
University of New Mexico
UNM Digital Repository

Biology ETDs Electronic Theses and Dissertations

7-1-2015

How ants turn information into food
Tatiana Flanagan

Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Flanagan, Tatiana. "How ants turn information into food." (2015). https://digitalrepository.unm.edu/biol_etds/37

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds/37?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


 

 i 

     
     Tatiana Paz Flanagan 
      
       Candidate  
     Biology 

 
     Department 
      
 
     This dissertation is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Dissertation Committee: 
 
               
     Melanie E. Moses, Chairperson 
  
 
     James H. Brown 
 
 
     Helen J. Wearing 
 
 
     Deborah M. Gordon 
 
 
  
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
  
  



 

 ii 

  

     
  
  
  
  
  

 
 

HOW ANTS TURN INFORMATION INTO FOOD 
 
 
 

by 
 
 

TATIANA PAZ FLANAGAN 
 

B.S., Systems Engineering, Universidad Catolica Boliviana, 1998 
M.S., Computer Science, University of New Mexico, 2015 

 
 
 
 
 
 
 
 
 

DISSERTATION 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Doctor of Philosophy 

Biology 
 

The University of New Mexico 
Albuquerque, New Mexico 

 
 

July, 2015 



 

 iii 

DEDICATION 

 

 

To my husband, Mike 

 

  



 

 iv 

ACKNOWLEDGEMENTS 

 

I will be forever grateful to my advisor Melanie Moses for being a remarkable 

role model, and for her unwavering support and inspiration. I was also fortunate to 

receive advice and collaborate with most inspiring mentors, in particular, Jim Brown, 

who graciously received me in his lab. Deborah Gordon, for being and extraordinary 

mentor, and who taught me everything I know about Argentine ants and Helen Wearing, 

for her great advice and for opening my mind to other areas of research. Thank you all for 

your support and for serving in my committee.  

I must also thank Trilce Estrada, Sean Luang, Terran Lane and Lance Williams 

for inspiring ideas and technical advice. During these years, I was fortunate to work with 

many people who have been great collaborators and friends. Thank you Kimberly 

Kanigel-Winner, Joshua Hecker, Kenneth Letendre, Joe Tangchoopong, Bill Burnside, 

Robbie Burger, and Noa Pinter-Wollman. I would also like to thank Sonia Bendorf for 

her friendship and support during these years. 

Most of all, I must thank my mother Nancy for all her love, and support, and my 

friends Erika Pinto and Max Yeremin, for having me in their home while I did fieldwork, 

and last but not least, my friend Tamara Brown, for her friendship and for being a 

constant source of motivation for many years. 

  



 

 v 

HOW ANTS TURN INFORMATION INTO FOOD 

by  

Tatiana Paz Flanagan  

 

B.S. SYSTEMS ENGINEERING, UNIVERSIDAD CATOLICA BOLIVIANA  
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PH.D. BIOLOGY, UNIVERSITY OF NEW MEXICO 

 

ABSTRACT 

 

 Animals constantly process information from their environment. In social organisms, 

information exchange among individuals allows for behaviors to be finely tuned to local 

environmental cues. Such is the case of foraging in ants, where sharing information about 

the distribution of resources can drive adaptive behaviors to exploit those resources. In a 

first study, we quantified how clustering of experimental seed baits significantly 

increased foraging rates of seed harvester ants. That study found that species with larger 

colonies were no better than species with smaller colonies at collecting clumped seeds. In 

a second study, we integrated computer simulations, information science and 

computational analysis to re-analyze data. We found that seed intake patterns from larger 

colonies were more consistent with foraging patterns generated by behaviors that use 

information, such as recruitment and site fidelity, particularly for foraging on clustered 

distributions of resources. Finally, we studied recruitment behavior in large colonies of 

Argentine ants. Our results indicate that Argentine ants recruit nestmates to food directly 
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from persistent nearby trails. Once ants find a new food source, they walk back and forth 

between the bait and sometimes share food by trophallaxis with nestmates on the trail. 

Recruiting ants from nearby persistent trails creates a dynamic circuit, like those found in 

other distributed systems, which facilitates a quick response to changes in available 

resources. These studies quantify how remembering and communicating information in a 

range of colony sizes increase foraging rates.  
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CHAPTER 1 
 

INTRODUCTION 
 

Information streams continuously from the environment to animals, which in turn 

alter the environment. In social organisms, there exist many simultaneous information 

feedback cycles, where the behavior of each individual gives rise to group-level 

properties. Thus, information cues collected by each individual produce collective 

behavioral strategies that allow the colony to be finely tuned to local environments. Such 

is the case of foraging in ants, where individual foraging strategies may consist of one or 

more foraging behaviors which depend on information obtained from the environment. 

From individual responses to each other and the environment emerges the behavioral 

response of the colony. The result of information use is successful foraging through 

behavioral strategies adapted to the spatial distribution of resources. 

In ants, information drives behaviors based on memory, movement and 

communication. The mechanisms for storing, transporting and sharing information are 

expected to change in larger colonies, due to larger territories and larger numbers of 

interactions among ants. Behavioral strategies of large colonies are expected to adapt to 

the challenge of vast territories, the difficult coordination of simultaneous efforts of 

thousands of individuals and the diversity of resource distributions in space and time. 

Past studies have investigated ant foraging and the effect of colony size and 

distribution of resources on their success. However, less effort has been made to 

explicitly quantify the use of information and its effects, and the feedback cycle between 

information, behavior and environment. This work develops a  quantitative framework to 

integrate fieldwork, statistical methods, and computer science theory and techniques, to 
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reveal how ants of different colony sizes use information from distinct spatial 

distributions of resources.   

Chapter 2 of this dissertation quantifies how seed harvesters exploit the spatial 

distribution of seeds to improve their rate of seed collection. We found that the clustering 

of experimental seed baits significantly increases foraging rates. We developed a method 

to compare foraging rates on clustered versus random seeds across three Pogonomyrmex 

species that differ substantially in forager population size. We found that species with 

larger colonies are no better than species with smaller colonies at collecting clumped 

seeds. These findings contradict the theoretical expectation that larger groups are more 

efficient at exploiting clumped resources, thus contributing to our understanding of the 

importance of the spatial distribution of food sources and colony size for communication 

and organization in social insects.  

Chapter 3 examines how ants use information from their environment to improve 

collective foraging. We analyzed resource intake patterns to test whether species with 

larger colony sizes use more information-based behaviors than species with smaller 

colony sizes. Our approach integrates data (from Chapter 1) obtained in the field from 

three harvester ant species with distinct colony sizes, and computer simulations that 

model foraging behaviors. We used a fuzzy pattern-matching algorithm with idealized 

behaviors to infer behaviors from field data. Seed intake patterns from larger colonies 

were more consistent with foraging patterns generated by behaviors that use information, 

such as recruitment and site fidelity. Seed intake patterns from smaller colonies were 

more consistent with patterns produced by behaviors that do not use information, such as 

correlated random walks. 



 

 3 

Finally, in Chapter 4, we studied information use in very large colonies of 

Argentine ants. We investigated whether some ants recruit directly from established, 

persistent trails to food sources, thus accelerating food collection. Our results indicate 

that Argentine ants recruit nestmates to food directly from persistent trails, and that the 

exponential increase in the arrival rate of ants at baits is faster than would be possible if 

recruited ants traveled from distant nests. Once ants find a new food source, they walk 

back and forth between the bait and sometimes share food by trophallaxis with nestmates 

on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like 

those found in other distributed systems, which facilitates a quick response to changes in 

available resources. 

This work makes important interdisciplinary contributions through the integrated 

use of fieldwork, simulation data and computer science. It builds toward an explicit 

understanding of information by quantifying its content and its effect in ant behavior. 

There is need for further investigation of how social organisms process, share and use 

information, including field studies of animal behavior that explicitly characterize 

information flow. This work is an example of such a study, and its approach can 

ultimately be extended more generally towards the study of information use in collective 

animal behavior. 
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CHAPTER 2 

QUANTIFYING THE EFFECT OF COLONY SIZE AND FOOD DISTRIBUTION 

ON HARVESTER ANT FORAGING 

 

Flanagan TP, Letendre K, Burnside WR, Fricke GM, Moses ME (2012) Quantifying the 

Effect of Colony Size and Food Distribution on Harvester Ant Foraging. PLoS ONE 7(7): 

e39427. doi:10.1371/journal.pone.0039427 

 

Abstract 

Desert seed-harvester ants, genus Pogonomyrmex, are central place foragers that 

search for resources collectively. We quantify how seed harvesters exploit the spatial 

distribution of seeds to improve their rate of seed collection. We find that foraging rates 

are significantly influenced by the clumpiness of experimental seed baits. Colonies 

collected seeds from larger piles faster than randomly distributed seeds. We developed a 

method to compare foraging rates on clumped versus random seeds across three 

Pogonomyrmex species that differ substantially in forager population size. The increase 

in foraging rate when food was clumped in larger piles was indistinguishable across the 

three species, suggesting that species with larger colonies are no better than species with 

smaller colonies at collecting clumped seeds. These findings contradict the theoretical 

expectation that larger groups are more efficient at exploiting clumped resources, thus 

contributing to our understanding of the importance of the spatial distribution of food 

sources and colony size for communication and organization in social insects. 
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Introduction 

Seed harvester ants, Pogonomyrmex spp., are ideal for testing hypotheses about 

how food distribution and group size favor different foraging strategies. Pogonomyrmex 

are relatively large ants found mostly in arid regions of South, Central, and North 

America (Cole 1968). They are well studied, monodomous central-place foragers whose 

primary diet is local seeds found on the top of the soil (Bernstein 1975; Carroll and 

Janzen 1973; Davidson 1977; Gordon 1991; Holldobler and Wilson 2008; Traniello 

1989). Although all harvester ants eat seeds and often occur in sympatry, with colonies of 

several species often found within a few meters of each other, individual species differ in 

average body size, the size of seeds eaten, and average mature colony size (Bernstein 

1975; Davidson 1977). The spatial distribution of seeds eaten by harvesters ranges from 

highly clumped to randomly dispersed. Reichman (1984) found extreme variability in the 

density of seeds eaten by Pogonomyrmex in the Sonoran Desert, with a 78-fold difference 

in seed density across space, including a 25-fold difference within microhabitats. 

Edeleman (2010) found three-fold increases of seeds surrounding kangaroo rat mounds in 

the Chihuahuan desert.  

Although Pogonomyrmex individuals communicate and coordinate tasks in their 

underground nests, it is not clear whether foragers communicate information, mediated 

for example, by pheromone trails. They are able to use pheromone trails to recruit 

foragers to large piles of seeds, as when supplied experimentally (Holldobler and Wilson 

1970), but it is not clear that they commonly use pheromone recruitment under natural 

conditions. While some authors found evidence of recruitment (Davidson 1977; 

Hölldobler 1976; Whitford 1978), others found that foraging is regulated by other 
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behaviors (Gordon 1991; Schafer et al. 2006). For example, Pogonomyrmex foragers 

exhibit strong “directional fidelity,” returning to search for food in the same general 

direction as they successfully foraged before (Beverly et al. 2009; De Vita 1979; 

Hölldobler 1976).   

We expected harvester ant foragers to preferentially harvest dense seed cashes, 

maximizing their efficiency by minimizing their search time. When a forager leaves its 

nest in search of food, it will travel in a general direction (Fewell 1990), presumably 

established by a pheromone trail or by directional fidelity. The time it takes for an ant to 

arrive at a general area it expects to find food is the travel time. Once at the destination, 

the ant engages in a more localized search. The time it takes to find a patch of food in this 

general area is the search time. Once a patch of food is discovered, each ant that returns 

to that pile will still take the same travel time, but its search time will be shorter. Beverly 

et al. (2009) showed that search time has a much stronger effect on total trip duration 

than travel time. Thus, we assume clumps of seeds can be collected significantly faster 

because the search time component of foraging time is reduced when an ant already 

knows the location of a pile of seeds. 

We test colonies from three related, sympatric Pogonomyrmex species that vary 

substantially in forager population size and ask how forager population size affects 

foraging rates for seeds in different spatial distributions. In turn, we posit that the 

foraging patterns we observed reflect underlying behavioral mechanisms.  

Our two key variables were average forager population size and the spatial 

distribution of seeds. We estimated average forager population size in each species, 
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experimentally manipulate seed distribution, and measure how these differences affect 

foraging efficiency. 

The three species of harvester ants we studied, Pogonomyrmex rugosus, P. 

maricopa, and P. desertorum, vary substantially in total colony population size. Forager 

population size also varies substantially between species, between colonies of the same 

species, and over time for any particular colony. Johnson (2000) estimated total colony 

population sizes in the Chihuahuan Desert of New Mexico as thousands for P. rugosus, a 

few hundred for P. maricopa and fewer than 100 for P. desertorum . Whitford and 

Ettershank (1975) estimated colony forager populations of dozens in P. desertorum and 

thousands in P. rugosus. Since not all members of the colony actively forage, total colony 

population is an upper bound on forager population size.  

We manipulated the distribution of seeds by providing each colony with seeds 

dispersed over a broad range of pile sizes, ranging from 1 to 256 seeds, to establish a 

quantitative relationship between the distribution of seeds and the foraging rate. We then 

compared the relationship between food dispersion and foraging rate across these species, 

with their different forager numbers, to determine whether larger colonies concentrate 

relatively more foraging effort on clumped seeds when compared to smaller colonies. 

We tested two specific hypotheses. First, we tested whether rates of seed intake 

are faster when the same numbers of seeds are concentrated in fewer, larger piles. 

Second, we tested whether there is a positive relationship between colony size and the 

ability to harvest dense food resources. 
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Materials and Methods 

We studied three sympatric species of desert seed-harvester ants in the genus 

Pogonomyrmex in the high desert of central New Mexico: P. desertorum, P. maricopa 

and P. rugosus. According to national guidelines, no permits were required for the 

described field studies. We carried out this fieldwork in the summer of 2008 and 2009 in 

a mid-succession lot of approximately 13 hectares in central Albuquerque, New Mexico, 

in the Chihuahuan desert of the southwestern U.S. No permissions were required for the 

locations of these activities. 

 

Estimating active forager population size 

We relied on data and methods from an earlier study (Moses 2005) to estimate the 

average number of active foragers for each species. Preliminary estimates of forager 

numbers per colony and per-ant foraging distances and times characterizing each species 

were based on observation of colonies in the McKenzie Flats area of the Sevilleta Long 

Term Ecological Research site in central New Mexico. These observations were carried 

out in the summers of 2003 and 2004, where we tracked 63 individual ants from 13 

colonies.  

We made the following observations for each forager under natural field 

conditions. Individual foragers were followed as they left the nest, traveled to a search 

location, searched for and acquired a seed, and returned to the nest. We marked some 

foragers either with paint (DecoColor opaque paint ® Uchida of America) or colored 

chalk powder; others were followed and left unmarked. For each forager we measured the 

time to complete a foraging trip (Tf) from nest to seed and back to the nest, the linear 
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distance from nest to seed (ds) and travel velocity (vt) of each forager returning with the 

seed to the nest. The measurements are reported in Table 1. 

 

 

Table 1. Means* for characteristic variables of each species estimated at the Sevilleta 

LTER in 2003–2004. 

 

One way to estimate the number of active foragers size is to multiply the average 

time of a foraging trip (Tf) by the rate that ants return to (and leave from) the nest when 

the rates of leaving and returning ants are at equilibrium. At equilibrium the number of 

foraging ants (F) is constant. The equilibrium rate of ants leaving (which is equivalent to 

the rate ants return) multiplied by Tf   provides an estimate of active forager population at 

a particular time: the forager population (F) equals the time of a foraging trip (Tf  ) 

multiplied by the rate that ants leave the nest. We estimated the number of foragers per 
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species at the Sevilleta in 2004 using this method. We calculated the equilibrium rate by 

counting each ant leaving the nest for three minutes and each ant returning for 3 minutes. 

When these numbers differed by less than 10 percent, we considered that an equilibrium 

flux of ants (Table 1). We multiplied that number by average foraging trip time (Tf) to get 

the active forager population for that day (F, Table 1). 

 

Manipulative Seed Studies 

In order to measure the effect of seed dispersion on foraging rates, we conducted 

manipulative field experiments on the three Pogonomyrmex species in the summers of 

2008 and 2009. We began observations each morning to coincide with the start of daily 

foraging activity. We account for daily variations in colony activity, which may affect 

forager numbers (Gordon 1991), by using the distribution of randomly scattered bait 

seeds to normalize our observed foraging rates. (see Data analysis section for more 

details). The normalized foraging rate also allowed us to make comparisons across 

species and conditions that varied widely. 

We selected an active colony and baited it with dyed seeds arranged in a wide 

ring around the colony entrance (Figure 1). We placed dyed seeds in four distributions of 

different colors, equal in number but varying in degree of dispersion:  one pile of red 

seeds, four piles of purple seeds, sixteen piles of green seeds and a random scattering of 

blue seeds. Regardless of the pile size, we distributed the seeds in every pile evenly over 

a 10x10 cm2 area. As soon as the first seed was placed, a starting time for the observation 

was marked. We immediately began observing the arrival of seeds at the nest entrance, 



	   11	  

recording the color – and thus the distribution from which each seed was collected – and 

the time of arrival.  

 

 

 

Figure 1. Experimental seed distribution around the nest entrance of a P.rugosus 

colony. Each colored circle is a pile of millet seeds dyed to that color. The size of each 

circle represents the relative number of seeds in that pile: red = 1-pile of 256 seeds, 

purple = 4-piles of 64 seeds, green = 16-piles of 16 seeds, and blue = 256 individual 

seeds distributed randomly. 

 

We conducted 38 field observations, 11 of which we excluded because the focal 

colony failed to find at least two seeds from at least one experimental distribution during 

the observation period. This left us with nine observations of each species. 
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We dyed bait seeds using food coloring. We tested for bias in the collection or 

observation of bait seeds of different color by observing colonies of each species foraging 

in piles of bait seeds of mixed colors, with equal numbers of the four colors in a single 

pile. 

We arranged our experimental seed distributions so as not to disadvantage small 

colonies. By placing fewer seeds closer to smaller colonies with smaller average foraging 

distances, we attempted to provide an equal chance for an individual forager to encounter 

one of our experimental seeds whether that individual was in a large or small colony 

(Table 1). We chose a number of seeds roughly proportional to the forager population 

size: 1024 seeds for P. rugosus and 128 seeds each for P. desertorum and P. maricopa. 

We adjusted the distances of baits from the nest entrances in order to obtain a similar 

density of seeds patches in each treatment, placing the baits in a ring 5-7m from each P. 

rugosus colony, 2-4m from each P. maricopa colony and 1-3m from each P. desertorum 

colony (Table 2).  Because the distance that a forager typically travels does not increase 

linearly with the number of foragers in a colony, it was not possible to simultaneously 

keep the density of seeds constant and the distance from nest to seed precisely 

proportional to typical forager travel distance. 

P. desertorum foragers, with the smallest body size, frequently had difficulty 

handling the hulled millet with which we baited the other species. Because recruitment 

responses may be reduced with excessive handling times of large grains (Hölldobler 

1976), we baited P. desertorum colonies with sesame seeds.  All three species readily 

collected experimental seeds whenever they encountered them, suggesting that any 

difference in seed preference was not a significant factor. 
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After placing the experimental baits, an observer recorded the color of each seed 

brought into the nest with a time stamp using a computer program we created. For each 

experimental observation, we generated a time series for each distribution (a set of 

cumulative curves representing four time series in one observation is shown in Figure 2). 

 

 

Table 2. Experimental seed distribution. 

 

 We concluded observations when a focal colony ceased foraging or when ants 

had collected all experimental baits, usually between 60 and 90 minutes after the start-

time of the observation. 
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Figure 2. Seed intake rates from one field observation of a colony of P. Rugosus. The y-

axis shows the cumulative number of seeds collected by the time specified on the x axis. 

Red = 1 pile of 256 seeds, purple = 4 piles of 64 seeds, green = 16 piles of 16 seeds, blue 

= 256 piles of 1 seed (randomly scattered seeds). 

 

 

Data Analysis  

We produced five time series from each observation, one each for seeds from 

each experimental seed distribution (color) and one for naturally occurring seeds. We 

calculated how much faster seeds from each clumped distribution were collected 

compared to those in the random distribution.  

We measured seed collection rates in two time periods. The first time period was 

measured from the placement of seeds (the start of the experiment) to the time that the 
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first seed from each distribution was collected. This discovery time measures the amount 

of time for an ant to find a seed from each distribution. The second time period was 

measured from the discovery of the first seed of a distribution to the last seed collected 

from that distribution.  We call the rate at which seeds were collected once a distribution 

was discovered foraging rate. In Table 3 we report, for each species, the discovery times 

and the foraging rates for each distribution.  

 

  

Table 3. Mean* discovery times. 

 

We focus our analysis on the foraging rate, which measures the foraging 

efficiency once an ant knows the location of one seed from a distribution. We calculated 
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the foraging rate for each distribution by dividing the number of seeds collected from that 

distribution by the time elapsed between the collection of the first and last seeds of that 

distribution. 

The foraging rate on randomly scattered bait seeds served as a baseline seed 

collection rate for each colony during each foraging period. We therefore calculated a 

normalized rate by dividing the foraging rate of each piled distribution by the foraging 

rate of randomly scattered seeds for each observation. This ratio allowed us to quantify 

how much faster clumped seeds were collected relative to randomly scattered seeds and 

to compare foraging rates across variable colony activity levels, conditions and colony 

sizes. In order to correct for skew in our field data, we log2-transformed the normalized 

rates to obtain a normal distribution.  

We analyzed both foraging rates and log2-transformed normalized rates using 

repeated measures general linear model (SPSS PASW Statistics,R.18.0.1). Repeated 

measures analysis accounted for the non-independence of multiple measures taken of a 

single focal colony. Repeated measures also provide greater statistical power in this case 

by controlling for variation in activity level among our focal colonies, allowing us to 

distinguish within- and between-subject effects. We included species as a between-

subject factor in these analyses. We use the resulting estimated marginal means to 

account for the influence of the independent variables (species and seed distribution) on 

our dependent variable (log2-transformed normalized rate).  
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Results 

We estimated an active forager population (mean ± standard error) of 71±341 for 

P. desertorum, 269±185 for P. maricopa, and 356±211 P. rugosus in our 2009 study. The 

P. maricopa and P. desertorum estimates are similar to those estimated in earlier years at 

the Sevilleta NWR (Table 1), but the P. rugosus estimates are significantly lower in our 

experimental study in Albuquerque in 2009. 

The test for bias in the collection or observation of bait seeds of different color 

showed no bias by color in the order of arrival of seeds at the focal nests (Kruskal-Wallis 

test: n=802 seeds; p=0.59).  

Figure 2 shows the cumulative number of seeds collected over time for each 

distribution in one field experiment. The graph depicts a single typical experiment in 

which dispersed (blue and green) seeds are discovered faster than clumped (red and 

purple seeds). The x-intercept measures the time it took for each distribution to be found. 

These discovery times were unaffected by species identity (p > 0.05), but not 

surprisingly, were longer in the more clumped distributions across all species (p = 0.002, 

Table 3).  

Averaged over all species, discovery times for blue (13.00 ±2.02 minutes) and 

green seeds (14.19 ± 2.23 minutes) were indistinguishable, and discovery times for red 

(22.83 ±3.51 minutes) and purple seeds (22.59 ±3.42 minutes) were indistinguishable.   

Once an ant discovers the location of an experimental pile, the time for a forager 

to search for additional seeds from that pile is negligible. Our analysis focused on the 

foraging rate: the rate at which ants collect seeds from a distribution once they have 

discovered a pile in that distribution. We measured foraging rates of naturally occurring 
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seeds as well as rates for each colored seed distribution (Table 4). The mean foraging 

rates for natural seeds are similar to those for our baits, indicating that our measured rates 

are not an artifact of baiting the ants with extraordinary amounts of food. Figure 3 shows 

the foraging rate for the piled, randomly distributed, and naturally occurring seeds 

collected during our field observations. 

Repeated measures analysis shows a significant difference in foraging rates 

between species (p<0.001) indicating that species with larger colonies have greater 

absolute foraging rates and a significant difference in foraging rates between pile sizes 

within species (p<0.001). Within each of the three species there is a decreasing trend in 

foraging rate as seeds are dispersed across more piles. According to paired t-tests, 

foraging rates for 4-pile (purple), 16-pile (green) and random (blue) distributions are 

significantly different from the 1-pile (red) distribution for P. rugosus (p=0.008, 0.011 

and 0.009 respectively) and P. desertorum (p = 0.004, 0.025 and 0.012 respectively). Due 

to high variation, foraging rates are not significantly different between distributions for 

P.smaricopa. 

The colored bars in Figure 4 show the normalized rates: the foraging rate from 

each of the three piled distributions divided by the foraging rate for randomly distributed 

seeds. Data were log-transformed to obtain normal distributions (Shapiro-Wilk test: p> 

0.102 after transformation). After log2-transformation, a value of 0.0 for normalized rates 

indicates that seeds from a piled distribution are collected at the same rate as randomly 

distributed seeds, and a value of 1.0 indicates that seeds are collected twice as fast.  

Repeated measures analysis of the log-transformed normalized foraging rates revealed no 

effect of species (p = 0.463), but a significant effect of distribution on normalized rates 
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within species (p < 0.003). According to paired t-tests, normalized rates for 4-pile 

(purple) and 16-pile (green) distributions are significantly different from the 1-pile (red) 

distribution for P. rugosus (p = 0.028 and 0.021, respectively) and for P. desertorum 

(p=0.001 and 0.15, respectively). As is the case with foraging rates, normalized rates are 

not significantly different between distributions for P.smaricopa.  

Because we found no effect of species on the normalized foraging rates, we 

combined data from all three species and found that the normalized foraging rates 

declined significantly from the largest (red) piles to the more dispersed (purple) piles  (p 

= 0.004) and green piles (p < 0.001). The combined marginal means ± standard error of 

log2-transformed normalized rates are 1.2 ± 0.2, 0.5 ± 0.2 and 0.3 ± 0.1 for 1-pile, 4-pile 

and 16-pile distributions of seeds respectively. These log2-transformed rates indicate that 

foraging rates decrease as seeds are more clumped such that seeds are collected roughly 

twice as fast from piles that are 4 times bigger. Pairwise comparisons between 

distributions for combined species show a significant difference (paired t-tests: p < 0.004) 

between 1-pile (red) and the more dispersed distributions. Table 4 summarizes the 

marginal means for foraging rates and normalized foraging rates for all species and 

distributions.  
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Table 4. Mean* foraging rates and normalized rates for each seed distribution. 
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Figure 4. Normalized foraging rates. Bars indicate normalized rates (foraging rate on 

piled seeds divided by foraging rate on random seeds) for three distributions for three 

species depicted separately and combined. A value of 1 indicates that seeds from a piled 

distribution are collected at the same rate as randomly distributed seeds. Asterisks 

indicate significant differences of the single pile distribution rates with all other rates 

within the same species. Error bars are standard errors. 

 

Discussion 

We observed foraging by three sympatric species of Pogonomyrmex on 

experimentally manipulated seed distributions and quantified the effect of seed 

distribution and forager population size on foraging rate. Not surprisingly, more-clumped 

distributions were collected faster by all ant species (Figure 4), suggesting that all species 

reduced foraging times on clumped distributions, minimizing the cost of searching for 

seeds. However, given theoretical differences in foraging strategies in larger colonies 
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(Anderson and McShea 2001; Beckers et al. 1989; Bourke 1999; Sumpter 2006; Wilson 

and Osborne 1971), we were surprised to find no evidence that colonies with large 

forager populations collected clumped seeds relatively faster than smaller colonies.  

All ant species systematically increased foraging rates on seeds in more clumped 

distributions. Foraging ratios for each piled distribution increase from 0.3 to 0.5 to 1.2 as 

the clumpiness of the distribution decreases from 1 pile, to 4 piles and to16 piles. Seeds 

are collected roughly twice as fast from piles that are 4 times bigger. So, the ants exploit 

the distributions that are more clumped to improve whole colony foraging intake. 

However the increase in foraging rate with pile size is slower than we expected — piles 

that are much bigger are collected only slightly faster. 

The rate at which ants collect seeds is a function of two processes — the time for 

the ants to discover seeds from a distribution and the time it takes to collect a distribution 

once it is found. For all species, the time to discover more dispersed (green and blue) 

seeds was faster than the time to discover more clumped (red and purple) seeds. 

However, once those piles were discovered, clumped seeds were collected significantly 

faster than the dispersed seeds. We analyzed the rate at which ants collected seeds from 

each piled distribution relative to randomly scattered seeds and this normalized foraging 

rate indicated how much faster foraging occurs once a colony knows the location of one 

seed from a distribution. The normalized foraging rate also accounts for differences in the 

number of active foragers in a given day and allowed us to make comparisons across 

species and conditions that varied widely.  

Not surprisingly, colonies with more foragers collected a larger total number of 

seeds (Figure 3). However, repeated measures analysis showed no effect of species 
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(which vary significantly in forager population size; see Table 1) on normalized foraging 

rates. Because prior work suggests that larger colonies are more likely to use some form 

of group recruitment, we expected that large colonies might be disproportionately good at 

collecting seeds from large piles. However, colonies collected seeds from large piles 

faster than seeds from small piles, regardless of colony size. This study suggests that 

large and small colonies of Pogonomyrmex allocate relatively similar numbers of 

foragers to large piles to collect them faster. Figure 4 shows that the increase in foraging 

rate with pile size is indistinguishable for large and small colonies. However, these 

results should be interpreted in the context of our study design.  

We controlled for colony territory size and for the distance that foragers travel to 

look for food by placing seeds closer to smaller colonies, giving large and small colonies 

equal opportunity to access the seed piles. However, this resulted in a higher density of 

piles in the territories of species with small colonies compared to the density of piles for 

larger colonies. In natural settings, it is possible that large colonies more often exploit 

large piles because their larger territories contain more large piles. 

Our study does not reveal the specific foraging behaviors that these ants employ 

to collect clumped seeds faster, but we do suggest that two strategies are plausible. 

Clumped seeds in our study could have been collected faster by group recruitment, or 

they may be collected faster as a result of a behavior called site fidelity. 

Bigger piles are collected faster with group recruitment because more ants are 

attracted via pheromones to forage from bigger piles. If the ants in our study were using 

group foraging, it would be surprising that larger colonies do not recruit more ants to the 

larger piles, since previous work on other ant species that shows that large colonies with 
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large numbers of ants and sophisticated communication networks recruit more effectively 

(Anderson and McShea 2001; Beckers et al. 1989; Beverly et al. 2009).  It is possible that 

the ants in our study do use some sort of group recruitment, but allocate only a small 

number of additional foragers to collect from even very large piles. If large and small 

colonies each allocate a similar small number of foragers to collect from large piles, this 

could explain why large and small colonies forage equally fast on large piles. 

Some have hypothesized that seed harvesters rarely recruit in nature because 

seeds are distributed heterogeneously over time rather than over space (Fewell 1990; 

Gordon 1991). Further, Pogonomyrmex use a site fidelity behavior--foragers repeatedly 

return to the last place that they found a seed (Beverly et al. 2009; Crist and MacMahon 

1991). This foraging behavior allows ants to exploit large piles faster because a single ant 

repeatedly returning to the same pile reduces its search time. Site fidelity may be 

sufficient to collect piles of seeds quickly (Beverly et al. 2009; Buchkremer and Reinhold 

2008). For seed piles small enough that a single ant can collect all the seeds in a patch 

before the colony ceases foraging activity for the day, there may be no benefit in 

recruiting other foragers to that pile.  If ants primarily use site fidelity and not 

recruitment, then we would expect large and small colonies to be equally capable of 

collecting large piles faster, as we saw in our field study. However, in the case of a pile 

so large that the seeds cannot be collected by a single ant in a foraging period, or when 

seeds might be taken by competitors if they are not collected rapidly, recruitment of other 

ants to the site may be much more beneficial.  

In other work, Letendre and Moses Letendre and Moses (2013) use an agent-

based model to show that pheromone recruitment results in increased foraging rates on 
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more clumped distributions, although that study suggests that pheromone recruitment 

alone results in lower normalized foraging rates on piles than we observed in our field 

study. Site fidelity may provide an alternative explanation for how these seed harvesters 

collect large piles faster. In future modeling work we will explore how the processes of 

site fidelity and pheromone recruitment may each contribute to the ants’ exploitation of 

seeds in different distributions. 

While our findings suggest no differences in foraging strategy among these 

species, this stands in contrast to descriptions of interspecific variation within 

Pogonomyrmex in foraging strategy in the literature (e.g. Johnson 2000). It is possible 

that smaller colonies are capable of the foraging strategies that allow them to exploit 

more densely distributed foods when given the opportunity to do so, even though larger 

colonies more often have opportunity by virtue of their larger territory size, given random 

placement of patches of food in the environment. 

Further studies specifically designed to measure foraging rate given the same 

distribution of seeds for all colonies are warranted, particularly since native seed 

distributions are not adjusted so that more small piles occur closer to small colonies. The 

effect of colony size might be very different given the same distribution of food for all 

colonies or given competition for food between colonies of different sizes. Since colony 

size has profound effects on colony life history (Hou et al. 2010; Shik 2008) and foraging 

strategy (Anderson and McShea 2001; Jun et al. 2003) this should be a fruitful area for 

further study.  

Our study shows that ants from three Pogonomyrmex species systematically 

increase foraging rates as seeds are clumped into fewer large piles. The species differ 
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substantially in colony size and forager population, but the increase in foraging rate with 

colony size is consistent across all three species. The increase in foraging rate on more 

dispersed distributions is surprisingly slow—roughly doubling as seeds are clumped in 1 

versus 4 vs. 16 piles. Other foraging studies, for example Deneubourg et al. (1990), 

suggest that foragers of heavily recruiting ants converge very quickly on rich resources. 

This may suggest that seed harvesters, which forage on resources that remain relatively 

static over the course of a foraging period, spend more time exploring for new seeds 

rather than exploiting known piles of seeds. Understanding how different species of ants 

balance the trade-off between exploiting known resources versus exploring for new ones 

may improve understanding of foraging behavior in other animals that forage 

collectively. 
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CHAPTER 3 
 

USING INFORMATION TO IMPROVE COLLECTIVE FORAGING 
 

Abstract 

Organisms constantly process information from their environments. Behaviors 

that communicate or store information necessarily shape the result of their activities.  

Communication of information is fundamental for large colonies of social insects to 

integrate information and organize large numbers of foragers, thus colony size should 

produce distinct effects on choice of foraging behaviors and the corresponding resource 

intake patterns.  In this study, we analyzed resource intake patterns to test whether 

species with larger colony sizes use more information-based behaviors than species with 

smaller colony sizes. Our approach integrates data obtained in the field from three 

Pogonomyrmex seed harvester ant species with distinct colony sizes, and computer 

simulations that model foraging behaviors.  We examined foraging patterns generated by 

idealized behaviors that rely on recruitment, individual ant memory or a random walk 

without memory or recruitment.  We inferred the likely behaviors used by three species 

of harvester ants that vary in size.  We found evidence for recruitment, but only to large 

piles by large colonies.  Mid size colony foraging was more consistent with site fidelity; 

and the smallest colonies used random walks even for largest piles.  
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Introduction 

Behavior is a result of the interaction between an organism and information from 

its environment.  Using information is key to adaptive behavior (Danchin et al. 2004), as 

organisms that acquire information reduce uncertainty about their environment and 

increase their chance of choosing appropriate behavioral strategies (Schmidt et al. 2010).  

However, ecological features are constantly changing; therefore, animals must 

continually gather information when it is available (Dall and Johnstone 2002).  Animals 

can acquire information by interacting with the environment (private information) or 

through interactions with others (social information) (Danchin et al. 2004).  Finally, the 

continuous interactions between information and resulting individual behaviors in social 

insects produce a response that is finely tuned to environmental cues. 

Ants are known to engage in foraging behaviors that use social and private 

information, such as site fidelity (Fresneau 1985; Rosengren and Fortelius 1986)  or 

recruitment (Hölldobler 1976).  By decreasing the uncertainty of their environment, these 

well-known foraging behaviors necessarily shape food intake rates by reducing search 

time when resources are predictable. It is important to note that recruitment by 

pheromones is not the only form of recruitment.  For example, in Pogonomyrmex seed 

harvesters, foragers are stimulated to leave the nest by the return of successful foragers. 

This positive feedback mediated by the simple encounter rate among ants enables the 

colony to increase foraging activity in response to currently available food (Schafer et al. 

2006). 

Colony size has profound effects on foraging strategy (Anderson and McShea 

2001).  In large groups of animals, the successful coordination of many individuals 
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depends on their coordination.  However, foraging presents a particular challenge to 

scalability due to substantial travel costs for each ant in large foraging territories. As ants 

transport resources between a central place and the space of the territory, the work a 

colony must do to acquire food increases faster than the number of foragers (Moses 

2005).  To address diminishing returns, communication of information is characteristic of 

large colonies of social insects, necessary to organize and optimize foraging with larger 

numbers of foragers (Beckers et al. 1989; Kendal et al. 2005).  Due to these increased 

interactions, larger groups are better than small ones at tracking their environment 

(Pacala et al. 1996).  Therefore, in addition to individual behaviors, a second predictor of 

foraging patterns is colony size, which we expect will in turn produce distinct effects on 

choice of foraging behaviors. 

Ants increase seed intake rates as seeds are clumped into fewer large piles and 

raw intake rates vary significantly between species. However, when we compared 

normalized foraging rates (foraging rates from piled seeds relative to randomly dispersed 

seeds), we found no significant difference between species (Flanagan et al. 2012).  This 

stands in contrast to descriptions of interspecific variation within Pogonomyrmex in 

foraging strategy (e.g. Davidson 1977; Johnson 2000), and in contrast with the hypothesis 

that larger colonies must use more communication to organize foraging with larger 

numbers of foragers (Beckers et al. 1989).  Further, the study did not reveal the specific 

foraging behaviors that ants use to collect clumped seeds faster, but suggested that two 

strategies are plausible: clumped seeds may be collected faster than dispersed seeds by 

ants sharing information through forager recruitment, or as a result of site fidelity.  It is 
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also possible that a combination of the two behaviors leads to faster collection of 

clumped seeds. 

We asked whether species with large colony sizes use more information-based 

behaviors than species with smaller colony sizes.  Since colonies with a larger number of 

foragers are expected to communicate more than colonies with a smaller number of 

foragers (Beckers et al. 1989), and we know that seed intake from clustered spatial 

distributions is faster (Flanagan et al. 2012), we expected larger colonies to use 

information-based behaviors, in particular, when resources are spatially clustered..  

Integrating data from computer simulations and natural field data, we examined the effect 

of colony size and spatial distribution of resources on seed intake rates, in simulated data, 

and from field data obtained from three Pogonomyrmex species.  

In the first part of this study we examined the variation in seed intake patterns 

over time.  If ants were communicating information about the location of food, we 

expected seed intake rates to increase exponentially over time, and thus, the 

corresponding time between arrivals to exhibit an exponential decay (Flanagan et al. 

2013).  In simulations, we compared the fits of linear and exponential regressions to time 

between arrivals from simulated behaviors to test our hypothesis that exponential patterns 

represent seed intake rates obtained with recruitment. We additionally tested the arrival 

time distributions generated by other behaviors, we examined the arrival time patterns in 

field data and determined which behaviors are consistent with those observed patterns.  

Additionally, we used a half-life model to examine between-species variation in the rate 

of decay of time between arrivals. 
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In a second part of the study, we inferred behaviors in the field from idealized 

behavior patterns based on how foraging rates changed across spatial distributions of 

food.  We first quantified the information contained in each spatial distribution.  We used 

exponential regressions to model how seed intake rates change with respect to entropy in 

spatial distributions, and used distinct idealized behaviors to determine the shape of 

patterns generated by the use of information.  We used these idealized patterns to train a 

machine-learning algorithm implemented specifically for this study. We then inferred 

behaviors in the field by assessing the similarity of field resource intake patterns to 

patterns from simulated data. 

 

Characterizing foraging behavior 

Throughout the study, we used exponential models to examine the relationship 

patterns between seed intake rates, behavior and colony size. We then use the parameters 

from those models to train a machine-learning algorithm to relate seed intake rates to 

different behaviors and colony sizes. 

We chose to model changes in foraging rates using exponential models because 

they represent the underlying foraging process well. Forager recruitment involves a 

process where each ant increases productivity by engaging the work of other nestmates. 

Thus, exponential decay in ant arrival times suggests a positive feedback loop (Flanagan 

et al. 2013).  Any process of recruitment, for example pheromone recruitment, 

recruitment through nest interactions (Gordon 2010), or tandem running (Wilson 1959) 

would exponentially increase the rate of seed intake and decrease the time between each 

successive seed arrival.  If ants were using private information (i.e., memory based 
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foraging strategies such as site fidelity) to remember the location of food, we expected 

seed intake rates to increase linearly over time. If ants arrived at the baits by chance 

(without relying on remembered or communicated information) the time between 

successive arrivals to the nest with seeds would remain the same throughout the 

experiment.  

Foraging patterns are typically shaped by complex interactions among individuals 

and by external factors.  Although humans are uniquely gifted at recognizing patterns, it 

is in fact a very complex process (Duda et al. 2012), often exacerbated by noisy and 

sparse data.  These methodological difficulties often lessen our ability to analyze identify 

all variables involved in complex system interactions and impede our ability to recognize 

underlying mechanisms (Nathan et al. 2008; Spiegel et al. 2015).  Such is the case with 

foraging patterns from ants in the field. Fuzzy logic, which originated from fuzzy set 

theory (Zadeh 1965), is used to predict the probability of data similarity with non-exact 

matches. Here, we addressed this challenge by implementing a well-known machine-

learning algorithm based on fuzzy logic for pattern recognition.  Fuzzy Pattern Matching 

(Mouchaweh 2004; Mouchaweh et al. 2002) allowed us to leverage the speed of 

computers, and the law of large numbers to learn from many examples of idealized 

simulated behaviors and compare learned representative patterns to patterns from noisy 

and sparse data from field studies. 
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Materials and Methods 

Field data 

We used field data from 21 colonies from three Pogonomyrmex species, with 

known average colony sizes.  Johnson (2000) estimated total colony population sizes as 

thousands for P. rugosus, a few hundred for P. Maricopa, and fewer than 100 for P. 

desertorum.  In our field study we estimated forager populations (not total colony size) 

from these same species as (mean ± standard error) of 71±341 for P. desertorum, 

269±185 for P. maricopa, and 356±211 P. rugosus. Ants foraged on a distribution of 

seed baits arranged as a power-law distribution. Table 1a describes the experimental 

setup. See Chapter 2 of this dissertation (Flanagan et al. 2012) for further explanation on 

experimental setup and methodological details.  

 

Simulated data  

To generate data for idealized behaviors, we used software developed by Hecker 

et al. (2012) that simulates foraging using a set of agent-based models (ABMs) of 80 

foragers on a 280 x 280 grid, with parameters optimized by a genetic algorithm (GA). 

The parameters specify how ants travel from the nest, search, and use site fidelity and 

communication.  The simulation model was designed based on foraging behaviors 

obtained in the field, described in Chapter 2 of this dissertation (Flanagan et al. 2012). 

Foraging rates obtained with this model were similar to foraging rates in our field study 

(Letendre and Moses 2013).  

We generated data from simulations optimized for distributions that consist of 

piles, each pile with equal number of seeds, and pile number determined by dividing the 
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total number of seeds into piles of some specified size (see Fig. 1a for examples).  We 

generated a second kind of distribution, a power-law distribution, which consisted of 

several piles, many small piles and a few large piles (see Fig. 1b for an example).  

 

   

 (a)  

 

 

(b) 

Figure 1. (a) Three examples of distributions with piles that contain the same number of 

seeds. From left to right, 1-pile distribution, 4-pile distribution, and 16-pile distribution. 

(b) An example of a power-law distribution of seeds. The piles in a power-law 

distribution have different numbers of seeds. Power-law distributions contains a large 

number of piles with few seeds and few piles with a large number of seeds. 
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We repeated the simulation using each one of four behaviors.  The behaviors 

simulate a correlated random walk (CRW), where ants walk randomly on the grid but 

exchange no information.  The remaining three behaviors add features to the CRW: site 

fidelity (SF), where foragers remember the position where they last found a resource, and 

return to it; forager recruitment (PH) in the model is a implemented as virtual 

communication that is not actually used by ants. Food locations are communicated as an 

x- y- coordinate location in space to ants as they leave the nest.  This could represent any 

kind of recruitment in which one forager guides another to a location in space (for 

example, pheromone recruitment, or tandem running).  The fourth foraging behavior used 

both SF and PH together. We parameterized each behavior based on optimizations for 

seven different distributions of seeds (Table 1b), following methods described in (Hecker 

and Moses 2015). 

 

Variation between spatial distributions 

Using simulated and natural data, we verified that our data sets were not randomly 

distributed. We used a Chi-square test to evaluate the goodness of fit of a Poisson curve 

to the frequencies of time between arrivals.  The tests rejected the hypothesis of data 

being consistent with Poisson distributions (p<0.001), suggesting that arrival rates have a 

pattern different than would be generated by a random process.  We used exponential and 

linear regressions to examine how time between arrivals changed over time.  The time 

between arrivals at the nest was the dependent variable and the cumulative number of 

new arrivals at the nest was the independent variable. 



 40 

 
 
 

(a)  Field setup. Power-law distribution of seeds.  
Total seeds per experiment = 256,128; N=37 

 P. rugosus P. maricopa  and P. desertorum  
Number of seeds 256 256 256 128 128 128  
Number of piles 1 4 16 1 4 16  
Number of seeds 
in each pile 

256 64 16 128 32 8  

Shannon entropy 0 2 4 0 2 4  
 

(b) Simulation setup. Distributions of seeds with piles of equal size.  
Total seeds per experiment = 1280; N=400 

Number of seeds 1280 1280 1280 1280 1280 1280 1280 
Number of piles 1 4 16 32 80 320 1280 
Number of seeds 
in each pile 

1280 320 80 40 16 4 1 

Shannon entropy  0 2 4 5 6.3219 8.3219 10.3219 
 

(c) Simulation setup. Power law distribution of seeds.  
Total seeds per experiment = 1280; N=4000 

Number of seeds 256 256 256 256 256   
Number of piles 1 4 16 64 256   
Number of seeds 
in each pile 

256 64 16 4 2   

 
 

Table 1. Experimental setup for simulations and field experiments. Experiments use 

four behaviors, correlated random walk (CRW), site fidelity (SF), forager recruitment 

(FR) and a combination of site fidelity and forager recruitment (SF+FR). We used each 

behavior once on each of  (a) seven distributions of seeds and once on (b) one power-law 

distribution, obtained by dividing 1280 seeds into five distributions with piles of different 

sizes, placed simultaneously. Field experiments were conducted on a power-law 

distribution of seeds. Section (c) shows the distribution for each species of ant. 

 

We examined the time between successive arrivals to the nest, for each spatial 

distribution, for simulated and natural data.  We knew the behaviors that generated 
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simulated data, and the colony size of natural data. For each combination of behavior and 

spatial distribution in simulated data, we examined the time between arrivals over time. 

To compare linear and exponential regressions, we used the average model performance 

error, root-mean-square error (RMSE) as a measure of goodness of fit. Since RMSE 

measures an average error, lower values indicate a better fit. RMSE values have the same 

units as the dependent variable; therefore, the values should be interpreted accordingly. 

 

Variation between species 

We repeated the process for each combination of species (with different 

characteristic colony sizes) and spatial distribution on natural data. From results for 

simulated data with known behavior, and results for natural data with know colony size, 

we inferred behaviors in the field. 

 

Half-life model 

Our previous analyses showed that time between arrivals of successive seeds, as a 

function of cumulative seed arrivals, followed an exponential or relationship. Cumulative 

number of seeds was our independent variable, and time between seed arrivals was our 

dependent variable. To study the change in seed intake rate from a different perspective, 

we used a half-life model to describe the change in time between arrivals of as a function 

of time, instead of cumulative seed arrivals. Time between arrivals of seeds continued to 

be our dependent variable, but now time was our independent variable. To analyze 

between-species variance, we compared half-life values calculated for each species using 

a non-parametric two-sample Kolmogorov-Smirnov test. 
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In exponential models, half-life (t1⁄2) is the period of time required for an initial 

quantity to decrease to half its initial value. This period is independent of initial quantity 

or initial time, and it represents a rate of decay.  

Let Y=Ae-Bt  represent the exponential decay of Y over time t. If we calculate the 

time at which an initial value Y0 will decay to half of its value, we have 

𝑌!
2 = 𝑌!𝑒!!" 

Solving for t, we obtain the half-life for Y,  𝒕𝟏/𝟐 =
𝒍𝒐𝒈𝟐
𝑩

 , which is independent of time, 

and independent of initial value Y0.  

The period of time between when the dependent variable has a value V0  and 

when it decreases to half V0/2 remains constant. For example,  if at an intial time T0 =10 

minutes, the time between arrivals was V0=50 seconds, and at Tf=20 minutes, the time 

between arrivals was Vf=25 seconds, we can expect that after another similar period of 

time, Tf - T0=10 minutes, the time between arrivals will halve again to Vf/2=25/2=12.5 

seconds. This constant time period Tf - T0, the time between T0, when the value of the 

independent variable is V0, and Tf, the time when that value of the independent variable is 

V0 /2, is what we call half-life (t1⁄2).  If we count the number N of times any value V0  

halves during a certain amount of time T, and divide that time into N parts T/N, we can 

obtain the half-life of that variable (Fig. 2).  

Large half-life periods represent exponential models with slow decay and small 

half-life periods represent exponential models with fast decay.  The advantage of the half-

life metric is that it is a single number averaged over multiple experiments which allows 

the rate of exponential decay can be compared across colony sizes and seed distributions.  
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Figure 2. Example of a half-life model with half life = 10 minutes. As the time between 

arrivals (dependent variable) halves from V0=50 to Vf=25, the period on the independent 

variable during which this happens Tf-T0 = 10 remains constant. For example, when the 

time between arrivals halves from 50 to 25, the period of time during which this happens 

is 10 minutes, from minute 10 to minute 20. When the time between arrivals halves again 

from 25 6o 12.5 the period during which this happens is again 10 minutes, from minute 

20 to minute 30. This constant period of time is what we call half-life. To calculate the 

half-life value, we can count the number of times a value is halved N and then divide the 

total time T by this number. For example, 100 is halved 4 times before it reaches a value 

of 6.25 at 40 minutes.  T/N=40/4=10. The half-life value for this model is 10.  
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To calculate the half-life of each distribution we followed these steps: 

 

a. We defined initial activity as the time between the first and second arrival of 

seeds. The time between the first and second arrivals will be, on average, the 

longest interval between seed arrivals. 

b.  We divided the initial activity by two, and successively halved that result 

until the value equaled the minimum time between two successive arrivals in 

that distribution. We keep count of the number of times we divided the initial 

activity.  

c. By dividing the total collection time by the number of divisions, we obtained 

the half-life value that represents the exponential decay of time between 

arrivals for that distribution. 

 

Use of spatial information 

Each seed pile in a distribution contains information.  Once an ant discovers a 

pile, that ant knows the location of seeds in that pile. That location information can be 

shared (in recruitment) or remembered (in site fidelity), which eliminates search time in 

subsequent foraging trips. To determine how information in spatial distributions shapes 

seed intake rates, we characterized information in the spatial distribution of seeds by 

using Shannon information theory, following the concept used in Flanagan et al. (2011).   

We modeled the relationship between spatial distribution and average intake rate 

through exponential regressions. To uncover behavior patterns, characteristic of different 

colony sizes, we used these exponential models to train a Fuzzy Pattern Matching 
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algorithm (Mouchaweh 2004; Mouchaweh et al. 2002). We implemented the algorithm in 

Matlab R2015b and compared natural behavior patterns to simulated foraging patterns by 

assessing pattern similarity to one or more behaviors 

 

Information in spatial distributions 

To characterize information in spatial distributions, we used Shannon entropy, 

which provides a metric that relates the clustering in spatial distributions with 

information available in that distribution.  We used Shannon entropy to measure the 

number of bits of information the ants obtain once they find one pile from a distribution. 

We calculated the Shannon entropy of spatial distributions as 

𝐻 𝑝 = − 𝑝!𝑙𝑜𝑔!𝑝!
!

 

where pi is the probability of a single resource being in the ith pile. Once a pile is found, 

the location of all seeds in that pile is known.   

Entropy also measures the amount of uncertainty in a distribution (Cover and 

Thomas 2012).  The uncertainty left about the position of the remaining seeds in the 

distribution increases as the seeds are scattered in a larger number of piles.  For example, 

in a distribution with one pile, the location of all resources is known once the pile is 

found, so the entropy of the distribution is zero.  When all resources are randomly 

distributed, finding one seed does not decrease the uncertainty of the location of other 

seeds. In this case, the entropy or uncertainty of the distribution is at its maximum. 

Clustered distributions offer information about the location of more seeds to the 

ant that discovers the pile.  We expected that communication of information about the 

location of resources would produce an exponential increase in foraging rates as ants 
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exploit that information in clustered distributions.  On the other hand, discovery of the 

location of one seed in a random distribution offers no information about the location of 

other seeds; thus, we expected random distributions to produce no exponential increase in 

foraging rates.  To examine the relationship between foraging rates and clustering, 

measured as Shannon entropy, we calculated the percent improvement of intake rates for 

each distribution over intake rates for a random distribution.  We obtained the percent 

improvement by dividing all seed intake rates by the intake rate from randomly 

distributed seeds in the same experiment.  We then modeled the change in foraging rates 

versus Shannon entropy using exponential regressions.  

 

Information use and colony size 

A pattern is a set of features, individual measurable properties that describe a 

phenomenon (Bishop 2006).  Therefore, a foraging pattern is a set of variables that 

describe the foraging dynamics of the system that we are studying.  We chose seed intake 

rates to describe the foraging patterns in our study, and modeled the change in seed intake 

rates with respect to Shannon entropy with exponential regressions.  We defined these 

models as foraging patterns and the parameters that describe them as features. 

Fuzzy pattern matching is the implementation of fuzzy set logic (Zadeh 1965), 

which that allows us to score the likelihood of a pattern being similar to another.  Fuzzy 

logic is useful to predict the probability of similarity in patterns with non-exact matches. 

In this study, we seek to compare simulated and natural foraging patterns.  We modeled 

the change in seed collection rates as exponential regressions using time between seed 

arrivals as the dependent variable, and entropy as the independent variable.  For field 
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data, we have only four data points (4 different pile sizes with 4 different entropy values) 

with which to calculate each regression.  While this is a small number of data points for 

each regression, Fuzzy Pattern Matching allowed us to leverage the large number of 

simulated regressions to obtain representative models and assign similarity scores to the 

patterns we obtain from natural data. 

We used the fuzzy pattern-matching algorithm to compare patterns generated by 

behaviors in simulations to natural foraging patterns. Fuzzy pattern matching involves 

three steps. First, we selected features that best describe our data; second, we trained the 

algorithm by constructing model classes with those features, and third, we compared 

features in natural data with our model features, and assigned scores from 0 to 1 to each 

natural experiment according to its similarity to each model class.  See Mouchaweh et al. 

(2002) for a detailed description of the approach.  

We measured average seed intake rates from simulations on a power-law 

distribution of seeds, similar to the field setup. We used the simulation model with each 

of four behaviors, correlated random walk (CRW), site fidelity (SF), forager recruitment 

(FR) and a combination of site fidelity and forager recruitment (SF+FR).  We generated 

data for each behavior in combination with parameters optimized for seven different 

distributions of seeds (Table 1c). 

To construct behavior classes for pattern matching, we modeled the relationship 

between seed intake rates and spatial distributions with exponential regressions of the 

type Y= AeBx, where y is the time between arrivals and x is the Shannon entropy 

calculated for each distribution.  We conducted a total of 1000 simulations for each of 

four behaviors, for a total of 4000 simulations.  We selected the exponential parameters A 
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and B as features representative of each behavior class. Thus, the learning set for each 

parameter contained four behavior classes: correlated random walk (CRW), site fidelity 

(SF), forager recruitment (FR) and the combination of site fidelity and forager 

recruitment (SF+FR), characterized by the distribution of values for A and for B. The 

larger the frequency of a parameter value, the more representative that parameter is of 

that class. 

We calculated our model patterns by constructing histograms, one histogram for 

feature A and one histogram for feature B. To compute the histograms, we divided the 

complete interval of feature values into b bins of equal width w as 𝑏 = !!!!!
!

 where fm is 

the maximum value of the feature value interval, f0 is the minimum value of the same 

interval and w is the width of the bin. The height of each bin is the number of occurrences 

within that interval. To normalize the histograms, we divided the height of each bin by 

the maximum value in the same bin, so the largest bin will have a value equal to one. 

Each histogram represents a class. We then created a membership function f for each 

class by joining histogram bin point centers; these are the membership functions for each 

class. 

To classify natural patterns, we calculated membership scores by using 

interpolation to evaluate each membership function f at every new point p that we wish to 

classify. We interpret a membership score s=f(p) as the degree of compatibility of the 

new sample with the most representative examples of a class. The membership score is a 

linear weighting between competing classes based on its distance to the most likely 

features, represented by the bin with a height of one. To calculate global membership 

scores for each experiment, we average all scores for each behavior class, so each 
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experiment has four final scores. Each score describes how close the evaluated pattern is 

to the most representative models of one of four classes. Small numbers represent a very 

unlikely match, while large numbers represent a very close match. We defined each score 

as a weight proportional to the value of the score. Using this reasoning, we calculated the 

sum of membership scores for each behavior within a species, and visualized them in bar 

plots, one bar for the added weights of one behavior. The height of each bar is the weight 

that supports the hypothesis that a behavior is used by that species. 

 

Results 

We asked whether species with large colony sizes use more information-based 

behaviors than species with smaller colony sizes.  The results below suggest that 

information-based strategies are used more by larger colonies in clustered resource 

distributions, consistent with our initial hypothesis. 

 

Variation between spatial distributions 

In simulations, recruitment provided a decrease in time between arrivals when 

seeds were clustered in few piles but not when those seeds were distributed randomly 

(Fig. 3a, Fig 3b, rows 1,2). Both site fidelity (SF) and recruitment (PH) have declines in 

arrival rates. However, recruitment is best modeled by an exponential decline, suggested 

by lower RMSE in distributions of 1 and 4 piles (Fig. 3a, col. 2, rows 1,2); and site 

fidelity (SF) is best modeled by a linear decline, as suggested by negative linear slopes in 

distributions of 1, 4 16 and 32 piles (Fig. 3a, col 3, rows 1,2).  See Supplemental Table 1 
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for exponential regression parameters, Supplemental Table 2 for linear regression 

parameters, and Supplemental Table 3 for goodness of fit values (RMSE). 

 

 

 

(a) 

 

(b) 

Figure 3. Exponential regressions (black curves) show time between arrivals versus 

number of seeds collected for spatial distributions obtained with (a) three known, 

simulated behaviors, and from (b) field data from three species of ants. Each column in 

(a) shows plots for one of three behaviors, correlated random walk (CRW), pheromone 

recruitment (PH), and site fidelity (SF). Red colored markers represent a one-pile 

distribution, purple represents a 4-pile distribution, green represents a 32-pile 

distribution, and blue represents randomly scattered seeds. Regressions show exponential 

declines in clustered distributions for both simulated (a) and natural data (b). Exponential 

declines occur only with recruitment in simulated data; linear declines occur when using 

site fidelity. 
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In the case of distributions that are not clustered, seed intake rates over time 

showed no between-behavior variation. Exponential regressions in these distributions 

showed no significant decline in time between arrivals; RMSE for exponential regression 

was not significantly different than RMSE for linear regressions.  (Fig. 3a, rows 3,4; see 

also Supplemental Table 3 for goodness of fit values). 

When we combined field data for all species, our results suggested that the 

exponential decline in arrivals, characteristic of recruitment, occurs only when 

distributions are clustered. Times between arrivals declined exponentially over time for 

distributions with 1 and 4 piles of seeds (Fig. 3b).  Exponential regressions for natural 

data yielded better goodness of fit values (Table 2) when compared to linear regressions 

in clustered distributions, suggesting recruitment. As the distributions increase in entropy 

(i.e. in distributions with increasing number of piles and decreasing pile sizes), the 

difference in goodness of fit becomes insignificant.  Exponential regressions for all 

distributions resulted in a better goodness of fit, since RMSE was lower for all 

exponential regressions compared to RMSE of linear regressions fit (see Supplemental 

Table 6 for RMSE values of regressions on natural data). However, in distributions with 

32 piles and randomly distributed seeds, the difference in goodness of fit between 

exponential and linear models is less than 0.1 minutes, which makes the regressions 

indistinguishable considering the accuracy of measurements in the field.  

A further examination of regression parameters for simulated data suggests that A 

and b parameter values for exponential regressions show a large difference only in 

clustered distributions (Supplemental Fig. 1). Parameter A is larger and parameter B is 
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smaller when using pheromone recruitment than when using site fidelity or correlated 

random walks in clustered distributions, suggesting a vertical stretch and thus steeper 

exponential curves. However, the parameter values asymptote towards the same value as 

the number of piles increases, suggesting no contribution of information-based behaviors 

to seed intake rate in random distributions. 

 

 
 

 (a) Natural data. Exponential regressions Y=AeBx     
 A B RMSE 

1 
 

11.9400 
(10.2000, 13.6800) 

-0.4508   
(-0.5242,-0.3774) 

2.2192 
 

4 30.9700 
(22.4000, 39.5000) 

-0.9668   
(-1.1900, -0.7436) 

3.6476 
 

16 3.8150 
(3.2960, 4.333o) 

-0.0594   
(-0.0731, -0.0457) 

2.7408  
 

RND 3.7530 
(3.2740, 4.2330) 

-0.0457   
(-0.0568, -0.0347) 

 

2.8711 
 

 (b) Natural data. Linear regressions y=p1*x + p2      
 p1 p2 RMSE 

1 
 

-0.0088  
(-0.0105, -0.0071) 

1.3190   
(1.1600, 1.4780) 

2.3830 

4 -0.0157  
(-0.0199, -0.0115) 

2.026  
(1.7140, 2.3390) 

3.9133 
 

16 -0.0132 
(-0.0168, -0.0097) 

1.849  
(1.6330, 2.0640) 

2.8025 

RND -0.0146  
(-0.0179, -0.0112) 

2.131  
(1.91100, 2.3520) 

2.9416 

    
 

Table 2. Parameters and goodness of fit (RMSE) for exponential (a) and linear (b) 

regressions of time between arrivals versus number of seeds for natural experiments, all 

species grouped. Confidence intervals are shown in parenthesis.  
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Variation between species 

We compared exponential regressions to linear regressions to assess between-

species variation in times between arrivals of seeds in natural data. The independent 

variable was number of seeds collected and the dependent variable was time between 

arrivals. Lower RMSE for linear regressions (see Supplemental Table 6) indicated that 

they were a better fit to the data (see Supplemental Fig. 2 for plots of exponential 

regressions, Supplemental Table 4 for exponential regression parameters, and 

Supplemental Table 5 for linear regression parameters). These results suggested that the 

decline in time between arrivals was linear. We found that P.maricopa and P.desertorum 

had significantly lower slope values, suggesting behaviors more consistent with site 

fidelity for species with medium and smaller colony sizes (Fig. 4).   

 

 
Figure 4.  Slopes of linear regressions of time between arrivals versus number of seeds 

collected for three species, P.desertorum (D), P.maricopa (M) and P.rugosus (R). 

P.maricopa and P.desertorum show significant lower slope values than P.rugosus, 

suggesting use of site fidelity. 
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The linear fit for P.rugosus is flat, suggesting that site fidelity does not explain 

decreases in arrival rates, while the exponential fit is negative, suggesting recruitment can 

explain decreases in arrival rates, even though the RMSE is lower for the linear fit. 

Site fidelity has an impact in seed collection rates only in clustered distributions. 

This result is demonstrated by slope parameter values that differ when the distributions 

are clustered, but asymptote towards zero as distributions increase in number of piles, 

showing that the decline in time between arrivals is insignificant in distributions that are 

not clustered (Supplemental Fig. 3). 

 

Half-life model 

We used a half-life model of times between arrivals to test for between-species 

variation in times between seed arrivals. Different half-life values represent different 

rates of decay in times between arrivals as a function of time. We expected larger species 

to have smaller half-life values, representing faster rates of decline in time between 

arrivals. We found significant between-species variation in half-lives only in clustered 

distributions of 1 and 4 piles (Fig. 5), where the half-life for times between arrivals in 1- 

and 4-pile distributions were significantly lower for the species with largest colony size, 

P.rugosus (2-sample Kolmogorov Smirnoff test, p<0.05). This result provides support for 

between-species variation in seed collection rates.  
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Figure 5.  Half-life of time between arrivals. Boxes grouped by spatial distribution: 1 

pile, 4 piles, 16 piles and random, and three species. White boxes represent P.desertorum 

(D), gray boxes represent P.maricopa (M), and black boxes represent P.rugosus  (R).  

Each box represents the interquartile range; the line shows the median. Notches represent 

95% confidence intervals around the median. Non-overlapping notches show significant 

differences between medians. Asterisks show significant differences between P.rugosus 

(large colony size) and the species with medium and small colony sizes, P.maricopa and 

P.desertorum in distributions with 1 and 4 piles. 

 

Use of spatial information 

Information in spatial distributions 

We asked how foraging behaviors affect seed collection rate. We measured seed 

collection rates for different spatial distributions, quantified by Shannon entropy. For 
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simulated data, we found that exponential increases in seed collection rates are 

characteristic of foraging using either of two information-based behaviors, site fidelity 

and recruitment, when foraging on clustered distributions. On the other hand, using a 

correlated random walk becomes less efficient as the distribution is more clustered, since 

finding a pile by chance more difficult.  

We used exponential regressions to measure the change in normalized seed intake 

rates versus Shannon entropy for all combinations of four behaviors and seven spatial 

distributions. Each distribution was composed of piles with the same number of seeds 

(distribution described on Table 1b; also see Table 3 for parameter results and regression 

statistics). 

 
 

Exponential Regression   Y=AeBx 
 SF FR SF+FR 

A 
(CI) 

5.068   
(4.908, 5.228) 

8.212   
(7.993, 8.43) 

8.179   
(7.968, 8.39) 

B 
(CI) 

-0.2646 
(-0.2793, -0.2499) 

 

-0.3583   
(-0.3756, -0.341) 

-0.3521 
(-0.3685, -0.3357) 

 
R2 0.7428 0.8366 0.8437 

 

Table 3. Parameters and regression statistics for exponential regressions. Time 

between arrivals generated with information-based behaviors, with respect to correlated 

random walk. Experiments were conducted on seven spatial distributions (Table 1b), with 

piles of the same size. Each column represents a behavior. 95% confidence intervals are 

in parenthesis below the values for each of two parameters, A and B. 
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Normalized intake rate obtained by using information-based behaviors decreases 

exponentially as entropy increases (Fig. 6). Site fidelity shows an exponential increase in 

efficiency over intake rates from correlated random walk. This difference is at its largest 

when foraging from clustered distributions. Recruitment shows a greater increase in 

parameter A, steepening the slope of the curve, an thus increasing seed intake rates as the 

entropy of the distribution decreases. This result provides evidence that both information 

based behaviors, recruitment and site fidelity, provide an exponential increase in seed 

collection rate as the predictability of seed location increases (entropy/uncertainty 

decreases). 

 

Entropy 

(a) 

Entropy 

(b) 

Figure 6. Exponential regressions in the form Y=AexB show the percent change in 

foraging rate versus Shannon entropy compared to that of a correlated random walk for 

two behaviors, (a) site fidelity (SF) and (b) pheromone recruitment (PH). Simulations 

were conducted on a power-law seed distribution. Regression is shown as a solid blue 

line. Dotted lines represent 95% confidence bounds. We do not show the regression plot 

for site fidelity combined with forager recruitment because there is no significant 

difference between its regression parameters and those of pheromone recruitment.  
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Information use and colony size 

To match field collection rates from natural data, with known colony sizes, with 

simulated collection rates from know behaviors, we use Fuzzy Pattern Matching (FPM). 

To construct our membership functions, we exponential regression models of the form 

𝑌 = 𝐴𝑒!", where y represents foraging rates and x represents Shannon entropy, for 4000 

experiments, 1000 for each behavior. The exponential regressions yielded values for two 

parameters, A and B. We constructed histograms and membership functions for each 

exponential parameter (Fig. 7).  The membership functions for A show a clear separation 

between classes that use recruitment, forager recruitment (FR) and the combination of 

recruitment and site fidelity (SF+FR), and the two classes that do not communicate 

information, correlated random walk (CRW) and site fidelity (SF).  In the same manner, 

the classes constructed with B only show a clear separation between classes that 

communicate information and those that do not.  Due to numerous intersections between 

classes, we expect multiple memberships per experiment.  

To better examine the details of experiment memberships, we chose to calculate 

scores for the each membership instead or merging the closest classes.  We counted the 

number of memberships scored by each field experiment, calculated the sum of 

membership scores, and grouped them by species (Fig. 8).  We found that the behavior 

patterns of larger colonies, P.rugosus and P.maricopa, are consistent with patterns 

generated by the use of information-based behaviors, site fidelity, recruitment and the 

combination of recruitment and site fidelity.  In contrast, the behavior patterns of 

P.desertorum are consistent with patterns generated by correlated random walks, a 

behavior that does not store or share information.  
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Our findings support the hypothesis that larger colonies make more use of 

information-based behaviors, than smaller colonies.  Our study provides support for the 

use of information-based behaviors, that include site fidelity, recruitment and a 

combination of both. 

 

 
 
Figure 7. Class histograms and membership functions normalized by dividing each 

bin by the maximum number of counts. All experiments were conducted on a power-law 

seed distribution, to mimic field experimental setups. We constructed four behavior 

classes: correlated random walk (CRW), site fidelity (SF), forager recruitment (FR), and 

a combination of site fidelity and forager recruitment (SF+FR). The top two panels show 

the normalized histograms for two features. Histograms for feature A are in the left top 

panel and the histograms for feature B are in the right top panel. Each behavior class is 

color-coded. The bottom two panels show the corresponding membership functions, 

calculated from the top histograms.  
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Figure 8. Sum of membership scores for each behavior class, grouped by species. 

The species name is noted in the legend. The bars represent the sums of membership 

scores for each behavior. CRW=sum of membership scores for correlated random walk, 

SF=sum of membership scores for fidelity, FR=sum of membership scores for forager 

recruitment, SF+FR=sum of membership scores for site fidelity and recruitment.  

 

Discussion 

We asked whether ants from larger colonies use information.  We provided 

evidence that supports the hypothesis that larger colonies use more information-based 

behaviors.  

We determined that recruitment produces exponential decay patterns and that site 

fidelity produces linear decay patterns in time between arrivals by analyzing patterns 

from simulated data, generated with known behaviors. When we combined natural data 

from all species, we found evidence for recruitment by larger colonies in clustered 
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distributions and evidence for use of site fidelity by smaller colonies. In our analysis, 

time between seed arrivals decayed when seeds were clustered in only a few piles. 

We determined that significant between-species differences exist by comparing 

exponential decay rate of time between arrivals. We calculated the decay rate for each 

experiment using a half-life model. Half-life values for time between arrivals were lower 

for the largest species, P.rugosus, in distributions with 1 and 4 piles.  

We modeled simulated foraging rates, generated with know behaviors, as an 

exponential decay of time between arrivals with respect to the Shannon entropy of the 

spatial distribution of seeds.  We quantified the information contained in each spatial 

distribution using Shannon information theory. Using fuzzy pattern matching, we 

determined that foraging patterns from larger colonies were more consistent with 

foraging patterns generated with information-based behaviors, such as site fidelity or 

recruitment.  Computer simulations provided us with data generated with known 

behaviors and natural data provided us with data from known average colony sizes.  

Integrating patterns of seed intake rates generated by idealized behaviors with field data, 

we were able to uncover subtle behavioral patterns from the field, which we couldn’t 

have achieved using either one alone. 

Although we knew average colony sizes per species, the variance in field data is 

enormous and difficult to account for. In our study, some P.maricopa colonies seemed at 

least as large as some of the P.rugosus colonies, which accounts for a very large variation 

in our results, with patterns that align with those for P.rugosus in some cases and with 

P.desertorum in others. Further field studies that include more colonies of P.maricopa 

are necessary to reduce variance in the data. 
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The choice of tools to complex data is fundamental to our ability to detect 

patterns.  Similar to the problem of facial recognition, comparing curves and patterns is a 

difficult problem; approaches to detect curve similarity are varied and can be 

complicated.  The probabilistic flexibility of a well known machine-learning algorithm, 

Fuzzy Pattern Matching, allowed us to compare curve shapes non-deterministically and 

detect behavioral patterns in the field by matching models of seed intake rates from 

natural data and comparing them to idealized behavior patterns by assigning a score to 

their likeness.  Further, there may be interactions among behaviors, and different 

behaviors may be used in combination in different environments, making it difficult to 

identify and classify foraging strategies in field studies.  Using computer models and data 

from field studies we gained insights that can be only obtained with the integration of 

computer models and field data. Thus, we were able to uncover subtle behavioral patterns 

in field data that we were unable to see in a previous study (Flanagan et al. 2012). 
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CHAPTER 4 

FAST AND FLEXIBLE: ARGENTINE ANTS  

RECRUIT FROM NEARBY TRAILS 

 

Flanagan, T. P., Pinter-Wollman, N. M., Moses, M. E., & Gordon, D. M. (2013). Fast and 

flexible: Argentine ants recruit from nearby trails. PloS one, 8(8), e70888. 

Abstract 

Argentine ants (Linepithema humile) live in groups of nests connected by trails to 

each other and to stable food sources. In a field study, we investigated whether some ants 

recruit directly from established, persistent trails to food sources, thus accelerating food 

collection. Our results indicate that Argentine ants recruit nestmates to food directly from 

persistent trails, and that the exponential increase in the arrival rate of ants at baits is 

faster than would be possible if recruited ants traveled from distant nests. Once ants find 

a new food source, they walk back and forth between the bait and sometimes share food 

by trophallaxis with nestmates on the trail. Recruiting ants from nearby persistent trails 

creates a dynamic circuit, like those found in other distributed systems, which facilitates a 

quick response to changes in available resources.  
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Introduction 

Ant colonies operate without central control. The foraging behavior of an ant 

colony is a collective process (Traniello 1989) with dynamics that vary among species 

(Beckers et al. 1989). The dynamics that lead to the formation and maintenance of trails 

determine how well the colony selects and exploits available food sources (Camazine et 

al. 2001). 

Recruitment to food by ants has been studied for many decades (see e.g. Wilson 

1962). Early work on recruitment showed that ants accumulate over time at food baits in 

response to direct and indirect social cues (Detrain and Deneubourg 2009; Gordon 2010),  

such as pheromone trails (Hölldobler and Lumsden 1980), tandem running (Fernandez 

and Deneubourg 2011; Franks and Richardson 2006), and interactions among foragers, 

initiated by the ants that first encountered the food source. Diversity in recruitment 

strategies is probably related to the diverse ecological conditions in which colonies search 

for and retrieve food. 

The Argentine ant Linepithema humile is an invasive species that has spread 

throughout the world (Carpintero et al. 2005; Rowles and Silverman 2009; Suarez et al. 

2001), including northern California (Holway and Suarez 1999; Knight and Rust 1990; 

Sanders et al. 2001). Colonies are polydomous, occupying at least two spatially distinct 

nests (Debout et al. 2007). The network of separate nests, connected by persistent trails 

(Markin 1968; Markin 1970; Newell and Barber 1913), spans up to 200 m2 in the summer 

and contracts to a few large aggregations in the winter (Heller and Gordon 2006). As in 

many polydomous ant species (Cherix and Bourne 1980), food (Heller et al. 2008; 

Markin 1968), and brood (Fernandez and Deneubourg 2011) are transported from one 
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nest to another along the trails (Latty et al. 2011). Argentine ants explore using a search 

process that links individual path shape to density (Gordon 1995), and lay pheromone 

trail as they move (Aron et al. 1989). Rapid recruitment to food sources appears to 

provide Argentine ants with an ecological competitive advantage in its exotic range, 

because native species tend to retreat from food sources occupied by Argentine ants 

(Human and Gordon 1999). 

Many ant species exhibit central place foraging (Hölldobler and Wilson 1990; 

Traniello 1989), which may incur substantial travel costs when the foraging area is large, 

because each ant must travel back to a central nest (Moses 2005). Urban road networks, 

like ant trails, form branching structures to move individuals and resources. Cities often 

reduce per capita travel distances by using distributed transportation networks between 

dispersed locations without reliance on a single central transportation hub, reducing the 

costs of resource transport (Samaniego and Moses 2008). Similarly, in Argentine ants, 

recruitment from the pool of workers on nearby persistent trails could reduce travel costs, 

and increase the speed with which ants accumulate at a new food source. Here we 

investigate whether Argentine ants recruit nestmates directly from nearby trails. 

Our field trials test whether Argentine ants recruit workers to new food sources from 

persistent trails. We observe the recruitment behavior of ants at bait and examine whether 

recruited ants come from the pool of workers already available on a nearby persistent trail 

or from a nearby nest (Fig. 1). 
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Figure 1. Experimental setup. The sketch represents our experimental setup. The thick 

gray line represents the persistent trail. The dotted line represents round trips taken by 

ants from the bait to the nest. The dashed line represents round trips taken from the bait to 

the trail. Marked ants that drank sugar water form the bait are shown with red, striped 

abdomens. Note the marked ant on the trail that goes back and forth recruiting nestmates. 

 

Materials and Methods 

We studied the foraging behavior of Argentine ants on the Stanford University 

campus near Palo Alto, California, from May 16–26, 2011. In spring and summer, the 

mean distance between Argentine ant nests linked by trails is about 15 m (Heller and 

Gordon 2006). We performed 13 baiting trials on two persistent trails, on opposite sides 

of a building, with 5 trials for the trail on the West and 8 trials for the trail on the East 

side of the building. The trails were confined to tight spaces between concrete blocks and 
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were never wider than 0.5 cm. Here we examine a) whether Argentine ants recruit from 

the trail and b) demonstrate (quantitatively) how fast this recruitment occurs. 

 

Experimental Setup 

Trails were visible in the cracks between large paving stones. For each trial, baits 

were placed for 90 minutes approximately 10 cm from a persistent trail (Fig. 1). The 

distance between trail and baits was an experimental constraint imposed by the ants' 

behavior. We observed that the ants do not reliably find a bait that is more than 0.3 m 

away from the trail in less than a day. Thus, we chose this distance because ants appeared 

at the baits at this distance within 12 hours. We recorded all activity during this period. 

The bait consisted of sugar water in a concentration of 25% sugar to water volume. We 

saturated a 2×2 cm2 square piece of cotton in sugar water and placed it on top of a paper 

towel of approximately the same size. To mark the ants that visited the bait, we added 

four drops of food coloring (Americolor Soft Gel Paste) to the solution, as in Heller and 

Gordon (2006). 

We filmed the bait for the 90-min duration of each trial using a JVC GZ-HM670 

HD Everio Camcorder. An ant was considered to have arrived at the bait when it started 

drinking from the cotton or paper towel. When an Argentine ant ingests colored water its 

abdomen swells, making the colored water visible between abdominal segments. We 

distinguished between arrivals of unmarked ants that had not yet ingested the bait, and 

arrivals of ants with a colored abdomen that had previously ingested the bait during that 

trial. 

Data were recorded using an iPad app that we wrote called EventLog. 
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Origin of new arrivals 

To investigate whether recruitment occurred from the pool of available workers 

on the persistent trail or from workers at the nest we followed individual ants as they left 

the bait. We haphazardly selected 2–7 ants in each trial that were ingesting the bait, and 

observed the ants as they returned to the trail and then went back to the bait. Only few 

marked ants were present simultaneously in the area between the bait and the trail, thus 

there was little chance of confusing the identity of marked ants. We recorded the time it 

took each ant to reach the trail, the time it spent at the trail, and the time it took to return 

to the bait. 

We defined a ‘bait-trail-bait’ round trip as the time for an ant to go from the bait 

to the trail and back, and compared this time to the ‘bait-nest-bait’ round trip, the time for 

an ant to go from the bait to the nearest possible nest location and back to the bait (Fig. 

1). We obtained a direct measure of individual ‘bait-trail-bait’ round trip times by 

following individual ants as they walked from the bait to the trail and back. We call this 

measure ‘observed’ bait-trail-bait round trip time. 

To calculate the ‘bait-nest-bait’ round trip time, we first measured the speed of 

ants walking on the trail by selecting 2–6 ants during each trial and measuring the time it 

took each ant to walk one meter. We estimated the mean time to the nest as distance 

divided by velocity. To locate the nearest possible nest location we followed trails until 

we found ants disappearing under paving stones. The concrete was light colored, 

contrasting well with the dark color of the ants, making it easy to see the ants. To 

calculate a minimum time to return to and from the nest, we considered the nearest point 
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where the persistent trail disappeared and the ants could have been entering a nest. Our 

‘bait-nest-bait’ round trip times may be underestimated because a nest could have been 

located further from the location where the ants disappeared under the paving stones. 

To test whether ants returned to the bait without first returning to the nest, we 

compared bait-trail-bait round trip times with bait-nest-bait round trip times using 

ANOVA. We additionally measured the round trip time for the first marked ant that 

returned in each trial and defined it as ‘estimated’ bait-trail-bait round trip time. We 

compared that time to the ‘observed’ bait-trail-bait time and to the bait-nest-bait time. 

 

Recruitment 

We tested for recruitment in two ways. First, following (Pratt et al. 2002) and 

(Hölldobler 1976), we measured the change in the number of ants at the bait over time. 

To test whether arrival at the bait was due to recruitment rather than to chance, we 

examined the relationship of the flow of ants on the trail with the number of ants on the 

bait. Second, to test whether the rate at which new ants arrived at the bait increased, we 

used a regression. We tested whether the increase in arrival rates was due to recruitment 

by comparing it with the rate discovery by chance. 

To determine if the number of ants at the bait increased over time, we recorded 

the time of arrival of each ant at the bait, and subsequently counted the number of ants on 

the cotton and the paper towel throughout the trial, approximately every 5 minutes. 

We measured the flow of ants on the trail by counting the number of ants passing 

an invisible line on the trail, in both directions, for one minute, 3–9 times for each trial. If 

ants arrive at a bait alongside a persistent trail by chance alone, then the rate of arrival of 
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ants at the bait should be correlated with the rate of flow of ants on the persistent trail; 

more ants moving along the persistent trail would lead more ants to discover the bait. 

However, if ants actively recruit nestmates from the trail, then the rate of arrival at the 

bait would not necessarily be correlated with the rate at which ants are moving along the 

persistent trail. 

We examined the relationship between the number of ants at the bait and the flow 

of ants on the persistent trail in several ways. First we used a linear regression to directly 

compare the flow of ants on the persistent trail as the dependent variable to the number of 

ants at the bait as the independent variable. To allow for a comparison between the 

number of ants on the bait and the flow of ants on the persistent trail, we used a one-

dimensional data interpolation to produce continuous data points for the flow variable. 

We then examined how the relationship between the number of ants on the bait and the 

flow of ants on the persistent trail depended on time. We tested for positive slopes in the 

linear regression of each of these two variables versus time. We then normalized the 

number of ants on the bait by dividing it by the flow on the persistent trail and calculated 

a linear regression of this ratio against time. We used the False Discovery Rate (FDR) 

(Benjamini et al. 2001) to correct for multiple testing. 

We defined rate of arrival as the time between new arrivals to the bait and the 

time to discover the bait by chance as the time it took the first ant to discover the bait in 

each trial. We examined increasing arrival rates by using an exponential regression with 

the time between arrivals at the bait of new, unmarked ants, as the dependent variable and 

the cumulative number of new ants that had arrived at the bait as the independent 

variable. We used an exponential regression instead of a linear regression because it 
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provided a better fit to the data when comparing the two models using the Akaike 

Information Criterion (AIC) (Akaike 1974). 

To test whether the rate of arrival at the bait was faster than random discovery, we 

compared the time between arrivals at the bait with the time it took for the first ant to 

discover the bait. We expected recruitment to cause ants to arrive at the bait faster than 

the time it took the first ant to discover the bait. We define ‘discovery time’ as the time it 

took the first unmarked ant to discover the bait and used it to estimate how long it would 

take an ant to arrive at the bait by chance. Recruitment should decrease the time between 

successive arrivals of new ants at the bait. 

All means are reported ± standard deviations. Analysis was conducted using 

Matlab (7.12.0.635 R2011a, Mathworks, MA) and IBM SPSS Statistics (Version 20, 

NY). 

 

Results 

Ants are recruited from the persistent trail. Of the 47 ants followed as they left the 

bait and returned to the trail, we observed that 40% (19 ants: 5 of 15 followed on the East 

trail and 14 of 32 followed in the West trail) completed a second trip, returning from the 

trail to the bait and back to the trail again. Once on the trail, the recruiting ants spent 

0.87±0.67 minutes interacting with nestmates. We observed these ants sharing sugar 

water with a few of their nestmates on the persistent trail, via trophallaxis, before 

returning to the bait. The mean round trip time from the bait to the trail and back again 

for the 19 ants that were followed for the entire round trip was 1.78±1.46 minutes (East 
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trail: 1.38±0.67, West trail: 1.92±1.66 minutes). We lost visual contact with the 

remaining ants (60%) once they arrived at the trail. 

Recruitment from the persistent trail is faster than recruitment from the nest. The 

minimum distance to the nest for the East trail was 17.88 meters; and for the West trail, 

12.19 meters. We estimated the mean speed of ants on the trail as 1.07±0.45 meters per 

minute for the East trail and 1.06±0.49 meters per minute for the West trail. Thus, ants 

from the East trail required at least 30.52±18.91 minutes to travel from the bait to the nest 

and back, and ants from the West trail could complete this round trip in 18.91±13.77 

minutes. In all trials, observed and estimated bait-trail-bait round trip times were 

significantly shorter than the mean bait–nest-bait trip times (East trail ANOVA F = 20.82 

N = 7, p<0.001; West trail ANOVA F = 18.48 N = 17 p<0.001) (Fig. 2). 

The number of ants at the bait increased significantly over the course of the trial. 

Ten of the thirteen trials showed a positive and significant (p<0.01) slope and three were 

not significant (p>0.05) (Fig. 3, Table 1). Both trails exhibited an increase in the number 

of ants at the bait over time. The slopes of linear regressions on values from all trials 

were both significantly positive (0.13 East and 0.08 West, p<0.05). 
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Figure 2. Round trip ‘bait-trail-bait’ and ‘bait-nest-bait’ durations. The time to 

complete a round trip from the bait to the nest and back is significantly longer (p<0.001) 

than the observed and estimated bait-trail-bait time for both East and West trails. Box 

plots represent the duration for (A) seven measurements on the East trail, and (B) 

seventeen measurements on the West trail. The central line on each box is the median. 

The box edges are the 25th and 75th percentiles. The whiskers extend to the most 

extreme data points that are not considered outliers which are plotted individually as “+”. 
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Figure 3. Number of ants on the bait over time. Each plot represents one trial. Ten of 

thirteen trials have a significant positive slope (first two rows, Table 1). The regressions 

for the last three trials are not significant. Solid lines represent significant linear 

regressions (p<0.01). Dashed lines represent linear regressions that are not significant 

(p>0.05). 
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Table 1. Statistics for linear regressions. 

 

The increase in the number of ants on the bait appears to be the result of active 

recruitment of nestmates from the persistent trail, not random arrivals due to an increased 

flow on the persistent trail. The flow of ants on the persistent trail did not change over 

time, none of the regressions showed a significant relationship between number of ants at 

the bait and flow on persistent trail (Table 1). When we divided the number of ants at the 

bait by the flow of ants on the persistent trail, 10 of 13 trials showed a significant 

(p<0.05) increase against time (Table 1). 

Arrival at the bait provides positive feedback that leads to more arrivals at the 

bait. As the number of new arrivals at the bait increases, the time between successive 

arrivals decreases exponentially (Fig. 4), SSE = 2299, R2 = 0.35, RMSE = 1.26). In 8 of 

13 trials, the time between arrivals of new ants at the bait decreases significantly (p<0.05) 

as the number of ants that visit the bait increases (Table 1). 
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Arrival at the bait occurs more rapidly than it would if the bait were discovered by 

chance (Fig. 2). The time between new arrivals is substantially shorter than the time 

between bait placement and first bait discovery (two sided Wilcoxon Signed Ranks Test, 

Z = 6.09, Narrivals = 1467, Ndiscoveries = 13, p<0.001). 

 

 

 

Figure 4. Time between ant arrivals at the bait versus cumulative number of new 

ants that have arrived at the bait. The exponential regression shows a rapid decrease in 

time between arrivals at the bait. As more ants arrive at the bait, the time between arrivals 

decreases. Data for each trial are represented by a symbol of a different color and shape. 

Exponential regression is shown as a thick black line. The shaded area represents the 

95% confidence interval. 
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Discussion 

We found that Argentine ants recruit nestmates to food bait from persistent trails. 

After locating a bait placed near a persistent trail, recruiting ants returned to the trail, and 

some shared food with nestmates on the trail. Activity at the bait, measured as the 

number of ants and the rate of arrival at the bait, increased as a result of recruitment, not 

as a result of an increase in the flow of ants on the persistent trail. 

We directly observed 40% of marked ants going from the bait to the trail and back 

to the bait. This may be an underestimate because we do not know what fraction of the 

ants we did not directly follow went only to the trail or returned to the nest. Further, the 

time it takes an ant to complete a round trip from the bait to the nest and back is 

significantly longer than the durations of round trips that we estimated for the first ants to 

appear at the bait. 

The increase in number of ants at the bait over time was not due to an increase in 

the flow of ants on the persistent trail. The time between arrivals at the bait decreased 

exponentially, indicating positive feedback due to recruitment (Fig. 4). We found that the 

intervals between the arrivals of subsequent foragers at the bait were shorter than the time 

it took the first forager to discover the bait initially, indicating that recruitment, rather 

than chance discovery, accounts for the increase in number of ants at the bait. Further 

work is needed to learn what determines the intervals between arrivals at the bait, and 

how these lead to non-linear accumulations of ants at baits (Detrain and Deneubourg 

2009). 

Our findings are based on observations of ants that take up colored sugar water 

into their gaster. Previous work (Heller et al. 2008) showed that 80% of Argentine ants 
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that ingested colored dye remain visibly marked after 14 days even though they engaged 

in trophallaxis. Therefore, it seems unlikely that many marked ants lost the color through 

transfer to nestmates in our 1.5-hour trials, so the unmarked ants were probably new 

arrivals at the bait. 

A high proportion (40%) of the ants that we followed, after they found and fed 

from the bait, went back and forth from the trail to the bait. These ants were probably 

depositing a pheromone trail, but this remains to be demonstrated. Some species use 

different pheromones to signal different types of trails. Nelson et al. (1991) discussed the 

possible use of different pheromones for main and side trails in Paraponera clavata. 

Pheidole megacephala use two different pheromones, a long-lasting pheromone to 

explore and a short-lasting pheromone to recruit to a food source (Dussutour et al. 2009). 

Similarly, Anoplolepis gracilipes (à l’Allemand and Witte 2010) and Paratrechina 

longicornis (Witte et al. 2007) use short- and long-lasting pheromone signals. Aron et al. 

(1989) showed that Argentine ants lay a chemical trail as they walk. Additional work to 

explore the use of multiple recruitment pheromones in Argentine ants could determine 

whether these ants use different pheromones for persistent versus ephemeral trails. 

Further work is needed to determine which ants are more likely to leave a 

persistent trail for a new food source, whether the small trails formed by short-term 

recruitment later become larger, more persistent trails (Heller and Gordon 2006), and 

how these dynamics are related to the quality and duration of the food source. Forming 

branches from persistent trails to exploit an ephemeral food source may expedite foraging 

and increase colony efficiency in obtaining food. This previously undescribed behavior, 

recruitment from a persistent trail, uncouples information about the location of a food 
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source from the transport of the food to the nest. Further work is needed to determine 

how often, and under what conditions, Argentine ants employ recruitment from existing 

persistent trails. Additionally, because our study was limited to two trails that were 50 m 

from one another, close enough that they could conceivably have belonged to the same 

colony; future studies should examine differences in local recruitment behavior among 

multiple colonies and ecological conditions. 

The flexible recruiting system we describe, allowing new trails to form from 

worker pools available in nearby persistent trails, may help account for this species' 

success as an invader (Holway and Suarez 1999; Tremper 1976). Recruitment from 

nearby trails accelerates recruitment and food collection by a factor of at least 9 (Fig. 2). 

Argentine ants are successful in competing with native species in many areas of their 

invasive range, in part because they arrive at food sources more quickly than native 

species (Heller et al. 2008; Human and Gordon 1999). Similar dynamics can be found in 

other mass recruiters. For example, the trail formation by means of local recruitment can 

be compared to the exploratory dynamics of Monomorium pharaonis, whose workers 

interact through the trail pheromone laid on the ground and lead to the emergence of a 

network of exploratory trails from which scouts coming back from a food source can 

recruit (Fourcassie and Deneubourg 1994). Lasius niger, use short-term exploratory trails 

to guide workers towards rich food sources (Beckers et al. 1992) and Leptogenys 

ocellifera use permanent and ephemeral routes that may change according to the food 

supply (Maschwitz and Muhlenberg 1975). While flexible, ephemeral trail formation has 

been observed in other species, the novelty of our findings is that we demonstrate 

recruitment directly from persistent trails rather than recruitment from the nest as in, 
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Paraponera clavata or from within a foraging area as in the Brazilian ant Pheidole 

oxyops (Czaczkes and Ratnieks 2012). 

The Argentine ant strategy of recruitment from the trail suggests a solution to a 

common engineering problem, that of collecting or distributing resources in “the last 

mile.” At the last mile, infrastructure networks connect to individual consumers. The last 

mile can be wired, such as cables that connect individual homes to trunk lines, or wireless 

where a tower connects cell phones to a high-speed backbone. In biological and 

engineered networks, the dynamics in the last mile can set the pace of the entire system 

(Banavar et al. 2010). The last mile presents a challenge, because if a network delivers or 

collects resources in a large area, the majority of the network wires may be in the many 

short-distance low-capacity links that fill the last mile. 

Just as virtual networks like cell phone towers make coverage of the last mile less 

difficult than constructing permanent wired networks, the ephemeral recruitment trails 

that appear in response to newly discovered food and connect to more established, 

persistent trails provide an efficient way of routing resources in Argentine ants. Ants that 

discover new food, and go to a persistent trail to communicate that discovery to other 

ants, act as relays that efficiently route ants to ephemeral food. Although trails between 

nests are always needed for movement between nests, the ephemeral relays to local baits 

provide a fast and flexible mechanism for routing ants from persistent trails to ephemeral 

food. The network exists only when it is needed, and when the resource is exhausted, the 

network can disappear so that effort can be invested elsewhere. Ants have evolved 

solutions to many searching and communication problems (Banavar et al. 2010; 
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Prabhakar et al. 2012) that mirror or inspire approaches used by engineers. The ability of 

Argentine ants to cover the last mile with ephemeral trails is yet another example. 
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CHAPTER 5 

 CONCLUSIONS  

 

We studied how ants use information to improve foraging. We found that the 

clustering of experimental seed baits significantly increases foraging rates in three 

species of harvester ants, but our initial study found that species with larger colonies were 

no better than species with smaller colonies at collecting seeds from clustered resources. 

The lack of an observed colony size effect could have resulted from variability in forager 

population size, and the difficulty of measuring it or unforeseen effects of our 

experimental setup. Our study did not reveal the specific foraging behaviors that these 

ants employ to collect clumped seeds faster, but we suggested recruitment and site 

fidelity, or a combination of both behaviors as possible underlying mechanisms.  

In a second study, we asked whether ants from large colonies used more 

information-based behaviors. By integrating computer science simulations and 

techniques with data obtained from our previous fieldwork, we found that seed intake 

patterns from larger colonies were more consistent with foraging patterns generated by 

behaviors that use information, such as recruitment and site fidelity. Seed intake patterns 

from smaller colonies were more consistent with patterns produced by behaviors that do 

not use information, such as correlated random walks. Although variance in field data 

was difficult to account for, the use of computer models integrated with data from field 

studies allowed us to gain new insights into ant behavior. Thus, we were able to uncover 

subtle behavioral patterns in field data that we were unable to see in our previous study. 

Finally, we studied how large colonies of Argentine ants transport information 
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locally, forming ephemeral networks of communication.  Our results indicate that 

Argentine ants recruit nestmates to food directly from persistent trails, and that the 

exponential increase in the arrival rate of ants at baits is faster than would be possible if 

recruited ants traveled from distant nests. Once ants find a new food source, they walk 

back and forth between the bait and sometimes share food by trophallaxis with nestmates 

on the trail. Recruiting ants from nearby persistent trails creates a dynamic circuit, like 

those found in other distributed systems, which facilitates a quick response to changes in 

available resources.  Further work is needed to understand the formation of trails and 

how these dynamics are related to the distribution, quality and duration of the food 

source. 

Organization in foraging is influenced by colony size in ants, however little is 

known about how the use of information-based behaviors scale with colony size.  

Previous studies have examined the transition between disordered and ordered foraging at 

critical colony sizes (Beekman et al. 2001; Latty et al. 2011), providing evidence for 

variation in information use. Our study of Argentine ants provides another example of 

how large colony sizes chose distinct strategies that use distributed information transport 

(Flanagan et al. 2013).  Further studies of how animals collectively use information use 

are warranted. 

Ant colonies are examples of complex systems whose information processing 

structures emerge from the interaction of individual components. Organisms, societies 

and computer networks are other examples. The efficiency of each of these systems  

depends on integrating information from multiple individual components.  The number 

and density of individual components has an important impact the productivity of the 
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whole system.  We are only beginning to understand the relationship between 

information use and group-level effects. Ants demonstrate the feasibility of collective 

coherent behavior when faced with information, even when individuals have only a 

narrow local perspective, and so, can offer a model to study how other complex systems, 

such as human organizations utilize information to achieve more than the sum of its 

individuals (Moses et al. 2013).   
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