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ABSTRACT 

 
In ovarian cancer, disease and treatment can be examined across multiple spatial 

scales including molecules, cells, intra-tumor vasculature, and body-scale dynamics of 

circulating drugs. Survival of primary tumor cells and their development into 

disseminated tumors is related to adhesion between the cells, attachment, and invasion. 

Growth of new tumors depends on the delivery of nutrients, which depends on the tumor 

diameter and the tumor’s vasculature.  Drug delivery also depends on tumor diameter and 

vasculature, and molecular- and gross-scale drug processes.  

A cellular Potts simulation integrated data at these multiple scales to model 

microscopic residual disease during relapse after a primary surgery.  The model 

generated new hypotheses about tumor cell behavior, and the effectiveness of drug 

delivery to tumors disseminated in the peritoneal cavity.  First, the model required high 

intra-tumor adhesion in ovarian tumors, the existence of an unknown factor that drew 

tumor cells to vessels, a threshold of vascular endothelial growth factor (VEGF) for 

initiation of endothelial sprouting, and constitutive expression of angiogenic chemical 

messengers by tumor cells prior to needing oxygen. Alteration of the model incorporated 

drug delivery by the two standard routes, intraperitoneal and intravenous, from tumor 

vasculature parameterized from real patient data. Delivery of both small- and large-

molecular weight therapies was superior during intraperitoneal therapy. Finally, empirical 
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and theoretical distributions of vessel radii were considered.  Samples from tumors with 

each type of vascular morphology were run as though too distant from the peritoneal 

cavity to receive peritoneal delivery, with three results: first, intravenous delivery was 

superior to the secondary delivery into the circulatory system from a primary 

intraperitoneal delivery. Second, small molecules penetrated homogeneously across all 

cells, regardless of vascular volume or morphology, while antibodies penetrated 

heterogeneously, particularly in low-vessel-volume samples.  Third, when each of the 

whole tumors was considered, this heterogeneity resulted in a large sub-population of 

cells that accumulated non-therapeutic levels of antibody, even during the best delivery 

scenario (IV). Fourth, delivery of antibodies was poorest in the empirical distribution. 

Finally, hypotheses were generated about the impact of heterogeneity of drug delivery, to 

be addressed as future questions. 
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Chapter 1: Introduction 

 

 

This dissertation uses mathematical modeling to test and generate hypotheses about 

the dynamics of cancer. Models do not exist in a void without data from the real world. 

However, they can explore things we cannot measure easily in reality, they can do so 

quickly and with less expense than empirical studies, and they can develop and refine 

hypotheses to guide future experiments. Parameters in a model can be changed 

methodically and many replicates run quickly and efficiently to show the bounds in 

which they produce realistic and meaningful behavior.  Extra processes can be added, to 

creatively explore what set of events may be producing the system’s behavior. The results 

direct us to experimental efforts to confirm the new parameters and processes, producing 

useful and novel empirical results, more efficiently than if we had explored the same 

parameter space with experiments alone. In this work we examine cancer dynamics in 

order to parameterize models that we hope will identify processes that provide 

exploitable vulnerabilities in a direct, efficient manner.  

 

Cancer as an evolutionary process  

Cancer is not always considered in evolutionary terms, but a tumor is a population 

of cells undergoing evolutionary pressures from their host, their own population1, and 

ultimately from toxic drugs, once a patient is diagnosed and begins chemotherapy. 

Cancer and tumors fit well into the paradigm of an ecosystem of individuals, in which the 

effects of living in a crowded space surrounded by other individuals with unique genetic 

make-ups can be advantageous, or competitive. Tumors create their own 
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microenvironment of growth factors and nutrient gradients, and interact with the external 

environment produced by the host1. Thinking about the cells as individuals collaborating, 

competing, and adapting to their local and global environment can help us to key in on 

the most critical characteristics, or, in networking terms, “connected nodes,” for the 

survival of a tumor’s individual cells and entire population. Therefore cancer biologists 

and ecologists continue to encourage researchers to try to exploit the ecological aspects 

of cancer1.  While this is not always explicitly mentioned here in the model descriptions, 

it is important that it remains an undercurrent in thinking about and generating 

hypotheses about processes that could be targeted for treatment. 

Our models began as attempts to recapitulate ovarian tumor morphology and 

behavior during cancer relapse.  In the process, we realized that they could provide 

hypotheses for biological experimentation by showing us what was missing for the model 

– a quantifiable element such as a chemical concentration or a rate of cell movement, or 

what sequence of events led to our observations in microscopy images.  We were then 

better able to produce testable hypotheses about the process of relapse in ovarian cancer 

and the efficacy of intraperitoneal and intravenous drug delivery.  

 

Motivation  

Ovarian cancer is the tenth most common and sixth most deadly cancer in the U.S.2. 

Because it is largely asymptomatic, 61% of patients are diagnosed with late-stage cancer 

disseminated in the abdominal cavity, for which the five-year survival rate is 44%3. Tests 

for the early detection of ovarian cancer are under development4, but the unfortunate 

common case is that diagnoses are usually made at a late stage of cancer progression. 



 
 

3

Tumors are found after noticeable abdominal distension, disruption of organ function, 

and buildup of fluid (ascites) in the peritoneal cavity after circulation blockage by tumor 

masses5. 

 

Process of dissemination, and the peritoneal environment 

Ovarian tumor cells disseminate and seed within the abdominal, or peritoneal, 

cavity, and possibly metastasize via the bloodstream to abdominal organs6. The 

peritoneal cavity contains the ovaries and fallopian tubes, from the epithelia of which it is 

theorized primary tumors grow7, 8, and the other reproductive and digestive organs, to 

which secondary tumors disseminate. Single cells that come off of the primary ovarian 

tumor stick to one another in the peritoneal fluid. These cell clusters appear to have 

survival and drug resistance advantages, through avoidance of anoikis (cell death in cells 

needing adherence to other cells to survive), outer cells protecting those within the 

spheroid from drug molecules in the solution outside, and an overall lower replication 

rate reducing response to drug7. 

Drug movement between the peritoneal (abdominal) and the blood plasma 

compartments is a key part of the pharmacokinetics affecting tumors in the peritoneal 

environment. 10-30ml of normal peritoneal fluid fills the space between organs. This 

fluid originates from the plasma, which convects into the interstitial spaces between cells, 

and then out from between the cells into the peritoneal cavity, and combines with a 

lubricant secreted by the cavity's monocellular lining of mesothelial cells9. The fluid 

circulates through the cavity and re-enters blood circulation via adjunct capillaries (40-

50%), and through stomata on the underside of the diaphragm at the top of the cavity (50-
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60%). The stomata can admit particles up to 25 µm in diameter into the diaphragmatic 

lymphatics, which connect to the greater lymphatic system, which ultimately drains fluid 

back into the venous circulation, near the heart9. Because the blood and intraperitoneal 

compartments are intimately connected, we simultaneously model the initial drug bolus 

to the primary intraperitoneal (IP) or intravenous (IV) compartment, and the drug that 

appears in the secondary compartment (IV or IP, respectively).  

After these disseminated metastases become noticeable and a diagnosis is made, 

surgeons begin treatment by resecting large tumor masses from the abdominal cavity and 

by scraping cavity surfaces. The remaining cells are termed microscopic residual disease 

or minimal residual disease. 

Drugs are the primary defense against microscopic residual disease, including 

chemotherapy (small molecules) or therapeutic antibodies (large protein molecules) 

administered by intraperitoneal (IP, intra-abdominal) or intravenous (IV) injection. 

Delivering drug effectively to all tumor cells is of paramount importance to optimizing 

cell kill, which is correlated with improved survival10 and reducing evolution of drug-

resistant cells in tissue volumes exposed to lower drug concentrations. Many factors 

affect drug delivery, including physical barriers to drug penetration such as the vessel 

wall for large molecules, chemical barriers such as binding to non-target molecules, the 

half-life of the drug, which includes decay and elimination, and the surface area of tumor 

adjunct to compartments from which drug is delivered, such as blood volume and the 

peritoneal cavity.  In the peritoneal cavity, remaining cells or newly developing tumors 

may receive limited exposure to intraperitoneal drug due to embedding in folds of normal 

tissue, or tissue adhesions that develop during tissue regrowth after surgery11. 
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Ovarian tumors exhibit a wide range of vascular densities. Spheroids floating in 

ascites are avascular7. We have also observed up to 10 percent vascular area in cross-

section in tumors attached to organs in patients. The canonical model of vascularization is 

that tumors must reach approximately 1mm in diameter to become anoxic at their centers, 

and initiate angiogenesis. However, we have observed human ovarian (SKOV3.ip1) 

tumors grown in mice to be uniformly and densely vascularized in micro-tumors as little 

as 60µm, about ten cells, in diameter12. Residual disease exposed to chemotherapy will 

therefore likely have a wide range of vascularities. 

 

Computational background of drug models and ovarian cancer models 

Mathematical modeling of drug delivery began in approximately 196013,14. Since 

2000, thousands of studies of drug penetration from vessels into tissues have had a 

modeling component (Google Scholar search, 4480 results, "mathematical model vessel 

drug penetration tissue"), including multi-scale models15,16. Sinek et al.
17 created a 2-

dimensional multi-scale model of cisplatin and doxorubicin intravascular delivery to 

vascularized tumors.  There is also an entire literature devoted to metabolic and spatial 

characteristics of cell spheroids grown in vitro, such as the work of James Freyer25–41, 

from which has naturally sprung models of tumor cell spheroids and effects on them of 

limited metabolites, excesses of toxins or metabolic by-products, and drug penetration 

and effectiveness, and thresholds of these characteristics at which tumor angiogenesis is 

stimulated42,43. 

Hundreds of studies mention or include a modeling or mathematical analysis 

component in conjunction with an ovarian cancer study; (+"ovarian cancer", 738 results); 
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of these, approximately 39 have a mathematical model described in the text. These 

models include the effects of transcriptional and regulatory networks18,19, long-term 

recurrence predictions and prognostic value of CA-125, a blood-borne cancer marker 

commonly utilized for ovarian cancer20–22, effectiveness of treatment 

(lymphadenectomy23), and survival rates of patients after surgical or drug treatment24.  

Few spatially explicit models of ovarian cancer exist aside from our own12.  Giverso 

et al.44 built a 2-dimensional cellular Potts model of ovarian cancer that explores the 

interaction of ovarian cancer cells with the mesothelium (one-cell-deep lining of the 

peritoneal cavity) and extracellular matrix during invasion. More common are models of 

drug penetration in the peritoneal cavity. El-Kareh et al.
45 modeled the penetration 

distance of cisplatin into the rat peritoneum (the peritoneal cavity surface) with and 

without hyperthermia (application of heat). This model and others, as well as 

experimental efforts regarding penetration of tissues in the peritoneal cavity, have 

acknowledged absorption of small-molecule drugs by vessels as a major barrier to drug 

penetration46.  

 

Modeling methods in drug delivery 

We implement drug modeling simplification guidelines outlined by Thurber et al.
47, 

which recommend considering only the primary rate-limiting step for drug diffusion in 

tumor tissue, determined by the molecular weight, shape, and charge of a drug. For 

therapeutic antibodies, diffusion through the blood vessel wall is the rate-limiting step, as 

only a small percentage of antibody can permeate the vascular endothelium. For low-

molecular-weight chemotherapeutics that easily penetrate the vascular wall and diffuse in 
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tissue, the rate-limiting factor is blood flow. As a further simplification, we do not 

consider blood flow to be limited in the model, since we are implicitly limiting flow in 

the low-vascular-density models. Therefore, aside from the limit of diffusion length in 

tumor tissues, no explicit barrier to small-molecule therapies is represented. For 

therapeutic antibodies, we represent the vascular endothelial barrier with the Biot 

number, the ratio between drug concentration in the vessel lumen and the vessel surface. 

The Biot number incorporates vessel permeability and vessel diameter, and is the ratio of 

extravasation rate to diffusion in tumor tissue for a typical antibody in a typical 

capillary46.  Finally, although we initially assumed that diffusion of antibody from the IP 

fluid into the outside of a micrometastasis undergoes only passive diffusion into the 

tumor surface, while antibody coming from vessel is parameterized from in vivo effective 

penetration lengths that likely include convective velocity of the interstitial fluid, our 

experiments showed that the two diffusion rates are approximately the same (~1.3 cm2/s; 

see Results and Fig. 1). Therefore antibody diffuses at equal rates from peritoneal fluid 

and blood.  Low-molecular-weight drugs also diffuse from the two compartments at 

equal rates. 

 

The Cellular Potts Model as an agent-based model and cellular automaton 

The cellular Potts model is a lattice-based discrete model that simulates biological 

cells.  It is derived from a series of models in physics, the most recent ancestor being the 

large-Q Potts model of non-biological adhesion-driven processes in which lowering 

surface energy over the whole model is the goal, as in the evolution of bubbles in foam48. 

The Glazier-Graner-Hogeweg cellular Potts model is then altered to use differential 
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adhesion between different cell types to recapitulate the spontaneous cell sorting seen in 

real systems of mixed cells as the surface energy decreases in the system, known as the 

Differential Adhesion Hypothesis48,49. It is therefore well suited to simulating systems in 

which adhesion between cells, or between cells and elements of their environment, is 

central to the system’s function.  The initial model was ideal for modeling systems of cell 

rearrangement48,49. However, the model was extended to allow additional cellular 

constraints, such as volume, surface area, length-width ratio, and polarity.  Other 

extensions were added to the Compucell3D software package50, such as the capacity for 

fluid flow and the maintenance of preserved compartments within cells51.  The model is 

not suited to systems requiring advective diffusion, such as models where blood flow rate 

might change delivery of a chemical along the length of a vessel, or where51 explicit 

convection is required to deliver a chemical (though convection can be implicit in the 

penetration length of the chemical).  It is also too computationally expensive to run if 

individual cells in even a small piece of tissue must be modeled. Our simulations of 

tumors 0.75mm in diameter with 1 million cells and chemical diffusion processes take 

over a month to run on a standard processor. However, Compucell3D developers are 

trying to increase the speed of simulations through parallelization and GPU (graphical 

processing unit) processing.   

Cellular Potts is ideal for modeling the evolution of complex cellular-scale shapes 

in space, including body segmentation, as during embryonic development52, structures 

with branches such as human and plant vascular structures53,51, filamental structures such 

as strands of muscle54, and the formation of fluid-filled voids (in a cellular Potts model of 

vascular lumen formation with agent-based extensions55). It can also model ordered 
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movement of cellular populations, such as in the growth of biofilms56, bacterial 

swarming57, and the development of slime mold morphology58. 

 

Dissertation Summary  

In Chapter 2, we use a cellular Potts model to examine spatial, temporal, 

morphological and adhesive dynamics of small tumor spheroids of seven cells. These 

tumor models employ cell growth, mitosis, adhesion, and chemotaxis during the 

processes of tumor growth, invasion, and angiogenesis.   

Our questions in this chapter were whether we could use the cellular Potts model to 

recapitulate tumor morphology, tumor invasion, and tumor-initiated angiogenesis.  By 

making intracellular adhesion in the tumor higher than tumor cells’ adhesion to 

surrounding tissue, fluid, or matrix, we produce a spheroidal morphology similar to that 

of tumors protruding into the peritoneal cavity.  We do not model invasive, “spongy” 

tumors.  Parameterizing our model of invasion of a 7-cell spheroid into fatty tissue shows 

that a parameter to direct the cells toward vessels – a chemokine or other attractant or 

physical guide -- is missing.  We use a theoretical chemical attractant of similar 

molecular weight to VEGF emanating from blood vessels in fatty tissue to complete the 

model.  Finally, the angiogenesis model is not morphologically accurate, since the final 

vessel structure does not have well-defined vessels and is more of a convoluted surface, 

but it does generate a hypothesis for a chemical threshold of VEGF to initiate 

angiogenesis when the tumor spheroid is within 5µm of a vascular endothelial cell.  Also, 

in attempting to generate the correct level of vascularity at the right time in the tumor’s 

growth, given the growth rate of the endothelial sprouts, we realized that tumors were 
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initiating angiogenesis very early.  This in turn caused us to examine our microarray data, 

which shows that the cells are constitutively expressing angiogenic factors. 

In Chapter 3, we ask whether primary delivery of a drug by the IP or IV route 

results in higher accumulation of either pertuzumab or cisplatin. We also ask how the 

percent vascular area in the tumor (as measured in a tumor cross-section) affects IP and 

IV delivery of both drugs. 

We use a cellular Potts model with frozen cells, functioning as a cellular automaton 

(with no spatially dynamic cellular agents, but synchronous updating of the cell states at 

each time step59), representing vessels, tumor, and peritoneal fluid to test the effects of 

variation in vascular density of tumors upon drug penetration. We use effective 

penetration from empirical studies in tumor spheroids and in vivo tumor studies to 

implicitly parameterize convection and molecular-scale barriers to penetration in tissue. 

We model the delivery of drugs and antibodies by intravenous injection (IV), or 

intraperitoneal (IP) (intra-abdominal) injection to tumors with 0 to 10% vascular area in 

the central plane, the range of vascular densities in tumors (n=18) found attached to the 

bowel and omentum in nine patients. We predict the effectiveness of IV or IP delivery, in 

combination with the molecular weight and correlated potential for penetration into the 

tumor tissue. Our models show that IP delivery results in better delivery of both cisplatin 

and pertuzumab to abdominally disseminated tumors, with the most marked improvement 

in avascular tumors. We also find that higher vascular area leads slower drug uptake and 

greater heterogeneity of drug accumulation. 

In Chapter 4, we extend the delivery model by examining 3 models of vascular 

morphology in tumor tissue. We ask if drug accumulation varies with the distribution of 



 
 

11 

vascular vessel sizes, the vessel volume density, or with drug delivery (IP or IV).  

Additionally we ask whether these factors affect heterogeneity of drug accumulation 

across tumor cells. 

We consider regions of tumor that are not within drug penetration distance from the 

intraperitoneal cavity.  We change only i. the vascular morphology, and ii. the fact that no 

surface of the simulation domain receives intraperitoneal drug directly – only indirectly 

from the secondary drug concentration that appears in the blood, or directly from an 

intravenous injection. We then examine the levels of accumulation in the tumor cells, and 

measure heterogeneity of accumulation via the Shannon Entropy metric. We find that IP 

delivery gives sub-therapeutic levels of both drugs. IV delivery greatly improves 

accumulation of cisplatin, as well as the rate of accumulation of pertuzumab, though IP 

pertuzumab eventually plateaus close to the levels accumulated after IV delivery. 

Vascular volume affects the rate of delivery of pertuzumab, but not as dramatically as 

mode of delivery.  Vascular volume does not affect cisplatin’s accumulation. We also 

observe that Entropy, in combination with a histogram, is a good measure of both 

effectiveness and heterogeneity of drug delivery.  These measures show that there is 

some moderate change with alterations in vessel diameter distributions. Finally, in the 

whole tumor for each vessel distribution, even during the best delivery scenario (IV), 

antibody accumulation is highly heterogeneous, and leaves behind a large sub-population 

of cells below the therapeutic threshold.  
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Chapter 2: Ovarian tumor attachment, invasion and vascularization reflect unique 

microenvironments in the peritoneum: insights from xenograft and mathematical 

models 

 

 

ABSTRACT   

Ovarian cancer relapse is often characterized by metastatic spread throughout the 

peritoneal cavity with tumors attached to multiple organs.  In this study, interaction of 

ovarian tumor cells with the peritoneal tumor microenvironment was evaluated in a 

xenograft model based on intraperitoneal injection of fluorescent SKOV3.ip1 ovarian 

cancer cells.  Intra-vital microscopy of mixed GFP-RFP cell populations injected into the 

peritoneum demonstrated that tumor cells aggregate and attach as mixed spheroids, 

emphasizing the importance of homotypic adhesion in tumor formation. Electron 

microscopy provided high resolution structural information about local attachment sites.  

Experimental measurements from the mouse model were used to build a three-

dimensional cellular Potts ovarian tumor model (OvTM) that examines ovarian tumor 

cell attachment, chemotaxis, growth and vascularization.  OvTM simulations provide 

insight into the relative influence of tumor cell-cell adhesion, oxygen availability, and 

local architecture on tumor growth and morphology.  Notably, tumors on the mesentery, 

omentum or spleen readily invade the “open” architecture, while tumors attached to the 

gut encounter barriers that restrict invasion and instead rapidly expand into the peritoneal 

space.  Simulations suggest that rapid neovascularization of SKOV3.ip1 tumors is 
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triggered by constitutive release of angiogenic factors in the absence of hypoxia.  This 

research highlights the importance of cellular adhesion and tumor microenvironment in 

the seeding of secondary ovarian tumors on diverse organs within the peritoneal cavity.  

Results of the OvTM simulations indicate that invasion is strongly influenced by features 

underlying the mesothelial lining at different sites, but is also affected by local production 

of chemotactic factors.  The integrated in vivo mouse model and computer simulations 

provide a unique platform for evaluating targeted therapies for ovarian cancer relapse.  

This chapter was co-authored by Mara Steinkamp, Kimberly Kanigel Winner, Suzy 

Davies, Carolyn Muller, Yong Zhang, Robert M. Hoffman, Abbas Shirinifard, Melanie 

Moses, Yi Jiang and Bridget S. Wilson.  It was published in Frontiers in Oncology, 

Volume 3, 2013, page 97. Copyright ©2013 Steinkamp, Winner, Davies, Muller, Zhang, 

Hoffman, Shirinifard, Moses, Jiang and Wilson. 

 

 

 

INTRODUCTION 

Ovarian cancer is often detected at a late stage of disease after the cancer has locally 

disseminated to the peritoneum.  Visible tumors are surgically removed and residual 

microscopic disease is targeted with chemotherapy.  However, 90% of patients who 

originally respond to treatment will relapse with chemotherapy-resistant disease 

[McGuire, 1996].  Relapse is thought to occur because residual cancer cells aggregate in 

the peritoneal fluid and form microscopic tumor spheroids that are more resistant to 

chemotherapy [Shield, 2009].  These spheroids can then adhere to the surface of organs 
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in the peritoneum and seed new tumors, encouraged by chemokines and growth factors 

within the peritoneal fluid [Milliken et al., 2002;Bast et al., 2009].  

 

A common feature of the peritoneal environment is the mesothelial lining that tumor cells 

must sequentially bind to [Strobel and Cannistra, 1999;Casey et al., 2001;Kenny et al., 

2008] and penetrate [Burleson et al., 2006;Iwanicki et al., 2011] in order to adhere to 

underlying tissues.  Recent in vitro studies suggest that this penetration step can occur 

within a few hours after spheroid attachment [Iwanicki et al., 2011].  Nevertheless, 

unique features associated with different organs clearly influence progression in this 

disease.  For example, ovarian cancer cells preferentially colonize the omentum, a fatty 

tissue that has pockets of resident immune cells referred to as “milky spots” and easily 

accessible blood vessels [Gerber et al., 2006;Khan et al., 2010;Nieman et al., 2011].  

Tumor cells also colonize other organs in the peritoneum, with distinct growth rates and 

morphology depending on the site.  It is reasonable to expect that these heterogeneous 

tumor populations will respond differently to treatment, motivating further investigation 

into the features of the microenvironment that govern these differences. 

 

To establish a mouse model of ovarian cancer relapse, SKOV3.ip1 cells expressing 

fluorescent proteins (GFP, RFP) were injected into the peritoneum of nude mice and the 

resulting tumors growing on the omentum, intestine, mesentery and spleen were imaged.  

Excised tumors were processed for both transmission and light microscopy, providing 

detailed information about the cellular environment and vascularization patterns. 
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The distinct features in tumor morphology at different sites led us to consider the 

potential contributions of local chemotactic factors, oxygenation and adhesion through 

mathematical modeling.  In recent years, mathematical models have moved beyond the 

generic models of tumor growth and development e.g., [Jiang et al., 2005;Shirinifard et 

al., 2009;Morton et al., 2011;Giverso and Preziosi, 2012] and are now able to realistically 

model cancers, e.g. breast cancer [Chauviere et al., 2010;Macklin et al., 2012] and colon 

cancer [Rejniak and McCawley, 2010].  Few have addressed the unique features of 

ovarian cancer.  Arakelyan et al. (2005) modeled ovarian tumor growth response to the 

dynamics of vascular density and vessel size [Arakelyan et al., 2005]. Giverso et al. 

(2010) developed a two-dimensional model of early ovarian tumor spheroid invasion 

through the mesothelium and underlying extracellular matrix  [Giverso et al., 2010].  In 

this work, our focus is on understanding the distinct features of tumor morphology at 

different sites in ovarian cancer relapse in three dimensions.  The cellular Potts model 

framework was chosen because of its previous successes in studying similar problems in 

tumor growth and angiogenesis [Jiang et al., 2005;Shirinifard et al., 2009].  Our cell-

based and geometrically-realistic ovarian tumor computer model, OvTM, takes into 

account characteristics of the peritoneal microenvironment and provides insight into the 

earliest steps in spheroid attachment, invasion and vascularization within the peritoneum.  

In particular, homotypic and heterotypic adhesion observed between SKOV3.ip1 

xenograft tumor cells and the niche tissue structure are the starting point of OvTM.  We 

applied the model to explore the roles of cell adhesion, cell migration and proliferation as 

influenced by the microenvironment at two sites and were able to reproduce experimental 

observations.  The ultimate goal of our model is a realistic representation of spheroid 
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growth, whose dimensions and morphology qualitatively resemble the tumors 

disseminated in different tissue niches in the peritoneal cavity in our mouse xenografts.  

Such a model can be further developed to include short-term drug delivery after 

debulking surgery, allowing the evaluation of local drug responsiveness.  

 

MATERIALS AND METHODS 

Cell culture and cell lines 

SKOV3ip.1 parental cells and GFP-stable transfectants were kind gifts of Laurie Hudson 

and Angela Wandinger-Ness (UNM).  This aggressive line was passaged through a nude 

mouse [Yu et al., 1993].  Cells were maintained in RPMI media supplemented with 5% 

heat-inactivated FBS, 1% L-glutamine, 1% sodium pyruvate and 0.5% 

penicillin/streptomycin (Invitrogen, Grand Island, NY). SKOV3.ip1-GFP cells were 

treated with 250 µg/ml Hygromycin to maintain GFP expression.  To create red 

fluorescent protein (RFP)-expressing SKOV3.ip1 cells, parental cells were transfected 

with pTagRFP-N vector (Axxora, San Diego, CA) using Lipofectamine LTX reagent 

(Invitrogen).  Stably fluorescent cells were selected with geneticin sulfate (Invitrogen) for 

one week.  Transfectants were sorted for high fluorescence using a Beckman Coulter 

Legacy MoFlo cell sorter (UNM Flow Cytometry Core Facility).   

 

Intraperitoneal mouse model of ovarian cancer relapse 

All mouse procedures were approved by the University of New Mexico Animal Care and 

Use Committee, in accordance with NIH guidelines for the Care and Use of Experimental 

Animals. 
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Nu/nu nude mice (NCI) or nude mice ubiquitously expressing RFP [Yang et al., 2009] 

were engrafted by intraperitoneal injection with 100 µl of a single cell suspension 

containing five million SKOV3.ip1 cells expressing GFP.  Tumor adhesion and invasion 

was assessed at four days and two weeks post-injection.  For low magnification 

assessment of total tumor burden, eight nude mice were imaged using a Pan-A-See-Ya 

Panoramic Imaging System (Lightools,Inc., Encinitas, CA) two or three weeks post-

injection of SKOV3.ip GFP cells.  For high resolution images (up to 16X, single cell 

resolution), mice were imaged on the OV100 Olympus whole mouse imaging system 

(Olympus Corp., Tokyo, Japan) at AntiCancer, Inc., San Diego, CA, as previously 

reported [Yamauchi et al., 2006].  

 

Where described, sections of intestine and attached mesentery with tumors were excised 

and fixed in zinc fixative for 30 minutes [Howdieshell et al., 2011]. Samples were 

mounted on glass slides with ProLong Gold mounting media (Invitrogen). GFP 

fluorescence and brightfield images were collected on a Nikon TE2000 Microscope 

(UNM Microscopy Core Facility) using an Axiocam digital color camera and SlideBook 

Image Acquisition software.   

Co-injection experiments 

SKOV3.ip1-GFP cells and SKOV3.ip1-RFP cells (2.5 x 106 each population) were 

harvested from culture by trypsinization and mixed together as a single cell suspension 

immediately before injecting a total of five million cells into the peritoneum of three nude 

mice.  For consecutive injections, 2.5 million SKOV3.ip1 GFP cells were injected IP into 
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three nude mice followed by injection of 2.5 million SKOV3.ip1 RFP cells a week later.   

The mice were sacrificed at the end of week 2 and tumors were imaged on the OV100.   

Histology and immunofluorescence 

Mouse tumors were fixed in formalin or zinc fixative, embedded in paraffin, sectioned 

and hematoxylin/eosin (H & E) stained by TriCore (Albuquerque, NM) or processed for 

immunofluorescence using anti-CD31 antibodies (BD Biosciences, San Jose, CA).  

Images were acquired on a Zeiss AxioSkop or LSM500 confocal microscopes.  The area 

of mesenteric tumors was determined by analysis of images from H&E-stained sections 

using ImageJ [Schneider et al., 2012]. The cross-sectional tumor area corresponding to 

the hypoxic threshold was calculated to be <104,000 µm2 based on the diameter of the 

spheroid in Figure 7B (364 um).    

Transmission electron microscopy 

Tissue was collected and fixed in 2% glutaraldehyde, post-fixed with osmium tetroxide, 

dehydrated in ascending alcohols and embedded in Epon.  Ultrathin sections were stained 

and imaged on a Hitachi H600 transmission electron microscope (TEM).  To identify 

SKOV3.ip1 cells present in tissue samples, their characteristic nuclear ultrastructure was 

determined from high magnification TEM images taken of SKOV3.ip1 GFP cells grown 

as 5,000 cell spheroids in a U-bottom Lipidure-coated 96-well plate (NOF America, 

Irvine, CA) for 48 hours.   

 

The Ovarian Tumor Model (OvTM)   
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We based our model on the following set of major assumptions that are inspired by the 

biology and empirical data.  

1. The 3-D tissues we model consist of ovarian tumor (SKOV3.ip1), mesothelial, 

adipocyte, endothelial and smooth muscle cells, as well as extracellular matrix fibers and 

peritoneal fluid. 

2. Adhesion strengths between various cell types are prescribed and remain constant. 

E.g., adhesion between SKOV3.ip1 cells is stronger than between SKOV3.ip1 and 

mesothelial cells.   

3. The chemical environment consists of oxygen, tumor-secreted VEGF, adipocyte-

secreted IL-8 [Nieman et al., 2011], and another unidentified growth factor (Growth 

Factor 2) secreted by blood vessels.   

4. Both IL-8 and Growth Factor 2 are chemoattractants for tumor cells. VEGF is a 

chemoattractant for endothelial cells. Chemotaxis speed is proportional to the chemical 

gradient. 

5. Cells consume oxygen supplied by the peritoneal fluid and blood vessels. When 

oxygen levels are below a threshold value (20 mmHg), tumor cells become hypoxic and 

stop growing. They resume proliferation if oxygen rises above the threshold level.  

6. Cells are required to approximately double in volume before dividing and their 

division times have a Gaussian distribution. 

7. OvTM does not represent the flow of peritoneal fluid (or ascites). Because the 

diffusion process for all chemicals considered in our study is much faster than the cellular 

processes under consideration, chemicals are well-mixed. Therefore, it is reasonable to 

omit convective delivery of chemicals in this model.  
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8. Cells can become immobilized if we impose shape constraints. Addition of a 

surface area constraint as well as a high volume constraint can make cells insensitive to 

changes in adhesion and to low chemotaxis constants. Adhesion parameter sensitivity 

analysis was therefore conducted without a surface area constraint on the cells.  This 

constraint was added after adhesion optimization to produce cells that were more 

spheroidal, as they are seen in vivo.   

 

The three-dimensional (3-D) ovarian tumor growth and invasion model, OvTM, is based 

on the cellular Potts model framework using CompuCell3D (Cickovski et al., 2007;Swat 

et al., 2009). Ovarian cancer cells growing in the peritoneum were simulated using 

parameters obtained from the mouse model and from published data.  Parameters for the 

SKOV3.ip1 cells, endothelial cells, oxygen, growth factors, and measurements of mouse 

peritoneal tissue are shown in Table 1.   

 

In the OvTM, five cell types are considered: ovarian tumor (SKOV3.ip1), mesothelial, 

adipocyte, endothelial and smooth muscle. Extracellular matrix fibers and peritoneal fluid 

are represented as special types. This cell-based model describes cell growth, division, 

death, and chemotactic migration within a 3-D tissue environment that mimics the 

specific organ site. 

 

Cells are domains on a three-dimensional lattice. Each cell has an ID number, S, on each 

lattice site i of the cell domain, and an associated cell type �.  Cell-cell and cell-

environment interactions are specified by an “effective energy”: . 
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           (1) 

 

The parameter J describes the cell-type-dependent adhesion.  Adhesion coefficients (J) 

for the cell types in each model are listed in Tables 2 and 3.  The Kronecker delta 

function  ensures no energy is within cells where ID numbers are the same, limiting 

adhesion to cell boundaries. A cell’s volume V is elastically constrained to Vt, the target 

cell volume; V
t is constant for the tissue cells, but is set to increase linearly for 

proliferating cells. µ  is the chemical potential describing the strength of chemotaxis, and 

C is the chemical concentration at the cell. This term applies to tumor and endothelial 

cells when their respective chemoattractant signals are above threshold activation values.   

A modified Metropolis algorithm was used to simulate cell dynamics. A cell boundary 

lattice site is selected at random; the cell number, S, is copied to an unlike neighbor site 

S’ (selected at random). This copying corresponds to the cell S protruding a unit volume 

into the neighboring cell S’. The difference between the effective energies before and 

after the protrusion event, E, determines if this copying event will be accepted. If the 

energy decreases, the protrusion is accepted; if it increases, the protrusion is accepted 

with a Boltzmann probability, exp(-E/T).  The effective temperature, T, describes the 

amplitude of cytoskeletal fluctuation (Mombach et al., 1995). By such microscopic 

membrane protrusion and retraction, the cells perform biased random walks, and 

rearrange themselves, within the constraints of their volumes and chemical guidance.   

 

Chemical dynamics. Chemical dynamics are evaluated through continuous diffusion 

equations and are considered well-mixed in the peritoneal fluid. Chemicals acting as 

δ
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chemoattractants to SKOV3-ip are: adipocyte-secreted IL-8 (Nieman et al., 2011), and an 

unidentified growth-factor secreted from the vessel (Growth Factor 2).  The 

chemoattractant for endothelial cells during angiogenesis is VEGF. A system of partial 

differential equations describes the chemical dynamics, including diffusion through 

tissues, growth factor decay, glucose and oxygen consumption, and cell-uptake of signal 

molecules.   

    (2) 

                   (3) 

                       (4) 

where C1 is IL-8, C2 is Growth Factor 2, and V is VEGF. These equations describe 

diffusion through tissue, decay, receptor binding/internalization by tumor cells, and 

production by source cells. 

Oxygen is delivered by the vessel (see Figure 7) and diffuses from the peritoneal fluid. Its 

level is kept constant within the peritoneum. Diffusion of O2 through tissue and its 

consumption by the cells is described as: 

                               (5) 

 

Depending on the availability of oxygen in their surrounding environment, tumor cells 

have the potential to be proliferating, quiescent or necrotic.  Although the capability for 

tumor cells to become hypoxic or necrotic was integrated into the model, the spheroids 

. 

, 

, 
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we simulated were too small in diameter to develop internal hypoxia under normal 

physiological conditions, and never became hypoxic or necrotic.   

The secretion rates for IL-8, VEGF, and Chemotactic Factor 2 were taken from 

quantitative experiments (or estimated for Chemotactic Factor 2).  Oxygen was kept 

constant at the simulation boundaries with the value corresponding to the steady state 

oxygen level in the mouse peritoneal fluid (~98.5 mmHg).  Background IL-8 was also 

kept constant at the z boundaries, defined as normal to the mesothelium surface, with the 

value corresponding to its steady state concentration in the peritoneal fluid. IL-8 

concentration at the x and y boundaries was constant at levels diffusing from the 

adipocytes.   Boundary values of VEGF and Chemotactic Factor 2 were set to steady-

state at 0, as background values were unknown and the cells generated small, 

concentrated fields that reached approximately 0 at the distance of the simulation 

boundaries.  For the diffusion rates of these four chemicals (D > 15 μm2/min), 

Compucell3d cannot generate boundary conditions for tissues or cell types, as the 

necessary solver requires extra solutions per time step that make running models 

intractably slow (e.g. ~525,000 extra solutions per time step are required in the case of 

oxygen, resulting in ~24 hours simulation time/1 minute experimental time simulated). 

All parameters are listed in Table 1. 

 

The chemotaxis constant for SKOV3.ip1 cell response to IL-8 was increased until the 

cells were moving through the IL-8 gradient in mesenteric fat tissue at a rate we derived 

from the ovarian cancer spheroid experiments by Iwanicki et al (Iwanicki et al., 2011). 

Chemotaxis by tumor cells to Chemotactic Factor 2 coming from the vessel was tuned to 
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have the same order of magnitude of response as to IL-8 (order of magnitude (IL-8 

concentration * chemotaxis constant) = order of magnitude (Chemotactic Factor 2 

concentration * chemotaxis constant), where the chemotaxis constant = 1 x 1013.  

Cell reproduction.  In OvTM, the cellular level model and the chemical environment 

model are integrated through the choice of a common time-scale. In the cellular Potts 

model, each Monte Carlo Step (MCS) corresponds to as many cellular protrusion events 

as the number of lattice sites in the simulation domain. We define one MCS to 

correspond to one minute of real time. The chemical equations (Eqn 2, 3, and 4) are 

solved at the time step of 1 minute, when the cell lattice configuration and states are 

assumed constant. The cells update their states according to their local chemical 

concentrations. The cell lattice is then updated for 1 MCS assuming chemicals stay 

constant. Such iterative feedback and update links the discrete cellular Potts model and 

the continuous chemical equations together. Each cell has its own division time and age 

clock. Division time for cells is set on a Gaussian distribution; SKOV3.ip1 cells divide 

between 24.5 and 26.5 hours and endothelial cells divide between 23 and 25 hours. A cell 

divides when two conditions are satisfied: a) the cell’s age is greater than or equal to its 

division time, and b) the cell’s volume is greater than or equal to its target volume, which 

increases linearly with the cell’s age. When the cell (S) divides, it is halved into two 

daughter cells, S and S’.   

Tissue Microenvironments. The three OvTM model scenarios each represent several 

cubic millimeters of peritoneal space, about one third of which is tissue. (The invasion 

model is 7.6 mm3 and contains 2.6 mm3 of tissue.) The rest of the volume is filled with 
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peritoneal fluid present in the mammalian peritoneal cavity. Cell shapes and sizes were 

determined by cell morphometry studies of normal mice, nude mice, and SKOV3.ip1 

xenografts.  Thickness of the adipose layer surrounding vessels of the mesentery was 

taken from the literature. Tissue rigidity in smooth muscle and adipocytes was estimated 

based on cell junctions and spacing from EM images of mouse tissues.  The depth of 

penetration of SKOV3.ip1 cells on both tissue types was based upon xenograft tumors in 

our microscopic images. 

The tissue microenvironments we considered were the outer surface of the intestine 

(Figures 2 and 7) and the mesentery (Figure 5).  A layer of mesothelium covers both 

surfaces.  Both environments are initialized with a tumor spheroid of seven cells 

contacting the center of the contiguous mesothelial surface in the peritoneal cavity.   

On the intestine, smooth muscle lies beneath the mesothelium, separated from it by a thin 

layer of extra-cellular matrix (ECM).  Ovarian cancer cells can push aside the 

mesothelium and degrade ECM (Kenny et al., 2008;Sodek et al., 2008), but strong 

adhesion between the muscle cells prevents further invasion. Scattered blood vessels lie 

just below the mesothelium. In our model, initiation of angiogenesis was triggered by a 

threshold VEGF level.  When the local VEGF concentration exceeds a threshold, 

endothelial cells lining the blood vessels begin to proliferate and migrate, organizing into 

vascular sprouts.  

 

Tumors on the omentum or mesentery can invade through the mesothelium and migrate 

through the loose matrix and adipocyte fields below.  On the mesentery, ovarian cancer 
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cells adhering to the mesothelium push past the mesothelial cells as chemotactic gradients 

originating from adipocytes and vasculature stimulate migration into the tissue.  

Both models are initialized with a tumor spheroid of seven cells contacting the center of 

the contiguous mesothelial surface in the peritoneal cavity.  We assume ECM 

degradation rate by SKOV3.ip1 tip cells at the invading front is the same as the 

degradation rate by endothelial cells at the sprout tip (Bauer et al., 2009).  

 

The process of angiogenesis is driven by endothelial cell chemotaxis toward VEGF, and 

by differential adhesive interactions between endothelial sprout cells and tumor cells.  

This simple model suggests that, to produce vasculature morphology similar to that in 

very small xenograft tumors, latent endothelial cells must become proliferating 

endothelial cells and initiate angiogenic behavior as soon as the spheroid comes within 

diffusion distance for low concentrations of VEGF of the vessel.  Given VEGF 

production of 3.82x10-7 pg/min/SKOV3.ip1 cell, the threshold for the switch from latent 

to sprouting endothelial cells is set at 2.08x10-8 pg/cell volume, which initiates 

angiogenesis when the spheroid is about 5 microns from the vessel. 

Exploration of adhesion parameters: To reproduce the morphology of in vivo SKOV3.ip1 

xenografts on the intestine, we tested four combinations of homotypic and heterotypic 

adhesion parameters (Table 3).  Only when tumors were parameterized to have high 

homotypic adhesion between tumor cells along with low heterotypic adhesion between 

tumor cells and components of the microenvironment (peritoneal fluid, extracellular 

matrix, visceral mesothelium and smooth muscle cells) did tumor cells form rounded 

spheroids similar to those seen in vivo. A surface area constraint was also imposed on the 
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tumor cells to maintain cell integrity.  We ran at least five replica simulations for each 

parameter set, and observed no qualitative differences, within small variations, in our 

results.  

 

Table 1. OvTM parameters.  Values were obtained from direct measurement (indicated 

by ‘m’) of tissues and tumors or from previously published work.  Where experimental 

values were not available, values were estimated for the model (indicated by ‘e’).    

 

Chemical fields Value Units Source 

O2 concentration (blood and peritoneal 
fluid) 

98.5 mm Hg 

(Shirasawa et 
al., 

2003;Kizaka-
Kondoh et al., 

2009) 

O2 diffusion (DO2) 84,000 µm2/min 
(Macdougall 
and McCabe, 

1967) 

VEGF diffusion (DV) 600 µm2/min 
(Serini et al., 
2003;Bauer et 

al., 2009) 

VEGF decay (γV) 0.01083 /min 
(Serini et al., 
2003;Bauer et 

al., 2009) 
VEGF secretion: normoxic tumor cell 
(αV) 

3.82 x 10-7 pg/min/cell 
(Huang et al., 

2000) 

Chemotactic Factor 2 diffusion (DC2) 700 µm2/min 
e (Serini et al., 
2003;Bauer et 

al., 2009) 

Chemotactic Factor 2 decay (κC2) 0.01083 /min 
e (Serini et al., 
2003;Bauer et 

al., 2009) 

Chemotactic Factor 2 secretion (αC2) 1.8 x 10-4 pg/min/cell 
e (Serini et al., 
2003;Bauer et 

al., 2009) 

IL-8 diffusion (DC1) 15000 µm2/min 
(Li Jeon et al., 

2002) 

IL-8 decay (equal to VEGF) (ρC1) 0.01083 /min 
e as in (Jain et 

al., 2008) 
  



 
 

33 

Table 1 continued. OvTM parameters.   
IL-8 secretion by visceral adipocyte 
(αC1) 

2.2 x 10-4 pg/min/cell 
(Bruun et al., 

2004) 
IL-8 background concentration 
(peritoneal fluid) 

1.732 pg/ml 
(Barcz et al., 

2002) 

Metabolic Parameters Value Units Source 

O2 consumption: proliferating tumor 
cell (ε) 

4.93 fmoles/min/cell 

(Freyer and 
Sutherland, 

1985;Casciari 
et al., 1992) 

O2 threshold for hypoxia and VEGF 
production 

19 mm Hg 

(Höckel and 
Vaupel, 

2001;Evans et 
al., 

2006;Shirinifar
d et al., 2009) 

VEGF activation threshold for 
angiogenesis 

0.0001 pg/cell volume e 

VEGF deactivation threshold for 
angiogenesis 

0.00002 pg/cell volume e 

Rate Parameters Value Units Source 

SKOV3.ip1 invasion speed 10 µm/hr 
e from 

(Iwanicki et 
al., 2011) 

Rate of ECM degradation 0.55 µm2/min 
(Bauer et al., 

2009) 

SKOV3.ip1 cell cycle duration 25.5 +/- 1 hours m 

Vascular endothelial cell cycle 
duration 

24 +/-1 hours 

(Ausprunk 
and Folkman, 
1977;Levine 

et al., 
2001;Bagley 
et al., 2003) 

Cell volume after division 96 +/- 17 % e from m 

 
 
 
 
 
 

  

Average distance between adipocytes  
in the mesentery 

0.2 µm M 
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Table 1 continued. OvTM parameters.   

Morphometric Parameters Value Units Source 

Tumor cell radius 3.50 µm M 

Average adipocyte cell radius 10.1 µm M 

ECM (extracellular matrix) thickness 2 µm M 

ECM collagen fiber radius 1 µm M 

ECM collagen fiber length 20 µm E 

Vascular endothelial cell diameter 
(initial size) 

10 µm 
(Bauer et al., 

2009) 

Height of mesothelial cell on 
mesentery 

0.44 – 2.5 µm 
m, (Khanna 
and Krediet, 

2009) 
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Table 2. Combined tension and adhesion matrix for OvTM simulations of spheroid 

invasion, growth and angiogenesis.  White boxes show adhesion coefficients between 
cell types (Jij) and green boxes show adhesion coefficients between cells of the same type 
(Jii).  Grey boxes show the surface tension values between cell types.  Surface tension is 
defined as STij = Jij - (Jii + Jjj)/2 (Glazier, Graner, 1993).  Negative STij signifies 
attraction, and positive STij signifies repulsion.  Surface tension = 0 for all STii, but 
homotypic adhesion Jii can still be strong.  Maximum adhesion is 0.  Mesenteric invasion 
models contain peritoneal fluid (PF), visceral mesothelium (VM), proliferating tumor 
cells (PTC), vessel wall endothelial cells (VW), adipocytes (A), and extracellular matrix 
(ECM).  Included in the spheroid growth model are: proliferating tumor cell (PTC), 
peritoneal fluid (PF), visceral mesothelium (VM), vessel wall endothelial cells (VW), 
extracellular matrix (ECM), and smooth muscle (SM).  Models with angiogenesis further 
include vessel wall endothelial cells (VW) and sprouting endothelial cells (SE). 

PF VM PTC SE VW A ECM SM 
PF 0 10 10 10 10 10 10 10 

VM 10 0 20 20 10 20 0 10 
PTC 10 20 0 0 0 3 3 0 
SE 9.5 19.5 -0.5 1 0 13 5.5 2.5 

VW 10 10 0 0 0 13 0 0 
A 3.5 13.5 -3.5 6.5 6.5 13 1 0 

ECM 9.5 -0.5 2.5 0.5 -0.5 0.5 1 0 
SM 10 10 0 2.5 0 0 0 0 
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Table 3. Exploration of adhesion parameters in spheroids attached to the surface of 

the small intestine. Abbreviations are the same as in Table 2.  
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RESULTS 

SKOV3.ip1 ovarian cancer cells adhere to the surface of numerous organs in the 

peritoneum and form large tumors by two weeks post-injection. 

 

To recapitulate the essential steps in ovarian cancer relapse from minimal residual disease 

in the peritoneum, five million SKOV3.ip1 human ovarian cancer cells expressing GFP 

were injected into the peritoneum of nude mice as a single cell suspension. Mice were 

euthanized after two weeks and mounted on the stage of an OV100 fluorescence imaging 

system.  As shown in Figure 1A, macroscopic tumors developed on numerous organs in 

the peritoneum during this period.  The main sites of attachment were the omentum 

(Figure 1 A, B), the surface of the stomach (Figure 1C) and small intestine, the mesentery 

(Figure 1D) and the spleen (Figure 1E). Tumors also develop on the liver in half of the 

mice examined.  The largest tumors grow from the omentum and expand into the 

peritoneum, reaching volumes up to 200 mm3 by two weeks.  Even within this short time 

frame, the tumors are well vascularized with vessels penetrating and wrapping around the 

outside of the largest tumors.  Many smaller tumors can be found attached to the 

mesentery, often visible to the naked eye, but ranging in size from 0.4 µm3 to 1 mm3. 
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Figure 1. SKOV3.ip1-GFP cells colonize the surface of many organs in the mouse 
peritoneum.  (A) Whole body image of SKOV3.ip1 tumors growing from the omentum 
(large central tumor), the intestine, attached mesentery (white arrows), and the liver 
(yellow arrow) of an RFP nude mouse.  Tumors on the spleen are not visible in this 
image. (B) The largest tumors are attached to the omentum located on the larger 
curvature of the stomach and are well vascularized. (C) Tumors attached to the stomach 
are spherical and non-invasive. (D) On the mesentery, small tumors are located adjacent 
to major blood vessels. E) Small tumors growing on the spleen have a flatter, sponge-like 
morphology with less well defined borders between the tumor and the normal tissue.  
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Strong homotypic interactions drive SKOV3.ip aggregation. 

It has been hypothesized that ovarian cancer cells aggregate and form spheroids when 

suspended in peritoneal fluid and that these spheroids then attach to the peritoneal surface 

and form large tumors (Shield et al., 2009).  To test this hypothesis and to assess the 

clonality of the tumors at distinct sites, a mixture of SKOV3.ip1-GFP and SKOV3.ip1-

RFP cells were co-injected into nude mice as a single cell suspension and the resulting 

tumors were imaged two weeks later.  Tumors on the omentum developed as well-mixed 

chimeras, with both green and red fluorescence throughout (Figure 2A and B).  In higher 

magnification images, small areas with predominantly red fluorescence can be 

distinguished from areas with predominantly green fluorescence, but there are no large 

sections of tumor expressing a single fluorescent protein (Figure 2C).  The majority of 

the observed mesenteric tumors (92% +/- 2% of 51 observed tumors) also have mixed 

green and red fluorescence, indicating that even these small tumors originated from a 

mixed spheroid (Figure 2D and E).  The few small tumors consisting solely of GFP-

positive or RFP-positive cells may represent rare instances where a single cell, or a small 

group of singly fluorescent cells, was able to adhere and grow (Figure 2E, arrow). 

 

These data provided the first essential parameters for initialization of our OvTM 

mathematical model, since adhesion is a predominant feature of the cellular Potts 

framework (Graner and Glazier, 1992).  Simulations were initiated with an adherent 

spheroid on the surface of the intestine.  The spheroid subsequently pushes through the 

mesothelium.  This process has been observed in vitro, where tumor spheroids cause 

retraction of the mesothelium using a myosin-mediated process (Iwanicki et al., 2011).  



 
 

40 

 
 Figure 2 Co-injected SKOV3.ip1-GFP and RFP cells yield chimeric tumors. Equal 
numbers of SKOV3.ip1-GFP and SKOV3.ip1-RFP cells were injected as a single cell 
suspension into the peritoneum of nude mice. (A – C) Large tumors on the omentum are 
both GFP-positive (A) and RFP-positive (B). White boxes: magnified region shown in C. 
(C) A magnified composite image of the tumor from A and B showing a mixture of GFP- 
and RFP-positive cells. (D – E) Chimeric tumors on the mesentery have patches of green 
and red fluorescence.  A clonal tumor that is only GFP-positive can be seen (E, arrow). 
(F) Endpoint of a mathematical simulation initialized with a mixed GFP/RFP spheroid of 
56 cells attached to the mesothelial surface of the intestine.  A 180 x 180 x 180 µm lattice 
(5.832 mm3) is partitioned into layers of smooth muscle (brown), extracellular matrix 
fibers (teal), mesothelium (dark blue), and vessel (red) creating a 0.84 mm3 tissue layer. 
Above the tissue is peritoneal fluid. The 3-D image shows a chimeric tumor (orange and 
green cells) after 7 days of growth.  
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The in silico experiments using OvTM showed that only by assigning high homotypic 

adhesion strength to the cancer cells could the model reproduce spheroid cohesiveness 

and growth (Figure 2F).  For details on how the adhesion parameters were optimized, see 

Materials and Methods (Table 3).  Simulations in which tumor cells adhered more 

strongly to other tumor cells than to any other cell type produced the most rounded tumor 

morphology that closely resembled the xenograft tumors.  Adding a cellular surface area 

constraint maintained the integrity of the cells themselves. Since the model indicated that 

tumor cell homotypic adhesion is an essential feature governing dissemination and 

growth, this concept was further tested experimentally by sequentially introducing 

fluorescent tumor cells into the peritoneum (Figure 3). In this experiment, tumors were 

first established by injection of 2.5 million SKOV3.ip1-GFP cells.  After a period of one 

week to permit engraftment of the green fluorescent cells, an equal number of 

SKOV3.ip1-RFP cells were injected.  Following another week, the relative distribution 

and burden of both green and red fluorescent tumor cells were evaluated.   As expected, 

SKOV3.ip1-GFP tumors formed on the omentum, mesentery, and spleen.  Notably, the 

majority of red fluorescent cells adhered to and enveloped the pre-existing GFP-positive 

tumors as can be seen on the omental tumors (Figure 3A) and on the spleen (Figure 3B), 

rather than forming tumors independently.  Although some exclusively RFP-positive 

tumors were present on the mesentery (Figure 3C, arrows), 70% of the 24 RFP-positive 

tumors examined were also GFP-positive.  
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Figure 3. SKOV3.ip1-GFP and RFP cells injected sequentially emphasize the importance 
of tumor cell-cell adhesion.  2.5 million SKOV3.ip1-GFP cells were injected into nude 
mice and allowed to grow for one week before injection of an equal number of 
SKOV3.ip1-RFP cells.  Tumors were imaged one week later.  (A) SKOV3.ip1-RFP cells 
preferentially adhere to and coat existing GFP-positive tumors on the omentum. (B) 
Similar to the omentum, SKOV3.ip1-RFP cells preferentially adhere to existing GFP-
positive tumors on the spleen. (C) On the mesentery, RFP-positive cells form new tumors 
(white arrows) as well as adhereing to existing tumors.  Int: small intestine 
(autofluorescent).   
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Tumor cells migrate through the open architecture of the mesentery in 

response to chemotactic signals. 

 

Our next goal was to identify specific features of the microenvironment that underlie 

differences in ovarian tumor morphology by examining the structure of external tissue 

layers facing the peritoneum. Both normal and tumor-associated tissues were extracted 

and prepared for TEM imaging.  The micrograph in Figure 4A illustrates the open 

architecture of the normal mesentery, with loosely packed fat cells below the 

mesothelium (Figure 4A).  The mesothelial layer is remarkably thin in some areas, 

ranging from 0.4 to 2.5 microns in thickness.  A second image (Figure 4B) shows a cross 

section of mesentery excised from mice engrafted with SKOV3.ip1 human ovarian 

cancer cells.  Labels mark the locations of probable tumor cells, identified by the 

characteristic ultrastructure of their nuclei.  The tumor cells are interior to the 

mesothelium and adjacent to a small blood vessel.   

 

To understand how tumors are established in the mesentery, SKOV3.ip1-GFP cells were 

injected into the peritoneum and four days later segments of the mesentery were removed 

for whole mount imaging.  As shown in Figures 4C-D, images from this early time point 

provide a window into the initial steps in the engraftment process. Small groups of 

fluorescent tumor cells were seen within the mesenteric adipose layer (Figure 4C) or 

beneath the adipose layer immediately adjacent to vessels (Figure 4D).   
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Figure 4. Four days post-injection, tumor cells have invaded the mesentery and migrated 
through adipose tissue to approach mesenteric blood vessels. (A) Transmission electron 
micrograph of the edge of the mesentery from a nude mouse.  The mesentery architecture 
is open with loosely connected adipose cells below the mesothelium. Adipocytes are 
identified by their large lipid droplets.  (B) Transmission electron micrograph of 
mesentery excised four days post-injection of SKOV3.ip1 cells.  Arrows mark the 
locations of probable tumor cells.  The tumor cells lie close to a blood vessel.  (C) Tumor 
cells invading mesenteric adipose tissue adjacent to a vessel.  On the right, GFP 
fluorescence of the tumor cells; middle, brightfield; left, composite image.  (D) Tumor 
cells closely opposed to a mesenteric vessel.  Panels are arranged as in C.   
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We next used OvTM to evaluate the conditions necessary for tumor cells to migrate to 

mesenteric vessels within this short time period. The cellular Potts model is particularly 

well suited for this type of modeling, since it specifically represents cell-cell interactions 

and cell movement, which is governed by local contacts and chemotactic gradients. The 

three-dimensional stochastic model was populated with heterogeneous cell types (tumor 

cells, adipocytes, endothelial cells, and mesothelium) and geometric features (shape, 

location, organization and thickness of tissue layers) based on TEM images. Extracellular 

factors, such as chemokines and oxygen, are described by diffusion equations with 

sources and sinks. In each case, tumor cells push through the mesothelial layer and 

degrade the underlying extracellular matrix, as shown experimentally (Sodek et al., 

2008).  Simulations can then demonstrate the extent of tumor invasion in response to 

different chemotactic environments.   

 

Figure 5 shows results from three scenarios that were considered in these simulations. 

Movies for representative simulations are provided in Supplementary Data 

(Supplementary Movies M1-3). For each case, a spheroid of seven tumor cells was 

initially positioned on a 3D geometrical model of the mesentery. Mesothelial cells form 

the boundary with the peritoneum; adipocytes are dispersed within the interior, and a 

single vessel transverses the tissue.   

 

In the first scenario, there is no local production of chemotactic factors imposed.  The 

spheroid is positioned such that it is in contact with the ECM.  In the absence of 

chemotactic factors, the spheroid dissolves the ECM and presses into the adipose tissue 



 
 

46 

after two days (Figure 5A).  This progression is too slow to explain tumor cell 

localization near mesenteric blood vessels in the mouse model.   

 

SKOV3.ip1 cells have been shown to home towards chemokine-producing adipocytes 

and upregulate the IL-8 receptor (CXCR1) when co-cultured with adipocytes (Nieman et 

al., 2011).  Therefore, in the second scenario, simulation parameters were modified such 

that all adipocytes within the mesentery secrete IL-8 at a rate of 2.2 x 10-4 pg/min/cell 

(Bruun et al., 2004), which diffuses at 1.5 x 104 µm2/min (Li Jeon et al., 2002).  Tumor 

cells are then allowed to chemotax up the resulting IL-8 gradient.  In our model, spheroid 

invasion of the ultra-thin mesothelium is rapid, occurring at a rate of 10 µm/hr based 

upon the in vitro experiments of Iwanicki et al. (Iwanicki et al., 2011).  The pseudo-

colored image in Figure 5B shows the predicted distribution of IL-8 in the mesenteric 

tissue at steady state, illustrating the initial conditions experienced by the tumor spheroid. 

Simulated IL-8 concentrations within the peritoneum agree with those measured 

experimentally (Barcz et al., 2002).  When IL-8 chemotaxis is included in the simulation, 

the spheroid moves past the mesentery barrier and pushes between adipocytes to settle 

near the center of the adipose layer where the IL-8 concentration is greatest (Figure 5D).  

This occurs within 500 minutes after initialization.  In this case, rapid chemotaxis occurs, 

but the tumor cells do not localize near the vessel.     

 

In the final case, both adipose and endothelial cells are assumed to produce chemotactic 

factors that attract tumor cells.  We introduce a new chemotactic factor (Chemotactic 

Factor 2) that originates from the mesenteric vessel.  Steady state values represented in 
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the pseudo-colored profile in Figure 5C show that a significant gradient can be 

established by endothelial cell secretion of Chemotactic Factor 2 at a rate of 1.8 x 10-4 

pg/min/cell, which is comparable to that of IL-8 secretion from the adipocytes, and 

assuming diffusion and decay rates similar to VEGF.  When cells are arranged in this 

geometry, the presence of both chemotactic gradients causes spheroids to penetrate the 

mesothelial layer, move by chemotaxis through the loose adipose layer towards the 

vessel, and halt at the tightly-adherent barrier of the vessel wall (Figure 5E). Together 

with the experimental data, these results support the conclusion that both adipocytes and 

endothelial cells are likely sources of chemokines that attract ovarian tumor cells.   
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Figure 5. 3-D simulations of tumor cell attachment and migration to the mesenteric 
vessel. (A) The initial configuration of the simulation has a seven-cell spheroid attached 
to the surface of the mesentery. To model this environment, 170 x 170 x 263 µm lattice 
(7.6 mm3) is partitioned into five layers of adipocytes (light blue) sandwiched between 
single layers of mesothelium (dark blue) and ECM (teal) creating a 2.6 mm3 tissue layer 
surrounded by peritoneal fluid.  A blood vessel on the right is represented by a solid rod 
(red). In the absence of chemotactic signals, the spheroid penetrates only the thin 
mesothelial layer at 1 to 2 minutes of simulation.  (B and C) Steady-state distributions of 
chemotactic factors tested in these simulations. The color scale represents variation in 
factor concentrations in ng/ml.  (B) The IL-8 gradient created by secretion of IL-8 from 
adipocytes. (C) A chemotactic gradient based on secretion of a hypothetical chemotactic 
factor (Chemotactic Factor 2) from mesenteric vessels. (D) Sequences in the simulation 
where a chemotactic gradient based on IL-8 is originating from the adipocytes. The 
spheroid migrates towards the center of the adipose layer. (E) Sequences of a simulation 
where chemotactic signals originate from both the adipocytes and the vessel. The 
spheroid migrates through the adipose layer towards the vessel. 
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Small SKOV3.ip1 tumors attached to surfaces of the stomach or small 

intestine are non-invasive and initiate angiogenesis.   

We next focused on explanations for the distinct morphology of tumors attached to the 

stomach or small intestine, which do not invade the tissue and instead grow outward into 

the peritoneal cavity (Figure 6A). We again sought insight from high resolution TEM 

images. As shown Figures 6C (mesentery) and 6D (stomach), the outer mesothelial layer 

remains relatively thin over these organs (typically 0.5 microns thick).  The next layer is 

distinguished by dense collagen deposits.  Prominent smooth muscle layers can be seen in 

both the small intestine and stomach, where the muscle cells are closely opposed and 

connected by gap junctions (Friend and Gilula, 1972) (arrows, Fig. 6B).   

The morphology of a tumor attached to the outer rim of the lower intestine is seen at a 

lower magnification in Figure 6E, which shows a representative section from a formalin-

fixed, paraffin block stained with H & E (hematoxylin and eosin). The smooth muscle of 

the small intestine remains intact at the tumor/tissue interface.  Thus, tumors attached to 

the exterior of the gut are presented with a discrete barrier and adapt by growth into the 

available and flexible space between organs.   The intestine has a capillary bed that 

provides oxygen to the mesothelium and contributes to the oxygenated peritoneal 

environment (Figure 6F).  Because of the lack of a smooth muscle barrier, these vessels 

may provide a more accessible endothelial source for neoangiogenesis critical to tumor 

success.    

 

Microscopic evaluations provide support for this hypothesis (Figure 6B and 6E).  

Fluorescence imaging shows the remarkable extent of tumor vascularization, even in 

young GFP-positive tumors attached to the intestinal wall at 2 weeks post-engraftment 
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(Figure 6B).  A red arrowhead in Figure 6E points to a vessel visible within the tumor 

cross-section.  This evidence led us to conduct simulations to explain the rapid onset of 

neovascularization in the absence of invasion.    
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Figure 6.  Tumors that adhere to the walls of the small intestine are spherical and non-
invasive.  (A) An SKOV3.ip1-GFP tumor adhering to the wall of the small intestine two 
weeks post-injection in an RFP nude mouse.  Shown is a composite GFP/RFP image.  
Small vessels are visible on the surface of the tumor. (B) Higher magnification image of 
the vascular tree infiltrating a green fluorescent tumor on the intestine.  (C) Transmission 
electron micrograph of the small intestine wall.  Tissue was collected from a nude mouse 
four days post-injection with SKOV3.ip1-GFP cells.  The wall of the small intestine 
consists of a thin layer of mesothelium overlaying bundles of smooth muscle fibers. (D) 
TEM image of stomach ultrastructure, illustrating the distinct cellular layers.  (E) An 
H&E-stained section of a tumor attached to the small intestine.  There is a clear 
delineation between the intestine and the tumor.  The tumor is vascularized (red 
arrowhead).  (F). An H&E-stained section of the surface of a mouse intestine.  Arrow 
points to vessels at the intestine-mesentery junction. 
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SKOV3.ip1 tumor spheroids are initially well oxygenated and likely induce 

neovascularization via constitutive secretion of angiogenic factors.  

For the in silico model of angiogenesis, micron-scale geometric parameters for the tissue 

surface architecture were again determined from TEM images. For the gut, adhesion 

between smooth muscle cells is set sufficiently high as to prevent spheroid penetration 

below the mesothelial and collagen layers. Under these constraints, simulations of tumor 

adhesion and growth result in the formation of spherical tumors that are consistent with 

the morphology of engrafted tumors on mouse intestine (compare Figures 6A and 7C).  

Since these simulations incorporate published values for oxygen content in the peritoneal 

fluid and oxygen diffusion rate (Macdougall and McCabe, 1967;Kizaka-Kondoh et al., 

2009), it is possible to calculate the distribution of oxygen in all locations during tumor 

growth.  By coarse-graining the model (1 voxel=1 cell), we were able to determine the 

oxygen concentration gradients for large spheroids suspended in the peritoneal fluid.  In 

spheroids of varying sizes, oxygen concentration decreased within the core.  However, 

spheroids up to 336 µm in diameter (58,000 cells) approach the hypoxic threshold of 19 

mm Hg of O2 (Höckel and Vaupel, 2001), but are not yet hypoxic at their core (Figure 

7A). Continued growth to 364 µm in diameter (74,000 cells) results in a hypoxic core 

with an oxygen concentration of 0.5 mm Hg (Figure 7B), leading to the prediction that 

the hypoxic threshold is reached when the spheroid is between these two sizes.  Tumor 

sizes in mouse samples were compared based on the cross-sectional area of tumors in 

H&E-stained sections.  Mesenteric tumor vascularization with respect to tumor area is 
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shown as scatter dot plots in Figure 7E.  Of the 76 tumors measured, all tumors above the 

predicted hypoxic threshold (red) were vascularized.  However, 57% of small tumors 

with an area of <104,000 µm2 (below the predicted hypoxic threshold) were also 

vascularized.  These results suggest that angiogenesis is not solely hypoxia-driven in the 

SKOV3.ip1 model.   

 

In the next series of simulations, we examined how angiogenesis might originate from 

these spheroids in the absence of hypoxic signaling.  There is experimental evidence that 

SKOV3.ip1 cells constitutively express VEGF in vivo and in vitro even when maintained 

in well-oxygenated tissue culture conditions (Yoneda et al., 1998).  Secretion of VEGF 

by the tumor cells was therefore incorporated into these simulations.  Small spheroids 

attached to the gut penetrate the mesothelial layer, permitting VEGF secreted from tumor 

cells to initiate chemotactic gradients and attract endothelial cells that line blood vessels 

in the sub-mesothelial layer.  The process of angiogenesis is driven by endothelial cell 

chemotaxis toward VEGF, and adhesive interactions between endothelial sprout cells and 

tumor cells.  To produce vasculature visually similar to that in very small xenograft 

tumors, latent endothelial cells must begin to proliferate and migrate as soon as the 

spheroid comes close enough to the vessel to allow diffusion of low concentrations of 

VEGF.  Given spheroid VEGF production of 3.82 x 10-7 pg/min/SKOV3.ip1 cell, the 

threshold for the switch from latent to sprouting endothelial cells was set at 2.08 x 10-8, to 

initiate angiogenesis when the spheroid is ~5 microns from the vessel. 
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Figure 7. Vascularization of tumors is rapid and can be attributed to constitutive release 
of angiogenic factors by SKOV3.ip1 cells.  (A and B) Representations of the steady-state 
oxygen gradients from coarse-grained simulations of spheroids suspended in peritoneal 
fluid.  The color scale indicates the range of oxygen concentrations in mm Hg.  Black 
circles mark the perimeter of the spheroids.  (A) The oxygen gradient through the middle 
of a spheroid 336 µm in diameter (58,000 cells).  At this size, all cells are well 
oxygenated with an oxygen partial pressure above the hypoxic threshold of 19 mm Hg 
(indicated on the color scale as a blue arrow).  The lowest oxygen concentration at the 
core of the spheroid is 21.6 mm Hg. (B) The oxygen gradient through the middle of a 
spheroid 364 µm in diameter (74,000 cells).  By the time a spheroid has reached this size, 
the core is hypoxic (0.5 mm Hg). (C and D) OvTM simulations of angiogenesis in a 
tumor attached to the intestinal wall, assuming constitutive release of VEGF from cancer 
cells. (C) 3D image of the simulation after 7.8 days when the tumor has grown to 6,400 
cells.  (D) 2D slice through the middle of the tumor in D to show vessel tree morphology. 
(E) Scatter dot plots of mesenteric tumor vascularization with respect to cross-sectional 
tumor area as determined from H&E-stained sections of mouse intestine and mesentery 
collected three weeks post-injection. Tumor areas of all mesenteric tumors measured are 
plotted on the left.  Tumors with areas above the predicted hypoxic threshold are in red. 
All non-vascularized tumors fall below the hypoxic threshold.  The right plot shows the 
area and vascularization status of small tumors that fall below the hypoxic threshold.  A 
majority of these small tumors (57%) are also vascularized.  Lines indicate the median 
value.  (F) Cross-sectional view of a small mesenteric tumor after H&E staining.  Red 
blood cells (red) can be seen populating vessels within the tumor (blue).  (G) Confocal 
image of ovarian tumor removed from the surface of the gut and labeled with anti-CD31 
antibody (endothelial cell marker, red fluorescence) to distinguish tumor vasculature.  An 
anti-GFP antibody with a FITC-labeled secondary antibody marks GFP-expressing tumor 
cells; Hoechst (blue fluorescence) labels the nuclei of all cells in the field of view.  
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Angiogenesis in the OvTM model follows validated methods that treat VEGF as 

diffusible molecules whose gradient, together with the biophysical environment, drives 

endothelial migration and proliferation, and eventually morphogenesis of vessel sprouts 

(Bauer et al., 2007;Shirinifard et al., 2009).  Parameters and model assumptions are 

described in Materials and Methods. Simulation results show that constitutive production 

of VEGF from even a small spheroid of SKOV3.ip1 cells should be capable of initiating 

vascular outgrowths that penetrate the spheroid within 12 hours of attachment (Figure 

7D, Supplementary Movie M4).  Results of the computational model are consistent with 

our experimental observations that even very small tumors, comprised of less than 20,000 

SKOV3.ip1 cells, are fully vascularized (Figure 7F).  They are also consistent with 3-D 

images of tumor slices stained for confocal fluorescence imaging that show extensive 

tumor vascularization three weeks post-injection (Figure 7G).  In this final image, an 

anti-CD31 antibody (red) marks endothelial cells, Hoechst (blue) stains the cell nuclei 

and an anti-GFP antibody (green) labels the GFP-positive tumor cells. A rotating 3D 

view of this tumor section is found in Supplementary Movie M5.   

DISCUSSION 

In this work, we combine a murine xenograft model with a computational model, OvTM, 

to evaluate critical factors governing the dissemination and growth patterns of ovarian 

cancer in the peritoneum.  These models best represent ovarian cancer relapse after 

debulking surgery, where disease progression initiates from microscopic residual disease 

in the peritoneal chamber.   
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In cellular Potts models, the variety of constraints placed on cells must be properly 

balanced to produce biologically reasonable cellular and tissue structure and movement.  

We quantitatively modeled oxygenation in a simple spheroid to estimate at what diameter 

the tumor center would become hypoxic, for comparison with diameters of vascularized 

tumors observed in the mouse xenografts.  Tumor cell homotypic and heterotypic 

adhesions on smooth muscle were then tuned to regenerate the spheroidal morphology of 

SKOV3.ip1 xenograft tumors on small intestine or stomach (Figure 6A).  To simulate the 

depth to which spheroids penetrate in soft tissue due to a chemotactic motive force, the 

underlying tissue structure was adjusted to represent a fatty section of the mesentery. In 

the simulations, tumors remain on the surface of smooth muscle, a tissue with many 

underlying tight junctions (Figure 6C and D), and invade soft tissues with space between 

cells, such as the mesentery (Figure 4A). 

 

Finally, we simulated VEGF-driven angiogenic morphogenesis borrowing from previous 

methods using cellular Potts models for tumor-driven angiogenesis (Bauer et al. 2007, 

Bauer et al, 2009, Shirinifard et al. 2010), in which endothelial cell chemotaxis towards 

soluble VEGF leads to angiogenic sprouting and branching. These models treated VEGF 

as a diffusible molecule whose gradient, together with the biophysical environment, 

drives endothelial migration and proliferation, and eventually morphogenesis of vessel 

sprouts. We did not include other angiogenesis dynamics from Bauer et al. 2009, which 

considered endothelial cell interactions with ECM to further drive sprouting 

morphogenesis, nor does our model assess tumor growth as in Shirinifard et al. 2010, 

which modeled tumor growth in response to a growing network of surrounding vessels 
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providing nutrients.  Instead, angiogenesis was modeled as a simple morphogenetic 

process driven by chemotaxis and differential adhesion that penetrates a 3-dimensional 

tumor.  The sprouting vessel’s base cell (or cells) has a semi-permanent elastic bond to 

the existing vessel, describing the labile adhesion interactions between them.  Otherwise, 

differential adhesions between tumor and endothelial cells facilitate endothelial sprouting 

up the VEGF gradient. 

 

The basic OvTM model and parameter set remain the same for all three groups of 

simulations (spheroids on muscle, spheroids invading mesenteric fat, and angiogenic 

sprouts in spheroids on muscle), except for the following.  Between the cases of spheroid 

growth in different niches, the tissue surface is comprised of different cell types with 

their associated parameters.  In angiogenesis simulations, the volume constraint for 

cancer cells was increased to help prevent cell fragmentation during migration.  

Constraints on endothelial cells in the angiogenesis model (proliferating endothelial, non-

proliferating endothelial, and permanent vessel) include elastic labile adhesion bonds 

between each type of vascular cell and its neighbors.  The CC3D simulation code will be 

available upon request to the authors. 

 

We show that, for the aggressive SKOV3.ip1 cell line, homotypic adhesion between 

tumor cells is a defining feature that favors the aggregation of tumor cells into small 

spheroids.  The spheroid morphology may promote adhesion-mediated cell survival 

signals and allow tumor cells to evade anoikis, a cell death program usually triggered by 

loss of cell adhesion to the extracellular matrix (Kim et al., 2012).  We speculate that 
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these strong homotypic interactions may help to explain the typical clinical presentation 

where ovarian cancer is largely confined to the peritoneum and often accompanied by 

ascites.  It is notable that others have shown spheroids are less susceptible to 

chemotherapeutic agents and may therefore contribute to relapse (Shield et al., 2009).  

 

While some treatment regimens have focused on reducing metastatic spread through 

limiting tumor cell adhesion to the mesothelium (Sawada et al., 2012), we were interested 

in whether interactions between tumor cells might also be an important target.  Using 

serial injections of green-fluorescent and red-fluorescent cells, we demonstrated that 

newly introduced tumor cells preferentially adhere to existing tumors.  Strong cell-cell 

adhesion between tumor cells that stabilizes tumor clusters in the simulations could 

explain this observation.  However, autocrine factors may also contribute to tumor cell 

homing, similar to the release of IL-6 and IL-8 from breast tumors that draws circulating 

tumor cells back to the primary tumor site (Kim et al., 2009).  Although the mechanism is 

not well understood, therapies targeting ovarian tumor cell-cell homotypic adhesion may 

be worth consideration.  In addition to limiting tumor mass, such drugs might be 

administered in combination with conventional chemotherapy to improve drug 

penetration.   

 

Distinct niches within the peritoneal microenvironment also help to restrict tumor cells to 

the peritoneum and limit metastatic spread to other anatomical sites.  Based upon the 

animal and mathematical models, colonization and growth is favored in loosely organized 

tissues.  There are similarities between the open architectures of the mesentery and 
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omentum, two organs that are colonized by SKOV3.ip1 cells and share rich beds of 

adipose tissue known to secrete cytokines and growth factors attractive to tumor cells 

(Collins et al., 2009;Klopp et al., 2012).  The adipocyte-rich omentum has a slightly 

thicker mesothelial layer than the mesentery, but has stomata or openings in the 

mesothelium above the milky spots that expose the underlying layers (Cui et al., 2002).  

The open architecture of these organs offers few barriers to tumor cells that undergo 

chemotaxis in response to local chemokine production.  In contrast, even the aggressive 

SKOV3.ip1 tumor line is largely blocked by physical barriers such as the smooth muscle 

layers in the GI tract.   

 

Our work is consistent with recent studies by Nieman et al., who showed that SKOV3.ip1 

cells adhere to the omentum as early as 20 minutes post injection and migrate in response 

to IL-8 and other chemotactic agents produced by adipocytes (Nieman et al., 2011).  In 

addition, we provide new evidence suggesting that SKVO3.ip1 cells migrate through the 

mesothelium and adipose tissue towards mesenteric vessels.  Chemotaxis of tumor cells 

towards existing vessels has been observed in rodent models injected subcutaneously 

with mammary carcinoma cells (Li et al., 2000).  Based on results from OvTM 

simulations, we propose that a chemotactic factor originating from the vessel may 

mediate this process.  Although the identity of the factor is unknown, it is possible that 

vessels also produce an IL-8 gradient that attracts tumor cells, since activated vascular 

smooth muscle cells are capable of producing IL-8 (Wang et al., 1991).  Growth factors 

secreted by perivascular tumor-associated macrophages, such as the epidermal growth 



 
 

60 

factor (EGF), could also promote local survival and proliferation of tumors that take up 

residence near vessels (Lewis and Pollard, 2006).   

 

Interestingly, rodent models that showed tumor migration to blood vessels also exhibited 

early angiogenesis in tumors consisting of fewer than 300 cells (Li et al., 2000). The 

constitutive expression of angiogenic factors by SKOV3.ip1 cells may be the single most 

important feature contributing to the aggressive growth of this tumor cell line after 

engraftment.  In preliminary data not shown, microarray studies showed that VEGF 

mRNA levels differ less than 2-fold in cultured SKOV3.ip1 cells versus in vivo.  In 

OvTM simulations, this modest level of constitutive production is sufficient for even 

minute tumor spheroids to recruit endothelial cells from nearby vessels (Figure 7).  This 

result is in contrast to the classical solid tumor situation, where angiogenesis is initiated 

only after the interior tumor cells become hypoxic and upregulate VEGF production 

(Shweiki et al., 1992;Pugh and Ratcliffe, 2003).  In patients, however, it is important to 

note that the balance of constitutive and induced production of angiogenic factors by 

tumor cells may vary widely. Therefore, assessment of angiogenic factor transcriptional 

profiles or direct measurement of angiogenic factor levels in serum/cystic fluid may be 

critical to identify patients at risk for relapse, a concept that has also been proposed by 

others (Harlozinska et al., 2004;Li et al., 2004).  
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ABSTRACT 

 

In ovarian cancer, metastasis is typically confined to the peritoneum. Surgical removal of 

the primary tumor and macroscopic secondary tumors is a common practice. More 

effective strategies are needed to target microscopic spheroids that persist in the 

peritoneal fluid after debulking surgery. To treat this residual disease, therapeutic agents 

can be administered by either intravenous (IV) or intraperitoneal (IP) infusion. We use a 

cellular Potts model to compare tumor penetration of two classes of drugs when delivered 

by these two alternative routes. We model cisplatin, representative of small molecule 

chemotherapeutic agents that penetrate cells and vessels readily. We also consider 

delivery of therapeutic monoclonal antibodies, such as pertuzumab that targets ErbB2 

receptors expressed on ~35% of ovarian tumors. Experimental measurements included 

fluorescence recovery after photobleaching (FRAP) to measure penetration of non-

specific antibodies infiltrating into cultured human ovarian cancer (SKOV3.ip1) 

spheroids and two-photon imaging of spheroids and explanted tumors from orthotopic 

xenografts in nude mice. Stereology analysis was used to estimate the range of vascular 

densities in disseminated tumors from patients. The model considers both the primary 

route when drug is administered IV or IP, as well as the subsequent exchange into the 

other delivery volume as a secondary route.  By accounting for these dynamics, the 

model shows that IP delivery is the markedly better route for small, avascular tumors 

typical of patients with ascites. Small tumors attached to peritoneal organs, ranging from 

vascularity of 2-10%, also show superior drug delivery via the IP route even though 



 
 

69 

tumor vessels can act as sinks during the dissemination of small molecules. Wave fronts 

of antibody binding are observed both in silico and in in vivo, indicating that optimization 

of antibody delivery is an important criteria in the efficacy of these and other biologic 

therapeutics.  Use of both delivery routes may provide the best total coverage of tumors, 

particularly when there is a significant burden of avascular spheroids suspended in the 

peritoneal fluid as well as larger, neo-vascularized secondary tumors.   
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INTRODUCTION  

 

Ovarian cancer is the tenth most common and sixth most deadly cancer in the United 

States 1. Because it is largely asymptomatic during the early stages of disease, 61% of 

patients present with cancer already disseminated throughout the abdominal cavity.  As a 

consequence of late-stage diagnosis, the five-year survival rate is only 44% 2 

Intraperitoneal (IP) administration of cisplatin has been shown to correlate with improved 

overall survival 3-5 and combined IV/IP chemotherapy has been recommended by the 

National Cancer Institute as the standard of care for optimally-debulked, FIGO stage 3 

ovarian cancer patients 6. In this work, we explore the effectiveness of IP vs IV therapy 

for residual disease as a function of attachment and vascularity. We predict that improved 

outcomes may result from pathologic assessment of peritoneal tumor characteristics after 

cytoreduction, potentially leading to individualized decisions on the routes of drug 

administration. We tested this hypothesis through simulations delivering both small 

molecule and antibody therapies, using a spatially discrete, cellular automaton 

computational model.  

 

Disseminated ovarian tumors often exist as two distinct types: 1) avascular cell 

aggregates (“spheroids”) that are loosely attached to organs within the peritoneal cavity 

or free floating in the ascites fluid and 2) vascularized tumors colonizing peritoneal 

organs. For optimal treatment, drugs must be effective against both types of tumors.  

Furthermore, route of drug delivery will likely have an effect on drug penetration, 

binding and accumulation.  We focus here on strategies for post-surgery treatment of 
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microscopic residual tumors, where debulking has removed both the primary tumor and 

larger secondary tumors (>1 cm in diameter).  

 

Drug movement between the peritoneal and the blood plasma compartments is a key 

feature of the pharmacokinetics affecting abdominal tumors.  In healthy individuals, the 

volume of peritoneal fluid is small (10-30ml). This fluid resides in the interstitial spaces 

and is secreted by mesothelial cells [reviewed in 7]. The fluid circulates through the 

cavity and enters the blood circulation via adjunct capillaries (40-50%) or stomata on the 

underside of the diaphragm. The stomata can admit particles up to 25 µm in diameter into 

the diaphragmatic lymphatics, which connect to the greater lymphatic system. Fluid 

ultimately drains back into the venous circulation. Because the blood and intraperitoneal 

compartments are intimately connected, our model accounts for the initial drug infusion 

into the primary peritoneal or blood compartment as well as the delayed appearance of 

drug into the secondary compartment.  

 

Mathematical modeling of drug delivery was pioneered in the 1960s8. Recent reviews 

have summarized current strategies used to model anti-cancer drug penetration at 

different temporal and spatial scales9,10. Of particular note, Sinek et al. created a 2-

dimensional multi-scale model of cisplatin and doxorubicin intravascular delivery11. For 

ovarian cancer, mathematical models have addressed the penetration of doxorubicin 

through multiple cell layers12, the effects of transcriptional and regulatory networks13-15, 

long-term recurrence predictions and prognostic value of CA-12516-18 or other novel 

markers19,20 detected in blood, assessment of diagnostics and prognostics21-26, 
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effectiveness of theoretical or established treatments16,27-30 and survival rates of patients 

after surgical or drug treatment31. The metabolic and spatial characteristics of cancer cell 

spheroids have been considered32, including studies of ovarian cancer spheroids33.  

 

Few spatially explicit models of ovarian cancer exist aside from our own34. Giverso et al. 

built a 2-dimensional cellular Potts model of ovarian cancer that explores the interaction 

of ovarian cancer cells with the mesothelial layer and underlying extracellular matrix 

during invasion35. More common are models of drug penetration in the peritoneal cavity. 

El-Kareh et al. modeled the penetration distance of cisplatin into the rat peritoneum with 

and without hyperthermia36. This model and others, as well as experimental measures for 

penetration into tissues in the peritoneal cavity, suggest absorption of small-molecule 

drugs by vessels can be a barrier to drug delivery37. Here, we report results of a 3-D 

spatial model of drug delivery. Based upon the Compucell3D cellular Potts simulation 

environment, the model was parameterized for ovarian cancer spheroid behavior and drug 

dynamics for two delivery compartments34. Results show that, for avascular spheroids 

and small, vascularized tumors in the process of seeding peritoneal organs, the IP route is 

superior for drug delivery.     

 

METHODS AND MATERIALS  

 

DRUG PENETRATION INTO SPHEROIDS 

2000 SKOV3.ip-GFP cells were seeded into each well of a Lipidure-coated 96 well plate 

and incubated for 48 hours to allow the formation of spheroids. Pertuzumab was 
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conjugated to Pacific Blue 410 succinimidyl ester (Life Technologies). Spheroids were 

incubated in pertuzumab-Pacific Blue at a final concentration of 3.5 µg/ml and imaged on 

a Leica 510 confocal microscope with a META detector. 

 

OVARIAN CANCER XENOGRAFT MODEL  

Details of the human xenograft model in Nu/nu mice were previously described34. In 

brief, nude mice were engrafted by IP injection with 100 µl of a single cell suspension 

containing five million SKOV3.ip1 cells expressing GFP.  Tumors develop within 1-3 

weeks. Where specified, recipient mice were injected with 20mg/kg perzutumab; 

antibody was purchased from UNM Pharmacy and conjugated to Pacific Blue per 

manufacturer’s guidelines (Life Technologies, Grand Island NY). Mice were humanely 

sacrificed after specified time intervals.  Tumors were excised and imaged on a Zeiss 510 

confocal microscope equipped for 2-photon imaging.  All experiments using mice were 

approved by the UNM Animal Care and Use Committee, in accordance with NIH 

guidelines for the Care and Use of Experimental Animals. 

   

QUANTIFICATION OF VASCULATURE DENSITY AND VESSEL 

DIAMETER IN PATIENT TUMORS 

Specimens from ten ovarian cancer patients were obtained from the UNM Human Tissue 

Repository. Patient samples were identified for which both bowel and omentum were 

available. Adjacent sections were stained with H&E to identify higher-chromatin tumor 

cells or processed for immunohistochemistry (IHC) with anti-CD31 antibodies (BD 
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Biosciences, San Jose, CA) to identify endothelial cells. Confocal montages of each 

specimen were generated using Stereo Investigator image analysis software at 4x 

magnification. A board-certified pathologist distinguished tumor tissue from other tissues 

and drew contours of tumor tissue on a printed contact sheet of the section montages. The 

contours were re-drawn at 20x using Stereo Investigator and the confocal microscope to 

set a probe area. Vessel area density was calculated using the Stereo Investigator Area 

Fractionator Probe with sampling grids tailored to each of the 18 samples.  Grid points 

were counted as vessel if the triangle defined by the upper right-hand quadrant of “cross-

hairs” contained pixels darkly stained for CD-31. Structure of the overall tissue and 

relative darkness of stain were taken into account. A minimum of 200 points in the sub-

region (vessel) provides best probe coverage; where this coverage was not achieved, the 

sample was reprocessed over a different coverage area in the grid. Additional controls 

avoided re-analysis of overlaid areas or analysis of tissue of poor quality. Vessel diameter 

was calculated using Stereo Investigator Line Measure or Circle Measure tools.  Multiple 

vessels (10-20) were chosen per tumor and 3-5 vessels were measured per quadrant (236 

vessels measured in 18 tumors).   

 

CELLULAR POTTS MODEL  

The cellular Potts model of ovarian cancer was initially developed for dynamic 

simulations of cell growth, migration and response to chemical fields. Here, the model is 

reduced to a cellular automaton and penetration model with no growth or motility. Each 

cell is considered a single agent, occupying one voxel on a 3-dimensional lattice. In 
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Compucell3D, lattices representing chemicals are layered onto the cellular lattice. The 

amount of chemical accumulated by each cell is reported at each time step. 

 

For a chemical concentration C1, the effective diffusion coefficient (DC1), decay (γ1), 

source (α1), and sinks (ζ1) in the PDE solvers in CC3D are described by: 

 

 

 

For the concentration of each drug in blood plasma after IV delivery, or intraperitoneal 

fluid after IP delivery, at each time step, we use a constant concentration in the vessels 

(constant boundary condition) as fitted to patient data (Table 1).  Antibody available at 

the vessel surface is described by 

 

 

where Cplasma is the concentration in blood, t = time, and B = the Biot number.  The Biot 

value is the ratio of capillary extravasation to the free diffusion coefficient in tumor 

tissue, an approach pioneered by Thurber 37-39 to address passage of proteins across the 

vascular wall as the rate-limiting step of delivery. 

 

Our simulation environment represents small tumors of 30 cells in diameter (volume 

=13,997 cells), suspended in peritoneal fluid or attached to the thin mesentery where 

most of the tumor surface is exposed to fluid.  Drug infusion (5-15 min, as specified in 

figure legends) was delivered from intratumoral vessels or the peritoneal cavity. 
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Simulation volume was 35,937 (333) voxels.  Each vascular tumor contained a simulated 

vascular meshwork generated in Matlab by randomly placed cylinders of specified radii 

and lengths.   

 

One voxel's volume was equivalent to one SKOV3.ip1 cancer cell, or 179.4 (5.643) µm3 

34. One time step was equivalent to 1/1500 real minutes in cisplatin models, and 1/1132 

hrs in pertuzumab models. Each Monte Carlo Step (MCS) was then equal to the time for 

molecules to diffuse the distance of one cell diameter for each drug.  

 

We implement drug modeling simplification guidelines outlined by Thurber, which 

considers only the primary rate-limiting step for drug diffusion in tumor tissue as 

determined by the molecular weight, shape, and lipophilicity of a drug39. For easily 

penetrating, low-molecular-weight cisplatin, there are no explicit barriers within blood or 

tissue in the model. Penetration of antibody from the IP fluid into tumor tissues is 

considered a passive process, parameterized from our own FRAP measurements, as well 

as in vivo effective penetration lengths39, rather than accounting for discrete pressure or 

convective velocity of the interstitial fluid.  

 

Fits for drug concentrations in the primary delivery compartments were derived from 

patient data in the literature (Table 1). Optimal fits were based on the best R-square 

statistics, plots of residuals, and knowledge of the biological system’s behavior. All plots 

were >0.8 R-square, and most were >0.95. Primary compartment concentration was 

calculated for the time step from the fit, and set as a constant concentration (constant 
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boundary condition) in either the intraperitoneal fluid or the blood. Simultaneous drug 

concentration in the secondary compartment was also included. Data for simultaneous IP 

and IV concentrations during drug delivery in human patients (cisplatin) and rats (IgG) 

were extracted from plots found in the literature, and used to calculate the ratios of IP to 

IV concentration after IV delivery, or IV to IP concentration after IP delivery (see Figure 

3). The concentration in the secondary compartment was calculated as the product of the 

fit for the ratio at the current time step, multiplied by the current concentration in the 

initial delivery compartment, and then set as a constant concentration (constant boundary 

condition) in the fluid of the secondary compartment for the duration of the time step. For 

instance, for each time step during IV delivery of cisplatin (t = mins): 
 

�������	
�()� = [��()] ∗ (−1.154� − 06 ∗ � + 5.737� − 04 ∗ ! +  0.09922 ∗ 
+ 5.973) 

 

The accumulation of drug in each cell was recorded in a text file during each simulation, 

and plotted and analyzed in Matlab. 

 

MODELING TUMOR VASCULAR NETWORKS 

Vascular radii from the ovarian cancer tumor samples were characterized by fitting a 

Gaussian distribution to vessels with radii ranging from 1 to 40 µm (this excluded a small 

number of larger vessels that were rarely present in the small tumors we model here). The 

resulting distribution had a mean of 19.22µm and standard deviation of 11.2µm.  
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We integrated these values into our cellular Potts model by discretizing values to voxel 

dimensions, resulting in vessels 1 to 3 cells in diameter. A Matlab script generated a 

randomized distribution of vessels with these radii within spheroids of 13,997 cells. The 

distributions were designed to generate variable vascular area corresponding to the 

variation we observed empirically in tumor samples. We generated in simulated tumors 

in which central slice varied from 0 to 10% vascular area. Figure 2H illustrates this 

important feature of our simulation strategy.  

 

RESULTS  

 

DRUG PENETRATION AND ACCUMULATION IN AVASCULAR 

TUMORS  

 

In Figure 1, we first experimentally consider drug delivery to avascular, three-

dimensional cancer cell aggregates by passive penetration. SKOV3.ip1 ovarian cancer 

cells were grown as spheroids (~2000 cells), incubated for defined intervals with 

fluorescent small molecules or antibodies and then imaged by confocal microscopy.  

Naturally fluorescent doxorubicin (MW 543 Da) was used to represent the class of low 

molecular weight, highly lipophilic chemotherapeutic compounds; it is used here as a 

surrogate for the behavior of cisplatin (MW 300 Da), a first line therapy for ovarian 

cancer.  Results for doxorubicin are shown in Figure 1A, where the fluorescence intensity 

plot below the 10 minute image shows the drug well distributed across the spheroid. Note 
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that the fluorescence intensity continued to rise over the incubation period of 90 min, 

attributed to drug accumulation in cell nuclei as doxorubicin intercalated into DNA. The 

data are consistent with the fast penetration of small molecular weight drugs in tumors40. 

These results validate the use of a fast diffusion rate for cisplatin (640 µm2/sec;41) in our 

simulations.  

 

We next experimentally evaluated the uptake of therapeutic antibodies into cultured 

spheroids. The passive diffusion coefficient for these large proteins (~150 kDa) was 

determined by Fluorescence Recovery after Photobleaching (FRAP). The spheroids were 

incubated with fluorescently-tagged, non-specific IgG for one hour. As shown in Figure 

1B, this is a sufficient period for IgG to diffuse through the intercellular spaces to the 

spheroid interior.  A 14 µm diameter spot was photobleached and diffusion of fluorescent 

antibodies within the interstitial space in the absence of binding was estimated based 

upon fluorescence recovery. As shown in Figure 1C, an estimated diffusion coefficient of 

13 µm2/sec for non-specific IgG was comparable to that of control (70kDa dextran). We 

interpret this as evidence that the cell-cell junctions in these spheroids are insufficient 

barriers to strongly limit protein penetration. Moreover, these values are consistent with 

in vivo estimates of antibody diffusion in tumor tissues by others42,43.  
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FIGURE 1. Diffusion in Spheroids. A) SKOV3.ip1-GFP spheroids of ~ 2000 cells were 
incubated with 3.5 µg/ml doxorubicin for 10-90 minutes as shown.  Graphs below 
confocal images indicate fluorescent intensity measured across the spheroid along the 
specified line (white arrow). B) SKOV3.ip1-RFP spheroids were incubated with 350 
µg/ml non-binding FITC-conjugated IgG for 1 hour to allow homogeneous distribution of 
the IgG throughout interstitial spaces in the spheroid. Regions of interest were bleached 
(red circles) and fluorescence recovery was measured over time. The rate of recovery of 
fluorescence (Tau) was determined by single component fitting of FRAP curves.  C) 
Graph of diffusion estimated from Tau based on the radius of the circular ROI. Diffusion 
was estimated for non-binding IgG in the spheroids. Diffusion of IgG in the spheroid was 
comparable to that of 70 kDa FITC-Dextran. D) SKOV3.ip1-RFP spheroids were 
incubated with 3.5 µg/ml Alexa488-conjugated pertuzumab for 1-24 hours, washed, and 
imaged live. Graphs indicate fluorescence intensity across the spheroid along the 
specified line (white arrow). E) Penetration depth of ErbB2-binding antibody 
(pertuzumab) measured in 2 or more spheroids per time point.  
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Next, the penetration of specific antibody was evaluated by incubating spheroids with 

subclinical levels (3.5µg/ml) of Alexa 488-conjugated pertuzumab that binds ErbB2 

abundantly expressed on the surface of SKOV3 cells. Note that ErbB2 expression is a 

feature of only ~35% of ovarian tumors44; it is reasonable to assume that our results 

should apply to antibodies directed at other surface receptors on ovarian tumor cells, such 

as ErbB3 and MET44.  Images in Figure 1D and accompanying intensity plots show that 

there is a “wave front” of antibody binding as it penetrates into the tumor spheroid.  

Under these conditions, saturation of antibody binding is not achieved within the center 

of the spheroids even following an incubation period of 24 hours (Fig. 1E).  Based upon 

these data, the effective penetration rate of antibodies with high affinity for tumor surface 

antigens is three orders of magnitude slower than predicted based upon non-specific 

antibody diffusion.  One of the intents of our model is to explore the relationship between 

binding rates, antibody concentration and tumor penetrance.   

  

VESSEL DENSITY OF HUMAN OVARIAN TUMORS AS 

PARAMETERS FOR MATHEMATICAL MODELING 

 

Vascularization of tumors will also affect drug penetration.  The range of vascular 

densities was evaluated by immunohistochemistry methods for disseminated ovarian 

tumors from nine cancer patients. Samples were stained with anti-CD31 antibodies as a 

vascular endothelial cell marker. For each patient, paired samples of omentum and bowel 
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metastases were evaluated.  As shown in Figure 2, vessel density in these samples was 

measured and reported as percent of total area.  The mean value was 4.80%, with a range 

of 2 to 10%. Measurement of vascular size gave a mean diameter of 19.2 µm with a range 

from 5.4 to 135.4 µm.  This data is similar to that reported for xenograft models45-47  
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FIGURE 2.  Measured vascular density in patient bowel and omentum tumors as 
parameters for simulation.   Sections of matched bowel and omentum metastases from 9 
ovarian cancer patients (UNM Human Tissue Repository) were labeled with anti-CD31 
antibody (brown) to detect vascular endothelial cells. A,B) Low-vascular-density sections 
(4 µm thick) from bowel (A, 2.8% vessel area) and omentum (B, 3.3%) of   patient 7. 
C,D) Variable-vascular-density sections from bowel (C, 7.4%) and omentum (D, 2.2%) 
of patient 9. E,F) High-vascular-density sections from bowel (E, 10.1%) and omentum 
(F, 8.3%) of patient 4. G) Average vascular density (% area) is comparable in omentum 
(4.847%) and bowel (4.753%).  H) Matlab-based simulation of vascular tree in a 65-cell-
radius spheroid generating 1% and 7% vascular area (I) in the spheroid central plane. 
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SCHEMATIC OF THE MODELING APPROACH  

 

The flow chart outlining the integration of experimental and modeling results in this work 

is summarized in Figure 3.  A critical aspect of the model is that, once drugs are 

administered by intravenous or intraperitoneal routes, there is a secondary accumulation 

and transient delivery in the other compartment. Our parameters for exchange of cisplatin 

between the two compartments are based on results of Casper et al, who measured 

concentrations of platinum in plasma and ascites after administration of cisplatin by 

either route48. The time course reproducing fits of these parameters in our model are 

plotted in Figure 3 (Pharmacokinetics Box).   The time courses for levels of antibody in 

these compartments, when introduced by either route, were fit to data from Pai and 

colleagues49, as well as FDA document (#125409) on pertuzumab50. As indicated in the 

flow chart, the model also explicitly integrates measured levels of vascularity (Figure 2), 

as well as measured parameters for penetration, binding and cellular accumulation as 

listed in Table 1 and references therein. 
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FIGURE 3. Flow chart of drug delivery model inputs and output.  The 3-D OvTM model 
integrates pharmacodynamic data, tumor vascular densities, and in vivo pharmacokinetic 
time course data from clinical and experimental studies. Pharmacokinetic data shown are 
fits of cisplatin concentrations in the serum and peritoneal compartments during and after 
IP (left) or IV infusion (right) [45] (top) and fits of pertuzumab concentrations after IP 
dosing from the peritoneal fluid (left), and IV infusion (right).  Available pertuzumab 
from the blood is shown before accounting for the vascular endothelial barrier 
(concentration is scaled with the Biot number; see Methods). IP and IV doses are 5mg/kg. 
IP antibody concentration time course was calculated as 1446 times the fit for an IP-
delivered immunotoxin conjugate administered at 5ng/kg [46]. 
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CISPLATIN ACCUMULATION IN TUMOR CELLS AFTER IP OR IV 

DELIVERY IS INFLUENCED BY VASCULAR DENSITY 

 

In Figures 4 and 5, we present results for cisplatin uptake in this model. Cellular 

accumulation of drug was compared, using route of delivery and vascularity as variables.  

Results are expressed in molecules cisplatin/cell. Note that prior work estimated the IC50 

for cellular cytotoxicity to be ~5.6 x 106 cisplatin molecules/cell51. In order to reach this 

level, cultured cells were exposed to 38 µM cisplatin for 2 hrs.   Importantly, this 

provides a target level of drug accumulation to be achieved in our cell-based tumor 

model.     

 

Simulation conditions began with infusion of cisplatin by either route for 15 minutes 

(total 60 mg/m2), followed by tracking of drug accumulation until cisplatin levels in both 

compartments dropped to negligible levels (~180 min).  Figure 4 reports results for 

avascular spheroids with a 30 cell diameter (~14,000 cells).  Results show that, for the 

same drug dose, the IP route is clearly superior.  Direct infusion of cisplatin in the 

peritoneum at this dose results in substantial and uniform drug levels across the avascular 

tumor (Figure 4A), reaching a predicted level of almost 5.7 million molecules/cell 

(Figure 4B, inset).       
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FIGURE 4.  Simulation of cisplatin accumulation in avascular spheroids of ~14,000 cells.   
A,B) Intravenous delivery of 60 mg/m2 (diluted by blood volume, ~5L per female 
patient). C,D) Intraperitoneal delivery of 60 mg/m2 (diluted by ~1060ml saline). A,C) 
Central cross-sections of 3-D simulations of IV (A) or IP (C) delivery of 60mg/m2 
cisplatin to a 0.01mm avascular tumor (30 cells in diameter) show marked differences in 
accumulation. B,D) Plots of minimum, maximum, and median report accumulation of 
drug over time, expressed in molecules per cell. Where max and min are small, only the 
median plot line is visible. 
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In contrast, intravenous delivery of cisplatin is predicted to have poor response.  In this 

case, cisplatin reaches the avascular tumor solely by secondary delivery to the peritoneal 

fluid.  Cellular accumulation is very low (Figure 4C,D), peaking at estimates of ~42,000 

cisplatin molecules/cell.  There is again little cell-cell variability in drug uptake in this 

avascular setting.  Importantly, cisplatin delivery to avascular tumors via the IV route 

results in accumulation far below the IC50 value.   

  

Plots in Figure 5 report results for cisplatin accumulation in the same tumor volume, but 

with vascular densities of either 2% or 10%.  Despite the advantage of vessels for entry 

of drug from the blood, the IP route is again superior for these small tumors (Figure 

5A,E). The cell-to-cell variability of cisplatin accumulation in vascularized ovarian 

tumors is one of the most striking results of these simulations. The uptake of drug is 

highly heterogeneous, as indicated by the large spread around the mean values plotted in 

each case. The marked spatial gradients in drug accumulation following IP delivery to 

vascularized tumors (Figure 5A,E) is surprising.  As accompanying plots in Figure 5B,F 

show, accumulation across the tumor is much less uniform than for the same size of 

avascular tumor (Figure 4).  This result indicates that vessels are a sink for drug when 

cisplatin is infused directly into the peritoneum. The inverse relationship between the 

vascular density of the tumor and IP delivery of drug may be an unappreciated factor in 

chemotherapy regimens. 
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FIGURE 5. Heterogeneity of cisplatin accumulation is increased during IP and IV  
delivery to small, vascularized tumors.  A-F) Time courses of median, minimum and 
maximum drug accumulation in 0.01mm tumors with either 2% or 10% vascular density, 
as indicated by labels.  The simulation totals 12,000-13,000 cells (slightly fewer than 
Figure 4 due to voxels occupied by vascular elements).   Intraperitoneal delivery was 60 
mg/m2, diluted by ~1060ml of saline; intravenous delivery was also 60 mg/m2, diluted by 
blood volume of ~5L per female patient. Insets: Distribution of accumulated cisplatin, 
showing heterogeneous accumulation across cells in the vascularized tumors at 180 
minutes.  Color panels represent central cross-sections of 3-D simulations of IP or IV 
delivery, with the color bar at left indicating scale. 
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As shown in Figure 5D, IV drug delivery to the 2% vascular tumor accumulates a median 

value (solid blue line) of only ~40,000 molecules per cell. As shown by the green 

shading, accumulation can reach up to 140,000 molecules, which occurs in the cells 

nearest the vessels.  For the 10% vascular tumor, these values reach a median of ~90,000 

molecules/cell, with a range of 50,000-180,000.  This represents only a small 

improvement in delivery to the tumors over the avascular tumor (compare plots in Figure 

4D and Figure 5H).   

  

 

INTRAPERITONEAL DELIVERY OFFERS ADVANTAGES FOR 

THERAPEUTIC ANTIBODIES  

 

Therapeutic antibodies have evolved as critical options for the targeted treatment of 

cancer52, motivating our inclusion of these high molecular weight biologics in our model.  

In vivo, the passage across the vascular endothelium is the first step to intravenous 

delivery of antibody. In the model, this is represented by the Biot value (see Appendix)38. 

Effectively, this translates to an available pool of IgG that is only 2% of that inside the 

vessel.  This applies equally to circulating antibody that is introduced by either primary 

infusion or secondary exchange from the peritoneum.  Other important considerations 

include the affinity and expression levels of target receptors in the tumor tissue.  SKOV3 

cells express over 2 million ErbB2/Her2 receptors per cell; the affinity of pertuzumab for 

ErbB2 is 9.1 nM (Table 1).    
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Results in Figure 6 show predictions from the model for clinically-relevant doses of 

pertuzumab (5 mg/kg), when administered by either IP (top) or IV (bottom) routes.  For 

the case of IP delivered antibody, simulation parameters were fit to the data of Pai et al.49, 

where infusion of 1 liter saline was followed by a 50ml injection of antibody and a 

second infusion of saline.  For the case of IV delivered antibody, parameters were fit to 

data in FDA bulletin 125409, with an infusion period of 3 hours50.      

 

Results of simulations in Figure 6 show the early appearance of a wave front of antibody 

binding (red). Peritoneal delivery to both the avascular tumor in Figure 6A or the 2% 

vascular tumor in Figure 6B results in a rapidly advancing front and saturation of 

receptors within 0.4 hr.  Note that the wave front is faster than experimental results in 

Figure 1 with subclinical doses of antibody, as expected for the higher clinical dose.   For 

the 10% vascular tumor, some heterogeneity is seen near the center of the tumor, which is 

attributed to physical barriers of vessels that block antibody penetration within the tumor 

geometry.   The median values for each of these simulations is plotted at right.  
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FIGURE 6. Antibody binding exhibits “wave front” behavior when administered by 
either IV or IP route.  As labeled, binding of antibody within 0.01mm tumors (avascular, 
2% vascular density or 10% vascular density) is compared for IP and IV delivery 
(A,C,E,G,I,K).   Reflecting the faster accumulation values, IP delivery is reported for 
multiples of 4.2 min in a 0.8 hour simulation.  Simulated IV delivery is shown over 1.5-9 
hours. Simulated IP delivery of pertuzumab predicts at least 2-fold improvement over IV 
route.  B,D,F,H,J,L) Plots of minimum, maximum, and median accumulation over time, 
expressed as antibody bound bivalently to receptors per cell. A,C,E) Intravenous delivery 
of 5 mg/m2 (diluted by blood volume, ~5L per female human). G,I,K) Intraperitoneal 
delivery of 5 mg/m2 (diluted by ~2050 ml). Insets: Distribution of antibody bound 
bivalently to receptors in all tumor cells at 20 or 24 hours.    



 
 

93 

As shown in Figure 6D-F, simulation results for IV infusion of antibody are particularly 

striking and highlight the limitations of antibody transport across normal endothelium, 

represented by the low Biot number39. Under these stringent conditions, there is a marked 

delay in antibody binding, with the wave front initiating at the border of the spheroid.  

This indicates that most of the antibody entering the tumors comes from the 

intraperitoneal fluid, having arrived there after exchange from blood. Half-maximal 

saturation is seen many hours after IV introduction of drug.   Even in the tumors with 2% 

and 10% vascularity, there is negligible contribution from antibody entering the tissue via 

vessels.  Plots to the right demonstrate that vascularized tumors have much greater 

heterogeneity in antibody binding. 

 

Since vessels in tumors are often “leaky”53, we considered it important to report results of 

simulations with a higher Biot value based on experimental evidence54,55.  For IV 

delivery of antibody, increasing the Biot number by 3.5 or 10 fold resulted in a 

proportional improvement in accumulation rate (Figure 7). Saturation of all cells occurred 

at 4 or 3.25 hours respectively compared to 20 hours with normal vasculature. However, 

even with leaky vasculature, IV delivery was still inferior to IP delivery where saturation 

occurred in under an hour (Figure 6F). As seen in Figure 7B and D, leaky vessels also 

reduced the heterogeneity in drug accumulation. 
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FIGURE 7.  Simulated IV delivery of pertuzumab in tumors with leaky vessels of 10% 
vascular area predicts reduced drug heterogeneity compared to IV and IP, and better 
delivery than IV but not IP. Delivery from leaky vessels corresponded with increased 
Biot numbers of 8 (A,B; 3.5 times that of normal vasculature) and 22.5 (C,D, 10 times 
higher) at 2.5 and 3.5 hours B,D). Plots of minimum, maximum, and median 
accumulation over time, expressed as receptors bound bivalently to antibody per cell. 
Insets: Distribution of antibody bound bivalently to receptors in all tumor cells at 24 
hours.  
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Figure 8 provides experimental validation of our predictions that direct delivery of 

antibody to the peritoneum is the superior route.  Here, we took advantage of our human 

xenograft animal model. GFP-expressing SKOV3.ip cells were injected into nude mice, 

followed by 2 weeks of tumor cell proliferation in the mice. Fluorescently-tagged 

pertuzumab was injected either IV or IP, followed by humane sacrifice of recipient mice 

at time points indicated in this figure. Tumors were excised from the mesentery or 

omentum and imaged by two-photon microscopy.  As shown in Figure 8A, IP injection 

resulted in near uniform binding of antibody to ErbB2 on tumor cells within 3 hours.  In 

contrast, IV injection resulted in variable levels of drug binding within the first 3 hours 

after administration (Figure 8B). As shown in Figure 8C, there was little improvement in 

drug binding even at 24 hours after IV delivery. At 72 hours post-IV injection, binding of 

tagged antibody to cells in the tumor is markedly diminished in the center of the tumors, 

possibly due to internalization and degradation. Antibody at the tumor periphery at late 

time points after IV injection may be principally due to delayed secondary delivery from 

the peritoneal compartment.  
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FIGURE 8. In vivo validation of IP as optimal route for therapeutic antibody. Penetration 
of pertuzumab (blue) into tumors on the mesentery (A) and omentum (B) of nude mice 
engrafted 2 weeks prior with human SKVO3.ip cells.  Images were acquired 3, 24 or 72  
hours after IP or IV delivery of 100 µl containing 0.4 mg Pacific-Blue conjugated 
pertuzumab (20 mg/kg). A) Comparison of fluorescent antibody binding in mesentery 
tumors 24 hours after IP or IV injection.  B) Comparison of fluorescent antibody binding 
in omental tumors 24 hours after IP or IV injection.  C) Limited labeling of omental or 
mesentery tumors with fluorescent antibodies 24 or 72 hours after IV injection. 
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DISCUSSION    

 

Here, we use a spatially explicit model to represent the delivery of soluble therapies to 

microscopic ovarian tumors disseminated in the abdominal cavity (Figure 3). Others have 

advocated the usage of in silico models to clarify the complex process of drug delivery 

both in ovarian cancers 33 and for therapeutic antibodies 37,38,56. We incorporate 

pharmacokinetic parameters from tumor tissue in vivo and in vitro and vascular densities 

derived from human patients to help us understand how the interplay of drug dynamics at 

the molecular, cellular, and tissue scales impacts delivery to tumor cells. Our model is 

well integrated with experimental data, including measurements in cultured spheroids and 

xenograft models.  

 

In our simulations we chose to focus on treatment strategies for minimal residual disease 

after debulking surgery. Clinical evidence suggests a survival advantage for IP over IV 

chemotherapy in optimally debulked patients 4,5,57-59. However, there is still reluctance in 

many hospitals to administer IP therapy, due to the expertise required to implant 

peritoneal ports and to monitor for the potential complications of cytokine storms and 

other toxicities. A recent study presented at the 2014 ASCO meeting reports that less than 

half of eligible patients receive IP chemotherapy 59. Our model was able assess the effect 

of delivery route on drug penetration into tumors, showing that the impact of the IP route 

on efficacy may be underappreciated. Results emphasize the importance of direct drug 

delivery to the peritoneum for superior penetration into microscopic avascular tumors, 

which likely comprise the majority of residual tumors in optimally debulked patients. We 

show that the same dose of cisplatin delivered IP leads to uniformly higher accumulation 
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within tumor cells.   The platinum accumulation levels throughout a small tumor exceed 

the IC50 concentration as predicted in vitro 51. IV delivery leads to much less 

accumulation of cisplatin, with levels far below the IC50 for cytotoxicity.  Because drug 

must reach avascular tumors from the peritoneal fluid, IV delivery increases the time it 

takes for the drug to enter the peritoneal cavity. The concentration of cisplatin reaching 

the peritoneum is limited, this secondary delivery markedly limits accumulation in tumor 

cells.   

 

Ovarian cancer cells also grow as vascularized tumors attached to peritoneal organs and 

our previous studies in the SKOV3.ip xenograft model indicate that even small tumors 

(30-40 cells in diameter) may be well vascularized. Therefore, we went on to test how 

vascular density will alter drug penetration using our model. Surprisingly the advantage 

of IP delivery persists for small vascularized tumors. Even in tumors with the 10% 

vascular density, IP delivery improved the accumulation of cisplatin in small tumors by 

100 fold (Fig. 5) and provide one explanation for improved survival.  This underscores 

the need for IP chemotherapy in cases where patients have been optimally debulked.  An 

interesting finding from the simulations is that, as vascular density of the tumor increases, 

the drug accumulation after IP delivery becomes much less uniform.  After IP delivery of 

cisplatin, drug concentration in the vessels is always lower than in the peritoneal fluid. 

Therefore, the vessels act as a sink, absorbing small molecular weight drugs and reducing 

cisplatin accumulation in a small number of cells in proximity to the vessels.  These cells 

could be those that survive therapy and lead to relapse.    

 



 
 

99 

Although patients initially respond well to platinum/taxol regimens, many will relapse. 

Novel treatment strategies, including therapeutic antibodies, are being considered to limit 

recurrence60. Previous trials with anti-EGFR and anti-ErbB2 antibodies had limited 

success 61. These disappointing results may be due to two factors: 1) ineffective delivery 

and 2) poor stratification of patients based upon receptor expression patterns.  Based 

upon IHC results for a tumor microarray representing 200 ovarian tumor patients, we 

recently determined that only a limited subset of ovarian tumors express significant levels 

of either ErbB1/EGFR or ErbB2/Her2 44. The SKOV3.ip cell line used in our studies here 

is an example of this ErbB2 positive subset, since they express over 2 million ErbB2 per 

cell.  With this as a model system, we examined the penetration of the anti-ErbB2 

therapeutic antibody, pertuzumab, to determine whether the advantage of IP delivery 

extends to this class of therapies. Antibodies, being larger molecules than 

chemotherapeutic agents, have more limited exchange between compartments. 

Simulations predicted a significant difference in IP vs IV delivery, again attributed to 

lower penetration from the blood into tumors. Our results suggest that intraperitoneal 

delivery, possibly in combination with delivery through the IV route, will yield optimal 

results for this class of therapeutics.     

 

Our model is a powerful predictive tool that can be used to test optimal dosing of both 

small molecule drugs and therapeutic antibodies. The benefits of peritoneal delivery 

likely applies to antibodies now in the pharmaceutical pipeline or in clinical trials that 

target other surface receptors more commonly expressed on ovarian tumor cells.  

Examples include intact antibodies targeting ErbB3 and Met, as well as antibody-toxin 
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conjugates where low doses may be required to limit toxicity.  In addition to new receptor 

targets, antibody affinity, receptor expression levels and vascular leakiness will be factors 

in the success of the antibodies in the pipeline for this disease.  The OvTM model will be 

useful to predict outcomes taking in these new variables.   
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SUPPLEMENTAL MATERIAL  

The Supplemental Material for this article can be found at 

http://www.frontiers.org/Molecular_and_Cellular_Oncology/Article #. 

 

Model Assumptions 

Tissues: For simulations, we initialized a tumor model that would run in 5-6 days, 

of 30 cells in diameter. 

Time simulated depended on the length of patient data sets, even if these were not 

long with respect to the drug half-life, as in the case of therapeutic antibodies.  Time 

simulated was also limited by the diffusion rates of drugs. Measurement of any molecule 

coming into contact with a cell required a time step in which diffusion length of the drug 

was one cell diameter, which created a rigidly set number of steps to simulate a drug time 

course, requiring 7 to 8 days per simulation. 

Because our biological model is of SKOV3.ip1 cells, wherever possible, parameters 

experimentally derived from this cell line were used in the model. If, in a given paper, 

data for SKOV3 or SKOV3.ip1 cells was not included, but SKOV3.ip1 was described as 

similarly resistant or in the same class as another cell line, and no explicit SKOV3.ip1 

data was available, then data for the similar cell line was used. 

Fits of Cisplatin extracellular exposure to cancer cell lines from El-Kareh, 2003  

match the IC50 for the most sensitive cell line tested by Mistry et al., 1992.  For 180 or 

more minutes, cells in the simulations are within Cisplatin concentrations found to be 

necessary for accumulation and damage in the data fits constructed by El-Kareh et al. 62. 
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Factors affecting drug distribution in peritoneal fluid, blood, and tissue 

(pharmacokinetics) 

We used data for unbound concentration of drug rather than total drug, as "the 

action exerted by drugs is generally more closely related to unbound than total 

concentration of drugs." 63. 

“Effective” penetration rates in tumor tissue or spheroids, which include all 

processes that might decrease penetration from the rate found in water, were used to 

parameterize diffusion for Cisplatin and Pertuzumab. We parameterized diffusion from 

empirically derived effective diffusion coefficients for non-binding molecules in tumor 

tissue in vivo.  Sodium fluorescein (molecular weight 376 Da, 41 ) was used to represent 

Cisplatin (molecular weight 300.5Da). Pertuzumab effective diffusion in avascular 

tumors was represented by non-binding IgG either measured directly by FRAP in 

SKOV3.ip1 spheroids in vitro, or penetration in vascularized tumors by non-binding IgG 

measured in vivo 
39, 43. These coefficients are affected by unmeasured events of 

convection, binding by target and non-target molecules, tortuosity of interstitial space, 

inhibition by the fiber mesh of the extracellular matrix (antibodies are ~20nm at their 

widest 64, and other barriers to penetration.  We found the rough FRAP estimate of 13 

µm2/sec to be nearly identical to the in vivo estimate of 10 µm2/sec 39 to 13 µm2/sec [5]. 

We add the physical barrier of low-permeability vascular endothelium to the 

penetration of antibodies, as recommended by Thurber, et al., 2011 [4]. We decrease the 

percentage of IV antibody available at the vessel surface from the plasma concentration 

by the ratio called the Biot number by Thurber et al. (Biot number = 0.0225 for the 

average diameter of vessels found in this paper, 0.024 in [4]).  This number concurs with 



 
 

103 

a reflection coefficient of 0.95-0.98 for antibodies inside of vessels [Wang, 2008], and 

will likely be higher for “leaky” vessels often found in tumors.  We therefore assume 

relatively intact, non-leaky vessels in simulations, unless explicitly stated for our leaky 

simulations. 

We use effective penetration and cell uptake as the sole barriers to small-molecule 

drug penetration on the assumption that tumor vessels are well-perfused, again as 

discussed by Thurber et al., 2011 [Thurber, 2011]. 

Penetration rates and patterns of drugs in spheroids grown in vitro can be 

significantly different depending on the drug [Nederman 1981]. We use penetration rates 

of therapeutic antibodies in SKOV3.ip1 spheroids to calculate effective passive diffusion 

coefficients from the IP surface of ovarian tumors, and compare these to rates derived for 

tumor tissue in the literature.  The difference between target-specific antibody penetration 

of trastuzumab and pertuzumab in SKOV3.ip1 spheroids and non-specific IgG, measured 

by FRAP in SKOV3.ip1 spheroids (which was equivalent to in vivo penetration rates in 

the literature), was 1000-fold lower (6.2 E10 cm2/sec vs. 1.33 E07 cm2/sec), implicating a 

slow-down of penetration caused solely by binding to target. 

We assume that an IV injection does not significantly increase the blood volume; 

we conversely assume that IP treatment is initially at 100% of the original concentration. 

However, this may not be the case for patients with ascites. 

Drugs have a half-life in the body that is affected by binding to the total cell 

population, to soluble components in the plasma, and filtering in the liver and kidneys. 

We do not add any further decay processes in blood or peritoneal fluid, using only 

empirically measured concentrations. 
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In 2 of the 4 delivery combinations (IP, IV, Cisplatin), we have simultaneous 

concentration data in patients for both compartments.  Where we do not have such 

simultaneous data (IV delivery of Pertuzumab, or in mathematically elevated dosing of 

Pertuzumab) we a. use IP/IV and IV/IP ratios from antibodies delivered IV and IP to rats 

[Wahl, 1988], and b. assume that ratios of drug in the secondary compartment to the 

primary compartment are dose-independent. 

IP and IV administration time courses for Cisplatin are fit to curves for 60mg/m2 

dosage (Casper, 1984). 

IP administration time course of antibody is fit to a curve for 5 mg/kg of 

immunotoxin conjugate in 2l of saline [Pai, 1991], and IV is fit to a curve for 5 mg/kg 

Pertuzumab [FDA Clinical Pharmacology Review, BLA 125409 (Pertuzumab)]. 

Cisplatin threshold for 50% SKOV3 cell death (IC50) is 52.1 µM accumulated per 

cell during a 38.3µM solution 2-hour exposure [Mistry, 1992]. Accumulation is treated as 

linear [Mistry, 1992] and occurs in each time step as a proportion of what would have 

accumulated at the current concentration at the cell over 2 hours.  Accumulation is 

calculated from a fit of total accumulated platinum in SKOV-3 cells during 2-hour 

exposures to a range of concentrations. Other values for Cisplatin IC50 in ovarian cancer 

cell lines include 12.6 µM [Yu, 2011], (“cisplatin-resistant subline HKESC-1/cis“), 

79.8µM (EC50 in SKOV3 cells, [Scoles, 2007]), 33µM (10µg/ml, in OVCAR cells, 

[Royer, 2005]) and 0.99µM (0.3 µg/ml, [Nakano, 1997]). 

Pertuzumab binding to ErbB2 is considered irreversible, as observed in our 

experiments with multiple SKOV3.ip1 samples (data not included), and as in [Mattes, 

1994] (via [Thurber, 2011], [Thurber, 2008]). This “irreversible” binding may partly be 
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the result of rapid internalization of antibody-tagged ErbB2, as tagged ErbB is 

internalized in minutes [Thurber, 2008b].  

Aside from the calculation of antibody bound at each time step using Kd, we do not 

explicitly model release of antibodies from ErbB2 ([Thurber, 2011], m). 

The Kd (equilibrium coefficient, or inverse affinity) of Trastuzumab is 0.12nM, and 

Pertuzumab is 9.1nm; both are considered high-affinity antibodies (<=low nanomolar; 

AbCam.com: “KD value: A quantitative measurement of antibody affinity;” [Thurber, 

2008]).   Antibody bound after each time step is calculated as:  

 

�%&'()*+ ,�-./

= 0(�12324 + 2 ∗ �%&4 + 5/ 6(7�-8-9:;)

− <=>(�12324 + 2 ∗ �%&4 + 5/ 6(7�-8-9:;)! − 8 ∗ (�12324 ∗ �%&4)@AB 

/4 

 

where ErbB2T = total receptors (bound and unbound), IgGT = total pertuzumab (bound 

and unbound) after the influx of new, unbound pertuzumab, but before binding, and 

KdPertuzumab is the dissociation constant for pertuzumab (9.1nM). 

Thresholds for tumor cell color changes in the model for Pertuzumab are 100,000 

receptors bound for initiation of antibody-dependent cell-mediated cytotoxicity, and 95% 

of 2 million total on the cell surface, to mark near-complete saturation. 

A simultaneous data set of IP-post-IV antibody with units of concentration (as 

opposed to radioactivity or other measure) was not available for humans.  Analysis of IV-
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post-IP dynamics in rats shows that the ratio of concentrations has a 20-times higher 

slope (0.04429 vs. 0.001922) than for humans.  IP-post-IV curves in humans for Cisplatin 

show a similar shape to that in rats (cubic fit in which the ratio drops slightly as drug in 

the two compartments nears zero or becomes nearly equilibrated), albeit over 2 hours 

instead of 26.  Therefore in this model we compare drug dynamics based upon IP-post-IV 

and IV-post-IP rates from rats for consistency of pharmacokinetic environment, with a 

drug dosage proportionately 6 times that in humans [Nau, 1986].  We use these ratios in 

conjunction with human data for primary IP or IV delivery. 
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Table 1: model parameters 

Parameter Model Value Model Units Value 

Com-

mon 

Units Source 

Cisplatin 
effective 
diffusion 
coefficient in 
tumor tissue 1 

cell diam2 / 
time step* 

6.40E-
06 cm2/s 

Nugent, 
1984  

Cisplatin 
intraperitoneal 
concentration 
fitted curve 
(dosage = 60 
mg/m2 ) 163.3*t(-0.2859) - 28.31 μM, t=min 

Casper, 
1983 

Initial 
cisplatin 
intraperitoneal 
concentration  

64.63 

μM, t=min 
 Casper, 

1984 
Cisplatin IV-
post-IP 
concentration 
ratio fitted 
curve 

[IP(t)]*( -7.245e-09*t4 
+ 2.772e-06*t3 - 
0.0003881*t2 + 
0.02126*t + 0.1941) 

μM, t=min 

 
Casper, 
1984 

Cisplatin 
intravenous 
concentration 
fitted curve 
after 5 minutes 
(dosage = 
60mg/m) 

-0.000001154*t3 + 
0.0005737*t2 - 
0.09922*t +  5.973 μM, t=min 

Casper, 
1984 

Cisplatin 
intravenous 
infusion 
concentration  

0.3725*t 

μM, t=min 
 Casper, 

1984 
Cisplatin 
constant 
concentration 
between end 
of infusion 
and first data 
point 

5.59 

μM, t=min 

 

Casper, 
1984 
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Table 1 continued: model parameters 
 

Cisplatin  IP-
post-IV 
concentration 
ratio fitted 
curve 

[IV(t)]*(-1.154e-06*t3 
+ 0.0005737*t2 - 
0.09922*t + 5.973) μM, t=min 

Casper, 
1984 

Cisplatin (Pt) 
accumulation 
at current 
concentration 
in SKOV3 cell 

(0.4755*cisplatin**1.
289)*MCSFractionOf
2Hrs 

µM 
accumulated 
per cell per 
time step**    

Fig.3, 
Mistry, 
1992 

Cisplatin 
accumulated 
at IC50 (50% 
viability of 
control) for 
SKOV-3, 2h 
exposure 52.71 μM 251 

pmol/
mg 
protei
n 

Mistry, 
1992  

Non-specific 
IgG FRAP-
derived 
effective 
diffusion 
coefficient in 
SKOV3.ip1 
spheroids 1 

cell diam2 / 
time step** 

1.33E-
07 cm2/s m 

 

 

  

Pertuzumab 
Kd  (binding 
percentage) 981.68 

molecules/ 
cell volume 9.1 nM Li, 2013 

Pertuzumab 
effective 
diffusion 
coefficient in 
SKOV3.ip1 in 
vitro 
spheroids  5.37 

cell diam2 / 
hr  

6.20E-
10 cm2/s m  

Pertuzumab 
binding *** 
reversal half-
life ∞  hr-1 

m, Mattes 
1994  

Pertuzumab 
decay rate*** 0 hr-1 

Leveque, 
2008  
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Table 1 continued: model parameters 
 

Biot number 
for 
Pertuzumab in 
ovarian tumor 
*** 0.0225 

ratio of 
plasma conc. 
to vessel 
surface conc.    

Thurber, 
2011  

ErbB2 
receptor count 
on 
SKOV3.ip1 2,100,000 receptors  m 

  

Pertuzumab 
(immunotoxin 
conjugate) 
intraperitoneal 
concentration 
fitted curve 
(dosage = 5 
mg/kg)*** 

0.02679*t2 + -2.1*t + 
92.16 

molecules/ 
cell volume, 
t=hr  Pai, 1991 

Pertuzumab 
IV-post-IP 
concentration 
ratio fitted 
curve 
(rats)*** 

[IP(t)]*(3.913e-06*t4 - 
0.0002103*t3 + 
0.003897*t2 + 
0.01503*t + 
0.0004171) 

molecules/ 
cell volume, 
t=hr  Wahl, 1988 

Pertuzumab 
intravenous 
concentration 
fitted curve 
(dosage =5 
mg/kg) 

200700*t-0.1025 - 91370 
molecules/ 
cell volume, 
t=hr  

FDA Clinical 
Pharmacology 
Review, BLA 
125409 
(Pertuzumab) 

Pertuzumab 
intravenous 
concentration 
prior to 3.68 
hours (first 
time point) 

 2.358e+04*t + 147.8 
molecules/ 
cell volume, 
t=hr  

Pertuzumab 
IP-post-IV 
concentration 
ratio fitted 
curve (rats) 
*** 

[IV(t)]*(-
0.00001042*t4 + 
0.0004965*t3 - 
0.006146*t2 + 
0.0355*t + 0.0005605) 

molecules/ 
cell volume, 
t=hrs  Wahl, 1988 
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Table 1 continued: model parameters 
 

Radius of 
SKOV3.ip1 
cell 3.5 μm 

Steinkamp, 
2013 

Vascular area 
in human 
secondary 
tumors from 
bowel and 
omentum  2-10 

% area of 
central slice m 

Mean length 
of tumor 
vessel 
segment in 
breast cancer 
xenograft 40 +/- 5 µm 

Savage, 
2013 

Mean radius 
of tumor 
vessel 
segment in 
breast cancer 
xenograft 18.46 +/- 0.54 µm 

Stamatelos, 
2014, Fig. 5 

Mean radius 
of tumor 
vessel 
segment in 
human 
ovarian 
tumors 19.2 +/- 16 µm m 
mg protein 
per SKOV-3 
cell 0.21 

mg 
protein/µl 

Mistry, 
1992 

*Time step for cisplatin = 1/1207.183 min. 
** Time step for pertuzumab =1/1500.679 hr. 
*** Value estimated based on data obtained with other IgGs. 
m= measured 
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ABSTRACT 

 

Drug delivery drives the dominance of drug-resistant phenotypes among the genetically 

varied cells in tumors1,2. Non-uniform delivery of cancer-targeting drugs may drive 

evolution toward drug resistance at a faster pace2.  Here, we compare the uniformity of 

concentrations of two drugs when delivered to vascularized tumor tissue by three 

vascular architectures.  We use cellular automaton models of 3-dimensional vascularized 

tumors to explore heterogeneity in drug delivery given different distributions of vessel 

radii. We deliver two drugs intravenously, and at intravenous concentrations after 

intraperitoneal delivery: cisplatin, a small-molecule chemotherapeutic, and pertuzumab, a 

large-molecule monoclonal therapeutic antibody targeted at cancer cells overexpressing 

the ErbB2 receptor.  We initialize vessel radii distributions for a) normal tissue, with the 

theoretically predicted allometric scaling exponent of ⅓ which assumes optimal energy-

minimizing and space-filling vasculature, b) the empirical distribution of vessel radii 

from ovarian cancer metastases donated by patients, and c) a Gaussian distribution 

around the mean of the empirical data, which removes the largest vessels. The vessel 

radii generated by the three distributions result in different tumor vessel volume 

distributions. For cisplatin delivery, small in silico tumor tissue samples show little 

dependence on vessel volume, with accumulation correlating only with the concentration 

in the vessels.  For pertuzumab, however, although drug delivery increases with 

increasing vascular volume, even at the highest concentration during delivery, highly 

heterogeneous delivery occurs. A sub-population of cells in poorly vascularized volumes  

accumulates sub-therapeutic levels of antibody, possibly allowing them to survive as the 
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progenitors of a new, potentially drug-resistant tumor. This result underscores previously 

discussed caveats of the usage of targeted therapies2. Finally, the Empirical distribution 

gives the poorest drug delivery. 
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INTRODUCTION 

 

In a previous work3, we addressed delivery of drugs to tumors exposed to the peritoneal 

cavity, from which drug could diffuse into the tumor surface, as well as from any vessels 

within the tumor. We noted that different vascular densities affected how uniformly drug 

was delivered to the tumor volume.  In this modeling study, we address how tumor 

morphology and environment affect delivery of two drugs: cisplatin, a low-molecular-

weight platinum-based chemotherapy, and pertuzumab, a high-molecular-weight 

therapeutic antibody.  First, we model drug accumulation in tumor tissue too far from the 

peritoneal compartment to receive intraperitoneal drug, such as in the center of a large 

tumor, or in distant metastases. Second, we analyze our anatomical data on ovarian 

secondary tumor vasculature to see whether the distribution of vessel radii in ovarian 

tumors differs from normal tissue.  Third, we compare the efficiency of delivery by the 

IV vs. the IP route.  Fourth, we test whether the vascularity generated by three 

distributions of vessel radii resulted in three measurably different levels of maximum 

drug accumulation.  Fifth, we test the effect of different vessel radii distributions and 

vascular volumes on drug delivery across tumor cells.  We measure the maximum drug 

accumulation and heterogeneity of drug accumulation in all of the cells of a sample of 

simulated tumor, and use the third, fourth, and fifth studies to test the hypotheses that 

accumulation and heterogeneity are affected by a. the mode of delivery (IV vs IP), b. the 

distribution of vessel radii, and c. the vessel volume.  
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At the scale of the tumor, at least two types of spatial heterogeneity contribute to drug 

resistance.  First, genetic heterogeneity exists across the tumor volume, providing a 

multitude of templates for drug resistance, rather than a clonal population in which each 

cell would have equal drug sensitivity4.  Second, there can be heterogeneity of drug 

delivery, in which some cells receive cytotoxic levels of drug, while others experience 

sub-therapeutic exposures, increasing the probability of low-level drug accumulations 

leading to survival, mutation, and resistance.  In combination, this means that a tumor is a 

library of genomes, any cell of which, if not delivered enough drug to kill it, may be 

selected for survival because of its intrinsically efficient resistance mechanisms, or may 

be optimally mutated to resist later drug deliveries.  

 

After intravenous injection, drug immediately diffuses from vasculature into surrounding 

tissue. Drug delivery from the blood is dependent on the distribution of blood vessels in 

tissues.  In previous models, we show that the percent vascular area in a cross-section of a 

tumor correlates with the amount of drug delivered3.   

 

During drug delivery, drug accumulation inside or on the surface of each cell determines 

its fate.  Cells may die either by the action of the immune system when a cell is tagged 

with antibodies (antibody-dependent cell-mediated cytotoxicity (ADCC)), or by 

apoptosis (self-programmed death) when the drug damages the cell.  However, intrinsic 

resistance to the drug will also be activated, and the cell may survive.  Cellular resistance 

to cisplatin has a multitude of mechanisms that may operate simultaneously, including 

the up-regulation of DNA repair factors that reverse drug damage, inactivation of the 
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drug, advantageous epigenetic changes, and efflux by active pumping5.  Cisplatin is itself 

mutagenic; if the cell survives, it may develop mutations, including some that may 

contribute to drug resistance5. If a drug-exposed, resistant cell is intact enough to divide, 

it can become the seed of a new, drug-resistant cell population, either carrying its initial 

qualities that make it drug resistant, and/or new resistant mutations caused by treatment. 

 

In ovarian cancer and other abdominally disseminated cancers, intraperitoneal (intra-

abdominal) (IP) injection and intravenous (IV) injection are both commonly used to 

administer therapy. During IP delivery, different drugs have different penetration 

distances into the tissue.  If the tumor is greater in radius or thickness than this 

penetration distance (about 0.5 mm in the case of cisplatin6, and about 1.2 mm for 

antibody (pertuzumab)7), delivery in the deeper parts of the tumor is dependent on the 

distribution and permeability of vessels.  If an equal amount of drug is delivered per unit 

surface area of blood vessel, the spatial distribution and morphology of vessels will 

determine the uniformity of drug delivery.  

 

Concentration inside of the vessels is determined by the dose and route of delivery.  In 

both IV and IP delivery, as drug in the primary delivery compartment (either IP or IV) 

mixes throughout the body, the secondary compartment (either IV or IP, respectively) 

experiences a secondary concentration curve related to the primary concentration curve 

(for concentration curve fits, see3).  During IP delivery, a tumor that is larger than the 

drug’s penetration distance, or in another part of the body, will only receive this 

secondary, low concentration via the vessels. 
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Here we test the hypotheses that a. the mode of delivery (IV vs IP), b. the distribution of 

vessel radii, and c. the vessel volume may affect both the maximum drug accumulation 

and the heterogeneity of drug accumulation in cells of a tumor. We initialize vessels 

selected from three distributions of radii into spatially explicit mesoscopic-scale cellular 

automaton models: 1) the radius distribution as theoretically scaled in normal tissue (here 

called Theoretical), 2) the distribution found empirically in ovarian cancer (Empirical), 

and 3) a Gaussian distribution around the mean of the empirical data (Gaussian).  We 

then simulate IP or IV drug delivery via these three vessel distributions and quantify the 

effect upon drug heterogeneity.  Within each distribution, we run simulations for samples 

within a range of vessel volumes.  The results are then applied to the distribution of 

vessel volumes in the complete tumor, to generate a histogram of the approximate drug 

delivery across the whole tumor volume. 

 

In normal tissue, allometric scaling theory has predicted parameters for vessel 

morphology that allow the vascular network to efficiently fill space, thereby evenly 

delivering chemicals (oxygen, nutrients, cell-signaling factors, etc.) to terminal tissue 

volumes8. If vasculature were consistent with this idealized model, and drug was only 

delivered by the terminal branch (the thin-walled capillaries), this would result in drug 

delivery from small and terminal uniformly spaced vessels of similar size, as was 

assumed in 3. A distribution without larger vessels could represent tumor vasculature that 

has been normalized with anti-angiogenic therapies, such as bevacizumab. However, 
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often, larger vessels and venules in tumors are “leaky--” hyper-permeable to proteins in 

the blood9 -- thereby allowing greater saturation by larger-molecule therapies.   

 

We account for the possibility of drug delivery from large vessels by allowing large, 

normally non-leaky vessels to deliver drug in two ways: first we assume that all 

empirically measured vessels deliver drug in our Empirical model; second we test drug 

delivery form the distribution of vessel sizes described by the West et al. , again with all 

vessels of all sizes delivering drug.  These two models assume complete leakiness of 

large vessels, while our Gaussian model assumes the other extreme: no leakiness from 

large vessels so that drug is only delivered by the smallest vessels (the capillaries) in the 

tumor.  

 

We hypothesize that for cisplatin, due to its relatively long penetration length relative to 

the spaces between vessels, penetration will not be affected by a lack of large vessels (a 

non-leaky vasculature), nor the morphology changes due to changes in distribution of 

radii, and that overall concentration will be affected most by the route of delivery (IP will 

be low and IV will be higher) and the vascular volume in the sample.  For pertuzumab, 

the monoclonal antibody, we hypothesize that because the penetration distance can be 

limited due to the “stickiness” of the antibody, which creates a moving wave-front of 

accumulation, vascular density, and possibly vascular morphology, will correlate with 

heterogeneity of drug delivery. 
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METHODS 

 

INITIALIZATION DATA SETS 

 

We received nine patient ovarian cancer tumor sets from the UNM Tissue Repository, 

comprised of two tumors from each patient, with one tumor that had disseminated to the 

bowel and one to the omentum.  We then used Stereo Investigator circle or line measure 

tools to measure vessel radii in the roundest vessels, which were most likely to have been 

cut transversely.  (Detailed methods are provided in 3.) 

 

Among the assumptions of West et al.
8 are that the size of the terminal unit, the capillary, 

is invariant, and that a constant branching ratio from mother to daughter vessel is 

maintained at each branch node. To make comparisons between the morphology of the 

empirical vessel distribution and that predicted by scaling theory in normal tissue, we 

used radii from the lowest level (smallest vessels) of the empirical data to generate sets of 

vessel radii in two theoretical bifurcating vascular trees. Real vessel radii in the lowest 

level (capillary) were considered to be any vessel radius <= 10µm.  The empirical 

capillary count was 134.  Using the count and average capillary radius, we calculated the 

bottom-level area of the cross-section of all real capillaries, and used this value to 

represent the area at the bottom of the tree for the theoretical cases.  We then generated a 

vessel count and radius at each increasing level of the tree, using: 

 
7D7E = 2	F        (1) 
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where r2 = vessel radius of the current, larger branch of the tree, r1 = vessel radius of the 

next smallest branch of the vascular tree, and α = ⅓ representing the vessel distribution of 

normal tissue. The ratio of the radii between the vessels in each branch level of the tree 

was scaled as 2-⅓ from the previous (larger) level. 

 

The distributions (empirical and α = ⅓ (normal tissue)) were non-normal even after log 

transformation, so we compared the empirical data to the theoretical case using the 

Kolmogorov-Smirnov non-parametric test for comparison of two distributions, with a 

significance level of 5%, and the Mann-Whitney test. 

 

The vessel generator used to build tissue for our previous models3 was used to initialize a 

vascular web into a sphere using radii drawn from one of the three distributions (Fig. 2).  

Because tumor vasculature is disorganized10,11 no attempt was made to reconstruct an 

organized vascular tree or mesh.  For each model, radii were drawn at random from the 

vessels in the corresponding distribution. The first distribution, “Empirical,” was the 

complete data set of experimentally determined radii, which is a long-tailed distribution 

with a small number of large vessels.  The second was a Gaussian distribution (3.01 to 

14.21 µm (mean = 8.61 +/- 5.60µm)), which truncated the original long-tailed 

distribution, removing the largest vessels, and therefore representing “non-leaky” larger 

vessels by discluding them.  The third draw, “Theoretical,” was from Equation (1), with α 

= ⅓. 
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Spheres for simulations had a radius of 65 SKOV3.ip1 ovarian cancer cells, and were 

initialized at random with a range of 1 to 200 vessels in the volume.  The final models 

were chosen so that the central z plane had a vascular area of ~10%, the maximum of the 

range measured in secondary human ovarian tumors3. 10x30x30-cell rectangular solids 

(shown in Fig. (2)) were sampled at random from the sphere volume. Samples 

corresponding to 1%, 3%, 5%, 10%, 15%, and 25% (24% for Theoretical) vascular 

volume were selected to model. The remaining volume of the 10x30x30-cell rectangular 

solid was filled in with tumor cells. These are the tumor samples used to simulate drug 

delivery, using the modeling platform OvTM, a cellular Potts model built in 

Compucell3D which explicitly models individual cells, different cell types, and the 

diffusion and cellular accumulation drugs, as described in 3.  Models in this work differ 

from prior models only in the tissues morphology initialized. 

 

To recreate a larger tumor and calculate the distribution of sample volumes in each 

morphology type, spheres 140 cells in radius were initialized at random with a range of 

100 to 1000 vessels in the volume. To sample the distribution of volumes, 10x30x30-cell 

samples were drawn with replacement (potentially overlapping or oversampled) from a 

cube inscribed inside of each sphere of vessels, derived from the relationship 

 1! = 3 ( DE G!)          (2) 

where r = radius of the sphere and L = length of the cube edge. Samples were drawn at 

random such that no part of their volume would fall outside of the cube inscribed in the 

tumor sphere. 
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Drug delivery simulations were run for the antibody pertuzumab, and the low-molecular-

weight chemotherapeutic cisplatin.  Drugs were delivered as though the tumor sample 

was far from the peritoneal cavity (greater than the penetration distance by small 

molecules (0.5mm) or large molecules (1.2mm)), and receiving drug via the plasma 

(blood volume compartment).  Drug arrival via blood occurred after either an IP infusion 

or an IV infusion, as modeled in 3.  The code used was identical to the drug models in 3, 

except i) the IP and IV compartments received equal initial concentrations instead of 

equal initial dosages (the IP dose was 69% that of the IV dose) and ii) tissues were 

initialized as described above. 

 

Analysis of the heterogeneity of pertuzumab accumulation included a histogram of the 

accumulation for every cell at a single time point, and the calculation of the Shannon 

Entropy for the distribution of accumulations: 

 

 H =  − ∑ JK ∗K LM%!(JK)        [3] 

 

where S = Shannon Entropy, and pi = the probability of each event. In this case the event 

is the radius at each branch i of the tree; the probabilities are the percentage of the tree 

vessels of the radius at each branch of the tree, since the entire sample is known.   

 

The following steps generate a large tumor corresponding to our three vessel models.  Six 

histograms approximating the simulation of IP or IV delivery in each of the three 

vascular distributions were generated.  These were constructed by binning the 
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comprehensive samples (from the oversampled sphere with radius = 140 cells) into low 

(<10%), medium (10 to 23%) and high (>23%) classes.  The samples in each 

accumulation simulation (1%, 3%, 5%, 10%, and 24 or 25% vessel volume) were then 

added to the full tumor distribution a number of times equal to the count of samples for 

low, medium, and high.  For instance, in the Gaussian tumor, 25% of samples had less 

than 10% vessel volume.  To comprise the “low” bin for accumulation in the complete 

Gaussian tumor at 9.86 hours, the complete list of drug accumulations in each individual 

cell of the 1% model at 9.86 hours was added to the bin enough times in order to 

comprise 25% of the tumor cells.  3% and 5% will be added to the “low” bin in future 

work, as well as a 50% case to be modeled and included. 

 

RESULTS 

 

We analyzed the distribution of radii in the Empirical distribution vs. that Theoretical 

distribution (Fig. (1)). The Empirical (purple) and Theoretical (green, “Theoretical”) 

distributions are overlaid in Fig. 1 (intersections between the distributions are dark blue), 

showing the greater number of large-radius vessels in the Empirical distribution.  Both 

are long-tailed, and the Empirical has more large vessels than expected from a normal 

distribution. Both log-transformed and non-transformed data were rejected for normality 

by the Jarque-Bera test at 5% significance in Matlab.  Statistical analyses showed that the 

Empirical distribution is different from the Theoretical distribution. The Kolmogorov-

Smirnov non-parametric test for 2 samples coming from the same distribution rejected 

that they were from the same distribution, (p < 0.001). The Mann-Whitney test rejected 
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that the medians of the Empirical and Theoretical distributions were the same (p < 

0.0001). 
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Figure 1: The Empirical distribution of vessel radii is statistically unique from the 
distribution for normal tissue based on scaling theory. Overlaid histograms of radii based 
on the Empirical distribution, and Theoretical distribution of a bifurcating tree with the 
scaling exponent α=⅓ between radii at each branch level, the theoretically predicted 
vessel size distribution for normal tissue.  
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A simplified schematic showing the process of drawing a 10x30x30-cell sample at 

random from a simulated tumor is shown in Figure 2A. Images of the 65-cell-radius 

vascular mesh generated for each of the three distributions of radii used in the drug 

simulations are shown in Figure 2B, 2C, and 2D. We created histograms of 

comprehensive samples from the cube inscribed inside of the spherical volume 

containing vascular mesh of 10% vascular area in the central z plane for each of the three 

radius distributions (Fig. (3)). For a sphere of R=140, vessel volumes were 0 to 55% in 

the 1000 10x30x30-cell samples from the Theoretical model.  This range is close to 

empirically measured ranges for blood vessel volume in tumors, 5 to 50%12. Samples 

from the Empirical distribution ranged from 0 to 90% vessel volume; clearly some 

samples came from empty space, and others likely were drawn from the middle of a large 

vessel. The Gaussian model discluded the large vessels, and did not include the high or 

low ends of either the Theoretical or the Empirical volume samples, having a range of 5 

to 25% vascular volume. 
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Figure 2: Images of vessels from three distributions of radii, generated in a simulated 
tumor (65 cells or ~0.45mm in diameter).  Pink = vessel, purple = tumor cells. Cross-
sections are in the xy plane at z=65 (center of sphere), and contain 10% vessel. (A) Radii 
drawn from the complete Empirical distribution show thick vessels.  (B) Radii drawn 
from a Gaussian distribution about the mean of empirical data (3.01 to 14.21 µm (mean = 
8.61 +/- 5.60 µm)),) include only small vessels. (C) Radii drawn from the Theoretical 
distribution show some large vessels and many small vessels. 10x30x30 samples were 
drawn at random from a cube inscribed in the tumor sphere, selected to represent a 
variety of vascular volumes, and used to initialize drug simulations.  The three images at 
right in (A,B,C) show the 10x30x30 sample without tumor cells, with tumor cells, and the 
2-D slice through the center of the sample at z=6, the view used to show results of 
simulations in Figs. 4 and 6.  
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Figure 3: Vascular volume distributions from comprehensive sequential, non-overlapping 
sampling of a cube inscribed in the sphere of initialized vessels show the differences in 
vessel volume distribution for the three distributions of radii. Samples = 10 (z dimension) 
by 30 (y dimension) by 30 (x dimension) cells. The Gaussian distribution generates 
samples with 0 – 20% vessel volume. The Theoretical distribution has a wider range, up 
to 53%; and the Empirical distribution is even more variable, generating samples with up 
to 88% vessel volume.  
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We examined how the scale of accumulation changed with the various parameters of the 

model.  The highest single-cell level of accumulation (Figs. 4, 5, and 6) increased with 

larger vessel volume for pertuzumab (10 hours of drug exposure, Fig. 6).  For cisplatin, 

there was only a very small increase in accumulation with vessel volume (at 50 minutes 

of drug exposure (the half-life and peak of cisplatin exposure is two orders of magnitude 

shorter than that of pertuzumab3)), and only between the 1% and 10% volume cases.  

There was a 0.6% increase in maximum accumulation of cisplatin for Theoretical, and a 

0.4% increase for the Empirical and Gaussian distributions (Fig. 4A).   Maximum 

cisplatin accumulation over time appeared to be identical for all vessel volumes and 

vascular morphologies at all time points during IV or IP delivery, as the individual plot 

lines were indistinguishable from one another  (Fig. 4B).  For pertuzumab (Fig. 5, 6), 

accumulation increased with vessel volume in IP and IV delivery (except in the 3% case, 

which is higher than expected (Fig. 5C)), and shows correlation with vessel morphology 

from 1 to 10% volume (Fig. 5C). 
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Figure 4: Simulation images show that cisplatin accumulation maximum (red) is uniform 
in the sample volumes and unaffected by vessel volume and morphology. Vessel = dark 
blue. Accumulation only depends on concentration of drug in the blood, which depends 
on route of delivery (IV is higher than IP).  (A) Cisplatin accumulation in the tumor cells 
in the central xy plane (z=6) of the 30x30x10 rectangular sample solids. Cell 
accumulation maxima (0.047µM IV, 1.19µM IP) are uniform and nearly identical in 
samples undergoing the same form of delivery.  (B) Cell with the highest accumulation is 
the same over time for all vascular volumes for each distribution. 
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Maximum accumulation (maximum value for at least one cell in the simulation) was 

substantially higher for both drugs in early IV delivery, and at all times for cisplatin IV 

(Fig. 4B, 5A).  The plateau for IV cisplatin, shown in Figure 4B, occurring at ~120 min, 

was substantially higher ((~10x) than that of IP, occurring at approximately 200 minutes. 

Pertuzumab IV maximum accumulation plateaued at 5 hours (Fig. 5A), while IP 

maximum accumulation plateaued (Fig. 5A and 5B) at later than 30 hours at roughly the 

same concentration as IV.  The pertuzumab IV plateau also increased ~10% with an 

increase in vascular volume from 1 to 10%. 
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Figure 5: Maximum concentration of accumulated IgG in a single cell varies with 
vascular volume up to 10%, but does not depend on vessel radius distribution when 
vascular volume is >10%.  (A,B) Concentration of IgG molecules in the cell with 
maximum accumulation for (A) Theoretical IP and Gauss IP and IV, and (B) Empirical 
distribution IP.  (C) Accumulation maxima correlate with vascular volume, and with 
vessel radius distribution up to 10% volume, whereafter the correlation seems to 
disappear.  Maxima also depend on method of delivery, with IV providing the highest 
concentration.   
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Figure 6. Pertuzumab accumulation in the tumor cells in the central xy plane (z=6) of a 
selection of 30x30x10 rectangular sample solids from the 20 total models (IP, IV, 
pertuzumab, cisplatin, 1, 3, 5, 10, and 25% volume). Maxima in the plane are labeled 
above the samples. Vessels are royal blue and surrounded by red or yellow pseudocolored 
drug in each image.  Otherwise, royal blue areas where there is a grid of uninterrupted 
cells represent low or zero drug accumulation. 
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There is no discernible heterogeneity of drug delivery of cisplatin (Fig. (4)).  In contrast, 

Figures 6 and 7 show great heterogeneity across cells during delivery of pertuzumab to 

all vascular morphologies and volumes. Figure 7 shows a histogram of accumulation for 

the randomly selected 10x30x30 sample runs of pertuzumab from the 1, 10, and 25% 

vascular distributions, for IP and IV delivery methods, at 9.86 hours.  We quantified 

heterogeneity as the Shannon entropy, which increases as the distribution it is testing 

becomes more uniform (closer to equal across the bins, counter-intuitively appearing as 

even-looking, homogeneous bins). The shapes of the distributions are distinctly different 

between the IP and IV simulations, but are highly similar amongst the different vascular 

distributions within the IV or IP simulations. The models demonstrate that heterogeneity 

increases with vascular volume during IP delivery (Fig. 7A, B, C).  This is an artifact of 

the low concentrations delivered IP, but shows that vascular volume has an effect. 

Heterogeneity also increases between 1% and 10% vascular volume for the IV cases 

(Fig.7D, E), then drops for the 25% (Fig.7D, E) and Gaussian (Fig.7F) cases.  

Interestingly, this is because delivery is improving, and more cells are in the high 

accumulation bin for the high-vessel-volume samples.  It is notable that at this time point 

(9.86 hours), all of the low-volume simulations and IP simulations have a very large 

count of cells below the threshold for ADCC, 100,000 molecules per cell (the lowest 

bin). 

 

The mode of delivery has the highest effect on heterogeneity.  IV creates the highest 

heterogeneity, again due to higher concentrations being delivered IV.  Between the IV 

and IP cases, the lowest entropy (0.42) was in the Empirical IP 1% volume sample, and 
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the highest was in the Empirical IV 24% sample.  This is actually a reflection of the 

Empirical distribution providing the lowest drug delivery in all cases (see Discussion).   

The Gaussian 1% and Empirical 1% are very close to each other in both the IV and IP 

cases, both delivering far less drug than the Theoretical. Heterogeneity increases between 

1% and 10% vascular volume for all IV cases, then drops for the 25% Theoretical and 

Gaussian cases because of improved delivery. 
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Figure 7. Histograms of pertuzumab accumulation in individual tumor cells at 9.86 hours 
given (A) Theoretical (B) Empirical and (C) Gaussian vessel distribution during IP 
delivery and (D) Theoretical (E) Empirical and (F) Gaussian vessel distribution during IV 
delivery. There is increased heterogeneity of accumulation when accumulation is highest, 
either through IV delivery or increased vessel volume. The shape of the distribution is 
similar within each mode of delivery for samples above 1% volume IP, or for all 1% and 
all IV samples.  Delivery is poorest for the Empirical distribution in all cases; it is also 
the least heterogeneous (or equally heterogeneous in the IV 24% case) for all simulations 
except for IV delivery to 24% vessel, The Gauss and Theoretical distributions are less 
heterogeneous due to having more cells in the highest accumulation bin, indicating better 
delivery than in the Empirical. 
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Figure 8 shows the histograms approximating the total accumulation distributed within a 

cube inside of a large tumor, generated according to frequency of samples of similar 

vessel volume to those of the random sample models. These show similarity in the shapes 

of the curves between the three vascular distributions for IP (Fig. 7A) and IV (Fig. 7B) 

concentrations.  They show the same increase in entropy when going from IP to IV 

delivery as in the small, random samples; this increase is again due to higher 

concentrations resulting in cells being distributed more uniformly across a range of drug 

exposures, rather than most cells being in the bin for accumulation of less than 100,000 

molecules per cell, during IP delivery.  To make comparisons about drug delivery 

between the distributions, the shape of the distribution must be examined in conjunction 

with the entropy, as they do not always correlate. Therefore, although the Theoretical 

results for the small samples are variable, for both the IP and IV cases of complete tumor, 

entropy is higher for the Theoretical distribution, and in these cases correlates with higher 

drug delivery, with fewer cells in the lowest bin than in the Empirical and Gaussian 

distributions.  The results suggest that in the complete tumors, delivery is better for 

targeted therapies in tumor samples with vessel sizes that are similar to those in the 

Theoretical distribution (normal tissue). 
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Figure 8: Histograms of pertuzumab accumulation in large tumors (R=140 cells) at 9.86 
hours created as composites from accumulation results of the simulations in small 
samples. Heterogeneity (entropy (S)) increases with increased plasma concentration due 
to the change in drug delivery (IV delivery > IP delivery). Theoretical delivers higher 
concentrations overall. (A) Range of accumulation in all cells after IP delivery to 140-
cell-radius tumors with the Theoretical, Gaussian, and Empirical distributions.  (B) Range 
of accumulation after IV delivery to the same tumors. 
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DISCUSSION 

 

Interestingly, our empirical vessel data is not similar to the distribution of radii from an 

idealized theoretical model8. This concurs with results by Herman et al.13, in which the 

radius distribution from tumors and normal tissue also differed, and in which it was 

theorized that tumors exhibit their own scaling exponent, derived from empirical data. 

 

Using theoretical and empirically derived models of tumor vasculature, we see that vessel 

radius distribution and vessel volume affect the delivery of higher-molecular-weight 

targeted therapies such as the antibody pertuzumab, but not the small-molecule drug 

cisplatin.  For pertuzumab, heterogeneity of accumulation (entropy), increases with an 

increase in vessel volume.  It further increases with an increase of drug concentration in 

the vessels, as in IV delivery.  However at high vessel volumes (25% case in Fig. 7D, E, 

F), entropy decreases for the Theoretical case and the Gaussian case, implying that these 

architectures give more even antibody delivery. This is despite the lack of large, leaky 

vessels represented in the Empirical model.  Delivery is also improved in the Empirical 

24% case, with entropy increasing because the lowest bin in the 10% case had the highest 

number of cells (Fig. 7E, 24%); cells that were previously receiving the lowest doses are 

moving up into higher bins, improving overall concentration, but also increasing entropy. 

 

The models also imply that for the vessel volumes modeled, for both cisplatin and 

pertuzumab at clinical dosages (~2/3 the clinical maintenance dose in the pertuzumab IP 

case), the tumor tissues are receiving either almost completely inadequate drug in the IP 
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case for both drugs, or highly heterogeneous drug in the IV case for pertuzumab (Figs. (5, 

6, 7, 8)).  In particular, the composite histograms representing complete tumors show 

38%-63% of the cells receiving less than the therapeutic threshold for ADCC.  Because 

the models were built from the most vascularized case in patient ovarian disseminated 

tumors, ~10% area in a cross-section, this suggests that even highly vascularized tumors 

receiving high drug concentrations, whether containing many small vessels in the drug-

delivering vessel volume, or the same volume instead partially comprised of large, leaky 

vessels, are not effectively delivering large-molecule antibody therapies to a large 

proportion of cells in the tumor. 

 

For cisplatin, the morphology of the vascular tree does not affect maximum drug 

accumulation in any area of the tumor, and neither does vessel volume.  However for 

pertuzumab, vessel volume does correlate somewhat with maximum accumulation during  

both IV and IP delivery.  This result concurs with the drug delivery model of Pascal et 

al.12, which found the highest correlation between patient survival rates and fraction of 

cell kill, which in turn correlated with vessel volume. Our model suggests that, after 

therapy, if killing levels of drug were delivered only to some parts of the tumor, even if 

cell kill was higher, a large percentage of remaining cells will have also survived a wide 

range of sub-therapeutic concentrations. The interpretation of increased Shannon entropy 

would be that a wider range of signals -- drug levels -- has been given to the survivors, 

which are genetically heterogeneous, resulting in a variety of combinations of drug 

accumulation and genetic make-up. This begs the question of how important sub-

therapeutic heterogeneity is -- could one homogeneous sub-therapeutic level, as in the 
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case of IP cisplatin delivery, drive resistance at the same rate as a heterogeneous 

distribution, or would they differ? It also reinforces the (obvious) idea that, for a given 

drug regimen, patients should be given the highest tolerable dose of drug to increase cell 

kill and to push toward less heterogeneous delivery and minimize survival of potentially 

resistant cells, rather than enhancing it with either heterogeneous sub-therapeutic and 

therapeutic drug, or more homogeneous but non-effective low levels of drug.   
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Chapter 5: Conclusion 

 

In Chapter One, the cellular Potts model generated hypotheses that high homotypic 

adhesion and a mechanism for attraction to mesenteric blood vessels are fundamental 

parts of the ovarian cancer system. Both characteristics suggest exploitable weaknesses 

that could be used to disrupt the process of cancer relapse. In casual discussion with 

members of the New Mexico Center for the Spatiotemporal Modeling of Cell Signaling, 

the usage of a strong detergent during surgery to disrupt adhesion of non-attached cancer 

cells in the peritoneal cavity was suggested. Whether or not this particular idea is viable, 

it is the result of discussing the working mechanisms of the cancer process, and this is the 

job of the model: to help scientists envision a system so that they can think more deeply 

and creatively about it. The results of the invasion model, which require a special 

chemotactic factor to get spheroids to travel to vessels, are simple; yet, they stimulate 

conversations and ideas about what the mechanisms of this process may be (such as the 

dendritic cell "guides" to vessels that are seen in breast cancer), and provide testable 

hypotheses. Parameterizing the angiogenesis model led to a hypothetical threshold value 

of vascular endothelial growth factor to initiate angiogenesis in vascular endothelial cells, 

and re-examination of lab data, which showed that angiogenic factors are constitutively 

active in the cultured line of ovarian cancer cells used for the mouse xenografts.  

In Chapter 3, models of tumors exposed to the peritoneal cavity demonstrated that 

drug delivery by the intraperitoneal route was more successful overall for both the 

chemotherapy cisplatin, and the targeted therapeutic monoclonal antibody Pertuzumab. 
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However, because vessels act as sinks for highly diffusible therapies such as Cisplatin 

when the concentration penetrating from the intraperitoneal cavity is higher than that in 

the vessel, heterogeneity of drug delivery increases in tumors with vascularization.  

In Chapter 4, the drug delivery models show that, for tumor volumes unexposed to 

intraperitoneal delivery, IV delivery is superior to IP. In the case of Pertuzumab, delivery 

increases with vascular volume, and is also heterogeneous, leading to sub-therapeutic 

levels of treatment in the tumor sub-volumes of lowest vascularization. This opens to 

consideration how to conduct drug delivery when a patient has metastases distant from 

the peritoneal cavity, or large tumors that have grown since surgery, the center of which 

intraperitoneal drugs will not reach.  The models also open the question of whether 

heterogeneous sub-therapeutic levels of drug or one homogeneous sub-therapeutic level 

of drug will drive faster evolution of drug resistance in tumors, which are genetically 

heterogeneous, potentially producing a greater variety of resistance responses to a greater 

variety of drug levels. 

The results of Chapter 3 and Chapter 4 led us to consider that delivery of targeted 

monoclonal antibodies may benefit from usage of antibodies with medium rather than 

high affinity. High-affinity antibodies are so “sticky” that they cannot penetrate to deeper 

parts of the tumors. As we have discussed in our labs, further understanding of receptor 

recycling rates, receptor production rates, and avidity (rate of binding of the second arm 

of an antibody to a second receptor after initial binding to the cell surface by its first arm) 

could suggest mechanisms that could also be exploited in order to improve penetration of 

antibody therapies. 
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Our models have generated hypotheses about the mechanics that generate ovarian 

tumor morphology, which elements in the tumor microenvironment drive tumor behavior 

during invasion and angiogenesis, and how tumor vascularity and proximity to the 

abdominal cavity affect how well and how homogeneously they accumulate drugs.  Such 

models can be leveraged to help us think about how we can decrease the fitness of a 

small tumor, either by disrupting its environment, its morphology, or by optimizing 

delivery of drugs both to increase cell kill and decrease heterogeneous delivery that could 

encourage the evolution of drug resistance. 

Modeling of cancer systems requires us to examine in explicit detail the functional 

elements generating tumor behavior. Such guided thinking can lead to biological 

experiments that provide missing data or elucidate the workings of poorly understood 

mechanistic processes, and clinical procedures that can address inefficiencies of drug 

delivery.  The utilization of models in envisioning biological systems has tremendous 

potential to accelerate the understanding and treatment of cancer and all disease.  Their 

value in streamlining the production of hypotheses and experiments cannot be 

underestimated: modeling should always be considered as a component of research 

programs in human health. Modeling will play an increasingly important role in 

understanding the promise and limitations of  cancer therapies. 


