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Abstract

Researchers have long used mathematical models and empirical data to explore

the population ecology of childhood diseases such as measles and whooping cough.

These diseases have proven ideal model systems for studying population dynamics

over space and time. Here we present a novel dataset of weekly measles and whooping

cough case reports in pre-vaccine era U.S. cities and states, along with a previously-

studied dataset of measles in England & Wales.

We first estimate per-population disease reporting probabilities. We find that

disease reporting is highly variable over space and between diseases, and correlated

with socioeconomic covariates including ethnic composition and school attendance.

Using these reporting estimates, we infer the long-term, marginal distribution of

disease incidence for each population. This describes a probabilistic measure of

disease persistence that compares favorably with a classic threshold persistence mea-

sure, critical community size (CCS). The U.S. and England & Wales exhibit similar

patterns of measles incidence distributions: larger populations show higher mean
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incidence and lower variance. The per-time probability of local extinction (condi-

tioned on population size) is higher in the U.S. than in England & Wales, likely

due to larger distances between U.S. cities. Finally, we use observed persistence and

inferred incidence distributions to estimate the per-time probability of true persis-

tence. Estimated persistence of whooping cough is much higher than persistence

of measles (conditioned on population size). We find that cryptic persistence (the

difference between observed and estimated persistence) of whooping cough is most

common in small populations, while for measles cryptic persistence is most common

in medium-sized populations that hover at the edge of extinction.

Our results show that variation in disease reporting can significantly affect meta-

population estimates of disease persistence, such as CCS. The distributional esti-

mates of incidence presented here explicitly account for incomplete reporting, pro-

viding summaries of long-term ecological patterns that are comparable between

metapopulations. These measures can provide disease control programs with valu-

able information on where disease incidence is expected to be higher or lower than

expected based on population size alone.
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Chapter 1

Introduction

Childhood disease is the name given to any of a cluster of diseases that are all directly-

transmitted, acutely infectious, and fully immunizing. These diseases, including

measles, pertussis, diptheria, mumps, and chicken pox, infected the vast majority of

individuals in the pre-vaccine era at an early age. In the modern era, vaccination for

these diseases is almost universal in developed nations, and overall incidence is very

low.

Their relative dynamical simplicity (early age of infection, no repeated infection)

coupled with dramatic epidemic cycles and high-fidelity historical records of disease

incidence have made childhood diseases useful model systems in population and

disease ecology [1–4]. An historical overview of this extensive body of literature is

given in the following chapters. Suffice to say that this dissertation represents the tip

of a long line of disease ecology research that couples mathematical and statistical

models with empirical observations of childhood diseases, particularly measles and

pertussis.

The key question driving this research is to identify the necessary and sufficient

conditions for these diseases to persist. Large population sizes, high host birth rates,
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Chapter 1. Introduction

and spatial connectivity are all well-known drivers of disease persistence. Pathogen

life history traits, including basic reproductive ratio (R0) and infectious period, shape

patterns of disease persistence. A key goal in disease ecology is to disentangle the

effects of local dynamics, metapopulation processes, and the innate characteristics

of pathogens on disease persistence.

Much of the research to-date has focused on patterns of disease incidence in Eng-

land & Wales, largely due to the availability of high-quality data sources. Spatial

connectivity and isolation are hypothesized to affect local and metapopulation dis-

ease dynamics, and the applicability of findings based on this densely-settled island

nation to other systems warrants testing. Indeed, a primary goal of the research

presented here was to test findings from England & Wales in a qualitatively differ-

ent metapopulation. By comparison, the U.S. is geographically larger, less densely

populated, and more ethnically diverse than England & Wales.

This particular body of work emerged as an extension to Bartlett’s classic thresh-

old measure of disease persistence, critical community size (CCS) [5]. According to

classical epidemiological theory, the metapopulation persistence of childhood disea-

ses like measles is driven by cities above a critical size, the CCS, where susceptible

individuals are replenished quickly enough so that a local chain of infection proceeds

unbroken. While competing definitions of CCS have been employed, none have ac-

counted for incomplete and variable disease reporting.

In Chapter 2 [6], we provide a comprehensive, probabilistic interpretation of

CCS that we apply to case reports of measles in cities in the U.S. and England

& Wales. We find that both metapopulations exhibit similar patterns of measles

incidence distributions: larger populations show higher mean incidence and lower

variance. On the other hand, the per-time probability of local extinction (conditioned

on population size) is higher in the U.S. than in England & Wales, likely due to larger

distances between U.S. cities.

2



Chapter 1. Introduction

In Chapter 3 [7], we provide a comprehensive review of disease reporting vari-

ability for both measles and whooping cough in the U.S. and England & Wales. We

refine the methods employed in Chapter 2, as well as develop uncertainty bounds

on estimates of incomplete reporting for diseases in the U.S. We also find that, in

the U.S., disease reporting correlates with socioeconomic covariates including ethnic

composition and school attendance.

Finally, Chapter 3 [8] employs empirical patterns of observed persistence and

inferred incidence distributions to estimate the per-time probability of true persis-

tence. This allows us to disentangle the effects of poor disease reporting on observed

case reports from the effects of disease extinction on patterns of incidence. We define

cryptic persistence as the difference between observed and estimated persistence, and

show that patterns of cryptic persistence differ markedly between diseases.

This body of work contributes to disease and population ecology by providing

tools to more accurately assess patterns of true incidence over space and time. In

addition, this work is applicable to modern disease control efforts, potentially aiding

epidemiologists and public health professionals identify hotspots of disease incidence,

as well as populations at greatest risk of cryptic persistence.

1.1 References

[1] WH Hamer. The Milroy lectures on epidemic disease in England – the evidence

of variability and persistence of type. Lancet, 1:733–739, 1906.

[2] H.E. Soper. The interpretation of periodicity in disease prevalence. J R Stat Soc,

92(1):34–73, 1929.

[3] M.S. Bartlett. Stochastic population models in ecology and epidemiology. Methuen

London, 1970.
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[4] R.M. Anderson and R.M. May. Infectious diseases of humans. Oxford University

Press Oxford, 1991.
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Stat Soc Ser A, 123(1):37–44, 1960.

[6] C.E. Gunning and H.J. Wearing. Probabilistic measures of persistence and ex-

tinction in measles (meta)populations. Ecol. Lett., 16:985–994, 2013.

[7] C.E. Gunning, E. Erhardt, and H.J. Wearing. Incomplete reporting of pre-vaccine

era childhood diseases: a case study of observation process variability. Proc. R.

Soc. B, In Review.
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Chapter 2. Inferring Distribution of Incidence

2.1 Abstract

Persistence and extinction are fundamental processes in ecological systems that are

difficult to accurately measure due to stochasticity and incomplete observation.

Moreover, these processes operate on multiple scales, from individual populations

to metapopulations.

Here we examine an extensive new dataset of measles case reports and associated

demographics in pre-vaccine era U.S. cities, alongside a classic England & Wales

dataset. We first infer the per-population quasi-continuous distribution of log inci-

dence. We then use stochastic, spatially implicit metapopulation models to explore

the frequency of rescue events and apparent extinctions. We show that, unlike crit-

ical community size, the inferred distributions account for observational processes,

allowing direct comparisons between metapopulations.

The inferred distributions scale with population size. We use these scalings to

estimate extinction boundary probabilities. We compare these predictions with mea-

surements in individual populations and random aggregates of populations, highlight-

ing the importance of medium-sized populations in metapopulation persistence.

2.2 Introduction

The persistence (and extinction) of species over space and time is an emergent prop-

erty of multiple ecological processes. From conservation biology to disease ecol-

ogy, local population dynamics and spatial connectivity are central to understanding

species persistence. Host-pathogen interactions provide a natural framework in which

to consider colonizer-invader trade-offs and the prerequisites for successful invasion

and persistence [1]. These problems have straightforward epidemiological and public

health interpretations: the emergence and establishment of novel human pathogens,
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Chapter 2. Inferring Distribution of Incidence

and their control and eradication in human populations. More generally, the study of

disease dynamics can shed light on the ecologically significant interactions between

demographic stochasticity, patch connectedness, and observational processes.

Measles has been a workhorse of theoretical ecology for more than 100 years

[2–7], particularly with respect to population-level persistence and extinction. A

human pathogen that diverged from rinderpest in the pre-industrial era, measles has

avoided eradication and still causes significant morbidity and mortality, particularly

in regions with poor health care infrastructure [8]. Originally noted for its dramatic

yet regular epidemics, measles has become a model system in population ecology

modeling. Epidemiological models of measles highlight the importance of non-linear

feedbacks, transients, stochasticity, and non-stationarities in ecological processes [9–

12], as well as spatial structure and heterogeneity [12–14].

Several factors make measles a useful model pathogen, including ease of diag-

nosis, abundant historical records, short latent and infectious periods, low mortal-

ity, lifetime immunity, and a lack of environmental or animal reservoirs. Seasonal

aggregation of school-age children in developed countries also influences the basic

reproductive ratio (R0), controlling epidemic timing [11, 15, 16]. These factors facili-

tate the interpretation of historical records by reducing uncertainty and constraining

dynamics.

Population measures of persistence

Critical community size (CCS) is a threshold measure of within-population disease

persistence. CCS has played a central organizing role in disease ecology since its

introduction by Bartlett [17]. Though debate surrounds its precise definition [17–

20], CCS is approximately the population size above which pathogen extinction is

not observed, implying an unbroken within-population chain of infection. The CCS
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Chapter 2. Inferring Distribution of Incidence

of measles has been extensively studied in the context of pre-vaccine era England &

Wales [21], and with respect to vaccination and eradication thresholds [22, 23].

As defined, CCS depends fundamentally on both population and metapopulation-

level processes, and serves as a measure of both. This ambiguity of the CCS concept

is highlighted by vaccination, which is dynamically equivalent to lowering birth rates.

As susceptible recruitment drops, the CCS of a given metapopulation increases. In

the extreme case, endemic transmission of measles was eliminated in the U.S. circa

2000 [24]. Using the traditional definition of CCS, the current CCS of the U.S.

exceeds the size of every U.S. city, by definition, since continuous transmission is no

longer observed in any U.S. city.

Minimum viable metapopulation (MVM) size is a complementary threshold mea-

sure of persistence that addresses this ambiguity, though does not consider individual

population sizes [25]. The present work seeks, in part, to bridge a perceived gap be-

tween classic disease ecology and metapopulation literature, since these fields have

historically approached similar questions from very different directions (e.g. the con-

temporaneous work of Hanski et al. [25] and Bolker and Grenfell [13]).

As measured, CCS is further confounded by observational processes such as sam-

pling period and reporting rate, such that no straightforward between-metapop-

ulation comparison exists. Here we present a new dataset consisting of over 20 years

of weekly case reports of measles in 83 cities in the pre-vaccine era United States

(from 1924 to 1945). Case reports are augmented by demographic records at the

city, state and national level, and associated reporting rate estimates. We compare

this dataset with the classic England & Wales dataset (biweekly, 1944 to 1965),

also augmented with demographics and reporting rate estimates. We demonstrate

the sensitivity of CCS to observational, within-population, and metapopulation pro-

cesses, and provide an alternate measure of persistence.
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Chapter 2. Inferring Distribution of Incidence

We seek summary statistics that, similar to CCS, describe the long-term, marginal

distribution of true measles incidence within and between populations. Here we

use a distributional approach, augmented by stochastic metapopulation models that

highlight the key dynamical and observational processes in these systems. Despite the

presence of obvious autocorrelation and non-stationarity, we find conserved measures

of measles incidence that scale with population size.

Three points deserve special notice. First, we find that U.S. reporting rates are

lower and more variable than in England & Wales. This suggests a larger appar-

ent CCS, for which we have corrected. Second, higher U.S. birth rates should favor

increased persistence, which we do not observe. Finally, large U.S. intercity dis-

tances could result in smaller rescue effects and lead to decreased persistence, as ob-

served here. These findings suggest that metapopulation processes play an important

role in differentiating the U.S. from England & Wales. Nonetheless, a key remain-

ing challenge in matching mechanistic models to data is the full differentiation of

population-level processes such as seasonality of transmission from metapopulation-

level processes such as migration.

Outline

An outline of the paper is as follows. We first infer weekly log incidence (ξ) from

observed cases, reporting rate, and population size. Critically, we do not exclude ob-

served zeros from our analysis. Instead we assume that each represents ≤ 1 observed

case. We then fit a normal cumulative distribution function (CDF) to each city’s em-

pirical cumulative distribution function (ECDF). Scaling of the inferred parameters

(mean µ̂ and standard deviation σ̂, not sample mean and SD) with population size

(N) is evident. For each inferred parameter and metapopulation, we fit a descrip-

tive linear model using N as the independent variable. We construct a probabilistic

9



Chapter 2. Inferring Distribution of Incidence

measure of CCS, and compare patterns of persistence between random aggregates of

populations and metapopulations.

For comparison, we construct a stochastic, spatially-implicit metapopulation mo-

del that includes fully-parametrized demographics. Model results highlight the ef-

fects of apparent extinctions on the proportion of observed zeros, particularly in

intermediate-sized cities. We conclude with a discussion of the applicability and

usefulness of the presented methodology to other systems.

2.3 Materials and Methods

Data collection and preparation

U.S weekly case reports were manually transcribed from United States Public Health

Reports [26]. Each report was double-entered; mis-matches were automatically iden-

tified and manually resolved. Populations with fewer than 20% missing values were

used for subsequent analysis, for a total of 83 cities ranging in mean population

from 16 thousand to 7.2 million. These cities account for 22.7% (1920) to 24.9%

(1950) of the total U.S. population, and from 48% (1920) to 39% (1950) of the urban

U.S. population. All cities with a 1930 population over 350 thousand are sampled;

many smaller cities are missing. The period of record stretches from 1924-01-05 to

1945-12-29 (1148 weeks).

U.S. city decadal population was obtained from the U.S. decadal census (1920-

1950) [27]. State per capita birth, death, and infant mortality rates were obtained

from the U.S Statistical Abstracts, 1920-1950 [28]. Yearly U.S. city populations

were estimated using an exponential growth model to interpolate between decadal

population. Yearly U.S. city populations were then used to calculate births into

each city from state birth and national infant mortality rates. Birth rates for the

10



Chapter 2. Inferring Distribution of Incidence

U.S. (states) and England & Wales (cities) are shown in Figure 2.5 in Supporting

Information.

England & Wales case reports (every two weeks, no missing values, as presented

by Grenfell et al. [21]) were obtained from

http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.htm, along with popu-

lation size [29] and births by year. Births were adjusted for infant mortality using

yearly national rates [30]. This dataset includes 60 cities ranging in (1955) popula-

tion from 10.5 thousand to 3.25 million. The period of record covers 1944-01-09 to

1966-12-25; due to redistricting changes in 1965, only the period through 1964 was

employed, resulting in 546 biweeks.

For each population, migration was inferred by subtracting yearly births from the

yearly change in population size. A proportion of migrants (1− 1/R0) was assumed

to be recovered, with the remainder susceptible.

Reporting Rate

Reporting rate was assumed constant over the period of record; for the ith popula-

tion, a single reporting rate ri was estimated. We assume that a proportion 1 − 1
R0

of available susceptibles contract and recover from measles [6] over the period of

record. The net yearly flow of susceptibles si into population i was estimated from

births, infant mortality, and migration, as described above. Death of susceptibles

was assumed to be minimal. Thus, the expected total number of actual cases in the

ith population, Ci =
∑
t si(1− 1

R0
), and ri =

∑
t
Ci

Ci
, where Ci represents the observed

case reports in population i at time t [16]. See Figure 2.6 for a map of sampled U.S.

cities showing estimated reporting rates.

11
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Chapter 2. Inferring Distribution of Incidence

Estimating lognormal distributions of incidence

For each city, we inferred the distribution of weekly per capita log incidence ξi (log10

was used throughout). Missing values were excluded. Inferred cases Ĉi were esti-

mated from reported cases Ci and reporting rate: Ĉi = Ci

ri
. Critically, we do not

exclude observed zeros to avoid distorting the ECDF. Instead, we assume that each

observed zero is equivalent to as many or fewer inferred cases as one observed case:

Ci = 0⇒ Ĉi ≤ Z
ri

for Z ≤ 1 (here Z = 1).

Weekly per capita log incidence ξi was estimated from inferred cases, the mean

population size of each city Ni, and the number of weeks per observation n (2 for

England & Wales): ξ = log Ĉi

nNi
. Nonlinear minimization (NLM) [31] was used to fit a

normal CDF to the ECDF of ξi using an L∞ metric (equivalent to the Kolmogorov-

Smirnoff (K-S) distance between the two distributions). Metapopulation mean µ̂

and σ̂ were used as initial conditions for another iteration of the NLM procedure to

avoid local minima. Thus, the mean µ̂ and standard deviation σ̂ were chosen to mini-

mize the maximum difference in probabilities (L∞ metric) between each population’s

empirical and estimated CDF of ξ.

In this way, we infer a quasi-continuous distribution of log incidence ξ from the

discretized distribution of observed cases. The ECDFs and estimated normal CDFs

are shown for select cities in Figure 2.8. This inference method explicitly accounts

for the proportion of observed zeros as the integral of the normal probability density

function (PDF) over the interval (−∞, log 1
rNi

). Conceptually, this lower tail includes

inferred cases below the observation threshold of Ĉi = 1
r
, as well as the effects of im-

ported cases. To evaluate goodness-of-fit, parametric and non-parametric bootstrap

replicates were conducted (see Figure 2.11).

To test for differences between metapopulations, we conducted an (unbalanced)

ANCOVA using country identity as the independent variable and log population size

12
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N as the covariate. Separate linear models were tested for µ̂ and σ̂.

A metapopulation model of measles dynamics

We assessed the ability of simple epidemiological models to reproduce patterns ob-

served in the data. We constructed a spatially implicit, stochastic, event-driven

version of the standard exponential SEIR model as per Olsen et al. [32]. The result-

ing simulations also highlight unobservable yet important processes, including rescue

events and apparent extinctions.

We employed the Gillespie τ -leap method [33] with a time-step of one day. Popu-

lation sizes and demographics were fully specified from historical records. Births into

the susceptible class account for infant mortality. We assume death occurs exclusively

in the recovered class. A portion of migrants ( 1
R0

) was assumed to be susceptible;

the remaining migrants enter or leave the population through the recovered class.

Transitions into the exposed class due to imported infection were included at a rate

proportional to metapopulation incidence. We tested both sinusoidal and term-time

seasonal forcing of contact rates. Unlike England & Wales, U.S. term times are not

national, and historical estimates are not available. The effect of varying term times

remains under-explored in the literature. See Appendix S2 for model details.

Key transitions were summed on a weekly basis. These include total transitions

into E (Ew), transitions into E caused by imports (Ewη), and total transitions into

I (Iw). A binomial observation process was used to generate weekly observed cases

Iwo from Iw, where the probability of successful observation was equal to the city’s

reporting rate ri. For Γ = Ew+Iw, we tabulated the total number of true extinctions

(Γ = 0), rescue events (Γ = Ewη), and apparent extinctions (Γ > 0 ∩ Iwo = 0). The

proportion of weeks with zero case reports (P0 = Pr(Iwo = 0)) was also tabulated.

An ensemble of 10 realizations was simulated for each of a range of parameter

13
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combinations (see Table 2.4). For each realization and population i, P0i, µ̂i, and

σ̂i were computed. For each of these 3 measures δ, the sum of squared residuals

RSSδ =
∑
i δi,model − δi,data was computed. See Figure 2.13 for final model selection

details and Table 2.5 for final parameter values. For these parameter values, an

ensemble of 50 realizations was run and within-city ensemble means of all estimates

were computed.

Random aggregates of populations

Previous studies have examined case reports and incidence in both single popu-

lations and aggregate metapopulations. Here we construct random aggregates of

various sizes. For each random aggregate, M = X2 populations were sampled with-

out replacement (X ∈ 2, ..., 5). Timeseries, total cases, and total susceptibles were

summed over sampled cities. Reporting rate and incidence distribution was com-

puted as above. For each M , 100 aggregates were drawn.

Estimating extinction boundary probabilities

To predict the distribution of ξ for a given population size, a separate linear model

was fit to each metapopulation and inferred parameter using N as the independent

variable (Table 2.2). We use these descriptive linear models to compute the per-week

probability B = Pr(ξ ≤ log 1
N

) for a range of N .

The ECDF of ξ is clearly discrete, while the normal CDF is continuous. Nonethe-

less, we propose that B yields a good estimate of the amount of time each population

spends at or below 1 actual case, providing an approximate extinction boundary prob-

ability. This estimate is based on inferred (or actual) rather than observed cases,

and thus accounts for rescue effects and is not biased by apparent extinctions.
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2.4 Results

Distribution of inferred incidence

Figure 2.1 shows weekly scaled case reports for a subset of U.S. cities, and the weekly

unscaled mean of city case reports (omitting missing values). We use this dataset,

along with the previously-studied England & Wales dataset and a simple stochastic

metapopulation model, to show that the distribution of weekly per capita log inci-

dence (ξ) provides a unifying framework for comparing populations and metapopu-

lations.

Figure 2.2A (Data column) shows the inferred mean (µ̂) and standard deviation

(σ̂) for the per-city normal distribution of ξ. For comparison, the descriptive linear

models of data are also plotted (see Table 2.2). Figure 2.2A (Model column) shows

µ̂ and σ̂ inferred from the best-fit epidemiological model ensembles. See Figure 2.13

for epidemiological model fit details.

The inferred σ̂ of data (Figure 2.2A, left column) show more scatter in the U.S.

than in England & Wales. One probable cause of this scatter is that reporting rate

estimates appear less accurate in the U.S. (see Figure 2.12). Further, the geographical

variation in the U.S. is extreme, where similarly-sized cities may range from close

proximity to large cities to relative isolation. Lacking details of spatial connectivity,

we explored simple measures of connectivity, including a rank gravity model, to

explain the observed variance in inferred distributions. We did not identify a simple

measure of connectivity that explains a significant proportion of this variance, though

this area deserves more attention.

In simulation results (Figure 2.2A, right column), mean per capita incidence

appears to saturate as population size increases. We might expect this because de-

terministic models of frequency-dependent transmission, where the force of infection
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depends only on the fraction infected, predict that per capita incidence does not

depend on population size. The data do not clearly exhibit the same saturation

behavior, which suggests future modeling efforts should investigate more flexible as-

sumptions about transmission.

Figure 2.2B shows the ratio of sample statistics (sample mean and standard devia-

tion of observed log per capita incidence, excluding zeros) to their associated inferred

parameters (µ̂ and σ̂) for data. At small population sizes, sample statistics greatly

underestimate the amount of variation observed in the data due to the exclusion of

zero weeks (ξ = −∞). Sample statistics converge towards inferred values at large

population size. This population size, near prior estimates of CCS, is the threshold

above which ξ is normally distributed.

ANCOVA results are shown in Table 2.1. Country identity has a significant effect

on intercept (though not both slope and intercept). Overall, U.S. populations exhibit

less persistence than comparably sized populations in England & Wales. Goodness-

of-fit results are shown in Figures 2.9-2.11.

Revisiting Critical Community Size

For comparison with previous results [17, 20, 34], Figure 2.3A shows the relationship

between population (logN) and the relative frequency of zero weeks (P0) for both

data and models. Cities in England & Wales show lower P0, which might suggest

a lower CCS in cities in England & Wales than in the U.S. in this era. Yet these

curves are not directly comparable because reporting rates and sampling frequency

differ, affecting the probability of observing zeros (see Figure 2.7).

Figures 2.3B and C use model results to examine key processes that are not read-

ily observable in real systems. For Γ = Ew + Iw, Figure 2.3B shows true extinctions

(Γ = 0), apparent extinctions (Γ > 0 ∩ Iwo = 0) and rescue events (Γ = Ewη) per
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week. Rescue events and apparent extinctions are most common in intermediate-

sized cities. These cities spend more time on the edge of extinction, where the

influence of stochastic observational processes and imports are maximal. True ex-

tinctions, on the other hand, show clear curvilinear scaling with population size,

following the trend evident in P0 (Figure 2.3A). The number of observed zeros is

equivalent to the sum of true and apparent extinctions. Thus, Figure 2.3B suggests

that the scatter in observed zeros (Figure 2.3A), particularly in the U.S., is caused

in part by apparent extinctions, while rescue events play a much smaller role.

Figure 2.3C displays apparent extinctions as a function of reporting rate, high-

lighting the interaction between reporting rate and population size. A clear con-

straint curve is evident, where the maximum apparent extinction rate is a function

of the reporting rate. Increasing population size lowers the apparent extinction rate

from this maximum towards zero for the largest populations.

Surprisingly, the effect of per-city reporting rates and the variability thereof has

not been previously examined in detail. In a few cases, individual population es-

timates have been reported [15, 35], as well as overall metapopulation estimates

[36, 37]. These generally agree with our findings of lower and more variable report-

ing rates in the U.S. than in England & Wales, though we found no previous estimates

on within-metapopulation variance. Given the significant effect of variable reporting

rates on observational bias shown in Figure 2.3C, this is a potentially fruitful avenue

of study.

Figure 2.4 shows the effect of aggregation on the distribution of ξ. Random aggre-

gates of smaller cities exhibit distributions of ξ similar to single, large cities, as shown

by descriptive linear model predictions. In the US, aggregate µ̂ is consistently above

the linear model prediction, while σ̂ is consistently below the prediction. Thus aggre-

gation consistently reduces variation in the US, which would be expected amongst

asynchronous populations. In England & Wales, the pattern is less clear-cut, with
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aggregates falling both above and below the linear model prediction for both inferred

parameters. The above is consistent with the observation that the mean pairwise

population correlation coefficient is much higher in England & Wales (0.29) than in

the U.S. (0.15), indicating greater asynchrony in the U.S.

The observation that random aggregates generally follow the patterns of ξ pre-

dicted by linear models of single populations argues for a reconsideration of single

large cities as key drivers in disease persistence in general and the emergence of

measles in particular. Previous work used CCS to infer the possible historical era of

measles zoonosis based on historical population sizes [19]. Our results argue strongly

in favor of a metapopulation-level view of disease emergence, where interconnected

aggregates of small populations can support disease persistence. This fact has impor-

tant modern implications for zoonosis, which often occurs at the interface between

human settlements and natural systems.

As the size of random aggregates grows, a central limiting distribution of ξ is

reached, such that per capita log incidence is constant with increasing population size.

This is the expected behavior for frequency-dependent transmission and is suggested

by epidemiological model results, as mentioned above. This limiting distribution is

very different for the U.S. and England & Wales, with the U.S. exhibiting relatively

smaller µ̂ and larger σ̂.

The extinction boundary probability B = Pr(ξ ≤ log 1
N

), as computed from µ̂

and σ̂, is plotted for each population and random aggregate in Figure 2.4B and C.

Intuitively, B forms an upper boundary for the per-week probability of a population

being in the extinct state. The plotted curves show B for a range of population sizes

N, as estimated from the descriptive linear models predicting µ̂ and σ̂ from individual

city size (fit for each metapopulation, see Table 2.2). Thus, for N > 107, we expect

fewer than one extinction in a thousand years (B < 10−5) in both metapopulations.

Figures 2.4B and C are identical except for log scaling of the Y axis in C.
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Figures 2.4B and C highlight the difference between random aggregate and meta-

population estimates. In the U.S., random aggregates more closely match metapop-

ulation estimates than in England & Wales. In addition, U.S. random aggregates

are generally below (e.g. less likely to be extinct) what would be predicted from the

metapopulation curve, as would be expected from the aggregation of asynchronous

populations.

The extinction boundary probabilities give rise to a probabilistic interpretation of

CCS. A given probability Bα has a corresponding critical community size CCSα; for

populations larger than CCSα, the predicted per-week probability of being extinct is

less than α. Indeed, the metapopulation curves reveal that B is higher in the U.S.

than in England & Wales for all population sizes, yielding a larger CCSα for all α.

Epidemiological model results

Even with a wealth of case report and demographic data, we still lack sampling of

rural populations and patterns of spatial connectivity. We have thus chosen a rela-

tively parsimonious epidemiological model formulation here that implicitly includes

space. Despite the simple formulation, simulations do capture the overall scaling of

µ̂ and σ̂, as well as the proportion of observed zeros P0 (Figure 2.3A). Representative

simulation timeseries are shown in Figure 2.14. Nonetheless, the observed scaling of

µ̂ and σ̂ with population size N (Figure 2.2A) is not fully reproduced. Simulations

yield nonlinear scaling, with per capita incidence approximately constant above a

threshold N . Note, however, that Figure 2.2A shows ensemble means, which greatly

reduces between-population scatter compared to individual simulations. We sug-

gest that inferred µ̂ and σ̂ provide important probes that more complex mechanistic

models can be tested against.

Epidemiological model results also clearly illustrate the influence of key dynamical
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processes that are difficult to observe in real systems (Figure 2.3B). Here we find that

apparent extinctions greatly affect observational processes in midsized cities, an effect

that is compounded by the low reporting rates of the US. A range of parameter values

were found to produce similar results (see Figure 2.13). The final epidemiological

models presented here are primarily for illustrative purposes, and different parameter

choices do not affect overall results.

2.5 Discussion

Comparing metapopulations

The U.S. dataset presented here provides an important counterpoint to the highly

successful England & Wales measles dataset [13, 14, 16, 38, 39]. First and foremost,

it contains extensive spatial and temporal heterogeneity compared to England &

Wales. Demographics and transportation vary over time, from boom years (1920s)

to economic depression (1930s) to a major war and demographic boom (1940s),

accompanied by racial and ethnic segregation within and between cities [28, 40, 41].

Population density and transportation networks vary greatly in space, from dense

and highly-connected Northeastern cities to isolated mountain West communities

such as Billings, Montana and the island community of Galveston, Texas.

Both datasets sample a single, extensive metapopulation over a long, contiguous

period of time. England & Wales offers dense coverage of a spatially compact meta-

population, while the U.S. dataset samples a much larger metapopulation, albeit

less densely. The U.S. in this era is socially, economically, and even genetically more

heterogeneous than England & Wales. In addition, key drivers of measles dynamics,

such as school terms and family size, vary greatly throughout the U.S. during this era

[42], both temporally and spatially. Lacking data on these factors, we have used a
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simple “strategic” rather than detailed “tactical” model formulation that nonetheless

largely reproduces observed patterns in the data.

Here we argue that the inferred distribution of weekly per capita log incidence

ξ, and its consistent scaling with population size N, yields a robust comparison of

patterns of incidence between metapopulations. Because our method accounts for re-

porting rate, population size and sampling frequency, we suggest that the remaining

differences between metapopulation distributions result from differences in underly-

ing ecological processes. The results presented here show significant differences in the

distribution of ξ between countries (Table 2.1), as well as in the limiting distribution

of ξ in random aggregates (Figure 2.4). Several key points deserve special notice.

First, reporting rates are lower and more variable in the U.S. (Figure 2.3C), which

suggests a larger apparent CCS, and which we have corrected for. Second, higher

birth rates in the U.S. would generally favor increased persistence and a lower CCS,

which we do not observe. Finally, large intercity distances in the U.S. could result

in a smaller rescue effect, leading to a larger true CCS, as observed here.

Distributional measure of persistence and extinction

Diseases with relatively high R0 and short infectious period, such as measles, are

prone to local fade-outs. Large focal communities have been proposed as refugia that

allow metapopulation persistence, thus highlighting the importance of CCS. Yet the

usefulness of fixed population thresholds, such as CCS, has been criticized: Lloyd-

Smith et al. [43] points out that “thresholds are rarely abrupt and always difficult

to measure”. By taking a distributional approach to understanding persistence and

extinction in host-pathogen interactions, we aim to bypass some of the shortcomings

of single threshold measures.

Our choice of log incidence (ξ) is motivated by the observation that incidence of
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acute infectious disease generally emerges from a multiplicative process, where the

natural scale is logarithmic [44]. However, a log scale does not easily permit consi-

deration of zero incidence and, in these situations, the true distribution of ξ is often

thought of as a mixture of one process that describes presence/absence and another

that conditions on presence and describes non-zero incidence [45]. Yet observations of

zero cases do not imply zero incidence in this system. Thus we subsume observed ze-

ros into incidence at or below the minimum observable nonzero incidence, ξ = log 1
rN

.

This approach preserves the within-city empirical CDF (ECDF) by including all the

observed data points, yet is not overly biased by our inability to observe incidence

between 0 and 1
rN

(ξ ∈ (−∞, log 1
rN

)).

Theory based on simple non-seasonal stochastic epidemiological models predicts

that, for large enough population size, the distribution of infectives is approximately

normal [46, 47], with mean and variance scaling linearly with population size. These

results are obtained by conditioning on non-extinction to derive a quasi-stationary

distribution of infectives. In fact, for average measles parameters, the threshold for

this approximation can be close to 107, which is above the size of all cities in the two

metapopulations considered here. For both datasets, we find that the normal CDF

is a good description of the marginal distribution of log incidence for populations

at or over the critical community size, so that sample mean and standard deviation

can be used to infer this distribution (as shown in Figure 2.2). We argue that this

is empirical evidence that the time series can be considered as weakly stationary,

despite the intrinsic seasonality and autocorrelation present in the system. This

supports theoretical work demonstrating that, if populations are above a critical

size, the assumption that infectives follow a lognormal distribution is valid when

closing moment equations [48, 49]. In addition, for smaller populations, we can still

characterize log incidence using a normal distribution by fitting a normal CDF to

the truncated empirical CDF. Understanding how this inferred distribution relates

to recent work by Black and McKane [50], who derived an analytic approximation to
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the marginal distribution of infectives for a non-seasonal SIR model, could provide

further insight into why the lognormal is a good fit for a wide range of population

sizes.

Generality of approach and broader applications

The sensitivity of inferred distributions to the duration of study remains an important

question. In particular, how long must populations be observed before log incidence

is well-estimated by a normal distribution, and how do the inferred distributions

change over time? The results presented here broadly hold if the data are divided

into a small number of equal-length subdivisions (for details, see Figure 2.12). As

subdivisions grow shorter, however, estimates diverge from those based on the full

timeseries, and variance between subdivisions exceeds variance between populations

within a subdivision. This is likely due to the fact that we are not able to observe

enough of the distribution in a single short time series.

The above analysis assumes that processes in the studied metapopulations are

weakly stationary over the period of examination. As such, the period of analysis

should not include large perturbations, such as the onset of vaccination. This points

to one potential application of this method: comparing metapopulation dynamics

within a population pre- and post-vaccination. Thus metapopulation spatial struc-

ture remains static while effective birth rates decrease. In this case, both birth rates

and vaccine uptake rates are required to estimate per-population reporting rate, and

increased error is likely introduced. Nonetheless, this method could provide a direct

measure of the efficacy of vaccination on incidence reduction.

Another outstanding question is whether this approach extends from measure-

ments of incidence (e.g. per capita new cases in a unit of time) to more ecologically

common measures of prevalence (e.g. per capita cases or occurrences at an instant
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in time). However, incidence and prevalence are very similar for diseases that are re-

ported at intervals close to the average infectious period. For example, if we assume

that incidence represents all newly recovered individuals over a reporting interval

s then incidence ξ = γ
∫ t+s
t I(t)dt , where 1/γ is the average infectious period. If

s = 1/γ then incidence is the average prevalence over that interval.

Conversion between incidence and prevalence is important for several reasons.

Prevalence is the ecologically relevant measure of disease burden, even though in-

cidence is typically measured in human diseases (as case reports). On the other

hand, in many ecological systems including non-human diseases, prevalence is the

only obtainable measurement. We suggest the method presented is applicable to

measurements of either prevalence or incidence, provided the sampling interval is

short compared to the generation time and dynamics of the studied disease and host

population.

Unraveling population and metapopulation dynamics from chance and observa-

tional processes is a difficult question in many systems. Stochasticity, spatial connec-

tivity, and incomplete observation each play important and interconnected roles in

this system. Here we present a framework that concisely infers the marginal distri-

bution of measles incidence within populations. Comparison of inferred distributions

between populations yields a high-level picture of metapopulation incidence patterns.

The result is a probabilistic measure of persistence that can be used to compare and

unify ecological models, data, and theory.

Whether the results shown here generalize to other systems remains an open ques-

tion. The explosive population dynamics of measles are distinct but not unique. In-

fluenza, pertussis, and polio, for example, exhibit epidemic peaks as well as immunity-

mediated demographic extinction (though influenza’s rapid evolution precludes an

estimation of reporting rate by the approach used here). More broadly, wildlife

management is one field where metapopulation theory has long been applied, and
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where estimates of incidence distributions may prove useful. The establishment of

an invasive species and the preservation of a threatened population are analogous to

pathogen emergence and persistence. For infectious diseases, the host population is

analogous to patch area, and prevalence becomes analogous to population density.

Inferred distributions of incidence (or prevalence) permit the direct estimation of ex-

tinction or persistence risk from existing time series of population sizes or densities,

and provide simple measures that link population and metapopulation ecology.
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Figure 2.1. Weekly measles case reports for a subsample of
United States cities, 1924-01-05 to 1945-12-29. Zeros are black and
missing values are white. (A) Weekly sum of unscaled case reports of all
cities. (B) Heatmap for a subset of cities ordered by mean population size.
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Figure 2.2. Inferred parameters for normal distributions of weekly log
incidence (ξ). (A) Left column: for each city, a normal CDF with mean (µ̂) and
SD (σ̂) was fit to the ECDF of ξ by nonlinear minimization using an L∞ metric
(minimizing Kolmogorov-Smirnoff (K-S) distance). Right column: Simulation
results, with (µ̂) and SD (σ̂) inferred as above, averaged over 50 realizations. See
Table 2.5 for final epidemiological model parameters. For comparison, descriptive
linear models of inferred parameters against logN of data (left column) are shown
in both columns (see Table 2.2). (B) Ratio of sample statistics to inferred
parameters (sample/inferred) for data. Sample statistics underestimate variation at
small population sizes, and converge towards inferred parameters at large
population sizes.
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Inferred Parameter Model Term Estimate Std. Error t value Pr(¿—t—)
Mean (Intercept) -6.327 0.148 -42.842 < 10−12

Mean logN 0.367 0.028 12.967 < 10−12

Mean Country -0.210 0.013 -16.021 < 10−12

SD (Intercept) 2.261 0.118 19.222 < 10−12

SD logN -0.231 0.023 -10.263 < 10−12

SD Country 0.095 0.010 9.057 < 10−12

Table 2.1. ANCOVA results. A separate linear model was constructed for each
inferred parameter, using log N and country identity as predictors. Simulations
were not modelled. England & Wales is the reference level. Mean (µ̂), R2 = 0.74;
SD (σ̂), R2 = 0.55. For both inferred parameters, country identity has a significant
impact on either intercept (shown here) or slope, but not both. Note the model is
not balanced.
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Figure 2.3. Distribution of zeros, extinctions, and rescues. For
epidemiological models, values were calculated for each realization and an ensemble
mean taken. (A) Proportion of observed zeros by population size. (B) Proportion
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Figure 2.4. Inferred distributions (A) and extinction boundary
probabilities (B,C) for single populations and random aggregates of
populations. 100 random aggregates were drawn for each aggregate size (see
legend). (A) Inferred distributions and linear models (linear models exclude
random aggregates, see Table 2.2). For random aggregate total population
N ∼≥ 107, ξ converges to a limiting distribution. (B, C) Points show the
extinction boundary probability B = Pr(ξ ≤ log 1

N
), estimated from µ̂ and σ̂ for

populations and random aggregates in (A). Curves show B for a range of
population sizes, as predicted by linear models from (A). Any probability B = α
has a corresponding population size, giving a probabilistic measure of critical
community size CCSα. The U.S. B curve is higher than in England & Wales,
indicating higher probabilities of extinction across population sizes.
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Country Inferred Parameter Model Term Estimate Std. Error t value Pr(> |t|)
US Mean (Intercept) -6.392 0.179 -35.710 < 10−9

US Mean logN 0.339 0.034 9.963 < 10−9

US SD (Intercept) 2.217 0.151 14.712 < 10−9

US SD logN -0.205 0.029 -7.143 < 10−9

England & Wales Mean (Intercept) -6.457 0.263 -24.579 < 10−9

England & Wales Mean logN 0.432 0.051 8.532 < 10−9

England & Wales SD (Intercept) 2.494 0.188 13.276 < 10−9

England & Wales SD logN -0.295 0.036 -8.125 < 10−9

Table 2.2. Descriptive linear models (separated in table by horizontal lines) for
each country and inferred parameter against log N. This gives a closed-form
expression for the CDF of log incidence as a function of N, which was used to
compute the extinction boundary probability B for a range of population sizes.

B
ir

th
 r

at
e 

(p
er

 c
ap

ita
 p

er
 y

ea
r)

0.010

0.015

0.020

0.025

0.030

0.035

19
23

19
24

19
25

19
26

19
27

19
28

19
29

19
30

19
31

19
32

19
33

19
34

19
35

19
36

19
37

19
38

19
39

19
40

19
41

19
42

19
43

19
44

19
45

19
46

19
47

19
48

19
49

● ●
●

● ●
●

● ● ●
●

● ● ● ● ● ● ●
●

●

●
●

●
●

●

●
● ●

●●
●
●●
●

●●●
●

●

●

●

US

19
44

19
45

19
46

19
47

19
48

19
49

19
50

19
51

19
52

19
53

19
54

19
55

19
56

19
57

19
58

19
59

19
60

19
61

19
62

19
63

19
64

19
65

●

●

●
●

●
●

● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ●

●

●
●

●●
●

●

●
●

●

●

●● ●

●

●

●
●● ●

●
●● ●●

●

●

●

●
●

●

●●

●

●

England & Wales

Figure 2.5. Birth rates adjusted for infant mortality. All rates are yearly
per capita. The U.S. figure shows state birth rates, while the England & Wales
figure shows city rates.
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Figure 2.9. U.S. distribution of parameters inferred from parametric
bootstrapped case reports. Red circle shows value inferred from data. Central
green line shows bootstrap mean. Blue lines show 95% confidence interval. See
Figure 2.11 for details.
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Figure 2.10. England & Wales distribution of parameters inferred from
parametric bootstrapped case reports. Red circle shows value inferred from
data. Central green line shows bootstrap mean. Blue lines show 95% confidence
interval. See Figure 2.11 for details.
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Figure 2.13. An ensemble of 10 realizations was constructed for each parameter
set (columns show R0; see Table 2.4 for tested parameter ranges). The residual sum
of squares (RSSδ) between model and data was computed for each realization and
measure δ ∈ {P0, µ̂, σ̂}. The ensemble mean RSSδ is shown above, with vertical
bars showing ± one standard deviation. For each δ, the condition with minimum
ensemble mean RSS was identified. A t-test was conducted between the minimum
set of RSS and each other condition’s RSS set. Any parameter set that was greater
than the minimum set with p < 0.05 was considered inferior to the best set for that
measure, with the remaining sets considered equivalent. A final parameter set was
chosen to maximize the number of measures in which it was equivalent to the best
condition.
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Figure 2.14. Simulation/data comparison of timeseries for select cities.
Cities are ordered by descending population, with evenly-spaced population ranks.
Data is shown on the left, and three randomly-selected simulations are shown on
the right. To simplify comparison, matching cities share a common Y axis. For
model parameters, see Table 2.5.
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2.8 Appendix S2 – Epidemiological Model Details

Event Change in State Transition Rate

Birth (discounting infant mortality) (S,E, I, R)→ (S + 1, E, I, R) ν(t)N

Immigration of susceptible (S,E, I, R)→ (S + 1, E, I, R) µ+(t)( 1
R0

)N

Emigration of susceptible (S,E, I, R)→ (S − 1, E, I, R) µ−(t)( 1
R0

)N

Immigration of recovered (S,E, I, R)→ (S,E, I, R+ 1) µ+(t)(1− 1
R0

)N

Death or emigration of recovered (S,E, I, R)→ (S,E, I, R− 1) µ−(t)(1− 1
R0

)N

Exposure due to imports (S,E, I, R)→ (S − 1, E + 1, I, R) ηβ̂S

∑
j 6=i

Ij∑
j
Nj

Exposure due to internal dynamics (S,E, I, R)→ (S − 1, E + 1, I, R) β̂S I
N

Infection (S,E, I, R)→ (S,E − 1, I + 1, R) σE

Recovery (S,E, I, R)→ (S,E, I − 1, R+ 1) γI

Table 2.3. Events and corresponding transition rates in the stochastic SEIR
model for population i.

Parameter Range

ν(t) Specified by demographic data

µ(t) Specified by demographic data

η [10−9, 10−6]

R0 = β0
γ

[15, 25]

βforce [0.1, 0.5]

β̂ β0(1 + β1 sin( 2πt
365

)) per day

σ 1/8 per day

γ 1/5 per day

Table 2.4. Parameter values.

Each model realization was initialized at the equilibrium values of the equiva-

lent non-seasonal deterministic model and run over years where demographics were

available; the U.S. model was run from 1910 through 1949, and the England &

Wales model was run from 1944 through 1964. Model results outside the observed

time series range were discarded.
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Country R0 βforce η School Forcing Function
US 18 0.50 2.50e-08 Sin
England & Wales 24 0.70 1.00e-08 Term Time

Table 2.5. Table of final epidemiological model parameters. School term in
England & Wales as per Keeling et al. [11].

We tested a number of model innovations including term-time forcing, seasonal

forcing of η, and scaling η with population size. We tested each model innovation over

a range of parameter values. Specifically, we varied the transmission rate, strength

of seasonal forcing, size of the import term, and R0 in turn while holding all other

parameters constant. For further analysis, we selected the simplest possible model

structure as it yielded results comparable to more complex models.
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Reporting Rate Variability

Incomplete reporting of pre-vaccine era childhood
diseases: a case study of observation process
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3.1 Abstract

Incomplete observation is an important yet often neglected feature of historical

ecological timeseries. In particular, historical case report timeseries of childhood

diseases have played an important role in the formulation of mechanistic dynam-

ical models of populations and metapopulations. Yet no comprehensive study of
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childhood disease reporting probabilities (commonly referred to as reporting rate)

has been conducted to date. Here we provide a detailed analysis of measles and

whooping cough reporting probabilities in pre-vaccine U.S. cities and states, as well

as cities in England & Wales. Overall, we find the variability between locations

and diseases greatly exceeds that between methods or time periods. We demon-

strate a strong relationship within location between diseases, and within disease

between geographic areas. In addition, we find that demographic covariates such as

ethnic composition and school attendance explain a nontrivial proportion of report-

ing probability variation. Overall, our findings show that disease reporting is both

variable and non-random, and that completeness of reporting is influenced by disease

identity, geography, and socioeconomic factors. We suggest that variability in obser-

vation processes such as incomplete reporting an be accounted for, and that doing

so can reveal key dynamical processes that are otherwise obscured.

3.2 Introduction

Historical datasets have long aided ecologists in unraveling the complex dynamical

interactions of real-world populations and metapopulations. In particular, obser-

vational datasets can provide extensive spatial and temporal coverage difficult to

achieve through field experiments. From disease ecology to wildlife and natural

resource ecology, these datasets have allowed ecologists to evaluate the strength and

significance of a wide range of dynamical processes [1–11].

Historical datasets are shaped by a variety of observation processes. Though not

the core focus of ecological interest, imperfect observation is a rule rather than an

exception in datasets resulting from surveillance rather than controlled experimen-

tation. The extent to which imperfect observation such as incomplete and variable

disease reporting can distort or obscure dynamical processes such as local extinction
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remains an open question, as does the ability to correct for imperfect observation.

When observation processes are stationary and independent of mechanistic dynami-

cal processes, post hoc estimation of the state variables of interest is possible using

known constraints of the dynamical system.

The study of human infectious diseases has yielded important insights into the

non-linear dynamics of real-world populations and metapopulations, largely due to

extensive historical datasets. For human diseases such as measles, cities comprise

the basic epidemiological units of observation over which disease dynamics (and

reporting probabilities) are typically assumed to be constant. Reporting of human

infectious diseases is known to be both imperfect and variable between cities [12–

16]. A reporting probability (proportion of true infections recorded as official case

reports) can be estimated for acute, highly-infectious diseases that confer permanent

immunity, using a combination of demographic and case report data. Here, we show

that reporting probabilities of human infectious diseases follow conserved patterns

in space and time. By accounting for reporting probabilities, we also provide a more

accurate estimate of the scaling of local persistence with population size.

Reporting probabilities of childhood diseases received considerable attention

throughout the 20th century in both the U.S. [14] and England & Wales [15]. Notable

works include Bartlett [2], who reviews estimates from the early 20th century in

both countries, Black [17], who reports summary estimates for several countries,

as well as Finkenstädt and Grenfell [5] and Bjørnstad et al. [18], who employ the

susceptible reconstruction method. However, we have found no systematic review

of variation in childhood diseases reporting probability between populations (cities)

and metapopulations (here, countries).

Stochastic extinction within a host population such as a city is driven by local

processes, such as host demographics, and metapopulation processes, such as disease

importation between populations. Yet stochastic extinction is not easily distin-
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guished from incomplete reporting. Several works have explicitly incorporated estim-

ation of incomplete and variable reporting into dynamical models of populations [8, 9]

and metapopulations [11]. Nonetheless, disease reporting (and variability thereof)

has been largely absent from modern population and metapopulation models that

studied stochastic extinction and disease persistence in England & Wales [19–22].

These models (and results) do not necessarily generalize to metapopulations with

lower and more variable reporting, such as the pre-vaccine U.S. or modern sub-

Saharan Africa.

Outline

This study aims to quantify and explain variability in the reporting probabilities

of two childhood diseases prior to mass vaccination. We use an extensive dataset

of measles [11] and whooping cough case reports in U.S. states and cities in the

pre-vaccine era, in addition to the classic 60-city England & Wales measles dataset

[18]. To estimate the total per-population susceptible pool, we employ two differ-

ent sources of demographic records. Using case reports and susceptibles, we then

compute the reporting probability of each disease and location (cities or states).

Here we refer to sampled units (e.g. specific cities and states) as locations, while

area refers to the level of geographic sampling (i.e., city versus state). For human

diseases such as measles and whooping cough, each city is a coherent epidemiological

population, throughout which disease dynamics (and reporting probabilities) are

typically assumed to be constant. U.S. states, on the other hand, are primarily

administrative subdivisions that are socially and epidemiologically heterogeneous.

Thus, state reporting probability estimates are assumed to be averaged over many

discrete populations (e.g., cities and towns). Nonetheless, the unambiguous nesting

of cities within states provides a useful estimate of the effect of geographic location.
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We begin with a comparison of reporting probabilities between diseases and

between geographic areas (e.g., between states and their respective cities). We find a

very strong relationship within location between diseases, and a strong relationship

within disease between geographic areas. In addition, we explore the temporal varia-

tion of reporting probability in cities. The strong dependence of reporting proba-

bility on geographical identity rather than time suggests that socioeconomic factors

strongly influence disease reporting probability. Indeed, we find that a nontrivial

proportion of variation in reporting probability is explained by the proportion of a

location’s population that is either white or attending school.

We also include a discussion of uncertainty and sources of error. Metadata detail-

ing the collection process of both case reports and demographic records is often sparse

or altogether lacking. Here, we use several independent sources of demographic

data, two different methods of calculation (per capita rates and census microdata),

and bootstrap estimates for one method. Overall, we find the variability between

locations and diseases greatly exceeds that between methods or time periods.

We conclude with a discussion of metapopulation dynamics and the obscuring

effects of incomplete reporting. In observational datasets, poor reporting is indistin-

guishable from stochastic extinction in individual populations (e.g. cities). Correct-

ing for variable reporting regenerates the hypothesized scaling relationship between

population size and observed extinction in the studied metapopulations.

3.3 Results

Overall, a high degree of variability in disease reporting was observed between

both locations and diseases. The distribution of reporting probabilities for each

area (cities, states) and disease (using demographic method results, available for all

locations) is shown in Figure 3.1, and summary statistics are shown in Table 3.1.
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In the U.S., whooping cough probabilities are much lower than measles probabili-

ties, regardless of area. The cities of England & Wales have higher and less variable

measles reporting probabilities than U.S. cities or states, consistent with previous

estimates [2, 14, 15].

Comparison between time periods

The employed method assumes that each system is approximately stationary over

the period of study, and the systems in question should be assessed for major pertur-

bations during the period of study. In addition, a sufficiently long period of time

must be employed such that stochastic and season fluctuations are short relative to

the full period of record.

In order to assess temporal variation in reporting probabilities in the present

systems, city case reports were subdivided into two time series of approximately

equal length (Table 3.3). Figure 3.2 shows that city reporting probability is relatively

invariant across time, though more temporal variation is evident in England & Wales.

The National Health Service was fully implemented in the United Kingdom by 1948.

This change in public health infrastructure could explain some of the observed tempo-

ral variation in England & Wales (Figure 3.2), though any metapopulation-level

temporal shift is slight.

Comparison between methods

Case report totals for each disease are identical between methods, with different

reporting probability estimates (Figure 3.5 and 3.6) resulting from variations in each

location’s total susceptible pool. For U.S. states, estimated reporting probabili-

ties were highly conserved between methods: between-method linear models yield a
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slope ∼ unity and a non-significant intercept. For U.S. cities, reporting probabilities

estimated from the census method are slightly lower than those from the per capita

method.

One major limitation of the per capita method is that U.S. city birth rates are

inferred from the per capita rates of their respective states. In general, states have

higher birth rates than cities in this era (Figure 3.7) This is likely due to states’

rural populations, which have generally higher birth rates than urban areas in this

era [23]. Consequently, the census method likely over-estimates U.S. city susceptibles

and under-estimates reporting probabilities, as observed here.

For reference, the per capita method was also compared with the susceptible

reconstruction method [5] for all areas (see Methods for important assumptions).

Susceptible reconstruction yielded slightly higher estimates, particularly in England

& Wales, though the differences are small (Figure 3.8).

Conserved patterns of variation in disease reporting

The interdependence of disease identity and geographic location in the U.S. is shown

in Figure 3.3. Reporting probabilities of whooping cough are strongly correlated

with measles probabilities, regardless of area (Figure 3.3A). Though more scatter

is evident, city reporting probabilities are correlated with their associated states’

probabilities, regardless of disease (Figure 3.3B). Estimated slopes and correlation

coefficients for each linear model specification, along with bootstrapped confidence

intervals, are shown in Table 3.2. Overall, we find that the observation process of

disease reporting is conserved over space and time, and that disease identity and

geography influences reporting probabilities in consistent ways.

Within-location variability estimates derived from bootstrapping of census micro-

data are shown in Figure 3.3 (reporting probabilities and confidence intervals are
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shown in Tables 3.4 and 3.5). Bootstrap estimates show that larger locations consis-

tently exhibit less variation, as expected (Figure 3.9). Overall, between-location

variation greatly exceeds within-location variation, increasing confidence in the observed

patterns.

The influence of socioeconomic identity on incomplete reporting was explicitly

modeled (Table 3.6). A range of demographic covariates were tested using forward

model selection (see Methods). While many of these predictors are correlated,

forward model selection favors a parsimonious model by selecting the best predictors

first, as shown in Table 3.6. The final models explain much of the observed varia-

tion in reporting probabilities: R2 = 0.51 (state measles); R2 = 0.4 (state whooping

cough); R2 = 0.32 (city measles); R2 = 0.13 (city whooping cough). Overall, varia-

tion in measles reporting probabilities is much better explained by demographic

covariates than that of whooping cough.

Two covariates emerged as most significant: the proportion of a location’s popula-

tion that is either white (prop.white) or attending school (prop.school). Regardless

of disease, higher reporting probabilities are correlated with a higher proportion

white for states and a higher proportion attending school for cities. Other signif-

icant predictors include proportion in labor force (states, both diseases, positive

correlation), household size SD (states, both diseases, positive correlation), propor-

tion male (states, whooping cough, negative correlation), and mean household size

(cities, measles, negative correlation). Overall, selected covariates and their associ-

ated parameter estimates are generally consistent between diseases within each area.

Causal mechanisms of the observed correlations remains unclear. Nonetheless, the

significant covariates broadly relate to measures of economic status (ethnic compo-

sition, labor force, and sex ratio) as well as indicators of social structures that can

influence the distribution infection age and disease reporting (household size distri-

bution, schooling).
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3.4 Discussion

Historical datasets are valuable for their wide spatiotemporal extent, yet their post-

hoc observational nature means that key dynamical processes such as stochastic

extinction can be obscured by imperfect and variable observation. Measles and

whooping cough are two well-studied childhood diseases with very different sympto-

mology, epidemiology, and temporal dynamics. Yet both infect the majority of

susceptible individuals in childhood and confer lasting immunity. In addition, both

diseases undergo stochastic extinction at a rate dependent on population size and

birth rate [24]. Here we infer a key observation process using a long-term constraint

of each dynamical system, i.e. the mass balance of susceptibles in childhood diseases.

We find that reporting probabilities vary greatly between disease, geographic region,

and metapopulation. This variability directly affects patterns of observed extinctions

or “fade-outs” [2, 22, 25] and, if not addressed, makes comparisons between diseases

and metapopulations difficult.

We find that measles reporting probabilities of cities in the U.S. are lower and

more variable than in England & Wales. In the U.S., we find that measles is better

reported than whooping cough (as previously found in England & Wales by Clark-

son and Fine [15]). In addition, we find that reporting probability varies consistently

by geographic locale: those locations that report measles well also report whooping

cough well, and vice versa. On the other hand, reporting probabilities do not appear

to vary appreciably by time in either country or disease in the eras considered.

Likewise, bootstrapping indicates that between-location variation greatly exceeds

within-location uncertainty in the U.S. Finally, we show that demographic covari-

ates, including proportion white and proportion attending school, explain a non-

trivial proportion of the observed variation in U.S. reporting probabilities: locations

that have low school attendance and high minority populations have lower reporting

probabilities, regardless of disease. Overall, we find substantial spatial, temporal,
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and socioeconomic consistency within the pronounced heterogeneity of pre-vaccine

era disease reporting.

Estimating uncertainty

Historical datasets frequently lack detailed metadata, including full descriptions of

sampling protocols. This introduces a persistent difficulty of estimating uncertainty

and establishing concordance between varying data sources. For example, we find

here that the geographic definition of certain cities is not comparable between census

microdata and case reports. Additionally, we have no detailed definition of the

geographic limits used to define cities in case report collections. In short, we cannot

unambiguously identify all sources of error and uncertainty. Nonetheless, we can

often constrain error and uncertainty, for example by the comparison of multiple,

independent data sources, as we do in this study with demographic data.

The structure of census microdata allows us to estimate the sampling distribution

of each location’s susceptible population by bootstrapping each decadal census. The

results clearly show that observed variation decreases for larger locations (Figure 3.9).

These variance estimates do not account for the processes that generate case reports.

Here, we assume that the reporting probability fully describes these processes, and

is time invariant.

Migration remains an interesting problem deserving further attention, and can

possibly be estimated at the decadal level from census microdata. Here we assume

a minimal impact of migration. In the U.S., the overall flow of migration is to

urban areas from rural areas, which we expect experience much higher levels of

stochastic extinction and consequently higher and more variable ages of infection

(for an extreme example, see discussion by Crum [26] of U.S. Civil War troops).

Large rural-to-urban migration waves, as seen in the Great Migration [27], could
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result in an underestimate of susceptibles and overestimate in reporting probability

for some cities. Nonetheless, the low average age of infection of both measles and

whooping cough in the pre-vaccine U.S. and England & Wales [28] suggests that the

vast majority of migrants are not susceptible to either disease.

Importance of observation processes in dynamical process

estimation

As noted above, poor disease reporting and stochastic extinction cannot be easily

separated, particularly in cities that regularly teeter on the boundary of extinction

[11]. This conflation means that metapopulation-level scaling patterns of stochastic

extinction are complicated by between-population variation in incomplete report-

ing. In this regard, the large body of work on measles in England & Wales that

neglected reporting probabilities [19, 21, 29] has benefited from the happy accident

of relatively high and uniform reporting probabilities. In the U.S., on the other hand,

failing to account for the low and variable disease reporting in this era paints a false

picture of the overall metapopulation dynamics and hinders a comparison between

metapopulations [11].

To date, a number of ad hoc measures have been employed to address incomplete

disease reporting. The proportion of zero observations (over a suitably long period of

time) is one common measure of stochastic extinction [8, 11, 18, 30, 31]. This measure

is appealing due to its simplicity, but has been criticized as sensitive to disease

reporting. In an attempt to address these concerns [2] employed a 3-week period of

observed extinction, termed fade-out. Conlan et al. [22] propose several alternate

measures, including fade-outs post invasion and fade-outs post epidemic. These

methods were proposed on mechanistic grounds, yet their respective frequencies of

false negatives (apparent extinction) and true positives are not well-characterized
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under the low and variable disease reporting. In addition, several measures (e.g.,

Conlan et al. [22]) depend on a priori threshold values.

The proportion of observed zeros and its scaling with population size provides

a useful example in the present systems. Previous work has demonstrated a strong

interaction between proportion of zero observations and poor disease reporting in

the U.S., particularly in medium-sized cities that hover at the edge of extinction

Gunning and Wearing [11]. Under the assumption of homogeneous mixing, the

reporting probability is equivalent to the proportion of the total population under

surveillance (homogeneous mixing is a poor assumption for U.S. states, which are

not considered). Here we demonstrate a simple rescaling of total population size by

reporting probability to yield an effective population size. The result is log-linear

dependence of extinction risk on effective population size (Figure 3.4). While the

longer 2 week sampling period of England & Wales also affects the probability of

zero-observations, this rescaling produces a concordance between the two countries,

similar to the pattern observed in Gunning and Wearing [11]. Overall, this example

illustrates the importance and relative ease of accounting for variation in observation

processes when characterizing real-world dynamical systems.

A comparison between the U.S. and England & Wales also highlights the role of

socioeconomic diversity. Our results (Table 3.6) suggest that high levels of ethnic

and cultural heterogeneity, as seen in the U.S. compared to pre-vaccine England &

Wales, increases variation in disease reporting. Indeed, less complete reporting in

U.S. minority populations was suggested a century ago by Crum [26]. This pattern

warrants testing in the modern era in regions such as Niger, which have large rural

populations and a small number of large cities [32]. In a socioeconomically hetero-

geneous state such as Niger, significant variation in measles reporting probabilities

appears to be a conservative assumption. Furthermore, observed variation in report-

ing of other human infectious diseases can be explained by similar socioeconomic
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disparities. For example, Undurraga et al. [16] showed that the estimated probabil-

ity of underreporting of dengue episodes at a national level in Southeast Asia and

the Americas correlated with a measure of health quality.

Broader applications

The employed method is only appropriate for fully immunizing diseases. In the

modern era, vaccination introduces additional sources of variation and measure-

ment error, since estimates of both vaccine uptake and efficacy are required [15].

In addition, we generate single estimates from long time periods (e.g., multiple

epidemics), and assume minimal temporal variation in disease reporting.

Nonetheless, we propose that disease ecologists and epidemiologists can often

estimate between-population variation in observation processes. Accounting for this

variation appears to be particularly important in socioeconomically diverse popula-

tions. The framework that we employ is conceptually and analytically simple,

provided sufficient demographic information is available. Indeed, even when relevant

demographic details are sparse or absent, rough estimates of reporting probability

can suggest whether or not between-location variation overwhelms the dynamical

processes of interest.

3.5 Materials and Methods

Case reports

U.S. weekly case reports of measles and whooping cough were obtained as PDFs

from the United States Public Health Reports [33]. Case reports were manually

double-entered using a custom “Mechanical Turk” web application that automati-

59



Chapter 3. Reporting Rate Variability

cally identified conflicts, which were manually resolved. Populations that contained

more than 20% missing values for either disease were removed. Populations were

also removed if demographic data was unavailable (see below). In later time periods

in the U.S., sample coverage grows sporadic, particularly for cities. To avoid bias

from temporally aggregated missing data, years were excluded if more than 50% of

the remaining cities had fewer than 45 sampled weeks. Missing case reports were

excluded from further analysis.

Measles case reports in England & Wales were originally recorded by the United

Kingdom Office of Population Censuses and Surveys [34, 35]. We employ the publi-

cally available 60-city subset studied by Bjørnstad et al. [18]. This case report dataset

was downsampled to a 2 week sampling interval (this is twice the sampling period of

the U.S., though the difference has no effect on reporting probability calculations).

City-level case reports of whooping cough in England & Wales have been studied

extensively [31, 36], but are not publicly available at this time.

Case report lengths and boundaries are shown in Table 3.1, and plotted in Figures

3.10-3.14. In the U.S., 48 cities and 46 states were selected for final analysis, as well

as 60 cities from England & Wales.

Demographic data

For U.S. locations (cities and states), two main sources of demographic data were

used to estimate the total susceptible pool over the period of case report records.

Per capita method

For the per capita method, each location’s total susceptible pool was obtained from

yearly population estimates and per capita birth, death, and infant mortality rates.
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First, decadal populations were obtained from the U.S. decadal census (1920-1950)

[37]. Yearly populations were estimated using an exponential growth model to inter-

polate between decadal population. Yearly state per capita birth and death rates

were obtained from the U.S. National Center for Health Statistics [38, 39]. Yearly per

capita national infant mortality rates were obtained from the U.S. Census Bureau

[40].

Yearly populations were used to calculate the flow of new susceptibles into each

location from state birth rates (discounted by national infant mortality rates). Fi-

nally, susceptible flows were summed over the period of record of each disease and

location to infer the total susceptible pool. For this method, pre-infection migration

and (non-infant) death of susceptibles was assumed to be minimal.

Microdata method

Census microdata refers to the original responses of each individual in a country’s

census, and includes a range of variables for each response such as location, age,

gender, and ethnicity. These data are currently only available for the U.S. decadal

census, and were obtained from the Integrated Public Use Microdata Series (IPUMS,

1920-1950, 1% sample) [41]. Due to privacy concerns, no microdata is available

for cities with populations of less than 25,000 as of 1920. In addition, the census

boundaries of several cities changed over time. Cities falling in either of these groups

were excluded from further analysis.

Census microdata was used to estimate the total susceptible pool of each U.S.

location. Individuals of ages 1 through 10 (inclusive) that were born within the period

of record of each disease and location were summed to infer the total susceptible pool.

This method includes all migration and death of susceptibles of age ≤ 10 years at

the time of census that occurred in the decade preceding the census.
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Census microdata permits an assessment of the sampling distribution of the

susceptible pool via bootstrapping. Each census was bootstrapped 1E+04 times

for each disease, and the total susceptible pool recomputed for each bootstrap.

Comparability

For several reasons, these methods are not strictly comparable. First, the census

microdata of several cities expands to include neighboring cities in 1940 and 1950

(such as Tampa and St. Petersburg, FL and Minneapolis and St. Paul, MN), leading

to a detectable overestimate of susceptibles in select cities. These cities were excluded

from further analysis. Second, state birth rates are used in the per capita method to

estimate births of both states and their associated cities (see Discussion). Finally,

yearly city births for England & Wales were provided by Rohani [42], and were

subsequently adjusted by the national infant mortality rate. This method is closest

to the per capita method.

Reporting Probability

We begin by assuming that reporting probabilities (commonly referred to as report-

ing rates) are invariant over time within each disease and location. For each location

i and disease j, we have obtained the total number of observed case reports Cij

and total (new) susceptible pool Sij (note that, since the observation window varies

between disease, Si depends upon disease). If the epidemiological system is approx-

imately stationary over the time period considered (i.e., there are no major changes

in the underlying processes governing the disease and demographic dynamics), then

the number of susceptible individuals in the population should also be approximately

stationary. This implies that the flow of new susceptibles is counterbalanced by the

flow of new infections. For a disease that confers permanent immunity, new suscep-
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tibles are just surviving births (ignoring the effects of migration). The simplest

estimate of reporting probability is therefore obtained by assuming that the total

number of expected cases, Eij, is approximately equal to the total accumulated

susceptible pool, Sij, over the period of interest. Thus, the reporting probability

rij = Cij

Eij
≈ Cij

Sij
[15].

This simple estimate assumes that the number of individuals who are susceptible

at the beginning of the time period considered is approximately the same as the

number susceptible at the end. Previous work [5] has regressed cumulative births

against cumulative cases, and obtained an estimate of reporting probability as the

slope of the regression line. The two estimates are the same if the deviation from

the average number of susceptibles is the same at the beginning and end of the time

period. This can be achieved in a stationary system if the time period considered

begins and ends at approximately the same point in the epidemic cycle.

To assess the time variability of reporting probabilities, we subdivide U.S. city

case reports into two approximately equal subdivisions (Early and Late) and re-

estimate reporting probability using the per capita method. We also estimate report-

ing probabilities using the susceptible reconstruction method [5], where the reporting

probability is the slope of the linear regression between cumulative yearly births and

case reports. Notably, we aggregate to a yearly scale to conduct susceptible recon-

struction, since we have no knowledge of within-year variability in birth rates.

Modeling the interdependence of reporting probabilities

Each location (city, state) has an associated reporting probability for both measles

and whooping cough (between-disease). Likewise, each disease has an associated

reporting probability for each state and its associated cities (between-area). We

employ a set of linear models to quantify the interdependence in between-disease
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and between-area reporting probabilities.

For the between-disease case, we model whooping cough as a function of measles,

with a separate model for each area. For the between-area case, we model cities as

a function of their associated states, with a separate model for each disease. The

result is four separate model specifications. Our choice of measles as the independent

variable is arbitrary. On the other hand, cities have a natural dependence on states

due to the nested nature of public health administration. For simplicity, we use

ordinary least-squares (OLS) regression rather than error-in-variables regression. All

reporting probabilities were logit2-transformed to correct for heteroskedasticity. The

logit2-transform is simply log2( p
1−p), such that one unit of increase equates with a

doubling the reporting probability odds, e.g., from 50% (1/1 odds, logit2(odds)=0)

to 66% (2/1 odds, logit2(odds)=1).

For each linear model specification, 1E+04 model realizations were constructed

via bootstrap resampling. For each realization, a two-step sampling process was

employed. First, city identity was sampled with replacement. Second, for each

sampled city, the reporting probability of the relevant independent and dependent

variables were sampled with replacement from the appropriate bootstrap distribu-

tion. Finally, simple linear regression was conducted on the resulting sample, and the

slope, intercept, and correlation coefficient were extracted. This strategy, known as

“bootstrapping pairs” [43], accounts for uncertainty in reporting probabilities both

within and between cities without making standard normality and constant-variance

assumptions on the residuals. Rather, this strategy assumes only that the cities

are randomly sampled from the population distribution of cities (see above for city

selection criteria).
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Demographic covariate models of reporting probabilities

Census microdata provides a number of demographic covariates at both the individ-

ual and household level for each location and census. Due to complete coverage

of sampled locations, the 1930 decadal census was selected for further analysis.

A weighted summary of each covariate was calculated by location to yield either

a proportion (categorical variables) or mean and standard deviation (continuous

variables). A separate linear model was then constructed for each disease and

area to model reporting probability (microdata method) as a function of covariate

summaries. Each model was constructed via forward selection with a BIC selection

criteria. In addition, reporting probability was logit2 transformed and all predictors

were zero-centered prior to model construction.

Tested covariates include the proportion of each location’s population that was

white (prop.white), in school (prop.school), male (prop.male), born in the current

state of residence (prop.local), and in the labor force (prop.labforce). In addition,

the mean and standard deviation of age (mean.age and sd.age) and household size

(mean.housesize and sd.housesize) was also tested. Note that covariate summaries

are broadly correlated.
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Figure 3.1. Distribution of reporting probability estimates for all diseases and
areas. Demographic method results (shown here) are available for all localities.
Overall, reporting of whooping cough is less complete than measles, while U.S.
reporting is less complete than England & Wales (E&W). Extensive variation
between locations is evident, particularly in the U.S. Black dashed line: group
mean.
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Figure 3.2. Time period comparison (per capita method, E&W = England &
Wales, WC = whooping cough). For cities, case report timeseries were divided into
early and late portions (see Table 3.3). Reporting probability estimated from these
sub-periods generally match those from the full period. U.S. city measles is the
exception, with more complete reporting in the early period. All values were logit2

transformed to correct for heteroskedasticity. Black dashed line: 1-1 line; solid blue
line: linear model.
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Figure 3.3. Reporting probability estimates, showing that the variability between
locations (cities or states) greatly exceeds variability within locations. 1E+04 total
bootstraps were drawn (200 are plotted, small black points). For each location, an
approximate 95% confidence interval (black ovals) and median probability (orange
central dot) are shown. The median linear model (black line) and approximate
model 95% CI (blue lines) are also plotted. Linear model results and bootstrap
confidence intervals are shown in Table 3.2.
A Whooping cough reporting probabilities are closely proportional to those of
measles, regardless of area.
B City reporting probabilities are roughly proportional to those of the associated
states, regardless of disease.
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Figure 3.4. Semi-log scaling of observed zeros with total population (TP) and
effective population (EP = TP * reporting probability). Proportion zeros shows a
closer scaling with EP than TP, particularly in whooping cough, as well as a closer
correspondence between metapopulations. Regressions for each metapopulation are
overplotted. Populations with no observed zeros are excluded. The 2 week
sampling interval of England & Wales (E&W) is twice that of the U.S. (1 week).
For the EP population model, R2 = 0.89 (U.S. measles), 0.82 (E&W measles), 0.90
(U.S. whooping cough).
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3.7 Tables

Disease Area L N Start End Mean SD
Measles U.S. Cities 48 1148 1924-01-05 1945-12-29 0.27 0.15
Measles E&W Cities 60 598 1944-01-09 1966-12-25 0.54 0.08
Measles U.S. States 45 1089 1928-01-07 1948-12-11 0.20 0.10
WC U.S. Cities 48 1148 1924-01-05 1945-12-29 0.10 0.07
WC U.S. States 46 467 1938-01-01 1946-12-07 0.06 0.04

Table 3.1. Number of sampled locations (L), number of sampled case reports (N),
and time range, as well as summary statistics of estimated reporting probabilities
(per capita method) for each disease and area. Note the limited sample coverage
for state whooping cough reports. U.S. locations are sampled weekly; England &
Wales cities are sampled every other week. WC: whooping cough; E&W: England
& Wales.

Model Subset Slope CI Correlation CI
City vs. State Measles 0.93 (0.67, 1.23) 0.66 (0.50, 0.77)
City vs. State Whooping cough 0.82 (0.53, 1.19) 0.55 (0.34, 0.73)
Measles vs. Whooping cough City 1.00 (0.81, 1.15) 0.90 (0.78, 0.96)
Measles vs. Whooping cough State 0.95 (0.82, 1.07) 0.89 (0.82, 0.94)

Table 3.2. Linear models of reporting probability variation (microdata method)
between area and between disease, constructed from 1E+04 bootstrap draws (see
Methods). Median and 95% CI of model results and correlations are shown. Slope
estimates are in logit2 units. For the measles subset, doubling the state reporting
probability odds, i.e. from 50% (1/1 odds, logit2(odds)=0) to 66% (2/1 odds,
logit2(odds)=1) approximately doubles the city reporting probability odds.
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Supplemental Figures and Tables

Incomplete reporting of pre-vaccine era childhood diseases: a case study

of observation process variability

C. E. Gunning, E. Erhardt, and H. J. Wearing

Disease Area Era N Start End
Measles U.S. Cities Early 574 1924-01-05 1934-12-29
Measles E&W Cities Early 286 1944-01-09 1954-12-26
Measles U.S. Cities Late 574 1935-01-05 1945-12-29
Measles E&W Cities Late 312 1955-01-09 1966-12-25
WC U.S. Cities Early 574 1924-01-05 1934-12-29
WC U.S. Cities Late 574 1935-01-05 1945-12-29

Table 3.3. Time range and sample number of subdivided city case reports. WC:
whooping cough; E&W: England & Wales; N: number of sampled case report.
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Figure 3.6. Comparison of estimated reporting probabilities between the per
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Figure 3.9. Standard error of reporting probability bootstrap draws, showing that
variation decreases as the population of the sampled location increases. The 1930
population is shown, using the microdata method.
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Pop. (1930) White (%) Measles (%) CI W. cough (%) CI
Alabama 2.6e+06 65 7.7 (7.6, 7.8) 2.1 (2.1, 2.1)
Arizona 4.3e+05 86 15.2 (14.7, 15.7) 6.2 (5.9, 6.4)
Arkansas 1.9e+06 74 7.2 (7.0, 7.3) 2.2 (2.1, 2.2)
California 5.7e+06 95 25.0 (24.7, 25.3) 7.0 (6.9, 7.1)
Colorado 1e+06 99 27.2 (26.6, 28.0) 7.5 (7.2, 7.8)
Connecticut 1.6e+06 98 28.9 (28.2, 29.6) 9.1 (8.8, 9.4)
Delaware 2.4e+05 85 20.5 (19.4, 21.7) 5.0 (4.7, 5.4)
Florida 1.5e+06 71 8.3 (8.1, 8.4) 1.8 (1.7, 1.8)
Georgia 2.9e+06 63 6.2 (6.1, 6.3) 1.6 (1.5, 1.6)
Idaho 4.5e+05 99 10.5 (10.1, 10.8) 2.9 (2.8, 3.1)
Illinois 7.6e+06 96 19.7 (19.5, 20.0) 5.9 (5.8, 6.0)
Indiana 3.2e+06 96 12.7 (12.5, 12.9) 2.1 (2.1, 2.2)
Iowa 2.5e+06 99 11.0 (10.8, 11.2) 2.3 (2.2, 2.3)
Kansas 1.9e+06 96 24.4 (23.9, 25.0) 7.5 (7.3, 7.7)
Kentucky 2.6e+06 91 8.9 (8.8, 9.0) 4.0 (3.9, 4.1)
Louisiana 2.1e+06 64 3.8 (3.8, 3.9) 0.9 (0.9, 1.0)
Maine 8e+05 100 24.7 (23.9, 25.4) 10.0 (9.6, 10.5)
Maryland 1.6e+06 83 22.6 (22.1, 23.0) 8.0 (7.8, 8.2)
Massachusetts 4.2e+06 99 33.0 (32.5, 33.5) 9.9 (9.7, 10.1)
Michigan 4.8e+06 96 26.8 (26.5, 27.1) 8.6 (8.5, 8.8)
Minnesota 2.6e+06 99 17.5 (17.2, 17.8) 3.8 (3.7, 3.9)
Missouri 3.6e+06 94 10.4 (10.3, 10.6) 1.8 (1.8, 1.9)
Montana 5.4e+05 97 27.9 (26.9, 29.0) 6.8 (6.4, 7.2)
Nebraska 1.4e+06 98 12.6 (12.3, 12.9) 1.9 (1.8, 2.0)
New Hampshire 4.7e+05 100 11.8 (11.3, 12.3) 2.7 (2.6, 2.9)
New Jersey 4e+06 95 35.6 (35.1, 36.2) 11.1 (10.9, 11.3)
New Mexico 4.2e+05 92 11.0 (10.6, 11.3) 5.3 (5.1, 5.6)
New York 1.3e+07 97 24.7 (24.5, 24.9) 7.6 (7.6, 7.7)
North Carolina 3.2e+06 72 20.4 (20.1, 20.6) 8.7 (8.5, 8.8)
North Dakota 6.8e+05 98 13.7 (13.3, 14.2) 4.6 (4.4, 4.8)
Ohio 6.6e+06 95 20.0 (19.8, 20.2) 6.7 (6.6, 6.8)
Oklahoma 2.4e+06 89 5.9 (5.8, 6.0) 1.7 (1.6, 1.7)
Oregon 9.5e+05 98 21.6 (21.0, 22.2) 4.3 (4.2, 4.5)
Pennsylvania 9.6e+06 95 28.7 (28.4, 28.9) 7.1 (7.0, 7.2)
Rhode Island 6.9e+05 98 23.7 (22.9, 24.6) 10.0 (9.5, 10.5)
South Carolina 1.7e+06 54 10.1 (10.0, 10.3) 5.8 (5.6, 5.9)
South Dakota 6.9e+05 97 14.2 (13.7, 14.7) 2.4 (2.3, 2.5)
Tennessee 2.6e+06 81 7.5 (7.4, 7.7) 2.9 (2.9, 3.0)
Texas 5.8e+06 86 12.1 (12.0, 12.2) 6.5 (6.4, 6.6)
Utah 5.1e+05 98 31.6 (30.6, 32.7) 14.7 (14.1, 15.4)
Vermont 3.6e+05 100 39.2 (37.4, 41.1) 20.3 (19.0, 21.7)
Washington 1.6e+06 97 25.1 (24.6, 25.6) 6.3 (6.2, 6.5)
West Virginia 1.7e+06 94 12.0 (11.8, 12.2) 4.0 (3.9, 4.1)
Wisconsin 2.9e+06 99 45.8 (45.1, 46.6) 13.7 (13.4, 14.1)
Wyoming 2.3e+05 97 20.7 (19.6, 21.8) 4.9 (4.6, 5.3)

Table 3.4. States: Demographic covariates and estimated reporting probabilities
of each disease (showing median and 95% CI).

82



Chapter 3. Reporting Rate Variability

Pop. (1930) White (%) Measles (%) CI W. cough (%) CI
Atlanta, GA 2.7e+05 62 10.2 (9.6, 10.7) 4.2 (3.9, 4.4)
Baltimore, MD 8.2e+05 81 34.7 (33.7, 35.8) 19.6 (18.9, 20.2)
Birmingham, AL 2.6e+05 61 11.0 (10.5, 11.7) 3.0 (2.9, 3.2)
Boston, MA 7.8e+05 98 34.4 (33.2, 35.6) 15.3 (14.7, 15.8)
Bridgeport, CT 1.5e+05 98 11.1 (10.3, 12.0) 3.2 (3.0, 3.5)
Buffalo, NY 5.7e+05 98 18.4 (17.7, 19.1) 9.3 (9.0, 9.7)
Charleston, WV 6.1e+04 92 20.7 (18.6, 23.3) 6.4 (5.7, 7.2)
Chicago, IL 3.4e+06 93 18.2 (17.9, 18.5) 8.1 (7.9, 8.2)
Cincinnati, OH 4.5e+05 91 14.2 (13.6, 14.9) 5.7 (5.4, 5.9)
Cleveland, OH 9e+05 92 34.1 (33.1, 35.3) 18.7 (18.1, 19.4)
Columbus, OH 2.9e+05 86 23.5 (22.3, 24.9) 8.7 (8.2, 9.2)
Dallas, TX 2.6e+05 85 17.8 (16.9, 18.8) 5.4 (5.1, 5.7)
Denver, CO 2.9e+05 98 46.6 (44.2, 49.2) 17.8 (16.9, 18.8)
Detroit, MI 1.6e+06 92 28.3 (27.7, 29.0) 14.5 (14.2, 14.9)
Flint, MI 1.5e+05 96 33.7 (31.5, 36.2) 10.6 (9.9, 11.4)
Fort Wayne, IN 1.2e+05 96 11.4 (10.6, 12.4) 1.7 (1.6, 1.9)
Grand Rapids, MI 1.7e+05 99 38.0 (35.4, 40.9) 15.4 (14.3, 16.6)
Hartford, CT 1.6e+05 97 23.3 (21.6, 25.1) 8.8 (8.2, 9.6)
Houston, TX 2.9e+05 78 3.0 (2.8, 3.1) 0.7 (0.7, 0.7)
Indianapolis, IN 3.6e+05 87 36.1 (34.5, 37.9) 11.2 (10.6, 11.7)
Kansas City, MO 4e+05 91 20.1 (19.2, 21.2) 5.6 (5.4, 5.9)
Los Angeles, CA 1.2e+06 94 16.5 (16.1, 16.9) 6.8 (6.6, 6.9)
Memphis, TN 2.6e+05 60 17.9 (17.0, 18.9) 8.7 (8.3, 9.2)
Milwaukee, WI 5.9e+05 99 49.9 (48.1, 51.9) 24.1 (23.2, 25.1)
Mobile, AL 6.8e+04 67 4.7 (4.3, 5.2) 0.5 (0.5, 0.6)
Nashville, TN 1.6e+05 72 14.4 (13.4, 15.6) 6.6 (6.1, 7.1)
New Haven, CT 1.6e+05 95 41.9 (38.9, 45.2) 14.4 (13.3, 15.6)
New Orleans, LA 4.6e+05 71 5.4 (5.2, 5.6) 3.4 (3.3, 3.5)
Omaha, NE 2.1e+05 95 19.1 (17.9, 20.3) 2.4 (2.2, 2.6)
Philadelphia, PA 2e+06 88 24.0 (23.5, 24.6) 10.1 (9.9, 10.3)
Pittsburgh, PA 6.7e+05 92 29.8 (28.7, 30.9) 11.3 (10.9, 11.7)
Providence, RI 2.4e+05 98 46.0 (43.3, 48.9) 16.9 (15.8, 18.0)
Raleigh, NC 3.3e+04 61 42.6 (37.1, 49.2) 30.5 (26.5, 35.4)
Richmond, VA 1.8e+05 71 39.6 (37.1, 42.4) 3.0 (2.8, 3.2)
Rochester, NY 3.3e+05 100 27.0 (25.5, 28.6) 9.8 (9.3, 10.5)
Sacramento, CA 9.6e+04 93 43.3 (39.4, 47.8) 20.3 (18.4, 22.5)
Saint Louis, MO 8.2e+05 89 19.5 (18.8, 20.2) 7.7 (7.4, 8.0)
Salt Lake City, UT 1.4e+05 98 56.9 (53.3, 61.1) 26.8 (25.0, 28.9)
San Antonio, TX 2.4e+05 93 3.0 (2.8, 3.1) 0.6 (0.6, 0.7)
Seattle, WA 3.7e+05 96 41.8 (39.7, 44.1) 13.8 (13.0, 14.5)
South Bend, IN 1e+05 96 11.3 (10.4, 12.4) 3.9 (3.6, 4.3)
Spokane, WA 1.2e+05 99 50.6 (46.5, 55.3) 9.8 (9.0, 10.8)
Syracuse, NY 2.1e+05 100 63.0 (58.6, 67.6) 35.8 (33.4, 38.7)
Tacoma, WA 1.1e+05 97 26.6 (24.6, 29.0) 6.4 (5.9, 7.0)
Trenton, NJ 1.3e+05 94 19.2 (17.6, 21.0) 6.7 (6.2, 7.4)
Washington, DC 4.9e+05 72 20.8 (20.0, 21.6) 7.2 (6.9, 7.5)
Winston-Salem, NC 7.7e+04 56 53.3 (48.6, 58.8) 24.4 (22.1, 27.0)
Worcester, MA 2e+05 100 37.7 (35.3, 40.5) 17.4 (16.2, 18.7)

Table 3.5. Cities: Demographic covariates and estimated reporting probabilities
of each disease (showing median and 95% CI).

83



Chapter 3. Reporting Rate Variability

Area Response DF R2 Parameter Est. Std. Error t value Pr(> |t|)
State Measles 41 0.515 (Intercept) -2.25 0.105 -21.5 6.01e-24

prop.white 5.84 1.06 5.5 2.23e-06
prop.labforce 16.2 4.32 3.76 0.000538
sd.housesize 2.33 0.849 2.75 0.0089

State Whooping cough 41 0.404 (Intercept) -4.18 0.12 -34.8 4.82e-32
prop.white 6.63 1.33 4.99 1.14e-05
sd.housesize 4.3 0.985 4.36 8.48e-05
prop.labforce 13.6 5.01 2.72 0.00941
prop.male -18.7 9.74 -1.93 0.0612

City Measles 45 0.317 (Intercept) -1.25 0.17 -7.34 3.18e-09
prop.school 36.8 8.04 4.58 3.68e-05
mean.housesize -1.66 0.646 -2.57 0.0135

City Whooping cough 46 0.128 (Intercept) -3.31 0.203 -16.3 9.31e-21
prop.school 26.4 9.38 2.81 0.00721

Table 3.6. Linear models of reporting probability (microdata method) in response
to demographic covariates. Models were constructed via forward selection with a
BIC selection criteria. For each model, parameters are shown in decreasing order of
BIC reduction. Separate models are denoted by horizontal lines. Regardless of
disease, proportion white is the best predictor of state reporting probabilities, while
proportion attending school is the best predictor of city reporting probabilities.
Reporting probability was logit2 transformed and all predictors were zero-centered
prior to model construction.
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Figure 3.10. Measles, State. Case reports per sample period, with locations
ordered by population size (black = 0; white = missing). Every other location is
shown.
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Figure 3.11. Measles, City. Case reports per sample period, with locations
ordered by population size (black = 0; white = missing). Every other location is
shown.
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Figure 3.12. Measles, England & Wales. Case reports per sample period,
with locations ordered by population size (black = 0; white = missing). Every
other location is shown.
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Figure 3.13. Whooping cough, State. Case reports per sample period, with
locations ordered by population size (black = 0; white = missing). Every other
location is shown.
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Figure 3.14. Whooping cough, City. Case reports per sample period, with
locations ordered by population size (black = 0; white = missing). Every other
location is shown.

89



Chapter 4

Predicted and Cryptic Persistence

Cryptic persistence in childhood disease
Christian Gunning1,∗ Matthew Ferrari2, Helen J. Wearing1,3

1 Department of Biology, University of New Mexico, Albuquerque, New

Mexico, USA

2 Center for Infectious Disease Dynamics, Pennsylvania State

University, University Park, Pennsylvania, USA

3 Department of Mathematics and Statistics, University of New Mexico,

Albuquerque, New Mexico, USA

∗ E-mail: xian@unm.edu

4.1 Abstract

Accurate monitoring of disease incidence is a key element in the control of preventable

infectious diseases. Previous work has demonstrated wide variation in disease report-

ing probability. Here we use an extensive record of measles and whooping cough

case reports in pre-vaccine era U.S. cities to predict disease persistence from report-
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ing probability and distributions of case reports. Our results indicate that cryptic

persistence is common in populations with a combination of imperfect reporting and

low absolute incidence. In turn, both population size and pathogen life history affect

patterns of absolute incidence, independent of disease reporting. Thus, we find that

cryptic persistence is most common in medium-sized cities for measles, and smaller

cities for whooping cough. As modern vaccination campaigns push absolute incidence

to lower levels, cryptic persistence is expected to increase, particularly in “colonizer”

diseases with longer infectious periods and lower transmission rates.

4.2 Introduction

Persistence of childhood diseases such as measles and whooping cough results from

a complex interplay between population and metapopulation processes. At the local

level, stochasticity in host and pathogen demographic processes can result in local

extinction, particularly in small populations [1–4] or for pathogens with short infec-

tious periods [4, 5]. At the metapopulation level, connectivity between populations

allows the rescue of individual populations from local extinction [5, 6], while the effect

of connectivity on temporal synchrony and metapopulation persistence is less clear

[7–12]. Disentangling local and metapopulation processes has proved challenging.

Incomplete observation further complicates the picture: measles has unambiguous

symptoms that remain approximately constant with age, and generally has higher

and less variable reporting probabilities than whooping cough [13], which exhibits

age-dependent severity and shares symptoms with many other common respiratory

diseases [14, 15].

Here we compare patterns of persistence between measles and whooping cough

in pre-vaccine era United States cities. The pre-vaccine U.S. provides an attractive

model system with high-quality demographic records, two decades of continuous
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disease monitoring in the majority of urban areas, and no uncertainty associated with

vaccine uptake and efficacy. We are also able to correct for variation in reporting

probability.

Local Drivers of Persistence

Measles and whooping cough are diseases caused by acutely infectious and fully

immunizing obligate human pathogens. The pathogens that cause these so called

“childhood diseases” infected an overwhelming majority of the human population in

the pre-vaccine era, with infection typically occurring early in life. Periodic forcing

of disease transmission via changes in host density (via, e.g., school terms [16, 17]

or economic migration [18]) is also a common feature of childhood diseases. Both

measles and pertussis have high reproductive ratios (R0 ≈ 20) [19] and relatively

fast life cycles: the combined latent and infectious period is approximately 15 days

for measles and 30 days for pertussis [17]. At high incidence, susceptible hosts are

rapidly depleted, leading to subsequent inter-epidemic troughs of low incidence or

stochastic extinction. When infection is low or absent from a population, susceptible

replenishment proceeds via the host demographic processes of birth and migration.

These forces combine with stochasticity to yield characteristic yearly and multi-

annual epidemic cycles in a wide range of human populations and diseases [9, 20–26].

During inter-epidemic troughs, stochastic extinction of measles and pertussis

is common, particularly in small populations. Indeed, previous work has shown

that persistence scales approximately log-linearly with population size [1, 4, 27–31].

Theory predicts that longer infectious periods and higher birth rates should increase

persistence when all else is equal [4, 27].

Vaccination programs remove susceptible individuals from the chain of infection,

and are analogous to reducing birth rates [23]. Yet vaccination is imperfect in both
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application and protective effects. In addition, the immunizing effects of natural

infection decrease as incidence drops [32], which can lead to a paradoxical negative

feedback between vaccine-induced immunity and immunity from natural infection.

Metapopulation Drivers of Persistence

Persistence is typically measured in individual populations, yet it both influences and

is influenced by metapopulation processes. Pathogen reintroduction via importation

restarts (or “rescues”) local chains of infection from extinction [5, 31, 33] (note that

we define persistence as the presence of disease, either from local transmission or

importation). Increased metapopulation connectivity can increase rescue effects,

leading to increased persistence throughout a metapopulation [6]. On the other

hand, low connectivity and prolonged extinction leads to susceptible build-up and

(eventual) explosive epidemics.

The effect of metapopulation synchrony on persistence remains an area of active

research. Theory predicts that metapopulation asynchrony of disease incidence

should increase persistence by fostering disease importation during local epidemic

troughs [7, 12, 34, 35]. Inversely, high levels of connectivity can synchronize popula-

tions, leading, counter-intuitively, to decreased rescue effects and decreased local

persistence in inter-epidemic troughs of metapopulation incidence [11, 12, 34, 36, 37].

Indeed, vaccination programs can drive metapopulation synchronization [9], which

is hypothesized to favor extinction [8, 11, 38].

Outline

Here we examine metapopulation patterns of persistence of two childhood diseases in

U.S. cities in the pre-vaccine era using an extensive dataset of measles and whooping
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cough case reports, demographic records, and estimates of reporting probability. This

study system allows us to test the relative effects of disease life history on persistence,

providing a comparison between a relatively “invasive” pathogen (measles) versus a

superior “colonizer” (whooping cough).

We focus first on observed persistence: that is, the proportion of non-zero case

reports in each city over the period of record. We demonstrate a conserved scaling

relationship between observed incidence (case reports), disease reporting probabil-

ity, and observed persistence. We use this relationship to predict true persistence

(defined as the expected persistence at full reporting). We examine the dependence of

observed and predicted persistence on population size, and provide empirical support

for the increased persistence of whooping cough relative to measles across a wide

range of population sizes.

We next focus on cryptic persistence, which we define as the difference between

observed and predicted persistence: the predicted probability of unobserved persis-

tence. We explore the scaling of cryptic persistence with both population size and

reporting probability. We show that cryptic persistence is particularly common in

populations with low absolute incidence and low reporting probability, and thus

differs markedly between diseases.

Our results suggest that cryptic persistence is widespread, and that metapopula-

tion persistence is much more difficult to measure than previously acknowledged. In

addition, vaccination appears capable of either decreasing or increasing cryptic persis-

tence, depending on population and disease attributes such as reporting probability

and infectious period. The “unknown unknowns” intrinsic in cryptic persistence

complicates public health and epidemiology decision-making, with metapopulation

persistence likely becoming more difficult to estimate as control efforts improve.

Consequently, active disease surveillance plays an important public health role, even

in the face of apparent disease elimination.
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4.3 Methods

Estimating the Distribution of Incidence

Our ultimate goal is to estimate the probability of true persistence from case reports

and reporting probability. This, in turn, allows us to compare metapopulation

patterns of true and cryptic persistence between diseases. To accomplish this, we

first infer the distribution of incidence from case reports and reporting probabilities,

and then use a statistical model to estimate persistence from incidence. Throughout,

we distinguish between inferred quantities and approximated or predicted quantities.

Inferred quantities depend on distributional assumptions and are denoted by the hat

superscript: X̂. Approximations and predictions, on the other hand, have simple

arithmetic relationships to the true, unobserved quantities that they estimate, and

are denoted by the tilde superscript: X̃.

One key challenge we face is how to summarize distributions of incidence in a

way that can be applied to both large and small populations alike. At large popula-

tion sizes and over long time periods, both cases (true incidence) and case reports

(observed incidence) follow log-normal distributions in these diseases. Small and

medium sized populations, however, exhibit both local extinction and unobserved

incidence due to incomplete reporting. These zero-observations require careful consi-

deration, since log(0) is undefined. If zero-observations are removed, then the estima-

ted distribution is simply the distribution of case reports conditional on both persis-

tence and subsequent observation of persistence.

One potential distributional measure is the sample median, which is transfor-

mation-invariant, and converges to the sample mean for log-normally distributed

data (i.e., in large populations). However, the effects of discretization are especially

apparent in small populations. Numerous cities have zero median case reports but
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widely differing distributions of true incidence and case reports, making the median

a poor estimator of either true incidence or case reports in small and medium sized

cities.

Consequently, we use a distributional approach to infer the mean of case reports

using nonlinear minimization to fit a normal CDF to the ECDF of log case reports.

Since case reports of zero can arise in multiple ways (i.e., either from local extinction

or cryptic persistence), we treat zeros as less than or equal to 1 case report. This

process is equivalent to the method employed by Gunning and Wearing [33], applied

here to case reports (i.e., observed absolute incidence rather than predicted per capita

incidence). Thus we find the inferred mean of case reports µ̂c, which summarizes the

full distribution of case reports (i.e., observed incidence).

In the largest populations, all three measures converge, while the log-space sample

mean exhibits a positive bias in most populations due to the exclusion of zero obser-

vations (Figure 4.4). The sample median generally agrees with µ̂c, but is discrete

and achieves a minimum of 0 in more than 10 cities for each disease. Thus, as the

distribution of observed incidence shifts leftwards (typically in smaller populations),

the sample median provides a decreasingly precise summary of observed incidence

compared to µ̂c.

Incomplete observation

Disease reporting in this metapopulation is known to vary with both disease identity

and location, and is approximately stationary over time in this system [13]. For each

population i and each disease j, a single reporting probability rij was estimated from

the ratio of births and the sum of case reports over the period of observation. Births

were estimated from U.S. census microdata, which also permits the construction of

confidence intervals through bootstrapping [13].
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The first step to estimating persistence is to find the marginal distribution of

true incidence (I) over time for each population and disease. First, we infer the

marginal distribution of observed incidence (i.e. case reports, C). We then correct for

incomplete reporting to yield an inferred distribution of incidence, which is equivalent

to the inferred distribution of case reports at full reporting.

The expected or predicted incidence Ĩ is simply the observed case reports divided

by the reporting probability: Ĩ = C
r

. This correction fails, however, for C = 0.

Pr(I = 0|C = 0) ∝ Pr(C = 0|I = 0) ∗ Pr(I = 0) = 1 ∗ Pr(I = 0). Yet we seek

Pr(I = 0). That is, we wish to know the true probability of extinction (I = 0).

Given C = 0, the maximum likelihood estimator (MLE) of I is 0. However, for low

reporting probability and low incidence, a large proportion of observed zeros result

from cryptic persistence. Assuming a binomial reporting process, Pr(C = 0|r =

ρ, I = i) = (1 − ρ)i and, for r = 0.1 and I = 10, more than 30% of observed zeros

are expected to result from cryptic persistence. We sidestep this complication by

computing the inferred mean of incidence from the inferred mean of case reports

(which is non-zero by design): µ̂I ≈ µ̂c
r

. The result, µ̂I , yields a summary statistic of

the distribution of case reports at full reporting, which in turn is equivalent to the

distribution of true incidence.

Predicting Persistence

The probability of persistence depends on season, and potentially on metapopulation

incidence. Here we marginalize over time and focus on long-term differences in persis-

tence between diseases and populations. Thus, we estimate the quasi-stationary,

per-time probability of true persistence. We define true persistence (P ) as the per-

observation probability of non-zero incidence, and observed persistence (Po) as the

probability of non-zero case reports (e.g. the proportion of non-zero reporting weeks).
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We construct a statistical model where observed persistence varies in response to

the inferred mean of case reports: log10(Arctanh(Po)) ∼ log10(µ̂c) (see Figure 4.5).

We use this model to estimate true persistence (P̃ ≈ P ) from the inferred distribution

of incidence (which is equivalent to the inferred distribution of case reports at full

reporting): P̃ ∼ µ̂I (see Figure 4.6).

Due to incomplete reporting, observed persistence is the sum of true persistence

and cryptic persistence (Pc): Po = P+Pc. Thus, cryptic persistence is the (unknown)

fraction of unobserved incidence. Our best estimate of cryptic persistence is, then,

the difference between observed and predicted persistence: Po − P̃ = P̃c.

Estimating uncertainty

Numerous sources of error and variation are present in the final estimates of persis-

tence and cryptic persistence. The primary sources of uncertainty in persistence

estimates include the reporting probability and uncertainty in linear model predic-

tions. We used parametric bootstrapping to quantify this uncertainty.

For each bootstrap draw, reporting probability was parametrically sampled and

used to compute µ̂I from µ̂C . Next, log10(Arctanh(P̃ )) was parametrically sampled

from the prediction distribution of the appropriate linear model, conditioned on the

sampled µ̂I , and back-transformed into a proportion. Finally, P̃c was computed

from Po and the sampled P̃ . Bootstrap samples were then used to construct 95%

confidence intervals for P̃ and P̃c.
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4.4 Results

Regardless of disease, we clearly expect to observe fewer zero-weeks as mean case

reports increase (Figure 4.1: µ̂C versus Po and P̃ ). Indeed, the scaling of observed

persistence (Po) with observed incidence (µ̂C) is very similar between diseases (see

also Figure 4.5). Yet theory predicts that pertussis, with a longer infectious period

and a lower transmission rate, should exhibit less frequent stochastic extinction than

measles for a given population size [4, 27], a pattern that is obscured by whooping

cough’s low reporting probability. Correcting for incomplete reporting shows that

whooping cough is indeed much more likely to persist (P̃ = Pr(I > 0)) across

a wide range of observed incidence. In addition, whooping cough displays much

greater differences between observed and predicted persistence due to lower reporting

probabilities.

For both diseases, increased persistence is expected with increasing population

size [1–4]. Variable reporting probabilities again obscure any such scaling (Figure

4.2A), while the expected scaling is clearly seen once variable reporting is corrected

for (Figure 4.2B). As theory predicts, whooping cough also exhibits increased persis-

tence compared to measles across a range of population sizes (Figure 4.2B). In

measles, cryptic persistence peaks in medium-sized cities that teeter on the edge

of extinction, and is less common in smaller cities that exhibit more frequent local

extinction. In whooping cough, on the other hand, smaller populations rarely exhibit

local extinction and commonly exhibit low absolute incidence, making cryptic persis-

tence common (Figure 4.2C). At large populations, we find that cryptic persistence

is rare in both diseases (Figure 4.2C).

We expect lower reporting probabilities to yield increases in cryptic persistence,

which we observe in both diseases (Figure 4.3). For a given reporting probability,

larger populations also generally exhibit less cryptic persistence than smaller cities,
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regardless of disease. Again, cryptic persistence is essentially absent in the largest

cities, regardless of disease or reporting probability (Figure 4.3). Yet we find marked

differences between diseases. For a given reporting probability, measles generally

experiences much higher cryptic persistence, likely due to lower absolute incidence.

4.5 Discussion

Despite widespread availability of inexpensive and effective vaccines, childhood disea-

ses have resisted elimination efforts. Classic epidemiological theory proposes that

reducing the susceptible proportion of a population below 1
R0

should interrupt disease

transmission, leading to local extinction [19]. Yet metapopulation elimination of

disease has proven elusive and expensive: morbidity and mortality from vaccine-

preventable diseases remains high in developing nations [39, 40], and importation of

infection back into previously disease-free populations and metapopulations contin-

ues [41–43].

Where, when, and why vaccine-preventable diseases persist remain key ecological

questions with important modern epidemiological consequences. As we have shown,

incomplete disease reporting substantially affects common measures of persistence,

particularly for low reporting probability and low absolute incidence. This impedes

inference about disease dynamics at the local scale, and complicates comparisons

between diseases or metapopulations with different reporting probabilities.

Here we extend previous work that employed distribution-based inference of

disease incidence, and accounted for incomplete reporting [13, 33], to estimate the

true persistence of both measles and whooping cough. We show that incomplete

and variable disease reporting in this metapopulation obscures large-scale patterns

of disease persistence.
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For example, a naive measure of critical community size (CCS) such as the log-

linear scaling of observed persistence with population size (Figure 4.1A) cannot

distinguish between measles and whooping cough, while accounting for incomplete

reporting clearly reveals whooping cough’s higher persistence (Figure 4.1B). Popula-

tion thresholds of extinction such as CCS have been criticized as poorly speci-

fied and difficult to measure [4, 33, 44]. Nonetheless, CCS remains a commonly

reported feature of empirical data. Using a simple empirical definition (CCS :=

min(Population)|P > 0.95; see also Figure 4.7), we find the measles CCS changing

from ≈ 600 thousand (Po) to ≈ 300 thousand (P̃ ), while the whooping cough CCS

changes from ≈ 200 thousand (Po) to < 100 thousand (P̃ ), again highlighting the

sizable effects of incomplete reporting.

Despite large differences in reporting probabilities, we find that cryptic persis-

tence is widespread in both diseases. We expect that cryptic persistence is concen-

trated in cities that exhibit long periods of low but non-zero incidence, teetering on

the edge of stochastic extinction. Yet the characteristics of these “refuge” populations

differ markedly between disease. We find that cryptic persistence is concentrated at

medium-sized populations in measles, and at smaller populations in whooping cough

(Figures 4.2C and 4.3C). This accords with epidemiological theory, which predicts

that the measles’ high transmission rate and short infectious period leads to rapid

susceptible depletion in small populations. Thus, small populations are expected to

more commonly exhibit true extinction of measles. Whooping cough, on the other

hand, can sustain low but non-zero incidence in much smaller populations than

measles due to a longer infectious period and lower transmission rate.

One key challenge in disease ecology is unraveling the complex feedbacks between

persistence in a metapopulation and its individual populations. Local persistence

is driven both by local processes (birth, disease transmission) and metapopulation

processes (host migration, disease importation). Thus, lowering metapopulation
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incidence should, in general, decrease local persistence by reducing disease impor-

tation. How local persistence scales up to metapopulation persistence is less clear.

Conventional epidemiological wisdom [45, 46] holds that metapopulation persistence

depends on local persistence in focal cities above a critical size (CCS). Recent work

suggest that aggregates of medium-sized cities exhibit patterns of persistence similar

to individual cities of comparable size [33]. Evidence of widespread cryptic persis-

tence in cities that commonly exhibit low absolute incidence further emphasizes the

role that “non-focal” cities can play in metapopulation persistence.

4.6 Broader Applications

The dependence of cryptic persistence on both reporting and absolute incidence has

important implications for modern disease control efforts. Cryptic persistence is

uncommon at high absolute incidence, regardless of reporting probability. Yet as

control measures drive down incidence, cryptic persistence becomes more and more

sensitive to incomplete reporting. The overall effect is that, at low to intermediate

reporting probabilities, the disease state of a local population (persistent or extinct)

becomes less and less certain as local disease elimination is approached. Further,

this effect varies by disease life history, as longer infectious periods favor persistence

over extinction. Whooping cough, with historically low reporting probabilities and

a long infectious period relative to other epidemic diseases, appears especially prone

to cryptic persistence in populations where vaccination is incomplete.

For example, as measles incidence drops due to increased vaccination, we expect

to observe local extinction for measles at higher population sizes (i.e. cryptic persis-

tence shifting upwards from mid-sized populations, Figure 4.2C). Failure to account

for cryptic persistence could lead to biased assessment of the success of control efforts,

and mistaken allocation of control efforts away from areas where measles still persists.
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Thus, more active surveillance to verify local extinction in medium-sized populations

might be warranted. By comparison, whooping cough is more likely to exhibit cryptic

persistence in small populations, suggesting that enhanced surveillance in these areas

might be necessary to verify local extinction.

The interaction between cryptic persistence and natural immune boosting is

another possible “unknown unknown”. The well-known “honeymoon period” [47]

refers to combined benefits of disease-induced and vaccine-induced immunity in

a population shortly after the introduction of vaccination. As disease incidence

falls, however, disease-induced immunity drops and higher levels of vaccination are

required to achieve disease control. Here we have estimated cryptic persistence rather

than cryptic incidence. Nonetheless, the extent to which cryptic disease incidence

induces natural immunity or immune boosting [15, 48] warrants further attention.

Serological tests and vaccines that allow the differentiation of vaccine-derived and

naturally induced immunity, like those currently used in animal systems [49, 50],

would greatly aid in resolving these ambiguities.

Cryptic persistence has important modern implications for the evolution of drug-

resistance in parasites such as Mycobacterium tuberculosis and Plasmodium falci-

parum, where unobserved incidence can provide an important reservoir for resis-

tant strains. Tuberculosis presents a long-standing problem, where poor sensitiv-

ity of diagnostic tests, difficulty distinguishing between latent and active infections,

and socioeconomic limitations to diagnosis and treatment are all well-recognized

problems [51–55]. Recent work has revealed that previously-unidentified asymp-

tomatic malaria infection occurs extensively on the China-Myanmar border, where

artemisinin-resistant Plasmodium falciparum has been detected [56–59].

The role that socioeconomic instability can play in cryptic persistence also war-

rants the attention of epidemiologists and public health officials. Regional conflicts

can destabilize public health systems, leading to a simultaneous decrease in control
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measures and disease monitoring, as well as large-scale increases in economic migra-

tion. The current global push to eradicate polio provides an illustrative modern

example of the role conflicts play in disease prevention and monitoring [60, 61]. In

this case, polio persists in the politically volatile regions of Nigeria and Pakistan,

while more recent outbreaks have occurred in war-torn Somalia and Syria [62].

We hope that the results presented here will encourage public health professionals

and epidemiologists to anticipate and proactively account for cryptic persistence.

As part of routine disease control efforts, or in a high-stakes disease eradication

campaign, identifying the populations most at risk of cryptic persistence can aid in

the effective allocation of limited resources.

4.7 Figures
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Figure 4.1. Observed (Po, blue circles) and predicted (P̃ , green triangles)
persistence versus inferred mean case reports (µ̂C). We define observed persistence
as the long-time, per-week probability of non-zero case reports; (µ̂C) is a proxy for
observed incidence. For each disease, a linear model (Figure 4.5) was used to
predict persistence from incidence assuming 100% reporting. In general, the
difference between observed and predicted persistence decreases with increasing
incidence. 95% bootstrap confidence intervals of prediction are shown. See Figure
4.6 for details.
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Figure 4.4. Log-log scaling of inferred mean case reports with sample estimates,
including the sample median of case reports and the unlogged sample mean of log
case reports. For both sample estimates, zeros are treated as 1 case report.
Exclusion of zeros artificially increases the sample mean, and does not affect
non-zero medians. The dashed black line shows the 1-to-1 line.
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Figure 4.5. Observed persistence (Fisher transformed = arctanh) versus inferred
mean case reports. Linear models are also shown, which were fit in log-log space.
Adjusted R2 for linear models: Measles = 0.96; Whooping cough = 0.96.
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Figure 4.6. Observed (predicted) persistence versus observed (predicted)
incidence. The meaning of the x-axis changes between groups: observed persistence
is plotted against inferred mean case reports, while predicted persistence is plotted
against inferred mean cases at full reporting. Correction for incomplete reporting
transforms case reports (observed incidence) to cases (predicted incidence). The
linear model for each disease then predicts persistence. The overall motion of a
location’s point is rightwards (correction for incomplete reporting) and upwards
(new model prediction). Thus uncertainty in predicted incidence includes
uncertainty in both reporting probability and linear model predictions.
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Figure 4.7. Empirical estimates of CCSα := min(Population)|P > α for a range
of α, using Po (Observed) and P̃ (Predicted). Whooping cough is predicted to
persist in all cities during more than 85% of sampled weeks. The minimum
sampled population size is 38 thousand; CCS estimates equal to this minimum city
size lack any meaning, and are excluded.
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