

CONCLUSIONS

Cryptic species and glacial refugia often elude detection, but spatially extensive sampling and use of phylogenetic coalescent analysis, multilocus sequence data, and environmental modeling, can provide signatures of diversification that provide insight into refugial locations and dynamics that are the result of historic climate change and glaciation. Our analyses provided perspectives on the evolution of northern Peromyscus. Glacialinterglacial cycling over the past 300 ka played a role in the diversification of three distinctive clades of Peromyscus in Yukon. These clades are the result of long-term separation in three ice-free regions: far-eastern Beringia (*Peromyscus* sp. nov.), coasts of Southeast Alaska and possibly Haida Gwaii (P. keeni), and southern continental (P. *maniculatus*). We detected geographic proximity, but no contact among these species in south central Yukon. More intensive sampling and assessment of deer mice from southern Yukon and northern British Columbia will refine the geographic range of this new Peromyscus, potential sympatry with P. keeni or P. maniculatus, and the degree of differentiation from *P. keeni* and *P. maniculatus*. We suggest that coastal refugia for *P.* keeni existed near Southeast Alaska, and Haida Gwaii, as proposed by Lucid and Cook (2004), but not Vancouver Island as proposed by Zheng et al. (2003). Further work should focus on refining the number of coastal refugia, their location (northern AA,

southern AA or Haida Gwaii), and their contribution to extant diversity. The clade that is sister to most other *P. keeni* in our analyses included individuals from Haida Gwaii (Fig. 2). Lack of reciprocal monophyly, support for multiple lineages, and diversification within each clade of *P. maniculatus*, suggest multiple regions of incipient diversification distributed across the United States south of the glacial extent, but a clear picture of structure in *P. maniculatus* will require much more extensive sampling of geography and genes. *Peromyscus* sp. nov. has a limited distribution, *P. keeni* is primarily restricted to the fragmented islands of the Alexander Archipelago, and diversity within *P. maniculatus* warrants further study. Lastly, we concur with previous work that suggested the endemic northern clade of *Peromyscus* is a distinct species and worthy of formal taxonomic recognition under the evolutionary and genealogical concordance species concepts.

References

- Anderson, S. & Yates, T.L. (2000) A new genus and species of phyllotine rodent from Bolivia. *Journal of Mammalogy*, **81**, 18-36.
- Ashcroft, M.B. (2010) Identifying refugia from climate change. *Journal of Biogeography*, **37**, 1407-1413.
- Aubry, K.B., Statham, M.J., Sacks, B.N., Perrine, J.D. & Wisely, S.M. (2009) Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. *Molecular Ecology*, 18, 2668-2686.
- Bain, J.F. & Golden, J.L. (2005) Chloroplast haplotype diversity patterns in *Packera pauciflora* (Asteraceae) are affected by geographical isolation, hybridization, and breeding system. *Canadian Journal of Botany-Revue Canadienne De Botanique*, **83**, 1039-1045.
- Brant, S.V. & Orti, G. (2003) Phylogeography of the Northern short-tailed shrew, *Blarina brevicauda* (Insectivora : Soricidae): past fragmentation and postglacial recolonization. *Molecular Ecology*, **12**, 1435-1449.
- Brunhoff, C., Galbreath, K.E., Fedorov, V.B., Cook, J.A. & Jaarola, M. (2003) Holarctic phylogeography of the root vole (*Microtus oeconomus*): implications for late Quaternary biogeography of high latitudes. *Molecular Ecology*, **12**, 957-968.
- Carleton, M.D. (1989) Systematics and evolution. *Advances in the study of Peromyscus* (*Rodentia*). (ed. by G.L. Kirkland and J.N. Layne), pp. 7-141. Texas Tech University Press, Lubbock.
- Carstens, B.C. & Knowles, L.L. (2007a) Shifting distributions and speciation: species divergence during rapid climate change. *Molecular Ecology*, **16**, 619-627.
- Carstens, B.C. & Knowles, L.L. (2007b) Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: An example from *Melanoplus* grasshoppers. *Systematic Biology*, **56**, 400-411.
- Carstens, B.C., Brennan, R.S., Chua, V., Duffie, C.V., Harvey, M.G., Koch, R.A., McMahan, C.D., Nelson, B.J., Newman, C.E., Satler, J.D., Seeholzer, G., Posbic, K., Tank, D.C. & Sullivan, J. (2013) Model selection as a tool for phylogeographic inference: an example from the willow *Salix melanopsis*. *Molecular Ecology*, 22, 4014-4028.
- Conroy, C.J. & Cook, J.A. (2000) Phylogeography of a post-glacial colonizer: *Microtus longicaudus* (Rodentia : Muridae). *Molecular Ecology*, **9**, 165-175.

- Cook, J.A. & MacDonald, S.O. (2013) *Island Life: Coming to Grips with the Insular Nature of Southeast Alaska and Adjoining Coastal British Columbia*, illustrated edn. University of Washington Press, Washington.
- Cook, J.A., Dawson, N.G. & MacDonald, S.O. (2006) Conservation of highly fragmented systems: The north temperate Alexander Archipelago. *Biological Conservation*, 133, 1-15.
- Cook, J.A., Bidlack, A.L., Conroy, C.J., Demboski, J.R., Fleming, M.A., Runck, A.M., Stone, K.D. & MacDonald, S.O. (2001) A phylogeographic perspective on endemism in the Alexander Archipelago of southeast Alaska. *Biological Conservation*, 97, 215-227.
- Cowan, I.M. (1935) A distributional study of the *Peromyscus sitkensis* group of whitefooted mice. In: *Distribution of Peromyscus sitkensis*, pp. 429-438. University of California Press
- Dawson, N.G., Hope, A.G., Talbot, S.L. & Cook, J.A. (2014) A multilocus evaluation of ermine (*Mustela erminea*) across the Holarctic, testing hypotheses of Pleistocene diversification in response to climate change. *Journal of Biogeography*, **41**, 464-475.
- Demboski, J.R. & Cook, J.A. (2001) Phylogeography of the dusky shrew, *Sorex monticolus* (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. *Molecular Ecology*, **10**, 1227-1240.
- Dragoo, J.W., Lackey, J.A., Moore, K.E., Lessa, E.P., Cook, J.A. & Yates, T.L. (2006)
 Phylogeography of the deer mouse (*Peromyscus maniculatus*) provides a predictive framework for research on hantaviruses. *Journal of General Virology*, 87, 1997-2003.
- Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution*, **29**, 1969-1973.
- Eddingsaas, A.A., Jacobsen, B.K., Lessa, E.P. & Cook, J.A. (2004) Evolutionary history of the arctic ground squirrel (*Spermophilus parryii*) in Nearctic Beringia. *Journal of Mammalogy*, **85**, 601-610.
- Edwards, S.V., Liu, L. & Pearl, D.K. (2007) High-resolution species trees without concatenation. *Proceedings of the National Academy of Sciences of the United States of America*, **104**, 5936-5941.
- Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel

methods improve prediction of species' distributions from occurrence data. *Ecography*, **29**, 129-151.

- Fladmark, K.R. (1979) Routes: alternate migration corridors for early man in North America. *American Antiquity*, **44**, 55-69.
- Fleming, M.A. & Cook, J.A. (2002) Phylogeography of endemic ermine (Mustela erminea) in southeast Alaska. *Molecular Ecology*, **11**, 795-807.
- Fu, Y.X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. *Genetics*, **147**, 915-925.
- Gering, E.J., Opazo, J.C. & Storz, J.F. (2009) Molecular evolution of cytochrome b in high- and low-altitude deer mice (genus *Peromyscus*). *Heredity*, **102**, 226-235.
- Gernhard, T. (2008) The conditioned reconstructed process. *Journal of Theoretical Biology*, **253**, 769-778.
- Godbout, J., Fazekas, A., Newton, C.H., Yeh, F.C. & Bousquet, J. (2008) Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. *Molecular Ecology*, **17**, 2463-2475.
- Gunn, S.J. & Greenbaum, I.F. (1986) Systematic implications of karyotypic and morphological variation in mainland *Peromyscus* from the Pacific Northwest. *Journal of Mammalogy*, 67, 294-304.
- Hall, E.R. (1981) The mammals of North America. Volume 2. *The mammals of North America. Volume 2.*, v-vi, 601-1181.
- Heaton, T.H. & Grady, F. (2007) The Vertebrate Fossil Record of On Your Knees Cave, Prince of Wales Island, Southeast Alaska. *Quaternary International*, **167-168**, 160.
- Heaton, T.H., Grady, F., Schubert, B.W., Mead, J.I. & Graham, R.W. (2003) The Late Wisconsin vertebrate history of Prince of Wales Island, southeast Alaska. *Ice Age cave faunas of North America*. (ed. by B.W. Schubert, J.I. Mead and R.W. Graham), pp. 17-53. Indiana University Press, Indiana.
- Heled, J. & Drummond, A.J. (2008) Bayesian inference of population size history from multiple loci. *BMC Evolutionary Biology*, 8, 289-303.
- Heled, J. & Drummond, A.J. (2010) Bayesian inference of species trees from multilocus data. *Molecular Biology and Evolution*, 27, 570-580.
- Hewitt, G.M. (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. *Biological Journal of the Linnean Society*, **58**, 247-276.

- Hibbard, C.W. (1968) Paleontology. *Biology of Peromyscus (Rodentia)* (ed. by J.A. King), pp. 2-24. Special Publication American Society of Mammalogists, Stillwater, Okla.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965-1978.
- Hogan, K.M., Davis, S.K. & Greenbaum, I.F. (1997) Mitochondrial-DNA analysis of the systematic relationships within the *Peromyscus maniculatus* species group. *Journal of Mammalogy*, **78**, 733-743.
- Hogan, K.M., Hedin, M.C., Koh, H.S., Davis, S.K. & Greenbaum, I.F. (1993) Systematic and taxonomic implications of karyotypic, electrophoretic, and mitochondrial DNA variation in *Peromyscus* from the Pacific Northwest. *Journal of Mammalogy*, 74, 819-831.
- Hope, A.G., Speer, K.A., Demboski, J.R., Talbot, S.L. & Cook, J.A. (2012) A climate for speciation: Rapid spatial diversification within the Sorex cinereus complex of shrews. *Molecular Phylogenetics and Evolution*, 64, 671-684.
- Hope, A.G., Takebayashi, N., Galbreath, K.E., Talbot, S.L. & Cook, J.A. (2013) Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals. *Journal of Biogeography*, **40**, 415-429.
- Hope, A.G., Waltari, E., Fedorov, V.B., Goropashnaya, A.V., Talbot, S.L. & Cook, J.A. (2011) Persistence and diversification of the Holarctic shrew, *Sorex tundrensis* (Family Soricidae), in response to climate change. *Molecular Ecology*, 20, 4346-4370.
- Hudson, R.R., Kreitman, M. & Aguade, M. (1987) A test of neutral molecular evolution based on nucleotide data. *Genetics*, **116**, 153-159.
- Irwin, D.M., Kocher, T.D. & Wilson, A.C. (1991) Evolution of the Cytochrome b Gene of Mammals. *Journal of Molecular Evolution*, **32**, 128-144.
- Jorgensen, J.L., Stehlik, I., Brochmann, C. & Conti, E. (2003) Implications of ITS sequences and RAPD markers for the taxonomy and biogeography of the *Oxytropis campestris* and *O. arctica* (Fabaceae) complexes in Alaska. *American Journal of Botany*, **90**, 1470-1480.
- Kalkvik, H.M., Stout, I.J., Doonan, T.J. & Parkinson, C.L. (2012) Investigating niche and lineage diversification in widely distributed taxa: phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. *Ecography*, **35**, 54-64.
- Kozak, K.H., Graham, C.H. & Wiens, J.J. (2008) Integrating GIS-based environmental data into evolutionary biology. *Trends in Ecology & Evolution*, **23**, 141-148.

- Lessa, E.P., Cook, J.A. & Patton, J.L. (2003) Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. *Proceedings of the National Academy of Sciences of the United States of America*, 100, 10331-10334.
- Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, **25**, 1451-1452.
- Lim, H.C. & Sheldon, F.H. (2011) Multilocus analysis of the evolutionary dynamics of rainforest bird populations in Southeast Asia. *Molecular Ecology*, 20, 3414-3438.
- Loehr, J., Worley, K., Grapputo, A., Carey, J., Veitch, A. & Coltman, D.W. (2006) Evidence for cryptic glacial refugia from North American mountain sheep mitochondrial DNA. *Journal of Evolutionary Biology*, **19**, 419-430.
- Lucid, M.K. & Cook, J.A. (2004) Phylogeography of Keen's mouse (Peromyscus keeni) in a naturally fragmented landscape. *Journal of Mammalogy*, **85**, 1149-1159.
- Lucid, M.K. & Cook, J.A. (2007) Cytochrome-b haplotypes suggest an undescribed Peromyscus species from the Yukon. *Canadian Journal of Zoology-Revue Canadienne De Zoologie*, **85**, 916-919.
- Maddison, W.P. (1997) Gene trees in species trees. Systematic Biology, 46, 523-536.
- Maroja, L.S., Bogdanowicz, S.M., Wallin, K.F., Raffa, K.F. & Harrison, R.G. (2007) Phylogeography of spruce beetles (*Dendroctonus rufipennis kirby*) (Curculionidae: Scolytinae) in North America. *Molecular Ecology*, 16, 2560-2573.
- McCormack, J.E., Zellmer, A.J. & Knowles, L.L. (2010) Does niche divergence accompany allopatric divergence in *Aphelocoma* jays as predicted under ecological speciation?: Insights from tests with niche models. *Evolution*, 64, 1231-44.
- Mengel, R.M. (1964) The probable history of species formation in some Northern Wood Warblers (Parulidae). *Living Bird*, **1964**, 9-43.
- Nakajima, Y., Nishikawa, A., Iguchi, A. & Sakai, K. (2012) The population genetic approach delineates the species boundary of reproductively isolated corymbose acroporid corals. *Molecular Phylogenetics and Evolution*, **63**, 527-531.
- Ohdachi, S., Dokuchaev, N.E., Hasegawa, M. & Masuda, R. (2001) Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. *Molecular Ecology*, 10, 2199-2213.

- Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. *Journal of Biogeography*, 34, 102–117.
- Phillips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. *Ecography*, **31**, 161–175.
- Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, **190**, 231-259.
- Posada, D. & Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. *Bioinformatics*, 14, 817-818.
- Posada, D. & Buckley, T.R. (2004) Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. *Systematic Biology*, **53**, 793-808.
- Ramos-Onsins, S.E. & Rozas, J. (2002) Statistical properties of new neutrality tests against population growth. *Molecular Biology and Evolution*, **19**, 2092-2100.
- Rand, A.L. (1954) The ice age and mammal speciation in North America. *Arctic*, 7, 31-35.
- Remington, C.L. (1968) Suture-zones of hybrid interaction between recently joined biotas. *Evolutionary Biology (New York)*, 321-428.
- Ross, K.G., Gotzek, D., Ascunce, M.S. & Shoemaker, D.D. (2010) Species Delimitation: A Case Study in a Problematic Ant Taxon. *Systematic Biology*, **59**, 162-184.
- Runck, A.M. & Cook, J.A. (2005) Postglacial expansion of the southern red-backed vole (*Clethrionomys gapperi*) in North America. *Molecular Ecology*, **14**, 1445-1456.
- Schoener, T.W. (1968) Anolis lizards of Bimini resource partitioning in a complex fauna. Ecology, 49, 704–726.
- Shafer, A.B.A., Cullingham, C.I., Cote, S.D. & Coltman, D.W. (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. *Molecular Ecology*, **19**, 4589-621.
- Soltis, D.E., Gitzendanner, M.A., Strenge, D.D. & Soltis, P.S. (1997) Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. *Plant Systematics and Evolution*, **206**, 353-373.
- Stamford, M.D. & Taylor, E.B. (2004) Phylogeographical lineages of Arctic grayling (*Thymallus arcticus*) in North America: divergence, origins and affinities with Eurasian *Thymallus*. *Molecular Ecology*, **13**, 1533-1549.

- Stephens, M. & Scheet, P. (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. *American Journal of Human Genetics*, **76**, 449-462.
- Stephens, M., Smith, N.J. & Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. *American Journal of Human Genetics*, 68, 978-989.
- Stewart, J.R., Lister, A.M., Barnes, I. & Dalen, L. (2010) Refugia revisited: individualistic responses of species in space and time. *Proceedings of the Royal Society B-Biological Sciences*, 277, 661-71.
- Storer, J.E. (2003) Advances in the Ice Age biostratigraphy of eastern Beringia. 3rd International Mammoth Conference (ed by J.E. Storer). Dawson City and Whitehorse, Yukon Territory, Canada.
- Sullivan, R.M., Calhoun, S.W. & Greenbaum, I.F. (1990) Geographic-variation in genital morphology among insular and mainland populations of *Peromyscus maniculatus* and *Peromyscus oreas*. Journal of Mammalogy, 71, 48-58.
- Swenson, N.G. & Howard, D.J. (2005) Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. *American Naturalist*, **166**, 581-591.
- Tajima, F. (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics*, **123**, 585-595.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology* and Evolution, 28, 2731-2739.
- Walker, M.L. (2005) Mitochondrial DNA Variation and the Evolutionary Affinities of the Peromyscus maniculatus Comples From Western North America. Texas A&M University,
- Warren, D.L. & Seifert, S.N. (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. *Ecological Applications*, 21, 335–342.
- Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. *Evolution*, **62**, 2868-2883.
- Warren, D.L., Glor, R.E. & Turelli, M. (2010) ENMTools: a toolbox for comparative studies of environmental niche models. *Ecography*, 33, 607–611.

- Weksler, M., Lanier, H.C. & Olson, L.E. (2010) Eastern Beringian biogeography: historical and spatial genetic structure of singing voles in Alaska. *Journal of Biogeography*, 37, 1414-1431.
- Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: Integrating evolution, ecology, and conservation biology. *Annual Review of Ecology Evolution and Systematics*, 36, 519-539.
- Wike, M.J. (1998) Mitochondrial DNA variation among populations of Peromyscus from Yukon, Candada and Southeast Alaska. Texas A&M University,
- Wilson, C.C. & Hebert, P.D.N. (1998) Phylogeography and postglacial dispersal of lake trout (Salvelinus namaycush) in North America. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1010-1024.
- Wilson, G.A. & Rannala, B. (2003) Bayesian inference of recent migration rates using multilocus genotypes. *Genetics*, 163, 1177-1191.
- Yang, D.S. & Kenagy, G.J. (2009) Nuclear and mitochondrial DNA reveal contrasting evolutionary processes in populations of deer mice (*Peromyscus maniculatus*). *Molecular Ecology*, 18, 5115-5125.
- Yule, G.U. (1925) A mathematical theory of evolution, based on the conclusions of Dr J C Willis, F R S. *Philosophical Transactions of the Royal Society of London Series B-Containing Papers of a Biological Character*, **213**, 21-87.
- Zheng, X.G., Arbogast, B.S. & Kenagy, G.J. (2003) Historical demography and genetic structure of sister species: deermice (*Peromyscus*) in the North American temperate rain forest. *Molecular Ecology*, **12**, 711-724.

Tables and Figures

Figure 1. Sampling scheme for *Peromyscus*. The thick yellow line is the current range for *P. maniculatus* and the blue line is *P. keeni*. The solid blue coloring is the LGM glacial ice cover. (a) Sampling localities are shown by both major cyt*b* lineage (see key for colors, numbers in parenthesis indicate previously designated lineage numbers from Dragoo et al. 2006), (b) Yukon sampling, and (c) *P. keeni* sampling with near-by *P. maniculatus* West. Pluses indicate known pre-LGM fossil localities. The map is projected in North America Albers Equal Area Conic.

Figure 2. Dated Bayesian cyt *b* trees. Posterior probability ≥ 0.95 represented with open circles and Maximum Likelihood bootstraps of ≥ 0.7 with asterisks are shown on branches. Numbers in parentheses indicate previously designated lineage numbers (Dragoo et al. 2006). Horizontal gray bars indicate divergence dates (95% HPD) and vertical gray bars represent the LIG (left) and LGM (right). Geographic location for supported intra-lineage clades are immediately right of taxon tips (see table 1 for abbreviations). Outgroups = *P. melanotis* and *P. leucopus*.

Figure 3. Multilocus Bayesian Species Tree. Posterior probabilities of ≥ 0.95 are represented with open circles on branches of the solid consensus tree. Black = outgroups (*P. melanotis* and *P. leucopus*). Horizontal gray bars represent divergence date estimates and vertical bars indicate approximate time for the LIG and LGM.

Figure 4. Bayesian gene trees for *Peromyscus* FGB, IRBP and Zp3 nuclear loci with posterior probabilities of ≥ 0.95 represented with open circles. Yukon samples are indicated with black dots. Geographic locations (see table 1 for abbreviations) for supported intra-lineage clades are provided. Blue = *P. keeni*, green = *Peromyscus* sp. nov., yellow-green = *P. maniculatus* Southwest, golden = *P. maniculatus* West, orange = *P. maniculatus* East - a, light brown = *P. maniculatus* East - b, dark brown = *P. maniculatus* East - c, red = *P. maniculatus* South, and black = outgroups (*P. melanotis* and *P. leucopus*).

Figure 5. EBSPs (i) and cyt *b* skyline (ii) plots for *Peromyscus* sp. nov., *P. keeni*, and *P. maniculatus* West. Central line indicates mean change in effective population size through time, with upper and lower lines sowing the 95% posterior density. The x-axis is read right-to-left from past (TMRCA) to present and is scaled in millions of years and the y-axis is the effective population size scaled by generation time. Vertical gray bars indicate the LGM for reference.

Figure 6. SDM habitat suitability for (a) *Peromyscus* sp. nov., (b) *P. keeni*, and (c) *P. maniculatus* - West with low habitat suitability at the minimum median threshold values over all replicates.

Figure 7. Yukon, Southeast Alaska and British Columbian *Peromyscus*. The arrow indicates an area of sympatry and the box representing a region of close proximity among major lineages. Black lines are major roads, circles are sampling localities: green = *Peromyscus* sp. nov., blue = *P. keeni*, and yellow = *P. maniculatus*.

Table 1. Specimens examined. Museum number acronyms are MSB= Museum ofSouthwestern Biology, UAM=University of Alaska Museum of the North, Fairbanks,HG= Gwaii Haanas National Park Reserve and Haida Heritage Site, andUWBM=University of Washington Burke Museum. GenBank numbers correspond to cyt*b*, and each allele for FGB, IRBP and Zp3, respectively, —= not applicable. GenBank inbold were previously obtained from other studies. Asterisk = additional *P. keeni* used forBAYESASS analyses. Location abbreviations are in parenthesis following locality name.

cytb lineage	Specimen Number	Locality	Latitude	Longitude	GenBank Accession Numbers
Peromyscus sp. nov.					
	MSB144216	Yukon - Central (YTC)	62.39850	-136.55530	KF949162,KF949368/KF949369,KF949702/KF949703,KF950701/KF950702
	MSB144217		63.54310	-137.19480	KF949171, KF949578/KF949579, KF949892/KF949893, KF950909/KF950910
	MSB144263		63.54310	-137.19480	KF949174,KF949580/KF949581,KF949894/KF949895,KF950911/KF950912
	MSB144264		63.54310	-137.19480	KF949175, -/-, -/-, -/-, -/-
	MSB144265		63.54310	-137.19480	KF949180, -/-, -/-, -/-, -/-
	MSB144270		63.54310	-137.19480	KF949199,KF949582/KF949583,KF949896/KF949897,KF950913/KF950914
	MSB144284		63.54310	-137.19480	KF949163, -/-, -/-, -/-, -/-
	MSB144285		64.02590	-138.57890	KF949200, -/-, -/-, -/-, -/-
	MSB145250		64.02590	-138.57890	KF949176, -/-, -/-, -/-, -/-
	MSB145251		64.02590	-138.57890	KF949207,KF949372/KF949373,KF949706/KF949707,KF950703/KF950704
	MSB145572		63.55510	-137.41230	KF949164, KF949374/KF949375, KF949708/KF949709, KF950705/KF950706
	MSB145618		63.55510	-137.41230	KF949177, -/-, -/-, -/-, -/-
	MSB145637		64.04284	-139.41679	KF949178, -/-, -/-, -/-, -/-
	MSB145713		63.94020	-138.58258	KF949179, -/-, -/-, -/-, -/-
	MSB196683		64.07384	-138.52334	KF949192, -/-, -/-, -/-
	MSB196687		64.07384	-138.52334	KF964333,KF949624/KF949625,KF949940/KF949941,-/-
	MSB196688		63.92972	-138.50384	KF949267,KF949626/KF949627,KF949942/KF949943,KF950945/KF950946
	MSB196689		63.92972	-138.50384	KF949193, -/-, -/-, -/-, -/-
	MSB196694		64.05761	-138.94957	KF949194, -/-, -/-, -/-, -/-
	MSB231195		61.99575	-132.60938	-,KF949630/KF949631, -/-,KF950949/KF950950
	MSB149203	Yukon - South (YTS)	61.99575	-132.60938	KF949181, -/-, -/-, -/-, -/-
	MSB149204		61.99575	-132.60938	KF949182,KF949590/KF949591,KF949906/KF949907,-/-
	MSB149205		61.99575	-132.60938	KF949183, -/-, -/-, -/-, -/-,
	MSB149206		61.99575	-132.60938	KF949165,KF949378/KF949379,KF949712/KF949713,KF950709/KF950657
	MSB149207		61.99575	-132.60938	KF949184,KF949592/KF949593,KF949908/KF949909,KF950920/KF950921
	MSB149208		61.99575	-132.60938	KF949185,KF949594/KF949595,KF949910/KF949911,KF950922/KF950923
	MSB149213		62.11590	-136.14425	KF949186, -/-, -/-, -/-, -/-
	MSB149277		62.11590	-136.14425	KF949187,KF949596/KF949597,KF949912/KF949913,KF950924/KF950925
	MSB149278		62.11590	-136.14425	KF949188,KF949598/KF949599,KF949914/KF949915,-/-
	MSB149280		62.11590	-136.14425	KF949189, -/-, -/-, -/-, -/-
	MSB149281		60.51450	-137.08170	KF949190, -/-, -/-, -/-, -/-
	MSB240539		60.51450	-137.08170	KF949169, KF949406/KF949407, KF949740/KF949741, KF950736/KF950737
	MSB240548		60.51450	-137.08170	KF949195,KF949632/KF949633,KF949946/KF949947,KF950951/KF950952
	MSB240553		60.83833	-137.32917	KF949173,KF949408/KF949409,KF949742/KF949743,KF950738/KF950739
	UAM34604		60.83833	-137.32917	KF949268,-/-,KF949980/KF949981,KF950985/KF950986
	UAM35344		60.83833	-137.32917	KF949205,KF949668/KF949669,KF949986/KF949987,-/-
	UAM52704		60.83833	-137.32917	KF949206, -/ -, -/ -, -/ - v roatiet vroadeneur roadeneur roadeneur roadeneur roedene
	CU/2CMAU		28.34507	c/650.451-	KF949150,KF9490/8/KF9490/9,KF94998/KF94998/KF949998/KF949990,KF920990

P. keeni

UAM74131*	27.366667	-133.466667	KF950043, -/-, -/-, -/-, -/-
	Alaskan islands:		
UAM35318*	Admiralty (ADM) 57.433333	-134.550000	KF950033, -/-, -/-, -/-, -/-
UAM44886	57.429444	-133.938889	KF949325, -/-, -/-, KF950848/KF950849
UAM44887*	57.429444	-133.938889	KF950037, -/-, -/-, -/-, -/-
UAM44888	57.429444	-133.938889	KF949326, KF949516/KF949517, KF949840/KF949841, KF950850/KF950851
UAM30873*	Baker (BKR) 55.366667	-133.600100	KF950030, -/-, -/-, -/-, -/-
UAM30874	55.366667	-133.600100	KF949318, KF949482/KF949483, KF949816/KF949817, KF950816/KF950817
UAM50605	55.366667	-133.600100	-, -, -, -, -, KF950854/KF950855
UAM76353*	55.366667	-133.600100	KF950045, -/-, -/-, -/-, -/-
UAM30818	Baranof (BNF) 56.983333	-134.900000	KF949276, KF949478/KF949479, KF949812/KF949813, KF950812/KF950813
UAM30819*	56.983333	-134.900000	KF950029, -/-, -/-, -/-, -/-
UAM30820	56.983333	-134.900000	KF949277, KF949480/KF949481, KF949814/KF949815, KF950814/KF950815
UAM30821*	56.983333	-134.900000	KF950056,-/-,-/-,-/-,-/-
UAM30822*	56.590278	-134.860278	KF950057,-/-,-/-,-/-
UAM50930	Chichagof (CGF) 58.031339	-135.612055	KF949289, KF949526/KF949527, KF949850/KF949851, KF950862/KF950863
UAM50932*	58.031339	-135.612055	KF950133,-/-,-/-,-/-
UAM50936	58.031339	-135.612055	KF949290, KF949528/KF949529, KF949852/KF949853, KF950864/KF950865
UAM76385*	58.031339	-135.612055	KF950075,-/-,-/-,-/-
MSB198194	Coronation (CRN) 55.920000	-134.319000	KF949306, -/-, -/-, KF950723/KF950724
MSB198221	55.920000	-134.319000	KF949257, KF949396/KF949397, KF949730/KF949731, KF950725/KF950726
UAM42924*	55.883333	-134.233333	KF950066, -/-, -/-, -/-, -/-
UAM23730*	Dall (DAL) 54.783333	-132.866667	KF950024, -/-, -/-, -/-, -/-
UAM23732	54.783333	-132.866667	KF949314, KF949466/KF949467, KF949802/KF949803, KF950800/KF950801
UAM73711*	55.215556	-133.138056	KF950073, -/-, -/-, -/-, -/-
UAM73829*	55.260000	-133.123889	KF950074, -/-, -/-, -/-, -/-
UAM73830	55.260000	-133.123889	KF949298, KF949550/KF949551, KF949874/KF949875, KF950887/KF950888
UAM76238*	54.783333	-132.866667	KF950044, -/-, -/-, -/-, -/-
UAM20662*	Etolin (ETN) 56.183333	-132.450000	KF950020, -/-, -/-, -/-, -/-
UAM20664*	56.183333	-132.450000	KF950021, -/-, -/-, -/-, -/-
UAM20665	56.183333	-132.450000	KF949310,KF949442/KF949443,-/-,KF950774/KF950775
UAM34616	56.166667	-132.450000	KF949280, KF949494/KF949495, KF949824/KF949825, KF950826/KF950827
UAM41652*	56.166667	-132.450000	KF950059,-/-,-/-,-/-
UAM42788*	Forrester (FRS) 54.821389	-133.520833	KF950060,-/-,-/-,-/-
UAM42790*	54.821389	-133.520833	KF950061,-/-,-/-,-/-
UAM42792	54.821389	-133.520833	KF949281, KF949500/KF949501, KF949828/KF949829, KF950832/KF950833
UAM42794	54.821389	-133.520833	KF949282, KF949502/KF949503, KF949830/KF949831, KF950834/KF950835
UAM42795*	54.821389	-133.520833	KF950062, -/-, -/-, -/-, -/-
UAM70143	Gravina (GRV) 55.178333	-131.805833	KF949294, KF949542/KF949543, KF949866/KF949867, KF950879/KF950880
UAM70144*	55.178333	-131.805833	KF950070, -/-, -/-, -/-
UAM70150*	55.178333	-131.805833	KF950071, -/-, -/-, -/-, -/-

UAM70151		55.178333	-131.805833	KF949295,KF949544/KF949545,KF949868/KF949869,KF950881/KF950882
UAM70152*		55.178333	-131.805833	KF950072, -/-, -/-, -/-
UAM23828	Heceta (HEC)	55.803056	-133.591389	KF949274, KF949470/KF949471, KF949806/KF949807, KF950804/KF950805
UAM25829*		960508.66	-155.99186.551-	KF950025, -/-, -/-, -/-
UAM23830*		55.803056	-133.591389	KF950054, -/-, -/-, -/-, -/-
UAM23831		55.803056	-133.591389	KF949275, KF949472/KF949473, KF949808/KF949809, KF950806/KF950807
UAM23834*		55.803056	-133.591389	KF950055, -/-, -/-, -/-, -/-
UAM49629	Kosciusko (KSC) :	55.969167	-133.645833	KF949285,KF949518/KF949519,KF949842/KF949843,KF950852/KF950853
UAM49631*		55.982778	-133.605000	KF950067,-/-,-/-,-/-
UAM70204		55.969167	-133.646944	KF949296, KF949546/ KF949547, KF949870/ KF949871, KF950883/ KF950884
MSB148973*	Kuiu (KUI)	56.631367	-133.737167	KF950017,-/-,-/-,-/-
MSB148974		56.631367	-133.737167	KF949300, KF949376/KF949377, KF949710/KF9497111, KF950707/KF950708
UAM43431		56.321389	-134.071667	KF949324, KF949512/KF949513, -/-, KF950844/KF950845
UAM20945	Kupreanof (KRF) :	56.866667	-133.316667	KF949311, KF949446/KF949447, KF949780/KF949781, KF950778/KF950779
UAM20948		56.866667	-133.316667	KF949312, KF949448/KF949449, KF949782/KF949783, KF950780/KF950781
UAM30590*		56.866667	-133.316667	KF950028, -/-, -/-, -/-, -/-
UAM42578*	[Lulu (LUL)	55.439722	-133.455278	KF950034, -/-, -/-, -/-
UAM42579*		55.439722	-133.455278	KF950035,-/-,-/-,-/-
UAM42580		55.439722	-133.455278	KF949321, KF949496/KF949497, KF949826/KF949827, KF950828/KF950829
UAM42581		55.439722	-133.455278	KF949322,KF949498/KF949499,-/-,KF950830/KF950831
UAM43024*		55.439722	-133.455278	KF950015,-/-,-/-,-/-
UAM23437*	Mary (MRY) :	55.083333	-131.233333	KF950009, -/-, -/-, -/-
UAM23438*		55.083333	-131.233333	KF950010,-/-,-/-,-/-
UAM23104	Mitkof (MIT) :	56.583333	-132.833333	KF949265,KF949452/KF949453,KF949786/KF94978787,KF950784/KF950785
UAM23106*		56.583333	-132.833333	KF950048, -/ -, -/ -, -/ -, -/ -
UAM23107*		56.583333	-132.833333	KF950049, -/-, -/-, -/-, -/-
UAM23108		56.583333	-132.833333	KF949271, KF949454/KF949455, KF949788/KF949789, KF950786/KF950787
MSB221318	Noyes (NYS) :	55.450000	-133.650000	KF949307, KF949400/KF949401, -/-, KF950729/KF950730
UAM23655		55.451977	-133.659835	KF949313, KF949464/KF949465, KF949798/KF949799, KF950796/KF950797
UAM23656*		55.451977	-133.659835	KF950130, -/-, -/-, -/-
UAM23657*	~*	55.451977	-133.659835	KF950022, -/-, -/-, -/-, -/-
UAM23658*		55.451977	-133.659835	KF950023, -/-, -/-, -/-, -/-
UAM23717	Prince of Wales (POW) :	54.766667	-132.183333	KF949158, -/-, KF949800/KF949801, KF950798/KF950799
UAM49643*		54.907500	-132.414722	KF950013,-/-,-/-,-/-
UAM74967		56.174444	-133.369167	-,KF949552/KF949553,-/-,-/-
UAM74968		56.174444	-133.369167	KF949299,KF949554/KF949555,-/-,-/-
UAM74969		56.174444	-133.369167	KF949258, -/-, -/-, KF950889/KF950890
UAM74970		56.174444	-133.369167	KF949329,KF949556/KF949557,-/-,-/-
UAM74972		56.174444	-133.369167	KF949330,KF949558/KF949559,-/-,-/-
UAM23442*	Revillagigedo (REV) :	55.502382	-131.028099	KF950129, -/-, -/-, -/-, -/-
UAM23443		55.502382	-131.028099	KF949259,KF949458/KF949459,KF949792/KF949793,KF950790/KF950791

$\begin{array}{l} F964334, -/-, -/-, -/-, -/-\\ F949316, KF949474 KF949475, -/-, KF950808 KF950809\\ F949316, KF949474 KF949475, -/-, KF950808 KF95083\\ F949308, KF949402 KF949403, KF9497334 KF949735, KF950731 KF95073\\ F9492063, -/-, -/-, -/-, -/-\\ F949283, KF949504 KF949505, KF949832 KF949833, KF950836 KF95083\\ F950064, -/-, -/-, -/-, -/-\\ F9492083, KF949504 KF949505, KF949832 KF949833, KF950836 KF95083\\ F950064, -/-, -/-, -/-, -/-\\ F9492083, KF949504 KF949505, KF949832 KF949833, KF950836 KF95083\\ KF95083, KF949504 KF949505, KF949832 KF949833, KF950836 KF950836\\ F950064, -/-, -/-, -/-\\ F949204 KF949506, KF949505, KF949832 KF949833, KF950836 KF950836\\ F950064, -/-, -/-, -/-\\ F949204 KF949506, KF949505, KF949832 KF949833, KF950836 KF950836\\ KF95083, KF949504 KF949506, KF949505, KF949832 KF949833, KF950836 KF950836\\ F950064, -/-, -/-, -/-\\ F94050\\ KF94050, KF949506, KF949506, KF949506\\ KF949506 KF949506, KF949506\\ KF949506 KF949506\\ KF949506\\ KF949506 KF949506\\ KF940506\\ KF940506\\ KF94066\\ KF94066\\ KF940666\\ KF940666\\ KF940666\\ KF9666$	F949317, KF949476/KF949477, KF949810/KF949811, KF950810/KF95081 F949284, KF949506/KF949507, KF949834/KF949835, KF950838/KF95083 F950065, -/-, -/-, -/- F950058, -/-, -/-, -/- F949278, KF949490/KF949491, -/-, -/- F949278, KF949490/KF949493, -/-, KF950824/KF950825 F950018, -/-, -/-, -/-	, -/ -, -/ -, KF950877/KF950878 F950068, -/ -, -/ -, -/ - F950069, KF950076/KF950077, KF950078/KF95077, KF95077 F949355, KF949440/KF949441, KF949776/KF949777, KF950772/KF95077 F949355, KF949440/KF94941, KF949776/KF949777, KF95077, KF95077 F949260, KF949514/KF949515, -/ -, -/	F949291, KF949532/KF949533, KF949856/KF949857, KF950868/KF95086 F949346, - / - , - / - , - / - F949347, KF949670/KF949671, KF949988/KF949989, KF950989/KF95099 F949292, KF949534/KF949535, KF949988/KF9499859, KF950915/KF95091 F949335, KF949586/KF949587, KF949900/KF949901, KF950915/KF95091 F949157, - / - , - / -	$ \begin{array}{l} \label{eq:relation} & F949336, -/-, -/-, -/-, -/-, -/-, -/-, -/-, -/$
-131.028099 K -131.366667 K -131.695833 K -131.695833 K -133.321000 K -133.389444 K -133.389444 K	-133.307199 K -133.272156 K -133.272156 K -133.841667 K -133.841667 K -133.841667 K -133.841667 K	-132.070556 K -132.070556 K -132.070556 K -132.833333 K -132.833333 K -132.833333 K -132.833333 K	-130.286389 K -130.21667 K -130.21667 K -130.24492 K -130.286389 K -130.26880 K -130.26880 K -130.244917 K	-130.23670 K -130.23670 K -136.69028 K -131.28444 K -131.28444 K -131.284444 K -131.36944 K -131.36944 K -131.36944 K -131.36944 K -131.36944 K -131.36944 K -131.36944 K
55.502382 55.816667 55.414722 55.41700 55.467222 55.467222 55.467222) 55.283333 55.266667 55.266667 55.875000 55.875000 55.875000 55.474883	56.269722 56.269722 56.269722 56.416667 56.416667 56.333333 56.333333) 57.135556 57.44515 57.15512 57.135556 57.135556) 57.28230 57.155117 57.42340	57.16980 57.16980 59.86972 57.86556 57.169800 57.85472 57.85472 57.85472 57.85472 57.85472 57.85472 57.85472 57.85472 50.05389 50.05389
San Fernando (SNF)	Suemez (SMZ) Warren (WRN) Wrangell (WRG)	Zarembo (ZRB) British Columbia	Central (BCC) North (BCN)	
UAM23449* UAM23956 UAM30343* MSB221540 UAM42800* UAM42801 UAM42804*	UAM23992 UAM42831 UAM42836* UAM31725* UAM31727 UAM31729 MSB149212*	UAM69665 UAM69668* UAM69673* UAM20619 UAM20620* UAM43469* UAM43469*	UAM52511 UAM52512 UAM52516 UAM52518 MSB147174 MSB147719 MSB147720 MSB147720	MSB155704 MSB155836 MSB155873 MSB156117 MSB156119 UAM516119 UAM52661 UAM52661 UAM52665 UAM52665 UAM52668 UAM52668

KF949333, -/ - , -/ - , -/ - KF949334, KF949568/KF949569, -/ - , KF950899/KF950900 KF949353, KF949686/KF949687, -/ - , KF951003/KF951004 KF949354, KF949688/KF949689, -/ - , KF951005/KF951006	KF949153,KF949362/KF949363,KF949696/KF949697,KF950695/KF950696 KF949154///-	KF949155,KF949364/KF949365,KF949698/KF949699,KF950697/KF950698	KF949302, KF949356/KF949357, KF949690/KF949691, KF950689/KF950690	KF949505,KF949528/KF949559,KF949692/KF949695,KF920691/KF920692 KF949304,KF949360/KF949361,KF949694/KF949695,KF950693/KF950694	KF949305, -/-, -/-, -/-, -/-	KF949332,KF949566/KF949567,KF949882/KF949883,KF950897/KF950898	DQ385716,KF949644/KF949645,KF949958/KF949959,KF950961/KF950962	 – ,KF949684/KF949685,KF950006/KF950007,KF951001/KF951002 KF949331,KF949564/KF949565,KF949880/KF940881,KF950895/KF950806 	KF949357 - / / / / -	KF949348, - / - , KF950000/KF950001, KF950997/KF950998	KF949349, KF949680/KF949681, KF950002/KF950003, KF950999/KF951000	KF949297,KF949548/KF949549,KF949872/KF949873,KF950885/KF950886	KF949350,KF949682/KF949683,KF950004/KF950005,-/-	KF949351, -/-, -/-, -/-, -/-		DQ385825, -/-, -/-, -/-, -/-	DQ385737, -/-, -/-, -/-, -/-	DQ385770,KF949412/KF949413,KF949746/KF949747,KF950744/KF950745	DQ385817,KF949420/KF949421,KF949754/KF949755,KF950750/KF950751	DQ385818,KF949648/KF949649,-/-,KF950676/KF950964	DQ385754, -/-, -/-, -/-	-,-/-,KF949736/KF949737,KF950661/KF950733	DQ385743, -/-, -/-, -/-, -/-	DQ385762, -/-, -/-, -/-, -/-	DQ385749, -/-, -/-, -/-, -/-	 ,KF949404/KF949405,KF949738/KF949739,KF950734/KF950735 	DQ385759, KF949426/KF949427, KF949760/KF949761, KF950756/KF950757	DQ385760, KF949652/KF949653, KF949966/KF949967, KF950971/KF950972	DQ385761,KF949654/KF949655,KF949968/KF949969,KF950973/KF950974	DQ385731, -/-, -/-, -/-, -/-	DQ385723,KF949414/KF949415,KF949748/KF949749,KF950746/KF950747	DQ385725,KF949638/KF949639,KF949952/KF949953,KF950955/KF950956
-121.707778 -121.707778 -131.43990 -131.43990	-131.439899	-131.439899	-131.398463	-131.398463 -131.398463	-131.398463	-127.150000	-135.16639	-135.16639	-135 19917	-134.83472	-111.83333	-135.199167	-111.83333	-111.83333		-79.08111	-65.75280	-78.36667	-107.60006	-99.76750	-78.71503	-83.42500	-83.42500	-78.37500	-78.39667	-108.87291	-108.91372	-115.03420	-115.03420	-72.52510	-95.35612	-77.67195
) 50.053889 50.053889 52.57571 52.57571) 52.575709 52.575709	52.575709	52.569649	52.569649 52.569649	52.569649	50.516667	60.63306	60.63306 48.027189	60 70722	60.44722	24.45000	60.707222	24.45000	24.45000		39.75280	48.65810	38.56667	27.97148	19.10167	42.15784	35.61110	35.61110	38.57667	38.55000	31.52833	31.94113	51.02791	51.02791	44.84010	51.00283	44.80078
South (BCS	British Columbian Islands: Hotsprings (HTS		Ramsay (RMS			Vancouver (VCR	Washington (WA)			Yukon - South (YTS)						Michigan (MI)	Minnesota (MN)	Ontario (ON)	Tennessee (TN)		Maine (ME)	New York (NY)		Pennsylvania (PA)	Quebec (QC)	Vermont (VT)	Virginia (VA)			Labrador (NL)	Manitoba (MB)	
UWBM75449 UWBM75450 UWBM75463 UWBM75463 UWBM75480	HGPeke9701 HGPeke9702	HGPeke9703	HGPeke0306	HGPeke030/ HGPeke0308	HGPeke0309	UWBM75393	MSB61426	UWBM74030	11WBM74954	UAM71580	UAM71581	UAM71620	UAM71622	UAM71660		CMNH109419	CMNH109438	MSB53341	MSB71957	MSB71965	CMNH109330	MSB229789	OSM350	CMNH109276	CMNH109316	MSB229872	MSB74926	MSB74932	MSB74936	OSM430	MSB55764	MSB55767
															P. maniculatus - Eas	а					p									C		

2. maniculatus - South MSR58334	Chibuahua (CHH)	34 97474	-100 79479	038511 - //// -
MSB213741 MSB245243 MSB46243 MSR51133	Chimuanua (CHH) Mexico (MX) New Mexico (NM)	54.9/4/4 56.03181 57.44515 57.42340	-109.79479 -129.93136 -130.21667 -130.23510	DQ38511, -/ -, -/ -, -/ -, -/ - -, KF949628/KF949629,KF949944/KF949945,KF950947/KF950948 DQ385718,KF949634/KF949635,KF949948/KF949949,KF950953/KF950673 DQ385718,KF949634/KF949637,KF949948/KF949949,KF9509534
. maniculatus - Southwest		2.01	2100-2001	
MSB58325 MSB58326 MSB58328 MSB58328	Baja California (BACA)	34.73966 34.73966 34.73966 34.73966	-120.53967 -120.53967 -120.53967 -120.53967	DQ385707,KF949418/KF949419,KF949752/KF949753,KF950683/KF950684 DQ385709, - / - , - / - , - / - DQ385706, - / - , - / - , - / - DQ385708, F9446427,F949056/KF949957,KF950686
MSB87462 MSB87484	California (CA)	39.42240 44.88311	-118.70533 -68.67194	DQ385710, -/-, -/-, -/-, -/-, DQ385711, -/-, -/-, -/-, -/
MSB87485 MSB87492 MSB87492		54.68750 54.64167 45.86860	-101.65278 -101.63333 -84.72780	DQ385712, -/-, -/-, -/-, -/- DQ385713, KF949434/KF949435, KF949768/KF949769, KF950662/KF950663 DQ385714, -/-, -/-, KF950979/KF950980
MSB74965	Nevada (NV)	47.05630	-93.91724	DQ385715 ,KF949656/KF949657,KF949970/KF949971, - / -
. municulatus - west MSB156150	Alberta (AB)	58.03956	-129.95033	KF949201, -/-, -/-, -/-, -/-
MSB156182 MSB156183		58.03956 58.03956	-129.95033 -129.95033	KF949166,KF949384/KF949385,KF949718/KF949719,KF950658/KF950714 KF949202///
MSB122918	Arizona (AZ) British Columbia	58.38253	-129.91877	KF949161,KF949366/KF949367,KF949700/KF949701,KF950699/KF950700
MSB158235	Central (BC	C) 59.56000	-133.66694	KF949236,KF949392/KF949393,KF949726/KF949727,KF950721/KF950722
MSB147166 MSB155835	North (BC	N) 59.56000 59.56000	-133.66694 -133.66694	KF949252, -/-, -/-, -/- KF949240, KF949600/KF949601, KF949916/KF949917, KF950668/KF950926
MSB155850		59.60000	-133.66667	KF949241, -/-, -/-, -/-
MSB158027		59.56000	-133.66694	KF949219,KF949606/KF949607,KF949922/KF949923,KF950669/KF950670
MSB158207		59.56000	-133.66694	KF949220, -/-, -/-, -/-
UAM35335		59.56000	-133.66694	KF949248,KF949586,KF949598,KF949982/KF949983,KF950677/KF950678 KF949250,KF949666/KF949667,KF949982/KF949983,KF950677/KF950678
UAM35336 11AM35337		59.71139 59.61306	-133.56722 -133.66722	KF949251, $-/-, -/-, -/-$ KF940766 $-/-$ KF949984/KF949985 KF950987/KF950988
UAM35341		59.61306	-133.66778	KF949209, -/-, -/-, -/- K E040208, -/-, -/-, -/- K E040208, K E040001 K E040005 K E050K E050K E050K E050K E050K E050K E050K E050K E05
UAM52690		59.71139	-133.56722	KF949214, -/-, -/-, -/-, -/-
UAM52691		49.20203	-117.89709	KF949215,-/-,-/-,-/-
UAM52693 UAM52693		49.20203 49.20203	-117.89709	KF949210, -/ -, -/ -, -/ -, -/ - KF949217, -/ -, -/ -, -/ -
UAM52696		49.20203	-117.89709	KF949210, -/-, -/-, -/-, -/-
UAM52699		49.30000	-115.13040	KF949211,KF949676/KF949677,KF949996/KF949997,KF950681/KF950682

UAM52700 UAM52701 UAM52701 UAM52967 MSB156364 MSB156365 MSB156365 MSB156589 MSB56704 MSB56706 MSB56706 MSB56706 MSB56706 MSB74667 MSB74669 MSB74669 MSB74866 MSB74894 MSB74866 MSB74869 MSB7489198 MSB7487901 MSB7489198 MSB7487901 MSB8789198 MSB7487901 MSB8789198 MSB8789198 MSB7487901 MSB8783456 MSB8789198 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB8783456 MSB87814142 MSB844142 MSB144142	South (BCS) California (CA) Colorado (CO) Idaho (ID) Idaho (ID) Idaho (ID) Montana (MT) Nevada (NV) New Mexico (NM) New Mexico (NM)	49.30000 49.30000 49.30000 49.30000 49.30000 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.37610 43.376100 60.13580 60	-115.13040 -124.09161 -104.36667 -104.36667 -104.36667 -112.80444 -116.45900 -116.45900 -116.45900 -93.60890 -93.60890 -99.21550 -99.21550 -111.03500 -107.150098 -107.150098 -107.150098 -111.13529340 -122.05700 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.055000 -122.0550000 -122.055000000000000000000000000000000000	$ \begin{array}{l} {\tt KF949212}, -/-, -/-, -/-, -/-, -/-, -/-, -/-, -/$
MSB144151 MSB144237 MSB144238		60.05880 61.20045 60.06668	-135.23250 -133.04693 -133.78280	KF949245,KF949576/KF949577,KF949890/KF949891,KF950907/KF950908 KF949235,KF949370/KF949371,KF949704/KF949705,KF950655/KF950656 KF949242, - / - , - / -
MSB144239		60.01410	-133.79548	KF949243, -/-, -/-, -/-, -/-

	MSB144240		60.05573	-133.80761	KF949244///
	MSB144364		60.06656	-133.77998	KF949254, -/-, -/-, -/-, -/-
	MSB144366		60.06656	-133.77998	KF949262, -/-, -/-, -/-, -/-
	MSB144387		60.07343	-133.80309	KF949255, -/-, -/-, -/-, -/-
	MSB144409		60.07343	-133.80309	KF949249,KF949584/KF949585,KF949898/KF949899,KF950665/KF950666
	MSB149188		60.07343	-133.80309	KF949239,KF949588/KF949589,KF949904/KF949905,KF950667/KF950919
	MSB194065		60.01410	-133.79548	KF949221,KF949608/KF949609,KF949924/KF949925,KF950931/KF950932
	MSB194080		60.01410	-133.79548	KF949246,KF949394/KF949395,KF949728/KF949729,KF950659/KF950660
	MSB194085		60.05573	-133.80761	KF949222, KF949610/KF949611, KF949926/KF949927, KF950933/KF950934
	MSB194097		60.15271	-127.43541	KF949223, -/-, -/-, -/-, -/-
	MSB194099		60.14992	-127.43530	KF949224, KF949612/KF949613, KF949928/KF949929, KF950935/KF950936
	MSB194102		60.15271	-127.43541	KF949225,KF949614/KF949615,KF949930/KF949931,KF950937/KF950938
	MSB194103		60.06668	-133.78280	KF949226, -/-, -/-, -/-, -/-
	MSB194104		60.07343	-133.80309	KF949227,KF949616/KF949617,KF949932/KF949933,KF950939/KF950940
	MSB194105		60.01410	-133.79548	KF949228, KF949618/KF949619, KF949934/KF949935, KF950941/KF950942
	MSB194113		60.01410	-133.79548	KF949229, -/-, -/-, -/-, -/-
	MSB194114		60.05573	-133.80761	KF949230, KF949620/KF949621, KF949936/KF949937, KF950671/KF950943
	MSB194127		60.15271	-127.43541	KF949231, -/-, -/-, -/
	MSB194129		60.14992	-127.43530	KF949232, -/-, -/-, -/-, -/-
	MSB194130		60.15271	-127.43541	KF949233, -/-, -/-, -/-, -/-
	MSB194166		60.06668	-133.78280	KF949234, KF949622/KF949623, KF949938/KF949939, KF950672/KF950944
	MSB84837	Iowa (IA)	33.50722	-108.54945	DQ385633, -/-, -/-, KF950977/KF950978
	MSB73954	Kansas (KS)	36.75750	-108.18153	DQ385639, -/-, -/-, KF950967/KF950968
	MSB73966		36.19751	-108.31174	DQ385642,KF949422/KF949423,KF949756/KF949757,KF950752/KF950753
P. leucopus					
	MSB92216				- ,KF949438/KF949439,KF949772/KF949773,KF950766/KF950767
	MSB92383				-,-/-,KF949774/KF949775,KF950768/KF950769
D malanatic					DQ9/3104, -/-, -/-, -/-
I. metanons					
	MSB40124				KF949261,/, -/, KF950740/KF950741 , FJ214711/ ,-/-,-/-
					/- FF080801//

Table 2. Primer list and PCR annealing temperatures. Primers used for amplification and sequencing mtDNA Cytochrome B (cyt *b*), and nuclear loci β -fibrinogen (FGB), interphotoreceptor retinoid-binding protein (IRBP) and zona pellucida 3 (ZP3) in *Peromyscus*, with °C annealing temperatures indicated in parentheses.

Primer	Sequence (5'-3')	Reference
cytb (50)		
L14734		(Ohdachi et al. 2001)
CytBRev		(Anderson and Yates 2000)
FGB (63)		
MSB_PFGBF	GCCGTTTGGATTGGCTGC	This study, modified from Matocq et al. (2007)
MSB_PFGBR	CGACAGGGACAATGATGGC	This study, modified from Matocq et al. (2007)
IRBP (60)		
MSB PIRBPF	CCAGGAGGTACTGAGTGAGC	This study, modified from Stanhope et al. (1992)
MSB_PIRBPR	GCTGAGTAGTCCATGCTAGC	This study, modified from Stanhope et al. (1992)
Zp3 (56)		
Z36FA		(Turner and Hoekstra 2006)
Z37RA		(Turner and Hoekstra 2006)

- Anderson, S. & Yates, T.L. (2000) A new genus and species of phyllotine rodent from Bolivia. *Journal of Mammalogy*, **81**, 18-36.
- Matocq, M.D., Shurtliff, Q.R. & Feldman, C.R. (2007) Phylogenetics of the woodrat genus *Neotoma* (Rodentia: Muridae): Implications for the evolution of phenotypic variation in male external genitalia. *Molecular Phylogenetics and Evolution*, 42, 637-652.
- Ohdachi, S., Dokuchaev, N.E., Hasegawa, M. & Masuda, R. (2001) Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. *Molecular Ecology*, 10, 2199-2213.
- Stanhope, M.J., Czelusniak, J., Si, J.-S., Nickerson, J. & Goodman, M. (1992) A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. *Molecular Phylogenetics and Evolution*, 1, 148-160.
- Turner, L.M. & Hoekstra, H.E. (2006) Adaptive evolution of fertilization proteins within a genus: Variation in ZP2 and ZP3 in deer mice (*Peromyscus*). *Molecular Biology and Evolution*, **23**, 1656-1669.

Table 3. Diversity indices, expansion statistics and models of evolution. n=haploid sample size; L=length of sequence; S=variable sites; Eta=#mutations; h=#haplotypes; Hd=haplotype diversity; π =nucleotide diversity; D=Tajima's D; FS=Fu's FS; R2=Ramos-Osnin's R2; Model=model of evolution as selected by MODELTEST. Bold values are significant at p<0.05 (p<0.02 for FS).

Group	Gene	n	L	S	h	Hd	π	D	FS (p<.02)	R2	Model of Evolution
All Samples	Cytb	260	1143	235	155	0.982	0.01861	-0.10023	-0.82321	0.07836	TrN+I+G
	FGB	168	479	23	22	0.309	0.00130	-0.03746	-0.37821	0.07790	HKY
	IRBP	160	421	7	7	0.080	0.00025	-0.11871	-0.96319	0.07576	HKY+G
	Zp3	176	314	6	8	0.067	0.00029	-0.08499	-0.54854	0.07454	GTR+I+G
NoOG	Cytb	258	1143	191	161	0.984	0.01722	-0.09987	-0.86939	0.07861	
	FGB	166	479	18	21	0.302	0.00117	-0.02523	-0.34750	0.07931	
	IRBP	157	421	7	7	0.081	0.00025	-0.08041	-0.61592	0.07596	
	Zp3	173	314	5	6	0.057	0.00022	-0.07028	-0.43458	0.07501	
Peromyscus sp. nov.	Cytb	37	1143	42	22	0.946	0.00487	-0.08122	-0.19581	0.11288	HKY+I
	FGB	20	479	4	3	0.542	0.00312	-0.05602	-0.00642	0.11819	HKY
	IRBP	20	421	4	4	0.191	0.00070	-0.02155	0.10754	0.13954	HKY
	Zp3	17	314	10	8	0.574	0.00698	-0.07684	0.01352	0.12065	HKY+I
P. keeni	Cytb	103	1143	91	70	0.989	0.00529	-0.07929	-0.33249	0.09185	TrN+I+G
	FGB	86	479	2	3	0.057	0.00013	-0.08379	-0.47951	0.08348	HKY+I
	IRBP	74	421	3	4	0.243	0.00064	-0.00699	-0.11345	0.09694	HKY+I
	Zp3	89	314	10	12	0.222	0.00100	-0.02895	-0.13447	0.09382	HKY+I
P. maniculatus											
West	Cytb	90	1143	113	61	0.940	0.00860	-0.09925	-0.37647	0.09386	TrN+I+G
	FGB	44	479	23	21	0.753	0.00381	-0.05620	-0.13547	0.09654	HKY+I
	IRBP	47	421	8	9	0.343	0.00092	-0.01808	-0.05135	0.10585	HKY+I
	Zp3	50	314	4	5	0.153	0.00059	-0.00082	-0.04361	0.10990	HKY+I
East - a	Cytb	5	1143	16	5	1.000	0.00630	-0.05086	0.67799	0.23149	
	FGB	3	479	1	2	0.533	0.00111	-0.00688	0.33515	0.29448	
	IRBP	2	421	2	3	0.833	0.00238	-0.15870	0.39502	0.34858	
	Zp3	3	314	3	3	0.600	0.00391	-0.00619	0.33953	0.26832	
East - b	Cytb	7	1143	27	7	1.000	0.00700	-0.06215	0.47123	0.19090	
	FGB	4	479	1	2	0.250	0.00053	-0.01644	0.31732	0.26876	
	IRBP	5	421	2	3	0.511	0.00133	-0.01632	0.26473	0.22699	
	Zp3	5	314	6	5	0.867	0.00724	-0.04670	0.20722	0.18491	
East - c	Cytb	3	1143	9	3	1.000	0.00525	n/a	1.10130	0.33813	
	FGB	2	479	2	3	0.833	0.00209	-0.00377	0.36963	0.34989	
	IRBP	2	421	2	3	0.833	0.00317	-0.01828	0.39935	0.33733	
	Zp3	2	314	2	3	0.833	0.00319	-0.02415	0.37187	0.34924	
South	Cytb	3	1143	10	3	1.000	0.00583	n/a	1.13534	0.33308	
	FGB	3	479	2	3	0.600	0.00139	-0.00335	0.32780	0.28936	
	IRBP	3	421	7	5	0.933	0.00652	-0.03930	0.41737	0.23530	
	Zp3	3	314	8	5	0.933	0.01278	-0.04149	0.41630	0.22276	
Southwest	Cytb	10	1143	41	9	0.978	0.01091	-0.86630	0.35640	0.16183	
	FGB	4	479	0	1	0.000	0.00000	n/a	n/a	n/a	
	IRBP	4	421	1	2	0.536	0.00129	-0.02545	0.32683	0.25466	
	Zp3	4	314	2	2	0.536	0.00361	-0.04456	0.28652	0.23280	

		cytb			multilocus	
Lineage	95% HPD lower	mean	95% HPD upper	95% HPD lower	mean	95% HPD upper
Peromyscus sp. nov./P. keeni	299,400	443,000	607,800	136,200	178,600	216,800
Peromyscus sp. nov.	179,878	288,800	403,800	68,400	107,600	149,200
P. keeni	194,472	280,600	378,600	101,800	127,600	153,000
P. maniculatus - West	225,200	323,600	443,600		(a))	1
BC/YT	98,800	149,400	204,600	40,200	68,000	109,600
P. maniculatu s - East	171,102	269,800	404,000	I.	i.	C.
P. maniculatus - East - a	59,200	123,000	214,600	ı	ï	ı
P. maniculatus - East - b	66,600	127,200	206,600		æ	
P. maniculatus - East - c	33,400	92,600	175,800	1	ł	
P. maniculatus - South	23,684	100,892	199,392	ı	ï	,
P. maniculatus - Southwest	131,170	257,800	399,800	ì	î	,

Table 4. Cyt b and multilocus divergence date estimates for *Peromyscus*.

Table 5. Cyt *b* between group net genetic divergences in *Peromyscus*. The number of base differences per site from estimation of net average between groups of sequences is shown. Standard error estimate(s) are shown above the diagonal. All ambiguous positions were removed for each sequence pair.

	¢	ta d		*		-
	Peromyscus sp. nov.	P. keeni	P. maniculatus - W	est P. man	iculatus - East - a	P. maniculatus - East - b
Peromyscus sp. nov.		0.50%	0.50%		0.50%	0.60%
P. keeni	3.60%		0.50%		0.60%	0.60%
P. maniculatus - West	3.60%	3.90%			3.60%	4.30%
P. maniculatus - East - a	4.20%	4.40%	0.50%			0.40%
P. maniculatus - East - b	4.60%	4.40%	0.50%		1.70%	
P. maniculatus - East - c	4.80%	4.50%	0.50%		2.00%	0.30%
P. maniculatus - South	3.60%	0.50%	0.50%		0.50%	0.50%
P. maniculatus - Southwes	3.70%	2.40%	3.30%		3.90%	4.10%
P. leucopus	10.80%	10.00%	0.90%		0.90%	%06.0
P. melanotis	13.40%	13.30%	1.00%		13.30%	1.00%
0.60%	0.50%		0.50%	0.90%	1.00% P	eromyscus sp. nov.
0.60%	3.60%		0.40%	0.90%	1.00% P	, keeni
4.00%	3.30%		0.50%	9.90%	13.40% P	. maniculatus - West
0.40%	3.10%		0.50%	10.10%	1.00% P	. maniculatus - East - a
1.50%	3.20%		0.50%	9.60%	13.70% P	. maniculatus - East - b
	3.60%		0.50%	9.70%	13.60% P	. maniculatus - East - c
0.50%			0.40%	0.00%	1.00% P	. maniculatus - South
4.00%	2.50%			9.50%	12.90% P	. maniculatus - Southwest
0.90%	9.60%		0.90%		1.00% P	. leucopus
1.00%	13.40%		1.00%	14.00%	Р	. melanotis

Table 6. Yukon populations of *Peromyscus* sp. nov., *P. keeni* and *P. maniculatus* West cyt*b* lineage populations. Bayesian migration estimates determined in BAYESASS. Non-migrants within each population are indicated in bold along the diagonal. Values are the proportion of migrant genes donated from source populations (columns) into sink populations (rows).

	Migration rates into		
From	Peromyscus sp. nov.	P. keeni	P. maniculatus - West
Peromyscus sp. nov.	0.868	0.011	0.013
P. keeni	0.096	0.686	0.024
P. maniculatus - West	0.010	0.008	0.901

Table 7. Southeast Alaskan population Bayesian migration estimates determined in BAYESASS for *P. keeni* and nearby *Peromyscus*. Non-migrants within each population are indicated in bold along the diagonal. Values are the proportion of migrant genes donated from source populations (columns) into sink populations (rows). Location abbreviations are in Table 1 and preceding notations are: Y=*Peromyscus* sp. nov., K=*P. keeni* and MW=*P. maniculatus* West.

MLHNS	0.0066	0.0065	0.0067	0.0064	0.0067	0.0065	0.0063	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.0066	0.0066	0.0062	0.0064	0.0063	0.0066	0.0067	0.6731	0.0065	0.0062	0.0065	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0064	0.0064	0.0066	C000.0	0.0068	0.0064	0.0066	20000	0 0068	0.0068	0.0068 0.0064 0.0068	0.0068 0.0064 0.0068 0.0067
MLGB K	0.0066	0.0065	0.0067	0.0064	0.0067	0.0065	0.0063	0.0065	0.0065	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0065	0.0066	0.0065	0.0063	0.0065	0.0063	0.0066	0.6734	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0064	0.0066	0.0004	0.0068	2000.0	2000.0	nonon	0.0068	0.0068	0.0068 0.0064 0.0068	0.0068 0.0064 0.0068 0.0067
MLFB K	0.0066	0.0064	0.0066	0.0064	0.0067	0.0064	0.0063	0.0065	0.0066	0.0062	0.0063	0.0063	0.0063	0.0064	0.0065	0.0066	0.0066	0.0066	0.0063	0.0065	0.0063	0.6733	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0064	0.0065	0.0064	0.0068	0.0002	C000.0	0.0000	VOID I.	0.0065	0.0065 0.0068	0.0065 0.0068 0.0067
MLCP K	0.0069	0.0070	0.0067	0.0065	0.0068	0.0068	0.0066	0.0066	0.0069	0.0065	0.0067	0.0065	0.0065	0.0066	0.0066	0.0067	0.0067	0.0066	0.0064	0.0067	0.6736	0.0068	0.0067	0.0067	0.0066	0.0071	0.0066	0.0066	0.0064	0.0068	0.0071	0.0066	0.0063	0.0068	0.0067	0.0067	0.000/0	0.0069	0.0000	0.0068	0.0068	annin a	0 0066	0.0066	0.0066 0.0071 0.0072
K_MIT K	0.0066	0.0065	0.0067	0.0064	0.0067	0.0065	0.0063	0.0065	0.0066	0.0062	0.0063	0.0064	0.0063	0.0064	0.0066	0.0066	0.0066	0.0066	0.0063	0.6733	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0064	0.0064	0.0066	C000.0	0.0068	00000	C000.0	0.0068	0,000	0 0064	0.0064	0.0064 0.0069 0.0067
K LUL	0.0110	0.0108	0.0109	0.0140	0.0098	0.0118	0.0143	0.0132	0.0102	0.0158	0.0142	0.0148	0.0150	0.0144	0.0126	0.0116	0.0116	0.0121	0.6829	0.0125	0.0152	0.0110	0.0110	0.0138	0.0121	0.0120	0.0132	0.0144	0.0172	0600'0	0.0083	0.0143	0.0185	0.0122	0.0138	0.0117	1610.0	0.0085	0010.0	6010.0	0.0080	10000 M	0.0133	0.0133	0.0068 0.0068
K KUI	0.0066	0.0064	0.0067	0.0065	0.0067	0.0065	0.0063	0.0065	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0065	0.0066	0.6733	0.0063	0.0065	0.0063	0.0066	0.0067	0.0064	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0064	0.0066	0.0004	0.0068	0.0005	2000.0	0.0068	20020	0 0064	0.0064	0.0064 0.0068 0.0067
K KSC	0.0066	0.0064	0.0066	0.0064	0.0067	0.0065	0.0064	0.0065	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.6733	0.0066	0.0064	0.0065	0.0063	0.0066	0.0066	0.0063	0.0065	0.0062	0.0065	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0064	0.0065	0.0065	C000.0	0.0068	00000	2000.0	0.0068	0,000	CV000 0	0.0068	0.0068 0.0068 0.0068
K KRF	0.0066	0.0064	0.0067	0.0064	0.0067	0.0065	0.0063	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0065	0.6733	0.0066	0.0066	0.0063	0.0064	0.0063	0.0066	0.0066	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0065	0.0066	0.0004	0.0068	2000.0	2000.0	0.0068	0.000	00001	0.0068	0.0067
A HTS	0.0066	0.0064	0.0067	0.0064	0.0067	0.0065	0.0063	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.6733	0.0066	0.0066	0.0066	0.0063	0.0064	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0065	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0064	0.0065	0.0004	0.0068	00000	2000.0	0.0068	0,0004	10001	0.0068	0.0068 0.0068 0.0067
(HEC]	0.0066	0.0064	0.0067	0.0064	0.0067	0.0065	0.0063	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.6731	0.0065	0.0066	0.0066	0.0066	0.0063	0.0064	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0064	0.0064	0.0065	0.0004	0.0068	000070	2000.0	0.0068	0.000.0	10004	0.0068	0.0068 0.0068 0.0067
GRV F	0.0066	0.0065	0.0067	0.0065	0.0067	0.0065	0.0064	0.0065	0.0065	0.0062	0.0063	0.0063	0.6731	0.0063	0.0065	0.0066	0.0066	0.0065	0.0063	0.0064	0.0063	0.0065	0.0067	0.0063	0.0066	0.0062	0.0064	0.0064	0.0062	0.0068	0.0067	0.0064	0.0061	0.0063	0.0064	0.0066	C000.0	0.0068	0.0004	0.0066	0.0068	0.0004	11110111	0.0068	0.0068
C FST K	0.0066	0.0064	0.0066	0.0064	0.0067	0.0065	0.0063	0.0065	0.0066	0.0062	0.0063	0.6731	0.0063	0.0063	0.0065	0.0065	0.0066	0.0066	0.0063	0.0065	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0064	0.0061	0.0064	0.0064	0.0066	C000.0	0.0068	0.0006	2000.0	0.0068	0.0065		0.0068	0.0068
EIN	0.0066	0.0064	0.0067	0.0064	0.0067	0.0065	0.0063	0.0064	0.0066	0.0062	0.6731	0.0063	0.0063	0.0063	0.0065	0.0066	0.0066	0.0066	0.0063	0.0064	0.0064	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0064	0.0066	C000.0	0.0068	0.0005	2000.0	0.0068	0.0065		0.0068	0.0068
DAL	0.0068	0.0072	0.0067	0.0066	0.0069	0.0070	0.0067	0.0067	0.0071	0.6739	0.0068	0.0066	0.0067	0.0066	0.0066	0.0067	0.0068	0.0067	0.0064	0.0068	0.0065	0.0069	0.0067	0.0069	0.0067	0.0073	0.0067	0.0067	0.0064	0.0068	0.0072	0.0069	0.0064	0.0072	0.0066	0.0067	/ 900.0	0.0069	600070	1/00/0	0.0068	0.0067	1 1 1 1 1 1 1 1	0.0073	0.0073 0.0075
CRN F	0.0066	0.0064	0.0067	0.0064	0.0067	0.0064	0.0063	0.0064	0.6733	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0065	0.0066	0.0065	0.0063	0.0064	0.0063	0.0065	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0069	0.0067	0.0063	0.0061	0.0064	0.0064	0.0066	0.0004	0.0068	0.0005	2000.0	0.0068	0.0064		0.0069	0.0067
CGF K	0.0066	0.0064	0.0067	0.0064	0.0067	0.0064	0.0063	0.6732	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.0066	0.0066	0.0063	0.0064	0.0063	0.0066	0.0067	0.0063	0.0065	0.0062	0.0065	0.0063	0.0062	0.0068	0.0067	0.0064	0.0061	0.0063	0.0064	0.0066	COUU.0	0.0068	2000.0	2900.0	0.0068	0.0064		0.0068	0.0068
BNF K	0.0066	0.0065	0.0067	0.0065	0.0067	0.0064	0.6731	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.0066	0.0065	0.0063	0.0065	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0065	0.0065	0.0004	0.0068	00000	2000.0	0.0068	0.0064		0.0069	0.0067
BKR K	0.0068	0.0073	0.0067	0.0066	0.0069	0.6739	0.0067	0.0067	0.0071	0.0065	0.0067	0.0067	0.0066	0.0068	0.0067	0.0068	0.0068	0.0067	0.0066	0.0069	0.0065	0.0069	0.0067	0.0067	0.0067	0.0066	0.0067	0.0067	0.0064	0.0068	0.0072	0.0068	0.0064	0.0072	0.0066	0.0067	0.0008	0.0069	6000.0	0/00/0	0.0068	0.0067	The second se	0.0073	0.0073
BCS K	9900.0	9900.0	7900.0	0.0065	.6736	0.0066	0.0064	6900.0	8900.0	0.0063	0065	0065	.0064	.0064	9900.0	0.0066	00066	00066	.0064	9900.0	.0064	7900.0	0.0067	6900.0	0.0066	0.0063	.0065	.0064	.0063	8900.0	6900.0	0.0064	0.0062	0.0066	5900.0	00066	C000.0	0068	2000	0000	10068	00065		0200.0	0.0070
BCN K	0.0066 (0.0064 ().0066 (0.6732	0.0066	0.0065	0.0063	0.0065 (0.0066 (0.0062 (0.0063 (0.0063 (0.0063 (0.0063 (0.0065 ().0065 (0.0066 (0.0065 (0.0063 (0.0064 (0.0063 (0.0065 (0.0067	0.0063 (0.0065 (0.0062 (0.0064 (0.0063 (0.0062 (0.0068 (0.0067	0.0063 (0.0060	0.0063	0.0064	0.0066	0.0004	0.0069	00000	2000.0	89000	0.0064	A.M. Martin	0.0068	0.0068
BCC K	.0066	.0064	.6734	.0064	0067	0065	0063	.0064	.0066	.0062	0063	0064	0063	0063	0065	0066	0066	0066	.0063	.0064	.0063	.0065	0067	.0063	.0065	.0062	.0065	0063	.0062	10068	0067	.0063	0061	0063	.0064	0000	10004	0068	5000	2000	0000	0064	and the second se	0068	0067
ADM K	0.0066 (6733 (0.0067	0.0064 (0.0067 (0.0065 (0.0063 (0.0064 6	0066 6	0.0062 (0.0063 0	0.0064 0	0.0064 0	0.0064 6	0065 6	0.0066 (0.0066 6	0.0066 6	0.0063 0	0.0065 0	0.0063 0	0.0066 0	0.0067 0	0.0064 0	0.0065 0	0.0062 6	0.0064 0	0.0063 6	0.0062 6	0.0068 6	0.0067 0	0.0063 0	0.0061 0	0.0064 0	0.0064	0.0066	1 0000	0.0068	0 0000	0066 0	0.068 0	0064 6		00069	0.0069 0
YTS K	0.6734 0).0065 0	0.0067 0	0.0064 6	0.0067 0	0.0065 (0.0063 (0.0065 6	0.0066 0	0.0062 0	0.0063 0	1.0063 0	0.0063 0	0.0063 0	0.0065 0	0.0066 6	0.0066 0	0.0066 6	0.0063 0	0.0064 6	0.0063 0	0.0066 0	0.0067 0	0.0063 0	0.0066 0	0.0062 0	0.0065 0	0.0063 0	0.0062 0	0.0068 0	0.0067 0	0.0063 0	3.0061 6	9.0064 6	9.0064 (0.0066 (0.0004 1	0.0068 (1 00007	1 00000	1 0068 0	0 0064 0		0.0068 (0.0067 (
From Y	V_YTS 6	K ADM 6	K_BCC 6	K_BCN (K_BCS (K_BKR (K_BNF (K_CGF 0	K_CRN 6	K DAL (K ETN 0	K FST 0	K GRV 0	K_HEC (K_HTS 6	K_KRF 6	K_KSC 6	K_KUI (K_LUL 6	K_MIT 6	K MLCP 0	K_MLFB 0	K MLGB 0	K_MLHNS (K MLJNO 6	K_MLKLU 6	K_MLMFD 0	K_MLSEC 0	K MLSKW 0	K_MLWP (K_MRY 0	K_NYS 0	K_POW C	K_REV C	K_RMS	K_SMZ (N SNF	K_VCR	N WA	K WDN 0		K ZRB 0		MW BCC	MW_BCC 0 MW_BCN (

W YTS From	0.0066 Y_YTS	0.0064 K ADM	0.0067 K BCC	0.0064 K BCN	0.0067 K_BCS	0.0064 K_BKR	0.0063 K_BNF	0.0064 K CGF	0.0066 K CRN	0.0062 K_DAL	0.0063 K_ETN	0.0063 K_FST	0.0063 K_GRV	0.0063 K_HEC	0.0066 K_HTS	0.0065 K KRF	0.0066 K_KSC	0.0065 K_KUI	0.0063 K_LUL	0.0064 K_MIT	0.0063 K MLCP	0.0066 K MLFB	0.0066 K_MLGB	0.0064 K_MLHNS	0.0065 K MLJNO	0.0062 K_MLKLU	0.0064 K_MLMFD	0.0063 K_MLSEC	0.0062 K MLSKW	0.0068 K_MLWP	0.0067 K_MRY	0.0063 K_NYS	0.0061 K POW	0.0063 K REV	0.0064 K RMS	0.0066 K SMZ	THE A COULU	0.0068 K VCK	0.0065 K WDC	0.0066 K WRN	0.0068 K VTS	0.0064 K 7RR	0.0068 MW BCC	0.0067 MW BCN	0.0068 MW_BCS	0.0068 MW_WA	0.6735 MW YTS
AW WA M	0.0067	0.0065	0.0067	0.0064	0.0067	0.0064	0.0064	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.0066	0.0066	0.0063	0.0064	0.0064	0.0066	0.0066	0.0063	0.0066	0.0062	0.0065	0.0064	0.0062	0.0068	0.0067	0.0064	0.0061	0.0064	0.0064	0.0066	+000.0	0.0068	0.0065	0.0066	0.0068	0.0064	0.0068	0.0068	0.0068	0.6736	0.0068
WW_BCS N	0.0066	0.0064	0.0067	0.0064	0.0067	0.0065	0.0064	0.0064	0.0066	0.0062	0.0063	0.0064	0.0064	0.0063	0.0066	0.0066	0.0066	0.0065	0.0063	0.0064	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0064	C000.0	0,000	0.0068	9000.0	0 0066	0 0068	0.0065	0.0068	0.0067	0.6735	0.0068	0.0067
WW_BCC 1	0.0066	0.0065	0.0067	0.0064	0.0067	0.0064	0.0063	0.0065	0.0065	0.0062	0.0063	0.0063	0.0063	0.0063	0.0065	0.0066	0.0066	0.0065	0.0063	0.0064	0.0063	0.0066	0.0066	0.0064	0.0066	0.0062	0.0064	0.0064	0.0062	0.0068	0.0067	0.0063	0.0061	0.0064	0.0064	0.0066	C000.0	0.0068	0.0064	0.0066	0.0068	0.0064	0.6736	0.0067	0.0067	0.0068	0.0067
K_ZRB /	0.0107	0.0107	0.0109	0.0140	0.0097	0.0112	0.0140	0.0129	0.0102	0.0159	0.0140	0.0142	0.0148	0.0144	0.0123	0.0115	0.0114	0.0119	0.0150	0.0121	0.0153	0.0109	0.0108	0.0131	0.0119	0.0111	0.0130	0.0141	0.0167	0600.0	0.0081	0.0139	0.0178	0.0110	0.0138	2110.0	0.0129	C800.0	10100	0.010.0	0.0080	0.6804	0.0069	0.0068	0.0077	0.0070	0.0068
K_YTS	0.0065	0.0064	0.0067	0.0064	0.0067	0.0065	0.0064	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0065	0.0066	0.0066	0.0065	0.0063	0.0064	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0065	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0065	0.00064	10000	0.0068	0.0065	0.0066	0.6736	0.0065	0.0068	0.0067	0.0067	0.0068	0.0068
WRN	0.0066	0.0064	0.0067	0.0065	0.0067	0.0064	0.0064	0.0065	0.0065	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.0066	0.0065	0.0063	0.0064	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0063	0.0065	0.0066	100000	0.0068	1900.0	FEL9 0	0.0068	7900 0	0.0068	0.0067	0.0068	0.0068	0.0067
K_WRG K	0.0082	0.0120	0.0069	0.0074	0.0082	0.0106	0.0093	0.0085	0.0099	1600'0	0.0095	0.0090	0.0085	1600'0	0.0072	0.0081	0.0080	0.0077	0.0077	0.0095	0.0078	0.0089	0.0068	0.0103	0.0077	0.0157	0.0086	0.0092	0.0079	0.0068	0.0103	0.0090	0.0084	0.0128	0.0075	0.0078	10000	C/0070	0.6799	0.0084	0.0070	0.0080	0.0095	0.0121	0.0105	0.0094	0.0115
K_WA_I	0.0066	0.0065	0.0067	0.0064	0.0067	0.0065	0.0063	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0065	0.0066	0.0065	0.0065	0.0063	0.0064	0.0063	0.0065	0.0067	0.0064	0.0066	0.0062	0.0064	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0064	0.0064	C000.0	+0000	8000.0	0.0064	0.0066	0.0068	0.0064	0.0068	0.0067	0.0067	0.0068	0.0067
VCR	0.0066	0.0064	0.0067	0.0065	0.0067	0.0065	0.0063	0.0065	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.0066	0.0066	0.0063	0.0064	0.0063	0.0066	0.0067	0.0063	0.0066	0.0062	0.0064	0,0063	0.0063	0.0068	0.0067	0.0063	0.0061	0.0063	0.0064	0.0066	+00000	0.07.56	0.0065	0.0066	0.0068	0.0065	0.0069	0.0067	0.0067	0.0068	0.0068
SNF A	0.0066	0.0064	0.0067	0.0064	0.0067	0.0064	0.0063	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0066	0.0066	0.0066	0.0066	0.0063	0.0064	0.0063	0.0065	0.0067	0.0063	0.0066	0.0062	0.0065	0.0063	0.0062	0.0068	0.0067	0.0064	0.0061	0.0063	0.0064	0.0066	10/000	0.0068	0.0065	0 0066	0.0068	0.0065	0.0068	0.0067	0.0067	0.0068	0.0067
SMZ K	0.0067	0.0067	0.0066	0.0064	0.0067	0.0066	0.0065	0.0065	0.0067	0.0063	0.0064	0.0064	0.0064	0.0064	0.0066	0.0067	0.0066	0.0066	0.0063	0.0065	0.0063	0.0067	0.0066	0.0065	0.0066	0.0063	0.0065	0.0065	0.0062	0.0069	0.0069	0.0065	0.0061	0.0065	0.0065	0.6734	0000-0	8900.0	0.0066	0.0067	89000	5900.0	0.0069	0.0070	0.0068	0.0069	0.0070
RMS K	9900'	.0064	1.0067	2900.0	7900.0	30065	6900.0	0064	9900'	.0062	6900.0	6900.	0063	6900.	2900.0	.0065	6900.0	9900'	0063	.0065	.0064	99001	7900.0	.0063	5900.0	.0062	.0064	.0063	.0062	.0068	10067	0063	1900	.0063	.6732	00001	+000	8000	00002	0066	8900	1900	0068	0067	8900.0	.0068	0067
REV K	0.0066 (0.0065 ().0067 (.0064 (0.0067 (0.0065 (0.0063 (.0065 (0.0066 (0.0063 (0.0063 (0.0063 ().0064 (0.0063 (0.0065 ().0066 ().0066 (0.0065 (0.0064 (0.0065 ().0063 (0.0066 (0.0066 (0.0063 (0.0065 (.0063 (0.0064 (0.0063 (0.0062 ().0068 (0.0067	0.0064	0.0061	.6733 (0.0064	0.0066	C000.0	0.0068	00000	00066	0.068	0005	0.0068	0.0068	0.0067 (.0069 (0.0067 (
POW K	0069 (6200.	.0069	.0067	1200.	.0077	0010	.0069	.0075 (0010	.0072 (1200.	.0069 (1200.	.0067	.0069	0010	.0068	1200.	7200	.0067	.0073 (.0067	.0073 (0069	6900	0010	1200.	.0066	.0068	.0077	.0072	.6749	.0087	10067	6900	6000-	1/00.	5200	1200	0900	00200	0076	0800	8200.	.0075	.0079
NYS K	0068 0	0071 0	0067 0	0065 0	0068 0	0069 0	0066 0	0068 0	0 6900	0065 0	0067 0	0066 0	0066 0	0065 0	0066 0	0068 0	0067 0	0067 0	0066 0	0068 0	0064 0	0068 0	0067 0	0067 0	0067 0	0072 0	0066 0	0066 0	0064 0	0068 0	0011 0	6737 0	0064 0	0071 0	0066 0	0 / 900	1000	0 6900	0 8900	0 8900	0.068	0066 0	0071 0	0072 0	0071 0	0071 0	0071 0
IRY K	0066 0.	0065 0.	0067 0.	0064 0.	0067 0.	0065 0.	0063 0.	0064 0.	0066 0.	0062 0.	0063 0.	0063 0.	0063 0.	0063 0.	0065 0.	0066 0.	0066 0.	0066 0.	0063 0.	0065 0.	0063 0.	0066 0.	0067 0.	0063 0.	0065 0.	0062 0.	0065 0.	0063 0.	0062 0.	0068 0.	6735 0.	0063 0.	0061 0.	0063 0.	0064 0.	0066 0.	0 0000	0.068 0.0	0 2900	0066 0	0 0000	0 64 0	0068 0	0067 0	0067 0.	0068 0.	0067 0.
LWP K_N	0.0066 0.	0.0065 0.	0.0067 0.	0.0065 0.	0.0067 0.	.0065 0.	.0063 0.	0.0065 0.	0.0066 0.	0.0062 0.	0.0063 0.	0.0063 0.	0.0063 0.	0.0063 0.	0.0065 0.	0.0065 0.	0.0065 0.	0.0065 0.	0.0063 0.	0.0064 0.	0.0063 0.	0.0066 0.	0.0067 0.	0.0064 0.	0.0066 0.	0.0062 0.	0.0065 0.	0.0063 0,	0.0062 0.	.6736 0.	0.0067 0.	0.0063 0.	0.0061 0.	0.0063 0.	0.0064 0.	0.0066 0.	0 +0001	0 8000	0 10001	0 2900	0 0900	0 7900	0.0069 0.	0.0067 0.	0.0067 0.	0.0068 0.	0.0068 0.
ILSKW K M	0.0066 (0.0065 0	0.0067 (0.0065 0	0.0067 (0.0065 (0.0063 0	0.0064 (0.0066 (0.0062 (0.0063 0	0.0063 0	0.0063 0	0.0063 0	0.0065 0	0.0066 (0.0066 (0.0066 (0.0063 (0.0064 (0.0063 (0.0065 (0.0067 0	0.0063 (0.0065 (0.0062 0	0.0065 0	0.0063 0	0.6730 (0.0068	0.0067	0.0063 (0.0061	0.0064	0.0064	0.0066	C000.0	0.0068	0.0065	0.0066	0 0068	0 0064	0.0068	0.0067	0.0067	0.0069 (0.0068 0
MLSEC K_N	0.0067	0.0070	0.0067	0.0065	0.0068	0.0068	0.0066	0.0066	0.0068	0.0064	0.0065	0.0066	0.0064	0.0064	0.0066	0.0067	0.0067	0.0067	0.0065	0.0068	0.0064	0.0068	0.0067	0.0066	0.0067	0.0063	0.0066	0.6735	0.0063	0.0068	0.0069	0.0066	0.0063	0.0068	0.0065	0.0066	00000	0.0069	0.0067	0.0067	0.0068	0.0066	0.0070	0.0071	0.0071	0.0071	0.0072
IFD K	0066	0064	0067	0064	0066	0065	.0063	0064	9900	0062	.0063	0063	0063	.0063	0066	.0066	0066	0065	0063	0065	0063	0066	0066	.0063	0065	.0062	6732	.0064	.0062	.0068	.0067	.0063	0061	.0064	.0064	.0066	+000	8900	20005	0066	8900	0064	0068	0067	0067	0068	0067
K MLN	0	0	0	0	0.	O	0.	0	0	0	0	0.	0	0	0	0.	0	0.	0	0	0	0	ö	0	0	0	0	°.	0	0.	0	o	0	0	0		d d	00		0			0	0	0.	0.	0.
K_MLKLU	0.0114	0.0110	0.0108	0.0140	0010'0	0.0114	0.0145	0.0135	0.0104	0.0166	0.0144	0.0146	0.0152	0.0147	0.0124	0.0117	0.0117	0.0121	0.0151	0.0122	0.0156	0.0111	0.0109	0.0140	0.0121	0.6830	0.0133	0.0145	0.0173	0600'0	0.0084	0.0144	0.0170	0.0117	0.0140	0.0118	CC10'0	0.0083	CC10.0	0.0113	00000	0.0133	0.0069	0.0068	0.0077	0.0072	0.0068
K MLJNO I	0.0066	0.0065	0.0067	0.0064	0.0067	0.0064	0.0063	0.0064	0.0066	0.0062	0.0063	0.0063	0.0063	0.0063	0.0065	0.0066	0.0066	0.0065	0.0063	0.0065	0.0063	0.0066	0.0066	0.0064	0.6733	0.0062	0.0065	0.0063	0.0062	0.0068	0.0067	0.0063	0.0061	0.0064	0.0064	0.0066	0.0000	0.0068	0.0064	0.0066	0.0068	0.0064	0.0068	0.0067	0.0067	0.0068	0.0067

Table 8. Recent historical migration rates under three models of hypothesized migration

 based on potential refugial locations for *P. keeni*. 1) Southern coastal refugium:

 Washington versus the remaining range, 2) either Southern or Northern coastal island

 refugium: Southern (southern British Columbia, Vancouver Island and Washington)

 versus Northern (northern British Columbia, Yukon and Alaska), and 3) Southeast

 Alaska coastal refugium: Southeast Alaskan islands versus all mainland populations.

 Non-migrants within each population are indicated in bold along the diagonal. Values are

 the proportion of migrant genes donated from source populations (columns) into sink

 populations (rows).

	Migration	n rates into)			
From	NonWA	WA	North	South	SE Islands	Mainland
NonWA	99.84%	17.76%	-	-	-	-
WA	0.16%	82.24%	-	-	-	-
North		-	99.84%	11.52%		-
South		-	0.16%	88.48%		(H)
SE Islands	-	-	~	-	99.81%	0.49%
Mainland	-	-		-	0.19%	99.51%

Table 9. Measures of niche overlap (ecological exchangeability) for *Peromyscus* sp. nov.,*P. keeni* and *P. maniculatus* - West . Schoener's *D*, Warren's *I* and Relative Ranks (RR)between lineages. Values near 1.0 reflect highly exchangeable niches 263 whereas near0.0 are considered in-exchangeable.

	Ι	D	RR	
Peromyscus sp. nov. vs P. keeni	0.62663	36836 0.315	870854 0.55023392	23
Peromyscus sp. nov. vs P. maniculatus	0.9164	19847 0.736	416819 0.85384813	38
P. keeni vs P. maniculatus	0.787	18435 0.529	240718 0.68203551	11

CHAPTER 4

Living on the edge: exploring the role of coastal refugia and island biology in the Alexander Archipelago of Alaska

Abstract

Although islands are of long-standing interest to biologists, only a handful of studies have investigated the roles of island area, isolation, and climatic history in shaping evolutionary diversification in high latitude archipelagos. In this study of the Alexander Archipelago (AA) of Southeast Alaska, we address the degree of insularity and the impact of historical climate variability on geographic structure using multiple loci for three co-distributed mammals throughout the AA and adjacent mainland. We examined mitochondrial and nuclear loci for long-tailed voles (Microtus longicaudus), northwestern deer mice (Peromyscus keeni), and dusky shrews (Sorex monticolus), and integrated Species Distribution Models, reconstructions of paleo-shorelines, and island area and isolation. Changes in sea level and glacial cover resulted in genetic signatures of coastal refugia, with varying influence of island isolation and area on genetic diversity. All three species were determined to have paleoendemic clades that originated from multiple coastal refugia within the AA during the Late Pleistocene. This approach can be extended to other island systems or fragmented habitats to help identify and conserve regionally distinct biota and ecosystems.

Introduction

The varied features of island biomes such as isolation, area, topography, and biogeographic history, make them of long-standing interest to studies in evolution, ecology and conservation biology (Berry 1986; Fattorini 2009). Limited connectivity can lower genetic exchange between islands, leading to divergent populations and potentially higher endemism (Dobzhansky 1963; Adler 1992; Whittaker 1998). However, because many insular biomes remain understudied diversity is poorly documented and islands may account for a greater proportion of biodiversity than currently appreciated (Bickford et al. 2007).

Genetic diversity is often influenced by both physical geographic features and historical climate. Tropical oceanic islands have provided key insights into our understanding of diversity, especially in relation to how island area and isolation may shape species richness, community assembly, or diversification (e.g., Hamilton 1963; Gifford and Larson 2008; Gillespie et al. 2008). Additionally, in high latitudes, Quaternary (2.6 Ma – present) climate change impacted species' distributions and altered genetic variation and associated demographic signatures (Eddingsaas et al. 2004; Lomolino et al. 2006; Hope et al. 2010). However, few studies have investigated the role of island area, isolation, and climatic history in evolutionary diversification in high latitude archipelagos (e.g., Sota and Nagata 2008; Pedreschi et al. 2014).

During the Last Glacial Maximum (LGM; between 26.5 kya and 19 kya) ice covered most of North America (Dyke and Prest 1987; Mandryk et al. 2001), restricting distributions to ice-free regions in the north (Beringia), south, or along the coasts (Marr et al. 2008). As the glaciers receded, periglacial populations re-colonized previously

glaciated regions, greatly influencing the genetic composition of these newly formed communities (Eddingsaas et al. 2004). Due to eustatic and isostatic fluxes at the LGM, the Alexander Archipelago (AA) of Alaska and Haida Gwaii of British Columbia experienced sea levels up to 165 meters lower (Mobley 1988; Hetherington et al. 2003; Baichtal et al. 2008). Although many of the islands were buried under 1000 m of ice, potential refugia existed along the western edge where continental shelf was exposed (Carrara et al. 2007; Baichtal and Carlson 2010).

Colonization and extinction dynamics of the land bridge islands of the AA more closely resemble those of oceanic islands (Conroy et al. 1999; Whittaker and Fernández-Palacios 2007) in that glacial cover effectively created a clean slate, with multiple icefree regions (Beringian, southern continental) proposed as potential sources for colonization in the Holocene. Recolonization from these regions partially shaped the contemporary genetic structure of coastal biota. More controversial is the contribution of coastal refugia as a source for recolonization of deglaciated areas in Northwestern North America (Byun et al. 1997; Byun et al. 1999; Demboski et al. 1999).

In addition to recolonization dynamics, as glaciers receded and sea levels rose during the late Pleistocene-early Holocene (14 kya to 10 kya), the connectivity across the islands of the AA became highly fragmented (Carrara et al. 2007). Subsequent *in situ* diversification may have produced endemic populations on islands across the AA for either long-term occupants of the region (paleoendemic) or recent colonizers from outside the region (neoendemic) (Cook et al. 2006; MacDonald and Cook 2007; Cook and MacDonald 2013).

The AA is one of the planet's most extensive archipelagos with >1,100 named islands including 7 of the 15 largest United States islands. Most of this archipelago is within the Tongass National Forest (6.9 million ha; United States Geological Survey 2010). Together with Haida Gwaii to the south, these archipelagos support part of the largest remaining coastal temperate rainforest worldwide (Ecostrust and Conservation International 1992; DellaSala et al. 2011). Many of these islands have been highly modified by industrial timber harvesting and associated road building over the past 60 years (List 2000; Schoen and Dovichin, eds. 2007; Albert and Schoen 2013). The rugged and ice-laden Coastal and Wrangell-St. Elias mountain ranges border the adjacent mainland, which acted as barriers to dispersal and effectively filtered the species that colonized the islands from the continent (Cook and MacDonald 2013).

Previous regional studies identified divergent, endemic populations of various taxa including, but not limited to, vascular and non-vascular plants (Soltis et al. 1997; Brodo and Sloan 2004; Hannon et al. 2010), terrestrial invertebrates (Clarke et al. 2001), several fish (O'Reilly et al. 1993; Kondzela et al. 1994; Smith et al. 2001), birds (Barry and Tallmon 2010; Bull et al. 2010; de Volo et al. 2013), and an array of terrestrial mammals, including northern flying squirrels (*Glaucomys sabrinus*) (Bidlack and Cook 2002), red-backed voles (genus *Myodes*) (Runck et al. 2009), ermine (*Mustela erminea*) (Fleming and Cook 2002; Dawson et al. 2014), black bear (*Ursus americanus*) (Peacock et al. 2007), and mountain goats (*Oreannos americanus*) (Shafer et al. 2011).

In this study, we use multiple DNA loci to explore the interplay of insularity and historical climate variability on contemporary genetic structure of three mammals that are widely co-distributed throughout the AA and adjacent mainland. *Microtus longicaudus*,

Peromyscus keeni, and *Sorex monticolus* were chosen because they are widespread and preliminary analyses identified inter-population variation across the mainland and Alexander Archipelago (Conroy and Cook 2000; Demboski and Cook 2001; Lucid and Cook 2004). These species are sympatric, but *Microtus longicaudus* prefers open herbaceous habitats, *P. keeni* prefers a variety of forest and scrub habitats, and *S. monticolus* prefers forested and non-forested habitats with dense ground cover (Smolen and Keller 1987; Smith and Belk 1996; Zheng et al. 2003). Comparative study of multiple species allows us to explore the combination of climatic variability and individual niches (abiotic requirements) to genetic structure across this fragmented landscape. If all three species expanded from shared refugia, genetic signatures should track the common influence of climatic events, regardless of individual niche requirements.

We also evaluate how genetic structure is partitioned in these species across the islands of Southeast Alaska to determine the role of island size and isolation. The theory of island biogeography (MacArthur and Wilson 1967; Brown 1971) has been expanded to reflect expectations for the distribution of genetic diversity (Kimura and Weiss 1964; Johnson et al. 2000). We focus on how island area and isolation, in combination with the potential role of coastal refugia as historical sources for colonization, shaped diversity across the archipelago.

More specifically, we ask: are the genetic signatures of *M. longicaudus*, *P. keeni*, and *S. monticolus* a result of shared historical climatic and geologic events? Based on species distribution models (SDMs; Figure 1) and historical bathymetric reconstructions (Figure 2; see Methods and Results) we identify potential refugia in the AA during the

LGM for each species. We hypothesize all three species have similar phylogenetic topologies and similar signatures of demographic and spatial expansion. We explore the possibility of coastal refugia west of the ice in the AA and predict deeper genetic divergence in the populations in refugial regions proposed by the coastal refugia hypothesis (CRH; Fladmark 1979). Additionally, gene trees may reflect changes in island connectivity due to lowered sea-levels during glacial periods. Signatures of expansion should be observed in hypothesized non-refugial island populations as a result of postglacial colonization.

Lastly, we assess genetic divergence among insular populations of each species to determine whether island remoteness and area conform to models of island biogeography. Genetic signals should be driven by island colonization (as expected for oceanic islands) and we expect a nested pattern, such that intra-island genetic diversity will decrease with increasing geographic distance from the mainland source population (Kimura and Weiss 1964). If genetic signals are influenced by extinction (as expected for land-bridge islands), we expect a non-nested pattern and decrease in genetic diversity with decrease in island area (Dawson and Hamner 2005; Zhang et al. 2012).

Phylogeographic studies help us understanding how climate has influenced the genetic structure of insular communities and provide the historical context necessary to investigate endemism and island biology (Grant and Grant 2003). Environmental changes, such as habitat conversion or those predicted under climate-warming scenarios elevate the extinction risk for small insular populations due to their limited mobility and modest ranges (Olson 1989; Fahrig 2003; Christensen et al. 2007). The genetic footprints of *M. longicaudus*, *P. keeni*, and *S. monticolus* aid the assessment of the paleoecology of

past refugial locations that harbored endemic lineages and geographic barriers that structured populations. In addition to investigating historical climatic and island effects on a high latitude archipelago, we also utilize SDMs to identify regions of conservation priority under future climate change scenarios.

Materials and Methods

Sample collection and sequencing

Specimens were collected between 1991 and 2012 and archived at the Museum of Southwestern Biology (MSB), University of New Mexico and the University of Alaska Museum of the North (n= 137 *M. longicaudus*, 146 *P. keeni*, and 149 *S. monticolus*; Table 1). Tissues were also loaned from the University of Washington Burke Museum and Gwaii Haanas National Park Reserve and Haida Heritage Site (13 *P. keeni*, and 3 *S. monticolus*). Sampling covered 44 localities across Southeast Alaska and Haida Gwaii. All recognized subspecies (Hall 1981) found in or near Southeast Alaska for each study species were represented. Outgroup taxa (n= 3 *Microtus*, 40 *Peromyscus*, and 9 *Sorex*) were also included. Additionally, we used GenBank sequences representing 41 *M. longicaudus*, and 18 outgroup *P. maniculatus* (Table 1).

We extracted total genomic DNA to a final concentration of 50ng μ l⁻¹ using either Omega Bio-Tek (Norcross, GA) E.Z.N.A. or standard salt extraction (Fleming and Cook 2002). Polymerase chain reactions (PCR) amplified mitochondrial (mtDNA) cytochrome *b* (cyt *b*) and three nuclear loci per genus (*Microtus*: Protein C-est-2 (ETS2), β-fibrinogen (FGB), and Recombination Activating Protein 1 (Rag1); *Peromyscus*: β-fibrinogen (FGB), interphotoreceptor retinoid-binding protein (IRBP) and zona pellucida 3 (ZP3); *Sorex*: Alcohol Dehydrogenase 2 (ADH2), Apolipoprotein B (ApoB) and β-fibrinogen (FGB); Table 2) with reaction mixtures of 1µl DNA extract, 1 µl of primer each (2mM), 1.5 µl PCR buffer (10x), 1.5 µl MgCl₂ (25mM), 1.25 µl of dNTP's (10mM), 1.25 µl of Bovine Serum Albumen (BSA, 1.5mM), and 0.08 µl of Ampli*Taq* DNA polymerase (Applied Biosystems, Foster City, CA, USA) and were adjusted to a final volume of 15 µl with ddH₂O. After cleaning PCR products with ExoSap-IT (Affymetrix, Santa Clara, CA), automated sequencing was conducted at either the High Throughput Genomic Center (Seattle, WA, USA) or using an Applied Biosystems 3110 DNA sequencer (Molecular Biology Facility, UNM) using original PCR primers and BigDye v3.1 (Applied Biosystems) terminator reaction chemistry.

Nuclear heterozygotes were inferred with PHASE v2.1 (Stephens et al. 2001; Stephens and Scheet 2005) using five runs with 1000 iterations (different seeds) and a burn-in of 1000. Iterations with the best goodness-of-fit were chosen. Posterior probabilities for nucleotides ≥0.85 were chosen; otherwise ambiguous sites were coded as N. All analysis used phased sequence data. Sequences were edited in SEQUENCHER v4.2 (GeneCodes Corporation), aligned in MEGA v5.2 (Tamura et al. 2011) using the MUSCLE algorithm and confirmed by eye.

Phylogenetic and demographic analyses

To explore the phylogenetic relationship within each species, we performed Maximum Likelihood (ML) and Bayesian phylogenetic reconstructions for cyt *b* for each species. We used MODELTEST (Posada and Crandall 1998; Posada and Buckley 2004) to determine genetic models of evolution for each locus (Table 3). ML estimations were

performed in MEGA with 1000 bootstrap replicates. Using BEAST v1.7.5 (Drummond et al. 2012), we generated Bayesian phylogenies and divergence dates estimates with input files prepared in BEAUTI v1.7.5., part of the BEAST software package. A mutation rate of 4% Myr⁻¹ was assigned to *M. longicaudus* and *P. keeni* (Conroy and Cook 1999; Brunhoff et al. 2003) and a rate of 5.5% Myr⁻¹ for *S. monticolus* (Hope et al. 2013). We applied a coalescent constant size tree prior with a random start tree, using an uncorrelated lognormal relaxed clock because relationships with non-insular populations are deeper in time, for 60 million generations, sampled every 2000. Time to Most Recent Common Ancestor (TMRCA) was determined with a 95% posterior probability distribution in TRACER v1.5 (Rambaut and Drummond 2007). For each tree, convergence statistics were assessed with both a minimum effective sample size (ESS) value of 200 and trace graphs in TRACER. Three independent runs were combined using LOGCOMBINER v1.7.5, with a 10% burin-in and tree files were annotated in TREEANNOTATOR v1.7.5 (part of BEAST software package). Tree topology was visualized in FIGTREE v1.4.0 (Rambaut 2009).

Species history, rather than individual gene accounts, can be obtained even for recently diverged taxa through the use of a multilocus coalescent approach (Maddison 1997; Carstens and Knowles 2007; Edwards et al. 2007) such as *BEAST (Heled and Drummond 2010) which co-estimates species trees and gene trees using a Bayesian Markov chain Monte Carlo (MCMC) algorithm implemented in BEAST. Phased loci were assigned as independent and unlinked and set with substitution models calculated in MODELTEST (Table 3). *A priori* groupings were designated based on cyt *b* Bayesian supported lineages (\geq 0.95 posterior probability). Cyt *b* was designated a lognormal

relaxed clock with the same rates as the BEAST analysis, while all rates for phased nuclear loci were estimated and assigned strict clocks . Each run consisted of random start trees with a Species Tree: Yule process prior and piecewise linear and constant root population size model with MCMC chain lengths of 2 billion iterations, sampling every 2 million. TRACER, LOGCOMBINER and TREEANNOTATOR were used as above. PHYLOGEOVIZ (Tsai 2011) was used to visualize phased nuclear haplotype frequencies across the landscape.

Net genetic distances among major clades of cyt *b* were calculated in MEGA. To test for recent demographic change, we computed standard summary statistics (segregating sites (*S*), number of haplotypes (*h*), haplotype diversity (*Hd*), and nucleotide diversity (π)), and selection and expansion statistics Tajima's (1989) *D*, Fu's (1997) F*s*, and R₂ (Ramos-Onsins and Rozas 2002) with 10 thousand coalescent simulations for each phased locus in DNASP 5.10.1 (Librado and Rozas 2009). Selection potential was also assessed through an HKA Test (Hudson et al. 1987). Additionally, we computed pairwise mismatch distributions for cyt *b* data.

To identify signals of population fluctuation, we estimated historical demography for the Island clades with both a multilocus Extended Bayesian Skyline Plots (EBSP, Heled and Drummond 2008) implemented in BEAST. Three runs per analysis used a MCMC chain of 2 billion steps, sampled every 2 million, with strict molecular clocks and models of evolution (Table 3) calculated via MODELTEST. As above, TRACER was used to assess convergence. For EBSPs, we determined that significant population size change occurred if zero was excluded from the 95% confidence interval (CI) of the estimate of the number of size-change steps (Lim and Sheldon 2011).

If *M. longicaudus*, *P. keeni* and *S. monticolus* experienced shared effects of climatic change and glacial cover, we would expect the phylogenetic topologies to be similar. To test for congruence in Island clades across the three species, we performed three Shimodaira-Hasegawa tests (1999) using each respective species as the constrained tree, implemented in PAUP*. Compared to the phylogenetic trees produced above, *a priori* ML and Bayesian trees were generated using two individuals per island, limited to islands with at least two of the three species (Table 4). These trees included four Northern clade and three Southern clade representatives, with sequences comprised of ambiguous bases used as place holders when island representatives were not available (e.g., *S. monticolus* for Chichagof). Trees were constructed in MEGA (ML) with 1000 replicates and BEAST (Bayesian) as above.

Testing phylogenetic models under the coastal refugia hypothesis

If species persisted in refugia, genetic relationships between refugial island populations will be similar to those found on land-bridge systems (Cardillo et al. 2008) with measures of divergence larger than the divergence between non-refugial island populations. As above, cyt *b* net genetic divergences between hypothesized refugial and non-refugial island populations were calculated in MEGA and standard demographic statistics and mismatch distributions (cyt *b* only) were calculated in DNASP for all phased loci to test for varying histories between potentially refugial and non-refugial insular populations. Populations were designated as refugial or non-refugial based on paleoshoreline reconstructions (see below).

To determine if climatic conditions in the AA were within each species' threshold, we generated SDMs for each species under current, mid-Holocene (~6ka), LGM (~21 kya) (http://pmip2.lsce.ipsl.fr/; Braconnot et al. 2007), last inter-glacial (LIG; \sim 120 – 140 kya), and future conditions (twice the current levels of CO2, \sim 2080, Christensen et al. 2007). Bioclimatic variables were obtained from WORLDCLIM (www.worldclim.org, Hijmans et al. 2005) at a resolution of 2.5 arc-minutes and clipped to incorporate only Southeast Alaska and the surrounding mainland. ENMTOOLS (Warren et al. 2008; Warren et al. 2010) was used to determine highly correlated variables (Pearson correlation coefficient ≥ 0.75), which we then selected based on those most biologically relevant, which may over-parameterize models. We obtained species localities from natural history collection databases (e.g., ARCTOS http://arctos.database.uaf.edu and MaNIS http://manisnet.org/, Stein and Wieczorek 2004) in October 2013 and removed those <12 km distant by removing intervening samples (Hope et al. 2011) to reduce potential spatial autocorrelation from sampling bias, leading to overfitting of the model (Reddy and Davalos 2003). This resulted in 127 M. longicaudus, 150 P. keeni, and 145 S. monticolus sample localities. SDMs for each species were constructed at each time period using MAXENT v3.3.3k (Elith et al. 2006; Phillips et al. 2006; Phillips and Dudik 2008). Final runs were performed using cross-validation across 10 replicates, with a regularization parameter of 5 (Hope et al. 2011; Warren and Seifert 2011) and 1000 iterations. All other values were set as default. Models of LGM were averaged for final results using raster calculator in ARCGIS 10.1 (ESRI, Redlands, CA, USA). Climate suitability was limited by the low median threshold values over all replicates (Pearson et al. 2007).

We estimated potential island refugia, connectivity, and potential colonization pathways at different points since the LGM. To do so, we used ARCGIS 10.1 to change Southeast Alaska sea levels to levels suggested by estimates of historic sea levels and current bathymetry information (Baichtal and Carlson 2010; Baichtal pers. com.) to recreate paleo-shorelines at 20 kya which included LGM glacial cover, 14 kya and 10 kya (Ehlers and Gibbard 2004; Carrara et al. 2007).

Testing models under the equilibrium and non-equilibrium island biogeography

To test for influences of island area and isolation on genetic diversity within islands, we performed regression analyses with MICROSOFT EXCEL (2010). Values for island area and isolation were obtained either from literature (Conroy et al. 1999; Lucid and Cook 2004; Cook and MacDonald 2013) or island isolation was calculated by hand using GOOGLE EARTH (Google Inc. 2013) as the shortest over-water distance between each island and from the mainland (Conroy et al. 1999), which assumes the mainland as the location of source populations (Table 4). Because of the low variability in the nuclear loci, cyt *b* genetic diversity measures (*S*, *h*, *Hd* and π obtained above) were used to test for associations with log area and log distance to mainland for Island clades of both continental (mainland Southeast Alaska, central British Columbia through southern Yukon and south-central Alaska) and insular populations of *M. longicaudus*, *P. keeni*, and *S. monticolus*. We performed Holm-Bonferroni sequential corrections for multiple comparisons (Holm 1979) on resulting p-values to determine if isolation and area significantly affected genetic variation.
Results

Sampling and phylogenetic and demographic analyses

All loci across all species had varying levels of polymorphism and genetic diversity (Table 3), with the mtDNA cyt *b* the most variable locus. Among Island clades of all three species, *M. longicaudus* had the highest mtDNA haplotype diversity (98.4%), followed by *P. keeni* (97.8%), and *S. monticolus* (76.4%). Nuclear haplotype diversity for *M. longicaudus* ranged from 12.4 – 18.2%, for *P. keeni* 6.5 – 39.1%, and for *S. monticolus* 4.1 – 33.8%. Selection was not detected through the HKA tests.

Cyt *b* phylogenetic reconstructions supported an Island clade within both *M. longicaudus* and *S. monticolus*, while *P. keeni* represents the Island clade in the peromyscine phylogeny (Figure 3). Populations of the *M. longicaudus* Island clade are restricted to Southeast Alaska, southern Yukon, and south-central Alaska (Figure 4). This species is notably absent from Baranof Island as well as Haida Gwaii and Vancouver Island to the south. The *M. longicaudus* Island clade contains 16 lineages and is restricted to mainland Southeast Alaska, adjacent British Columbia and south-central Alaska (Figure 4). Representatives of the Island and Northern clades make contact in the vicinities of Haines and Juneau and are in close geographic proximity along the central and southern mainland coast.

Peromyscus keeni ranges from southern Yukon through Southeast Alaska and coastal British Columbia to Washington's Olympic Peninsula (Figure 4) and contains substantial structure (25 lineages). There is contact with *P. maniculatus* in British Columbia along the east side of the Coast Mountains and in northern Washington, and

close geographic proximity to *P. maniculatus* and *Peromyscus* sp. nov. (Sawyer et al. *submitted*) in southern Yukon.

The *S. monticolus* Island clade is highly structured (10 lineages), ranging from Southeast Alaska (but not Chichagof, Baranof or other outer northern islands) and eastern British Columbia southward into Washington, with possible contact with the Northern clade near Haines and Juneau, Alaska and Washington (Figure 4).

Within *M. longicaudus*, the Island clade is sister to the North Pacific Coast (NPC) and Northern clades at $1.2 \pm 0.3\%$ net genetic distance, and highly diverged from the Southern clade $(3.7 \pm 0.5\%)$; Table 5). For *P. keeni*, the coastal group of *P. maniculatus* $(2.3 \pm 0.4\%)$ is closest, followed by the Yukon *Peromyscus* sp. $(3.6 \pm 0.5\%)$, and the rest of *P. maniculatus* $(3.8 \pm 0.5\%)$. The Island clade of *S. monticolus* is least diverged from the Northern clade $(4.8 \pm 0.5\%)$, and most diverged from the Southern clade $(5.4 \pm 0.6\%)$.

The multilocus species trees (Figure 5) for *M. longicaudus* reveals a single supported clade which contains the Island and Northern cyt *b* clades. The species tree for *Peromyscus* supports the Island clade (*P. keeni*) and the *Peromyscus* sp. nov. clade. Species tree for *S. monticolus* supports the Island clade and the Southern clade, and indicates that *S. monticolus* is monophyletic.

Nuclear haplotypes within the AA are broadly distributed across the archipelago and exhibit little geographic structure for all loci and all species, with the exception of ETS2. *Microtus longicaudus* populations on Forrester and Chichagof Island each have unique haplotypes for this locus (Figures 6 and 7). Multilocus divergence dates (Table 6) for the Island-Northern clade of *M. longicaudus* are post-LGM, although cyt *b* TMRCA

for the Island clade is well before the LIG. *Peromyscus keeni* multilocus TMRCA places divergence around the LIG, with cyt *b* TMRCA well before this. The Island clade for *S*. *monticolus* diverged between the LGM and LIG, with cyt *b* estimates around the LIG.

Overall, measures of genetic diversity for the Island clades were low for all three species (Table 3), indicative of population demographic expansion or selection. Although significant expansion statistics can indicate selection, negative HKA tests suggest significantly negative *D* and *FS* for all cyt *b*, a result of recently expanded populations. Cyt *b* mismatch distributions for all species are unimodal with a multimodal tail for *M*. *longicaudus* suggesting reduced ancestral populations (Figure 8).

Shared geologic histories should result in congruent phylogenetic topologies. The Shimodaira Hasegawa test (Table 7) when performed on the ML trees alone, identified the *P. keeni* topology (p<0.01) as optimal for all three species. However, when performed on only the Bayesian trees or in combination with ML trees, each test selected their respective tree as the best (p<0.01) with the exception of *P. keeni*, which indicated both *P. keeni* trees as equally likely (p=0.52 ML versus Bayesian, p<0.01 for all other tree comparisons). Topologies are similar in that populations of each species represent an Island clade restricted to high-latitude coastal and island regions, a Northern clade that occupies high latitudes and southern continental clades. The calculation of nodal support in ML analysis compared to Bayesian methods (Douady et al. 2003) can result in less structured ML topology.

Testing phylogenetic models under the coastal refugia hypothesis

Mean net genetic divergence was greatest between non-refugial populations of *M*. *longicaudus* and *P. keeni* and least divergent for *S. monticolus* (Table 9). Contrary to expectations, refugial to non-refugial divergence was not statistically different than refugial to refugial or non-refugial to non-refugial populations. Fu's *FS* and Tajima's *D* and diversity indices (Table 3) varied in significance and (Figure 8) for all non-refugial and refugial populations not noticeably different from each. The mismatch distributions (Figure 8) for all non-refugial locations, and *M. longicaudus* refugial populations, were unimodal, with a bimodal topology for refugial populations of *P. keeni* and *S. monticolus*.

Predictive performance for SDMs had mean AUC values of 0.801 ± 0.067 for *M.* longicaudus, 0.777 ± 0.080 for *P. keeni*, and 0.754 ± 0.082 for *S. monticolus* across replicate runs. No model clamping was detected. Suitable climate conditions for all three species in Southeast Alaska were present across all four time periods (Figure 1), including in areas west of the glacial ice during the LGM. Greatest suitability was for *P. keeni* for all historic periods. Future distributions suggest a decrease in habitat suitability for the outer southern islands and increased suitability for mainland regions for all three species (Figure 9). Paleo-shoreline reconstructions (Figure 2) suggest a northern coastal refugium and a southern coastal refugium at the LGM, four major island groupings (outer northern, inner northern, inner southern, and outer southern and middle islands) at 10 kya, and by 8 kya contemporary island topography was present. Post-glacial interisland colonization pathways from refugial locations were inferred from island connectivity (Figure 10).

Testing genetic models under the theory of island biogeography

The relationship of genetic diversity and island area and isolation (Figure 11 and Table 8), detected significant (Holm-Bonferroni corrected p-value ≤ 0.05) effects of island area on *M. longicaudus S*, *h*, *Hd*, and π , and *P. keeni S*. Island isolation significantly affected *M. longicaudus* π , and *P. keeni S* and *h*. All other relationships among genetic diversity indices and island area and isolation were non-significant. Although eight significant relationships were detected, adjusted R² values were no greater than 0.515.

Discussion

Few studies have explored the effects of both contemporary insularity and historical climate dynamics on genetic structure of the biota of high latitude island systems. We found that northern island inhabitants maintain signals of colonization history, thus providing the ability to study how historical climate has structured populations. In the case of the AA, terrestrial mammalian genetic diversity was primarily influenced by glacial cover and lower sea levels that resulted in endemic glacial relics acting as source populations that had persisted in coastal refugia to the west of this archipelago. In contrast, in the case of *M. longicaudus*, and possibly *S. monticolus*, the adjoining mainland to the east was primarily recolonized by populations that crossed the Coastal Range. However, island area and distance to mainland have influenced some of the genetic structure.

Shared geologic and climatic history

SDMs indicate that suitable environmental conditions existed in Southeast Alaska for *M. longicaudus*, *P. keeni* and *S. monticolus* during both the LIG and LGM (Figure 1). Suitability is consistent with signals of long-term persistence for the insular populations found in each of these species. Multilocus estimates of divergence for *M. longicaudus*, *P.* keeni and S. monticolus suggest pre-LGM initiation of regional divergence (Table 6). Other signals (i.e., EBSP, diversity indices) within *M. longicaudus* suggest a deeper history in Southeast Alaska, including persistence and divergence in coastal refugia. Recent divergence of *M. longicaudus* could also reflect geographic proximity and admixture between contemporary populations representing the Island and Northern cyt b clades, rather than post-glacial expansion into the AA. The Island clade of S. monticolus is highly differentiated from other conspecific clades, more so even than between the two peromyscine species, P. keeni and P. maniculatus. Within each Island clade, P. keeni has the most intralineage structure which is consistent with longer term persistence in the region, while the Island clade of S. monticolus had the least variability and relatively shallow intraclade relationship (Figures 3 and 5).

EBSPs and expansion statistics indicate demographic expansion in Island clades of all three species, which is consistent with deglaciation of these areas (Figure 8; Table 3). Consistent with recent expansion, all three Island clades have lower estimates of mitochondrial and nuclear diversity compared to their continental counterparts. However, if populations are in Hardy-Weinberg equilibrium, but have a fragmented structure like those of islands, heterozygosity may appear artificially low (Wahlund 1928). Higher

heterozygosity and more interisland differentiation are in accordance with continued habitation in the region for much of the late Pleistocene for all three species.

Tree topologies across the three species are generally similar, with identifiable southern continental clades, Northern clade populations that occupy high latitudes, and Island clade populations restricted to coastal and high-latitude island regions. Also, some island-specific lineages are consistently recorded among the three species for Forrester, Noyes and Revillagigedo islands. There are distinct island-specific lineages for Coronation, Dall, Kuiu, Lulu, Prince of Wales, and Zarembo between M. longicaudus and P. keeni, and San Fernando between P. keeni and S. monticolus (Figure 3; Table 4). Supported island lineages for Kupreanof, Suemez and Wrangell were unique to M. longicaudus; Admiralty, Baranof, Chichagof, Gravina, Heceta, and Warren were unique to P. keeni; and Etolin was unique to S. monticolus. Within P. keeni, the presence of a lineage representing the northern islands of Admiralty, Baranof and Chichagof islands is consistent with proposed biogeographic subregions (Swarth 1936; but see MacDonald and Cook 1996). Relatively high numbers of endemic lineages within each species may be due to extended persistence in the region, differential selective pressures on distinct islands, and genetic drift that is accentuated by the fragmented nature of the islands.

Lack of multilocus geographic structure across the region for all three species (Figures 5 -7), coupled with their limited migration among islands (Sawyer and Cook, submitted; Sawyer et al., submitted) is most likely due to incomplete lineage sorting rather than contemporary gene flow. We hypothesize that repeated genetic exchange during periods of lowered sea levels throughout the late-Pleistocene and early Holocene was followed by segregation. This hypothesis is contrary to our original predictions that

P. keeni would have relatively high levels of gene flow across the region because it is the most widely distributed mammalian species in the AA. Overall, there are signals of shared history across *M. longicaudus*, *P. keeni* and *S. monticolus*, but individualistic responses to historical climate, timing of isolation in the AA, and colonization pathways are potentially recorded in the incongruent phylogeographic patterns and levels of variation.

Coastal refugia hypothesis

Although much remains unknown, a growing number of studies have suggested the importance of northern coastal refugial isolation on contemporary genetic structure (e.g., Hannon et al. 2010; Shafer et al. 2011; de Volo et al. 2013), including that of humans and their colonization of the Americas (e.g., Fladmark 1979; Baichtal and Carlson 2010). Reconstruction of paleo-shorelines, historical island connectivity, and potential colonization pathways suggests multiple regions of LGM glacial refugia within the region of Southeast Alaska (Figures 2 and 10): 1) mainland near Glacier Bay, 2) outer Baranof and Chichagof islands, 3) Forrester refugial complex, which would result postglacial colonization through Prince of Wales, Zarembo and Mitkof, 4) Coronation refugial complex, colonization through Kuiu and Kupreanof, or 5) Annette-Duke refugium, south of Gravina. Re-colonization of Admiralty, as well as Wrangell and Etolin would necessarily be from the mainland originating from one of the refugial regions.

Each species' SDM (Figure 1) suggest suitable climate offshore on the exposed shelf and select western islands (Table 4) since at least the LIG. Given the climate suitability, level of genetic differentiation, and timing of divergence within *M*.

longicaudus and *S. monticolus*, these species most likely persisted in at least two southern AA refugia throughout the glacial-interglacial cycles, not just that of the LGM. *Peromyscus keeni* however, likely persisted in a combination of northern and southern refugia in the AA, as suggested by the distinct cyt *b* lineage for the northern islands and differentiation across the southern islands. The unique haplotypes for *P. keeni* individuals from the islands of Haida Gwaii present the option of coastal refugia within Haida Gwaii.

Cowan (1935) suggested both *P. keeni* and *S. monticolus* survived the Wisconsinan glaciation in coastal refugia in the AA. Although Heaton and Grady (2007) conclude all small mammals failed to survive the LGM (Heaton et al. 2003; Heaton and Grady 2007), there are pre-LGM, as well as some undated, fossil evidence from Prince of Wales Island suggests the possibility that all three species occupied the region prior the LGM, but. The lack of fossils on Prince of Wales immediately surrounding the LGM does not eliminate the possibility, however, that these species persisted further west in coastal refugia, rather than on Prince of Wales Island, throughout Pleistocene glacial cycles, including the LGM.

The Island clade of *M. longicaudus* is limited to the AA and nearby mainland, a geographic range consistent with paleoendemism in the region (Figure 4). Although there are wider distributions in both *P. keeni* and the Island clade of *S. monticolus* (south to Washington), divergence dates, net genetic distance, genetic diversity, and expansion statistics, as well as opposing models of refugial migration for *P. keeni* (Sawyer et al. submitted) suggest paleoendemism. The cyt *b* phylogenies indicate most, but not all, refugial areas supported lineages for all three species. Furthermore, there is genetic evidence of coastal refugia followed by rapid expansion; however, both the mtDNA and

multilocus relationships suggest a deeper than LGM influence for all three species. The repeated connectivity and fragmentation of the AA has undoubtedly contributed to the loss of clear specific refugial island signatures. That is, higher gene flow during periods of low sea level would eliminate island-specific genetic signatures.

The Alexander Archipelago and island biogeography

The effects of island area and isolation on the genetic diversity of *M. longicaudus*, *P. keeni* and *S. monticolus* are mixed. Given the number of supported lineages without predictable geographic distribution in the cyt *b* phylogenies (Figure 3), the distribution of genetic variation would suggest vicariance played a large role in shaping the observed patterns (Whittaker 1998).

There is an increase in genetic diversity with increased island area and proximity to the mainland, as expected, but most of the relationships are not statistically significant (Figure 11, Table 8). Although the regression analysis detected significant effects of island area on all diversity indices for *M. longicaudus*, isolation on π for *M. longicaudus*, and *S* and *h* for *P. keeni*, a maximum of only 50% of the variation observed is explained by either island area or isolation.

The isolation measurement assumes the source population is from the mainland. If source populations were actually from coastal refugia, this changes the expected distribution of variation. However, we cannot simply invert the distance measurements because of the possibility of multiple refugial locations and post-colonization pathways (Figure 10). For example, the distance of Admiralty populations would traditionally be measured from the mainland, but if the source population was from Chichagof refugia, or

perhaps Forrester or Coronation complexes, the determination of distance to source populations is much less certain and more complex. Overall, isolation and area appear to be factors influencing some of the observed genetic variation, but it is clear these attributes are not the only variables at play in the AA.

Conclusion

Historical climate (coastal refugia) and island topography (area and isolation) contribute to the genetic diversity of the high-latitude islands of the Alexander Archipelago. Multiple lines of evidence suggest all three species in this study are paleoendemic to the region with earliest habitation by *P. keeni*, followed by *M. longicaudus*, and finally *S. monticolus*. Failure to detect clear genetic signatures of specific island refugia within the coastal region or relationships with island area and isolation is most likely the result of repeated connectivity and fragmentation across the AA, plus non-equilibrium populations and recent diversification as indicated by incomplete lineage sorting.

A closer analysis of genetic structure within an array of species between islands can help provide a framework for scientifically defensible management decisions (Gutrich et al. 2005; Pritchard et al. 2007), especially in the context of historical divergence patterns and predicted climate change. For example, the outer islands of the AA not only house a disproportionate number of endemic lineages, mammalian and otherwise, but future SDMs predicted that these three species on these islands will be seriously impacted by future climate change (Figure 9). Additionally, regional endemics

(Cook and MacDonald 2001; Sikes and Stockbridge 2013) face challenges posed by anthropogenic activities that are facilitating habitat conversion.

More generally, similarities across species are more readily identifiable through the use of multiple analyses (i.e., phylogenetic reconstructions, EBSP, SDMs) rather than assumptions or decisions based on any single characteristic (i.e., life history characteristics) or result (i.e., relationship with island area and isolation). Ultimately, this comparative and integrative multi-locus approach can be extended to various taxa in other high-latitude island systems or fragmented habitats, like those of the Haida Gwaii (Reimchen and Byun 2006), the Japanese Archipelago (Millien-Parra and Jaeger 1999), and British Isles (Vincent 1990) to help identify and conserve species, ecosystems, and regionally distinct biota experiencing dynamic environmental change (Avise 2008; Hendry et al. 2010).

References

- Adler, G. H. 1992. Endemism in Birds of Tropical Pacific Islands. Evolutionary Ecology 6:296-306.
- Albert, D. M. and J. W. Schoen. 2013. Use of Historical Logging Patterns to Identify Disproportionately Logged Ecosystems within Temperate Rainforests of Southeastern Alaska. Conservation Biology 27:774-784.
- Avise, J. C. 2008. Three ambitious (and rather unorthodox) assignments for the field of biodiversity genetics. Proceedings of the National Academy of Sciences of the United States of America 105:11564-11570.
- Baichtal, J. F. and R. J. Carlson. 2010. Development of a model to predict the location of Early-Holocene habitation sites along the western coast of Prince of Wales Island and the Outer Islands, Southeast Alaska. Current Research in the Pleistocene 27:64-67.
- Baichtal, J. F., R. J. Carlson, and S. J. Crockford. 2008. Paleogeography of the Late Pliestocene and Quaternary Coastlines of Southeast Alaska and Their Potential Archaeological Significance. Pp. 17. GeoHab Ninth International Symposium, Sitka, Alaska.
- Barry, P. D. and D. A. Tallmon. 2010. Genetic differentiation of a subspecies of spruce grouse (*Falcipennis canadensis*) in an endemism hotspot. Auk 127:617-625.
- Berry, R. J. 1986. Genetics of insular populations of mammals, with particular reference to differentiation and founder effects in British small mammals. Biological Journal of the Linnean Society 28:205-230.
- Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram, and I. Das. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22:148-155.
- Bidlack, A. L. and J. A. Cook. 2002. A nuclear perspective on endemism in northern flying squirrels (*Glaucomys sabrinus*) of the Alexander Archipelago, Alaska. Conservation Genetics 3:247-259.
- Braconnot, P., B. Otto-Bliesner, S. Harrison, S. Joussaume, J. Y. Peterchmitt, A. Abe-Ouchi, M. Crucifix, E. Driesschaert, T. Fichefet, C. D. Hewitt, M. Kageyama, A. Kitoh, A. Laine, M. F. Loutre, O. Marti, U. Merkel, G. Ramstein, P. Valdes, S. L. Weber, Y. Yu, and Y. Zhao. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum Part 1: experiments and large-scale features. Climate of the Past 3:261-277.

- Brodo, I. M. and N. A. Sloan. 2004. Lichen zonation on coastal rocks in Gwaii Haanas National Park Reserve, Haida Gwaii (Queen Charlotte Islands), British Columbia. Canadian Field-Naturalist 118:405-424.
- Brown, J. H. 1971. Mammals on mountaintops: nonequilibrium insular biogeography. American Naturalist 105:467-478.
- Brunhoff, C., K. E. Galbreath, V. B. Fedorov, J. A. Cook, and M. Jaarola. 2003. Holarctic phylogeography of the root vole (*Microtus oeconomus*): implications for late Quaternary biogeography of high latitudes. Molecular Ecology 12:957-968.
- Bull, R. D., A. McCracken, A. J. Gaston, T. P. Birt, and V. L. Friesen. 2010. Evidence of recent population differentiation in orange-crowned warblers (*Veramivora celata*) in Haida Gwaii. Auk 127:23-34.
- Byun, A. S., B. Koop, and T. E. Reimchen. 1999. Coastal refugia and postglacial recolonization routes: A reply to Demboski, Stone, and Cook. Evolution 53:2013-2015.
- Byun, S. A., B. F. Koop, and T. E. Reimchen. 1997. North American black bear mtDNA phylogeography: Implications for morphology and the Haida Gwaii glacial refugium controversy. Evolution 51:1647-1653.
- Cardillo, M., J. L. Gittleman, and A. Purvis. 2008. Global patterns in the phylogenetic structure of island mammal assemblages. Proceedings of the Royal Society B-Biological Sciences 275:1549-1556.
- Carrara, P. E., T. A. Ager, and J. F. Baichtal. 2007. Possible refugia in the Alexander Archipelago of southeastern Alaska during the late Wisconsin glaciation. Canadian Journal of Earth Sciences 44:229-244.
- Carstens, B. C. and L. L. Knowles. 2007. Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: An example from *Melanoplus* grasshoppers. Systematic Biology 56:400-411.
- Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C. G. Menéndez, J. Räisänen, A. Rinke, A. Sarr, and P. Whetton. 2007. Regional Climate Projections. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change *in* S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, ed. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

- Clarke, T. E., D. B. Levin, D. H. Kavanaugh, and T. E. Reimchen. 2001. Rapid evolution in the Nebria gregaria group (Coleoptera : Carabidae) and the paleogeography of the Queen Charlotte Islands. Evolution 55:1408-1418.
- Conroy, C. J. and J. A. Cook. 1999. MtDNA Evidence for Repeated Pulses of Speciation Within Arvicoline and Murid Rodents. Journal of Mammalian Evolution 6:221-245.
- Conroy, C. J. and J. A. Cook. 2000. Phylogeography of a post-glacial colonizer: *Microtus longicaudus* (Rodentia : Muridae). Molecular Ecology 9:165-175.
- Conroy, C. J., J. R. Demboski, and J. A. Cook. 1999. Mammalian biogeography of the Alexander Archipelago of Alaska: a north temperate nested fauna. Journal of Biogeography 26:343-352.
- Cook, J. A., N. G. Dawson, and S. O. MacDonald. 2006. Conservation of highly fragmented systems: The north temperate Alexander Archipelago. Biological Conservation 133:1-15.
- Cook, J. A. and S. O. MacDonald. 2001. Should endemism be a focus of conservation efforts along the North Pacific Coast of North America? Biological Conservation 97:207-213.
- Cook, J. A. and S. O. MacDonald. 2013. Island Life: Coming to Grips with the Insular Nature of Southeast Alaska and Adjoining Coastal British Columbia. University of Washington Press, Washington.
- Cowan, I. M. 1935. A distributional study of the *Peromyscus sitkensis* group of whitefooted mice. Pp. 429-438. Distribution of Peromyscus sitkensis. University of California Press.
- Dawson, M. N. and W. M. Hamner. 2005. Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proceedings of the National Academy of Sciences of the United States of America 102:9235-9240.
- Dawson, N. G., A. G. Hope, S. L. Talbot, and J. A. Cook. 2014. A multilocus evaluation of ermine (*Mustela erminea*) across the Holarctic, testing hypotheses of Pleistocene diversification in response to climate change. Journal of Biogeography 41:464-475.
- de Volo, S. B., R. T. Reynolds, S. A. Sonsthagen, S. L. Talbot, and M. F. Antolin. 2013. Phylogeography, postglacial gene flow, and population history of North American northern goshawks (*Accipiter gentilis*). Auk 130:342-354.

- DellaSala, D., F. Moola, P. Alback, P. Pacquet, J. Schoen, and R. Noss. 2011. Temperate and boreal rainforests of the Pacific Coast of North America. Island Press, Washington, D. C.
- Demboski, J. R. and J. A. Cook. 2001. Phylogeography of the dusky shrew, *Sorex monticolus* (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. Molecular Ecology 10:1227-1240.
- Demboski, J. R., K. D. Stone, and J. A. Cook. 1999. Further perspectives on the Haida Gwaii glacial refugium. Evolution 53:2008-2012.
- Dobzhansky, T. 1963. Biological evolution in island populations. Pp. 65-74 *in* F. R. Fosberg, ed. Man's place in the island ecosystem. A symposium. Bishop Museum.
- Douady, C. J., F. Delsuc, Y. Boucher, W. F. Doolittle, and E. J. P. Douzery. 2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20:248-254.
- Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29:1969-1973.
- Dyke, A. S. and V. K. Prest. 1987. Late Wisconsinan and Holocene History of the Laurentide Ice Sheet. Géographie physique et Quaternaire 42:237-263.
- Ecotrust and Conservation International. 1992. Coastal Temperate Rain Forests: Ecological Characteristics, Status, and Distribution Worldwide. Ecostrust, Portland, OR.
- Eddingsaas, A. A., B. K. Jacobsen, E. P. Lessa, and J. A. Cook. 2004. Evolutionary history of the arctic ground squirrel (Spermophilus parryii) in Nearctic Beringia. Journal of Mammalogy 85:601-610.
- Edwards, S. V., L. Liu, and D. K. Pearl. 2007. High-resolution species trees without concatenation. Proceedings of the National Academy of Sciences of the United States of America 104:5936-5941.
- Ehlers, J. and P. L. Gibbard. 2004. Quaternary Glaciations Extent and Chronology, Volume 2: Part II: North America. Elsevier Science, Amsterdam.
- Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans,
 F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A.
 Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A.
 T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J.
 Soberon, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006. Novel methods

improve prediction of species' distributions from occurrence data. Ecography 29:129-151.

- Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics 34:487-515.
- Fattorini, S. 2009. On the general dynamic model of oceanic island biogeography. Journal of Biogeography 36:1100-1110.
- Fladmark, K. R. 1979. Routes: alternate migration corridors for early man in North America. American Antiquity 44:55-69.
- Fleming, M. A. and J. A. Cook. 2002. Phylogeography of endemic ermine (*Mustela* erminea) in southeast Alaska. Molecular Ecology 11:795-807.
- Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925.
- Gifford, M. E. and A. Larson. 2008. In situ genetic differentiation in a Hispaniolan lizard (*Ameiva chrysolaema*): A multilocus perspective. Molecular Phylogenetics and Evolution 49:277-291.
- Gillespie, R. G., E. M. Claridge, and S. L. Goodacre. 2008. Biogeography of the fauna of French Polynesia: diversification within and between a series of hot spot archipelagos. Philosophical Transactions of the Royal Society B-Biological Sciences 363:3335-3346.
- Grant, B. R. and P. R. Grant. 2003. What Darwin's finches can teach us about the evolutionary origin and regulation of biodiversity. Bioscience 53:965-975.
- Gutrich, J., D. Donovan, M. Finucane, W. Focht, F. Hitzhusen, S. Manopimoke, D. McCauley, B. Norton, P. Sabatier, J. Salzman, and V. Sasmitawidjaja. 2005. Science in the public process of ecosystem management: lessons from Hawaii, Southeast Asia, Africa and the US Mainland. Journal of Environmental Management 76:197-209.
- Hall, E. R. 1981. The mammals of North America. Volume 2. The mammals of North America. Volume 2.:601-1181.
- Hamilton, T. H. 1963. Isolation, endemism, and multiplication of species in the Darwin finches. Evolution 17:388-&.
- Hannon, P. E., D. V. D'Amore, D. T. Witter, and M. B. Lamb. 2010. Influence of Forest Canopy and Snow on Microclimate in a Declining Yellow-cedar Forest of Southeast Alaska. Northwest Science 84:73-87.

- Heaton, T. H. and F. Grady. 2007. The Vertebrate Fossil Record of On Your Knees Cave, Prince of Wales Island, Southeast Alaska. Quaternary International 167-168:160.
- Heaton, T. H., F. Grady, B. W. Schubert, J. I. Mead, and R. W. Graham. 2003. The Late Wisconsin vertebrate history of Prince of Wales Island, southeast Alaska. Pp. 17-53 *in* B. W. Schubert, J. I. Mead, and R. W. Graham, eds. Ice Age cave faunas of North America. Indiana University Press, Indiana.
- Heled, J. and A. J. Drummond. 2008. Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology 8:289-303.
- Heled, J. and A. J. Drummond. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27:570-580.
- Hendry, A. P., L. G. Lohmann, E. Conti, J. Cracraft, K. A. Crandall, D. P. Faith, C. Haeuser, C. A. Joly, K. Kogure, A. Larigauderie, S. Magallon, C. Moritz, S. Tillier, R. Zardoya, A.-H. Prieur-Richard, B. A. Walther, T. Yahara, and M. J. Donoghue. 2010. Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution 64:1517-1528.
- Hetherington, R., J. V. Barrie, R. G. B. Reid, R. MacLeod, D. J. Smith, T. S. James, and R. Kung. 2003. Late Pleistocene coastal paleogeography of the Queen Charlotte Islands, British Columbia, Canada, and its implications for terrestrial biogeography and early postglacial human occupation. Canadian Journal of Earth Sciences 40:1755-1766.
- Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978.
- Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6:65-70.
- Hope, A. G., N. Takebayashi, K. E. Galbreath, S. L. Talbot, and J. A. Cook. 2013. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals. Journal of Biogeography 40:415-429.
- Hope, A. G., E. Waltari, N. E. Dokuchaev, S. Abramov, T. Dupal, A. Tsvetkova, H. Henttonen, S. O. MacDonald, and J. A. Cook. 2010. High-latitude diversification within Eurasian least shrews and Alaska tiny shrews (Soricidae). Journal of Mammalogy 91:1041-1057
- Hope, A. G., E. Waltari, V. B. Fedorov, A. V. Goropashnaya, S. L. Talbot, and J. A. Cook. 2011. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change. Molecular Ecology 20:4346-4370.

- Hudson, R. R., M. Kreitman, and M. Aguade. 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116:153-159.
- International, E. a. C. 1992. Coastal Temperate Rain Forests: Ecological Characteristics, Status, and Distribution Worldwide. Ecostrust, Portland, OR.
- Johnson, K. P., F. R. Adler, and J. L. Cherry. 2000. Genetic and phylogenetic consequences of island biogeography. Evolution 54:387-396.
- Kimura, M. and G. H. Weiss. 1964. The stepping stone model of population structure and decrease of genetic corrlation with distance. Genetics 49:561-576.
- Kondzela, C. M., C. M. Guthrie, S. L. Hawkins, C. D. Russell, J. H. Helle, and A. J. Gharrett. 1994. Genetic-relationships among chum salmon populations in Southeast Alaska and northern British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 51:50-64.
- Librado, P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452.
- Lim, H. C. and F. H. Sheldon. 2011. Multilocus analysis of the evolutionary dynamics of rainforest bird populations in Southeast Asia. Molecular Ecology 20:3414-3438.
- List, P. C. 2000. Environmental Ethics and Forestry: A Reader. Temple University Press, Philadelphia.
- Lomolino, M. V., B. R. Riddle, and J. H. Brown. 2006. Biogeography. Sinauer Associates, Sunderland.
- Lucid, M. K. and J. A. Cook. 2004. Phylogeography of Keen's mouse (*Peromyscus keeni*) in a naturally fragmented landscape. Journal of Mammalogy 85:1149-1159.
- MacArthur, R. H. and E. O. Wilson. 1967. The Theory of Island Biogeography. Princton University Press, New Jersey.
- MacDonald, S. O. and J. A. Cook. 1996. The land mammal fauna of Southeast Alaska. Canadian Field-Naturalist 110:571-598.
- MacDonald, S. O. and J. A. Cook. 2007. Mammals and amphibians of southeast Alaska. Special Publication the Museum of Southwestern Biology 8:i-viv, 1-191.
- Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46:523-536.
- Mandryk, C. A. S., H. Josenhans, D. W. Fedje, and R. W. Mathewes. 2001. Late Quaternary paleoenvironments of Northwestern North America: implications for inland versus coastal migration routes. Quaternary Science Reviews 20:301-314.

- Marr, K. L., G. A. Allen, and R. J. Hebda. 2008. Refugia in the Cordilleran ice sheet of western North America: chloroplast DNA diversity in the Arctic-alpine plant *Oxyria digyna*. Journal of Biogeography 35:1323-1334.
- Millien-Parra, V. and J. J. Jaeger. 1999. Island biogeography of the Japanese terrestrial mammal assemblages: an example of a relict fauna. Journal of Biogeography 26:959-972.
- Mobley, C. M. 1988. Holocene sea levels in Southeast Alaska preliminary results. Arctic 41:261-266.
- O'Reilly, P., T. E. Reimchen, R. Beech, and C. Strobeck. 1993. Mitochondrial-DNA in *Gasterosteus and Pleistocene glacial refugium on the Queen Charlotte Islands*, British Columbia. Evolution 47:678-684.
- Olson, S. L. 1989. Extinction on islands: man as a catastrophe. In Conservation for the twenty-first century. Pp. 50 53 *in* D. W. a. M. Pearl, ed. Conservation for the twenty-first century. Oxford University Press.
- Peacock, E., M. M. Peacock, and K. Titus. 2007. Black bears in Southeast Alaska: the fate of two ancient lineages in the face of contemporary movement. Journal of Zoology 271:445-454.
- Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. T. Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102–117.
- Pedreschi, D., M. Kelly-Quinn, J. Caffrey, M. O'Grady, and S. Mariani. 2014. Genetic structure of pike (*Esox lucius*) reveals a complex and previously unrecognized colonization history of Ireland. Journal of Biogeography 41:548-560.
- Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259.
- Phillips, S. J. and M. Dudik. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175.
- Posada, D. and T. R. Buckley. 2004. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53:793-808.
- Posada, D. and K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818.

- Pritchard, V. L., K. Jones, and D. E. Cowley. 2007. Estimation of introgression in cutthroat trout populations using microsatellites. Conservation Genetics 8:1311-1329.
- Ramos-Onsins, S. E. and J. Rozas. 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19:2092-2100.
- Reddy, S. and L. M. Davalos. 2003. Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography 30:1719-1727.
- Reimchen, T. and A. Byun. 2006. The Evolution of Endemic Species in Haida Gwaii. Pp. 426 *in* D. W. Fedje, and R. W. Mathewes, eds. Haida Gwaii: Human History and Environment from the Time of Loon to the Time of the Iron People. UBC Press.
- Runck, A. M., M. D. Matocq, and J. A. Cook. 2009. Historic hybridization and persistence of a novel mito-nuclear combination in red-backed voles (genus *Myodes*). BMC Evolutionary Biology 9:114.
- Schoen, J. W. and E. Dovichin, eds 2007. The Coastal Forests and Mountains Ecoregion of Southeastern Alaska and the Tongass National Forest: A conservation assessment and resource synthesis. Audobon Alaska and the Nature Conservancy, Anchorage, Alaska.
- Shafer, A. B. A., K. S. White, S. D. Cote, and D. W. Coltman. 2011. Deciphering translocations from relicts in Baranof Island mountain goats: is an endemic genetic lineage at risk? Conservation Genetics 12:1261-1268.
- Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16:1114-1116.
- Sikes, D. S. and J. Stockbridge. 2013. Description of *Caurinus tlagu*, new species, from Prince of Wales Island, Alaska (Mecoptera, Boreidae, Caurininae). ZooKeys 316:35-53.
- Smith, C. T., R. J. Nelson, C. C. Wood, and B. F. Koop. 2001. Glacial biogeography of North American coho salmon (*Oncorhynchus kisutch*). Molecular Ecology 10:2775-2785.
- Smith, M. E. and M. C. Belk. 1996. Sorex monticolus. Mammalian Species 528:1-5.
- Smolen, M. J. and B. L. Keller. 1987. *Microtus longicaudus*. Mammalian Species 271:1-7.

- Soltis, D. E., M. A. Gitzendanner, D. D. Strenge, and P. S. Soltis. 1997. Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Systematics and Evolution 206:353-373.
- Sota, T. and N. Nagata. 2008. Diversification in a fluctuating island setting: rapid radiation of *Ohomopterus* ground beetles in the Japanese Islands. Philosophical Transactions of the Royal Society B-Biological Sciences 363:3377-3390.
- Stein, B. R. and J. Wieczorek. 2004. Mammals of the world: Manis as an example of data integration in a distributed network environment. Biodiversity Informatics 1:14-22.
- Stephens, M. and P. Scheet. 2005. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. American Journal of Human Genetics 76:449-462.
- Stephens, M., N. J. Smith, and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68:978-989.
- Swarth, H. S. 1936. Origins of the fauna of the Sitkan district, Alaska. Proc California Acad Sci 23:59-78.
- Tajima, F. 1989. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28:2731-2739.
- Tsai, Y.-H. E. 2011. PhyloGeoViz: a web-based program that visualizes genetic data on maps. Molecular Ecology Resources 11:557-561.
- Vincent, P. 1990. The biogeography of the British Isles. An introduction. The biogeography of the British Isles. An introduction.:i-xv, 1-315.
- Wahlund, S. 1928. Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65-106.
- Warren, D. L., R. E. Glor, and M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868-2883.
- Warren, D. L., R. E. Glor, and M. Turelli. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611.

- Warren, D. L. and S. N. Seifert. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21:335–342.
- Whittaker, R. J. 1998. Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford.
- Whittaker, R. J. and J. Fernández-Palacios. 2007. Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford, UK.
- Zhang, X., M.-M. Shi, D.-W. Shen, and X.-Y. Chen. 2012. Habitat Loss other than Fragmentation per se Decreased Nuclear and Chloroplast Genetic Diversity in a Monoecious Tree. Plos One 7.
- Zheng, X. G., B. S. Arbogast, and G. J. Kenagy. 2003. Historical demography and genetic structure of sister species: deermice (*Peromyscus*) in the North American temperate rain forest. Molecular Ecology 12:711-724.

Figures and Tables

Figure 1. SDM for *M. longicaudus*, *P. keeni* and *S. monticolus* from the LIG to Current. Solid blue covering at the LGM is glacial ice cover. SDM's climate suitability at each time period.

Figure 2. Islands and surrounding mainland Alaska locations, paleo-shorelines, and hypothesized island groups (also see Table 4).

Figure 3. Dated Bayesian cyt*b* trees for *M. longicaudus*, *P. keeni* and *S. monticolus*. Posterior probability \geq 0.95 represented with open circles and Maximum Likelihood bootstraps of \geq 0.7 with asterisks are shown on branches. Vertical light gray bars represent the LIG (left) and LGM (right). Dark gray horizontal bars = 95% CI for TMRCA for the Island clade for each species. Geographic location (Table 4) for supported intralineage clades are immediately right taxon tips. Major lineage abbreviations are: COP=Colorado Plateau; NPC=North Pacific Coast, PeMa=*P. maniculatus*, E (East), W (West) and SW (Southwest); S=South.

Figure 4. Sampling scheme, range maps and North American LGM glacial cover. Sampling localities are shown by major cyt*b* lineage. The thick black lines are the current range for each species, with the addition of *P. maniculatus* (white line) on the *Peromyscus* map. The light blue in the bottom right image is LGM glacial ice cover. NPC=North Pacific Coast; COP=Colorado Plateau.

Figure 5. Multilocus Bayesian Species Tree. Posterior probabilities of ≥ 0.95 are represented with open circles on branches of the consensus tree. *A priori* groupings were designated based on cyt *b* Bayesian supported (≥ 0.95 posterior probability) clades. Blue = Island/*P. keeni*, bright green = Northern/*Peromyscus* sp. nov. (Yukon), dark green = North Pacific Coast, light yellow-green = Colorado Plateau/*P. maniculatus* Southwest, golden = Central/*P. maniculatus* West, orange = Southern/*P. maniculatus* East, black = outgroups. Horizontal gray bars represent divergence date estimates and vertical bars indicate approximate time for the LIG and LGM.

M. longicaudus Rag1 ETS2 FGB P. keeni IRBP Zp3 FGB S. monticolus АроВ FGE

Figure 6. Island phased nuclear haplotype distribution for *M. longicaudus*, *P. keeni* and *S. monticolus* as prepared by PHYLOGEOVIZ.

Figure 7. Bayesian gene trees for phased nuclear loci for *M. longicaudus* (a. ETS2, b. FGB, and c. Rag1), *Peromyscus* (d. FGB, e. IRBP, and f. Zp3) and *S. monticolus* (g. ADH2, h. ApoB, and i. FGB) with posterior probabilities of ≥ 0.95 represented with open circles on branches. Geographic locations for supported intralineage clades are provided. Blue = Island/*P. keeni*, bright green = Northern/*Peromyscus* sp. (Yukon), dark green = North Pacific Coast, light yellow-green = Colorado Plateau/*P. maniculatus* Southwest, golden = Central/*P. maniculatus* West, orange = Southern/*P. maniculatus* East, black = outgroups.

Figure 8. Cyt *b* mismatch distributions and EBSPs for *P. keeni* and Island lineages of *M. longicaudus, S. monticolus,* as well as Refugial islands and non-refugial islands (see Table 4). Observed curves (dotted line) and expected curves (solid line) are the number of pairwise differences under rapid population growth. EBSP (Island/*P. keeni* insets) central line indicates mean change in effective population size through time, with upper and lower lines sowing the 95% posterior density. The x-axis (right-to-left) extends from past (TMRCA) to present and is scaled in millions of years and the y-axis is the effective population size scaled by generation time. Vertical gray bars indicate the LIG (when applicable, right) and LGM (left) for reference.

Figure 9. SDM for *M. longicaudus*, *P. keeni* and *S. monticolus* for Current and Future, as well as the change in climate suitability between the two time periods.

Figure 10. Historical island connectivity and potential colonization across the Alexander Archipelago as a result of change in sea level and glacial cover.

Figure 11. Cyt *b* genetic diversity (S, *h*, *Hd* and π) by log island area and isolation for *M*. *longicaudus* (red), *P. keeni* (blue) and *S. monticolus* (green) with regression lines. See Table 8 for regression results.

Table 1. Specimens examined. Museum number acronyms are MSB= Museum of
Southwestern Biology, UAM=University of Alaska Museum of the North, Fairbanks,
HG= Gwaii Haanas National Park Reserve and Haida Heritage Site, and
UWBM=University of Washington Burke Museum. GenBank numbers correspond to cyt *b*, and each phased allele for *M. longicaudus* (ETS2, FGB and Rag1), *Peromyscus* (FGB,
IRBP and Zp3) and *S. monticolus* (ADH2, ApoB and FGB) respectively, —= not
applicable. GenBank in bold were previously obtained from other studies.

Construction (Construction)	and the second				and the second se
Species	cytb lineage	Locality	Specimen Number Latitude	Longitude	GenBank Accession Numbers
Microtus longicaudus	Control	California	11AM77001 A1 40044	033201 001	A E187176 - / / / -
			UAM77992 41,40944	4 -122.193889	AF187174///-
		Idaho	MSB227995 44.65886	0 -113.215840	KE948609,KF948677/KF948678,KF948845/KF948846,KF949027/KF949028
			UAM77997 46.73238	7 -117.000165	AF187173///-
		Montana	UAM34299 45.52000	0 -108.820000	AF187172, -/-, -/-, -/-, -/-
			MSB156351 45.73100	0 -112.676000	KF948534, -/-, -/-, -/-, -/-
		Wyoming	MSB225915 44.22630	0 -107.234700	KF948607,KF948673/KF948674,KF948841/KF948842,KF949023/KF949024
	Colorado Plateau	Idaho	MSB143745 43.55300	0 -111.243000	KF948533, -/-,KF948785/KF948786, -/-
		Nevada	MSB227146 39.23750	0 -114.689200	KF948608, KF948675/KF948676, KF948843/KF948844, KF949025/KF949026
		Utah	MSB76827 38.34417	0 -112.491110	KF948610, -/-, KF948859/KF948860, -/-
			MSB77127 40.18614	0 -111.139530	KF948611, KF948683/KF948684, KF948861/KF948862, KF949035/KF949036
	Island	Alaska - Chichagof Island	UAM32929 57.81666	7 -136.150000	AF187205,-/-,-/-,-/-,-/-
			UAM32932 57.81666	7 -136.150000	KF964338, -/-,-/-,-/-
			UAM51686 57.95750	0 -134.307222	KF964342, -/-, -/-, -/-, -/-
			UAM20507 58.06666	7 -135.233333	AF187211, -/-, KF948867/KF948868, KF949041/KF949042
			UAM36269 58.07916	7 -135.477778	AF187219, KF948729/KF948730, KF948921/KF948922, KF949093/KF949094
		Alaska - Coronation Island	UAM22920 55.91777	8 -134.320833	KF964335, -/-, -/-, -/-, -/-
			UAM22921 55.91777	8 -134.320833	AF187223,-/-,-/-,-/-,-/-
			UAM23410 55.91777	8 -134.320833	AF187222, -/-, -/-, -/-, -/-
			UAM23606 55.91777	8 -134.320833	AF187213, KF948697/KF948698, KF948883/KF948884, KF949057/KF949058
		Alaska - Dall Island	UAM42372 54.74416	7 -132.771111	KF948622, -/-, -/-, -/-, -/-
			UAM23728 54.78333	3 -132.866667	AF187206, KF948699/KF948700, KF948887/KF948888, KF949061/KF949062
			UAM49658 54.80694	4 -132.769167	KF948579,KF948747/KF948748,KF948945/KF948946,KF949117/KF949118
			UAM49660 54.80694	4 -132.769167	KF948627, -/-, -/-, -/-, -/-
			UAM42429 55.21555	6 -133.138056	KF948569, -/-, -/-, -/-, -/-
		Alaska - Forrester Island	UAM42727 54.82138	9 -133.520833	KF948624, -/-, -/-, -/-, -/-
			UAM42380 54.82138	9 -133.520833	KF948566,KF948737/KF948738,KF948929/KF948930,KF949101/KF949102
			UAM42381 54.82138	9 -133.520833	AF187221, KF948739/KF948740, -/-, KF949103/KF949104
			UAM42728 54.82138	9 -133.520833	KF948581, -/-, KF948931/KF948932, -/-
		Alaska - Kosciusko Island	UAM42385 55.91888	9 -133.685000	KF948567, -/-, -/-, -/-, -/-
			UAM30506 56.15000	0 -133.350000	KF948559, -/-, -/-, -/-, -/-
			UAM30507 56.15000	0 -133,350000	KF948560,KF948709/KF948710,KF948899/KF948900,KF949073/KF949074
			UAM30508 56.15000	0 -133.350000	KF948561,KF948711/KF948712,KF948901/KF948902,KF949075/KF949076
			UAM30721 56.15000	0 -133.350000	KF948619, -/-, -/-, -/-
		Alaska - Kuiu Island	UAM42376 56.32138	9 -134.071667	KF948565, -/-, -/-, -/-, -/-
			UAM22912 56.41035	4 -134.033333	AF187224,KF948691/KF948692, -/-, -/-
			UAM22913 56.41035	4 -134.033333	KF948555, -/ - , KF948875/KF948876, KF949049/KF949050
			UAM42377 56.58333	3 -134.00000	KF948640, -/-, -/-, -/-
			MSB149385 56.66760	0 -134.265500	KF948547, -/-, -/-, -/-, -/-
		Alaska - Kupreanof Island	MSB148983 56.64200	0 -133.700700	KF948546,KF948647/KF948648,KF948793/KF948794,KF948991/KF948992
			UAM20918 56.86666	7 -133.316667	AF187208,-/-,-/-,-/-,-/-
			UAM20919 56.86666	7 -133.316667	KF948554/ -, -/ -, -/ -, -/ -
			UAM23871 56.97483	0 -133.941160	AF187227,-/-,-/-,-/-
		Alaska - Lulu Island	MSB2214440 55.46850	0 -155,425800	KF948555,KF9486/1/KF9486/2,KF94885//KF948858,KF949021/KF949022
			MSB221498 05304650 0534650	0 -133.425800	KF948604, -/-, -/-, -/-, -/-
			MSB221545 55.46850	0 -133 425800	KF948606 -/- KF948839/KF948840 -/-
		Alaska - Mitkof Island	UAM22918 56.58333	3 -132.833333	KF948556,KF948693/KF948694,KF948877/KF948878,KF949051/KF949052

Alaska - Noyes Island	UAM23659	55.451977	-133,659835	KF948615, -/-, KF948885/KF948886, KF949059/KF949060
	MSB221332 MSB221340	55.488000	-133.631200	KF948602, -/ - , -/ - , -/ - KF948603 KF948669/KF948670.KF948835/KF948836.KF949019/KF949020
Alaska - Orr Island	UAM52256	55.950000	-133.383333	AF187209,-/-,-/-,-/-
Alaska - Prince of Wales Island	UAM23726	54.766667	-132.183333	KF948616, -/-, -/-, -/-
	UAM23727	54.766667	-132.183333	KF948557,-/-,-/-,-/-
	UAM70243	54.888333	-132.366111	KF948572,KF948775/KF948776,KF948977/KF948978,KF949143/KF949144
	UAM41/6/	111104.00	/00160.261-	AF18/20/,-/-,-/-,-/-
	UAM36579	56.166667	-133.316667	AF187215,KF948731/KF948732,KF948923/KF948924,KF949095/KF949096 V T0486231 / / /
	ONIVERSION OF	+++++/1.00	1016007001-	Nr946021, -/-, -/-, -/-
Alaska - Kevillagigedo Island	UAM9/289 UAM30504	55.414722	-131.695833	KF948512,
	UAM23455	55.502382	-131.028099	KF964344///-
	UAM23804	55.766667	-131.016667	AF187212, -/-, -/-, -/-, -/-
	UAM23943	55.816667	-131.366667	KF964336,KF948703/KF948704,KF948891/KF948892,KF949065/KF949066
	UAM23944	55.816667	-131.366667	KF948617,KF948705/KF948706,KF948893/KF948894,KF949067/KF949068
Alaska - Suemez Island	UAM42392	55.266667	-133.272156	KF948623, -/-, -/-, -/-, -/-
	UAM42393	55.266667	-133.272156	KF948568,-/-,-/-,-/-,-/-
	UAM43227	55.266667	-133.272156	KF948582,-/-,-/-,-/-,-/-
	UAM41768	55.283333	-133.307199	AF187226,KF948733/KF948734,KF948925/KF948926,KF949097/KF949098
	UAM49638	55.283333	-133.307199	KF948578, KF948745/KF948746, KF948943/KF948944, KF949115/KF949116
Alaska - Sukkwan Island	UAM31826	55.100000	-132.833333	AF187230, -/ -, -/-, -/-, -/-
Alaska - Tuxekan Island	UAM52262	55.900000	-133.333333	AF187220, -/-, -/-, -/-, -/-
Alaska - Warren Island	UAM31755	55.874782	-133.841667	KF948542,KF948713/KF948714,KF948903/KF948904,KF949077/KF949078
	UAM31784	55.874782	-133.841667	AF187218, -/-, -/-, -/-, -/-
	UAM31785	55.874782	-133.841667	KF948537,-/-,-/-,-/-,-/-
	UAM31787	55.874782	-133.841667	KF948543, -/-, -/-, -/-, -/-
	UAM31788	55.874782	-133.841667	KF948538,KF948715/KF948716,KF948905/KF948906,KF949079/KF949080
	UAM31786	55.875000	-133.841667	AF187214, -/-, -/-, -/-, -/-
Alaska - Wrangell Island	UAM62899	56.233333	-132.133333	KF948540, KF948755/KF948756, KF948953/KF948954, KF949125/KF949126
	UAM72153	56.318333	-132.286111	KF948541, -/-, -/-, -/-, -/-
	UAM23063	56.350000	-132.333333	KF948536,KF948695/KF948696,KF948879/KF948880,KF949053/KF949054
Alaska - Zarembo Island	UAM20611	56.416667	-132.833333	KF948544,/-, KF948873/KF948874, KF949047/KF949048
	UAM42375	56.416667	-132.833333	KF948539,KF948735/KF948736,KF948927/KF948928,KF949099/KF949100
Alaska - Glacier Bay	UAM30499	58.450000	-135.916667	AF187225, -/ -, KF948897/KF948898, KF949071/KF949072
Alaska - Haines	UAM68284	59.162500	-135.777778	KF948636,KF948773/KF948774,KF948975/KF948976,KF949141/KF949142
	MSB193312	59.217640	-135.448180	KF948589, -/-, KF948807/KF948808, -/-
	MSB195212	59.245900	-135.175300	KF948600, -/-, KF948831/KF948832, KF949015/KF949016
	UAM52711	59.261667	-135.559722	KF964341,KF948749/KF948750,KF948947/KF948948,KF949119/KF949120
	MSB193328	59.266710	-135.603360	KF948591,KF948655/KF948656,KF948811/KF948812,KF948999/KF949000
	MSB193439	59.266710	-135.603360	KF948594, KF948661/KF948662, KF948817/KF948818, KF949005/KF949006
	UAM64609	59.414722	-136.061944	KF948632,KF948763/KF948764,KF948965/KF948966,-/-
Alaska - interior	UAM57777	61.317933	-144.235317	KF948628,KF948751/KF948752,KF948949/KF948950,KF949121/KF949122
Alaska - Juneau	MSB156999	58.343070	-134.639750	KF948550, KF948653/KF948654, KF948803/KF948804, KF948995/KF948996
Alaska - Southeast	UAM74134	57.366667	-133.466667	KF948573, KF948779/KF948780, KF948981/KF948982, KF949147/KF949148
	UAM74413	57.366667	-133.466667	KF948639,KF948781/KF948782,KF948983/KF948984,KF949149/KF949150
	UAM74283	57.366667	-133.466667	KF948638, -/-, -/-, -/-, -/-
Yukon - south	UAM34297	60.400000	-137.050000	AF187228, KF948725/KF948726, KF948915/KF948916, KF949089/KF949090
	UAM34298	60.400000	-137.050000	AF187229,KF948727/KF948728,KF948917/KF948918,KF949091/KF949092

AF187198/-,-/-,-/- KF964343.KF948701/KF948702.KF948899.KF949063/KF949064 KF948558.KF948707/KF948708.KF948895/KF948896,KF949069/KF949070 AF187190/-,/-,-/-,-/	KFP04340, F0, F0, F0, F0, F0, F0, F0, F0, F0, F	AF187203/,,/ KF948574,KF948783/KF948784,KF948985/KF949151/KF949152 KF948563,KF948719/KF948720,KF948909/KF948910,KF949083/KF949084 KF948564,KF94871/KF948722,KF948911/KF948912,KF949085/KF949086	RF94850,KF94672/KF94807/KF948908/KF94908/KF94908 KF94850,KF94850,KF948717/KF948907/KF948908,KF949081/KF949082 AF187194,-/-,-/-,-/- AF187199,-/-,-/-,-/- AF187197,-/-,-/-,-/- AF187191,-/-,KF948882,KF949055/KF949056	AF187200, -/-, -/-, -/- AF187200, -/-, -/-, -/- AF187101, -/-, -/-, -/- AF187201, -/-, -/-, -/-	K100152,-),-),-),-),-),-),-),-),-),-),-),-),-),	KF948635,KF948771/KF948772,KF948973/KF948974,KF949139/KF949140 KF948585,KF948645/KF948646,KF948791/KF948792,KF948989/KF948990 AF187188,-/-,-/-,-/-,-/- AF187181,-/-,-/-,-/-,-/- AF187180,KF94869/KF94866,KF948847/KF948864,KF949037/KF94903	AF187163, KF948681/KF948682, KF948851/KF949031/KF949031 -, -/-, KF94865/KF948866, KF949039/KF949040 AF187165, -/-, -/-, -/- AF187164, -/-, KF948860, KF94803, KF949029/KF949030 KF948548, -/-, KF948801, KF948802, -/- KF948548, -/-, KF948642, KF94892, -/-	KF948532/-,-/-,-/- KF948531/-,-/-,-/- -,KF948649650/-,-/-	KF949162,KF949368/KF949369,KF949702/KF949703,KF950701/KF950702 KF949163, -/ -, -/ -, -/ -, -/ - KF949207,KF949372/KF949373,KF949706/KF949707,KF950704 KF949164,KF949374/KF949375,KF949708/KF949709,KF950706
-132.183333 -132.183333 -132.183333 -132.183330 -144.500278	-135.354167 -135.089333 -136.089333 -142.037306	-133.316667 -134.416667 -133.683333 -133.683333	-130.333611 -130.333611 -130.333611 -130.883333 -131.086460	-131.000400 -130.070556 -132.983333 -132.983333	-135.166944 -135.166944 -135.166944 -135.166944	-134.907778 -135.461400 -118.966667 -120.950000 -120.9932 -121.916700	-106.1994019 -109.881200 -109.4188 -110.0431 -107.758600 -110.404400		-136.555300 -137.194800 -138.578900 -138.578900
55.750405 55.750405 55.750405 65.227500 65.227500	59.500278 59.623222 65.302722	58.183333 58.306881 58.533333 58.533333 58.533333	54,943611 54,943611 54,943611 55,766667 55,766667 55,766667 55,766667	57.008333 57.008333 57.008333 57.008333	59.614167 59.614167 59.614167 59.614167 56.496278	59.529167 63.841300 50.816667 47,000000 47.22306 48.200000	35.2667993 32.668700 33.7954 34.125300 37.238800 41.036500		62.398500 63.543100 64.025900 64.025900
UAM23751 UAM23752 UAM30495 UAM34593	UAM64427 UAM64427 UAM60319	UAMI32822 UAMI75497 UAMI34292 UAMI34293 UAMI34293	UAM134284 UAM134284 UAM134285 UAM134286 UAM152883 UAM16246 UAM123496	UAM48474 UAM30496 UAM30497 UAM30497	UAM48465 UAM48466 UAM48466 UAM48467 MSB158239	UAM68182 MSB144481 UAM69492 UAM41789 MSB43445 MSB80232	MSB50701 MSB88783 MSB53559 MSB53559 MSB155126 MSB1550855 MSB1550855	MSB121523 MSB110998 MSB149290	MSB144216 MSB144284 MSB145251 MSB145572 MSB145572
Alaska - Cleveland Peninsula Alaska - Glacier Bay	Alaska - Haines Alaska - interior	Alaska - Juncau	Alaska - Misty Fjords	Alaska - Southeast	British Columbia - central	British Columbia - north Yukon - central British Columbia - south Washington	New Mexico Arizona Colorado Wvornine	0	Yukon - central
Northern						North Pacific Coast	Southern		
								Microtus montanus Microtus pennsylvanicus Poromerus en nov	· · · · · · · · · · · · · · · · · · ·

KF949169,KF949406/KF949407,KF949740/KF949741,KF950736/KF950737 KF949173,KF949408/KF949409,KF949712/KF949743,KF950739 KF949165,KF949378/KF949379,KF949712/KF949713,KF950709/KF950657	KF949325, -/ -, -/-,KF950848/KF950849 KF950037, -/ -, -/-, -/- KF949326,KF949516/KF949517,KF949840/KF949841,KF950850/KF950851	KF950033, -/-,-/-,-/- KF950030, -/-,-/-,-/-	KF949318;KF949482/KF949483,KF949816/KF949817,KF950816/KF950817	-,-/-,-/-,KF950854/KF950855	KF950045, -/-, -/-, -/-, -/-	KF950057, -/-,-/-,-/- v boao76 v boao478 v boao470 v boao817 v boao813 v boso817 v boso813	KE9492/0, KE9494/6/KE9494/9, KE9494/9, KE9496/2/KE9496/2, KE9200/2/KE9206/2	KF949277,KF949480/KF949481,KF949814/KF949815,KF950814/KF950815	KF950056, -/-, -/-, -/-	KF949289, KF949526/KF949527, KF949850/KF949851, KF950862/KF950863	KF950133, -/-, -/-, -/-, -/-	KF949290,KF949528/KF949529,KF949852/KF949853,KF950864/KF950865	KF950075, -/-, -/-, -/-, -/-	KF950066, -/-, -/-, -/-	KF949207,KF949396/KF949397,KF949730/KF949731,KF950725/KF950726	KF950024///-	KF949314,KF949466/KF949467,KF949802/KF949803,KF950800/KF950801	KF950044, -/ -, -/ -, -/ -, -/ -	KF950073, -/-, -/-, -/-, -/-	KF950074, -/ -, -/ -, -/ -	KF949298,KF949550/KF949551,KF949874/KF949875,KF950887/KF950888 vroaceeverses vroaceeverses vroaceeverses vroaceeverses vroaceeverses vroaceeverses vroaceeverses vroaceeverses	KF949280, KF94949494/KF94995, KF949824, KF949825, KF950826/KF950827 VT060050 /	KF950029, -/-, -/-, -/-, -/-	KF950021///-	KF949310,KF949442/KF949443,-/-,KF950774/KF950775	KF950060, -/-, -/-, -/-	KF950061, -/-, -/-, -/-, -/-	KF949281, KF949500/KF949501, KF949828/KF949829, KF950832/KF950833	KF949282,KF949502/KF949505,KF949850/KF949851,KF950854/KF950855	KF950062, -/-,-/-,-/-	NF949294, NF949342/NF949343, NF949000 NF949001, NF930612/NF930660	KF950070, -/-, -/-, -/-, -/-	KF930071,-/-,-/-,-/- KF949295,KF949544/KF949545,KF949868/KF949869,KF950881/KF950882	KF950072,-/-,-/-,-/-	KF949274,KF949470/KF949471,KF949806/KF949807,KF950804/KF950805	KF950053, -/-, -/-, -/-, -/-	KF950054, -/-, -//-, -//-	KF94225,KF9494726KF949475,KF949808/KF949809,KF950806/KF950807 KF950055, - / - , - / - , - / - , - / -
-137.081700 -137.081700 -132.609383	-133.938889 -133.938889 -133.938889	-134.550000 -133.600100	-133.600100	-133.600100	-133.600100	-134.860278	-134 900000	-134.900000	-134.900000	-135.612055	-135.612055	-135.612055	-135.612055	-134.233333	-134.319000	-132.866667	-132.866667	-132.866667	-133.138056	-133.123889	-133.123889	000024-261-	-132.450000	-132.450000	-132.450000	-133.520833	-133.520833	-133.520833	222020.001-	-133.520833	CCOCN0-161-	-131.805833	-131.805833	-131.805833	-133.591389	-133.591389	-133.591389	-133.591389
60.514500 60.514500 61.995750	57.429444 57.429444 57.429444	57.433333 55.366667	55.366667	55.366667	55.366667	56.590278 56.002233	565589 95	56.983333	56.983333	58.031339	58.031339	58.031339	58.031339	55.883333	55.920000	54.783333	54.783333	54.783333	55.215556	55.260000	55.260000	/00001.00	56.183333	56.183333	56.183333	54.821389	54.821389	54.821389	24.821289	54.821389	CCC0/1.CC	55,178333	55.178333	55.178333	55.803056	55.803056	55.803056	55.803056
MSB240539 MSB240553 MSB149206	UAM44886 UAM44887 UAM44887	UAM35318 UAM30873	UAM30874	UAM50605	UAM76353	UAM30822	01806MAD	UAM30820	UAM30821	UAM50930	UAM50932	UAM50936	UAM76385	UAM42924	MSB198221	UAM23730	UAM23732	UAM76238	UAM73711	UAM73829	UAM73830	01045MAU	UAM20662	UAM20664	UAM20665	UAM42788	UAM42790	UAM42792	UAM42/94	UAM42795		UAM70144	UAM70151	UAM70152	UAM23828	UAM23829	UAM23830	UAM23831 UAM23834
Yukon - south	Alaska - Admiralty Island	Alaska - Baker Island			2 1.000 00 00 00	Alaska - Baranof Island				Alaska - Chichagof Island				Alaska - Coronation Island		Alaska - Dall Island					All and the state of the state	Alaska - Etolin Island				Alaska - Forrester Island				Alasha Cumbra Island	Alaska - Ulavina Islanu				Alaska - Heceta Island			
boomeens koont	cromparea accur																																					

Alaska - Kosciusko Island	UAM70204 UAM49629	55.969167 55.969167	-133.646944 -133.645833	KF949296,KF949546/KF949547,KF949870/KF949871,KF950883/KF950884 KF949285,KF949518/KF949519,KF949842/KF949843,KF950852/KF950853
Alaska - Kuiu Island	UAM49651 UAM43431 MSB148973	56.321389 56.631367	-134.071667 -133.737167	kr9500057-7-7-2-1-2-7-2 KF9500124,KF9512/KF9455132,-/-,KF950844/KF950845 KF950017-1-2-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2
	MSB148974	56.631367	-133.737167	KF949300,KF949376/KF949377,KF949710/KF949711,KF950707/KF950708
Alaska - Kupreanof Island	UAM20945 UAM20948	56.866667 56.866667	-133.316667 -133.316667	KF949311,KF949446/KF949447,KF949780/KF949781,KF950778/KF950779 KF949312,KF949448/KF949449,KF94949782/KF949783,KF950780/KF950781
	UAM30590	56.866667	-133.316667	KF950028, -/-, -/-, -/-, -/-
Alaska - Lulu Island	UAM42578	55.439722	-133.455278	KF950034, -/-, -/-, -/-, -/-
	UAM42580 UAM42580	55.439722	-133.455278	KF930035, -/ - , -/ - , -/ - KF949321, KF949466/KF949497, KF949826/KF949827, KF950828/KF950829
	UAM42581	55.439722	-133.455278	KF949322,KF949498/KF94999, -/-,KF950830/KF950831
	UAM43024	55.439722	-133.455278	KF950015, -/-, -/-, -/-, -/-
Alaska - Mary Island	UAM23437	55.083333	-131.233333	KF950009, -/-, -/-, -/-
	UAM23438	55.083333	-131.233333	KF950010, -/-, -/-, -/-
Alaska - Mitkof Island	UAM23104	56.583333	-132.833333	KF949265,KF949452/KF949453,KF949786/KF949787,KF950784/KF950785
	UAM23106	56.583333	-132.833333	KF950048, -/-, -/-, -/-, -/-
	UAM23107	56.583333	-132.833333	KF950049, -/-, -/-, -/
A Latter Manager	UAM23108	56.583333	-132.8333333	KF949271, KF949454/KF949455, KF949788/KF949789, KF950786/KF950787 v rouozoz v rouozov v rouozov (* * * v roeozov roeozov)
Alaska - Ivoyes Islanu	016122460M	75 451977	-133 659835	KF949313 KF949464/KF949465 KF949798/KF949799 KF950796/KF950797
	UAM23656	55.451977	-133,659835	KF950130///-
	UAM23657	55.451977	-133.659835	KF950022, -/-, -/-, -/-, -/-
	UAM23658	55.451977	-133.659835	KF950023, -/-, -/-, -/-
Alaska - Prince of Wales Island	UAM23717	54.766667	-132.183333	KF949158, -/-, KF949800/KF949801, KF950798/KF950799
	UAM49643	54.907500	-132.414722	KF950013, -/-, -/-, -/-, -/-
	UAM74967	56.174444	-133.369167	-,KF949552/KF949553, -/-, -/-
	UAM74968	56.174444	-133.369167	KF949299,KF949554/KF949555,-/-,-/-
	UAM74969	56.174444	-133.369167	KF949258, -/-, -/-, KF950889/KF950890
	UAM74970	56.174444	-133.369167	KF949329,KF949556/KF949557,-/-,-/-
	UAM74972	56.174444	-133.369167	KF949330,KF949558/KF949559, -/-, -/-
Alaska - Revillagigedo Island	UAM30343	55.414722	-131.695833	KF950027, -/-, -/-, -/-, -/-
	UAM23442	55.502382	-131.028099	KF950129, -/-, -/-, -/-
	UAM23443	55.502382	-131.028099	KF949259,KF949458/KF949459,KF949792/KF949793,KF950790/KF950791
	UAM25449	285206.66	660870.151-	K_{1} 904334, $-/-, -/-, -/-, -/-$
Alacha Con Damanda Island	UAM25900	100018.00	100005.151-	KF949516,KF94944/4/KF949475, =7 = ,KF950808/KF950809 VE050062 / / /
NUMBER ON THIS I INC - BACKING	UAM42801	25 467222	-133 389444	KF949283 KF949504/KF949505 KF949832/KF949833 KF950836/KF950837
	UAM42804	55.467222	-133.389444	KF950064/-,-/-,-/-
	MSB221540	55.541700	-133.321000	KF949308, KF949402/KF949403, KF949734/KF949735, KF950731/KF950732
Alaska - Suemez Island	UAM42831	55.266667	-133.272156	KF949284, KF949506/KF949507, KF949834/KF949835, KF950838/KF950839
	UAM42836	55.266667	-133.272156	KF950065, -/-, -/-, -/-, -/-
	UAM23992	55.283333	-133.307199	KF949317,KF949476/KF949477,KF949810/KF949811,KF950810/KF950811
Alaska - Warren Island	UAM31725	55.875000	-133.841667	KF950058, -/-, -/-, -/-, -/-
	UAM31727	55.875000	-133.841667	KF949278,KF949490/KF949491,-/-,-/-
	UAM31729	55.875000	-133.841667	KF949279,KF949492/KF949493, -/-,KF950824/KF950825
Alaska - Wrangell Island	UAM69665	56.269722	-132.070556	-, -/-, -/-, KF950877/KF950878
	UAM69668	56.269722	-132.070556	KF950068, $-/-, -/-, -/-$
	MSB149212	56.474883	-132.375233	KF950009, KF9500 / ACKF9500 / 1, KF9500 / 8 KF9500 / 8 KF9500 / 8

Alaska - Zarembo Island	UAM43440 UAM43469	56.333333 56.333333	-132.833333 -132.833333	KF949260,KF949514/KF949515, -/-,KF950846/KF950847 KF950036, -/-,-/-,-/-,-/-
British Columbia - Hotsprings Island	UAM20619 UAM20620 HGPeke9701 HGPeke9701	56.416667 56.416667 52.575709 52.575709	-132.833333 -132.8333333 -131.439899 -131.439899	KF949355,KF949440(KF949441,KF949776/KF949777,KF950772/KF950773 KF950019, -//-, -//- KF94015,KF949363,KF949865,KF949696/KF949697,KF950695/KF950696 KF440154 -///-
British Columbia - Ramsay Island	HGPeke9703 HGPeke9703 HGPeke0306 HGPeke0307 HGPeke0308	52.575709 52.569649 52.569649 52.569649	-131.439899 -131.398463 -131.398463 -131.398463	xr 24115, KF949364, KF949658, KF949698, KF94669, KF950697, KF950698 KF949155, KF949356, KF949555, KF9496097, KF946691, KF9506690 KF949302, KF949356, KF949355, KF949607, KF949691, KF9506691 KF949303, KF949356, KF949359, KF949692/ KF949693, KF950693, KF950694 KF949304, KF9493607, KF9493561, KF9496947, KF949695, KF950693, KF950694
Alaska - Cleveland Peninsula	HGPeke0309 UAM20582 UAM23771 UAM23773 UAM23774	52.569649 55.716667 55.750405 55.750405 55.750405	-131,398463 -131,850000 -132,183333 -132,183333 -132,183333	KF949305, -/-,-/-,-/- KF9493050, -/-,-/-,KF950770/KF950771 KF950026, -/-,-/-,-/- KF950026, -/-,-/-,-/- KF949315,KF949468/KF949469,KF949804/KF949805,KF950803
Alaska - Foggy Bay Alaska - Glasise Rav	UAM25/12 UAM30391 UAM23421 UAM23425 11AM42938	54.983333 54.983333 54.983333 54.983333 54.983333	-132.183333 -131.000000 -130.960624 -130.960624	КРУЗОИО//-,-//-,-/- КР950131,-/-,-/-,-/- КР940263.КР94946К.Р949457.КР949790/КР949791.КР950789 КР95008/-,-/-,-/- - КР04608.к-лолобою Ктомовалскомовалское бами
Alaska - Glacter Bay Alaska - Haines	UAM42958 UAM42939 UAM48129 UAM52642 UAM23665	58.416667 58.416667 59.261667 59.261667 59.316667 59.316667	-135.559722 -135.559722 -135.559722 -135.559722	Kr949508/Kr949509/Kr949818/Kr949837/Kr950840/Kr950841 Kr949525/Kr949511,Kr949511,Kr949838/Kr949839,Kr950842/Kr950843 Kr949293,Kr949536/Kr949537,Kr949860/Kr949861,Kr950872/Kr950873 Kr940293,Kr949536/Kr949537,Kr949860/Kr949861,Kr950872/Kr950873
	UAM25667 UAM31103 UAM31104 UAM31104 UAM31106 UAM31107 UAM60272	59.316667 59.3661111 59.3661111 59.3661111 59.3661111	-135.56667 -135.799444 -135.799444 -135.799444 -135.799444 -135.799444	KP950014, $-/-*-/-*-/-$ KF940014, $-/-*-/-*-/-$ KF949319, KF949486, KF949487, KF949820/KF949821, KF950820/KF950821 KF950011, $-/-*-/-*-/-$ KF950920, KF99489, KF949822, KF949823, KF950822 KF950823 KF95040, $-/-,-/-,-/-$
	UAM31105 UAM50802 UAM50802 UAM50836 UAM56821 UAM76822 UAM76823	59.4108333 59.5316667 59.5316667 59.5316667 59.5316667 59.5316667 59.5316667	-136.0025 -135.348056 -135.348056 -135.348056 -135.348056 -135.348056 -135.348056 -135.348056 -135.348056	$ \begin{array}{l} {\rm KF950031}, -/-, -/-, -/- \\ {\rm KF949288, {\rm KF949524}, {\rm KF949525}, {\rm KF949848}, {\rm KF949849}, {\rm KF950860}, {\rm KF950861} \\ {\rm KF9409288, {\rm KF9495254}, {\rm KF9494525}, {\rm KF949848}, {\rm KF949849}, {\rm KF950861} \\ {\rm KF950039}, -/-, -/-, -/- \\ {\rm KF950047}, -/-, -/-, -/- \\ {\rm KF950047}, -/-, -/-, -/- \\ {\rm KF950047}, -/-, -/-, -/- \\ {\rm KF949566}, {\rm KF949566}, {\rm KF94956}, {\rm KF949876}, {\rm KF949877}, {\rm KF950892} \\ {\rm KF940047}, -/-, -/-, -/- \\ {\rm KF04004}, -/-, -/-, -/-, -/- \\ {\rm KF0404}, -/-, -/-, -/- \\ {\rm KF04004}, -/-, -/-, -/-, -/- \\ {\rm KF04004}, -/-, -/-, -/, -/- \\ {\rm KF04004}, -/-, -/-, -/-, -/, -/- \\ {\rm KF04004}, -/-, -/-, -/, -/, -/ \\ {\rm KF04004}, -/-, -/, -/, -/, -/, -/, -/, -/, -/, -/$
Alaska - Juneau Alaska - Misty Fjords	UAM50751 UAM50754 MSB157000 UAM23487	58.311111 58.311111 58.311111 58.343070 56.0833333	-130.13000/ -133.958333 -133.958333 -134.639750 -131.086460	кг949129, Кг949444 Кг949451, Кг94981 8/КГ949845, КГ950816/КГ950857 КГ94928, КГ949250, КГ949521, КГ949844, КГ949845, КГ950856 (КГ950857 КГ949256, КГ949390, КГ949391, КГ949724/КГ949725, КГ950719/КГ950720 КГ950050, - / - , -
Alaska - Southeast	UAM23490 UAM23491 UAM23492 UAM2098 UAM20949 UAM74125 UAM74128 UAM74121 UAM74131	56.083333 56.083333 56.083333 56.700000 56.700000 57.366667 57.366667 57.366667 57.366667	-131.086460 -131.086460 -131.086460 -132.250000 -132.250000 -133.466667 -133.466667 -133.466667 -133.466667 -133.466667	$\begin{split} & \text{KP950051}, -/-, -/-, -/- \\ & \text{KP920051}, -/-, -/-, -/-, -/- \\ & \text{KP94273}, \text{KP949462}, \text{KP949764}, \text{KP949794}, \text{KP940795}, \text{KP950793} \\ & \text{KP94273}, \text{KP949442}, \text{KP94945}, \text{KP949764}, \text{KP940776}, \text{KP950793} \\ & \text{KP94206}, \text{KP949444}, \text{KP94945}, \text{KP949778}, \text{KP940776}, \text{KP950777} \\ & \text{KP94926}, \text{KP949444}, \text{KP949451}, \text{KP949778}, \text{KP940776}, \text{KP950778} \\ & \text{KP94926}, \text{KP949450}, \text{KP949451}, \text{KP949784}, \text{KP949784}, \text{KP94076}, \text{KP950783} \\ & \text{KP92042}, -/-, -//- \\ & \text{KP350442}, -/-, -//- \\ & \text{KP35042}, -/-, -//- \\ & \text{KP32042}, -/-, -/- \\ & \text{KP32042}, -/-, -//- \\ & \text{KP32042}, -/-, -//- \\ & \text{KP32042}, -/-, -///- \\ & \text{KP32042}, -/-, -//- \\ & \text{KP32042}, -/-, -/- \\ & \text{KP32042}, -/-, -/- \\ & \text{KP32042}, -/-, -/- \\ & KP3204$

	Britilis Columbia - Varicenter Mand	UWBM25391	50.516667	0000511231-	NOROSOLY/COROSOLY/CREATELY/CREATELY/19567634/9956563/WULLAPALY
	in party - and in the local sector	L:AM52341	37.1.15556	0112882.0E1-	K1940791 K1940537 K1949533 K194013 6 K19403 6 K19408 7 K1950000 K1950000
	British Columbia - pouth	NISRI47719-	51.1553.17	-13922441-	KF9400000
		011001HSW	37,389300	-130.236700	KF040301, KF940382, KF940383, KF940716, KF940717, KF930712, KF930712, KF930713
		UAM52680	57,854722	-131.369444	SUBSOLD TUBOSCH (9887042) CONSTANT WAS ADDRESSED TO AND ADDRESS TO
		LAMB1070	57,865556	-151.284444	TAIMPOLE NEW DESCRIPTION NUMBER AND DESCRIPTION OF
	British Coloridian south	CWIND CLUG	50.051550	M22.002 12.1"	krutht
		DWBM75450	90,051350	822202 121-	OMOVER N CONSIGNATION - NUMBER OF A DESCRIPTION OF A DESC
	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	T COMPANY AND A D	AFTERD	Thread a training	Not and ACCUMATE AND AND THE PARTY OF A CAMPACITY AND ADDRESS AND
		- There are a second	1011010	COMPANY AND	MARCE IN CARDES IN TREASE IN DESIGN IN DESIGN IN SOCIAL IN TOORS, IN
	Yokichi - south	CAMP1620	00.707222	-112 (miles	WEATER AND AN AND AN A STATE NEW ADDRESS AND A STATE AND AN A STATE AND AND A STATE AND A
Percenterents entwicteduter - East					
	Manitobu	MSB55764	54,687500	-101.652780	DQ365723.K19a9414/K1949415.K1949746/K1949749/K1950746/K1950747
	New York:	-05M30-	42.157840	78.715031	DO3N5743.
		MARCENTRO -	41 305000	-71C 435 2000	LIGODOL MUMBER AND
	Contract of the second s	AND TABLE TO A TABLE	ALC: NOT THE		ACCURATE A DESIGN OF A DESIGN AND ACCURATE PROPERTY AND ACCURATE
			and an	Contrast of the local data	
	Pouns/Namu	CM26006258	39.752800	011180'6/-	00000017917 - (- * -) - * -]
	Quehoc	CMNNII00316	48.658100	-65.752300	00,065749, -/-,-/-,-/-
	Tentersen	At\$877.957.	35,611100	-83.425000	15205643/05205643/S5266643/IS266651 %Toto13/0266643/21858000
	Version	Man220K72	44 840100	123 535100	- KPU49404 KP049404 XP0407 XKP0407 I9 KF0507 4 KP0507 X
	Visuitia	AC0174076	18 566670	TX TANGTO	TETOPETA A APPTORUS LA COLORATIA DA COLORATIA TETOLO NA SETAR COL
Permittentia manarahana - Wast		In Style State	10000	(A100-000)	
	Alberta	ANNU GALET	41 011010	00070 S 11-	A FOLDER STANDARD STOLEN STOLEN STOLEN STOLEN STOLEN STOLEN.
		A DOD OF A D	a la	The Advention	
	A DESCRIPTION OF A DESC	ANNUAL AND		001000000000	THE DOLLAR ADDRESS OF THE ADDRESS AND ADDRESS AND ADDRESS ADDRE
	THEFSE COUNTRIA - CAMPAN	OCTAVITORIA	20.0110.05	000106021-	222056/WH22056/WY225056/WW2250A/WY26606/WW266066/WW262010
	Itritish Columbia - ports	MSB(99014	日日日日日の一番り	022816'621-	32205612422205612705612872225642372026564237865666421236666842123872666523
		UAMS2701	たらに生活になり	-133.518889	KF040247.KF040548/KF940541.KJ940864/KF940865,KF950664/KF930876
	British Columbia - wadh	MSB156370	49,202030	-117.897090	KFW49167,EFW69386,KF9492K7,KF949720,MF949721,KI 950715,KF950716
		WNH156589	040202.40	0040211-	Kin40108.KJ 940 588.KJ 9493386.KJ 940372.KJ 92940723.KJ 950217.KJ 950718
	California	MARKING MO	41.004030	-124 (91610	DOTNET KI SPIRING KI SPIRING KI KI SPIRING KI POSOTA KI POSOTA S
	Colorido	ASST4647	20.66667	700001.001-	SECONDERNING STOLD OF A DECEMBER AND A DESCRIPTION OF A D
	Linho	MCDUSISII	45.407500	00000000011-	1120/0121 0120/0223 1120/0233 F120/0237 V180/0263 3 020/03 021 020/03
		A PERSONNEL COLORA	CONTRACTOR OF	100 11 1000	
	and a second sec	A ADDRESS OF A DECK	Contract of the	AND	
	Mornian	AISHS0717	av. 554100	-101.029600	DQ385678,KJ-999418-KJ-949417,K4-949720KE-9492170KE-949295KE-KJ-950748
	News	hts874970	4102N4	-118-100031	102305001,K19444(20.2,1946429,K1949762,K1949762,K1960758,K1960758
	New Mexicit	WSB80191	12-823394	-106.693230	DQ385641X147920556437477X144977948477048457648656564543656565
		MISSYPHUE	33,0564941	-106.242662	INCONSIGNAL WARFAREN IN SOUTH AND
	Northeast Touristic	U/AM77795	00.010000	-111-340000	1000563W 0000557W65301637W85301637W2956163W2950561W051616163W
	Washington	MSBBAJKI	47:000100	006009721-	191056d.X C90056d.X C946r6d.X 9946r6b.UX C17676d.X C1765ed.X LanSWOU
	Yakon - muth	MSB194080	00.014103	-133.705475	DODRELN BSDDEFNELLOVELN BLLOVELN SELEVELN VECOVERN VECOVERN
		CCCTP10SIV	61.100000	007102 511-	windowski w service in the second with the second structure of the second stru
Persona manadata - Kashasi		A DESCRIPTION OF THE PARTY OF T	and a local data	The second s	AND REPORTED AND THE PARTY OF AN ADDRESS AND ADDRESS AND ADDRESS ADDRES
	The start of the second s	-MARCH 276-	24155000	1000000000000	ESTORY ALTERIOR OF A DECEMBER OF
	and the second se	and a second sec	and a state of the	and a state of the	a series a resource of the series of the ser
1	TTILLIG OF T	101210-140m	BOH COLON	*************	INCOMENTATION PROPERTIES AND A DESCRIPTION OF
and a second sec		Constant of the local division of the local			
		WISHARD IN			_KF94943550, P3494294, K794977256, P44773, K1950266 K1 950267
And the second se		NASSAL A			
#COTTRIPOLICE FIGURETRY		MS6940124			KT040261/KT6550740K1656241

Island	Alaska - Admiralty Island	UAM44653	57.429444	-133.938889	KF950196, -/-, -/-, -/-, -/-
		UAM44654	57.429444	-133.938889	KF950197,KF950367/KF950368, -/-,KF950627/KF950628
		UAM44655	57.429444	-133.938889	KF950198, -/-, -/-, -/-, -/-
		UAM44656	57.429444	-133.938889	KF950199,-/-,-/-,-/-
	Alaska - Baker Island	MSB221326	55.420000	-133.498000	KF950235,KF950289/KF950290,KF950439/KF950440,KF950547/KF950548
		MSB221335	55.420000	-133.498000	KF950236,KF950291/KF950292,KF950441/KF950442,KF950549/KF950550
	Alaska - Coronation Island	UAM23968	55.917778	-134.320833	KF950106, -/-, -/-, -/-, -/-
		UAM24726	55.917778	-134.320833	KF950180, -/-, -/-, -/-, -/-
	Alaska - Dall Island	UAM42079	54.744167	-132.771111	KF950188, -/-, -/-, -/-, -/-
		UAM42347	54.744167	-132.771111	KF950189, KF950363/KF950364, KF950477/KF950478, KF950621/KF950622
		UAM23750	54.783333	-132.866667	KF950167,KF950335/KF950336,KF950461/KF950462,KF950591/KF950592
		UAM73714	55.215556	-133.138056	KF950101, -/-, -/-, -/-, -/-
		UAM42080	55.250497	-133.116667	KF950095, -/-, -/-, -/-, -/-
	Alaska - Etolin Island	UAM20639	56.183333	-132.483333	KF950145.KF950313/KF950314, -/KF950569/KF950570
		UAM69891	56.186667	-132.632778	KF950100.KF950387/KF950388.KF950499/KF950500.KF950647/KF950648
	Alaska - Forrester Island	UAM42083	54.821389	-133.520833	KF950080. –//
		UAM42086	54.821389	-133.520833	KF950083, KF950359/KF950360, KF950475/KF950476, KF950617/KF950618
		UAM42092	54.821389	-133.520833	KF950135.KF950361/KF950362. =/ =.KF950619/KF950620
		11AM42715	54 821389	-133 520833	KF950081 -///-
		017CEMATI	54 871380	-133 520833	
	A lacka - Gravina Island	LIAMATO125	25170233	131 805833	
	Chasha - Chavilla Island	LCTOTINGO	555021.25	CCOCNO.1C1-	VE230414, -/-, -/-, -/- VE020137 VE020300/VE020300 / VE02020200 VE0202020
		1cin/iwivin	6660/1.66	CCOCU0-1C1-	UCOUCE IN 16+OUCE IN - / - , UECUCE IN 168 CUCE IN 1 CIUCE IN
		UAM52744	55.333333	-131.743566	KF950202, -/-, -/-, -/-, -/-
		UAM52745	55.333333	-131.743566	KF950203, -/-, -/-, -/-, -/-
		UAM52746	55.333333	-131.743566	KF950204, -/-, -/-, -/-, -/-
	Alaska - Heceta Island	UAM23835	55.803056	-133.591389	KF950172,KF950339/KF950340, -/-,KF950595/KF950596
		UAM23836	55.803056	-133.591389	KF950173,-/-,-/-,-/-
		UAM23837	55.803056	-133.591389	KF950174, KF950341/KF950342, KF950463/KF950464, KF950597/KF950598
		UAM23838	55.803056	-133.591389	KF950175, -/-,-/-,-/-
	Alaska - Kosciusko Island	UAM43254	55.918889	-133.685000	KF950192.KF950365/KF950366//-
		UAM43389	55.918889	-133.685000	KF950193, -/-, -/-, -/-
		UAM43406	55.918889	-133.685000	/KF950625/KF950626
		UAM43526	55.918889	-133.685000	KF950195///
	Alaska - Kuiu Island	UAM43240	56.321389	-134.071667	/KF950623/KF950624
		UAM43396	56.321389	-134.071667	KF950194//
		MSB148932	56.631367	-133.737167	KF950222,KF950259/KF950260,KF950411/KF950412,KF950519/KF950520
		MSB148945	56.631367	-133.737167	KF950223, -/-, -/-, -/-
	Alaska - Kupreanof Island	UAM20940	56.866667	-133.316667	KF950090, -/-, -/-, -/-, -/-
	95	UAM20941	56.866667	-133.316667	KF950148,-/-,-/-,-/-
		UAM20942	56.866667	-133.316667	KF950149,KF950319/KF950320, -/ -, KF950575/KF950576
		UAM23874	56.974830	-133.941160	KF950087, -/-,-/-,-/-,-/-
		UAM23875	56.974830	-133.941160	KF950176,KF950343/KF950344, -/-,KF950599/KF950600
	Alaska - Lulu Island	UAM42712	55.439722	-133.455278	KF950190, -/-, -/-, -/-, -/-
		MSB221499	55.468500	-133.425800	-,KF950293/KF950294, -/-,KF950551/KF950552
		MSB221504	55.468500	-133.425800	KF950237,KF950295/KF950296,KF950443/KF950444,KF950553/KF950554
		MSB221544	55.468500	-133,425800	-,KF950297/KF950298, -/-,-/-
		MSB221550	55,468500	-133.425800	KF950238, -/-, -/-, -/-, -/-
	Alaska - Mitkof Island	UAM31280	56.583333	-132.833333	KF950093,KF950347/KF950348, -/-,-/-
		UAM31281	56.583333	-132.833333	KF950181, -/-, -/-, -/-
		UAM74305	56.666667	-132.833333	KF950102/-, -/-, -/-, -/-

Sorex monticolus

	UAM23174	56.733333	-132.966667	KF950104, -/-, -/-, -/-, -/-
Alaska - Noyes Island	UAM23652	55.451977	-133.659835	KF950160, -/-, -/-, -/-, -/-
	UAM23653	55.451977	-133.659835	KF950084,KF950331/KF950332, -/-,KF950585/KF950586
	UAM23654	55.451977	-133.659835	KF950161,-/-,-/-,-/-
	UAM23674	55.451977	-133.659835	KF950162, -/-, -/-, -/-, -/-
	UAM23675	55.451977	-133.659835	KF950163, -/-, -/-, KF950587/KF950588
Alaska - Prince of Wales Island	UAM23718	54.766667	-132.183333	KF950164, -/-, -/-, -/-, -/-
	UAM23719	54.766667	-132.183333	KF950165,KF950333/KF950334, -/-,KF950589/KF950590
	UAM23720	54.766667	-132.183333	KF950166///
	UAM23721	54.766667	-132.183333	KF950092, -/-, -/-, -/-, -/-
	UAM20443	55.833333	-133.150000	KF950142, -/-, -/-, -/-, -/-
	UAM20445	55.833333	-133.150000	KF950143, -/-, -/-, -/-, -/-
Alaska - Revillagigedo Island	UAM71472	55.489444	-131.598611	KF950213, -/-, -/-, -/-, -/-
	UAM23472	55.502382	-131.028099	KF950153, -/-, -/-, -/-, -/-
	UAM23473	55.502382	-131.028099	KF950154,KF950327/KF950328,KF950459/KF950460,-/-
	UAM23965	55.816667	-131.366667	KF950177,-/-,-/-,-/-,-/-
	UAM23967	55.816667	-131.366667	KF950178././.KF950601/KF950602
Alaska - San Fernando Island	MSB221162	55.454640	-133.361020	KF950124,KF950287/KF950288,KF950437/KF950438,KF950545/KF950546
	UAM67523	55.473333	-133.389444	KF950210, -/-, -/-, -/-
	UAM67524	55.473333	-133.389444	KF950211, -/-, -/-, -/-, -/-
Alaska - Suemez Island	UAM23621	55.283333	-133.307199	KF950158, -/-, -/-, -/-, -/-
	UAM23622	55.283333	-133.307199	KF950159, -/-, -/-, -/-, -/-
	UAM24009	55.283333	-133.307199	KF950179,KF950345/KF950346, -/-,KF950603/KF950604
Alaska - Warren Island	UAM31759	55.875000	-133.841667	KF950184, -/-, -/-, -/-, -/-
	UAM23409	55.875000	-133.841667	KF950091, -/-, -/-, -/-, -/-
	UAM31757	55.875000	-133.841667	KF950182,KF950351/KF950352,KF950467/KF950468,KF950609/KF950610
	UAM31760	55.875000	-133.841667	KF950185,KF950353/KF950354,KF950469/KF950470,KF950611/KF950612
	UAM31758	55.875000	-133.841667	KF950183, -/-, -/-, -/-, -/-
Alaska - Wrangell Island	UAM62279	56.318333	-132.286111	KF950207, -/-,-/-,-/-
	UAM22519	56.350000	-132.333333	-,KF950323/KF950324, - / - ,KF950579/KF950580
Alaska - Zarembo Island	UAM43246	56.333333	-132.833333	KF950191, -/-, -/-, -/-
	UAM20615	56.416667	-132.833333	KF950134,KF950309/KF950310, -/-,KF950565/KF950566
	UAM20616	56.416667	-132.833333	KF950089, -/-, -/-, -/-, -/-
	UAM20617	56.416667	-132.833333	KF950144,KF950311/KF950312, -/- ,KF950567/KF950568
British Columbia - Bischof Island	HGSomo0202	52.582605	-131.564128	KF950139,KF950241/KF950242,KF950395/KF950396,KF950505/KF950506
British Columbia - Graham Island	UAM52610	52.366667	-132.208333	KF950110, -/-, -/-, -/-, -/-
	UAM52614	52.366667	-132.191667	KF950200,KF950373/KF950374,KF950483/KF950484, =/ =
	UAM52616	52.366667	-132.191667	KF950201, KF950375/KF950376, KF950485/KF950486, KF950633/KF950634
	HGSomo0602	53.255084	-132.065841	KF950141,KF950245/KF950246,KF950397/KF950398,KF950507/KF950508
British Columbia - Moresby Island	HGSomo0402	52.343437	-131.433500	KF950140,KF950243/KF950244,-/-,-/-
Alaska - Cleveland Peninsula	UAM23763	55.750405	-132.183333	KF950088, -/-, -/-, -/-, -/-
	UAM23766	55.750405	-132.183333	KF950168,KF950337/KF950338, -/-,KF950593/KF950594
	UAM23767	55.750405	-132.183333	KF950169, -/-, -/-, -/-, -/-
	UAM23768	55.750405	-132.183333	KF950170, -/-, -/-, -/-, -/-
	UAM23769	55.750405	-132.183333	KF950171 / - , - / - , - / - , - / -
Alaska - Foggy Bay	UAM23411	54.983333	-130.960624	KF950151, -/-, -/-, -/-, -/-
	UAM23412	54.983333	-130.960624	KF950152,KF950325/KF950326,-/-,KF950581/KF950582
	UAM23420	54.983333	-130.960624	KF950217, -/-, -/-, -/-
Alaska - Glacier Bay	UAM30461	58.466667	-135.850000	KF950107, -/-, -/-, -/-, -/-
Alaska - Juneau	MSB156996	58.343070	-134.639750	KF950229, -/-, -/-, -/-
	MSB149433	58.362037	-134.604783	KF950225,KF950263/KF950264,KF950415/KF950416,KF950523/KF950524

		MSB156966	58.528400	-134.827167	KF950228 KF950271/KF950272 KF950423/KF950424 KF950531/KF950532
	Alaska - Misty Fiords	UAM33261	54.943611	-130.333611	KF950186//
		UAM33262	54.943611	-130.333611	KF950187, -/-, -/-, -/-, -/-
		UAM23506	56.083333	-131.086460	KF950155, -/-, -/-, -/-, -/-
		UAM23560	56.083333	-131.086460	KF950156,KF950329/KF950330, -/-,KF950583/KF950584
		UAM23564	56.083333	-131.086460	KF950157, -/-, -/-, -/-
	Alaska - Southeast	MSB193403	55.966500	-130.060100	KF950231, KF950279/KF950280, KF950431/KF950432, KF950539/KF950540
		MSB193469	55.966500	-130.060100	KF950232/-,-/-,-/-
		MSB193471	55.966500	-130.060100	KF950121, KF950283/KF950284, KF950435/KF950436, KF950543/KF950544
		MSB193665	55.966500	-130.060100	KF950233, -/-, -/-, -/-, -/-
		UAM20708	56.700000	-132.250000	KF950216,KF950315/KF950316,KF950455/KF950456,KF950571/KF950572
		UAM20709	56.700000	-132.250000	KF950146,KF950317/KF950318,KF950457/KF950458,KF950573/KF950574
		UAM20710	56.700000	-132.250000	KF950147, -/-,-/-,-/-
		UAM20951	56.700000	-132.250000	KF950150.KF950321/KF950322, -/KF950577/KF950578
		UAM74397	57.366667	-133.466667	KF950214, -/-, -/-, -/-
	British Columbia - central	UAM52266	55.331944	-128.965278	KF950218,KF950371/KF950372,KF950481/KF950482,KF950631/KF950632
		UAM48717	55.331944	-128.965278	KF950096,KF950369/KF950370,KF950479/KF950480,KF950629/KF950630
	Washington	UAM67038	47.100000	-121.016667	KF950113, -/-, -/-, -/-
		MSB54615	47.371675	-123.547194	KF950138,KF950303/KF950304,KF950449/KF950450,KF950561/KF950562
Northern	Alaska - Glacier Bay	UAM30462	59.069444	-138.348611	KF950108, -/-, -/-, -/-, -/-
	Alaska - Haines	UAM23661	59.150000	-135.350000	KF950105, -/-, -/-, -/-, -/-
		MSB193310	59.217640	-135.448180	KF950118,KF950275/KF950276,KF950427/KF950428,KF950535/KF950536
		MSB195074	59.245900	-135.175300	KF950234, -/-, -/-, -/-, -/-
		MSB193286	59.266710	-135.603360	KF950230/-, -/-, -/
		MSB193394	59.266710	-135.603360	KF950119,KF950277/KF950278,KF950429/KF950430,KF950537/KF950538
		MSB193411	59.266710	-135.603360	KF950120,KF950281/KF950282,KF950433/KF950434,KF950541/KF950542
		MSB193298	59.294140	-135.696130	KF950117,KF950273/KF950274,KF950425/KF950426,KF950533/KF950534
		MSB195088	59.300100	-135.704200	KF950122, -/-, -/-, -/-
		MSB195092	59.300100	-135.704200	KF950123,KF950285/KF950286, -/-, -/-, -/-
		MSB146967	59.408383	-136.006867	KF950115, KF950257/KF950258, KF950409/KF950410, KF950517/KF950518
		UAM64434	59.623222	-136.089333	KF950099,KF950381/KF950382,KF950493/KF950494,KF950641/KF950642
		UAM64437	59.623222	-136.089333	KF950208,KF950383/KF950384,KF950495/KF950496,KF950643/KF950644
		UAM64444	59.623222	-136.089333	KF950209, KF950385/ KF950386, KF950497/ KF950498, KF950645/ KF950646
	Alaska - interior	UAM31367	61.232778	-149.594444	KF950109,KF950349/KF950350,KF950465/KF950466,KF950607/KF950608
		UAM58449	65.166667	-143.550000	KF950206,KF950379/KF950380,KF950491/KF950492,KF950639/KF950640
		MSB143123	68.450000	-149.470000	KF950114, KF950251/KF950252, KF950403/KF950404, KF950513/KF950514
	Alaska - Juncau	UAM33266	58.533333	-133.6833333	KF950094,KF950355/KF950356,KF950471/KF950472,KF950613/KF950614
	Alaska - Southeast	UAM76830	59.615833	-135.168333	KF950103,KF950393/KF950394,KF950503/KF950504,KF950653/KF950654
		UAM76828	59.616111	-135.138333	KF950215,KF950391/KF950392,KF950501/KF950502,KF950651/KF950652
	British Columbia - north	MSB155620	57.836800	-131.390100	KF950227,KF950267/KF950268,KF950419/KF950420,KF950527/KF950528
		UAM52753	57.865556	-131.284444	KF950205, KF950377/KF950378, KF950487/KF950488, KF950635/KF950636
	Montana	UAM66451	47.638000	-113.791200	KF950111,-/-,-/-,-/-,-/-
	Yukon - central	MSB145726	63.543100	-137.194800	KF950221,KF950255/KF950256,KF950407/KF950408, -/-
		MSB144475	63.841300	-135.461400	KF950220,KF950253/KF950254,KF950405/KF950406,KF950515/KF950516
	Yukon - south	UAM52756	60.838333	-137.329167	KF950098, -/-, KF950489/KF950490, KF950637/KF950638
		MSB149318	61.200450	-133.046933	KF950224, KF950261/KF950262, KF950413/KF950414, KF950521/KF950522
		UAM66920	62.275954	-140.695895	KF950112, -/-,-/-,-/-
	Utah	MSB77013	40.186140	-111.139530	KF950136,KF950307/KF950308,KF950453/KF950454,KF950563/KF950564
Southern	Arizona	MSB47301	31.903300	-109.275000	KF950240,KF950301/KF950302,KF950447/KF950448,KF950559/KF950560
	Colorado	MSB76658	40.450000	-106.000000	KF950126,KF950305/KF950306,KF950451/KF950452,-/-
	New Mexico	MSB140765	35.800000	-106.500000	KF950219,KF950247/KF950248,KF950399/KF950400,KF950509/KF950510

MSB143043	KF950085,KF950249/KF950250,KF950401/KF950402,KF950511/KF950512
UAM34528	KF950127.KF950357/KF950358,KF950473/KF950474,KF950615/KF950616
UAM36763	KF950128, -/-,-/-,-/-,-/-
UAM30576	KF950086, -/-, -/-, KF950605/KF950606
MSB229215	KF950125,KF950299/KF950300,KF950445/KF950446,KF950555/KF950556
UAM50145	KF950097, -/-, -/-, -/-, -/-
MSB156348	KF950116,KF950269/KF950270,KF950421/KF950422,KF950529/KF950530
MSB43638	KF950239, -/-, -/-, KF950557/KF950558
MSB155610	KF950226,KF950265/KF950266,KF950417/KF950418,KF950525/KF950526

Table 2. Primer list and PCR annealing temperatures. Primers used for amplification and sequencing mtDNA Cytochrome B (cyt*b*), and nuclear loci Alcohol Dehydrogenase 2 (ADH2), Apolipoprotein B (ApoB), Protein C-est-2 (ETS2), β -fibrinogen (FGB), interphotoreceptor retinoid-binding protein (IRBP), Recombination Activating Protein 1 (Rag1) and zona pellucida 3 (ZP3) for species indicated, including outgroups in each genus, with annealing temperatures (°C) indicated in parentheses.

Species	Primer	Sequence (5'-3')	Reference
	cytb (50)		
M. longicaudus	L14724		(Irwin et al. 1991; Kocher & White 1989)
	Vole 14		(Conroy & Cook 1999)
Peromyscus &	L14734		(Ohdachi et al. 2001)
S. monticolus	CytBRev		(Anderson and Yates 2000)
S. monticolus	ADH2 (50)		
	ADH2F		(Lyons et al. 1997)
	ADH2R		(Lyons <i>et al.</i> 1997)
S. monticolus	ApoB (54.6)		
	ApoBF		(Dubey <i>et al.</i> 2007)
	ApoBR		(Dubey et al. 2007)
M. longicaudus	ETS2 (63)		
	ETS2F		(Lyons <i>et al.</i> 1997)
	ETS2R		(Lyons et al. 1997)
M. longicaudus	FGB (65)		
8	MSB MFGBF	CGTTTGGATTGGCGGAGTGG	This study, modified from Matocq et al. (2007)
	MSB_MFGBR	GCACGTACGACAGGGACAACG	This study, modified from Matocq et al. (2007)
B	DOD ((A)		
Peromyscus	FGB (63)	COOCTETE COL TROCOTCO	
	MSB_PFGBF	GCCGTTTGGATTGGCTGC	This study, modified from Matocq <i>et al</i> . (2007)
	M8B_PFGBK	CGACAGGGACAATGATGGC	This study, modified from Matocq et al. (2007)
S. monticolus	FGB (63)		
	MSB SFGBF	GCCATCCTCTTTAGAACACTG	This study, modified from Matocq et al. (2007)
	MSB_SFGBR	CGATGGCTGGTAGGCGTCC	This study, modified from Matocq et al. (2007)
D			
Peromysucs	IKDP (00)	COACCACCTACTCACTCACC	This study, modified from Stanhons et al. (1992)
	MSB_PIKBPF	CCAGGAGGTACTGAGTGAGC	This study, modified from Stanhope <i>et al.</i> (1992)
	MSB_PIKBPK	GETGAGIAGICEATGETAGE	This study, modified from Stanhope et al. (1992)
M. longicaudus	Rag1 (60)		
	MSB_Rag1F	GCAGTCTCCTTTAGTTCCAGAC	This study, modified from Steppan et al .(2004)
	MSB_Rag1R	CCAACAGGAACAACGTCAAGC	This study, modified from Steppan et al.(2004)
Davonnicaus	7.2 (56)		
1 eromyscus	736EA		(Turner and Hoakstra 2006)
	Z37P A		(Turner and Hockstra 2000)
	LJ/KA		(1 unier and rioekstra 2000)

- Anderson, S. and T. L. Yates. 2000. A new genus and species of phyllotine rodent from Bolivia. Journal of Mammalogy 81:18-36.
- Conroy, C. J. and J. A. Cook. 1999. MtDNA evidence for preated pulses of speciation within Arvicoline and Murid rodents. Journal of Mammalian Evolution 6:221-245.
- Dubey, S., N. Salamin, S. D. Ohdachi, P. Barriere, and P. Vogel. 2007. Molecular phylogenetics of shrews (Mammalia : Soricidae) reveal timing of transcontinental colonizations. Molecular Phylogenetics and Evolution 44:126-137.
- Irwin, D. M., T. D. Kocher, and A. C. Wilson. 1991. Evolution of the Cytochrome *b* gene of mammals. Journal of Molecular Evolution 32:128-144.
- Kocher, T. D. and T. J. White. 1989. Evolutionary analysis via PCR. Stockton Press, New York.
- Lyons, L. A., T. F. Laughlin, N. G. Copeland, N. A. Jenkins, J. E. Womack, and S. J. Obrien. 1997. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nature Genetics 15:47-56.
- Matocq, M. D., Q. R. Shurtliff, and C. R. Feldman. 2007. Phylogenetics of the woodrat genus *Neotoma* (Rodentia: Muridae): Implications for the evolution of phenotypic variation in male external genitalia. Molecular Phylogenetics and Evolution 42:637-652.
- Ohdachi, S., N. E. Dokuchaev, M. Hasegawa, and R. Masuda. 2001. Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic *Sorex* shrews based on the mitochondrial cytochrome *b* sequences. Molecular Ecology 10:2199-2213.
- Stanhope, M. J., J. Czelusniak, J.-S. Si, J. Nickerson, and M. Goodman. 1992. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Molecular Phylogenetics and Evolution 1:148-160.
- Steppan, S. J., R. M. Adkins, and J. Anderson. 2004. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology 53:533-553.
- Turner, L. M. and H. E. Hoekstra. 2006. Adaptive evolution of fertilization proteins within a genus: Variation in ZP2 and ZP3 in deer mice (*Peromyscus*). Molecular Biology and Evolution 23:1656-1669.

Table 3. Diversity indices, expansion statistics and models of evolution. n=haploid sample size; L=length of sequence; S=variable sites; Eta=#mutations; h=#haplotypes; Hd=haplotype diversity; π =nucleotide diversity; D=Tajima's D; Fs=Fu's FS; r=raggedness index; R2=Ramos-Osnin's R2; Model=model of evolution as selected by MODELTEST. Bold values are significant at p<0.05 (p<0.02 for FS). Refugia = refugial islands, Non-refugia = non refugial islands (see Table 4).

Species	Group	Gene	u	L	s	ų	PН	π	D	Fs (p<.02)	R2	Model of Evolution
M. longicaudus	All Samples	Cytb	140	1143	174	100	0.992	0.01423	-0.08804	-0.61525	0.08687	TrN+I+G
		ETS2	63	733								GTR+I+G
		FGB	62	600								HKY+G
		Ragl	70	963								НКҮ
	No Outgroups	Cytb	136	1143	128	96	0.992	0.01037	-0.09456	-0.57918	0.08725	
		ETS2	61	733	14	14	0.477	0.002	-0.04807	-0.1418	0.09083	
		FGB	LL	600	18	19	0.371	0.00094	-0.00791	-0.18466	0.09204	
		Ragl	68	963	6	10	0.182	0.00023	-0.00041	-0.10372	0.09885	
	Island	Cytb	86	1143	73	57	0.984	0.00519	-0.09551	-0.29755	0.09479	HKY+I+G
		ETS2	35	733	6	5	0.138	0.00061	-0.0251	0.00678	0.11424	HKY+I+G
		FGB	42	600	7	8	0.182	0.00033	-0.0096	-0.01618	0.11433	HKY+I
		Ragl	39	963	e	4	0.124	0.00013	-0.00142	-0.00572	0.11697	TrN
	Refugia	Cytb	36	1143	34	19	0.948	0.0052	-0.10885	-0.10906	0.1141	HKY+G
		ETS2	24	733	7	Э	0.163	0.00024	-0.01231	0.20236	0.1708	НКҮ
		FGB	30	600	4	б	0.297	0.00132	-0.02833	0.08965	0.13912	НКҮ
		Ragl	28	963	2	З	0.489	0.00055	-0.02278	0.14512	0.14835	НКҮ
	Non-refugia	Cytb	50	1143	54	40	0.986	0.00555	-0.09545	-0.20269	0.10568	TrN+I
		ETS2	46	733	Π	Э	0.127	0.00123	-0.03223	0.04974	0.12001	НКҮ
		FGB	54	009	9	٢	0.244	0.00044	-0.00255	0.07172	0.12803	TrN+I
		Ragl	50	963	7	3	0.117	0.00012	-0.00293	0.09541	0.13511	TrN
Peromyscus	All Samples	Cytb	192	1143	209	107	0.984	0.01224	-0.09268	-0.69546	0.08185	GTR+I+G
		FGB	109	479	26	19	0.24	0.00098	-002871	-0.29886	0.08599	НКҮ
		IRBP	66	421	6	6	0.381	0.00116	-0.00929	-0.24871	0.08744	НКУ
		Zp3	112	314	11	14	0.233	0.00094	-0.01977	-0.25383	0.08864	HKY+I
	No Outgroups	Cytb	190	1143	145	109	0.984	0.01042	-0.07315	-0.55263	0.08163	
		FGB	107	479	21	18	0.228	0.00078	-0.01356	-0.22712	0.08829	
		IRBP	96	421	6	6	0.391	0.0012	-0.03044	-0.21412	0.08876	
		Zp3	109	314	6	12	0.223	0.00087	-0.015	-0.24393	0.08962	

	Tatand	de la	150	CV 1 1	00	00	01000	0.00150	0000	CF11C V	101000	CHINE
r. keent	ISIANG	Cyto	ccl	1140	60	20	0.70	V.UU409	7//0.0-	c+11c.u-	0.00400	UTIX+ITU
		FGB	75	479	5	3	0.065	0.00014	-0.10294	-0.40733	0.08532	TrN+I
		IRBP	63	421	4	5	0.391	0.00107	-0.02635	-0.12602	0.09724	HKY+I
		Zp3	76	314	8	6	0.199	0.00089	-0.01263	-0.17179	0.09829	НКҮ+І
	Refugia	Cytb	47	1143	42	29	0.97	0.00463	-0.08343	-0.15405	0.4077	HKY+I
		FGB	40	479	4	5	0.395	0.0009	-0.01661	0.11807	0.13538	TrN
		IRBP	32	421	4	5	0.571	0.00171	-0.01988	0.11493	0.13758	НКҮ
		Zp3	42	314	9	4	0.603	0.0066	-0.07205	-0.0308	0.11389	T _r N+I
	Non-refugia	Cytb	108	1143	100	68	0.984	0.00613	-0.08062	-0.3738	0.09076	GTR+I+G
		FGB	110	479	0	1	0	0			ř	НКҮ
		IRBP	94	421	4	7	0.665	0.00224	-0.02728	-0.09094	0.09908	HKY+I
		Zp3	110	314	8	6	0.254	0.00111	-0.0272	-0.08196	0.10334	HKY+I
S. monticolus	All Samples	Cytb	158	1140	138	58	0.87	0.01483	-0.08163	-0.67266	0.08461	GTR+I+G
		ADH2	LL	281	7	ŝ	0.076	0.00028	-0.08555	-0.41299	0.08496	НКУ
		ApoB	55	500	30	12	0.62	0.00611	-0.08992	-0.1969	0.09157	НКҮ
		FGB	75	589	13	6	0.117	0.00058	-0.01859	-0.12373	0.09643	HKY+I+G
	No Outgroups	Cytb	148	1140	71	51	0.852	0.00905	-0.10863	-0.50509	0.08594	
		ADH2	72	281	2	3	0.055	0.00025	-0.10054	-0.3663	0.08607	
		ApoB	50	500	5	5	0.541	0.00317	-0.05092	-0.13439	0.09457	
		FGB	68	589	4	4	0.044	0.00011	-0.08883	-0.37778	0.08677	
	Island	Cytb	115	1140	38	31	0.764	0.00151	-0.06231	-0.15173	0.09154	HKY+I+G
		ADH2	48	281	П	2	0.041	0.00015	-0.07474	-0.21871	0.09318	HKY+I
		ApoB	26	500	5	4	0.338	0.00155	-0.04454	0.02484	0.1175	НКҮ
		FGB	46	589	5	5	0.146	0.00032	-0.00623	-0.03408	0.11045	HKY+I
	Refugia	Cytb	34	1140	25	16	0.913	0.00341	-0.08419	-0.02008	0.1172	GTR+I
		ADH2	30	281	0	1	0	0	ĩ		Ŧ	JC
		ApoB	18	500	2	ŝ	0.392	0.00084	-0.01306	0.22258	0.17967	НКҮ
		FGB	30	589	3	4	0.251	0.00046	-0.01126	0.14274	0.15434	НКҮ
	Non-refugia	Cytb	81	1140	35	26	0.751	0.00146	-0.04799	-0.09461	00660.0	НКҮ+G
		ADH2	99	281	-	5	0.6	0.00022	-0.07799	-0.33319	6660.0	HKY+I
		ApoB	34	500	ю	5	0.299	0.0018	-0.03143	0.08012	0.13118	НКҮ
		FGB	62	589	4	4	0.182	0.00041	-0.01448	0.02697	0.12298	HKY+I

Table 4. Locality information and abbreviations. Refugia = potential refugial islands and hypothesized island groups = island and adjacent mainland populations based on paleo-shoreline reconstruction and LGM glacial cover. —= not included in the analyses that require the given information. Localities included in the Shimodaira-Hasegawa tests are indicated with asterisk.

Region	Location	Refugia	Hypothesized island group	Areaha	Distance (km)
Alaskan Islands	Admiralty (ADM)*	no	Inner Northern	431,309	5
	Baker (BKR)*	no	Middle and Outer Southern	13,512	13
	Baranof (BNF)	no	Outer Northern	424,016	6
	Chichagof (CGF)*	yes	Outer Northern	545,317	5
	Coronation (CRN)*	yes	Coronation	9,120	11
	Dall (DAL)*	yes	Middle and Outer Southern	65,869	7
	Etolin (ETN)*	no	Middle and Outer Southern	88,995	2
	Forrester (FRS)*	yes	Forrester	1,013	34
	Gravina (GRV)*	no	Inner Southern	23,307	3
	Heceta (HEC)*	no	Middle and Outer Southern	18,916	9
	Kosciusko (KSC)*	no	Middle and Outer Southern	48,259	7
	Kuiu (KUI)*	no	Middle and Outer Southern	193,455	3
	Kupreanof (KRF)*	no	Middle and Outer Southern	282,415	2
	Lulu (LUL)*	yes	Middle and Outer Southern	6,022	11
	Mary (MRY)	no	-	1,763	8
	Mitkof (MIT)*	по	Middle and Outer Southern	54,753	1
	Noyes (NYS)*	yes	Middle and Outer Southern	12,836	13
	Orr (ORI)			~~	227
	Prince of Wales (POW)*	no	Middle and Outer Southern	578,202	6
	Revillagigedio (REV)*	no	Inner Southern	302,659	2
	San Fernando (SNF)*	no	Middle and Outer Southern	8,782	11
	Suemez (SMZ)*	yes	Middle and Outer Southern	15,200	7
	Sukkwan (SWN)	-		4	
	Tuxekan (TXN)	no		8,523	7
	Warren (WRN)	yes	Middle and Outer Southern	5,067	11
	Wrangell (WRG)*	no	Middle and Outer Southern	56,948	1
	Zarembo (ZRB)*	no	Middle and Outer Southern	47.263	5
British Columbian Islands	Bischof (BSF)	~	-	-	-
	Graham (GRM)	-	-	-	-
	Hotsprings (HTS)		-		
	Moresby (MRB)	\rightarrow	-	-	-
	Ramsay (RMS)		-	-	-
	Vancouver (VCR)	-	-	-	-
Mainland	British Columbia (BC)	no	-		
	Mainland Southeast Alaska (MLSE)	no	-		
	Northern mainalnd Southeast (NMLSE)	no	-		
	Interior Alaska, Yukon and White Pass (North)	no	-		
	Cleveland Peninsula (CP/MLCP)*	-	Inner Southern	100	
	Foggy Bay (FB/MLFB)*	50	Middle and Outer Southern	100	270
	Glacier Bay (GB/MLGB)*	1	Outer Northern	-	5
	Haines (HNS/MLHNS)*	-	8		-
	Interior Alaska (IAK/MLS)	2		1	-
	Juneau (JNO/MLJNO)*	-	Inner Northern	-	- 1
	Klukwan (KLU/MLKLU)	-	-	÷	-
	Misty Fjords (MFD/MLMFD)*		Inner Southern	\simeq	
	Southeast Central (SEC AK/MLSEC)*	<u>_</u>	-	-	
	Southeast North (SEN AK/MLSEN)	223	-	-	<u></u>
	Southeast South (SES AK/MLSES)	2	-	-	-
	Skagway (SKW/MLSKW)	<u></u>	-		
	Taiya River (TYR/MLTYR)		-	122	-
	White Pass (WP/MLWP)	-	Ξ.	-	-
	British Columbia - Central (BCC)*	-	-	-	-
	British Columbia - North (BCN)	-	-	-	-
	British Columbia - South (BCS)	-	-	5÷	-
	Washington (WA)	-	-	-	-
	Yukon Territory - Central (YTC)	-	-	-	-
	Yukon Territory - South (YTS)*	-	_	-	-

Table 5. Between group net genetic divergences among major cyt *b* lineages of *M*. *longicaudus*, *Peromyscus* and *S. monticolus*. The number of base differences per site from estimation of net average between groups of sequences is shown. Standard error estimate(s) are shown above the diagonal. All ambiguous positions were removed for each sequence pair. Evolutionary analyses were conducted in MEGA5.

M. longicandus	Central	Colorado Plateau	Island	Northern	North Pacific Coast	Southern	M. pennsylvanicus	M. montanus
Central		0.40%	0.40%	0.40%	0,40%	0.50%	0.80%	0.80%
Colorado Plateau	2.50%		1.30%	0.30%	1.00%	0.50%	0.80%	0.80%
Island	2.40%	0.30%		0.30%	0.30%	0.50%	0.80%	0.70%
Northern	2.50%	1.30%	1.20%		%06.0	0.50%	0.80%	0.70%
North Pacific Coast	2.30%	0.30%	1.20%	0.20%		0.50%	0.80%	0.80%
Southern	3.40%	3.60%	3.70%	3.80%	3.70%		9.00%	7.80%
M. pennsylvanicus	9.00%	9.30%	10.20%	10.10%	%06.6	0.80%		0.60%
M. montanus	8.50%	8.30%	8.60%	8.90%	%00%	0.70%	4.70%	
Peromyscus	eromyscus sp. nov.	P. keeni	P. maniculatus - East	P. maniculatus - West	P. maniculatus - Southwest	P. leucopus	P. melanotis	
Peromyscus sp. nov.		0.50%	0.50%	0.50%	0.50%	0.90%	1.00%	
P. keeni	3.60%		0.50%	0.50%	0,40%	0.80%	1.00%	
P. maniculatus - East	4.00%	3.80%		0.40%	0.50%	9.20%	1.00%	
P. maniculatus - West	3.50%	3.80%	3.20%		0.50%	9.00%	13.30%	
P. maniculatus - Southwest	3.50%	2.30%	3.20%	3.10%		9.40%	12.70%	
P. leucopus	10.70%	10.00%	0.80%	0.90%	%06'0		1.10%	
P. melanotis	13,40%	13.30%	12.90%	1.00%	1.00%	14.00%		
S. monticolus	Island	Northern	Southern	S. cinereus	S. fumeus	S. vagrans		
Island		0.50%	0.60%	0.70%	0.80%	0.60%		
Northern	4.80%		0.40%	0.70%	0.80%	0.60%		
Southern	5.40%	1.70%		9.20%	8.90%	4.60%		
S. cinereus	9.10%	8.80%	0.70%		0.70%	0.70%		
S. fumeus	8.40%	9.00%	0.80%	8.40%		0.80%		
S. vagrans	5.90%	530%	0.50%	8.30%	8.70%			

Table 6. Divergence date estimates for the island lineages of *M. longicaudus*, *P. keeni* and*S. monticolus* based on both cyt *b* and phased multi-locus analysis.

		-	cytb			multilocu	S
Species	lineage	95% HPD lower	mean	95% HPD upper	95% HPD lower	mean	95% HPD upper
M.longicaudus	Island	156,100	215,700	285,900			
	Northern/Island	296,500	402,000	516,400	12,240	15,600	19,640
Peromyscus	P. keeni	207,500	316,500	438,400	111,400	138,600	170,200
	Peromyscus sp. nov.	69,103	194,600	339,700	48,400	106,000	167,000
S. monticolus		475,900	756,400	1,037,400	104,900	193,800	286,400
	Island	72,200	114,400	166,300	38,500	62,000	92,500
	Southern	49,900	130,200	219,800	100	42,000	108,600

Table 7. Cyt *b* Shimodaira and Hasegawa tests for *M. longicaudus*, *P. keeni* and *S. monticolus* for both Bayesian and Maximum Likelihood trees. *=significant p-value at $\alpha \leq 0.05$.

Species	Tree	-ln L	Diff -ln L	Р
M. longicaudus	Bayesian M. longicaudus	4103.79848	387.35381	0.000*
	Bayesian P. keeni	3844.56911	128.12444	0.000*
	Bayesian S. monticolus	4107.56598	391.12131	0.000*
	ML M. longicaudus	3716.44467	(best)	
	ML P. keeni	3840.46993	124.02526	0.000*
	ML S. monticolus	3982.99472	266.55006	0.000*
P. keeni	Bayesian M. longicaudus	5014.75826	623.72512	0.000*
	Bayesian P. keeni	4418.073	27.03986	0.523
	Bayesian S. monticolus	5017.05614	626.023	0.000*
	ML M. longicaudus	4831.09164	440.05849	0.000*
	ML P. keeni	4391.03314	(best)	
	ML S. monticolus	4900.68849	509.65534	0.000*
S. monticolus	Bayesian M. longicaudus	3660.14429	274.62491	0.000*
	Bayesian P. keeni	3560.17805	174.65867	0.000*
	Bayesian S. monticolus	3641.6505	256.13112	0.000*
	ML M. longicaudus	3575.41349	189.89411	0.000*
	ML P. keeni	3525.73063	140.21125	0.000*
	ML S. monticolus	3385.51938	(best)	

Table 8. Regression analysis for *M. longicaudus*, *P. keeni* and *S. monticolus* cyt *b* genetic variation (*S*, *h*, *Hd* and π) tested against log island size and log isolation. Significant at $\alpha \leq 0.05$ Holm-Bonferroni corrected p-values (p') are in bold.

Species	Topographical Feature	Genetic feature	adjusted R ²	df	SS	ms	f	p' value
M. longicaudus	area	S	0.437	1.000	197.510	197.510	14.204	0.010
		Ч	0.515	1.000	25.147	25.147	19.041	0.004
		ΡH	0.441	1.000	0.645	0.645	14.387	0.010
		μ	0.499	1.000	0.000	0.000	17.941	0.004
	isolation	S	0.175	1.000	93.729	93.729	4.596	0.143
		h	0.139	1.000	8.768	8.768	3.740	0.143
		ΡH	0.098	1.000	0.205	0.205	2.837	0.143
		μ	0.311	1.000	0.000	0.000	8.687	0.038
P. keeni	area	S	0.239	1.000	392.737	392.737	9.488	0.034
		4	0.135	1.000	31.571	31.571	5.225	0.153
		рн	0.032	1.000	0.081	0.081	1.900	0.540
		μ	0.125	1.000	0.000	0.000	4.869	0.153
	isolation	S	0.229	1.000	378.907	378.907	9.038	0.035
		h	0.384	1.000	76.714	76.714	17.814	0.002
		рн	0.003	1.000	0.047	0.047	1.076	0.618
		μ	0.000	1.000	0.000	0.000	1.011	0.618
S. monticolus	area	S	0.223	1.000	58.349	58.349	7.012	0.108
		h	0.084	1.000	8.250	8.250	2.919	0.412
		рн	-0.042	1.000	0.012	0.012	0.162	1.000
		ц	0.050	1.000	0.000	0.000	2.095	0.490
	isolation	S	0.238	1.000	61.744	61.744	7.575	0.098
		4	0.105	1.000	9.550	9.550	3.459	0.389
		PH	-0.049	1.000	0.002	0.002	0.022	1.000
		μ	0.121	1.000	0.000	0.000	3.893	0.375

Table 9. Between group net genetic divergences of cyt *b* among refugial and non-refugialSoutheast Alaskan populations lineages of *M. longicaudus*, *P. keeni* and *S. monticolus*.The number of base differences per site from estimation of net average between groups ofsequences is shown. Standard error estimate(s) are shown above the diagonal. Allambiguous positions were removed for each sequence pair. Evolutionary analyses wereconducted in MEGA5.

M. longicandue	-	non-refugia																		re re	fugia	
		MIJNO REV	ML	SNH	MLS	MLS	SEC N	NESN	MLGB	ORI	2	RF K	SC K	N IN	Ш	N MC	'RG ZI	RB SI	WN T	XN	RN F	H
non-refugia	MLJNO		0.30%	0.20%		0.20%	0.20%	0.30%	0	30%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%	0.30%	0.30%	0.20%	0.30%	0.30%	0.30%
	REV	0.90%		0.20%		0.30%	0.20%	0.30%	0	30%	0.30%	0.20%	0.30%	0.20%	0.30%	0.20%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%
	MLHNS	0.30%	0.40%			0.20%	0.00%	0.10%	0	20%	0.10%	0.10%	0.00%	0.10%	0.00%	0.10%	0.20%	0.10%	0.10%	0.20%	0.20%	0.20%
	MLS	0.50%	0.80%	0.40%			0.20%	0.30%	0	.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.20%	0/20%	0.30%	0.30%
	MLSEC	0.40%	0.50%	0.10%	-	0.50%		0.20%	0	20%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.10%	0.10%	0.20%	0.20%	0.20%
	MLSEN	0.60%	0.70%	0.20%		0.70%	0.40%		0	30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.20%	0.30%	0.30%	0.30%
	MLGB	1.00%	1.30%	0.40%	-	0.70%	0.70%	0.80%			0.40%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.40%	0.40%	0.30%
	ORI	1.10%	1.20%	0.10%	Ĩ	0.50%	0.50%	0.40%	-	50%		0.30%	0.10%	0.20%	0'30%	0.20%	0.30%	0.30%	0.30%	0.30%	0.40%	0.30%
	KRF	0.50%	0.70%	%00.0	-	0.20%	0.30%	0.30%	0	.80%a	0.80%		0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.30%	0.20%	0.20%
	KSC	0.90%	1.00%	0.00%		0.30%	0.30%	0.20%	-	30%	0.20%	0.70%		0.20%	0.30%	0.10%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%
	KUI	0.40%	0.60%	0.00%		0.30%	0.20%	0.20%	0	80%	0.80%	0.20%	0.60%		0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%
	MIT	0.60%	0.80%	0.00%		0.40%	0.30%	0.30%		.00%	1.00%	0.40%	0.80%	0.40%		0.10%	0.30%	0.20%	0.20%	0.30%	0.30%	0.20%
	POW	0.40%	0.70%	%00.0		0.40%	0.30%	0.30%	0	%06	0.60%	0'30%	0.50%	0.30%	0.40%		0.20%	0.20%	0.20%	0.10%	0.20%	0.20%
	WRG	0.90%	1.00%	0.60%		%0071	0.80%	%06.0	-	30%	1.30%	0.70%	1.00%	0.60%	0.80%	0.80%		0.20%	0.30%	0.30%	0.30%	0.30%
	ZRB	0.70%	0.80%	0.20%	-	0.60%	0.40%	0.50%	1	.10%	1.00%	0.50%	0.90%	0.30%	0.60%	0.50%	0.70%		0.30%	0.30%	0.30%	0.20%
	SWN	0.70%	0.90%	0.10%		0.50%	0.40%	0.40%		.10%	1.00%	0.50%	0.90%	0.40%	0.60%	0.50%	0.90%	0.70%		0.30%	0.30%	0.30%
	TXN	1.00%	1.30%	0.50%		0.90%	0.80%	0.80%	3	.60%	1.50%	0.90%	1.30%	0.80%	1.00%	0.40%	1.30%	1.10%	1.10%		0.30%	0.30%
	STY	1.00%	1.00%	0.40%	-	0.80%	0.70%	0.50%		40%	1.30%	0.80%	1.10%	0.70%	0,70%	0.80%	1.00%	0.90%	1.00%	1.40%	1.40%	1.20%
refugia	CRN	1.00%	1.20%	0.50%		0%06-0	0.80%	0.80%	-	.40%	1.50%	0.80%	1.20%	0.80%	1.00%	0.70%	1.30%	1.10%	1.10%	1.20%		0.30%
	FST	0.80%	1.10%	0.40%		0.80%	0.60%	0.70%	-	30%	1.10%	0.70%	1.00%	0.60%	0.80%	0.70%	1.20%	0.90%	0.90%	1.20%	1.10%	
	CGF	0.50%	0.70%	0.10%	-	0.50%	0.20%	0.40%	0	.80%	0.60%	0.30%	0.50%	0.20%	0.30%	0.30%	0.70%	0.40%	0.40%	0.80%	0.80%	0.70%
	DAL	0.60%	0.80%	0.10%	-	0.50%	0.20%	0.40%	2	.10%	%06.0	0.40%	0.70%	0.40%	0.60%	0.40%	0.80%	0.60%	0.60%	1.00%	1.00%	0.80%
	LUL	0.60%	0.70%	0.20%		0.60%	0.30%	0.40%	0	.80%	0.60%	0.30%	0.40%	0.20%	0.30%	0.30%	0.80%	0.40%	0.40%	0.80%	0.80%	0.70%
	NYS	0.60%	0.60%	0.20%		0.50%	0.40%	0.50%	-	.00%	0.80%	0.40%	0.60%	0.30%	0.40%	0.40%	0.80%	0.50%	0.60%	1.00%	0.80%	0.70%
	SMZ	0.70%	0.80%	0.30%		0.60%	0.40%	0.50%	1	10%	0.90%	0.50%	0.70%	0.40%	0.60%	0.50%	0.90%	0.60%	0.70%	1.10%	0.90%	0.90%
	WRN	0.50%	0.60%	0.20%		0.50%	0.20%	0.40%	0	o%06	0.80%	0.30%	0.60%	0.30%	0.40%	0.30%	0.60%	0.30%	0.50%	0.90%	0,90%	0.70%

non-refugia																		refugia								
ONITIM	REV	MLHNS	MLS	MLSEC	MLSEN	MLGB	ORI	KRF	KSC	KUI	MIT	POW	WRG	ZRB	SWN	NXL	YTS	CRN	FST	CGF	DAL	LUL	NYS	ZMZ	WRN	
YTS	0.30%	0.30%	0.20%	0.30%	0.20%	0.20%	0.30%	0.30%	0.20%	0.30%	0.20%	0.30%	0.20%	0.30%	0.30%	0.30%	0.30%		0.30%	0.30%	0.20%	0.30%	0.20%	0.20%	0.30%	0.20%
WRN	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.30%	0.20%	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.30%	0.70%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	
ZWZ	0.20%	0.20%	0.20%	0.30%	0.20%	0.20%	0.30%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	0.90%	0.30%	0.30%	0.20%	0.20%	0.20%	0.20%		0.50%
NYS	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.30%	0.80%	0.20%	0.20%	0.20%	0.20%	0.20%		0.60%	0.40%
TOL 1	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.30%	0.20%	0.20%	0.30%	0.70%	0.20%	0.20%	0.20%	0.20%		0.40%	0.50%	0.40%
I JAC	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.30%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.20%	0.30%	0.90%	0.30%	0.20%	0.20%		0.40%	0.50%	0.60%	0.40%
CGF 1	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.10%	0.20%	0.10%	0.10%	0.10%	0.20%	0.20%	0.20%	0.20%	0.70%	0.20%	0.20%		0.30%	0.30%	0.40%	0.40%	0.30%

P. keeni		non-refugia RCC RCN	BCS	STH	ADM	U IM	VO GRV	MLCP	2	II MED R	FV	M SNH I	M III M	SFC MI	SK W MI	WP MR	IM V	GR FT	N	L C
non-refinis	BCC		0.00%	200%	0 30%	%0UC U	0.00%	200 U	70000	700% U	0 10%	0 10%	0 10%	0 10%	%0C U	70100	7000 0	7000 0	0.00%	20 000%
- Contact and	BCN	0.00%		0.20%	0.20%	0.20%	0.00%	0.20%	0.00%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.10%	0.20%	0.20%	0.00%	0.10%
	BCS	0.30%	0.40%		0.30%	0.30%	0.20%	0.20%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.30%	0.30%	0.20%	0.20%
	HTS	0.90%	0.90%	1.30%		0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.20%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.20%	0.30%
	ADM	0.50%	0.50%	0.90%	0.90%		0.20%	0.30%	0.20%	0.30%	0.20%	0.10%	0.20%	0.20%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%
	MLJNO	0.00%	0.00%	0.50%	%06.0	0.50%		0.20%	%00.0	0.20%	0.10%	0.10%	0.10%	0.10%	0.20%	0.10%	0.20%	0.20%	0.00%	0.10%
	GRV	0.00%	0.60%	0.60%	1.40%	1.00%	0.60%		0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.30%	0.30%	0.20%	0.20%
	MLCP	0.00%	0.00%	0.50%	1.00%	0.50%	0.10%	0.50%		0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.10%	0.20%	0.20%	0.00%	0.10%
	MLMFD	0.30%	0.30%	0.80%	1.30%	0.80%	0.40%	0.90%	0.10%		0.20%	0.20%	0.20%	0.10%	0.30%	0.20%	0.30%	0'30%	0.10%	0.20%
	REV	0.20%	0.30%	0.70%	1.20%	0.70%	0.20%	0.80%	0.30%	0.60%		0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%
	MLHNS	0.10%	0.20%	0.50%	0.70%	0.30%	0.20%	0.60%	0.20%	0.50%	0.40%		0.00%	0.10%	0.10%	0.10%	0.20%	0.10%	0.10%	0.10%
	MLKLU	0.30%	0.40%	0.70%	1.10%	0.70%	0.40%	0.70%	0.30%	0.70%	0.60%	0.10%		0.10%	0.10%	0.20%	0.30%	0.20%	0.10%	0.20%
	MLSEC	0.00%	0.10%	0.30%	1.00%	0.50%	0.10%	0.40%	0.10%	0.30%	0.30%	0.20%	0.40%		0.20%	0.10%	0.20%	0.20%	0.10%	0.10%
	MLSKW	0.60%	0.70%	1.00%	1.60%	1.10%	0.70%	1.00%	0.60%	%00.1	%06'0	0.40%	0.20%	0.70%		0.20%	0.30%	0.20%	0.20%	0.20%
	MLWP	0.10%	0.20%	0.60%	1.10%	0.70%	0.20%	0.70%	0.20%	0.50%	0.40%	0.30%	0.50%	0.20%	0.80%		0.20%	0.20%	0.10%	0.20%
	MRY	0.50%	0.60%	1.00%	1.40%	1.00%	0.60%	1.10%	0.60%	0.90%	0.60%	0.70%	0.90%	0.60%	1.20%	0.70%		0.30%	0.20%	0.20%
	MLGB	0.30%	0.40%	0.80%	1.30%	0.80%	0.40%	0.90%	0.40%	0.70%	0.60%	0.30%	0.40%	0.40%	0.60%	0.50%	%06.0		0.20%	0.20%
	ETN	0.00%	0.00%	0.40%	0.90%	0.50%	0.00%	0.50%	%00.0	0.30%	0.20%	0.20%	0.30%	0.10%	0.60%	0.10%	0.50%	0.30%		0.10%
	KRF	0.10%	0.20%	0.40%	1.10%	0.60%	0.20%	0.50%	0.20%	0.50%	0.40%	0.30%	0.50%	0.10%	0.60%	0.30%	0.70%	0.50%	0.20%	
	KSC	0.10%	0.00%	0.60%	1.00%	0.70%	0.20%	0.70%	0.20%	0.30%	0.40%	0.30%	0.50%	0.20%	0.80%	0.40%	0.70%	0.50%	0.20%	0.30%
	KUI	0.40%	0.40%	0.80%	1.20%	0.90%	0.40%	0.90%	0.40%	0.80%	0.60%	0.60%	0.70%	0.50%	1.00%	0.60%	0.80%	0.80%	0.40%	0.60%
	MIT	0.10%	0.20%	0.50%	1.00%	0.60%	0.20%	0.70%	0.20%	0.50%	0.30%	0.30%	0.50%	0.20%	0.80%	0.30%	0.70%	0.50%	0.10%	0.30%
	MLFB	0.50%	0.60%	%06'0	1.50%	1.00%	0.60%	1.10%	0.60%	0.90%	0.50%	0.70%	0.90%	0.60%	1.20%	0.60%	%00.0	0.90%	0.50%	0.70%
	POW	0.10%	0.10%	0.50%	0.90%	0.60%	0.10%	0.70%	0.20%	0.50%	0.30%	0.20%	0.50%	0.20%	0.80%	0.20%	0.70%	0.50%	0.10%	0.30%
	SNF	0.20%	0.20%	0.60%	1.10%	0.70%	0.20%	0.70%	0.20%	0.50%	0.40%	0.30%	0.50%	0.20%	0.80%	0.40%	0.70%	0.50%	0.10%	0.30%
	WRG	0.10%	0.10%	0.50%	0.90%	0.50%	0.10%	0.60%	0.10%	0.40%	0.30%	0.20%	0.40%	0.10%	0.70%	0.30%	0/009/0	0.40%	0.10%	0.20%
	ZRB	0.40%	0.50%	0.80%	1.20%	0.80%	0.40%	%06.0	0.50%	0.80%	0.70%	0.50%	0.80%	0.30%	1.10%	0.60%	%0071	0.80%	0.40%	0.60%
	RMS	0.60%	0.70%	1.00%	1.10%	0.60%	0.70%	1.00%	0.70%	0.90%	0'00%	0.50%	0.90%	0.70%	1.30%	%06.0	1.20%	1.00%	0.70%	0.80%
	VCR	0.50%	0.70%	0.90%	1.20%	0.70%	0.70%	1.20%	0.70%	0.90%	0.70%	0.50%	0.80%	0.60%	1.20%	0.70%	1.20%	1.00%	0.60%	0.70%
	WA	0.60%	0.60%	1.10%	1.30%	0.70%	0.60%	1.10%	0.70%	1.00%	0.80%	0.60%	0.90%	0.60%	1.30%	0.80%	1.10%	1.00%	0.60%	0.70%
	YTS	0.30%	0.30%	0.80%	1.10%	0.80%	0.40%	%06.0	0.40%	0.70%	0.60%	0.50%	0.70%	0.40%	1.00%	0.20%	%06.0	0.70%	0.30%	0.50%
refugia	CRN	0.20%	0.20%	0.60%	1.10%	0.70%	0.20%	0.70%	0.20%	0.50%	0.40%	0.30%	0.50%	0.20%	0.80%	0.40%	0.70%	0.50%	0.10%	0.30%
	FST	0.20%	0.20%	0.60%	1.10%	0.70%	0.20%	0.70%	0.20%	0.50%	0.40%	0.30%	0.50%	0.20%	0.80%	0.30%	0.70%	0.50%	0.10%	0.30%
	BNF	0.60%	0.60%	1.00%	1.00%	0.20%	0.60%	1.10%	0.70%	0.90%	0.80%	0.40%	0.80%	0.70%	1.20%	0.80%	1.10%	1.00%	0.60%	0.70%
	CGF	0.40%	0.40%	0.90%	0.80%	0.10%	0.50%	1.00%	0.50%	0.70%	0.70%	0.20%	0.70%	0.50%	1.10%	0.70%	%00.1	0.80%	0.40%	0.60%
	BKR	0.10%	0.10%	0.50%	0.90%	0.50%	0.10%	0.60%	0.20%	0.50%	0.40%	0.20%	0.40%	0.20%	0.70%	0.30%	0.60%	0.50%	0.10%	0.30%
	DAL	0.20%	0.20%	0.60%	1.10%	0.70%	0.20%	0.70%	0.30%	0.60%	0.40%	0.40%	0.50%	0.30%	0.80%	0.30%	0.70%	0.60%	0.20%	0.40%
	HEC	0.20%	0.40%	0.60%	1.30%	0.80%	0.40%	0.70%	0.30%	0.50%	0.60%	0.50%	0.70%	0.20%	1.00%	0.50%	%06.0	0.70%	0.30%	0,30%
	LUL	0.40%	0.40%	0.80%	1.30%	0.80%	0.40%	0.90%	0.40%	0.70%	0.60%	0.50%	0.70%	0.40%	1.00%	0.50%	%06.0	0.70%	0.30%	0.50%
	NYS	0.20%	0.30%	0.70%	1.20%	0.70%	0.30%	0.60%	0.20%	0.60%	0.50%	0.30%	0.50%	0.40%	0.60%	0.40%	0.80%	0.60%	0.30%	0.40%
	SMZ	0.00%	0.10%	0.40%	0.90%	0.60%	0.10%	0.50%	0.10%	0.40%	0.30%	0.20%	0.40%	0.10%	0.70%	0.20%	0.60%	0.40%	0.00%	0.10%
	WRN	0.40%	0.40%	0.80%	1.10%	0.90%	0.40%	0.90%	0.50%	0.70%	0.60%	0.50%	0.70%	0.50%	00%1	0.60%	0.90%	0.70%	0.40%	0.60%

non-refuoia	0																														refugia											
BCC	20% BCN	1.20% BCS	30% HTS	(30% ADM	ONLIN %05.0	0.20% GRV	(30% MLCP	120% MLMFD	1.20% REV	20% MLHNS	120% MLKLU	0.20% MLSEC	20% MLSKW	130% MLWP	0.10% MRY	(30% MLGB	0.20% ETN	1.20% KRF	1.20% KSC	1.20% KUI	1.30% MIT	120% MLFB	WOG %050	1.20% SNF	.20% WRG	1.20% ZRB	.30% RMS	130% VCR	1.30% WA	.30% YTS	CRN	120% FST	.20% BNF	(30% CGF	.30% BKR	0.20% DAL	.20% HEC	130% LUL	20% NYS	20% SMZ	120% WRN	0.20%
VRN YTS	.20% 0	.20% 0	.30% 0	.30% 0	.30% (.20% (.30% 0	20% 0	.20% 0	.20% 0	.20% 0	.20% 0	.20% 0	.30% (.20% 0	30% 0	.20% 0	.20% 0	.20% 0	120% (.20% 0	.20% 0	.30% 0	.10% 0	10% 0	120% 0	30% 0	.30% 0	.30% 0	.30% 0	.50%	.20% 0	.20% 0	30% 0	.30% 0	.20% 0	.20% 0	30% 0	0.10% C	.20% 0	.20% 0	
MZ ves	10% 0	00% 0	20% 0	20% 0	20% 0	00% 0	20% 0	.10% 0	20% 0	.10% 0	.10% 0	.10% 0	10% 0	20% 0	.10% 0	20% 0	20% 0	00% 0	10% 0	10% 0	.10% 0	.10% 0	20% 0	10% 0	10% 0	.10% 0	20% 0	20% 0	20% 0	20% 0	40% 0	10% 0	.10% 0	20% 0	20% 0	10% 0	.10% 0	20% 0	.10% 0	.10% 0	0	30%
VS ves	0 %01	0. %01	20% 0.	30% 0.	20% 0.	0 %01	20% 0.	0 %01	20% 0.	20% 0.	0 %01	20% 0.	20% 0	20% 0	20% 0.	30% 0.	20% 0	10% 0.	20% 0.	20% 0	20% 0.	20% 0.	30% 0.	0 %01	0 %01	20% 0.	20% 0.	20% 0.	20% 0.	30% 0.	50% 0.	20% 0.	20% 0.	20% 0.	20% 0.	20% 0.	20% 0.	20% 0.	20% 0.	Ö	20%	50% 0.
L. vesN	0% 0.	0% 0.	0%0 07	0 %0	0% 0.2	0% 0.	0% 0.2	0% 0.	0 %0	0 %0	0% 0.	0% 0.7	0 %0	0 %0	0% 07	.0 %0	0 %0	0% 0.	0 %0	0 %0	0% 07	0% 0.2	0%0 0.	0% 0.	0% 0.	0 %0	0 %0	0% 0.2	0 %0	0% 0	0% 0.0	0 %0	0 %0	0% 0.2	0 %0	0% 0.2	0 %0	0 %0	0.0	0%	0.0 0.0	0% 07
ves1.1	% 0.2	% 0.2	% 0.3	% 0.3	% 0.3	% 0.2	% 0.3	% 0.2	% 0.2	% 0.2	% 0.2	% 0.2	% 0.2	% 0.3	% 0.2	% 0.3	% 0.2	% 0.2	% 0.2	% 0.2	% 0.3	% 0.2	% 0.3	% 0.1	% 0.1	% 0.2	% 0.3	% 0.3	% 0.3	% 0.3	% 0.7	% 0.2	% 0.2	% 0.3	% 0.3	% 0.2	% 0.2	0.2	%	% 0.5	% 0.3	% 0.2
vesHF(% 0.20	% 0.20	% 0.20	% 0.30	% 0.30	% 0.20	% 0.20	% 0.20	% 0.20	% 0.20	% 0.20	% 0.20	% 0.10	% 0.30	% 0.20	% 0.30	% 0.20	% 0.20	% 0.20	% 0.20	% 0.20	% 0.20	% 0.30	% 0.20	% 0.20	% 0.20	% 0.30	% 0.20	% 0.30	% 0.30	% 0.70	% 0.20	% 0.20	% 0.30	% 0.20	% 0.20	0.20	%	% 0.70	% 0.60	% 0.30	% 0.80
DAL	0.10	0.109	0.20%	0.30%	0.20%	0.10%	6.20%	0.109	0.20%	0.20%	0.109	0.20%	0.10%	6.20%	0.20%	0.20%	0.20%	0.109	0.10	0.20	0.209	0.109	0.20%	0.10%	0.10%	0.10%	0.20%	0.20%	0.309	0.309	09.00	6 0.20%	0.20%	0.20%	0.20%	0.109		0.60%	0.60%	0.509	0.309	0.60%
BKR	0.10%	0.10%	0.20%	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.10%	0.10%	0.10%	0.20%	0.10%	0.20%	0.10%	0.10%	0.10%	0.20%	0.20%	0.20%	0.20%	0.50%	0.20%	0.10%	0.20%	0.20%		0.30%	0.50%	0.50%	0.40%	0.20%	0.50%
CGF	0.20%	0.20%	0.30%	0.20%	0.10%	0.20%	0.30%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.80%	0.20%	0.20%	0.10%		0.50%	0.70%	0.70%	0.80%	0.70%	0.50%	0.80%
3NF	0.20%	0.20%	0.30%	0.30%	0.10%	0.20%	0.30%	0.20%	0.30%	0.20%	0.10%	0.20%	0.20%	0.30%	0.20%	0.30%	0.30%	0.20%	0.20%	0.20%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	1.00%	0.20%	0.20%		0.20%	0.50%	0.80%	1.00%	0.90%	0.80%	0.60%	1.00%
ST	0.10%	0.10%	0.20%	0.30%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.10%	0.10%	0.20%	0.20%	0.30%	0.30%	0.50%	0.20%		0.80%	0.60%	0.30%	0.40%	0.50%	0.50%	0.50%	0.20%	0.60%
fugia RN F	0.10%	0.10%	0.20%	0.30%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.10%	0.20%	0.10%	0.10%	0.10%	0.20%	0.20%	0.30%	0.30%	0.50%		0.40%	0.80%	0.60%	0.30%	0.40%	0.50%	0.50%	0.50%	0.20%	0.60%
a C	0.20%	0.20%	0.30%	0.30%	0.20%	0.20%	0.30%	0.20%	0.30%	0.30%	0.20%	0.30%	0.20%	0.30%	0.30%	0.30%	0.30%	0.20%	0.30%	0.20%	0.30%	0.20%	0.30%	0.20%	0.30%	0.20%	0.30%	0.30%	0.30%		1.00%	0.80%	0.80%	0.90%	0.80%	0.60%	0.80%	1.00%	1.00%	0.90%	0.60%	0.90%
W	0.20%	0.20%	0.30%	0.30%	0.20%	0.20%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.30%	0.30%	0.30%	0.30%	0.20%	0.20%	0.30%	0.30%	0.20%	0.30%	0.20%	0.30%	0.30%	0.30%	0.20%		0.80%	%06.0	0.80%	0.80%	0.80%	0.70%	0.50%	0.70%	0.90%	1.00%	0.80%	0.50%	1.00%
SV).20%	.20%	.30%	0.30%	0.20%).20%	.30%	0.20%	.20%	0.20%	.20%).20%).20%	.30%	0.20%	.30%	.30%).20%).20%	.20%	.30%	.20%	.30%).20%).20%	0.20%	0.20%		.80%	°%00.	%06.0	%06"	.80%	.60%	%09%	0%09.0	%06.(%06.0	%00	%06.(.70%	.00%
RM	20% (20% (30% (30% 0	30% (20% (30% (20% (20% (20% 0	20% (20% (.10% (30% (20% (30% 0	20% (20% (20% (20% (30% (20% 0	30% (20% (20% (20% (0	.80%	80% (.00%	80% (50% (.60% (80% (80% (30% (.70% (70% (80% 1	.70% (50% (80% 1
ZRB	0 %01	0 %01	20% 0	30% 0.	20% 0	0 %01	20% 0	0 %01	20% 0	20% 0	0 %01	20% 0	0 %01	20% 0	0 %01	20% 0	20% 0	0 %01	0 %01	20% 0	20% 0	0 %01	20% 0	0 %01	0 %01	0	30%	30% 0.	70% 0	1 %02	10% 0	30% 0	30% 0	50% 0	50% 0	20% 0	30% 0	10% 0	0 %0t	0 %01	20% 0	50% 0
WRG	0%0 0.	0% 0.	0% 0.2	0% 0.	0%0 0.2	0% 0.1	0 %0	0% 0.	0% 0.2	0% 0.3	0%0 0.	0%0 0.2	0% 0.	0% 0.2	0% 0.	0% 0.2	0% 0.2	0%0 0.	0%0 0.	0%0 0.2	0% 0.2	0% 0.1	0% 0.2	0%0 0.1	0.	0%0	0%0 0.	0% 0.8	0%0 0.7	0%0 0.7	0% 0.4	0%0 0	0% 0.	0% 0.0	0%0 0.5	0% 0.2	0%0 0.	0%0 0.4	0% 0.4	0% 0.4	0%0 07	0%0 0%0
SNF	% 0.1	% 0.1	% 0.2	% 0.3	% 0.2	% 0.1	% 0.2	% 0.1	% 0.2	% 0.2	% 0.1	% 0.2	% 0.1	% 0.2	% 0.2	% 0.2	% 0.2	% 0.1	% 0.1	% 0.1	% 0.2	9% 0.1	% 0.2	0.0	0/0	% 0.3	% 0.6	% 0.8	% 0.8	% 0.8	% 0.5	% 0.3	% 0.3	9% 0.8	% 0.6	% 0.3	% 0.4	% 0.5	% 0.1	% 0.3	% 0.2	9% 0.2
MOd	% 0.10	% 0.10	% 0.20	% 0.20	% 0.20	% 0.10	% 0.20	% 0.10	% 0.20	% 0.10	% 0.10	% 0.10	% 0.10	% 0.20	% 0.10	% 0.20	% 0.20	% 0.10	% 0.10	% 0.10	% 0.20	% 0.10	0.20	%	% 0.00	% 0.20	% 0.50	% 0.70	% 0.60	% 0.70	% 0.40	% 0.30	% 0.30	% 0.60	% 0.60	% 0.20	% 0.30	% 0.50	% 0.10	% 0.30	% 0.10	% 0.10
MLFB	6 0.20	6 0.20	6 0.30	6 0.30	6 0.30	6 0.20	6 0.30	6 0.20	6 0.30	6 0.20	6 0.20	6 0.30	6 0.20	6 0.30	6 0.20	6 0.00 ⁶	6 0.30	6 0.20	6 0.20	6 0.30	6 0.30	0.20	,0 ,0	6 0.60 ⁶	6 0.70	6 0.60	9 1.00	6 1.20	6 1.00 ^r	6 1.10	% 0.90 [°]	6 0.70	6 0.70	6 1.10 ⁶	% I.00 ⁴	6 0.60 ⁶	6 0.70	% 0.90 ⁰	06.0 8	6 0.80	6 0.60 ^c	06.0 %
TIM	0.10%	0.10%	0.20%	0.309	0.20%	0.10%	0.20%	0.10%	0.20%	0.209	0.109	0.20%	0.109	0.20%	0.20%	0.20%	0.20%	0.10%	0.10%	0.20%	0.20%		0.60%	0.30%	0.30%	0.20%	0.50%	0.80%	0.609	0.80%	0.50%	0.30%	0.309	0.709	0.60%	0.20%	0.40%	0.50%	0.50%	0.40%	0.20%	0.50%
KII	0.20%	0.20%	0.30%	0.30%	0.30%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.30%	0.30%	0.20%	0.20%	0.20%		0.50%	0.90%	0.50%	0.60%	0.50%	%06'0	1.10%	0.80%	0.80%	0.80%	0.60%	0.60%	1.00%	0.90%	0.40%	0.60%	0.80%	0.80%	0.70%	0.40%	0.80%
KSC	0.10%	0.00%	0.20%	0.30%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.10%	0.20%		0.60%	0.30%	0.70%	0.30%	0.40%	0.30%	0.60%	0.70%	0.80%	0.70%	0.50%	0.40%	0.40%	0.80%	0.60%	0.30%	0.40%	0.50%	0.50%	0.50%	0.20%	0.60%

S. monticolus		non-refugia BCC BSF	GRM	×	DM	MLJNC	GRV	MLCP	2	ILMFD	REV	MLSEC	MLSES	ARB N	ILGB E	Z	RF K	SC K	N 15	- LI	ILFB.
non-refugia	BCC		0.10%	0.10%	0.1	0%0	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%
	BSF	0.20%		0.10%	0.1	0%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.20%	0.10%	0.10%	0.10%	0.10%	0.10%
	GRM	0.10%	0.10%		0.1	%0	0.10%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.20%	0.20%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%
	ADM	0.20%	0.20%	0.10%			0.00%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.20%	0.10%	0.20%	0.10%	0.10%	0.10%
	MLJNO	0.20%	0.20%	0.10%	0.0	0%0		0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.20%	0.10%	0.20%	0.10%	0.10%	0.10%
	GRV	0.10%	0.10%	0.00%	0.1	0%0	0.10%		0.00%	0.00%	0.10%	0.00%	0.00%	0.20%	0.10%	0.10%	0,10%	0.10%	0,00%	0.00%	0,00%
	MLCP	0.10%	0.10%	0.10%	0.1	%0	0.20%	0.10%		0.00%	0.10%	0.00%	0.00%	0.20%	0.10%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%
	MLMFD	0.10%	0.10%	0.00%	0.1	0%	0.10%	0.00%	0.00%		0.10%	0.00%	0.00%	0.20%	0.20%	0.10%	0.10%	0.10%	0,00%	0.00%	%00.0
	REV	0.10%	0.20%	0.10%	0.2	0%0	0.20%	0.10%	0.10%	0.10%		0.10%	0.10%	0.20%	0.20%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%
	MLSEC	0.10%	0.10%	0.00%	0.1	0%0	0.10%	0.00%	0.00%	0.00%	0.10%		0.00%	0.20%	0.20%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%
	MLSES	0.00%	0.10%	0.00%	0.1	0%0	0.10%	0.00%	0.00%	0.00%	0.10%	0.00%		0.20%	0.20%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%
	MRB	0.30%	0.40%	0.30%	0.4	0%0	0.40%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%		0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%
	MLGB	0.30%	0.40%	0.20%	0.4	%0	0.40%	0.20%	0.20%	0.30%	0.30%	0.30%	0.30%	0.50%		0.20%	0.10%	0.20%	0.20%	0.20%	0.20%
	ETN	0.20%	0.30%	0.20%	0.3	0%0	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.40%	0.40%		0.10%	0.20%	0.10%	0.10%	0.10%
	KRF	0.10%	0.20%	0.10%	0.2	0%0	0.20%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.10%	0.20%		0.10%	0.10%	0.10%	0.10%
	KSC	0.20%	0.30%	0.20%	0.3	0%0	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.40%	0.30%	0.40%	0.20%		0.10%	0.10%	0.10%
	KUI	0.10%	0.10%	0.00%	0.1	0%0	0.10%	0.00%	0.10%	0.00%	0.10%	0.00%	0,00%	0.30%	0.20%	0.20%	0.10%	0.20%		0.00%	0,00%
	TIM	0.10%	0.10%	0.00%	0.1	%0	0.20%	0.00%	0.10%	0.10%	0.10%	0.10%	0.10%	0.30%	0.30%	0.20%	0.10%	0.10%	0.10%		0.00%
	MLFB	0.10%	0.10%	0.00%	0.1	0%0	0.10%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0'30%	0.20%	0.20%	0.10%	0.20%	0.00%	0.00%	
	POW	0.10%	0.10%	0.00%	0.1	0%0	0.10%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.30%	0.20%	0.20%	0.10%	0.10%	0,00%	0.00%	0.00%
	SNF	0.40%	0.50%	0.40%	0.5	0%0	0.60%	0.40%	0.50%	0.40%	0.50%	0.40%	0.40%	0.70%	0.40%	0.60%	0.40%	0.50%	0.50%	0.30%	0.50%
	WRG	0.50%	0.50%	0.40%	0.5	0%0	0.50%	0.50%	0.50%	0.50%	0.50%	0.40%	0.30%	0.70%	0.60%	0.60%	0.50%	0,60%	0.50%	0.50%	0.40%
	ZRB	0.10%	0.20%	0.10%	0.2	0%0	0.20%	0.10%	0.10%	0.10%	0.20%	0.10%	0.10%	0.40%	0.30%	0.30%	0.10%	0.10%	0.10%	0.10%	0.10%
	WA	0.00%	0.10%	-0.10%	0.1	%0	0.10%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.20%	0.30%	0.10%	0.00%	0.00%	-0.10%	0.00%	0.00%
refugia	CRN	0.10%	0.20%	0.10%	0.2	0%0	0.20%	0.00%	0.00%	0.00%	0.10%	0.10%	0.10%	0.30%	0.30%	0.20%	0.00%	0.20%	0.10%	0.10%	0,000,0
	FST	0.40%	0.40%	0.30%	0.2	0%0	0.20%	0.30%	0.30%	0.30%	0.40%	0.30%	0.30%	0.50%	0.60%	0.50%	0.40%	0.30%	0.30%	0.30%	0.30%
	BKR	0.10%	0.10%	0.00%	0.1	0%0	0.10%	0.00%	0.10%	0.00%	0.10%	0.00%	0.00%	0.30%	0.30%	0.20%	0.10%	0.20%	0.00%	0.10%	0.00%
	DAL	0.10%	0.10%	0.00%	0.1	0%0	0.10%	0,00%	0.10%	0.00%	0.10%	0,00%	0.00%	0.30%	0.30%	0.20%	0.10%	0.10%	0.00%	0.00%	0.00%
	HEC	0.20%	0.40%	0.30%	0.4	0%0	0.40%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.50%	0.50%	0.40%	0.30%	0.40%	0.30%	0.30%	0.30%
	LUL	0.10%	0.20%	0.10%	0.2	0%0	0.20%	0.10%	0.10%	0.10%	0.20%	0.00%	0.10%	0.40%	0.30%	0.30%	0.10%	0.30%	0.10%	0.10%	0.10%
	NYS	0.40%	0.50%	0.30%	0.5	0%0	0.50%	0.40%	0.40%	0.40%	0.40%	0.40%	0.30%	0.60%	0.50%	0.50%	0.40%	0.50%	0.30%	0.30%	0.40%
	SMZ	0.10%	0.10%	0.00%	0.1	0%0	0.10%	0.00%	0.00%	0.00%	0.10%	0,000%	0,00%	0.30%	0.30%	0.20%	0.10%	0.20%	0.00%	0.10%	0.00%
	WRN	0.10%	0.20%	0.10%	0.2	0%0	0.20%	0.10%	0.10%	0.10%	0.20%	0.10%	0.10%	0.40%	0.30%	0.30%	0.10%	0.30%	0.10%	0.10%	0.00%

	non-refugia																								refugia									
	BCC	0% BSF	0% GRM	0% ADM	ONLIN %0	0% GRV	0% MLCP	0% MLMFD	0% REV	0% MLSEC	0% MLSES	0% MRB	0% MLGB	0% ETN	0% KRF	0% KSC	0% KUI	71M %0	0% MLFB	WOG %0	3NF 3NF	0% WRG	0% ZRB	0% WA	0% CRN	0% FST	0% BKR	0% DAL	0% HEC	0% LUL	SAN %0	2MZ %0%	0% WRN	
	WRN	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.0	0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	
	SMZ	0.10%	0.10%	0.00%	0.10%	0.10%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.20%	0.20%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%	0.00%	0.20%	0.20%	0.10%	0.00%	0.10%	0.10%	0.00%	0.00%	0.20%	0.10%	0.10%		0.10%
	SYN	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%		0.30%	0.40%
	'nr	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.20%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.10%	0.10%	0.10%	0.20%	0.10%	0.10%	0.20%		0.40%	0.10%	0.20%
	IEC I	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%		0.30%	0.60%	0.30%	0.40%
	AL 1	0.10%	0.10%	0.00%	0.10%	0.10%	0,00%	0,0000	0.00%	0.10%	0.00%	0.00%	0.10%	0.20%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%	0.00%	0.10%	0.20%	0.00%	0.00%	0.10%	0.20%	0.00%		0.30%	0.10%	0.30%	0.00%	0.10%
	SKR I	0.10%	0.10%	0.00%	0.10%	0.10%	0.00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.20%	0.20%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%	0.00%	0.20%	0.20%	0.10%	0.00%	0.10%	0.10%		0.00%	0.30%	0.10%	0.40%	0.00%	0.10%
	ST E	0.20%	0.20%	0.20%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%		0.30%	0.30%	0.60%	0.40%	0.40%	0.20%	0.40%
efugia	RN F	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.00%	0.10%	0.10%	0.10%	0.20%	0.20%	0.10%	0.10%	0.10%	0.10%	0.10%	0.00%	0.10%	0.20%	0.20%	0.10%	0.10%		0.40%	0.10%	0.10%	0.30%	0.10%	0.30%	0.10%	0.10%
-	VA C	0.10%	0.10%	0.00%	0.10%	0.10%	0.00%	0.10%	0.00%	0.10%	0.00%	0,00%	0.10%	0.20%	0.10%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.20%	0.10%		0.10%	0.30%	0.00%	0.00%	0.30%	0.00%	0.20%	0.00%	0.00%
	CRB 1	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.20%	0.20%	0.10%	0.10%	0.10%	0.10%	0,00%	0.10%	0.10%	0.10%	0.20%		0.00%	0.10%	0.40%	0.10%	0.10%	0.40%	0.20%	0.40%	0.10%	0.20%
	WRG 2	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.30%		0.50%	0.30%	0.50%	0.70%	0.40%	0.40%	0.70%	0.50%	0.80%	0.40%	0.50%
	SNF	0.10%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.10%	0.20%	0.20%		0.90%	0.40%	0.10%	0.30%	0.60%	0.50%	0.30%	0.70%	0.50%	0.80%	0.50%	0.50%
	POW	0.10%	0.10%	0.00%	0.10%	0.10%	0,00%	0.00%	0.00%	0.10%	0.00%	0.00%	0.20%	0.20%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%		0.40%	0.40%	0.10%	-0.10%	0.10%	0.30%	0.00%	0.00%	0.30%	0.10%	0.40%	0.00%	0.10%

CHAPTER 5

Conclusion

Glacial-interglacial oscillation over the past 2.5 million years has promoted both speciation and intraspecies diversification. Species range, geographic features (e.g., mountains, fragmented habitat), and historical climate all play a part in contemporary population dynamics. Segregation of conspecific populations as a result of historic climatic fluctuations, and enhanced by geographic barriers, results in local adaptation which further promotes diversification upon post-glacial contact (Demboski & Cook 2001; Galbreath *et al.* 2009). Contact of divergent lineages in high latitudes is a rarity and often goes undocumented. Likewise, complex interplay of varying degrees of connectivity across such islands can result in endemic lineages.

With the use of genetics and GIS techniques, it is possible to tease apart species history leading to diversification and often uncover previously unrecognized variation or endemics (Lucid & Cook 2007; Weksler *et al.* 2010). Non-refugial populations generally show signs of rapid expansion with reduced genetic variation and minimal diversification when compared to refugial populations (Hewitt 2004; Lessa *et al.* 2003; Marr *et al.* 2012). Genetic differences across island inhabitants, with limited connectivity and smaller effective population sizes can be a result of either cryptic refugia or rapid genetic drift (Adler 1992; Dobzhansky 1963; Whittaker 1998), either resulting in high levels of endemism.

Previous work on *Microtus longicaudus*, *Peromyscus keeni* and *Sorex monticolus* was based on a single mitochondrial maker and focused on describing observed phylogeographic variation, rather than identifying the drivers of said variation.

201

Additionally, sampling was limited in scope for both across the entire range of each species and within Southeast Alaska. My dissertation work used this foundational research as a basis for hypothesis testing and the identification of evolutionary drivers of diversification in these three small mammals. Chapters 2 and 3 highlight the complexity and identify idiosyncratic responses to glacial variation and subsequent colonization and contact. Chapter 4 highlights the interwoven relationship between physical island characteristics and past flux of connectivity.

Although chapter 2 found "typical" post-glacial colonization patterns in *M. longicaudus* across western North America with regards to southern genetic diversity, northern genetic diversity, the number of refugia, and location of secondary contact were far from ordinary. Pleistocene climate variability was the primary driver of the observed variation; however geographic features, such as mountain ranges, played a significant role in colonization pathways and current lineage range limitations. Through the use of SDMs, genetic diversity, signals of demographic change, and phylogeographic relationships, four major locations were identified for glacial persistence of *M. longicaudus*: 1) southern continental, 2) southern coastal, 3) northern coastal refugia in Southeast Alaska, and 4) Beringia in south-central Yukon. Most major lineage diversification began prior to the last interglacial. The Northern and Island lineages, although distinctive based on mtDNA, share nuclear alleles as a result of incomplete lineage sorting, rather than introgression, hybridization or current gene flow.

Global discovery rates of non-marine mammals are estimated at about 10%, with only one species between 1993 and 2009 in high latitudes (Ceballos & Ehrlich 2009). Chapter 3 found strong genetic support for the formal description of a new *Peromyscus* in

202

central and southern Yukon (revision in preparation). Additionally, this species appears to have persisted in cryptic northern refugia and remains geographically limited, with geographic proximity to its congeners, *P. keeni*, which occupied coastal refugia throughout the glacial cycles of the Pleistocene, and *P. maniculatus* from western North America. The persistence of *Peromyscus* in unglaciated regions south and north of the ice and in northern coastal refugia is highly uncommon, especially for North America restricted taxa.

The signatures of northern coastal refugia was explored in chapter 4. Disentangling confounding signals of coastal refugia and island biogeographic patters proved challenging, but *M. longicaudus*, *P. keeni* and *S. monticolus* have endemic lineages in the Alexander Archipelago, regardless of the driving force. The dynamics of this high latitude island system emphasize the importance of understanding both individual species response and community composition prior to implementing regional management plans. Life history characteristics, intraspecific genetic variation and gene flow, and SDMs each provide independent lines of evidence as to the effects of historical climate and island connectivity for each species across this fragmented habitat. Predictions of future climate change coupled with current levels of endemism and migration provide a starting point for defensive management of such a unique system as the Tongass National Forest.

The questions now become: What are the dynamics among other populations of *M. longicaudus* that have experienced post-glacial secondary contact? And, how does that contribute to our understanding of southern refugial taxa? What do bacular and karyotypic analysis suggest about the Yukon *Peromyscus*? And, what are the population

203

level dynamics among the paraphyletic lineages of *P. maniculatus*? Across the Alexander Archipelago, what major biogeographic breaks can be identified using multilocus data? Finally, can population level markers (e.g., microsatellites, SNP analyses) more specifically identify refugial locations? More generally, we can also revisit our methods for subspecies identification to better reflect species history, rather than single gene or phenotypic patterns.

Climate change and conservation are terms that have gained momentum over the last few decades, but for good reason. Effects of anthropogenic habitat modification and shifting climate patterns can already be observed in many taxa, bringing the need for predictive and flexible conservation strategies to the forefront of biology. Understanding how and where a species or lineage came from can help us determine where it might go. Through the unification of fields both within biology (e.g., molecular techniques, ecological studies) and independently (e.g., computer science, economics), we can be better equipped to handle the uncertainty that lies ahead.

References

- Adler GH (1992) Endemism in Birds of Tropical Pacific Islands. *Evolutionary Ecology* **6**, 296-306.
- Ceballos G, Ehrlich PR (2009) Discoveries of new mammal species and their implications for conservation and ecosystem services. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 3841-3846.
- Demboski JR, Cook JA (2001) Phylogeography of the dusky shrew, *Sorex monticolus* (Insectivora, Soricidae): insight into deep and shallow history in northwestern North America. *Molecular Ecology* **10**, 1227-1240.
- Dobzhansky T (1963) Biological evolution in island populations. In: *Man's place in the island ecosystem. A symposium.* (ed. Fosberg FR), pp. 65-74. Bishop Museum.
- Galbreath KE, Hafner DJ, Zamudio KR, Agnew K (2009) Isolation and introgression in the Intermountain West: contrasting gene genealogies reveal the complex biogeographic history of the American pika (*Ochotona princeps*). *Journal of Biogeography* 37, 344–362.
- Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary.
 Philosophical Transactions of the Royal Society B-Biological Sciences 359, 183-195.
- Lessa EP, Cook JA, Patton JL (2003) Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. *Proceedings of the National Academy of Sciences of the United States of America* **100**, 10331-10334.

- Lucid MK, Cook JA (2007) Cytochrome-b haplotypes suggest an undescribed *Peromyscus* species from the Yukon. *Canadian Journal of Zoology-Revue Canadienne De Zoologie* **85**, 916-919.
- Marr KL, Allen GA, Hebda RJ, McCormick LJ (2012) Phylogeographical patterns in the widespread arctic–alpine plant *Bistorta vivipara* (Polygonaceae) with emphasison western North America. *Journal of Biogeography* **40**, 847–856.
- Weksler M, Lanier HC, Olson LE (2010) Eastern Beringian biogeography: historical and spatial genetic structure of singing voles in Alaska. *Journal of Biogeography* 37, 1414-1431.
- Whittaker RJ (1998) *Island biogeography: ecology, evolution, and conservation* Oxford University Press, Oxford.