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ABSTRACT 

 Copy-number variants (CNVs) are a ubiquitous form of genetic variation.  How 

often this form of variation arises and its adaptive significance are active areas of 

contemporary research.  This work presents evidence regarding both of these subjects.  

First, it demonstrates that gene duplications occur at a frequency two orders of magnitude 

greater than point mutations.  Specifically, the gene duplication rate is estimated to be 1.2 

× 10−7/gene/generation, compared to a point mutation rate on the order of ~10−9/site/ 

generation.  Second, it was found that populations in a low state of fitness due to 

mutation accumulation could recover some or all of their fitness over short spans of 

generations concurrent with an increase in frequency of duplications and deletions that 

arose during the recovery process.  The pattern of frequency increase among CNVs over 

generations during recovery was consistent with the signature of positive selection.  The 

median size of duplications that were identified after selection for ~200 generations were 

significantly larger (191.5 kb) than both duplications that occurred spontaneously (2 kb) 

in the absence of selection and deletions identified after selection for ~200 generations 

(12.5 kb).  The median number of genes contained in the duplications during recovery 
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was 38, evincing the ability of these events to increase the genetic information available 

for selection to act on.  These results clearly demonstrate that gene duplication and 

deletion processes contribute significantly to the adaptability of populations. 
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Chapter 1 

Introduction 

 

 Evolution requires heritable variation within populations for natural selection to 

act on (Fisher 1930; Haldane 1932; Mayr 1963; Dobzhansky 1970; Futuyma 1998).  The 

genetic variation that gives rise to the phenotypic variation acted on by selection includes 

not only the single nucleotide variations and small indels that distinguish allelic variants, 

but also variation in the number of copies of a gene in a genome (paralogs) as well as 

subsequent variation among those copies.   

The processes of gene duplication generate multiple copies of existing genes in a 

genome, providing an increase in the amount of genetic information available for 

mutation and selection to act on.  While this was primarily thought to produce “more of 

the same”, altering only gene dosage, it is now understood that duplication mechanisms 

can produce new genetic information in the form of novel genes, either immediately or 

through a process of relaxed selection followed by diversification (Ohno 1970; 

Bergthorsson et al. 2007; Katju 2012).  While point mutations acting alone can be 

extremely slow at creating new genetic information, duplication, on the other hand, can 

provide new genes in a single mutational step, either functional copies of existing genes, 

or merged with other sequence creating new function immediately (Katju 2012).  Gene 

duplication, then, can be a major source of new genetic information. 

 Gene duplication, in spite of the term, is often not the duplication of a single gene.  

Depending on the mechanism (Long et al. 2003; Liu et al. 2012), one gene or many may 

be duplicated.  In some cases hundreds of genes, or even copies of the entire genome, 
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may be duplicated.  While a few mechanisms act on single genes, many duplication 

mechanisms do not target genes per se, but rather duplicate segments of DNA which may 

or may not contain genes or parts thereof. 

In order to evaluate the potential contribution of gene duplications, or deletions, to 

the adaptability of populations, and hence to their evolution, we first sought to determine 

what the spontaneous rate of gene duplication was in the nematode Caenorhabditis 

elegans, and then, given populations with reduced fitness, whether duplications and 

deletions contributed to the populations’ recovery of fitness, as exhibited by the signature 

of selection, an increase in frequency over generations. 

 This dissertation is comprised of five chapters, three of which represent 

manuscripts either published or currently in review for publication.  This Introduction is 

the first chapter.  Chapter 2 discusses our work to determine the rate of spontaneous 

duplications and deletions using mutation accumulation procedures via bottlenecking the 

experimental populations.  It also provided data on the median size of spontaneous 

duplicates and deletions.  My contribution to the research included analyzing the oaCGH 

array data, developing qPCR methods to corroborate the oaCGH array results, and 

performing PCR and DNA sequencing of CNV breakpoints.  I also designed all of the 

primers used for the above procedures.  Chapter 3 is the project to investigate whether 

CNVs provide a means of adaptation, as evinced by a pattern of frequency increase over 

generations.  This research also revealed a different size distribution of CNVs under 

adaptation compared to the research in Chapter 2.  My contributions included, again, 

oaCGH array analysis, qPCR, and PCR followed by DNA sequencing of CNV 

breakpoints, including primer design.  Chapter 4 discusses the development of statistical 
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techniques for the analysis of the qPCR data from Chapter 3.  I developed Matlab 

programs to perform statistical simulations emulating the production of data from the 

qPCR process in order to evaluate the effectiveness of different statistical methods.  

Finally, Chapter 5 is a short conclusion summarizing the main points.  Additionally, 

Chapters 2 – 4 have addendums of additional material not published in the manuscripts 

due to space constraints. 

 The references for all of these works are combined in the References section.  The 

numbering of figures and tables is first by chapter, or appendix, then in numerical order 

(e.g., Figure 3.1). 
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Chapter 2 

High Spontaneous Rate of Gene Duplication in Caenorhabditis 

elegans 

Kendra J. Lipinski,1 James C. Farslow,1 Kelly A. Fitzpatrick,1 Michael Lynch,2 Vaishali 

Katju,1 and Ulfar Bergthorsson1 

1 Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA 

2 Department of Biology, Indiana University, Bloomington IN 47405, USA 

Reprinted from Current Biology, 21(4), Lipinski, K.J.,  Farslow, J.C., Fitzpatrick, K.A.,  

Lynch, M., Katju, V.,  and Bergthorsson, U., High Spontaneous Rate of Gene Duplication 

in Caenorhabditis elegans.  306-310, (2011), with permission from Elsevier. 

The manuscript was edited to fit the dissertation format. 

 

Summary 

Gene and genome duplications are the primary source of new genes and novel 

functions and have played a pivotal role in the evolution of genomic and organismal 

complexity (Ohno 1970; Lynch and Conery 2000).  The spontaneous rate of gene 

duplication is a critical parameter for understanding the evolutionary dynamics of gene 

duplicates; yet few direct empirical estimates exist and differ widely.  The presence of a 

large population of recently derived gene duplicates in sequenced genomes suggests a 

high rate of spontaneous origin, also evidenced by population-genomic studies reporting 

rampant copy-number polymorphism at the intraspecific level (Iafrate et al. 2004; Sebat 

et al. 2004; Mayden et al. 2007; Emerson et al. 2008).  An analysis of long-term 
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mutation-accumulation lines of Caenorhabditis elegans for gene copy-number changes 

using array Comparative Genomic Hybridization yields the first direct estimate of the 

genome-wide rate of gene duplication in a multicellular eukaryote.  The gene duplication 

rate in C. elegans is quite high, on the order of 10−7 duplications/gene/generation.  This 

rate is two orders of magnitude greater than the spontaneous rate of point mutation per 

nucleotide site in this species and also greatly exceeds an earlier estimate derived from 

the frequency distribution of extant gene duplicates in the sequenced C. elegans genome. 

 

Results 

Most of the recent progress in elucidating the role of gene duplications in the 

history of life has been the result of analyses of whole genomes using comparative 

genomics.  Although genomes can provide a rich record of the history of gene 

duplications in a particular lineage, the population-genetic dynamics and selection 

pressures on duplicated genes remain poorly understood.  The spontaneous gene 

duplication rate shapes the natural variance in gene copy-number and is an important 

parameter for understanding the early evolutionary dynamics of novel genes (Ohta 1988; 

Otto and Yong 2002).  Ultimately, the frequency of gene copy-number polymorphisms in 

geomes as well as their rate of fixation is determined by a combination of the 

spontaneous duplication rate and the probabilities of preservation or elimination of these 

changes by evolutionary forces such as natural selection, genetic drift, and various 

mutations (Otto and Yong 2002; Zhang 2003). 

Estimates of the spontaneous rate of gene duplication come primarily from three 

sources: (i) calculations based on the abundance of very recent gene duplications in 
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sequenced genomes (Lynch and Conery 2000; Pan and Zhang 2007), (ii) caluclations 

assuming mutation-selection balance where the fitness consequences of the duplication 

are known (Van Ommen 2005), and (iii) direct measurements on individual loci where 

gene copy-number differences result in a distinct phenotype or genotype (Anderson and 

Roth 1977; Anderson and Roth 1981; Shapira and Finnerty 1986; Lam and Jeffreys 2007; 

Watanabe et al. 2009).  With method (i), Lunch and Conery (2003) utilized the 

distribution of synonymous site divergence between duplicate genes in several sequenced 

genomes to estimate a duplication rate of 0.1×10−8/gene/yr in D. melanogaster, 

0.4×10−8/gene/yr in S. cerevisiae, and 1.6×10−8/gene/yr in C. elegans, among others.  

Translating these rate estimates into duplications/gene/generation requires knowledge of 

the number of generations/year.  For C. elegans, the rate of gene duplication was 

calculated to be similar to the synonymous substitution rate, and because the frequency of 

base substitutions in C. elegans has been estimated to be 2×10−9/site/generation in long 

term mutation-accumulation experiments (MA henceforth) (Denver et al. 2009), the gene 

duplication rate per generation based on the genomic data would then be on the order of 

10−9 duplications/gene/generation.  Method (ii) estimates the rate of gene duplications 

using the frequency of gene duplications in a population and population-genetic theory of 

mutation-selection balance.  Using this approach, the rate of new gene duplications in the 

X-linked human dystrophin gene leading to Duchenne Muscular Dystrophy (DMD) was 

estimated to be ~10−5 duplications/gene/generation (Van Ommen 2005).  Direct empirical 

measures of the gene duplication rate based on method (iii) generally yield much higher 

values than those generated from those based on extant duplicates in sequenced genomes.  

For example, reports of locus-specific duplication rates in bacteria, Drosophila, and 
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humans range from 10−3 to 10−7/gene/generation (Van Ommen 2005; Anderson and Roth 

1977; Anderson and Roth 1981; Shapira and Finnerty 1986; Lam and Jeffreys 2007; 

Watanabe et al. 2009; Turner et al. 2008).  These estimates are based on a handful of loci 

and may not be representative of all duplicated loci in these genomes.  The discrepancy 

between the genome sequence estimates and empirical measures is particularly stark in 

yeast.  Bioinformatic analyses of the sequenced yeast genome suggested that the rate of 

gene duplication in yeast is half that of the per nucleotide base substitution rate (Lynch 

and Conery 2000).  However, whole-genome sequencing of S. cerevisiae MA strains has 

now revealed that the duplication rate per locus is ten thousand-fold higher than the base 

substitution rate (Lynch et al. 2008).  The five orders of magnitude discrepancy in the 

rate of spontaneous gene duplication in preceding studies is likely due to a combination 

of the use of different gene loci, species, and approaches to quantification. 

We used Comparative Genome Hybridization (CGH) to measure the spontaneous 

gene duplication and deletion rate in C. elegans using experimental evolution lines that 

were generated during a long-term MA experiment (Figure 2.1) by enforcing single-

worm bottlenecks each generation to greatly reduce the efficacy of natural selection 

(Vassilieva and Lynch 1999).  Under these conditions, nearly all mutations are able to 

accumulate in the genome largely independent of their fitness consequences, which 

enables an estimation of the rate of spontaneous mutations.  Analyses of ten C. elegans 

MA lines (bottlenecked for an average of 432 generations) with NimbleGen CGH 

microarrays detected 14 duplicated and 11 deleted segments that were unique to 

particular MA lines (Tables 2.1 and 2.2, respectively).  These duplications and deletions 

were verified by quantitative PCR (Tables A.1 and A.2, Appendix A).  The 14 duplicated 
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segments involved the complete and partial duplication (Katju and Lynch 2006) of 11 

and 19 loci, respectively.  The C. elegans genome contains approximately 20,400 protein 

coding genes (excluding alternative splice forms), so the probability that any given gene  

 

Figure 2.1. Nimblegen CGH array duplication and deletion.  Each spot is a log2 ratio 
of the fluorescence of the experimental DNA and the control DNA, arranged in linear 
order according to position on the sequenced chromosome.  A. Duplication on 
Chromosome III of MA line 78.  B. Deletion on Chromosome II in MA line 18.  C. 
Adjacent deletion and duplication on Chromosome III of MA line 99. 
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________________________________________________________________________ 

Table 2.1.  Characterization of 15 duplication events detected in ten mutation 
accumulation lines of C. elegans using CGH microarray analysis. 
________________________________________________________________________ 
MA Line   Bottleneck   Chromosome     Start            Stop                Length of     No. of ORFs 
     ID        Generations                           Position             Position       Duplication (bp) (complete, partial) 
 
      2          438        V      18,507,783    18,519,661      11,878*          3(1,2) 
    18          464        V      10,445,133    10,455,580      10,448          3(1,2) 
    18          464        V      17,847,927    17,858,066      10,140          1(0,1) 
    29          468       IV      17,482,852    17,490,972        8,121          2(1,1) 
    29          468        X      12,763,189    12,767,835        4,647          2(1,1) 
    41          438        −               −             −                          −                 − 
    63          425        V               4,893           18,375      13,483          2(2,0) 
    63          425        X        3,559,284      3,567,765        8,482          2(0,2) 
    78          428         I        6,682,405      6,688,767        6,361*          2(0,2) 
    78          428       III        9,135,580      9,145,930      10,351*          5(4,1) 
    78          428        X               7,609           11,592        3,984          1(0,1) 
    78          428        X      17,694,155    17,696,571        2,417          1(0,1) 
    83          385       IV      11,695,251    11,700,130        4,880          2(1,1) 
    84          465        −               −             −                          −                 − 
    94          367       III           813,463         819,305        5,843*          2(0,2) 
    99          464         I      10,716,364    10,721,038        4,675          2(0,2) 
    99          464       III      12,190,163    12,194,367        4,205          1(0,1) 
______________________________________________________________________________________ 
Quantitative PCR results confirming these duplications are presented in Supplemental Table 1 of Appendix 
A.  Duplication lengths with an asterisk are based on the DNA sequence of duplication breakpoints shown 
in Supplemental Figures 1A through D in Appendix A.  Other length estimates are minimum estimates 
based on the location of probes included in the duplicated region.  The numbers of ORFs were based on 
Wormbase sequence version WS219. 

is duplicated at least partially is 30/(20,400 × 432 × 10) = 3.4 × 10−7/gene/generation.  

The eleven deleted segments resulted in complete or partial deletions of 19 ORFs and a 

deletion rate of 2.2 × 10−7/gene/generation. 

If only complete duplicates are taken into consideration, the average duplication 

rate per gene becomes 1.2 × 10−7/gene/generation (bootstrap 95% confidence interval = 

0.6 – 2.1 × 10−7/gene/generation).  Both of these estimates of the gene duplication rate in 

C. elegans are quite high, about two orders of magnitude greater than the spontaneous 

rate of point mutation per nucleotide in this species (~ 10−9/site/generation) (Denver et al. 

2009).  Additionally, our empirically determined rate of spontaneous gene duplication for 

experimental C. elegans MA lines is two orders of magnitude higher than that determined  
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________________________________________________________________________ 
Table 2.2.  Characterization of 11 deletion events detected in ten mutation 
accumulation lines of C. elegans using CGH microarray analysis. 
________________________________________________________________________ 
MA Line   Bottleneck   Chromosome     Start            Stop                Length of     No. of ORFs 
     ID        Generations                           Position             Position          Deletion (bp)    (complete, partial) 
 
      2          438        −               −             −                          −                 − 
    18          464        II        5,779,858      5,784,774        4,917          1(0,1) 
    29          468        X      12,759,841    12,761,557        7,717          1(0,1) 
    41          438        −               −             −                          −                 − 
    63          425        V                      1                  3,147        3,147          1(1,0) 
    78          428        V        7,382,127      7,384,417        2,290*          2(0,2) 
    78          428        X             12,111           12,925           815          0 
    78          428        X      17,698,889    17,718,629      19,741          5(3,2) 
    83          385        II                  184             4,901        4,718          1(1,0) 
    83          385       IV        8,582,021      8,613,791      31,771          5(5,1) 
    83          385       IV      15,187,709    15,187,923           215          0 
    84          465        X        6,449,100      6,451,323        2,224*          1(1,0) 
    94          367        −               −             −                          −                 − 
    99          464       III      12,186,190    12,189,700        3,511          1(0,1) 
______________________________________________________________________________________ 
Quantitative PCR results confirming these deletions are presented in Supplemental Table 2 in Appendix A.  
Deletion lengths with an asterisk are based on the DNA sequence of deletion breakpoints shown in 
Supplemental Figures 1E and F in Appendix A.  Other length estimates are minimum estimates based on 
the location of probes included in the deleted region.  The numbers of ORFs were based on Wormbase 
sequence version WS219. 

from the analyses based solely on the frequency distribution of extant duplicates of 

varying evolutionary ages in the sequenced N2 genome (Lynch and Conery 2000).  Our 

direct gene duplication rate estimates may in fact be downwardly biased for two reasons,  

namely (i) that small duplications are likely to go undetected because the number of 

adjacent microarray probes signaling gene copy-number changes may not be sufficient 

for detection, and (ii) these CGH DNA microarrays are restricted to unique probes only 

and duplications of genes in recently duplicated regions, for instance by unequal crossing 

over, may not be detected.  The genome-wide duplication and deletion rate reported here 

does not add much to the overall mutation rate per genome.  The base substitution rate 

per genome in C. elegans is ≈ 0.1/genome/generation (Denver et al. 2009) and if we 

count each duplication and deletion as an independent mutation, then the 
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duplication/deletion rate per genome/generation is 0.007, and 0.011 when the calculation 

is based on copy-number changes in individual ORFs. 

 If the duplication and deletion rates are homogeneous across MA lines, the 

number of copy-number changes per line is expected to be Poisson distributed.  Two 

potential sources of bias in estimating the rate of gene duplication and deletion from MA 

experiments is that these rates might be subject to change, either due to mutations in 

recombination and repair genes or due to fitness-dependent differences in the rates 

(Agrawal and Wang 2008).  These two sources of bias would result in a larger variance in 

gene copy-number changes than expected under the Poisson distribution.  Nevertheless, 

the ratio of the variance to the mean in the number of gene duplications and deletions 

across different MA lines is close to random expectations (F-value = 1.13; p>0.25) 

suggesting the lack of a significant contribution from these two sources. 

 The duplication lengths ranged from 2.4 – 13.9 kb with a median duplication size 

of 7 kb.  Deletions ranged in length from 0.8 – 31.7 kb with a median value of 3.5 kb.  

The difference in the length distributions of duplications and deletions are marginally 

significant (Wilcoxon two-sample test; p = 0.05).  However, small deletions are more 

likely to be detected relative to small duplications and this may have influenced the 

difference in the median length of duplication and deletions.  The median duplicon size 

of 7 kb in this data set is significantly greater than the median duplication size of 1.4 kb 

(Katju and Lynch 2003) for extant evolutionarily young gene duplicates with low 

synonymous divergence in the sequenced genome of the N2 laboratory strain of C. 

elegans (Wilcoxon two-sample test; p < 0.0001).  This discrepancy can be due to either 

one or a combination of three possibilities, namely, (i) duplications are contracting in 
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length due to internal deletions subsequent to their origin, (ii) there is purifying selection 

against larger duplicates, and/or (iii) CGH arrays are biased in favor of detecting larger 

duplications. 

 The spontaneous duplications and deletions in the ten MA lines were spread 

across all six chromosomes in the C. elegans genome (Figure 2.2a).  Four duplications 

appear to be coupled with adjacent deletions and two of these are located at the ends of 

chromosomes.  In addition, four duplications appear to involve more than a single copy 

addition, usually resulting in three to four copies, but I one case, perhaps as many as eight 

copies according to the qPCR results.  Using divergent primers at the end of duplicons, 

we sequenced the breakpoints associated with four duplications and two deletions 

(Figures S1a-f).  We were not successful in sequencing the coupled and high copy-

number duplications using this strategy which is only expected to yield results when the 

duplicated segments are adjacent and there are no further rearrangements associated with 

the copy-number change.  The breakpoints indicate direct tandem duplications with little 

or no sequence identity at the ends of the duplicons (Figures S1a-d).  Moreover, in some 

instances, several additional nucleotides have been inserted at the breakpoint (Figures 

S1a,i, and j).  One deletion appears to have been the result of unequal crossing-over 

(Figure S1e). 

 In addition to the copy-number changes unique to individual MA lines, we also 

observed six copy-number differences that are shared among all the MA lines.  These 

comprise five duplications and one deletion ranging from 634 to 19,358 bp (Tables 2.3 

and S3, Figures 2.2b and S1g-j).  These differences represent copy-number changes 

between different N2 laboratory isolates of C. elegans, specifically the N2 laboratory 
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A. 

 

B. 

 

Figure 2.2.  Chromosomal distribution of spontaneous duplications and deletions.  
The horizontal lines represent the six chromosomes comprising the C. elegans genome.  
A.  Location of 14 duplications and 11 deletions across ten mutation accumulation (MA) 
lines derived from a single hermaphrodite of a N2 laboratory isolate of C. elegans.  Black 
shaded rectangles above and below the line denote the location of duplications and 
deletions, respectively.  B.  Location of inferred duplications and deletions in the N2 
laboratory isolate of C. elegans that was the source of reference DNA in the CGH 
microarray experiments. 
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________________________________________________________________________ 
Table 2.3.  Characterization of duplication and deletion events detected in the 
common N2 ancestor of all MA lines and the reference strain of N2 used for 
hybridization against ten mutation accumulation lines of C. elegans for CGH 
microarray analysis. 
________________________________________________________________________ 
Chromosome    Start Position    Stop Position    Length of Indel (bp)   No. of ORFs (complete, partial)   
Duplications: 
         Va                    2,995,387          2,999,015                   3,628*                                 2(0,2) 
         Vb                  18,706,963        18,726,320                 19,358                                   3(2,1) 
         Vb                  19,428,007        19,431,266                   3,260*                                 1(0,1) 
         Xb                         86,369               87,002                      634                                   1(0,1) 
         Xb                    7,510,066          7,523,734                 13,668*                                 1(0,1) 
Deletions: 
         Vc                    1,645,712          1,647,498                   1,786*                                 1(0,1) 
______________________________________________________________________________________ 
Quantitative PCR results confirming these duplications and deletions are presented in Supplemental Table 
3, Appendix A.  Duplication lengths with an asterisk are based on the DNA sequence of duplications and 
deletion breakpoints show in Supplemental Figures 1g through j, Appendix A.  Other length estimates are 
minimum estimates based on the location of probes included in the duplicated region.  The numbers of 
ORFs were based on Wormbase sequence version WS219. 
a,c correspond to a duplication and deletion event in the common N2 ancestor of all MA lines. 
b corresponds to duplication events in the N2 reference strain used for the CGH microarray analysis. 
 

strain that was used as source of DNA in our CGH microarray experiments and the N2 

laboratory strain that served as the ancestral stock for all the experimental MA lines 

established by Vassilieva and Lynch (1999).  The deletion in the common N2 ancestor of 

all the MA lines was recently described as a common deletion found in strains that were 

subjected to mutagenesis with ethyl methanesulfonate and may in fact have been present 

in the genetic background of these strains prior to mutagenesis (Sarin et al. 2010). 

 

Discussion 

 The rate of fixation of duplicated genes due to beneficial, neofunctionalizing 

mutations has been shown to be dependent on the species’ effective population size as 

well as the rate of duplication (Ohta 1988; Lycnh et al. 2001).  The direct estimates of 

gene duplication rates are two orders of magnitude greater than the per nucleotide point 
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mutation rate.  This may have important consequences for the role of adaptation in the 

evolution of duplicated genes.  Theoretical and empirical work show that the mutation 

rate is an important determinant of the rate of fixation of adaptive mutations and that less-

fit beneficial mutations can be fixed in the population earlier than the fittest mutation if 

the former are more frequent (Yampolsky and Stoltzfus 2001; Rokyto et al. 2005).  For 

instance, if an adaptation to a novel environment requires an increase in the expression of 

a particular gene, and the gene duplication rate far exceeds the per nucleotide base 

substitution rate, advantageous duplications of the locus are more likely to occur and 

become fixed in the populations before beneficial point mutations.  This may explain why 

recent adaptations in natural populations have often involved an increase in gene dosage 

through gene duplication and amplification rather than regulatory base substitutions 

(Bergthorsson et al. 2007; Nair et al. 2007; Perry et al. 2007).  Once such adaptive 

duplications have become common or fixed, they become targets for mutations that 

increase the genetic repertoire of the organism.  Were beneficial base substitutions more 

frequent than duplications, an increase in expression would more often be achieved by 

base substitutions rather than gene duplications.  Hence, the relative rates of point 

mutations and duplications can play an important role in the evolutionary potential of 

genomes. 

 A large fraction of duplications do not span the coding sequence of genes in their 

entirety, and others are unlikely to capture the complete array of upstream regulatory 

sequences.  This may predispose gene supplicates to subfunctionalization, as the first step 

in this process is the loss of an essential feature in one copy (Katju and Lynch 2006; 

Katju and Lynch 2003; Force et al. 1999; Lynch and Katju 2004).  Moreover, failure to 
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capture the full coding sequence or regulatory repertoire of the ancestral copy may 

predispose the duplicate copy to a different evolutionary trajectory wherein the ancestral 

copy is likely to retain its original function and the derived copy is more likely to be 

neofunctionalized, subfunctionalized, or pseudogentized.  Indeed, recent analysis 

suggests that derived gene copies are evolving at faster rates relative to their ancestral 

counterparts (Cusack and Wolfe 2007; Han et al. 2009). 

 All empirically-derived estimates of the spontaneous duplication/deletion rates, be 

they locus-specific (Anderson and Roth 1977; Anderson and Roth 1981; Shapira and 

Finnerty 1986; Lam and Jeffreys 2007; Watanabe et al. 2009; Turner et al. 2008) or 

genome-wide (Lynch et al. 2008), are much greater than bioinformatically-derived 

estimates from extant duplicates in sequenced genomes for a diverse set of organisms 

across different kingdoms.  This strongly suggests that most gene duplications are 

efficiently purged from the genome by purifying natural selection in their infancy, 

leaving a surviving observable pool dominated by duplicates with lower rates of loss.  In 

fact, recent population-genetic analyses of gene copy-number polymorphism found an 

excess of rare duplications suggestive of purifying selection in Drosophila melanogaster 

(Emerson et al. 2008).  Thus, prior genome-based estimates of the gene duplication rate 

may only reflect the birth rates of initially neutral or nearly neutral duplications.  If this is 

the case, we predict that the discrepancy between bioinformatically- and empirically-

derived estimates of the gene duplication rate will correlate positively with effective 

population size.  In the case of the yeast Saccharomyces cerevisiae, the rate of 

spontaneous mutation has been measured as 0.7 × 10−9 substitutions/site/generation 

(Lynch et al. 2008) and the parameter Neμ is approximately 0.023 (Lynch and Conery 
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2003), giving an estimated Ne of 3.3 × 107.  This estimated Ne for S. cerevisiae is 

extremely similar to that measured for its close relative, S. paradoxus (≈107) (Tsai et al. 

2008).  In the case of S. cerevisiae, with a large effective population size, the discrepancy 

between the bioinformatics and empirical estimates of the gene duplication rate (Lynch 

and Conery 2000; Lynch et al. 2008) spans five orders of magnitude.  In contrast, the 

discrepancy is only two orders of magnitude in the case of C. elegans, where the effective 

population size has been estimated as 9 × 104 individuals (Cutter 2006).  However, it is 

possible that the present level of genetic variation in C. elegans and hence its small 

effective population size result from the recent evolution of hermaphroditism in this 

species (Cutter et al. 2009).  For comparison, the estimated effective population size of C. 

remanei, an obligate outcrosser, is 1.6 × 106 (Cutter and Charlesworth 2006). 

 Most gene duplicates confer a slight penalty on the fitness of the carrier, possibly 

due to an initial dosage imbalance.  Microorganisms and unicellular eukaryotes with their 

large effective population sizes and greater efficacy of selection may more effectively 

purge these newly arisen duplicates with their mildly deleterious effects.  Conversly, the 

relatively smaller effective population sizes of many multicellular eukaryotes 

compromise their ability to efficiently rid their genome of the new entrants. 

 

Supplementary Material 

Supplementary information, including methods, is contained in Appendix A.  Matlab 

program information is contained in Appendix B. 
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Chapter 2 Addendum 

 The lead author of this manuscript, Kendra Lipinski, extracted DNA from the 

experimental populations and submitted it for CGH microarray hybridizations.  She also 

had begun some of the analyses trying to identify duplications and deletions.  I took over 

the project after she graduated from the master’s degree program, and began by analyzing 

the CGH microarray data looking for duplications and deletions, specifically trying to 

identify their boundaries.  I then performed qPCR on the suspected duplication or 

deletion regions to corroborate the CGH microarray data, and PCR and sequencing of the 

boundary regions to identify the specific breakpoints of the rearrangements when 

possible. 

 To look for duplications and deletions, our experimental lines were compared by 

CGH microarray to Bristol N2 populations which served as controls (Appendix A).  

These experimental populations of C. elegans were bottlenecked for over 400 

generations, therefore they should have been fixed for any copy number variant (CNV).  
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This infers the signal level of the CGH microarray should reflect the copy number change 

in the haploid genome, and so the microarray signal levels should exhibit discrete 

differences from the single copy level.  The program SnoopCGH (Alagro-Garcia et al. 

2009) was initially used to identify CNVs.  It uses levels of statistical significance and 

robustness based on permutations to identify CNVs.  One of the issues that arose with the 

data is that there appeared to be a wave pattern along the chromosomes that may be an 

artifact of the process of scanning the CGH microarray.  SnoopCGH occasionally 

identified the peak of the wave as a duplication.  Visual confirmation was thus required to 

check what the program was identifying.  Also, the probe signal levels in these CGH 

microarray results exhibited a large variance, which caused difficulty at times in trying to 

visualize or identify copy number changes and their boundaries.  Additionally, there were 

issues with gaps in the probe sequence.  This was because the CGH microarray design at 

the time did not include many probes for repetitive elements. 

 As the CNVs in this experiment were capable of presenting a visually identifiable 

image (Figure 2.1), provided the variance of the data was not excessive, another approach 

was done.  A Matlab script was written (JCFreadCGH, Appendix B) which first 

performed a smoothing algorithm to reduce the variance of the data, then plotted both the 

raw data and the smoothed data for each chromosome, along with red reference lines 

representing plus and minus two standard deviations of the unsmoothed data in the 

smoothed data graph for visual reference (Figure 2.3).  The smoothing algorithm took the 

average of the signal levels within a window that included a given probe and a specified 

number of probes up and downstream of it, and assigned this value to the given probe’s 

position.  For this analysis, the smoothing algorithm used a window of ± 10, which gives 
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an average of 21 contiguous probes (contiguous by order, not necessarily by position 

because of gaps).  This presentation of the data facilitated easier visual recognition of 

CNVs.  The predicted boundary positions of the CNVs were judged according to the 

position of probes considered to be part of the CNV.  For both duplications and deletions, 

the first probe inside the CNV is the predicted boundary.  One of the potential issues that 

arose was a reduction of signal shift for small (< 1 Kb) duplications and deletions that 

was a result of the smoothing.  With only a few probes in a CNV region, the smoothing 

removed the most variant probe signals, creating the need to compare the smoothed 

region with the original signal data. 

Figure 2.3.  Visualization graph of CGH microarray data from JCFreadCGH.  The 
onscreen graph titles provide information as to the chromosome, source data file, and 
window size.  This specific graph represents the duplication in MA18 chromosome V.  
Only a subset of the chromosome is displayed for this figure. 
 
 As a means of confirming the microarray data, quantitative, or real-time, PCR 

(qPCR) was performed on all CNVs identified.  DNA from an N2 population was used as 

the control for the qPCR experiments.  The method is explained in Appendix A.   

Initially, SYBR Green without Rox was used as the methodology was developed.  
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However, the ABI 7000 Sequence Detection System has only one immobile bulb and 

sensor creating differences in measurements on different parts of the plate.  The method 

was changed to SYBR Green with Rox, which has an internal reference dye (i.e., the 

Rox) that the instrument can use to compare with the SYBR Green signal.  This solved 

the issue of high variance due to plate position.  Also, qPCR is very susceptible to 

pipetting errors, including tiny droplets that can be pulled from the end of the pipette due 

to static charge between the pipette and the plate.  Minimizing the distance traveled over 

the plate can reduce some of these errors.  Thorough mixing of the DNA samples is 

crucial to producing sets of technical replicates with a low standard deviation. 

 Finally, it was desired to obtain the precise DNA sequences of the breakpoints 

(i.e., site of the rearrangement) of the CNVs, if possible.  To do this, first PCR 

amplification was performed, followed by sequencing of the fragments.  To PCR the 

breakpoints of a tandem duplication, primers must be designed to anneal just within the 

duplicated region pointing away from each other (Figure 2.4A; see Appendix A for more 

detail on the PCR methods).  If a tandem duplication occurs, one pair of primers will 

orient facing each other.  Provided they are close enough, then a PCR reaction can occur.  

Due to the aforementioned gaps and, in some cases, ambiguities of predicted boundaries, 

numerous attempts with primers in different positions were required to achieve PCR, and 

in many cases still failed.  If a proximal inversion occurs, a primer will be paired with 

itself thus facilitating PCR (Figure 2.4B).  If, however, a duplication results from 

translocation, the primers will not be able to align properly and will not be able to 

produce a correct PCR product (though spurious products can, and did, occur). 
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Figure 2.4.  PCR amplification of CNV breakpoints.  P1 and P2 represent PCR 
primers and their orientation.  A.   Tandem duplication.  B.  Inverted proximal 
duplication.  C.  Deletion. 
 
 For deletions, primers were designed to anneal to regions outside of the predicted 

breakpoints facing each other so that when the deleted region was removed, the primers 

were brought into close enough proximity to generate a PCR product (Figure 2.4C).  

Again, if the deletion was coupled with a translocation event, no valid PCR products 

were produced. 
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 A distinct PCR product of approximately the predicted size itself can infer the 

existence of a CNV in a population, but having the sequence of the fragment and 

mapping it to the genome provides the best evidence for the rearrangement.  When PCR 

products were successfully produced, they were sequenced (see Appendix A for details 

on the sequencing methods) and blasted (Altschul et al. 1990) against the C. elegans 

genome version WS219 (www.wormbase.org) for position information.  The position of 

alignments to the reference genome revealed the precise point in many cases, or at least 

the narrow range where there were microhomologies, of the DNA rearrangements 

producing the CNVs (Figure A.1, Appendix A). 

 There were clearly cases in which no valid PCR products were produced, and thus 

no sequences for the CNV breakpoints were obtained.  It is likely that these are the result 

of either translocations or more complex rearrangements than what we tested for.  If 

duplications were the result of proximal inversion, then there should be PCR products 

from single primer reactions, and there were.  However, none of these produced a PCR 

product that generated a clean DNA sequence.  At one point, cloning was performed on 

some of these fragments (TOPO® TA Cloning® Kit for Sequencing, Invitrogen) to 

attempt to sequence them.  After blasting against the NCBI nucleotide database 

(blast.ncbi.nlm.nih.gov), the results turned out to be fragments of bacterial contamination, 

some from E. coli, probably from the populations used to feed the worms.  One cloning 

experiment did produce fragments aligning to C. elegans, but they failed to suggest a 

rearrangement. 

 The variation in the sequences of the breakpoint regions suggests the possibility 

of different mechanisms producing the rearrangements, but not necessarily the specific 
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mechanism in a given case.  Out of 15 duplications identified by CGH microarray and 

qPCR, only four produced PCR product and sequence for the breakpoints.  Out of 11 

deletions, only two produced PCR product and sequence for the breakpoints.  In both 

cases either the PCRs weren’t working, or the 20 CNVs without breakpoints may have 

involved translocations or complex rearrangements. 

 Figure A.1A (Appendix A) shows a duplication in chromosome V of 

experimental line MA2.   There is no homology between the up and downstream ends of 

the duplicated region suggesting NAHR (Non-Allelic Homologous Recombination 

(Beckmann et al. 2007), also referred to as unequal crossover elsewhere in the text) is not 

likely the mechanism of duplication.  What we do see is four As and four Ts, in 

palindromic arrangement, inserted at the breakpoint.  There are a large number of As and 

Ts in the sequences at the ends, but no specific sequence that matches the insertion.  

While this might implicate a repair enzyme in the process such as NHEJ (Non-

Homologous End Joining (Moore and Haber 1996)), at this point it is merely speculation.   

It should be pointed out that while we sequenced the breakpoints, we never performed 

PCR and sequencing on the end points into the adjacent sequence to look for alterations 

there. 

 In Figure A.1B (Appendix A), we see a duplication involving a microhomology, a 

short sequence shared between the up and downstream ends which remains at the 

breakpoint, in chromosome I of line MA78.  This precludes the ability to identify a single 

point where the transition from one new paralog to the other occurs.  Rather, the 

transition resides somewhere within or immediately adjacent to the microhomology.  This 
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does raise the question as to how small of a homology is required for NAHR, but it is 

difficult to accept that only two nucleotides would be sufficient. 

 Figure A.1C (Appendix A) illustrates a duplication in chromosome III of MA78 

that is “clean”, meaning the sequence transitions smoothly from one paralog to the next 

with no added nucleotides.  In this case again we see no homology between the ends, 

inferring NAHR is not involved.  The same is true of the duplication in chromosome III 

of MA94 (Figure A.1D (Appendix A)). 

 NAHR not only generates duplications, but also deletions.  Figure A.1E 

(Appendix A) presents a deletion in chromosome V of line MA78 of the intervening 

region between two pre-existing paralogs.  The paralogs show high levels of homology 

for a span of 591 nucleotides oriented in the same direction, thus providing the conditions 

favorable for NAHR.  It should also be noted that this deletion is clean, although where 

within the paralog region the unequal crossover occurred is undeterminable if the identity 

between the paralogs is 100%. 

 Deletions may also be caused by other mechanisms.  Figure A.1F (Appendix A) 

illustrates a deletion in chromosome X of line MA84 that contains a microhomology at 

the breakpoint, but no other homology between the ends, suggesting something other than 

NAHR was responsible for this rearrangement. 

 Additionally, CNVs were found in the N2 reference strain.  These included a 

paralog amplification, likely via NAHR, from two copies to three in chromosome V 

(Figure A.1G (Appendix A)).  There was also a complex duplication in chromosome V 

(Figure A.1I (Appendix A)) where part of the duplicated region is started (15 

nucleotides), then the mechanism backed up a little further and started again.  There was 
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also a deletion in the N2 strain (Figure A.1H (Appendix A)) in chromosome V that 

contained a single nucleotide microhomology with no other homology between the ends. 

 Are the differences between these rearrangements the result of chance or are they 

caused by the specific mechanisms involved?  It is difficult to say at this stage, though it 

does evince some of the variation possible among CNVs.  The data presented in this 

chapter does not, however, provide a large enough sample size to make generalizations 

about patterns in CNVs. 

 As CNVs are really duplications, or deletions, of regions of DNA which may or 

may not contain genes or parts thereof, the mechanisms generating CNVs affect the 

number of genes duplicated, or deleted, as well as the rate at which it happens.  

Mechanisms such as retroposition (Long et al. 2003), which reverse transcribes mRNA 

into the genome, tend to be truly “gene duplication”, only making extra copies of single 

genes, though they are inserted without their promoter or regulatory elements, or any 

introns.  They become pseudogenes unless they are inserted into the genome downstream 

of an existing promoter.  Also, as a consequence of the mechanism, these duplicates 

should tend to be small, with a median size just slightly larger than the median gene size 

for the organism.  Replication, recombination, and repair mechanisms, on the other hand, 

have the capacity to duplicate large tracts of the genome, including hundreds of genes 

with their regulatory elements in a single mutation.  The relative rates of these different 

mechanisms should be reflected in the patterns of CNV types found in a genome. 

 The mechanisms are also responsible for the patterns of distribution of CNVs in 

the genome.  Duplicate genes may be predominantly proximal to their ancestor, or they 

may be widely distributed in the genome occurring primarily on other chromosomes 
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(Katju et al. 2009).  Mechanisms involving molecular intermediates should tend to 

disperse CNVs. 

 As mentioned above, the rates of mechanisms also have a profound effect on the 

evolutionary direction of a population.  Mechanisms that occur more often than point 

mutations may provide adaptive advantages sooner, becoming fixed in the population and 

providing more genetic information for selection to work on.  The combination of the 

type and rate of mechanisms affects the potential evolvability of the genome.  It should 

be noted that the duplication rates determined here reflect a composite of the rates of all 

of the mechanisms involved.  

 The mechanisms also affect the type of CNVs produced.  Duplication 

mechanisms can generate both complete and partial duplications (only a contiguous 

subset of the gene sequence is duplicated).  Partial duplicates may insert into a region 

where they acquire novel sequence, producing a gene product with a new potential 

functionality (Katju and Lynch 2006).  Additionally, partial sequence may be merged 

with the partial sequence of another gene, fusing different functional domains into a new 

combination (Long et al. 2003; Katju and Lynch 2006).  Deletions, besides removing 

genes, may bring parts of genes together at the breakpoint, again generating novel 

constructs. 

 In summary, this work identified the high rate of spontaneous duplications and 

deletions.  It presented information on the span of spontaneous CNVs.  It also revealed 

variation in the breakpoints of CNVs, suggesting multiple mechanisms involved in the 

process of CNV formation. 
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Abstract 

Background: 

Gene copy-number variation (CNVs), which provides the raw material for the 

evolution of novel genes, is widespread in natural populations. We investigated whether 

CNVs constitute a common mechanism of genetic change during adaptation in 

experimental Caenorhabditis elegans populations. Outcrossing C. elegans populations 

with low fitness were evolved for >200 generations. The frequencies of CNVs in these 
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populations were analyzed by oligonucleotide array comparative genome hybridization, 

quantitative PCR, PCR, DNA sequencing across breakpoints, and single-worm PCR. 

 

Results: 

Multiple duplications and deletions rose to intermediate or high frequencies in 

independent populations. Several lines of evidence suggest that these changes were 

adaptive: (i) copynumber changes reached high frequency or were fixed in a short time, 

(ii) many independent populations harbored CNVs spanning the same genes, and (iii) 

larger average size of CNVs in adapting populations relative to spontaneous CNVs. The 

latter is expected if larger CNVs are more likely to encompass genes under selection for a 

change in gene dosage. Several convergent CNVs originated in populations descended 

from different low fitness ancestors as well as high fitness controls.   

 

Conclusion: 

 We show that gene copy-number changes are a common class of adaptive genetic 

change. Due to the high rates of origin of spontaneous duplications and deletions, copy-

number changes containing the same genes arose readily in independent populations. 

Duplications that reach high frequencies in these adapting populations were significantly 

larger in span. Many convergent CNVs may be general adaptations to laboratory 

conditions. These results demonstrate the great potential borne by CNVs for evolutionary 

adaptation. 
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Background 

Gene and genome duplications are the primary source of new genes and have 

played a pivotal role in the evolution of genomic and organismal complexity (Ohno 1970; 

Zhang 2003; Innan and Kondrashov 2010; Katju 2012).  The rates of spontaneous gene 

duplication and deletion are extraordinarily high and speak to the enormous potential of 

these structural variants for generating new adaptive variability (Anderson and Roth 

1981; Shapira and Finnerty 1986; Lynch et al. 2008; Lipinski et al. 2011; Schrider et al. 

2013; Katju and Bergthorsson 2013).  However, most gene duplicates are eventually lost 

from populations due to a variety of reasons: genetic drift or natural selection, inherent 

instability of tandem duplications, and relaxed selection against detrimental mutations 

(Anderson and Roth 1981; Katju and Lynch 2003; Veitia 2004; Pettersson et al. 2009; 

Adler et al. 2014).  Although, gene duplications and deletions contribute significantly to 

the immense standing genetic variation related to gene copy-number observed in natural 

populations (Emerson et al. 2008; Nair et al. 2008; Maydan et al. 2010; Mills et al. 

2011), the relative importance of genetic drift versus natural selection in determining 

their evolutionary fate remains obscure.   

Ohno (1970) theorized that newly duplicated genes were freed from the 

constraints of natural selection, implicating a dominant role of genetic drift in their early 

evolutionary dynamics.  Likewise, genetic drift is assumed to be the dominant force in 

the early evolutionary history of duplicate genes under the DDC (duplication-

degeneration-complementation) model (Force et al. 1999).  In contrast, natural selection 

for increased gene expression may represent an important mechanism by which duplicate 

gene copies are maintained in populations (Adler et al. 2014).  There is ample evidence 
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for the preservation of multiple gene copies due to selection for increased gene dosage in 

diverse organisms (Bergthorsson et al. 2007).  For example, adaptation to novel or 

resource-limited environments in laboratory populations frequently involves segmental 

duplications (Tlsty et al. 1984; Sonti and Roth 1989; Reams and Neidle 2003; Andersson 

and Hughes 2009).  Likewise, natural populations harbor duplications that are clearly 

adaptive under novel environmental regimes (Maroni et al. 1987; Gonzalez et al. 2005; 

Newcomb et al. 2005; Perry et al. 2007; Kondrashov 2012).  In addition, loss-of-function 

mutations can often be suppressed or compensated for by multiple copies, or increased 

transcription of another gene in the genome (Berg et al. 1988; Bender and Pringle 1989; 

Trempy and Gottesman 1989; Ueguchi and Ito 1992; Yamanaka et al. 1994; Serebrijski 

et al. 1995; Timms and Bridges 1998; Menez et al. 2001; Miller and Raines 2004; Patrick 

et al. 2007; Hughes et al. 2000; Riddle and Brenner 1978; Maruyama et al. 1989; Jones 

et al. 2012).  The spontaneous rate of gene deletions is of a similar magnitude as that of 

duplications (Lipinski et al. 2011; Schrider et al. 2013).  There is evidence that deletions 

tend to be more detrimental to fitness than duplications (Conrad et al. 2010).  However, 

gene loss has also been associated with adaptation in diverse systems (Chan et al. 2010; 

Koskiniemi et al. 2012; Lee and Marx 2012).  

We have previously established that the spontaneous, genome-wide rate of gene 

duplication in C. elegans is two orders of magnitude higher than the point mutation rate 

(Lipinski et al. 2011).  In this study, we seek to determine if gene copy-number changes 

are a common class of genetic change during adaptation and what role, if any, natural 

selection plays in the maintenance and frequency increase of copy-number variants 

(CNVs henceforth) in experimental populations.  Gene copy-number changes were 
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analyzed in experimental lines of C. elegans which had been subjected to (i) fitness 

decline via mutation accumulation, and (ii) subsequent adaptive fitness recovery during 

population expansion for >200 generations.  In addition, control lines maintained at large 

population sizes without having been subjected to mutation accumulation were also 

analyzed for copy-number changes.  We used an obligately outcrossing strain of C. 

elegans to reduce the effects of genetic hitchhiking (Maynard Smith and Haigh 1974).  

These fitness-recovered populations were subsequently analyzed for copy-number 

changes to directly test if recovery lines display high rates of duplications and deletions, 

and to determine the role of these CNVs in adaptive evolution. 

 

Results 

Fitness decline during mutation accumulation (MA) and subsequent fitness increase 

following population expansion 

This experimental evolution study comprised two distinct phases, (i) a mutation 

accumulation with a msh-2 knockdown (MA) phase, followed by (ii) an adaptive 

recovery phase in the absence of msh-2 knockdown (see Materials and Methods; 

Supplementary Figure C.1, Appendix C).  Figure 3.1 displays the fitness trajectories of 

the five focal experimental lines via three fitness assays spanning both phases of the 

experiment (MA and population expansion), as measured by the life-history trait 

productivity.  Ancestral pre-MA control lines had a mean productivity value of 464 

progeny and were assigned a relative mean productivity value of 1.00.  At 24 MA 

generations, the mean productivity of the five experimental lines ranged from 0.2 – 220 

progeny (relative mean productivity of 0.004-47% compared to the ancestral control, 
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Figure 3.1).  The mean productivity of the five focal MA lines at the termination of the 

MA 1 phase (50 MA generations) was 31 offspring and the individual mean productivity 

of the five experimental MA lines ranged from 2 – 60 progeny (relative mean 

productivity of 0.43-13% compared to the ancestral control, Figure 3.1).  ANOVA 

analyses found a significant variance component for productivity (F = 40.1; p < 0.0001) 

between the control and the five MA lines.   

Following 150 generations of population expansion, we observed modest to 

substantial fitness recovery in the experimental lines (Figure 3.1).  The mean productivity 

of the 25 adaptive recovery populations (that were descended from the five MA lines) 

ranged from 115 – 472 progeny, and relative productivity of 0.25-1.02 (25-102% relative 

to the ancestor).  Populations 16A-E, descended from MA16, exhibited complete fitness 

recovery to ancestral levels with respect to productivity (average 472 progeny).  

Populations 66A-E, descended from MA66, exhibited substantial fitness recovery to 73% 

of ancestral levels with respect to productivity (average 341 progeny).  Populations 7A-E, 

19A-E, and 50A-E, descended from MA7, MA19, and MA50, respectively, had modest 

increases in productivity, ranging from 25-33% of ancestral levels (average productivity 

of 120, 153, and 115, respectively).  The mean productivity of the five MA following 50 

generations and the 25 recovery populations following ~150 generations was 31 and 274 

offspring, respectively.  ANOVA analyses found a significant variance component for 

productivity between the mutation accumulation lines and the recovery populations (F = 

16.9; p < 0.0001). 

 

CNVs comprise a common class of genetic change during adaptive recovery 



34 
 

Figure 3.1.  Decline in mean productivity of experimental lines during mutation 
accumulation with subsequent increase in productivity during population 
expansion.  Fitness (productivity) trajectories of five experimental evolution lines of C. 
elegans during two experimental phases of (a) mutation accumulation, and (b) fitness 
recovery via population expansion.  Two fitness assays were conducted during the 
mutation accumulation phase of the experiment — (i) following 24 consecutive 
generations of mutation accumulation with msh-2 RNAi (MA24), and (ii) 50 consecutive 
generations of mutation accumulation with msh-2 RNAi and an additional 15 additional 
generations of full-sib mating to promote homozygosity (MA50 + 15 Inbreeding). All 
five experimental lines displayed significant decline in productivity, a fitness-related trait 
during the MA phase, relative to the ancestral pre-MA control from which all lines were 
derived.  Experimental lines exhibited moderate to strong fitness recovery following 150 
consecutive generations of maintenance at large population sizes (RC150). Each point for 
the assay RC150 represents the mean productivity across five independently expanded 
sublines and within subline replicates (5 sublines  5 replicates per subline).  The mean 
productivity of the ancestral pre-mutation accumulation control has been scaled to a value 
of 1. Errors bars represent one standard error. 
 
 

oaCGH detected 24 duplication events in 15 of the 25 experimental populations 

subjected to adaptive recovery via population expansion following mutation  

accumulation (Table 3.1).  A single duplication event was identified in one of the five 

fog-2 control populations (C2), which had been maintained at a large population size 
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without having been subjected to a prior mutation accumulation phase.  The duplication 

spans ranged from 1.6 to 660.8 kb in length, encompassing 1 to 121 protein-coding genes 

(Table 3.1; Supplemental Data S1, Appendix C).  The median duplication span was 191.5 

kb and the median number of protein-coding genes per duplication was 38.  In addition, 

there were 18 deletions in 12 of the 25 adaptive recovery populations.  An additional 

seven deletions were observed in the five fog-2 control populations (one each in C1, C2 

and C4; two each in C3, and C5).  The length distribution of deletions was markedly 

different from that of duplications.  The deletion spans ranged from 1.1 to 294.6 kb, 

resulting in the deletion of zero to 38 protein-coding genes (Table 3.2; Supplemental Data 

S2, Appendix C).  The median deletion span was 12.5 kb and the median number of 

protein-coding genes deleted was one.  None of these copy-number changes in the 

adaptive recovery phase were detected in the MA lines via (i) microarray analysis using 

the MA lines as the experimental lines and the common ancestor of all MA lines as a 

reference, (ii) qPCR, and (iii) PCR and sequencing of duplication and deletion 

breakpoints.  Hence, they appear to have occurred and increased in frequency during the 

population expansion phase associated with adaptive recovery.   

 

Duplications and deletions during adaptive recovery are significantly larger than those 

arising under mutation accumulation conditions 

We further compared the size of CNVs originating in the adaptive recovery 

populations to spontaneously-occurring CNVs previously investigated in C. elegans lines 

comprising a long-term MA experiment with extreme bottlenecks of Ne = 1 (Lipinski et 

al. 2011).  The duplication span in our adaptive recovery populations is significantly 



36 
 

 



37 
 

 



38 
 

greater than that of previously determined spontaneous duplications under mutation 

accumulation conditions (Lipinski et al. 2011) (Wilcoxon two-sample test, Z = -3.85, p < 

0.0001, Figure 3.2A).  Duplications in populations subjected to adaptive recovery had a 

median duplication span of 191.5 kb versus a median span of 7.2 kb in spontaneous 

mutation accumulation populations (Lipinski et al. 2011) under the influence of genetic 

drift.  Similarly, we detected significantly larger deletion spans in the adaptive recovery 

populations compared to spontaneous deletions occurring under mutation accumulation 

conditions (Wilcoxon two-sample test, Z = -2.4, p = 0.016, Figure 3.2B).  The median 

spans of deletions in our adaptive recovery and mutation accumulation populations 

(Lipinski et al. 2011) were 12.5 and 3.5 kb, respectively. 

 

Gradual increase in the frequencies of CNVs during the adaptive recovery phase 

Based on the oaCGH arrays, the average population wide copy-number of the 24 

duplications ranged from 1.19 to 2.19 copies per haploid genome (Table 3.1).  Assuming 

that individuals harboring duplications only contain one additional copy of the duplicated 

segment, the frequency of individual duplications in the populations ranged from 0.19 to 

1 (or fixation).  The average copy-number for the deleted segments ranged from 0.81 to 

0.04, suggesting that the frequency of these deletions in the populations range from 0.19 

to 0.96.  

In light of the oaCGH results following >200 recovery generations, qPCR was 

used to analyze the frequencies of duplications and deletions following approximately 80, 

140 and, 208 recovery generations.  In the majority of the populations, duplications and 

deletions that had reached high frequencies by generations 180-212 were found in 
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Figure 3.2.  Comparison of duplication and deletion spans in adaptive recovery 
versus spontaneous mutation accumulation (MA) lines. A. The span of 24 
independent duplication events in the adaptive recovery populations compared to the 
duplication span of spontaneous duplications during MA (Lipinski et al. 2011).  The span 
of duplications during adaptive recovery is significantly larger than duplications detected 
under spontaneous MA conditions (p < 0.0001).  B. The span of 18 deletion events in the 
adaptive recovery populations compared to the deletion span of spontaneous deletions 
during MA (Lipinski et al. 2011).  The deletion span for 18 deletion events in the 
adaptive recovery populations was significantly greater than the span of spontaneous 
deletions during MA (p = 0.032).   
 

intermediate frequencies at approximately 80 and 140 generations, providing evidence of 

a gradual increase in the frequencies of individual CNVs with time (Figures 3.3, 3.4; 

Supplemental Figures C.2-C.9, Appendix C).  Based on the oaCGH results in Table 3.1, 

duplications in two populations had reached fixation by recovery generation 208 

(7B:ChrIV, and 16E:ChrV).  However, based on the qPCR results, three additional 

duplications appear to have reached fixation in their respective populations (19E:ChrX, 

50B:ChrV, and 50D:ChrV).  The pattern of increase in the frequency of CNVs is 
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particularly striking in the case of several deletions (Table 3.2; Figure 3.4; Supplemental 

Figures C.6-C.9, Appendix C).  The oaCGH results suggested that six deletions reached 

high frequency and that the deleted segment is only in 4-9% frequency in these 

populations (Table 3.2).  Moreover, the qPCR results for these CNVs suggest that five 

deletions were already fixed by recovery generations 140-160 in these populations 

(Figure 3.4; Supplemental Figures C.6-C.8, Appendix C, corresponding to 16A:ChrX, 

16D:ChrV, 2 deletions in 66D:ChrX, and 66E:ChrX) and one additional deletion 

(66B:ChrX; Supplemental Figure C.9, Appendix C) had reached fixation by recovery 

generation 208.  In general, there was a good correlation between the oaCGH and qPCR 

estimates of the frequency of copy-number changes (duplications and deletions) in the 

populations at recovery generation 208 (r = 0.95, p < 0.001). 

 

Figure 3.3.  Increase in the frequency of parallel duplication events in 11 
independent populations containing an overlapping region on Chromosome V. The 
average copy-number per haploid genome was calculated from qPCR results and is 
indicated on the vertical axis.  The generation from which the copy-number was 
estimated is indicated on the horizontal axis.  Error bars represent 95% CI. 
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Duplication and deletion breakpoints in independent populations occur within the same 

repetitive sequences  

Our attempts to precisely map the duplication and deletion breakpoints with PCR 

and DNA sequencing yielded mixed results.  We were able to sequence five duplication 

breakpoints from the set of 24 duplications in Table 3.1.  In addition, we generated 

breakpoint sequences for seven deletion events in Table 3.2.  Four duplication 

breakpoints on chromosome V, in populations 16B, 16E, 66E and control population C2, 

are located within the same 1,031 bp repeats flanking the duplications and appear to be 

the result of unequal crossing-over.  The sequence identity between the two repeats is 

96% and the point of unequal crossing-over within the repeats is different in all four 

cases, indicating independent events (Figure 3.5).  The seven deletions with sequenced  

 
 
Figure 3.4. Copy-number decreases due to parallel deletion events in five adaptive 
recovery populations containing an overlapping region on Chromosome V.  The 
average copy-number per haploid genome was calculated from qPCR results and is 
indicated on the vertical axis.  The number of recovery generations is indicated on the 
horizontal axis. The deletions have reached fixation when the average copy-number has 
reached 0.  Error bars represent 95% CI. 
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breakpoints are 16A:ChrX, 16D:ChrV, 19A:ChrX, 50D:ChrV, 50E:ChrV,66B:ChrX, and 

C3:ChrX (Table 3.2).  These sequenced deletions do not appear to be associated with 

repeat motifs.  

 

Extensive parallelism in copy-number changes of certain CNVs 

Twelve duplications in 11 independent recovery populations and one control 

population span an overlapping region on chromosome V which extends up to ~59 kb 

and contains 11 protein-coding genes (Figure 3.6A; Supplemental Data S3, Appendix C).  

The range of duplication spans encompassing this overlapping region in the 12 

populations range from ~139-661 kb.  Gene Ontology (GO) annotations report the 

 

Figure 3.5.  Breakpoints of the four common duplications on chromosome V 
compared to their flanking repeats.  Four independent populations contain a 
duplication of a region between positions 19,294,839 and 19,838,583 on chromosome V.  
These duplications are the product of unequal crossing-over between two 1,031 bp 
repeats that are 96% identical and flank the duplication.  The figure shows polymorphic 
sites between the two repeats, and the nucleotides flanking the breakpoints of the four 
duplications.  The sequences of the upstream and downstream repeats are displayed on 
the topmost (orange) and lowermost (yellow) rows, respectively.  The sequence of the 
new repeat in the center of the tandem duplication is shown for strains 16B, 66E, 16E, 
and C2, and the correspondence to the original flanking repeats is indicated by color.  
The duplication breakpoint is inferred to be between the sequence that corresponds to the 
downstream repeat (yellow) and the upstream repeat (orange).  
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function of four of these 11 duplicated ORFs (srt-45, M162.7, Y116F11B.2, and 

Y116F11B.17) as unclassified with respect to biological process, cellular component and 

molecular function.  Four of the 11 duplicated ORFs have their molecular function 

defined as protein-binding (fbxa-118, and fbxa-194) or carbohydrate-binding (clec-258, 

and clec-259).  Duplicated gene daf-28 is probably the best-characterized locus within 

this shared region on chromosome V.  It encodes a beta-type insulin and inhibits dauer  

 

Figure 3.6.  Location and span of convergent duplication events. The populations are 
indicated to the left, the chromosomal position is shown on the horizontal axis and the 
average haploid copy-number based on the oaCGH results from generation 208 is 
indicated on the right. The horizontal bars designate the regions that are duplicated in 
each of these populations.  The vertical orange lines indicate the boundaries of the shared 
segment among these duplications. A. Overlapping duplications on chromosome V 
during the adaptive recovery phase of the experiment. The 59 kb region shared among all 
12 populations is delineated by the vertical lines that run through the horizontal bars. B. 
Overlapping duplications on chromosome II during the adaptive recovery phase of the 
experiment. The 94 kb region shared among the two populations is delineated by the 
vertical lines that run through the horizontal bars. C. Overlapping duplications on 
chromosome IV during the adaptive recovery phase of the experiment. The 141 kb region 
shared among the two populations is delineated by the vertical lines that run through the 
horizontal bars. 
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formation (Li et al. 2003) and influences adult life-span, two potentially important life-

history traits that could be under selection during the adaptive recovery regime of the 

experiment.  pcp-4 exhibits serine-type peptidase activity and is involved in proteolysis 

whereas srw-38 codes for a protein product that serves as an integral component of 

membranes.   

The convergent duplications on chromosome II (populations 16D and 50E), 

(Figure 3.6B; Supplemental Data S3, Appendix C) and chromosome IV (populations 7D 

and 50D), (Figure 3.6C; Supplemental Data S3, Appendix C) encompass larger 

overlapping regions (94 kb and 141 kb, respectively), and have lower average copy-

numbers relative to the convergent duplications on chromosome V (Figure 3.6A).  The 

convergent or overlapping duplications on Chromosome II are found in two populations 

and span 26 protein-coding ORFs of which 11 are unclassified with respect to biological 

process, cellular component and molecular function.  For the remaining 15 ORFs, we 

note that ten ORFs (C32D5.3, sma-6, set-4, C32D5.8, lgg-1, C32D5.10, C32D5.12, ani-

2, lin-23, and F58F12.1) have biological processes related to important life-history traits 

involving some combination of reproduction, dauer development, embryo development, 

determination of adult lifespan and oogenesis.  The convergent duplications on 

chromosome IV occur in two populations and span 30 protein-coding ORFs of which 18 

are unclassified with respect to biological process, cellular component and molecular 

function.  Of the remaining 12 ORFs, six ORFs (efn-4, gex-2, F56A11.6, rpl-15, 

K11H12.3, and cutl-28) have biological processes related to the very same life-history 

traits observed for the overlapping duplication on chromosome II. 
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Additionally, we also observed five convergent deletion events that spanned 

overlapping regions in independent populations.  Cumulatively, these five convergent 

deletions comprise 19 independent deletion events observed in 11 adaptive recovery 

populations and all five control populations.  One convergent deletion in four control  

populations of the adaptive recovery phase (C1, C2, C4 and C5) spanned ~9.5 kb and 

resulted from a copy-number loss in four rDNA genes at the end of chromosome I 

(F31C3.7, F31C3.11, F31C3.9, and F31C3.8; Figure 3.7A; Supplemental Data S3, 

Appendix C).  Our qPCR results suggest that the fog-2 strain, ancestral to all of the 

populations in these experiments, possesses 86 copies of this repeat.  In these four control 

populations, the number of rDNA repeats has been reduced by 21-40% (Table 3.2). 

A second convergent deletion event was detected in six adaptive recovery 

populations (16D where it appears to have reached fixation, 19C, 50B, 50C, 50D, and 

50E) and led to the loss of an overlapping 17,333 bp region on chromosome V 

encompassing four protein-coding ORFs (Figure 3.7B; Supplemental Data S3, Appendix 

C).  Three of these ORFs are unclassified with respect to GO annotations.  The last ORF, 

Cyp-33A1 (C12D5.70), was partially deleted and is classified as a heme- and iron-ion 

binding protein involved in the oxidation-reduction process. 

The third convergent deletion event occurred in three adaptive recovery 

populations (16A, 19A, 19E) and one control population (C5).  This deletion entailed the 

loss of an overlapping 3,934 bp region partially encompassing a single protein-coding 

gene, daf-3 (F25E2.5) on chromosome X (Figure 3.7C; Supplemental Data S3, Appendix 

C).  daf-3 is classified as an enhancer sequence-specific DNA-binding protein involved in 

dauer larval development among its biological processes. 
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Figure 3.7. Location and span of convergent deletion events. The populations are 
indicated to the left, the chromosomal position is shown on the horizontal axis and the 
average haploid copy-number based on the oaCGH results from generation 208 is 
indicated on the right. The horizontal bars designate the regions that are deleted in each 
of these populations.  The vertical orange lines indicate the boundaries of the shared 
segment among these deletions. A. Overlapping deletion on chromosome I during the 
adaptive recovery phase of the experiment. The ~9.5 kb region shared among four control 
populations (C1, C2, C4 and C5) is delineated by the vertical lines that run through the 
horizontal bars. B. Overlapping deletion on chromosome V during the adaptive recovery 
phase of the experiment. The 17.3 kb region shared among the six adaptive recovery 
populations is delineated by the vertical lines that run through the horizontal bars. C. 
Overlapping deletions on chromosome X during the adaptive recovery phase of the 
experiment. The 3.9 kb region shared among three adaptive recovery and one control 
population(s) is delineated by the vertical lines that run through the horizontal bars. D. 
Overlapping deletions on chromosome X during the adaptive recovery phase of the 
experiment. The 0.6 kb region shared among the two adaptive recovery and one control 
population(s) is delineated by the vertical lines that run through the horizontal bars.  
 

The fourth convergent deletion event occurred in three populations (66D, 66E, 

C3) resulting in the loss of an overlapping 629 bp region partially encompassing a single 

protein-coding gene, ceh-14 (F46C8.5) on chromosome X (Figure 3.7D; Supplemental 

Data S3, Appendix C).  ceh-14 is classified as a DNA- and protein-binding protein 
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involved in the regulation of transcription and thermosensory behavior, with ceh-14 

mutants exhibiting lack of thermotaxis.  In all cases, the deletion appears to have reached 

fixation within the populations.  Although two of these deletions occurred in populations 

undergoing adaptive recovery following MA, one occurred in a control population that 

had not been subjected to MA and adaptive recovery. Interestingly, a lone deletion event 

in another gene on the X chromosome implicated in thermotaxis (Gomez et al. 2001), 

ncs-1, also reached fixation in strain 66D (Table 3.2).  

Lastly, a fifth convergent deletion event occurred in two adaptive recovery 

populations, 50C and 50D.  This deletion resulting in the loss of one end of the X 

chromosome reached a significant frequency in both populations.  The deletion span in 

50D was approximately 22 kb larger than the deletion in 50C.  The average haploid copy- 

number of this segment was 0.85 and 0.81 in 50C and 50D, respectively, which translates 

into 15% and 19% of the X chromosomes bearing this segmental deletion in populations 

50C and 50D, respectively.  The overlapping 272 kb region in these two deletions 

contains 35 protein-coding genes (Supplemental Data S3, Appendix C).  20 of these 35 

ORFs are unclassified with respect to GO annotations.  For the remaining 15 ORFs, six 

ORFs (Y73B3A.18, Y73B3A.3, elk-2, cad-6, Y73B3A.10 and set-33) have biological 

processes related to important life-history and developmental traits involving some 

combination of reproduction, embryo development ending in birth or egg hatching, 

nematode larval development, hermaphrodite genitalia development and negative 

regulation of vulval development. 

 

Single-worm PCR suggests simple duplications rather than higher-level amplifications 
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Independent estimates of CNV frequencies via single-worm PCR of CNV 

breakpoints confirmed the gradual increase of CNVs and are strongly correlated with the 

copy-number estimates from qPCR (r = 0.9; Table 3.3).  There was one instance where 

the single-worm PCR results deviated significantly from the qPCR results, in line 16B 

following 212 generations of adaptive recovery.  Both the qPCR and oaCGH data suggest 

that the duplication was present in low frequency in generation 212.  In contrast, single-

worm PCR estimated the duplication to exist at an intermediate frequency of 0.48 in the 

population.  It is possible that some of the copy-number increases in these populations are 

due to a higher level of amplification (more than two copies per chromosome) than a 

single duplication.  If the copy-number is frequently  >two per haploid genome, we 

expect that the copy-number calculated from qPCR would systematically exceed the 

estimates from single-worm PCR.  However, this is not the case, and the generally good 

agreement between the different methods suggests that higher-level amplification is not 

widespread for the three duplications with single-worm PCR estimates. 

 

Discussion 

In the last decade, analysis of gene copy-number variation has shown that CNVs 

are surprisingly widespread in natural populations.  Like other classes of mutations, these 

variants can be beneficial, neutral or deleterious.  However, gene copy-number increases 

are unique among mutations in that they can facilitate the evolution of novel genes.  The 

population dynamics of gene copy-number variation in populations are therefore 

important for understanding both the adaptation and evolution of novel genes.  In this 

study, we investigated whether gene copy-number changes (duplications and deletions) 
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constituted a common form of genetic change during the adaptation of low-fitness 

experimental populations of C. elegans.   

Several lines of evidence suggest that the high frequency of copy-number changes 

in the adaptive recovery and control populations are primarily due to natural selection.  

Both deletions and duplications increased in frequency with time, and some 

rearrangements had already reached fixation by 145 generations of population expansion.  

The theoretical expectation for the average number of generations until fixation of a 

neutral mutation under conditions of genetic drift is 4Ne generations (Kimura and Ohta 

1969).  Assuming a lower-bound conservative estimate of Ne = 1,000 individuals in the 

adaptive recovery populations each generation, neutral CNVs in our experimental 

populations would take, on average, more than 4,000 generations to reach fixation.  Five 

duplications and eight deletions in our adaptive recovery and control populations 

originated and reached fixation within 212 generations alone.  Moreover, the majority of 

other CNVs that had not yet reached fixation by the end of the recovery phase still 

exhibited a steady increase in population frequency with time.  Furthermore, both 

duplications and deletions contained striking examples of parallelism or convergent 

evolution.  Certain duplications and deletions contained overlapping regions, i.e. the 

same region was duplicated or deleted independently in different populations (Figures 3.6 

and 3.7).   

Duplications of parts of chromosome V contained the same 59 kb region in eleven 

independent adaptive recovery populations and one control population (Figure 3.6A).  If 

these duplications had been experiencing selection for higher dosage, one or more of 

these genes could be under selection in all 12 strains.  One of the best-characterized genes 
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within this overlapping duplication was daf-28, a pleiotropic gene influencing several 

life-history traits such as adult lifespan and suppression of dauer formation.  For instance, 

if a copy-number increase entails greater daf-28 expression, the incidence of dauer 

formation may be further suppressed.  In another example of convergence, daf-3 is 

deleted in three independent adaptive recovery populations and one control population 

(Figure 3.7C).  daf-3 promotes dauer formation and the deletion is expected to suppress 

dauer.  Hence, we have convergent duplications and deletions in 16 independent 

populations that are expected to reduce the incidence of dauer formation.  We 

hypothesize that both the duplication of daf-28 and deletion of daf-3 may be adaptations 

to a predictable and frequent availability of a food source, in this case a fresh lawn of 

Escherichia coli.  Other examples of convergence in these populations include the partial 

deletion of a gene, ceh-14, in three populations as detected by oaCGH (Figure 3.7D).  

The ceh-14 gene contributes to thermosensing and thermotaxis in C. elegans (Cassata et 

al. 2000).  Another gene implicated in thermotaxis, ncs-1, is also deleted in strain 66D 

(Gomez et al. 2001).    

This form of parallel evolution is best explained by selection for increased gene 

dosage in the case of duplications (Maroni et al. 1987; Sonti and Roth 1989; Newcomb et 

al. 2005; Nair et al. 2008), and selection against a gene in the case of the deletions (Chan 

et al. 2010; Koskiniemi et al. 2012; Lee and Marx 2012).  Parallel molecular evolution is 

frequently observed in experimental population studies, particularly in microbial systems 

(Bull et al. 1997; Bergthorsson and Ochman 1999; Riehle et al. 2001; Wood et al. 2005).  

In large microbial populations, the chance that the same beneficial mutation will occur in 

independently-evolving lineages is apparently reasonably high.  Compensatory evolution 
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experiments with hermaphroditic C. elegans populations have also found parallel 

nucleotide substitutions at two sites in two independent populations (Denver et al. 2010).  

The high frequency of parallel gene copy-number changes during the population 

expansion phase in this study is likely due to the high rates of spontaneous copy-number 

mutations in concert with natural selection (Lynch et al. 2008; Lipinski et al. 2011; 

Schrider et al. 2013). Because spontaneous gene duplications and deletions originate at 

rates that are orders of magnitude higher than point mutations, the probability that copy-

number changes in the same genes occur in independent populations is much greater than 

the same point mutation occurring in independent populations. Furthermore, higher 

mutation rates improve the probability that new variants increase in frequency or reach 

fixation (Lipinski et al. 2011; Yamplosky and Stolzfus 2001).  

There is a striking difference in the size distribution of spontaneous duplications 

and deletions detected in MA studies and their size distribution in these populations 

undergoing adaptive recovery.  In a preceding C. elegans spontaneous mutation 

accumulation experiment with minimal influence of natural selection, the spontaneous 

duplications ranged from 1-30 kb in length, with a median duplication span of 2 kb 

(Lipinski et al. 2011).  In this study of duplications and deletions in adapting C. elegans 

populations following an experimental phase of fitness decline, the size range of 

duplications originating in the adaptive recovery phase with population expansion was 

1.6-661 kb with a median duplication span of 191.5 kb.  A similar trend was observed in 

the case of deletions originating in the adaptive recovery phase.  The spontaneous 

deletions originating during the mutation accumulation experiment ranged from 0.2-32 

kb in length, with a median deletion span of 3.5 kb (Lipinski et al. 2011).  During the 
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adaptive recovery phase in this study, the size range of deletions was 1.1-295 kb and the 

median deletion span was ~12.5 kb.  Admittedly, we are comparing the size distributions 

of CNVs in two different strains, the selfing laboratory strain N2 (Lipinski et al. 2011) 

and the obligately outcrossing loss-of-function fog-2 strain in this study.  However, there 

is no evidence or theoretical grounds to suggest that the size distribution of CNVs should 

be influenced by the mode of reproduction (selfing vs. ourcrossing) in these two different 

strains.  The large difference in the size distribution can be explained by selection for 

gene dosage in the recovery populations.  The larger the CNV span, the greater the 

chance that a gene (or several genes) under selection for altered gene dosage will be 

contained within the duplication or deletion.  This may be a general phenomenon and we 

predict that recent copy-number variants that are being maintained in natural populations 

are, on average, larger than the average spontaneous duplication or deletion. 

The appearance and increase in the frequency of gene duplications and deletions 

in large adaptive recovery populations is unlikely to be a direct consequence of the msh-2 

treatment during mutation accumulation.  First, following the completion of the MA 

phase, the experimental lines were inbred for 15 additional generations in the absence of 

msh-2 knockdown via RNAi, so it is unlikely that there are any residual effects of the 

RNAi treatment per se.  Moreover, all the copy-number changes reported here were not 

detected in the post-MA ancestor and appear to have arisen during the adaptive recovery 

phase of the experiment.   

Four of 12 populations that contained a large overlapping duplication on 

chromosome V (Figure 3.6A) possessed duplication breakpoints in the same 1 kb repeats 

(Figure 3.5).  These repeats appear to be duplication hot-spots.  However, this type of 
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duplication was not detected in our previous study of the spontaneous duplication and 

deletion rate in the C. elegans genome, nor in the MA populations within this 

study.  Although this region may experience a higher than average duplication rate, this 

alone does not appear to account for the high frequency of individuals possessing this 

duplication within these independent populations.  Mutation pressure (in this case, the 

spontaneous rate of CNV origin) is a very weak force in changing the frequency of alleles 

(or CNVs) (Haldane 1932).  The spontaneous duplication and deletion rates in C. elegans 

are on the order of 10-7/gene/generation (Lipinski et al. 2011).  Even after allowing for a 

1,000-fold higher rate of origin of a particular duplication than the best estimate of the 

spontaneous gene duplication rate, only 1 of 10,000 worms would incur that particular 

duplication in each generation and the expected frequency of a CNV containing a 

particular gene would reach 2% by mutational input alone after 200 generations.  

Moreover, the spontaneous rate of duplication loss can be higher than the rate of origin of 

duplications and if we take the duplication loss rate into account, the rate of increase of a 

particular duplication in a population would be even slower and reach equilibrium rather 

than going to fixation or near fixation.  Therefore, the rate of origin of CNVs alone 

cannot explain the observed increase in frequencies of CNVs in these populations. 

 

Conclusions 

Our results demonstrate that gene copy-number changes can be a common class 

of adaptive genetic change to novel challenges in multicellular eukaryotes.  Although the 

nature of the benefit that the CNVs provide in our experiments is still unknown, we note 

that these changes can arise frequently and sweep rapidly through populations.  Some of 
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these copy-number changes may be compensatory, serving to ameliorate the negative 

fitness consequences of deleterious mutations accrued during the mutation accumulation 

phase of the experiment.  However, we note that many of these copy-number changes in 

our experimental populations may represent adaptations to the experimental laboratory 

conditions for the following reasons: (i) the presence of copy-number changes in control 

populations subjected to population expansion (adaptive recovery phase) without having 

undergone a previous fitness decline during mutation accumulation, (ii) convergent copy-

number changes shared among adaptive recovery and control populations, and (iii) 

convergent copy-number changes in adaptive recovery populations descended from 

independent mutation accumulation lines.  These results demonstrate the great potential 

that gene copy-number changes have for both adaptation per se as well as the potential 

for adaptive duplications as raw material for novel genes.  

 

Materials and Methods 

Base strain 

The MA lines in this study were created with an obligately outcrossing, loss-of-

function fog-2 mutant strain of C. elegans. This strain was maintained as a frozen stock 

prior to the experiment. The fog-2 locus in C. elegans is required for the initiation of 

spermatogenesis in hermaphrodites (Schedl and Kimble 1988). XX individuals 

homozygous for fog-2 are transformed from self-fertile hermaphrodites to females 

whereas XO fog-2 mutant males are indistinguishable from wild-type males. Therefore, a 

homozygous fog-2 strain is fully competent as an outcrosser but not as a self-fertilizing 

hermaphroditic strain. The choice of outcrossing, rather than selfing, hermaphroditic 
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populations to test if fitness recovery lines have high rates of duplications, was based on 

avoiding the effects of genetic hitch-hiking to the greatest extent possible (Maynard 

Smith and Haigh 1974). 

 

Creation of mutation accumulation lines by repeated bottlenecks and targeted RNAi 

knockdown of the mismatch repair gene msh-2 

The MA experiment was initiated with a single male-female pair derived from the 

fog-2(lf) mutant line, kindly provided by the Caenorhabditis Genetics Center (St. Paul, 

MN).  Four generations of single pair sib-matings were allowed from the resultant 

offspring to remove any freezer effects.  From the F5 descendants of the base individual 

pair, 74 fog-2(lf )MA lines were initiated using a single female and two male siblings 

(Supplemental Figure C.1, Appendix C).  The lines were assigned identification numbers 

1 through 74, respectively.  The presence of two males increased the probability of 

mating.  The remaining siblings were expanded into thousands of worms and stored 

frozen at -80C for future use as a pre-MA ancestral control (Lewis and Fleming 1995).  

This pre-MA ancestral control served as a reference population to demonstrate potential 

fitness decline after MA.   

The rate of spontaneous deleterious mutations in C. elegans is relatively low 

(Vassilieva et al. 2000; Katju et al. 2015), and it can take multiple years to see a 

significant fitness decline in the MA lines.  In lieu of a spontaneous MA experiment, MA 

was independently accelerated in the experimental lines by simultaneously (i) 

bottlenecking populations, and (ii) reducing the functionality of the mismatch repair 

(MMR henceforth) gene msh-2 by RNAi knockdown (Kamath et al. 2001).  Silencing of 
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the msh-2 gene elevates mutation rates in the germline and somatic tissue of both sexes 

(Degtyareva et al. 2002; Tijsterman et al. 2002).  A bacterial strain containing the feeding 

vector with the msh-2 gene was obtained from Julie Ahringer at the University of 

Cambridge.  

Each experimental line was subjected to 50 generations of MA, with 

bottlenecking and RNAi treatment at each generation.  To ensure that mutations 

accumulated in the MA phase of the experiment were fixed within each line and not 

capable of segregation as wild-type alleles, each MA line was subjected to fifteen 

additional generations of full-sib mating without RNAi treatment.  Treating the last MA 

generation as the reference population, fifteen generations of full-sib mating yields an 

inbreeding coefficient of 0.961 (i.e. 96.1% reduction in heterozygosity relative to a 

random-mating subpopulation with the same allele frequencies) (Falconer 1989).  

Thereafter, all extant MA lines were frozen at -80C. 

 

Population expansion of lines following mutation accumulation 

After the MA phase, five MA lines with the greatest decline in fitness (MA7, 16, 

19, 50, and 66) were each expanded into five populations (labeled A-E) and 

independently maintained at large population sizes under standard laboratory conditions 

(Sulston and Hodgkin 1988).  To enable populations to expand to large sizes, the worms 

were housed on large 10015 mm Petri dishes.  Large population sizes were maintained 

across generations by transferring agar chunks to fresh plates with a sterilized scalpel 

every four days (equivalent to approximately one generation).  This time period was 

adequate to ensure highly competitive conditions, as population sizes had reached several 
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thousands of individuals prior to each transfer, with the animals being starved to the 

extent that egg-laying had ceased.  To avoid cross-contamination between independent 

populations, petri plates were spaced apart on fiberglass trays and wrapped in parafilm.  

Populations were continually maintained at large population sizes for 180-212 

generations (Supplemental Figure C.1B, Appendix C).  These large-population treatment 

adaptive recovery (RC) populations were frozen at -80C following ~80, ~130, ~ 180, 

and ~212 generations of large population treatment.  For comparison, five control 

populations (C1 – C5) of fog-2 were maintained at large population sizes for 208 

generations without any prior MA treatment. 

 

Fitness Assays During Mutation Accumulation and Population Expansion 

During the MA phase, one fitness assay was conducted after 24 MA generations 

and the second after the termination of the MA phase (50 MA generations and 15 

subsequent generations of full-sib mating without RNAi treatment).  The fitness assay 

largely followed previous protocols for hermaphroditic MA lines (Vassilieva et al. 2000) 

with minor modifications suited to outcrossing lines.   The assays were conducted 

simultaneously on all extant MA lines, 25 adaptive recovery (RC) populations and five 

control populations (C1-C5) that had not been subjected to MA, but had been maintained 

at large populations sizes for the same period as the RC populations. The ancestral fog-2 

pre-MA ancestral population maintained as a frozen stock prior to the initiation of the 

MA experiment served as the control. The frozen ancestral control was thawed and 20 

control lines were established independently from the surviving worms. 
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 For fitness assays during the MA phase, a single sib-pair from each extant line 

was randomly chosen to enter the fitness assay. At the start of each assay, the 20 control 

and extant MA lines were expanded into five replicates (five individual sib-pair progeny 

of the ancestral pair), yielding 450 lines across both treatments. These 450 lines were 

maintained by transferring a sib-pair for two generations in the absence of RNAi to 

remove maternal effects. Additionally, because gene inactivation by RNAi does not 

appear to extend beyond the F1 generation (Fire et al. 1998), any decline in fitness in the 

MA lines should reflect mutation load due to heritable, germline mutations accumulated 

under the msh-2 RNAi regime. Nonheritable, somatic mutations should not contribute to 

fitness decline once msh-2 function is restored by RNAi termination, as these should not 

be inherited by the assayed individuals. 

Productivity (the number of offspring produced) was measured using third 

generation individuals of the replicated control and experimental (MA, RC or C) 

populations. For each line, twelve L1 (first larval stage) F3 progeny were randomly 

selected upon hatching. After 36 hours, surviving individuals had reached the L3-L4 

larval stage at which they could be sexed. One male-female pair was randomly selected 

and transferred to a new petri dish for measuring productivity. Every 24 hr ± 30 min 

thereafter, the focal sib-pair is transferred to a fresh plate. Daily transfers were terminated 

under the following conditions: (i) the female had not produced any eggs by day 8, or (ii) 

female mortality. Plates with eggs were placed at 20°C for an additional 24hr period to 

enable hatching, then stored at 4°C to kill the larvae for progeny counts. In order to score 

the number of offspring, the plates with dead progeny were stained with 0.0175% 

Toluidine Blue to enable visualization of worms against the media. Productivity was 
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calculated as the total number of progeny produced. The procedure was the same for the 

assay of adaptive RC and control (C1-C5) populations except that a random male-female 

pair was selected from each recovery population and control population to enter the 

fitness assay. 

 

Detection of CNVs via oligonucleotide array Comparative Genome Hybridization 

(oaCGH) 

We analyzed copy-number changes in five MA lines (MA7, MA16, MA19, 

MA50 and MA66), 25 adaptive recovery populations (7A-E, 16A-E, 19A-E, 50A-E, 

66A-E), and five additional control populations (C1-C5) that were propagated for the 

same period as the adaptive recovery populations but had not undergone a prior MA 

phase.  In the microarray experiments, the MA lines and the C1-C5 populations were 

compared to their fog-2 ancestor, and the adaptive recovery populations were compared 

to their post-MA ancestor (50 generations of MA and 15 generations of inbreeding).  For 

example, copy number changes in recovery populations 7A-E were compared to MA7 

after termination of the MA phase of the experiment.  oaCGH analysis was performed as 

previously described (Maydan et al. 2007).  We used oaCGH arrays manufactured by 

Roche NimbleGen Inc.: design 071114_CE2_WG_CGH_T, and new custom designed 

microarrays named 120618_Cele_WS230_JK_CGH.  The new arrays are 3-plex 

microarrays with each individual sub-array comprising 720k 50-mer oligonucleotide 

probes synthesized at random positions on the arrays.  The filters used to select the 

probes primarily followed Maydan et al. (2007) without focusing on coding regions in 

order to provide a more uniform coverage of the genome (Wormbase release WS230).  In 
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regions where unique probes could not be designed, selection filters were slightly relaxed 

in order to allow the inclusion of probes with possible cross-hybridization to at most one 

other location in the genome.  The extraction of fluorescence intensity ratios and 

subsequent segmentation analysis followed Maydan et al. (2007) closely except that a 

quantile normalization was applied on the log2 ratios.  The segmentation algorithm used a 

bottom-up approach, adjacent segments being merged until no neighboring segments 

reach a user-defined similarity threshold, the similarity being calculated with a t-test.  At 

the end of the segmentation procedure each remaining segment was analyzed and labeled 

as amplified/deleted if the log2 ratio values within the segment passed two user-defined 

filters, one for the average and one for the p-value (calculated with a t-test).  Visual 

inspection of the log2 ratios was used to guide the selection of the three user-defined 

parameters applied to the automated segmentation procedure.  Additional analyses were 

performed with JCFread_cgh (Matlab script), and SnoopCGH (Almagro-Garcia et al. 

2009).  

The minimum length of these CNVs was calculated based on the distance 

between the first and last probe inside the region that had been duplicated or deleted.  The 

breakpoint of the CNVs is expected to be located between the first or last internal probe 

and the adjacent flanking probe.  However, in some cases the distance between the 

adjacent flanking probes and the probes contained in the CNV was fairly large, up to 40 

kb, resulting in uncertainty about the location of the breakpoints.  

Additionally, we used (i) qPCR, (ii) PCR and DNA sequencing of breakpoints, 

and (iii) single-worm PCR to independently verify the presence of CNVs identified by 

oaCGH as well as quantify the frequency of the CNVs in earlier generations of the 
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adaptive recovery phase. 

 

Quantitative PCR (qPCR) 

We used qPCR as a means to independently verify the presence of CNVs 

identified by oaCGH as well as quantify the frequency of the CNVs in earlier generations 

of the adaptive recovery phase. The qPCR was performed and analyzed as described 

previously (Lipinski et al. 2011). Briefly, qPCR was performed using FastStart SYBR 

Green with Rox (Roche) and the reactions were run on an ABI Prism 7000 Sequence 

Detection System. qPCR was done by testing population DNA of specified generations 

against their post-MA, pre-adaptive recovery ancestor. 

A modification of the ΔΔCt method (Ferreira et al. 2006) was used for 

measurement of copy-number changes in genomic DNA from populations. The 

efficiency of the reference was determined by a dilution series for each qPCR plate. Each 

“run” was comprised of four groups of three unpaired technical replicates, one group for 

each combination of template and primers (reference DNA with reference primers (R/R’), 

reference DNA with test primers (R/T’), test DNA with reference primers (T/R’) and test 

DNA with test primers (T/T’)), resulting in 12 cycle threshold measurements (Cts) per 

run. The average of each group was used to calculate copy-number. The mean copy-

number was determined from (1+efficiency)-ΔΔCt where ΔΔCt = (T/T’ – T/R’) – (R/T’ – 

R/R’) (Pfaffl 2001). Statistical analysis was performed as recommended by MIQE 

standards (Bustin et al. 2009). 95% confidence intervals for the mean copy-numbers were 

determined through bootstrapping (10,000 iterations) by random resampling of individual 

Ct values within each group to produce an array of sorted copy-numbers. The confidence 
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interval bounds were the 2.5 and 97.5% quantiles of the sorted bootstrap array. 

 

PCR and DNA sequencing across duplication and deletion breakpoints 

For PCR and sequencing duplication breakpoints, we designed primers oriented in 

opposite directions within the predicted boundaries of the duplication event. In genomes 

bearing only a single gene-copy, the forward and reverse primers are divergent and would 

fail to initiate PCR amplification. However, in the event of gene duplication resulting in 

two adjacent paralogs (tandem or inverted), the primers are rendered convergent, 

enabling PCR amplification and subsequent DNA sequencing. For deletions, primers 

were designed to DNA sequences flanking the deleted sequence. This approach would 

fail to detect gene duplications and deletions with additional local rearrangements or 

those that have been rendered genomically distant via translocations. The PCR products 

were either gel-extracted and cleaned up using QIAquick Gel Extraction Kit (Qiagen) or 

prepared directly for sequencing using ExoSAP-IT (GE HealthCare Life Sciences). The 

PCR products were subsequently sequenced using Big Dye Terminator v3.1 Cycle 

Sequencing Kits (AB Applied Biosystems) on an ABI 3130xl Genetic Analyzer. 

 

Single-Worm PCR 

 Single-worm PCR was additionally performed to confirm the accuracy of both the 

oaCGH and qPCR methods in estimating the frequency of existing deletions and 

duplications. Because adaptive recovery populations were cryogenically frozen at 

multiple time-intervals approximating generations 80, 140, and 200, it was possible to 

resurrect C. elegans populations at different generation times and collect individual 
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worms from the thawed populations. Populations at varying generation times were 

removed from -86°C and thawed on regular NGM plates. Upon reaching maturity, worms 

were sexed and adult males were collected in lysis buffer and frozen in individual PCR 

tubes at -86°C. It was necessary to use adult males because outcrossing adult females 

may contain nonclonal eggs; hence a PCR band of DNA extracted from a mother and her 

eggs would not be an accurate representation of the genotype of an individual worm. 

Using primers designed to detect duplications and deletions, PCR was performed on 30 

individual worms, when possible, using the single-worm PCR protocol developed by 

Williams et al. (1992). Frozen males were thawed and incubated at 65°C for 90 min, 

followed by incubation at 95°C for 15 min to deactivate proteinase K. After worms were 

lysed and DNA released from cells, PCR tubes were spun down to separate worm protein 

from solution. The DNA solution was removed from the tubes and divided between two 

PCR tubes, 2.5μl per tube. 

We obtained single-worm PCR data at varying generation times for 

rearrangements for which duplication/deletion breakpoints had previously been 

sequenced. On average, 30 individuals for each population at each time-point were 

analyzed. To test the frequency of a deletion in a population, two separate reactions were 

prepared, (i) namely using deletion primers external to the deleted sequence, and (ii) 

primers internal to the deleted sequence. A positive result for the reaction containing the 

internal primers was evidence that the deletion was not present in the genome of the 

individual. A positive result for the reaction with primers external to the deleted sequence 

was evidence that the deletion had occurred in the genome of the individual. The 

presence of both deletion single worm PCR products indicated an individual that was 
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heterozygous for the deletion of interest. To estimate the frequency of duplication in a 

population, two reactions were prepared for each individual. One reaction was prepared 

with divergent primers designed from sequencing the breakpoints of the duplication in 

question and yields a product of a known size when the duplication is present, and the 

second reaction contained positive control primers. All reactions were run with a 

touchdown thermocycling protocol with the following profile: 10 cycles of 30s @ 94°C, 

30s @ 60°C – 1°C/cycle, and 2’ @ 72°C followed by 30 cycles of 30s @ 94°C, 30s @ 

50°C, and 2’ @ 72°C. The products were analyzed by gel electrophoresis. 

 If the rearrangement resides on chromosome X, then the frequency of individuals 

showing a positive PCR result for the rearrangement should be a direct estimate of the 

frequency in the population since males are hemizygous for the X chromosome. If the 

rearrangement was present on any of the remaining five autosomes (I-V), the frequency 

of rearrangements was calculated under the assumption that the population was in Hardy-

Weinberg equilibrium. The frequency of individuals that test negative for the 

rearrangement is therefore expected to be the frequency of individuals homozygous for 

the absence of the rearrangement (non-carriers). The frequency of individuals positive for 

the rearrangement is the frequency of individuals that are homozygous or heterozygous 

for the rearrangement. The frequency of the rearrangement is then estimated as 1 – square 

root of the frequency of non-carriers. 

 

Data Access 

The microarray data have been deposited in NCBI's Gene Expression Omnibus 

(Edgar et al. 2002) and are accessible through GEO Series accession number GSE67871.  
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Chapter 3 Addendum 

 The oaCGH array data obtained during this investigation exhibited much less 

variance than the oaCGH array data from our previous research (Lipinski et al. 2011).  

This made it easier to identify CNVs and their breakpoints.  The increased probe density 

also facilitated better breakpoint identification.  There was a distinct difference between 

the type of CNV signal displayed in the two projects.  In the previous work, CNVs were 

fixed in the population due to the bottlenecking process.  This meant that the oaCGH 

array signal showed discrete levels of change reflecting the copy-number shift per 

haploid genome.  In this work, because of the large populations where the CNV 

frequency in the population can fluctuate, the array signal could take on any intermediate 

value reflecting the CNV frequency. 

 Of the five duplications for which we sequenced breakpoints, the four common 

chromosome V duplications (Figure 3.5) all appear to be the result of NAHR, as 

mentioned in Chapter 2.  In all four of these duplications, the recombination mechanism 
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produced clean transitions between the sequences homologous to the downstream and 

upstream ends, respectively.  There were no nucleotides added, nor deleted (no gaps), at 

the transition point.  This provides more evidence for the hypothesis that crossover 

events, even if they occur in the middle of an exon, will not themselves disrupt the gene. 

 Summarizing, multiple experimental lines with reduced fitness were able to 

regain most or all of their fitness during recovery in large populations.  CNVs arose in 

these populations, increasing quickly in frequency over a relatively small number of 

generations, suggesting the CNVs were adaptive and contributed to the fitness increase.  

Adaptive CNVs, as opposed to CNVs that arose in the absence of selection, are markedly 

larger, including many more genes per duplication event thereby increasing the chances 

of a favorable duplication.  While there may be a question about this also increasing the 

probability of unfavorable duplications, it does appear that large duplications in this 

study, in many cases, were clearly adaptive under the experimental conditions. 
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Abstract 

 Effective statistical methods for analyzing technical replicates and combined data 

in quantitative, or real time, PCR (qPCR) are still lacking in the literature.  In this 

analysis, computer simulations were used to analyze four bootstrap methods for technical 

replicates and calculated methods for both technical replicates and combined data.  These 

simulations revealed that the calculated methods presented here had a confidence interval 

capture rate of approximately 95% regardless of the ddCt value or standard deviation of 

the source data.  The bootstrap methods displayed various behaviors.  The two methods 

that emulated the actual methods for determining ddCt tended toward a 95% capture rate 

with large sample sizes (NCt > 25), but tended to type I errors with smaller sample sizes.  

The other two bootstrap methods had confidence interval capture rates between 90.0% 

and 96.9% for small sample sizes (NCt = 3), but quickly tended to type II errors as sample 

size increased.  These results suggest calculated methods work effectively provided the 
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correct confidence intervals are determined, and bootstrap methods may work for certain 

data sets but should be evaluated in silico to determine their effectiveness. 

 

Methods Summary 

 This work presents an analytical method for determining the confidence interval 

for technical replicates in quantitative PCR by using a standard deviation derived from 

the standard deviation of the four groups of Ct values.  Additionally, a method for 

determining the confidence interval for combined data (technical and biological 

replicates) is presented.   

 

Introduction 

Quantitative, or real-time, PCR (qPCR) has become a valuable tool for the 

measurement of relative quantities of DNA and/or RNA.  While the calculations to 

determine N-fold copy change between experimental and control samples have been 

extensively discussed (Pfaffl 2001; Livak and Schmittgen 2001), the appropriate statistics 

to perform hypothesis testing are not so straightforward.  Researchers often use biological 

replicates, and while the statistical methods for these are straightforward, there is some 

disagreement on the statistic to be analyzed (Yuan et al. 2006; Schmittgen and Livak 

2008).  Statistical methods for technical replicates of single biological samples (replicate 

tests on the same sample), or combinations of technical replicates and biological 

replicates (combined data), have been all but ignored in the literature.  Specifically, qPCR 

methods that use technical replicates cannot be analyzed using biological replicate 
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statistical methods because the measurements of technical replicates are unpaired, 

creating a difference in determining the standard error of the mean.   

Bootstrap procedures may provide a solution to this problem, but these may be 

inadequate if sample sizes are small, and may need to be modified to provide an effective 

means of hypothesis testing. This work compares methods for calculating 95% 

confidence intervals (CI) for technical replicate and combined qPCR data as well as four 

different bootstrap algorithms.  The metric of comparison in this analysis is the rate at 

which the true ddCt value, determined from the means of the cycle threshold value (Ct) 

source distributions used for random sampling, is contained within (or captured by) the 

CI for that method.  With a 95% CI, the capture rate should be approximately 95% on 

average with a large number of trials if that method is optimal (Ott 1993; Samuels et al. 

2012).  The question is which methods, and for what sample sizes, provide a CI capture 

rate close to 95%?  It is predicted that among bootstrap methods, those emulating the 

process of ddCt calculation will perform best, especially with large numbers of samples. 

 

Methods 

The simulations were Matlab scripts (see Appendix D) developed to measure the 

frequency at which the true ddCt value was contained within a method’s CI, which will 

be referred to as the capture rate.  The ddCt is the cycle difference measure between the 

experimental and reference samples.  The programs performed 1000 trials per sample 

size (NCt) for each level of standard deviation of the source population (σ) and each target 

value of ddCt specified in the simulation for a total of 15,000 trials for each sample size 
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except NCt = 3 and 25 which had 25,000 trials each. 10,000 bootstraps were done for each 

bootstrap algorithm in each trial.  All methods were evaluated based on a 95% CI. 

 

The Data 

The programs pseudorandomly generated a set of simulated Ct values from 

normal distributions with specified means and standard deviations.  Analysis of actual 

qPCR Ct values (Lipinski et al. 2011) from technical replicates showed the Ct 

distribution was not significantly different from normal with a sample size of N = 72 

(Jarque-Berra normality test p = 0.1790; Lilliefors normality test p = 0.4129).  

Simulations were run with source population σ of 0.05, 0.15, 0.25, 0.35 and 0.45, and 

target ddCt values of −4, 0, and 4.  The ddCt value was the statistic of interest (Yuan et 

al. 2006) and is a linear measure that maps via negative exponential transformation (base 

2 if PCR efficiency is 100%) to the relative N-fold copy change or relative expression 

level.  The ddCt is derived as the difference of Ct measures reported by the instrument.  

The program created four groups of measurements all containing the same number of Ct 

values specified for that simulation designed to generate a distribution of ddCt values.  

The true ddCt value was calculated from the four source distribution means using the 

standard equation: 

ddCt = (TT'-TR')-(RT'-RR'),     (eq. 1) 

 where T and R were the test and reference DNA samples respectively, and T’ and R’ 

were the target and reference primers respectively (Pfaffl 2001).  The four combinations 

of the DNA and primers represented the four groups within which Ct measurements were 

made.  Three of the means remained fixed for all simulations, while the fourth mean 
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could be shifted for comparison of the results under different target ddCt values.  Each 

trial iteration, all of the bootstrap and calculated methods, except the combined data 

method, were performed on the same set of simulated data.  Sample sizes analyzed were:  

NCt = 3–10, 15, 20, 25, 30, 35, 40, 45, and 50. 

 

The Bootstrap Methods 

There were four bootstrap algorithms compared in this study:  

Group Means Method:  This method emulated the process for determining 

technical replicate ddCt, which assumed the data was unpaired.  The normal process 

takes the mean of the Ct measurements of each of the four groups and plugs them into 

equation 1 to determine the ddCt value (Ferreira et al. 2006).  Each bootstrap iteration, 

each of the four groups was resampled with replacement to form four new groups, which 

were then averaged and the four new means used to calculate a new ddCt value.   

Paired Means Method:  This method treated the data as if it were paired between 

the tests within each DNA type (test or reference), as in biological replicates.  This 

produced two sets of dCt values, dCtT = TT'-TR' and dCtR =  RT'-RR', which were then 

resampled with replacement within each set and averaged.  These two new means were 

then used to determine ddCt using the equation ddCt = dCtT – dCtR during each bootstrap 

iteration.  The reason for including this process, in spite of the data being generated in an 

unpaired manner, is that most methods described in the qPCR literature deal only with 

paired data and it was desired to look at how those methods handle unpaired data. 

Single Random Resampling:  This method randomly selected one of the Ct 

values from each of the four groups and used those single values instead of the means to 
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calculate ddCt as described above during each bootstrap iteration.  This method did not 

emulate the normal process for calculating ddCt.  The range of possible ddCt values was 

the same as the group means method, but the distribution was less kurtotic thus 

increasing the CI by forcing its limits outward. 

Single Paired Resampling:  This method paired the data as in the paired means 

method above, but then randomly selected one dCt value from each set and used these 

single values to calculate ddCt during each bootstrap iteration.  This method did not 

emulate the normal process for calculating ddCt. 

 

The Technical Replicate Calculated Method 

This method calculated a CI based on a standard error of the mean (SEmean) 

determined from the standard deviation and number of Ct values within each group and 

assumed the data was unpaired.  The SEmean for each group was determined by SEmean = 

s/√ , where s = standard deviation of each group’s measurements and n = number of Ct 

values within each group (Ott 1993; Samuels et al. 2012).  The SEmean for the ddCt 

(SEddCt), which is the SE of the difference of the means of the groups, should be 

calculated as: 

                   
   √     

       

  

                   
   √     

       

  

                        √      
        

   (eq. 2) 

(Samuels et al. 2012) where      
and      

= SEmean of Ct measures from test (or 

experimental) DNA with test and reference (or control) primers, respectively,      
and 
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= SEmean of Ct measures from reference DNA with test and reference primers, 

respectively, and SEdCtT and SEdCtR = SEmean of the difference between the mean Ct 

results of the test DNA and reference DNA, respectively.  Note that the SEddCt was 

calculated from the standard deviations of the Ct measurements, and not from σ of the 

source distributions.  The degrees of freedom equals the total number of Ct values in all 

groups minus one for each group, df = ∑      , where N is the number of Ct values in 

the ith group (Ott 1993).  The number of Ct values were equal for all groups in these 

simulations, and there were four groups, thus df = 4(NCt – 1). 

Additionally, two tests were made, at sample sizes of NCt = 3 and 25 with 15,000 

trials each, pairing the technical replicates in the order they were generated to see if there 

was any difference in the capture rate.  After pairing, the sets were treated as biological 

replicates and the standard deviation, SEmean, and CI were determined from the resulting 

sets of ddCt values.  The CIs of each iteration were tested for true mean capture. 

 

The Combined Data Calculated Method 

This final method was run independently of the other simulations as the 

arrangement of the data was different.  First, data was generated as above to produce 

technical replicates within each of three biological replicates.  The ddCt value for each 

biological replicate was determined as described above for technical replicates.  Then, the 

biological replicate ddCts were averaged, the standard deviation and SEmean determined, 

and the CI estimated using standard statistical methods (Ott 1993; Samuels et al. 2012).  

1000 trials per combination of conditions were performed using the same σ and target 

ddCt values, for a total of 15000 trials per sample size. 
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Results and Discussion 

Various statistics have been reported with qPCR results including standard 

deviation and coefficient of variation (CV) (Schmittgen and Livak 2008).  However, CV 

is not useful for hypothesis testing, and standard deviation needs to be adjusted for NCt to 

get the SEmean.  Additionally, the standard deviation of paired biological replicate data is 

calculated differently than the standard deviation of unpaired technical replicate data.  

Accurate determination of the standard deviation is paramount to accurate estimation of 

the SEmean.  On top of this is the necessity of an accurate determination of the degrees of 

freedom required to obtain the appropriate t-critical value for the estimation of CIs.  

Bootstrap methods circumvent the need for estimating standard deviation and degrees of 

freedom, but present some difficulties in the estimated capture rates of their CIs 

depending on NCt and the algorithm employed.  

To be effective, methods should be invariant with respect to ddCt and σ.  Table 

4.1 shows a comparison of the results across different ddCt values and σ of the source 

distributions, and supports the hypothesis that the CI capture rate of all methods 

considered here is not correlated with ddCt or σ (all two-way ANOVA p  > 0.05, thus fail 

to reject null hypothesis of no effect). 

For biological replicates, the final ddCt of each paired set can be determined from 

the standard equation 1 above, and the mean ddCt, SEddCt, and the 95% CI calculated 

using standard statistical methods (Ott 1993; Samuels et al. 2012).  The negative of the 

mean ddCt is then exponentiated (2−ddCt, at 100% PCR efficiency) to provide an estimate 

for the N-fold change (expression or copy number) relative to the reference (Pfaffl 2001).   
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________________________________________________________________________ 
Table 4.1.  Two-way ANOVA Results of the Comparison of Capture Rate Versus 
Population ddCt (-4, 0, 4) and σ (0.05 to 0.45). 
________________________________________________________________________ 
         p-values 
 Method      NCt   ddCt      σ  
 
Group Means Bootstrap       3  0.8215  0.7694 
       25  0.9704  0.6634 
Paired Means Bootstrap       3  0.6812  0.6119 
       25  0.7096  0.4099 
Single Random Resampling Bootstrap     3  0.7253  0.7639 
       25    N/A    N/A 
Single Paired Resampling Bootstrap     3  0.7243  0.7419 
       25    N/A    N/A 
Technical Replicate Calculated      3  0.9132  0.4446 
       25  0.9699  0.3020 
Combined Data Calculated      3  0.5521  0.6533 
       25  0.1464  0.3738 
______________________________________________________________________________________ 
Values marked as N/A were not computable as all of the data for those entries had a capture rate of 1, 
therefore there was no variance. 
 

The confidence interval for the N-fold change, upon negative exponentiation, will be 

asymmetric about the mean (Livak and Schmittgen 2001).  Also, the lower CI bound for 

the ddCt produces the upper bound for the N-fold change, and vice versa. 

For technical replicates, when measurements are made on the reference DNA 

using both test and reference primers, no single measurement using the test primers is 

specifically paired to a particular measurement using the reference primers.  Instead, the 

mean of each group is used to determine the difference (Ferreira et al. 2006).  And while 

it is true that the difference of means equals the mean of differences regardless of how 

they are paired, the standard deviation of that mean difference changes according to if 

and how the data is paired.  That standard deviation affects the hypothesis test. 

The results do show that treating the unpaired data as paired produced an 

approximate 95% capture rate (95.13% on average regardless of the sample size).  

However, treating it as unpaired data using group means, there is only one ddCt value 
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with one SEddCt determined from the SEmean of the Ct groups (eq. 2).  But if the data is 

treated as paired (though generated in an unpaired manner), then the standard deviation of 

the mean ddCt varies depending on how the data is arranged, producing a bias (or 

potential bias) in any single determination of the CI dependent on the arrangement (i.e., 

pairing) of the data. 

An issue with small sample sizes (NCt = 3 or 4) is the possibility of failing to 

capture the true mean of the population within the range of the samples.  For one group of 

three measurements, the average data range (instead of CI) capture rate is estimated to be 

only 75%.  With four groups of measurements, however, the range capture rate increases.  

The simulations exhibited an estimated average range capture rate of 98.1% (in 

simulations with NCt = 3) or higher from all simulations, and 100% in all simulations with 

NCt > 4.  While small sample sizes might be considered a problem, the simulations show 

that with four groups of measurements the probability of capturing the true mean within 

the range of the data is actually high. 

Analysis of the calculated methods (Figure 4.1) for both technical replicates and 

combined data provided an estimated CI capture rate of approximately 95% regardless of 

the sample size, demonstrating their effectiveness.   

However, the bootstrap methods (Figure 4.1) exhibited various behaviors.  

Though bootstrap methods can be effective under certain circumstances, the bootstrap 

algorithm may not perform at an optimal level under the experimental conditions and 

should be simulated in silico to evaluate the method’s capture rate.  The group means 

method begins at an estimated CI capture rate of 84.5% at NCt = 3 and asymptotes to the  
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Figure 4.1. Proportion of True ddCt Capture by CI.  Optimal capture rate is 0.95.  
Data points for NCt = 3 and 25 are based on 25,000 trials.  All other data points are based 
on 15,000 trials. 
 

95% capture rate as NCt increases.  This method is close to the 95% capture rate when NCt 

> 25, but has an increasing tendency of type I error as NCt decreases to 3.  The paired 

means method starts at an estimated CI capture rate of 80.5% at NCt = 3 and also 

asymptotes to the 95% capture rate as NCt increases, getting close to the 95% rate when 

NCt > 25.  This method also has an increasing tendency of type I error as NCt decreases to 

3.  Both of these methods emulate the actual process of determining ddCt, and approach 

an optimal CI capture rate with large sample sizes.  However, many qPCR experiments 

have small sample sizes, either because of limits on biological samples or budgets.   

The single random resampling method has an estimated CI capture rate of 96.9% 

at NCt = 3, which is just slightly conservative of the 95% rate.  As NCt increases, this 

method quickly approaches an estimated 100% capture rate, indicating a distinct bias 
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toward type II error.  The single paired resampling method starts with an estimated CI 

capture rate of 90.0% at NCt = 3, and an estimated capture rate of 97.3% at NCt = 4, the 

second being nearer the target CI capture rate of 95%.  Increasing NCt produces estimated 

CI capture rates approaching 100%, again displaying a bias toward type II error.  These 

two methods did not emulate the actual process of determining ddCt.  They used the same 

data as the previous methods, keeping the same range but altering the distribution by 

reducing kurtosis.  The result spreads the limits of the CI, bringing the capture rate closer 

to the optimal CI capture rate for small sample sizes, but quickly approaches a 100% 

capture rate as NCt increases. 

The examples provided in Figures 4.2 and 4.3 demonstrate the differences in the 

determination of ddCt, SEddCt, and CI.  With biological replicates (Figure 4.2A), statistics 

are performed on the ddCt values of the individual biological replicates, which is why df 

= number of biological replicates – 1 (Ott 1993).  With technical replicates (Figure 4.2B), 

statistics are performed on the ddCt value as a difference of means of the groups of Ct 

values, therefore df = total number of Ct measurements – the number of Ct groups (Ott 

1993).  As shown in Figure 4.2, the mean N-fold change is the same in both methods, but 

the confidence bounds are different (larger in this case) in the biological replicate method 

than in the technical replicate method with the same data.  The SEddCt of technical 

replicates will be higher than the highest SEmean of any of the four groups of Ct 

measurements.  It only takes one group with a high SEmean to cause the final ddCt 

measure to have a high SEddCt.   

With the combined data shown in Figure 4.3, the technical replicates of each 

biological replicate are evaluated to produce ddCt values for each biological replicate.   
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Figure 4.2.  Biological and technical replicate examples for calculating ddCt, SEmean, 
df, and CI.   (A)  Biological replicates (paired data).  (B)  Technical replicates (unpaired 
data). 
 

We are not interested in the standard deviations within the groups.  The biological 

replicate ddCt values are treated as any other biological replicates.  Simulations trying to 

combine the variance of the technical replicates with the variance of the biological  
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Figure 4.3.  Combined data example for calculating ddCt, SEmean, df, and CI. 
 

replicates resulted in capture rates that were not optimal and varied with σ of the source 

distributions (data not shown).  The variance among Ct measurements is only one of 

several independent arguments that sum to produce the observed variance of the 

biological replicate ddCt values (Kitchen et al. 2010).  Therefore, the observed variance 

of the ddCt values in combined data is all that is needed.  The simulations reveal (Figure 

4.1) that the estimated capture rate of CIs produced by the biological replicate method on 



82 
 

the ddCt values of combined data (15,000 trials per NCt) is approximately 95%, and it 

appears invariant with respect to source distribution σ and ddCt (Table 4.1). 

The combined method can be used for biological replicates on different plates, as 

it only compares the value of each biological replicate ddCt relative to the other ddCt 

values, provided PCR efficiency is similar or accounted for.  As the ddCt is the result of 

differences between measurements and not a direct Ct measure itself, calibrators may not 

be necessary between plates provided all the reactions for any biological replicate are on 

the same plate. 

It is the author’s hope that the above examples will help those trying to cope with 

the statistical analysis of qPCR data.  Small sample sizes are common in qPCR 

experiments, raising questions about the effectiveness of bootstrap algorithms which 

haven’t been tested for capture rate efficiency.  With more researchers adopting the 

MIQE quidelines (Bustin et al. 2009), the need for applying appropriate statistical 

methods increases.  We should always question whether an analytical method is 

appropriate for the research question and data at hand, and not just use the same method 

as everyone else out of convenience. 
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Chapter 4 Addendum 

 One of the few bootstrap methods that describes the algorithm is the REST© 

program (Pfaffl et al. 2002).  The bootstrap resamples dCt values from paired sets and 

treats all of the data as if it came from the same distribution.  It then evaluates how often 

it obtains a bootstrapped ddCt value as great or greater than the one observed.  From this 

it provides a p-value rather than a CI.  This process, as opposed to comparing two 

distributions to see if they are significantly different, might tend to be conservative.  

However, like most of the other methods considered, it is designed for analysis of paired 

data of biological replicates.  Various software packages for analyzing qPCR data, 

including Q-Gene (Muller 2002), LightCycler Relative Quantification Software (Roche 

Diagnostics), qBase (Hellemans et al. 2007), SoFar (Metralabs), qCalculator (Gilsbach et 

al. 2006), Dart-PCR (Peirson et al. 2003), Gene Expression Macro (BioRad), and qPCR-

DAMS (Jin et al. 2006), were reviewed (Pfaffl et al. 2009), and about half of them 

offered little or no statistical analysis.  Those that did offer statistical methods did not 

appear to effectively describe how they were determining the standard deviation or the 

degrees of freedom, though it may be possible this information was simply not covered in 

the review.   

 As mentioned in the manuscript, the search to develop a method for determining 

the standard deviation based on both the variance of the biological replicates and the 
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variance of the technical replicates was not successful.  The equation used for this 

attempt (Headrick 2010) is shown below:   

 

   
                                             

 

            
 

 

where V is the observed variance, V1 and V2 are the variances of two sets of 

measurements, m and n represent the number of measurements in each set, and M1 and 

M2 are the means of the two sets.  The simulations indicated that while this method is 

invariant with respect to ddCt, it is not invariant with respect to σ.  The reason this 

approach was unsuccessful was simply that what the equation provides is an observed 

variance given variances both within and among populations of measurements.  The 

variance of the biological replicates does not reflect merely differences between the sets 

of measurements, but includes the variance within the sets of measurements.  Therefore, 

the variance of the biological replicates is the observed variance, which is derived from 

the standard deviation. 

 In summary, statistical methods to deal with hypothesis testing of technical 

replicates or combinations of technical and biological replicates were not available in the 

qPCR literature and had to be developed.  Bootstrap methods may work for specific data 

sets, but clearly do not work for all.  Evaluation of bootstrap methods in silico against the 

definition of confidence intervals provides a means of judging the effectiveness of that 

method.  Calculated methods appear to be the best option, though one has to be careful of 

the pitfalls in determining the correct standard deviation and degrees of freedom. 
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Chapter 5 

Conclusions 

 The results of this work demonstrate that the spontaneous rate of gene 

duplications, as measured on a per gene per generation basis, is approximately two orders 

of magnitude higher than the point mutation rate.  Thus if both a duplication and a point 

mutation confer an increase in fitness, the probability is that the duplication will occur 

first.  And whereas a point mutation changes only a single nucleotide, duplications can 

span hundreds of thousands of nucleotides and multiple genes, dramatically raising the 

amount of genetic material subject to selection in a single mutational event. 

 This work also demonstrates that duplications can clearly be adaptive.  Most of 

the duplications, as well as most of the deletions, demonstrated clear evidence of 

selection, i.e. a constant increase in frequency of the CNV in the population over 

generations.  That so many CNVs would have exhibited this pattern is highly unlikely to 

have occurred by genetic drift alone.   

 While the focus here was primarily on the adaptive nature of duplications, 

deletions were also investigated.  While duplications represent an increase of genetic 

information, deletions are usually perceived as information loss.  However, if the unit of 

information is the gene, deletions can be viewed in certain circumstances as information 

change, the alteration of a gene without actual loss.  If a deletion removes an exon, it 

doesn’t remove the entire gene or alter its expression.  From a DNA information 

perspective, however, deletions can only be a loss of information. 

 As to what selection pressures these CNVs are specifically adapting, we do not 

know for certain.  Some possibilities have been presented in the manuscripts, but a 
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detailed functional analysis of specific CNVs and the individual genes within them would 

be an important next step in this research.  As well as the genes themselves, variations in 

the mechanisms producing these CNVs also need to be investigated.  Apparent 

differences in mechanisms have been shown between very different organisms such as C. 

elegans and the yeast Saccharomyces cerevisiae (Katju et al. 2009).  These differences 

can also manifest themselves even among closely related taxa, such as Homo sapiens and 

Pan troglodytes (Bu 2015), suggesting that factors affecting duplication mechanisms, 

such as viral prevalence, can influence the frequency of duplication and deletion 

mechanisms in a population, thus altering the population’s evolutionary trajectory. 

 This work demonstrates the importance of the contributions of gene duplications 

and deletions to the adaptability of populations.  More research elucidating the degree of 

contribution of the various mechanisms would contribute to our understanding of their 

effect on evolutionary trajectories.  Rapid evolutionary changes, including increases in 

genome information content, are clearly possible via this process. 
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Appendix A 
 
Supplemental Material for Chapter 2 
 
Supplemental Experimental Procedures 
 

Worm MA Lines 

Independent C. elegans lines were maintained at small population sizes via single-

progeny descent for up to 465 generations in order to preserve the vast majority of 

spontaneous non-lethal and non-sterile mutations (Vassilieva and Lynch 1999).  The 

duplications and deletions reported here are homozygous due to multiple generations of 

selfing. 

 

Preparation of genomic DNA from MA lines 

Ten MA lines were grown to large population sizes (>5000 individuals) and 

starved.  The worms were harvested and the genomic DNA extracted using standard 

procedures (Sulston and Hodgkin 1988). 

 

CGH Arrays 

 Genome-wide duplications/deletions in the MA lines were detected using 

NimbleGen CGH arrays.  Each array contains 385,000 unique probes (50—75 nts in 

length) that span both coding and noncoding regions.  The design of the array is based on 

Wormbase version WS120 but all the data coordinates provided in this manuscript are 

based on version WS219. 
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For each DNA microarray hybridization, 1 g genomic DNA each from an MA 

line and Bristol N2 (the common reference for all hybridizations) were labeled using Cy-

3 or Cy-5 labeled random primers (TriLink Biotechnologies) and New England Biotech 

Klenow fragment, 50U/l (M0212M) according to the manufacturer’s specifications.  6 

g of labeled DNA from each control and experimental line was added to 18 l 

Hybridization Solution Master Mix, and hybridized to a NimbleGen CGH array, design 

071114_CE2_WG_CGH_T.  Slides were hybridized for 16-h at 42°C in a BioMicro 

MAUI® Hybridization System, washed with NimbleGen wash buffers and dried for 1 

min on an ArrayIt™ slide drier.  The slides were scanned on an Axon GenePix 4000B 

scanner and the data analyzed in Nimblescan and SignalMap.  Arrays of Bristol N2 DNA 

hybridized against itself served as baseline controls.  Gene identities for regions with 

copy-number variation were obtained from Wormbase sequence version WS120.  

Bootstrap confidence intervals for the duplication and deletion rates were calculated 

using Matlab 2009b built-in “bootci” function. 

 

Quantitative PCR 

qPCR was performed using FastStart SYBR Green with Rox (Roche) and the 

reactions were run on an ABI Prism 7000 Sequence Detection System.  Total gDNA 

template per 25 uL reaction was 20 ng (5 uL @ 4 ng/uL) and the primer concentration in 

the reaction was 200 nmol/ primer.  Serial dilutions of 10x, 1x, 0.1x, 0.01x, and 0.001x 

were performed for standardization.  No template controls (NTCs) were also utilized to 

evaluate spurious products and contamination.  Four sets of reactions were performed in 

triplicate for each locus: reference DNA with single copy reference primers, reference 
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DNA with test primers (primers in region of interest), test DNA with reference primers, 

and finally test DNA with test primers.  The primers were usually 20 nt long, with a GC 

content between 40 and 60 %, and generated products close to 100 nt long.  The primers 

were designed using Primer3 (Rozen and Skaletsky 1998).  Dissociation peaks were 

evaluated for primer performance and agarose gel electrophoresis (2%) was used to 

confirm the products.   

 

PCR and DNA sequencing across duplication and deletion breakpoints 

For sequencing duplication breakpoints, we designed primers oriented in opposite 

directions within the predicted boundaries of the duplication event.  In genomes bearing 

only a single gene-copy, the forward and reverse primers are divergent and would fail to 

initiate PCR amplification.  However, in the event of gene duplication resulting in two 

adjacent paralogs (tandem or inverted), the primers are rendered convergent and PCR 

amplification and subsequent DNA sequencing.  For deletions, primers were designed to 

DNA sequences flanking the deleted sequence.  This approach would fail to detect gene 

duplications and deletions with additional local rearrangements or have been rendered 

genomically distant via translocations.  The PCR products were either gel-extracted and 

cleaned up using QIAquick Gel Extraction Kit (Qiagen) or prepared directly for 

sequencing using ExoSAP-IT (GE HealthCare Life Sciences).  The PCR products were 

subsequently sequenced using Big Dye Terminator v3.1 Cycle Sequencing Kits (AB 

Applied Biosystems) on an ABI 3130x Genetic Analyzer.  The sequence information has 

been provided to Wormbase (www.wormbase.org) for annotation. 

 
 



91 
 

 

 

Supplemental Figure A.1. Lipinski et al. (1/4) 
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Supplemental Figure A.1. Lipinski et al. (2/4)
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Supplemental Figure A.1. Lipinski et al. (3/4)



94 
 

 
 

Supplemental Figure A.1. Lipinski et al. (4/4) 

 

Figure A.1.  Duplication and Deletion Breakpoints in MA lines and N2 isolates.  

A-F and G-J represent duplication/deletion breakpoints in MA lines and the N2 isolate 

that was used as a common reference in the CGH experiments, respectively.  The upper 

line and coordinates indicate the affected region in the sequenced genome.  The 

nucleotides at the ends of the duplicated or deleted region are shown in red and the 

flanking sequence in black.  The length of the duplicated or deleted sequence is also 

indicated.  On the lower line, the nucleotides in blue indicate sequence that has been 

inserted at the breakpoint and nucleotides in orange indicate microhomology at the ends.  

All positions are based on Wormbase version WS219.   

(A)  Duplication on Chromosome V in C. elegans MA2 (Related to Table 2.1). 

(B)  Duplication on Chromosome I in C. elegans MA78 (Related to Table 2.1).  

(C)  Duplication on Chromosome III in C. elegans MA78 (Related to Figure 2.1A and 

Table 2.1). 

(D)  Duplication on Chromosome III in C. elegans MA94 (Related to Table 2.1). 

(E)  Deletion on Chromosome V in C. elegans MA78, probably due to unequal crossing-

over.  The green nucleotides represent the two paralogous copies in the ancestral N2 

strain and the red sequence denotes unique sequence inserted between the two original 

paralogs and deleted in MA strain (Related to Table 2.2). 

(F)  Deletion on Chromosome X in C. elegans MA84 (Related to Table 2.2). 
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(G)  Duplication on Chromosome V in the C. elegans ancestral N2 strain, probably due to 

unequal crossing over.  The green nucleotides represent the two paralogous copies in the 

reference N2 strain and the red sequence denotes unique sequence inserted between the 

two original paralogs.  The duplication results in three copies of the green region and two 

copies of the red (Related to Table 2.3). 

(H)  Deletion on Chromosome V in the C. elegans N2 reference strain (Related to Table 

2.3). 

(I)  Duplication B on Chromosome V in the C. elegans N2 reference strain.  The 15 nt 

region in blue gets inserted at the breakpoint as well as duplicated as a part of a tandem 

duplication (Related to Table 2.3). 

(J)  Duplication B on Chromosome X in the C. elegans N2 reference strain (Related to 

Table 2.3). 
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Supplemental Tables 
 
 
Table A.1.  Comparison of copy-number estimates for putative duplications in C. 
elegans MA lines based on qPCR and aCGH methods (Related to Table 2.1)  
 
             

 
    MA Line ID   Chromosome            Start Position qPCR Copy Number   aCGH Copy 
Number 
             
      

2  V  18,507,783  2.18   2.24 
18  V   10,445,133  3.32   3.40 
18  V   17,847,927  7.93   4.12 
29  IV   17,482,852  2.03   1.83 
29  X   12,763,189  2.18   1.70 
63  V                    4,893  2.14   1.71 
63  X       3,559,284  2.29   1.90 
78  I       6,682,405  1.71   2.04 
78  III       9,135,580  1.55   2.05 
78  X   17,694,155  3.05   2.98 
83  IV   11,695,251  4.22   3.36 
94  III             813,463  3.15   1.74 
99  I   10,716,364  2.55   1.62 
99  III   12,190,163  1.95   1.96 

             
 
The qPCR copy number is 2 –ddCt, where ddCt = (Tt-Tr)-(Rt-Rr).  Tt = test DNA with test 
primers, Tr = test DNA with reference primers, Rt = reference DNA with test primers, Rr 
= reference DNA with reference primers.  The microarray (aCGH) copy number is 2 x 
where x = mean of the log2 ratios within the predicted region of the rearrangement. 
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Table A.2.  Comparison of copy-number estimates for putative deletions in C. 
elegans MA lines based on qPCR and aCGH methods (Related to Table 2.2) 
             

 
    MA Line ID   Chromosome            Start Position   qPCR Copy Number     aCGH Copy 
Number 
             
      

18  II    5,779,876   1.14 x 10-7  0.03 
29  X  12,759,852  6.84 x 10-7  0.03 
63  V                   1,300  3.32 x 10-5  0.07 
78  V      7,382,127  4.74 x 10-5  0.11 
78  X                       12,111  1.83 x 10-5  0.03 
78  X  17,698,905  6.07 x 10-4  0.05 
83  II                         539  2.95 x 10-5  0.09 
83  IV      8,582,020  8.06 x 10-6  0.06 
83  IV  15,187,709  5.06 x 10-6  0.10 
84  X      6,449,100  6.14 x 10-4  0.05 
99  III  12,186,218  1.76 x 10-5  0.04 

             
 
The methods are the same as outlined in Table A.1. 
 

 
Table A.3. Comparison of copy-number estimates based on qPCR and aCGH 
methods between the reference N2 strain and the N2 strain that serve as the 
ancestor for all C. elegans MA lines used in this study (Related to Table 2.3) 
             

 
    Chromosome             Start Position    qPCR Copy Number     aCGH Copy Number 
             
      
 V        1,645,712   9.44 x 10-6              0.07 

V      2,995,387   1.18   1.96 
V    18,706,963   4.38   2.50 
V    19,430,653   2.20   1.89 
X                 86,369   4.36   3.03 
X        7,510,066   2.71   1.92 

             
The methods are the same as outlined in Tables A.1 and A.2. 
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Table A.4. Open reading frames in spontaneous duplications and deletions in the 
Mutation Accumulation lines (Related to Tables 2.1 and 2.2) 
             

Duplications Location   Complete / Partial ORFs 

 
MA2V  [18507783:18519661]  Y51A2D.1 / Y51A2D.19, Y51A2D.4 
MA18VA 10445133:10455580  Y32F6A.5 / F22E12.1, Y32F6A.3 
MA18VB 17847927:17858066  Y59A8A.3 /  none 
MA29IV 17482852:17490972  4R79.1, 4R79.5 / 4R79.2 
MA29X 12763189:12767835  none / F22E10.5, T22H6.1 
MA63V 4893:18375   B0348.5, B0348.6 / none 
MA63X 3559284:3567765  none / F59D8.1, F59D8.2 
MA78I  [6682405:6688767]  none / C17F3.3, T23B3.4 
MA78III [9135580:9145930]  ZK512.6, ZK512.7, ZK512.2, ZK512.11,  

ZK512.4 / none 
MA78XA 7609:11592   none / CE7X_3.2 
MA78XB 17694155:17696571  none / F20B4.6 
MA83IV 1169251:11700130  T22B2.1 / ZK792.7 
MA94III [813463:819305]  none / B0412.2, B0412.1 
MA99I  10716364:10721038  none / B0205.1, B0205.9 
MA99III 12190163:12194367  none / Y75B8A.12 
 

Deletions Location   Complete / Partial ORFs 
MA18DII 5779876:5784792  none / K05F1.6 
MA29DX 12759852:12761568  none / F16H9.2 (intron only) 
MA63DV 1300:3319   cTe13X.1 / none 
MA78DV [7382127:7385007]  none / C03G6.18, C03G6.19 
MA78DXA 12111:12925   none 
MA78DXB 17698905:17718646  cTe155X.1, 6R55.2, H11L12.1, F20B4.2 /  
      F20B4.6 
MA83DII 539:4901   2L52.1 / none 
MA83DIVA 8582020:8613790  Y59H11AR.2, Y59H11AR.3, Y59H11AR.5,  
      Y59H11AR.4, F42A9.6 / F42A9.5 
MA83DIVB 15187709:15187923  none 
MA84DX [6449100:6451323]  K10C2.5 / none 
MA99III 12186218:12189728  none / Y75B8A.11 
 
________________________________________________________________________ 
 
Spans in brackets are actual breakpoints based on DNA sequencing.  Others are predicted 
breakpoints based on microarray data.  Positions are based to WS219. 
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Appendix B 

Code for JCFreadCGH.m 

%JCFread_cgh.m 

%version 1.1  21 Jan 2010 

%James Farslow (jfars@unm.edu) 

%This program reads text cgh data and plots the data for the individual chromosomes 

%It also plots a subgraph with a sliding window average to reduce the noise 

clear; 

clc; 

%>>>>>>>>>>>>>>>>>specifiy mode of operation: nimblegen or Stephane's files 

modeType = input('Input Mode: <N>imblegen or <S>tephane: ','s'); 

if (modeType == 'N')  

    %>>>>>>>>>>>>specify file here 

    filenm = input('Input File Name: ','s'); 

    opennm = 'C:\James\Research\Lab_Work\Celegans Research\MA Microarray Data\'; 

    %opennm = 'C:\James\Research\Lab_Work\Celegans Research\Recovery Microarray 

Data\'; 

    %opennm = '/Documents and Settings/James/My Documents/Celegans 

Research/Kendra 

Backup/BergthorssonLabWork/Microarrays/Nimblegen/Lynch_MA_Lines/Corrected(Dy

eSwap)_Nimblegen_Data/'; 

    %>>>>>>>>>>>>>>>for testing only 
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    %opennm = '/Documents and Settings/James/My Documents/Celegans 

Research/ComputerPrograms/Matlab/testdata/'; 

    newOpenName = strcat(opennm, filenm,'.txt'); 

    %first open filehandle for reading only 

    fileName = fopen(newOpenName,'r'); 

    fileStr = regexprep(filenm, '_', ' ');  %filename to be displayed in the titles 

    fprintf('Reading data . . .\n'); 

    %first read headers - use textscan 

    headers = textscan(fileName,'%s %s %s %s %s %s %s %s %s %s %s %s %s %s',1);  

    %read data file into arrays (cells?)- use textscan - will pick up where it 

    %left off - each column of the dataSet array (1 row) is an array of cells 

    dataSet = textscan(fileName,'%d %s %s %s %d %f %s %d %f %f %f %f %f %f');  

    fclose(fileName); 

    fprintf('Assigning data.  Please wait . . .\n'); 

    %convert cells to individual arrays directly 

    A = dataSet{1}; B = dataSet{2}; C = dataSet{3}; D = dataSet{4}; E = dataSet{5}; 

    F = dataSet{6}; G = dataSet{7}; H = dataSet{8}; I = dataSet{9}; J = dataSet{10}; 

    K = dataSet{11}; L = dataSet{12}; M = dataSet{13}; N = dataSet{14}; 

else 

    filenm = input('Input File Name: ','s'); 

    opennm = 'C:\James\Research\Lab_Work\Celegans Research\Micrarray Data 

Stephane\'; 

    newOpenName = strcat(opennm, filenm,'.csv'); 
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    fileName = fopen(newOpenName,'r'); 

    fileStr = regexprep(filenm, '_', ' ');  %filename to be displayed in the titles 

    fprintf('Reading data . . .\n'); 

    %[num, txt] = xlsread(newOpenName); 

    %E = num(:,1); N = num(:,3); 

    %C = txt{3:100,1}; 

    %first read headers - use textscan 

    headers = textscan(fileName,'%s %s %s %s',2); 

    %read data file into arrays (cells?)- use textscan - will pick up where it 

    %left off - each column of the dataSet array (1 row) is an array of cells 

    dataSet = textscan(fileName,'%s %d %f %f','delimiter',','); 

    %fclose(fileName); 

    fprintf('Assigning data.  Please wait . . .\n'); 

    %convert cells to individual arrays directly 

    C = dataSet{1}; E = dataSet{2}; M = dataSet{3};  N = dataSet{4}; 

end 

%convert case of C to upper case 

C = upper(C);   

%break array into blocks based on chromosome (strmatch) 

indices1 = strmatch('CHRI ',C); %define indices for chrom 1 

%indices1 can now be used to specify the elements of the other arrays 

%do the same for the other chromosomes 

indices2 = strmatch('CHRII ',C); 
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indices3 = strmatch('CHRIII',C); 

indices4 = strmatch('CHRIV ',C); 

indices5 = strmatch('CHRV ',C); 

indicesX = strmatch('CHRX ',C); 

%***************create moving average data**************** 

%make single arrays of indexed data to loop through 

posE1 = E(indices1); dataN1 = N(indices1); %positions will match data points 

posE2 = E(indices2); dataN2 = N(indices2); 

posE3 = E(indices3); dataN3 = N(indices3); 

posE4 = E(indices4); dataN4 = N(indices4); 

posE5 = E(indices5); dataN5 = N(indices5); 

posEX = E(indicesX); dataNX = N(indicesX); 

%>>>>>>>>>>>>Set paramters 

windowSize = 10;  %set window size for averaging <<<<<<<<<<<<<<<<<<<<<<<<< 

%can't loop through all of them at once because array sizes are different 

fprintf('Averaging data points, please wait . . .\n'); 

%******Chromosome I 

%get size of loop  

loopSize = length(dataN1); 

%create array for averages 

avN1 = zeros(loopSize-(2*windowSize),1); 

%and for positions - corrected for starting at windowSize + 1 

posavN1 = posE1(1+windowSize:loopSize-windowSize);  %same range as for loop 
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%calculate averages 

for ind1 = 1+windowSize:loopSize-windowSize 

    avN1(ind1-windowSize) = sum(dataN1(ind1-

windowSize:ind1+windowSize))/((2*windowSize)+1); 

end 

%get mean and st dev of all data 

meanN1 = mean(dataN1); 

stdN1 = std(dataN1); 

%******Chromosome II 

%get size of loop  

loopSize = length(dataN2); 

%create array for averages 

avN2 = zeros(loopSize-(2*windowSize),1); 

%and for positions - corrected for starting at windowSize + 1 

posavN2 = posE2(1+windowSize:loopSize-windowSize);  %same range as for loop 

%calculate averages 

for ind1 = 1+windowSize:loopSize-windowSize 

    avN2(ind1-windowSize) = sum(dataN2(ind1-

windowSize:ind1+windowSize))/((2*windowSize)+1); 

end 

%get mean and st dev of all data 

meanN2 = mean(dataN2); 

stdN2 = std(dataN2); 
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%******Chromosome III 

%get size of loop  

loopSize = length(dataN3); 

%create array for averages 

avN3 = zeros(loopSize-(2*windowSize),1); 

%and for positions - corrected for starting at windowSize + 1 

posavN3 = posE3(1+windowSize:loopSize-windowSize);  %same range as for loop 

%calculate averages 

for ind1 = 1+windowSize:loopSize-windowSize 

    avN3(ind1-windowSize) = sum(dataN3(ind1-

windowSize:ind1+windowSize))/((2*windowSize)+1); 

end 

%get mean and st dev of all data 

meanN3 = mean(dataN3); 

stdN3 = std(dataN3); 

%*******Chromosome IV 

%get size of loop  

loopSize = length(dataN4); 

%create array for averages 

avN4 = zeros(loopSize-(2*windowSize),1); 

%and for positions - corrected for starting at windowSize + 1 

posavN4 = posE4(1+windowSize:loopSize-windowSize);  %same range as for loop 

%calculate averages 
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for ind1 = 1+windowSize:loopSize-windowSize 

    avN4(ind1-windowSize) = sum(dataN4(ind1-

windowSize:ind1+windowSize))/((2*windowSize)+1); 

end 

%get mean and st dev of all data 

meanN4 = mean(dataN4); 

stdN4 = std(dataN4); 

%*******Chromosome V 

%get size of loop  

loopSize = length(dataN5); 

%create array for averages 

avN5 = zeros(loopSize-(2*windowSize),1); 

%and for positions - corrected for starting at windowSize + 1 

posavN5 = posE5(1+windowSize:loopSize-windowSize);  %same range as for loop 

%calculate averages 

for ind1 = 1+windowSize:loopSize-windowSize 

    avN5(ind1-windowSize) = sum(dataN5(ind1-

windowSize:ind1+windowSize))/((2*windowSize)+1); 

end 

%get mean and st dev of all data 

meanN5 = mean(dataN5); 

stdN5 = std(dataN5); 

%*******Chromosome X 
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%get size of loop  

loopSize = length(dataNX); 

%create array for averages 

avNX = zeros(loopSize-(2*windowSize),1); 

%and for positions - corrected for starting at windowSize + 1 

posavNX = posEX(1+windowSize:loopSize-windowSize);  %same range as for loop 

%calculate averages 

for ind1 = 1+windowSize:loopSize-windowSize 

    avNX(ind1-windowSize) = sum(dataNX(ind1-

windowSize:ind1+windowSize))/((2*windowSize)+1); 

end 

%get mean and st dev of all data 

meanNX = mean(dataNX); 

stdNX = std(dataNX); 

fprintf('Averaging complete.  Plotting data.\n'); 

%***********************PLOTTING*************************************

***** 

%plot each subarray - x-axis = position, y-axis = corrected ratio 

%set the plots to tile over in a descending pattern 

%for each plot, position is defined as E(indicesN) 

%corrected ratio is defined as N(indicesN) 

figure(1); clf(1); 

hold on; 
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%plot gridlines in upper subplot 

h1 = subplot(2,1,1); 

h2 = subplot(2,1,2); 

hold (h1);  %hold toggle on 

subplot(2,1,1);plot([-100000 max(E(indices1))+100000],[1 1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices1))+100000],[2 2],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices1))+100000],[-1 -1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices1))+100000],[-2 -2],'-.g'); 

%plot data points to upper subplot 

subplot(2,1,1);plot(E(indices1),N(indices1),' .k','MarkerSize',3); 

set(1,'position',[10 140 1250 580],'Name','JCFread_cgh: Chromosome 

I','NumberTitle','off'); 

title(sprintf('C. elegans Chromosome I CGH Data, File: %s',fileStr),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel('Corrected Ratio','FontSize',16); 

axis([-100000 max(E(indices1))+100000 min(N(indices1))-0.5 max(N(indices1))+0.5]); 

hold (h1);  %hold toggle off 

%draw second subplot of averages - lower subplot 

%determine threshold values 

upperThr1 = meanN1+(2*stdN1);lowerThr1 = meanN1-(2*stdN1); 

annotation('textbox',[0 0.47 0.1 0.1],'string',sprintf('Data Mean: %4.3f\nData STD: 

%4.3f\nUpper Threshold: %4.3f\nLower Threshold: %4.3f\n(Threshold = 2 

sd)',meanN1,stdN1,upperThr1,lowerThr1)); 
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hold (h2);  %toggle on 

%plot gridlines 

subplot(2,1,2);plot([-100000 max(E(indices1))+100000],[1 1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices1))+100000],[2 2],'-.g'); 

plot([-100000 max(E(indices1))+100000],[0 0],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices1))+100000],[-1 -1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices1))+100000],[-2 -2],'-.g'); 

%add threshold gridlines 

subplot(2,1,2);plot([-100000 max(E(indices1))+100000],[upperThr1 upperThr1],'-.r'); 

subplot(2,1,2);plot([-100000 max(E(indices1))+100000],[lowerThr1 lowerThr1],'-.r'); 

%plot data to lower subplot 

subplot(2,1,2);plot(posavN1,avN1,' .k','MarkerSize',3); 

title(sprintf('Average Corrected Ratio Data With a Window of +/- 

%d',windowSize),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel(sprintf('Average\nCorrected Ratio'),'FontSize',16); 

axis([-100000 max(E(indices1))+100000 min(N(indices1))-0.5 max(N(indices1))+0.5]); 

%set to same scale 

hold (h2);  %toggle off 

hold off; 

shg; 

figure(2); clf(2); 

hold on; 
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h1 = subplot(2,1,1); 

h2 = subplot(2,1,2); 

hold (h1);  %hold toggle on upper 

%plot gridlines in upper subplot 

subplot(2,1,1);plot([-100000 max(E(indices2))+100000],[1 1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices2))+100000],[2 2],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices2))+100000],[-1 -1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices2))+100000],[-2 -2],'-.g'); 

%plot data points to upper subplot 

subplot(2,1,1);plot(E(indices2),N(indices2),' .k','MarkerSize',3); 

set(2,'position',[10 120 1250 580],'Name','JCFread_cgh: Chromosome 

II','NumberTitle','off'); 

title(sprintf('C. elegans Chromosome II CGH Data, File: %s',fileStr),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel('Corrected Ratio','FontSize',16); 

axis([-100000 max(E(indices2))+100000 min(N(indices2))-0.5 max(N(indices2))+0.5]); 

hold (h1);  %hold toggle off upper 

%draw second subplot of averages - lower subplot 

%determine threshold values 

upperThr2 = meanN2+(2*stdN2);lowerThr2 = meanN2-(2*stdN2); 

annotation('textbox',[0 0.47 0.1 0.1],'string',sprintf('Data Mean: %4.3f\nData STD: 

%4.3f\nUpper Threshold: %4.3f\nLower Threshold: %4.3f\n(Threshold = 2 

sd)',meanN2,stdN2,upperThr2,lowerThr2)); 
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hold (h2);  %toggle on lower 

%plot gridlines on lower 

subplot(2,1,2);plot([-100000 max(E(indices2))+100000],[1 1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices2))+100000],[2 2],'-.g'); 

plot([-100000 max(E(indices2))+100000],[0 0],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices2))+100000],[-1 -1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices2))+100000],[-2 -2],'-.g'); 

%add threshold gridlines 

subplot(2,1,2);plot([-100000 max(E(indices2))+100000],[upperThr2 upperThr2],'-.r'); 

subplot(2,1,2);plot([-100000 max(E(indices2))+100000],[lowerThr2 lowerThr2],'-.r'); 

%plot data to lower subplot 

subplot(2,1,2);plot(posavN2,avN2,' .k','MarkerSize',3); 

title(sprintf('Average Corrected Ratio Data With a Window of +/- 

%d',windowSize),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel(sprintf('Average\nCorrected Ratio'),'FontSize',16); 

axis([-100000 max(E(indices2))+100000 min(N(indices2))-0.5 max(N(indices2))+0.5]); 

%set to same scale 

hold (h2);  %toggle off lower 

hold off; 

shg; 

figure(3); clf(3); 

hold on; 
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h1 = subplot(2,1,1); 

h2 = subplot(2,1,2); 

hold (h1);  %hold toggle on upper 

%plot gridlines on upper 

subplot(2,1,1);plot([-100000 max(E(indices3))+100000],[1 1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices3))+100000],[2 2],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices3))+100000],[-1 -1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices3))+100000],[-2 -2],'-.g'); 

%plot data points on  upper 

subplot(2,1,1);plot(E(indices3),N(indices3),' .k','MarkerSize',3); 

set(3,'position',[10 100 1250 580],'Name','JCFread_cgh: Chromosome 

III','NumberTitle','off'); 

title(sprintf('C. elegans Chromosome III CGH Data, File: %s',fileStr),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel('Corrected Ratio','FontSize',16); 

axis([-100000 max(E(indices3))+100000 min(N(indices3))-0.5 max(N(indices3))+0.5]); 

hold (h1);  %hold toggle off upper 

%draw second subplot of averages - lower subplot 

%determine threshold values 

upperThr3 = meanN3+(2*stdN3);lowerThr3 = meanN3-(2*stdN3); 

annotation('textbox',[0 0.47 0.1 0.1],'string',sprintf('Data Mean: %4.3f\nData STD: 

%4.3f\nUpper Threshold: %4.3f\nLower Threshold: %4.3f\n(Threshold = 2 

sd)',meanN3,stdN3,upperThr3,lowerThr3)); 
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hold (h2);  %toggle on lower 

%plot gridlines on lower 

subplot(2,1,2);plot([-100000 max(E(indices3))+100000],[1 1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices3))+100000],[2 2],'-.g'); 

plot([-100000 max(E(indices3))+100000],[0 0],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices3))+100000],[-1 -1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices3))+100000],[-2 -2],'-.g'); 

%add threshold gridlines 

subplot(2,1,2);plot([-100000 max(E(indices3))+100000],[upperThr3 upperThr3],'-.r'); 

subplot(2,1,2);plot([-100000 max(E(indices3))+100000],[lowerThr3 lowerThr3],'-.r'); 

%plot data to lower subplot 

subplot(2,1,2);plot(posavN3,avN3,' .k','MarkerSize',3); 

title(sprintf('Average Corrected Ratio Data With a Window of +/- 

%d',windowSize),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel(sprintf('Average\nCorrected Ratio'),'FontSize',16); 

axis([-100000 max(E(indices3))+100000 min(N(indices3))-0.5 max(N(indices3))+0.5]); 

%set to same scale 

hold (h2);  %toggle off lower 

hold off; 

shg; 

figure(4); clf(4); 

hold on; 
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h1 = subplot(2,1,1); 

h2 = subplot(2,1,2); 

hold (h1);  %hold toggle on upper 

%plot gridlines on upper 

subplot(2,1,1);plot([-100000 max(E(indices4))+100000],[1 1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices4))+100000],[2 2],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices4))+100000],[-1 -1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices4))+100000],[-2 -2],'-.g'); 

%plot data points on upper 

subplot(2,1,1);plot(E(indices4),N(indices4),' .k','MarkerSize',3); 

set(4,'position',[10 80 1250 580],'Name','JCFread_cgh: Chromosome 

IV','NumberTitle','off'); 

title(sprintf('C. elegans Chromosome IV CGH Data, File: %s',fileStr),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel('Corrected Ratio','FontSize',16); 

axis([-100000 max(E(indices4))+100000 min(N(indices4))-0.5 max(N(indices4))+0.5]); 

hold (h1);  %hold toggle off upper 

%draw second subplot of averages - lower subplot 

%determine threshold values 

upperThr4 = meanN4+(2*stdN4);lowerThr4 = meanN4-(2*stdN4); 

annotation('textbox',[0 0.47 0.1 0.1],'string',sprintf('Data Mean: %4.3f\nData STD: 

%4.3f\nUpper Threshold: %4.3f\nLower Threshold: %4.3f\n(Threshold = 2 

sd)',meanN4,stdN4,upperThr4,lowerThr4)); 
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hold (h2);  %toggle on lower 

%plot gridlines on lower 

subplot(2,1,2);plot([-100000 max(E(indices4))+100000],[1 1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices4))+100000],[2 2],'-.g'); 

plot([-100000 max(E(indices4))+100000],[0 0],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices4))+100000],[-1 -1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices4))+100000],[-2 -2],'-.g'); 

%add threshold gridlines 

subplot(2,1,2);plot([-100000 max(E(indices4))+100000],[upperThr4 upperThr4],'-.r'); 

subplot(2,1,2);plot([-100000 max(E(indices4))+100000],[lowerThr4 lowerThr4],'-.r'); 

%plot data to lower subplot 

subplot(2,1,2);plot(posavN4,avN4,' .k','MarkerSize',3); 

title(sprintf('Average Corrected Ratio Data With a Window of +/- 

%d',windowSize),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel(sprintf('Average\nCorrected Ratio'),'FontSize',16); 

axis([-100000 max(E(indices4))+100000 min(N(indices4))-0.5 max(N(indices4))+0.5]); 

%set to same scale 

hold (h2);  %toggle off lower 

hold off; 

shg; 

figure(5); clf(5); 

hold on; 
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h1 = subplot(2,1,1); 

h2 = subplot(2,1,2); 

hold (h1);  %hold toggle on upper 

%plot gridlines on upper 

subplot(2,1,1);plot([-100000 max(E(indices5))+100000],[1 1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices5))+100000],[2 2],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices5))+100000],[-1 -1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indices5))+100000],[-2 -2],'-.g'); 

%plot data points on upper 

subplot(2,1,1);plot(E(indices5),N(indices5),' .k','MarkerSize',3); 

set(5,'position',[10 60 1250 580],'Name','JCFread_cgh: Chromosome 

V','NumberTitle','off'); 

title(sprintf('C. elegans Chromosome V CGH Data, File: %s',fileStr),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel('Corrected Ratio','FontSize',16); 

axis([-100000 max(E(indices5))+100000 min(N(indices5))-0.5 max(N(indices5))+0.5]); 

hold (h1);  %hold toggle off upper 

%draw second subplot of averages - lower subplot 

%determine threshold values 

upperThr5 = meanN5+(2*stdN5);lowerThr5 = meanN5-(2*stdN5); 

annotation('textbox',[0 0.47 0.1 0.1],'string',sprintf('Data Mean: %4.3f\nData STD: 

%4.3f\nUpper Threshold: %4.3f\nLower Threshold: %4.3f\n(Threshold = 2 

sd)',meanN5,stdN5,upperThr5,lowerThr5)); 
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hold (h2);  %toggle on lower 

%plot gridlines on lower 

subplot(2,1,2);plot([-100000 max(E(indices5))+100000],[1 1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices5))+100000],[2 2],'-.g'); 

plot([-100000 max(E(indices5))+100000],[0 0],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices5))+100000],[-1 -1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indices5))+100000],[-2 -2],'-.g'); 

%add threshold gridlines 

subplot(2,1,2);plot([-100000 max(E(indices5))+100000],[upperThr5 upperThr5],'-.r'); 

subplot(2,1,2);plot([-100000 max(E(indices5))+100000],[lowerThr5 lowerThr5],'-.r'); 

%plot data to lower subplot 

subplot(2,1,2);plot(posavN5,avN5,' .k','MarkerSize',3); 

title(sprintf('Average Corrected Ratio Data With a Window of +/- 

%d',windowSize),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel(sprintf('Average\nCorrected Ratio'),'FontSize',16); 

axis([-100000 max(E(indices5))+100000 min(N(indices5))-0.5 max(N(indices5))+0.5]); 

%set to same scale 

hold (h2);  %toggle off lower 

hold off; 

shg; 

figure(6); clf(6); 

hold on; 
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h1 = subplot(2,1,1); 

h2 = subplot(2,1,2); 

hold (h1);  %hold toggle on upper 

%plot gridlines on upper 

subplot(2,1,1);plot([-100000 max(E(indicesX))+100000],[1 1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indicesX))+100000],[2 2],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indicesX))+100000],[-1 -1],'-.g'); 

subplot(2,1,1);plot([-100000 max(E(indicesX))+100000],[-2 -2],'-.g'); 

%plot data points on upper 

subplot(2,1,1);plot(E(indicesX),N(indicesX),' .k','MarkerSize',3); 

set(6,'position',[10 40 1250 580],'Name','JCFread_cgh: Chromosome 

X','NumberTitle','off'); 

title(sprintf('C. elegans Chromosome X CGH Data, File: %s',fileStr),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel('Corrected Ratio','FontSize',16); 

axis([-100000 max(E(indicesX))+100000 min(N(indicesX))-0.5 max(N(indicesX))+0.5]); 

hold (h1);  %hold toggle off upper 

%draw second subplot of averages - lower subplot 

%determine threshold values 

upperThrX = meanNX+(2*stdNX);lowerThrX = meanNX-(2*stdNX); 

annotation('textbox',[0 0.47 0.1 0.1],'string',sprintf('Data Mean: %4.3f\nData STD: 

%4.3f\nUpper Threshold: %4.3f\nLower Threshold: %4.3f\n(Threshold = 2 

sd)',meanNX,stdNX,upperThrX,lowerThrX)); 
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hold (h2);  %toggle on lower 

%plot gridlines on lower 

subplot(2,1,2);plot([-100000 max(E(indicesX))+100000],[1 1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indicesX))+100000],[2 2],'-.g'); 

plot([-100000 max(E(indicesX))+100000],[0 0],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indicesX))+100000],[-1 -1],'-.g'); 

subplot(2,1,2);plot([-100000 max(E(indicesX))+100000],[-2 -2],'-.g'); 

%add threshold gridlines 

subplot(2,1,2);plot([-100000 max(E(indicesX))+100000],[upperThrX upperThrX],'-.r'); 

subplot(2,1,2);plot([-100000 max(E(indicesX))+100000],[lowerThrX lowerThrX],'-.r'); 

%plot data to lower subplot 

subplot(2,1,2);plot(posavNX,avNX,' .k','MarkerSize',3); 

title(sprintf('Average Corrected Ratio Data With a Window of +/- 

%d',windowSize),'FontSize',22); 

xlabel('Position','FontSize',18); 

ylabel(sprintf('Average\nCorrected Ratio'),'FontSize',16); 

axis([-100000 max(E(indicesX))+100000 min(N(indicesX))-0.5 max(N(indicesX))+0.5]); 

%set to same scale 

hold (h2);  %toggle off lower 

hold off; 

shg; 
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Appendix C 

Supplemental Material for Chapter 3 

Supplemental Data S1 

List of ORFs contained in 25 duplications detected by oaCGH in five control and 

25 adaptive recovery experimental C. elegans lines following 180-212 generations of 

population expansion under competitive conditions. The duplications are listed in Table 

3.1. Duplication breakpoint coordinates and ORFs contained therein are based on 

Wormbase version WS243. 

Duplication in 7B: 

Chr IV:6,837,045..6,879,487 

Size = 42,443 bp 

5 protein-coding genes: 

lip-1 (C05B10.1), R13H7.2, srx-20 (R13H7.1), srx-19 (T05A12.1), tre-2 (T05A12.2; 

partial duplication) 

1 pseudogene: 

R13H7.3 

Duplication in 7B: 

Chr V:19,505,848..20,101,145 

Size = 595,298 bp 

94 protein-coding genes: 

Y43F8B.3 (partial duplication), Y43F8B.19, phy-4 (Y43F8B.4), Y43F8B.3, 

Y43F8B.2, Y43F8B.1, B0399.2, B0399.1, nlp-25 (Y43F8C.1), Y43F8C.20, oac-1 

(B0399.2), kcn1-1 (B0399.1), nlp-25 (Y43F8C.1), grsp-1 (Y43F8C.20), nlp-26 
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(Y43F8C.2),Y43F8C.3, dyf-19 (Y43F8C.4), Y43F8C.5, Y43F8C.6, Y43F8C.7, 

mrps-28 (Y43F8C.8), Y43F8C.9, dmd-3 (Y43F8C.10), Y43F8C.11, mrp-7 

(Y43F8C.12), Y43F8C.13, ani-3 (Y43F8C.14), Y43F8C.18, srv-3 (Y43F8C.19), 

Y43F8C.15, Y43F8C.23, Y43F8C.16, Y43F8C.17, Y116F11A.6, Y116F11A.3,  

Y116F11A.1, W04E12.7, fbxa-131 (W04E12.1), W04E12.2, W04E12.3, W04E12.4, 

W04E12.5, clec-49 (W04E12.6), clec-50 (W04E12.8), W04E12.9, M162.5, M162.15 

fbxa-118 (M162.8), fbxa-194 (M162.11), srt-45 (M162.3), clec-258 (M162.2), 

M162.7, Y116F11B.2, daf-28 (Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.3), 

srw-38 (Y116F11B.5), Y116F11B.6, Y116F11B.7, Y116F11B.8, Y116F11B.1, gly-4 

(Y116F11B.12), Y116F11B.13, fars-2 (Y60A3A.13), Y116F11B.14, chk-2 

(Y60A3A.12), Y60A3A.19, Y60A3A.16, skr-4 (Y60A3A.18), Y60A3A.14, dhs-24 

(Y60A3A.10), Y60A3A.9, Y60A3A.8, Y60A3A.7, srh-172 (Y60A3A.6), srh-171 

(Y60A3A.5), srh-173 (Y60A3A.4), srh-183 (Y60A3A.3), Y60A3A.24, clec-260 

(Y60A3A.2), sri-67 (Y60A3A.22), Y60A3A.25, unc-51 (Y60A3A.1), Y60A3A.23, 

Y60A3A.21, lgc-55 (Y113G7A.5), Y113G7A.16, spe-19 (Y113G7A.10), srh-233 

(Y113G7A.1), ttx-1 (Y113G7A.6), fre-1 (Y113G7A.8), dcs-1 (Y113G7A.9), sec-23 

(Y113G7A.3), Y113G7A.15 (partial duplication) 

43 pseudogenes: 

B0399.t16, B0399.t15, B0399.t14, B0399.t1, B0399.t13, B0399.t12, B0399.t2, 

B0399.t4, B0399.t3, B0399.t5, B0399.t11, B0399.t10, B0399.t9, B0399.t8, B0399.t7, 

B0399.t6, Y43F8C.t1, Y43F8C.t9, Y43F8C.t2, Y43F8C.t8, Y43F8C.t3, Y43F8C.t4,  

Y43F8C.t7, Y43F8C.t6, Y43F8C.t5, Y43F8C.24, Y116F11A.4, W04E12.10, 

M162.12, M162.13, M162.9, M162.4, M162.14, M162.6, Y116F11B.4, 
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Y116F11B.10, Y60A3A.17, Y60A3A.15, Y60A3A.10, Y60A3A.28, Y60A3A.t1,  

Y60A3A.t2, Y113G7A.2 

Duplication in 7D: 

Chr IV:505,050..701,113 

Size = 196,064 bp 

38 protein-coding genes + 3 tRNA genes: 

W03G1.5, pig-1 (W03G1.6), asm-3 (W03G1.7), W03G1.2, W03G1.8, glt-7 

(W03G1.1), F09C11.1, F56A11.4, efn-4 (F56A11.3), F56A11.7, F56A11.5, gex-2 

(F56A11.1), F56A11.6, C18H7.12, C18H7.5, C18H7.6, C18H7.4, C18H7.7, 

C18H7.11, srt-59 (C18H7.8), prmt-4 (C18H7.9), col-102 (C18H7.3), inx-18 

(C18H7.2), C18H7.1, nhr-76 (C05G6.2), K11H12.9, K11H12.1, rpl-15 (K11H12.2), 

K11H12.8, K11H12.7, K11H12.6, K11H12.11, K11H12.3, K11H12.4, K11H12.10, 

K11H12.5, cut1-28 (F41A4.1), cut1-26 (Y55F3C.7) (partial duplication) 

1 pseudogene: 

Y55F3C.17 

Duplication in 16B*: 

Chr V: 19,295,123..19,839,705 

Size = 544,583 bp 

110 protein-coding genes: 

F55C9.6 (partial duplication), fbxb-60 (F55C9.7), F55C9.14, fbxb-62 (F55C9.8), 

fbxb-63 (F55C9.13), fbxb-61 (F55C9.10), F55C9.15, F55C9.11, C43D7.8, fbxb-64 

(C43D7.9), srh-208 (C43D7.6), C43D7.7, sdz-6 (C43D7.5), C43D7.4, fbxb-65 

(C43D7.2), C14B4.2, Y43F8A.1, Y43F8A.2, Y43F8A.3, srw-84 (Y43F8A.4), 
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Y43F8A.5, C25F9.8, C25F9.13, srw-86 (C25F9.7), C25F9.12, C25F9.6, C25F9.10, 

C25F9.5, C25F9.4, C25F9.9, C25F9.15, C25F9.2, srw-85 (C25F9.1), C25F9.11, 

C25F9.16, C25F9.14, M04C3.1, M04C3.2, M04C3.5, Y43F8B.14, Y43F8B.13, 

Y43F8B.24, Y43F8B.15, Y43F8B.25, Y43F8B.23, Y43F8B.12, Y43F8B.11, 

Y43F8B.10, Y43F8B.9, Y43F8B.22, Y43F8B.17,Y43F8B.28, Y43F8B.18, 

Y43F8B.7, Y43F8B.29, scl-21 (Y43F8B.5), Y43F8B.3, Y43F8B.19, phy-4 

(Y43F8B.4), Y43F8B.2, Y43F8B.1, Y43F8B.20, oac-1 (B0399.2), kcnl-1 (B0399.1), 

nlp-25 (Y43F8C.1), grsp-1 (Y43F8C.20), nlp-26 (Y43F8C.2), Y43F8C.3, dyf-19 

(Y43F8C.4), Y43F8C.5, Y43F8C.6, Y43F8C.7, mrps-28 (Y43F8C.8), Y43F8C.9, 

dmd-3 (Y43F8C.10), Y43F8C.11, mrp-7 (Y43F8C.12), Y43F8C.13, ani-3 

(Y43F8C.14), Y43F8C.18, srv-3 (Y43F8C.19), Y43F8C.15, Y43F8C.23, 

Y43F8C.16, Y43F8C.17, Y116F11A.6, Y116F11A.3, Y116F11A.1, W04E12.7, 

fbxa-131 (W04E12.1), W04E12.2, W04E12.3, W04E12.4, W04E12.5, clec-49 

(W04E12.6), clec-50 (W04E12.8), W04E12.9, M162.5, M162.15, fbxa-118 

(M162.8), fbxa-194 (M162.11), srt-45 (M162.3), clec-258 (M162.2), clec-259 

(M162.1), M162.7, Y116F11B.2, daf-28 (Y116F11B.1), Y116F11B.17, pcp-4 

(Y116F11B.3), srw-38 (Y116F11B.5) 

52 pseudogenes: 

C43D7.10, C43D7.11, C43D7.12, C43D7.3, C43D7.1, C14B4.t1, Y43F8A.t1, 

C25F9.t3, C25F9.t2, C25F9.t1, C25F9.t4, C25F9.t5, Y43F8B.8, Y43F8B.21, 

Y43F8B.6, B0399.t16, B0399.t15, B0399.t14, B0399.t1, B0399.t13, B0399.t12, 

B0399.t2, B0399.t3, B0399.t4, B0399.t5, B0399.t11, B0399.t10, B0399.t9, B0399.t8, 

B0399.t7, B0399.t6, Y43F8C.t1, Y43F8C.t9, Y43F8C.t2, Y43F8C.t8, Y43F8C.26, 
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Y43F8C.t3, Y43F8C.t4, Y43F8C.t7, Y43F8C.t6, Y43F8C.t5, Y43F8C.24, 

Y116F11A.4, W04E12.10, M162.12, M162.13, M162.9, M162.4, M162.14, M162.6, 

Y116F11B.4, srz-35 (Y116F11B.4) (partial duplication) 

Duplication in 16C: 

Chr IV:9,054,304..9,457,751 

Size = 403,448 bp 

89 protein-coding genes: 

nhr-11 (ZC410.1), mppb-1 (ZC410.2), mans-4 (ZC410.3), twk-8 (ZC410.4), ZC410.5, 

1pl-1 (ZC410.7), icln-1 (C01F6.8), C01F6.9, cpna-3 (C01F6.1), C01F6.2, C01F6.14, 

fem-3 (C01F6.4), aly-1 (C01F6.5), nrfl-1 (C01F6.6), delm-1 (F23B2.3), daf-10 

(F23B2.4), flp-1 (F23B2.5), rpb-12 (F23B2.13), aly-2 (F23B2.6), F23B2.7, 

F23B2.10, pcp-3 (F23B2.11), pcp-2 (F23B2.12), C07C7.3, C07C7.1, C46C2.5, 

C46C2.7, wnk-1 (C46C2.1), C46C2.6, C46C2.2, C46C2.3, Y11D7A.3, rab-28 

(Y11D7A.4), Y11D7A.5, Y11D7A.7, Y11D7A.8, Y11D7A.9, Y11D7A.10, col-120 

(Y11D7A.11), flh-1 (Y11D7A.12), Y11D7A.19, flh-13 (Y11D7A.13), hum-9 

(Y11D7A.14), nhr-267 (H22D14.1), nhr-264 (F14A5.1), F49C12.1, F49C12.2, 

F49C12.3, F49C12.4, F49C12.5, F49C12.6, F49C12.7, F49C12.9, rpn-7 (F49C12.8), 

F49C12.10, F49C12.11, F49C12.12, vha-17 (F49C12.13), F49C12.14, F49C12.15, 

CLEC-183 (T20D3.1), T20D3.2, T20D3.3, T20D3.5, T20D3.6, vps-26 (T20D3.7), 

T20D3.8, T20D3.11, C10C5.1, C10C5.2, C10C5.3, C10C5.4, C10C5.5, C10C5.7, 

daf-15 (C10C5.6), col-121 (F56D5.1), F56D5.2, F56D5.3, F56D5.6, F56D5.5, 

F56D5.9, srxa-2 (F56D5.10), F59B8.1, idh-1 (F59B8.2), F38E11.9, hsp-12.3 

(F38E11.1), hsp-12.6 (F38E11.2), cut1-17 (F38E11.4), cpin-1 (F38E11.3) 
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8 pseudogenes: 

F23B2.9, F23B2.8, C46C2.4, Y11D7A.1, Y11D7A.16, srg-52 (Y11D7A.18), 

F56D5.4, F56D5.8 

Duplication in 16C: 

Chr V:800,408..1,103,333 

Size = 302,926 bp 

57 protein-coding genes: 

nhr-270 (R13D11.8), R13D11.11, R13D11.4, R13D11.10, R13D11.3, R13D11.1, 

srx-32 (R13D11.9), srx-31 (F41H8.4), F41H8.2, F41H8.1, K09C6.7, K09C6.10, 

K09C6.8, K09C6.6, srbc-13 (K09C6.5), srbc-12 (K09C6.4), K09C6.3, K09C6.9, 

K09C6.2, K09C6.1, T02B11.3, T02B11.4, T02B11.9, T02B11.8, srg-53 (T02B11.1), 

srj-38 (T02B11.5), T02B11.6, T02B11.10, nas-32 (T02B11.7), fmo-5 (H24K24.5), 

H24K24.4, H24K24.3, H24K24.2, Y50D4C.2, Y50D4C.3, Y50D4C.6, sqv-6 

(Y50D4C.4), unc-34 (Y50D4C.1), Y50D4C.5, ergo-1 (R09A1.1), R09A1.2, 

R09A1.3, flp-34 (R09A1.5), nra-4 (C02E11.1), K10C9.4, K10C9.9, str-224 

(K10C9.8), K10C9.3, str-67 (K10C9.6), K10C9.7, K10C9.1, Y50D4B.7, Y50D4B.6, 

clec-203 (Y50D4B.5), Y50D4B.4, Y50D4B.3, Y50D4B.2 (partial duplication) 

2 pseudogenes: 

srx-30 (F41H8.3), str-53 (T02B11.2), 

Duplication in 16D: 

Chr II: 6,248,049..6,406,772 

Size = 158,724 bp 

48 protein-coding genes: 
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T24H7.3 (partial duplication), T24H7.2, phb-2 (T24H7.1), F13H8.5, F13H8.11, nmgp-1 

(F13H8.4), F13H8.12, F13H8.3, F13H8.8, F13H8.2, bpl-1 (F13H8.10), F13H8.9, 

F13H8.1, F13H8.6, F13H8.7, C29F5.3, mps-1 (C29F5.4), C29F5.5, sdz-3 (C29F5.2), 

C29F5.1, C29F5.8, glb-10 (C29F5.7), C32D5.3, C32D5.4, sma-6 (C32D5.2), set-4 

(C32D5.5), C32D5.6, C32D5.14, C32D5.7, C32D5.8, C32D5.1, lgg-1 (C32D5.9), 

C32D5.10, C32D5.11, C32D5.12, K10B2.4, ani-2 (K10B2.5), clec-88 (K10B2.3), 

K10B2.2, lin-23 (K10B2.1), F58F12.1, F58F12.4, F58F12.2, F58F12.3, zig-10 

(T25D10.2), btb-2 (T25D10.5), T25D10.1, spp-11 (T25D10.3) (partial duplication) 

1 pseudogene: 

K10B2.t1 

Duplication in 16D: 

Chr V: 19,746,828..19,885,746 

Size = 138,919 bp 

26 protein-coding genes: 

W04E12.4 (partial duplication), W04E12.5, clec-49 (W04E12.6), clec-50 

(W04E12.8), W04E12.9, M162.5, M162.15, fbxa-118 (M162.8), fbxa-194 

(M162.11), srt-45 (M162.3), clec-258 (M162.2), clec-259 (M162.1), M162.7, 

Y116F11B.2, daf-28 (Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.3), srw-38 

(Y116F11B.5), Y116F11B.6, Y116F11B.7, Y116F11B.9, Y116F11B.8, 

Y116F11B.9a, Y116F11B.11, gly-4 (Y116F11B.12), Y116F11B.13 (partial 

duplication) 

8 pseudogenes: 

M162.12, M162.13, M162.9, srt-46 (M162.4), M162.14, M162.6, srz-35 
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(Y116F11B.4), Y116F11B.10 

Duplication in 16E*: 

Chr V:19,295,580..19,840,162 

Size = 544,583 bp 

110 protein-coding genes: 

F55C9.6 (partial duplication), fbxb-60 (F55C9.7), F55C9.14, fbxb-62 (F55C9.8), 

fbxb-63 (F55C9.13), fbxb-61 (F55C9.10), F55C9.15, F55C9.11, C43D7.8, fbxb-64 

(C43D7.9), srh-208 (C43D7.6), C43D7.7, sdz-6 (C43D7.5), C43D7.4, fbxb-65 

(C43D7.2), C14B4.2, Y43F8A.1, Y43F8A.2, Y43F8A.3, srw-84 (Y43F8A.4), 

Y43F8A.5, C25F9.8, C25F9.13, srw-86 (C25F9.7), C25F9.12, C25F9.6, C25F9.10, 

C25F9.5, C25F9.4, C25F9.9, C25F9.15, C25F9.2, srw-85 (C25F9.1), C25F9.11, 

C25F9.16, C25F9.14, M04C3.1, M04C3.2, M04C3.5, Y43F8B.14, Y43F8B.13, 

Y43F8B.24, Y43F8B.15, Y43F8B.25, Y43F8B.23, Y43F8B.12, Y43F8B.11, 

Y43F8B.10, Y43F8B.9, Y43F8B.22, Y43F8B.17,Y43F8B.28, Y43F8B.18, 

Y43F8B.7, Y43F8B.29, scl-21 (Y43F8B.5), Y43F8B.3, Y43F8B.19, phy-4 

(Y43F8B.4), Y43F8B.2, Y43F8B.1, Y43F8B.20, oac-1 (B0399.2),kcnl-1 (B0399.1), 

nlp-25 (Y43F8C.1), grsp-1 (Y43F8C.20), nlp-26 (Y43F8C.2), Y43F8C.3, dyf-19 

(Y43F8C.4), Y43F8C.5, Y43F8C.6, Y43F8C.7, mrps-28 (Y43F8C.8), Y43F8C.9, 

dmd-3 (Y43F8C.10), Y43F8C.11, mrp-7 (Y43F8C.12), Y43F8C.13, ani-3 

(Y43F8C.14), Y43F8C.18, srv-3 (Y43F8C.19), Y43F8C.15, Y43F8C.23, 

Y43F8C.16, Y43F8C.17, Y116F11A.6, Y116F11A.3, Y116F11A.1, W04E12.7, 

fbxa-131 (W04E12.1), W04E12.2, W04E12.3, W04E12.4, W04E12.5, clec-49 

(W04E12.6), clec-50 (W04E12.8), W04E12.9, M162.5, M162.15, fbxa-118 
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(M162.8), fbxa-194 (M162.11), srt-45 (M162.3), clec-258 (M162.2), clec-259 

(M162.1), M162.7, Y116F11B.2, daf-28 (Y116F11B.1), Y116F11B.17, pcp-4 

(Y116F11B.3), srw-38 (Y116F11B.5) 

52 pseudogenes: 

C43D7.10, C43D7.11, C43D7.12, C43D7.3, C43D7.1, C14B4.t1, Y43F8A.t1, 

C25F9.t3, C25F9.t2, C25F9.t1, C25F9.t4, C25F9.t5, Y43F8B.8, Y43F8B.21, 

Y43F8B.6, B0399.t16, B0399.t15, B0399.t14, B0399.t1, B0399.t13, B0399.t12, 

B0399.t2, B0399.t3, B0399.t4, B0399.t5, B0399.t11, B0399.t10, B0399.t9, B0399.t8, 

B0399.t7, B0399.t6, Y43F8C.t1, Y43F8C.t9, Y43F8C.t2, Y43F8C.t8, Y43F8C.26, 

Y43F8C.t3, Y43F8C.t4, Y43F8C.t7, Y43F8C.t6, Y43F8C.t5, Y43F8C.24, 

Y116F11A.4, W04E12.10, M162.12, M162.13, M162.9, M162.4, M162.14, M162.6, 

Y116F11B.4, srz-35 (Y116F11B.4) (partial duplication) 

Duplication in 19C: 

Chr V:7,637,941..7,641,911 

Size = 3,971 bp 

3 protein-coding genes: 

clec-46 (F07C4.9) (partial duplication), clec-45 (F07C4.2), F07C4.10 

0 pseudogenes: 

Duplication in 19C: 

Chr II:14,037,517.. 14,039,164 

Size = 7,572 bp 

1 protein-coding genes: 

daf-45 (W01G7.1) (partial duplication) 
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0 pseudogenes: 

Duplication in 19E: 

Chr X:813,802.. 821,373 

Size = 7,572 bp 

2 protein-coding genes: 

ifd-2 (F25E2.4), daf-3 (F25E2.5) (partial duplication) 

0 pseudogenes: 

Duplication in 19E: 

Chr X:829,580.. 835,392 

Size = 5,813 bp 

2 protein-coding genes: 

F39H12.2, F39H12.1 (partial duplication) 

0 pseudogenes: 

Duplication in 50A: 

Chr V:19,780,484.. 19,972,052 

Size = 191,569 bp 

30 protein-coding genes: 

srt-45 (M162.3), clec-258 (M162.2), clec-259 (M162.1), M162.7, Y116F11B.2, daf- 

28 (Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.3), srw-38 (Y116F11B.5), 

Y116F11B.6, Y116F11B.7, Y116F11B.9, Y116F11B.8, Y116F11B.9a, 

Y116F11B.11, gly-4 (Y116F11B.12), Y116F11B.13, fars-2 (Y60A3A.13), 

Y116F11B.14, chk-2 (Y60A3A.12), Y60A3A.19, Y60A3A.16, skr-4 (Y60A3A.18), 

Y60A3A.14, dhs-24 (Y60A3A.10), Y60A3A.9, Y60A3A.8, Y60A3A.7, srh-172 
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(Y60A3A.6), srh-171 (Y60A3A.5) (partial duplication) 

8 pseudogenes: 

srt-46 (M162.4), M162.14, M162.6, srz-35 (Y116F11B.4), Y116F11B.10, 

Y60A3A.17, nhr-240 (Y60A3A.15), Y60A3A.11 

Duplication in 50A: 

Chr X:8,624,771..9,024,484 

Size = 399,714 bp 

64 protein-coding genes: 

K01A12.3 (partial duplication), stg-2 (F12D9.1), F12D9.2, rig-1 (K09E2.4), 

K09E2.2, K09E2.3, K09E2.1, frpr-8 (K09E2.5), jbts-14 (F53A9.4), F53A9.3, 

F53A9.2, F53A9.1, F53A9.6, F53A9.7, F53A9.8, F53A9.9, tnt-2 (F53A9.10), 

EGAP4.1, M02D8.6, M02D8.3, M02D8.2, M02D8.7, asns-2 (M02D8.4), M02D8.5, 

M02D8.1, ZK271.4, ZK271.3, unc-27 (ZK271.2), chup-1 (ZK271.1), R04E5.7, 

R04E5.8, R04E5.9, R04E5.2, ifd-1 (R04E5.10), C28G1.5. C28G1.6, sec-15 

(C28G1.3), C28G1.2, ubc-23 (C28G1.1), C28G1.10, C28G1.4, C06E2.5, C06E2.9, 

ins-9 (C06E2.8), ubc-22 (C06E2.7), ubc-21 (C06E2.3), C06E2.1, C06E2.2, C13E3.1, 

D1009.3, cyn-8 (D1009.2), nlp-14 (D1009.4), acs-2 (D1009.1), dylt-2 (D1009.5), 

D1073.1, aexr-3 (C48C5.3), nmur-1 (C48C5.1), twk-18 (C24A3.6), C24A3.4, 

C24A3.2, C24A3.1, C24A3.9, T25B6.4, T25B6.5 

0 pseudogenes: 

Duplication in 50B: 

Chr V:19,781,064.. 19,972,507 

Size = 191,444 bp 



130 
 

30 protein-coding genes: 

srt-45 (M162.3), clec-258 (M162.2), clec-259 (M162.1), M162.7, Y116F11B.2, daf- 

28 (Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.3), srw-38 (Y116F11B.5), 

Y116F11B.6, Y116F11B.7, Y116F11B.9, Y116F11B.8, Y116F11B.9a, 

Y116F11B.11, gly-4 (Y116F11B.12), Y116F11B.13, fars-2 (Y60A3A.13), 

Y116F11B.14, chk-2 (Y60A3A.12), Y60A3A.19, Y60A3A.16, skr-4 (Y60A3A.18), 

Y60A3A.14, dhs-24 (Y60A3A.10), Y60A3A.9, Y60A3A.8, Y60A3A.7, srh-172 

(Y60A3A.6), srh-171 (Y60A3A.5) 

8 pseudogenes: 

srt-46 (M162.4), M162.14, M162.6, srz-35 (Y116F11B.4), Y116F11B.10, 

Y60A3A.17, nhr-240 (Y60A3A.15), Y60A3A.11 

Duplication in 50C: 

Chr V:19,659,829.. 19,976,506 

Size = 316,680 bp 

58 protein-coding genes: 

Y43F8C.11, mrp-7 (Y43F8C.11), Y43F8C.13, ani-3 (Y43F8C.14), Y43F8C.18, srv-3 

(Y43F8C.19), Y43F8C.15, Y43F8C.23, Y43F8C.16, Y43F8C.17, Y116F11A.6, 

Y116F11A.3, Y116F11A.1, W04E12.7, fbxa-131 (W04E12.1), W04E12.2, 

W04E12.3, W04E12.4, W04E12.5a, W04E12.5b, clec-49 (W04E12.6), clec-50 

(W04E12.8), W04E12.9, M162.5, M162.15, fbxa-118 (M162.8), fbxa-194 

(M162.11), srt-45 (M162.3), clec-258 (M162.2), clec-259 (M162.1), M162.7, 

Y116F11B.2, daf-28 (Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.13), srw-38 

(Y116F11B.5), Y116F11B.6, Y116F11B.7, Y116F11B.8, Y116F11B.9a, 
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Y116F11B.11, gly-4 (Y116F11B.12), Y116F11B.13, fars-2 (Y60A3A.13), 

Y116F11B.14, cchk-2 (Y60A3A.12), Y60A3A.19, Y60A3A.16, skr-4 (Y60A3A.18), 

Y60A3A.14, dhs-24 (Y60A3A.10), Y60A3A.9, Y60A3A.8, Y60A3A.7, srh-172 

(Y60A3A.6), srh-171 (Y60A3A.5), srh-173 (Y60A3A.4), srh-183 (Y60A3A.3) 

(partial duplication) 

20 pseudogenes: 

Y43F8C.t7, Y43F8C.t6, Y43F8C.t5, Y43F8C.24, Y116F11A.4, W04E12.10, 

M162.12, M162.13, M162.9, srt-46 (M162.4), M162.14, M162.6, srz-35 

(Y116F11B.4), Y116F11B.10, Y60A3A.17, nhr-240 (Y60A3A.15), Y60A3A.17, 

nhr-240 (Y60A3A.15), Y60A3A.11, Y60A3A.28 

Duplication in 50D: 

Chr IV:560,240.. 1,024,886 

Size = 464,647 bp 

84 protein-coding genes: 

efn-4 (F56A11.3), F56A11.7, F56A11.5, gex-2 (F56A11.1), F56A11.6, C18H7.12, 

C18H7.5, C18H7.6, C18H7.4, C18H7.7, C18H7.11, srt-59 (C18H7.8), prmt-4 

(C18H7.9), col-102 (C18H7.3), inx-18 (C18H7.2), C18H7.1, nhr-76 (C05G6.2), 

K11H12.9, K11H12.1, rpl-15 (K11H12.2), K11H12.8, K11H12.7, K11H12.6, 

K11H12.11, K11H12.3, K11H12.4, K11H12.10, K11H12.5, cut1-28 (F41A4.1), 

cut1-26 (Y55F3C.7), clec-164 (Y55F3C.5), Y55F3C.10, Y55F3C.9, srt-24 

(Y55F3C.8), kvs-5 (Y55F3C.3), srt-23 (Y55F3C.2), gst-40 (F56B3.10), col-103 

(F56B3.1), F56B3.2, F56B3.3, F56B3.9, mrpl-2 (F56B3.8), ugt-52 (F56B3.7), 

F56B3.4, F56B3.6, skr-18 (F56B3.12), F56B3.11, ech-5 (F56B3.5), mrpl-46 
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(Y55F3BL.1), Y55F3BL.4, Y55F3BL.6, Y55F3BL.2, madf-1 (Y55F3BR.5), 

Y55F3BR.10, Y55F3BR.6, Y55F3BR.7, lgc-33 (Y55F3BR.4), lem-4 (Y55F3BR.8), 

Y55F3BR.11, Y55F3BR.2, Y55F3BR.1, mak-2 (C44C8.6), fbxc-1 (C44C8.4), fbxc-9 

(C44C8.10), fbxc-2 (C44C8.3), fbxc-10 (C44C8.9), fbxc-4 (C44C8.2), fbxc-11 

(C44C8.8), fbxc-5 (C44C8.1), fbxc-12 (C44C8.7), fbxc-3 (F58H7.8), fbxc-8 

(F58H7.7), F58H7.5, lgc-30 (F58H7.3), F58H7.1, faah-3 (F58H7.2), plx-1 

(Y55F3AL.1), egrh-2 (Y55F3AM.7), Y55F3AM.6, Y55F3AM.5, immp-2 

(Y55F3AM.8), Y55F3AM.9, atg-3 (Y55F3AM.4), Y55F3AM.3 

2 pseudogenes: 

Y55F3C.17, Y55F3C.13, 

Duplication in 50D: 

Chr V:18,703,541..18,723,878 

Size = 20,338 bp 

4 protein-coding genes: 

Y69H2.9 (partial duplication), Y17D7C.1, Y17D7C.6, Y17D7C.2 

5 pseudogenes: 

Y69H2.18, Y69H2.16, Y17D7C.5, Y17D7C.4, Y17D7C.3 

Duplication in 50D: 

Chr V:19,780,935..19,966,260 

Size = 185,326 bp 

30 protein-coding genes: 

srt-45 (M162.3), clec-258 (M162.2), clec-259 (M162.1), M162.7, Y116F11B.2, daf- 

28 (Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.3), srw-38 (Y116F11B.5), 
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Y116F11B.6, Y116F11B.7, Y116F11B.9, Y116F11B.8, Y116F11B.9a, 

Y116F11B.11, gly-4 (Y116F11B.12), Y116F11B.13, fars-2 (Y60A3A.13), 

Y116F11B.14, chk-2 (Y60A3A.12), Y60A3A.19, Y60A3A.16, skr-4 (Y60A3A.18), 

Y60A3A.14, dhs-24 (Y60A3A.10), Y60A3A.9, Y60A3A.8, Y60A3A.7, srh-172 

(Y60A3A.6), srh-171 (Y60A3A.5) (partial duplication) 

8 pseudogenes: 

srt-46 (M162.4), M162.14, M162.6, srz-35 (Y116F11B.4), Y116F11B.10, 

Y60A3A.17, Y60A3A.15, Y60A3A.11 

Duplication in 50E: 

Chr II:6,312,598..6,444,674 

Size = 132,077 bp 

32 protein-coding genes: 

C32D5.3, C32D5.4, sma-6 (C32D5.2), set-4 (C32D5.5), C32D5.6, C32D5.14, C32D5.7, 

C32D5.8, C32D5.1, lgg-1 (C32D5.9), C32D5.10, C32D5.11, C32D5.12, K10B2.4, ani-2 

(K10B2.5), clec-88 (K10B2.3), K10B2.2, lin-23 (K10B2.1), F58F12.1, F58F12.4, 

F58F12.2, F58F12.3, zig-10 (T25D10.2), btb-2 (T25D10.5), T25D10.1, spp-11 

(T25D10.3), T25D10.4, K03H9.3, col-75 (K03H9.2), K03H9.1, cutl-16 (K06A1.3), 

K06A1.2 (partial duplication) 

1 pseudogene: 

K10B2.t1 

Duplication in 50E: 

Chr V:19,780,952..19,966,162 

Size = 185,211 bp 
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30 protein-coding genes: 

srt-45 (M162.3), clec-258 (M162.2), clec-259 (M162.1), M162.7, Y116F11B.2, daf- 

28 (Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.3), srw-38 (Y116F11B.5), 

Y116F11B.6, Y116F11B.7, Y116F11B.9, Y116F11B.8, Y116F11B.9a, 

Y116F11B.11, gly-4 (Y116F11B.12), Y116F11B.13, fars-2 (Y60A3A.13), 

Y116F11B.14, chk-2 (Y60A3A.12), Y60A3A.19, Y60A3A.16, skr-4 (Y60A3A.18), 

Y60A3A.14, dhs-24 (Y60A3A.10), Y60A3A.9, Y60A3A.8, Y60A3A.7, srh-172 

(Y60A3A.6), srh-171 (Y60A3A.5) (partial duplication) 

8 pseudogenes: 

srt-46 (M162.4), M162.14, M162.6, srz-35 (Y116F11B.4), Y116F11B.10, 

Y60A3A.17, nhr-240 (Y60A3A.15), Y60A3A.11 

Duplication in 66C: 

Chr V:19,393,526..20,054,330 

Size = 660,805 bp 

121 protein-coding genes: 

C25F9.8, C25F9.13, srw-86 (C25F9.7), C25F9.12, C25F9.6, C25F9.10, C25F9.5, 

C25F9.4, C25F9.9, C25F9.15, C25F9.2, srw-85 (C25F9.1), C25F9.11, C25F9.16, 

C25F9.14, M04C3.1, Y43F8B.14, Y43F8B.13, Y43F8B.24, Y43F8B.15, 

Y43F8B.25, Y43F8B.23, Y43F8B.12, Y43F8B.11, Y43F8B.10, Y43F8B.9, 

Y43F8B.22, Y43F8B.17, Y43F8B.28, Y43F8B.18, Y43F8B.7, Y43F8B.29, sc1-21 

(Y43F8B.5), Y43F8B.3, Y43F8B.19, phy-4 (Y43F8B.4b), Y43F8B.2, Y43F8B.1, 

Y43F8C.20, oac-1 (B0399.2), kcnl-1 (B0399.1), nlp-25 (Y43F8C.1), grsp-1 

(Y43F8C.2 0), nlp-26 (Y43F8C.2), Y43F8C.3, dyf-19 (Y43F8C.4), Y43F8C.5, 
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Y43F8C.6, Y43F8C.7, mrps-28 (Y43F8C.8), Y43F8C.9, dmd-3 (Y43F8C.10), 

Y43F8C.11, mrp-7 (Y43F8C.12), Y43F8C.13, ani-3 (Y43F8C.14), Y43F8C.18, srv-3 

(Y43F8C.19), Y43F8C.15, Y43F8C.23, Y43F8C.16, Y43F8C.17, Y116F11A.6, 

Y116F11A.3, Y116F11A.1, W04E12.7, fbxa-131 (W04E12.1), W04E12.2, 

W04E12.3, W04E12.4, W04E12.5, clec-49 (W04E12.6), clec-50 (W04E12.8), 

W04E12.9, M162.5, M162.15, fbxa-118 (M162.8), fbxa-194 (M162.11), srt-45 

(M162.3), clec-258 (M162.2), clec-259 (M162.1), M162.7, Y116F11B.2, daf-28 

(Y116F11B.1), Y116F11B.17, pcp-4 (Y116F11B.3), srw-38 (Y116F11B.5), 

Y116F11B.6, Y116F11B.7, Y116F11B.8, Y116F11B.9a, Y116F11B.11, gly-4 

(Y116F11B.12), Y116F11B.13, fars-2 (Y60A3A.13), Y116F11B.14, chk-2 

(Y60A3A.12), Y60A3A.19, Y60A3A.16, skr-4 (Y60A3A.18), Y60A3A.14, dhs-24 

(Y60A3A.10), Y60A3A.9, Y60A3A.8, Y60A3A.7, srh-172 (Y60A3A.6), srh-171 

(Y60A3A.5), srh-173 (Y60A3A.4), srh-183 (Y60A3A.3), Y60A3A.24, clec-260 

(Y60A3A.2), sri-67 (Y60A3A.22), Y60A3A.25, unc-51 (Y60A3A.1), Y60A3A.23, 

Y60A3A.21, lgc-55 (Y113G7A.5), Y113G7A.16, spe-19 (Y113G7A.10), srh-233 

(Y113G7A.1), ttx-1 (Y113G7A.6) (partial duplication) 

52 pseudogenes: 

Y43F8A.t1, C25F9.t3, C25F9.t2, C25F9.t1, C25F9.t4, C25F9.t5, Y43F8B.8, 

Y43F8B.21, Y43F8B.6, B0399.t16, B0399.t15, B0399.t14, B0399.t1, B0399.t13, 

B0399.t12, B0399.t2, B0399.t4, B0399.t3, B0399.t5, B0399.t11, B0399.t10, 

B0399.t9, B0399.t8, B0399.t7, B0399.t6, Y43F8C.t1, Y43F8C.t9, Y43F8C.t2, 

Y43F8C.t8, Y43F8C.t3, Y43F8C.t4, Y43F8C.t7, Y43F8C.t6, Y43F8C.t5, 

Y43F8C.24, Y116F11A.4, W04E12.10, M162.12, M162.13, M162.9, M162.4, 
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M162.14, M162.6, Y116F11B.4, Y116F11B.10, Y60A3A.17, Y60A3A.15, 

Y60A3A.11, Y60A3A.28, Y60A3A.t1, Y60A3A.t2, Y113G7A.2 

Duplication in 66E: 

Chr V:19,295,300..19,839,882 

Size = 544,583 bp 

111 protein-coding genes: 

F55C9.6 (partial duplication), fbxb-60 (F55C9.7), F55C9.14, fbxb-62 (F55C9.8), 

fbxb-63 (F55C9.13), fbxb-61 (F55C9.10), F55C9.11, F55C9.15, C43D7.8, fbxb-64 

(C43D7.9), srh-208 (C43D7.6), C43D7.7, sdz-6 (C43D7.5), C43D7.4, fbxb-65 

(C43D7.2), C14B4.2, Y43F8A.1, Y43F8A.2, Y43F8A.3, srw-84 (Y43F8A.4), 

Y43F8A.5, C25F9.8, C25F9.13, srw-86 (C25F9.7), C25F9.12, C25F9.6, C25F9.10, 

C25F9.5, C25F9.4, C25F9.9, C25F9.15, C25F9.2, srw-85 (C25F9.1), C25F9.11, 

C25F9.16, C25F9.14, M04C3.1, M04C3.2, M04C3.5, Y43F8B.14, Y43F8B.13, 

Y43F8B.24, Y43F8B.15, Y43F8B.25, Y43F8B.23, Y43F8B.12, Y43F8B.11, 

Y43F8B.10, Y43F8B.9, Y43F8B.22, Y43F8B.17, Y43F8B.28, Y43F8B.18, 

Y43F8B.7, Y43F8B.29, scl-21 (Y43F8B.5), Y43F8B.3, Y43F8B.19, phy-4 

(Y43F8B.4), Y43F8B.2, Y43F8B.1, Y43F8B.20, oac-1 (B0399.2), kcnl-1 (B0399.1), 

nlp-25 (Y43F8C.1), grsp-1 (Y43F8C.20), nlp-26 (Y43F8C.2), Y43F8C.3, dyf-19 

(Y43F8C.4), Y43F8C.5, Y43F8C.6, Y43F8C.7, mrps-28 (Y43F8C.8), Y43F8C.9, 

dmd-3 (Y43F8C.10), Y43F8C.11, mrp-7 (Y43F8C.12), Y43F8C.13, ani-3 

(Y43F8C.14), Y43F8C.18, srv-3 (Y43F8C.19), Y43F8C.15, Y43F8C.23, 

Y43F8C.16, Y43F8C.17, Y116F11A.6, Y116F11A.3, Y116F11A.1, W04E12.7, 

fbxa-131 (W04E12.1), W04E12.2, W04E12.3, W04E12.4, W04E12.5, clec-49 
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(W04E12.6), clec-50 (W04E12.8), W04E12.9, M162.5, M162.15, fbxa-118 

(M162.8), fbxa-194 (M162.11), srt-5 (M162.3), clec-258 (M162.2), clec-259 

(M162.1), M162.7, Y116F11B.2, daf-28 (Y116F11B.1), Y116F11B.17, pcp-4 

(Y116F11B.3), srw-38 (Y116F11B.5) 

50 pseudogenes: 

C43D7.10, C43D7.11, C43D7.12, C43D7.3, C43D7.1, C14B4.t1, Y43F8A.t1, 

C25F9.t3, C25F9.t2, C25F9.t1, C25F9.t4, C25F9.t5, Y43F8B.8, Y43F8B.21, 

Y43F8B.6, B0399.t16, B0399.t15, B0399.t14, B0399.t1, B0399.t13, B0399.t12, 

B0399.t2, B0399.t4, B0399.t3, B0399.t5, B0399.t11, B0399.t10, B0399.t9, B0399.t8, 

B0399.t7, B0399.t6, Y43F8C.t1, Y43F8C.t9, Y43F8C.t2, Y43F8C.t8, Y43F8C.t3, 

Y43F8C.t4, Y43F8C.t7, Y43F8C.t6, Y43F8C.t5, Y43F8C.24, Y116F11A.4, 

W04E12.10, M162.12, M162.13, M162.9, M162.4, M162.14, M162.6, Y116F11B.4 

(partial duplication) 

Duplication in C2: 

Chr V:19,295,101..19,839,683 

Size = 544,583 bp 

111 protein-coding genes: 

F55C9.6 (partial duplication), fbxb-60 (F55C9.7), F55C9.14, fbxb-62 (F55C9.8), 

fbxb-63 (F55C9.13), fbxb-61 (F55C9.10), F55C9.11, F55C9.15, C43D7.8, fbxb-64 

(C43D7.9), srh-208 (C43D7.6), C43D7.7, sdz-6 (C43D7.5), C43D7.4, fbxb-65 

(C43D7.2), C14B4.2, Y43F8A.1, Y43F8A.2, Y43F8A.3, srw-84 (Y43F8A.4), 

Y43F8A.5, C25F9.8, C25F9.13, srw-86 (C25F9.7), C25F9.12, C25F9.6, C25F9.10, 

C25F9.5, C25F9.4, C25F9.9, C25F9.15, C25F9.2, srw-85 (C25F9.1), C25F9.11, 
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C25F9.16, C25F9.14, M04C3.1, M04C3.2, M04C3.5, Y43F8B.14, Y43F8B.13, 

Y43F8B.24, Y43F8B.15, Y43F8B.25, Y43F8B.23, Y43F8B.12, Y43F8B.11, 

Y43F8B.10, Y43F8B.9, Y43F8B.22, Y43F8B.17, Y43F8B.28, Y43F8B.18, 

Y43F8B.7, Y43F8B.29, scl-21 (Y43F8B.5), Y43F8B.3, Y43F8B.19, phy-4 

(Y43F8B.4), Y43F8B.2, Y43F8B.1, Y43F8B.20, oac-1 (B0399.2), kcnl-1 (B0399.1), 

nlp-25 (Y43F8C.1), grsp-1 (Y43F8C.20), nlp-26 (Y43F8C.2), Y43F8C.3, dyf-19 

(Y43F8C.4), Y43F8C.5, Y43F8C.6, Y43F8C.7, mrps-28 (Y43F8C.8), Y43F8C.9, 

dmd-3 (Y43F8C.10), Y43F8C.11, mrp-7 (Y43F8C.12), Y43F8C.13, ani-3 

(Y43F8C.14), Y43F8C.18, srv-3 (Y43F8C.19), Y43F8C.15, Y43F8C.23, 

Y43F8C.16, Y43F8C.17, Y116F11A.6, Y116F11A.3, Y116F11A.1, W04E12.7, 

fbxa-131 (W04E12.1), W04E12.2, W04E12.3, W04E12.4, W04E12.5, clec-49 

(W04E12.6), clec-50 (W04E12.8), W04E12.9, M162.5, M162.15, fbxa-118 

(M162.8), fbxa-194 (M162.11), srt-5 (M162.3), clec-258 (M162.2), clec-259 

(M162.1), M162.7, Y116F11B.2, daf-28 (Y116F11B.1), Y116F11B.17, pcp-4 

(Y116F11B.3), srw-38 (Y116F11B.5) 

50 pseudogenes: 

C43D7.10, C43D7.11, C43D7.12, C43D7.3, C43D7.1, C14B4.t1, Y43F8A.t1, 

C25F9.t3, C25F9.t2, C25F9.t1, C25F9.t4, C25F9.t5, Y43F8B.8, Y43F8B.21, 

Y43F8B.6, B0399.t16, B0399.t15, B0399.t14, B0399.t1, B0399.t13, B0399.t12, 

B0399.t2, B0399.t4, B0399.t3, B0399.t5, B0399.t11, B0399.t10, B0399.t9, B0399.t8, 

B0399.t7, B0399.t6, Y43F8C.t1, Y43F8C.t9, Y43F8C.t2, Y43F8C.t8, Y43F8C.t3, 

Y43F8C.t4, Y43F8C.t7, Y43F8C.t6, Y43F8C.t5, Y43F8C.24, Y116F11A.4, 

W04E12.10, M162.12, M162.13, M162.9, M162.4, M162.14, M162.6, Y116F11B.4 



139 
 

(partial duplication) 

 

Supplemental Data S2 

List of ORFs contained in 25 deletions detected by oaCGH in five control and 25 

adaptive recovery experimental C. elegans lines following 180-212 generations of 

population expansion under competitive conditions. The deletions are listed in Table 3.2. 

Deletion breakpoint coordinates and ORFs contained therein are based on Wormbase 

version WS243. 

Deletion in 16A*: 

Chr X:817,573..830,086 

Size = 12,514 bp 

1 protein-coding genes: 

daf-3 (F25E2.5) 

Deletion in 16D*: 

Chr V:7,663,133..7,687,447 

Size = 24,315 bp 

7 protein-coding genes: 

C12D5.5, C12D5.4, C12D5.3, cyp-33A1 (C12D5.7), sre-11 (C12D5.11), nhr-94 

(C12D5.8), nhr-152 (C12D5.2) (partial deletion) 

Deletion in 19A*: 

Chr X:800,773..827,100 

Size = 26,328 bp 

5 protein-coding genes: 
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gtr-1 (F25E2.1), F25E2.2, F25E2.3, ifd-2 (F25E2.4), daf-3 (F25E2.5) 

Deletion in 19C: 

Chr V:7,642,395..7,682,740 

Size = 40,346 bp 

10 protein-coding genes: 

F07C4.11, str-47 (F07C4.1), F07C4.12, srh-234 (F07C4.14), srh-200 (F07C4.13), 

C12D5.5, C12D5.4, C12D5.3, cyp-33A1 (C12D5.7), sre-11 (C12D5.11) 

Deletion in 19E: 

Chr X:821,499..829,454 

Size = 7,956 bp 

1 protein-coding genes: 

daf-3 (F25E2.5) (partial deletion) 

Deletion in 50B: 

Chr V:7,650,284..7,693,435 

Size = 43,152 bp 

12 protein-coding genes: 

F07C4.12 (partial deletion), srh-234 (F07C4.14), srh-200 (F07C4.13), C12D5.5, 

C12D5.4, C12D5.3, cyp-33A1 (C12D5.7), sre-11 (C12D5.11), nhr-94 (C12D5.8), 

nhr-152 (C12D5.2), C12D5.9, C12D5.10 

1 Pseudogene: 

str-147 (C12D5.1) 

Deletion in 50C: 

Chr V: 
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7,647,125..7,696,096 

Size = 48,972 bp 

14 protein-coding genes: 

str-47 (F07C4.1), F07C4.12, srh-234 (F07C4.14), srh-200 (F07C4.13), C12D5.5, 

C12D5.4, C12D5.3, cyp-33A1 (C12D5.7), sre-11 (C12D5.11), nhr-94 (C12D5.8), 

nhr-152 (C12D5.2), C12D5.9, C12D5.10, ZK105.3 (partial deletion) 

1 Pseudogene: 

str-147 (C12D5.1) 

Deletion in 50C: 

Chr X: 

1,029..273,082 

Size = 272,054 bp 

35 protein-coding genes: 

CE7X_3.1, Y73B3A.1, Y73B3A.20, Y73B3A.18, Y73B3A.3, Y73B3A.4, elk-2 

(Y73B3A.5), fbxa-221 (Y73B3A.15), fbxa-222 (Y73B3A.22), fbxa-16 (Y73B3A.14), 

Y73B3A.13, Y73B3A.7, cal-6 (Y73B3A.12), Y73B3A.8, Y73B3A.11, Y73B3A.9, 

Y73B3A.10, T08D2.1, T08D2.4, T08D2.5, T08D2.6, T08D2.7, T08D2.8, Y73B3B.1, 

Y73B3B.3, set-28 (Y73B3B.2), AC8.4, AC8.3, AC8.7, AC8.11, AC8.10, AC8.12, 

set-33 (Y108F1.3), math-43 (Y108F1.4), Y108F1.5 (partial deletion) 

18 Pseudogenes: 

cTel7X.1, CE7X_3.2, CE7X_3.4, Y35H6.3, Y73B3A.21, Y73B3A.2, Y73B3A.17, 

Y73B3A.16, Y73B3A.t1, T08D2.9, T08D2.2, T08D2.3, Y73B3B.5, AC8.6, AC8.5,  

AC8.9, pme-6 (AC8.1), AC8.2 
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Deletion in 50D*: 

Chr V:7,653,667..7,680,465 

Size = 26,799 bp 

6 protein-coding genes: 

srh-234 (F07C4.14) (partial deletion), srh-200 (F07C4.13), C12D5.5, C12D5.4, 

C12D5.3, cyp-33A1 (C12D5.7) (partial deletion) 

Deletion in 50D: 

Chr X:1,029..295,671 

Size = 294,643 bp 

38 protein-coding genes: 

CE7X_3.1, Y73B3A.1, Y73B3A.20, Y73B3A.18, Y73B3A.16, Y73B3A.3, 

Y73B3A.4, elk-2 (Y73B3A.5), fbxa-221 (Y73B3A.15), fbxa-222 (Y73B3A.22), fbxa- 

16 (Y73B3A.14), Y73B3A.13, Y73B3A.7, cal-6 (Y73B3A.12), Y73B3A.8, 

Y73B3A.11, Y73B3A.9, Y73B3A.10, T08D2.1, T08D2.4, T08D2.5, T08D2.6, 

T08D2.7, T08D2.8, Y73B3B.1, Y73B3B.3, set-28 (Y73B3B.2), AC8.4, AC8.3, 

AC8.7, AC8.11, AC8.10, AC8.12, set-33 (Y108F1.3), math-43 (Y108F1.4), 

Y108F1.5, Y108F1.1, Y47C4A.1 

20 Pseudogenes: 

cTel7X.1, CE7X_3.2, CE7X_3.4, Y35H6.3, Y73B3A.21, Y73B3A.2, Y73B3A.17, 

Y73B3A.16, Y73B3A.t1, T08D2.9, T08D2.2, T08D2.3, Y73B3B.5, AC8.6, AC8.5, 

AC8.9, pme-6 (AC8.1), AC8.2, Y47C4A.t1, Y47C4A.t2 

Deletion in 50E*: 

Chr V:7,652,044..7,682,914 
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Size = 30,871 bp 

8 protein-coding genes: 

F07C4.12B (partial deletion), srh-234 (F07C4.14), srh-200 (F07C4.13), C12D5.5, 

C12D5.4, C12D5.3, cyp-33A1 (C12D5.7), sre-11 (C12D5.11) (partial deletion) 

Deletion in 66B: 

Chr V:15,258,727..15,326,180 

Size = 67,454 bp 

26 protein-coding genes: 

srsx-37 (M01B2.7), M01B2.8, M01B2.10, M01B2.12, M01B2.13, T10H4.13, srw-22 

(T10H4.3), T10H4.4, srw-16 (T10H4.5), srw-17 (T10H4.6), srw-19 (T10H4.8), srx- 

51 (T10H4.9), cyp-34A1 (T10H4.10), cyp-34A2 (T10H4.11), str-96 (T10H4.2), cpr-3 

(T10H4.12), srx-48 (T26H8.2), T26H8.5, T26H8.4, srz-10 (ZK1037.11), irld-62 

(ZK1037.1), srt-22 (ZK1037.3), nhr-246 (ZK1037.4), ZK1037.13, nhr-247 

(ZK1037.5), ZK1037.6 (partial deletion) 

5 Pseudogenes: 

srw-18 (T10H4.7), T10H4.1, srx-49 (T26H8.3), ZK1037.12, ZK1037.2 

Deletion in 66B*: 

Chr X:9,983,441..9,999,107 

Size = 15,667 bp 

2 protein-coding genes: 

F19C6.5, grk-1 (F19C6.1) (partial deletion) 

Deletion in 66D: 

Chr V:18,665,661..18,670,354 
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Size = 4,694 bp 

1 protein-coding gene: 

Y69H2.10 (partial deletion) 

Deletion in 66D: 

Chr V:18,701,820..18,725,404 

Size = 23,585 bp 

3 protein-coding genes: 

nhr-241 (Y69H2.8) (partial deletion), Y69H2.9, Y17D7C.1, Y17D7C.6, Y17D7C.2 

5 Pseudogenes: 

Y69H2.18, Y69H2.16, Y17D7C.5, Y17D7C.4, Y17D7C.3 

Deletion in 66D: 

Chr X:961,361..963,014 

Size = 1,654 bp 

1 protein-coding gene: 

ncs-1 (C44C1.3) (partial deletion) 

Deletion in 66D: 

Chr X:7,528,608..7,529,729 

Size = 1,122 bp 

1 protein-coding gene: 

ceh-14 (F46C8.5) (partial deletion) 

Deletion in 66E: 

Chr X:7,528,608..7,529,729 

Size = 1,122 bp 
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1 protein-coding gene: 

ceh-14 (F46C8.5) (partial deletion) 

Deletion in C1: 

Chr I:15,060,622..15,071,438 

Size = 10,817 bp 

0 protein-coding genes 

4 rRNA genes: 

F31C3.7, F31C3.11, F31C3.9, F31C3.8 

1 Pseudogene: 

rrn-3.56 (F31C3.10) 

Deletion in C2: 

Chr I:15,060,388..15,071,427 

Size = 11,040 bp 

0 protein-coding genes 

4 rRNA genes: 

F31C3.7, F31C3.11, F31C3.9, F31C3.8 

1 Pseudogene: 

rrn-3.56 (F31C3.10) 

Deletion in C3: 

Chr II:14,034,460..14,039,471 

Size = 5,012 bp 

1 protein-coding gene: 

daf-5 (W01G7.1) (partial deletion) 
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Deletion in C3*: 

Chr X:7,527,813..7,529,236 

Size = 1,424 bp 

1 protein-coding gene: 

ceh-14 (F46C8.5) (partial deletion) 

Deletion in C4: 

Chr I:15,060,388..15,071,427 

Size = 11,040 bp 

0 protein-coding genes 

4 rRNA genes: 

F31C3.7, F31C3.11, F31C3.9, F31C3.8 

1 Pseudogene: 

rrn-3.56 (F31C3.10) 

Deletion in C5: 

Chr I:15,061,973..15,071,438 

Size = 9,466 bp 

0 protein-coding genes 

4 rRNA genes: 

F31C3.7, F31C3.11, F31C3.9, F31C3.8 

Deletion in C5: 

Chr X:823,167..827,286 

Size = 4,120 bp 

1 protein-coding gene: 
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daf-3 (F25E2.5) (partial deletion) 

 

Supplemental Data S3 

List of ORFs contained in eight overlapping duplications and deletions in 

experimental C. elegans lines following 180-212 generations of population expansion 

under competitive conditions. Duplication/deletion breakpoint coordinates and ORFs 

contained therein are based on Wormbase version WS243. 

Overlapping Duplications: 

1. Chromosome II: 

16D: 6,248,049..6,406,772 

50E: 6,312,598..6,444,674 

Overlapping region: 6,312,598-6,406,772 = 94,175 bp 

26 protein-coding ORFs 

C32D5.3 

Biological process: apoptotic process; embryo development ending in 

birth or egg hatching; receptor mediated reproduction 

C32D5.4 

Unclassified 

sma-6 (C32D5.2) 

Biological process: BMP signaling pathway; body morphogenesis; dauer 

larval development; defense response to fungus; innate immune response; 

maintenance of protein location in nucleus; positive regulation of 

multicellular organism growth; positive regulation of protein catabolic 
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process; positive regulation of transcription from RNA polymerase II 

promoter; protein phosphorylation; regulation of cell adhesion; regulation 

of cell morphogenesis; reproduction; tail tip morphogenesis  

Cellular component: membrane; plasma membrane  

Molecular functions: ATP binding; BMP binding; protein kinase activity; 

transforming growth factor beta-activated receptor activity; 

transmembrane receptor protein serine/threonine kinase activity 

set-4 (C32D5.5) 

Biological process: determination of adult lifespan; embryo development 

ending in birth or egg-hatching 

Molecular functions: protein binding 

C32D5.6 

Biological process: cellular response to DNA damage stimulus 

Molecular functions: protein binding 

C32D5.14 

Unclassified 

C32D5.7 

Unclassified 

C32D5.8 

Biological process: embryo development ending in birth or egg hatching 

C32D5.1 

Unclassified 

lgg-1 (C32D5.9) 
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Biological process: autophagy; dauer larval development; determination of 

adult lifespan; embryo development; embryo development ending in birth 

or egg-hatching; growth; necrotic cell death; positive regulation of 

necrotic cell death; programmed cell death 

Cellular component: autophagic vacuole; autophagic vacuole membrane; 

cytoplasm; nucleus 

C32D5.10 

Biological process: nematode larval development; reproduction 

Molecular function: metal ion binding; protein binding; zinc ion binding 

C32D5.11 

Biological process: apoptotic process; lipid storage 

Molecular function: protein binding; zinc ion binding 

C32D5.12 

Biological process: body morphogenesis; embryo development ending in 

birth or egg-hatching; locomotion; nematode larval development; 

oxidation-reduction process; steroid biosynthetic process 

Molecular function: 3-beta-hydroxy-delta5-steroid dehydrogenase activity; 

oxidoreductase activity, acting on the CH-OH group of donors, NAD or 

NADP as receptor 

K10B2.4 

Unclassified 

ani-2 (K10B2.5) 
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Biological process: gonad development; embryo development ending in 

birth or egg hatching; multicellular organism reproduction; oogenesis; 

reproduction; body morphogenesis; apoptotic process 

Cellular component: cytoplasm 

clec-88 (K10B2.3) 

Molecular function: carbohydrate binding 

K10B2.2 

Biological process: proteolysis 

Molecular function: serine-type carboxypeptidase activity 

lin-23 (K10B2.1) 

Biological process: body morphogenesis; determination of adult lifespan; 

embryo development ending in birth or egg hatching; hermaphrodite 

genitalia development; locomotion; negative regulation of cell 

proliferation; nematode larval development; neuron projection 

morphogenesis; receptor-mediated endocytosis 

Cellular component: cytoplasm; nucleus 

Molecular function: protein binding; protein dimerization activity 

F58F12.1 

Biological process: ATP synthesis coupled proton transport; embryo 

development ending in birth or egg hatching; nematode larval 

development; reproduction  

Cellular component: mitochondrion; proton-trasport ATP synthase 

complex, catalytic core F(1) 
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Molecular function: proton-transporting ATP synthase activity, rotational 

mechanism 

F58F12.4 

Unclassified 

F58F12.2 

Unclassified 

F58F12.3 

Unclassified 

zig-10 (T25D10.2) 

Unclassified 

btb-2 (T25D10.5) 

Molecular function: protein binding 

T25D10.1 

Unclassified 

spp-11 (T25D10.3 – partial duplication) 

Unclassified 

2. Chromosome IV: 

7D: 505,050..701,113 

50D: 560,240..1,024,886 

Overlapping region: 560,240-701,113 = 140,874 bp 

30 protein-coding ORFs 

efn-4 (F56A11.3) 
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Biological process: cell migration involved in gastrulation; embryo 

development ending in birth or egg hatching; morphogenesis of embryonic 

epithelium; regulation of cell adhesion; reproduction; tail tip 

morphogenesis 

Cellular component: axon, membrane, neuronal cell body 

F56A11.7 

Unclassified 

F56A11.5 

Molecular function: catalytic activity; molybdenum ion binding; pyridoxal 

phosphate binding 

gex-2 (F56A11.1) 

Biological process: axon guidance; body morphogenesis; dendrite 

development; embryo development; embryo development ending in birth 

or egg hatching; hermaphrodite genitalia development; locomotion; 

nematode larval development; oviposition 

Cellular component: cell junction; cytoplasm 

F56A11.6 

Biological process: embryo development ending in birth or egg hatching 

C18H7.12 

Unclassified 

C18H7.5 

Unclassified 

C18H7.6 
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Unclassified 

C18H7.4 

Biological process: protein phosphorylation 

Molecular function: protein binding; protein kinase activity; protein 

tyrosine kinase activity 

C18H7.7 

Unclassified 

C18H7.11 

Unclassified 

srt-59 (C18H7.8) 

Unclassified 

prmt-4 (C18H7.9) 

Unclassified 

col-102 (C18H7.3) 

Molecular function: structural constituent of cuticle 

inx-18 (C18H7.2) 

Cellular component: gap junction 

C18H7.1 

Unclassified 

nhr-76 (C05G6.2) 

Biological process: regulation of transcription DNA-templated; steroid 

hormone mediated signaling pathway 

Cellular component: nucleus 
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Molecular function: sequence-specific DNA binding; sequencespecific 

DNA binding transcription factor activity; steroid hormone receptor 

activity; zinc ion binding 

K11H12.9 

Biological process: protein phosphorylation 

Molecular function: ATP binding; protein kinase activity 

K11H12.1 

Unclassified 

rpl-15 (K11H12.2) 

Biological process: apoptotic process; embryo development ending in 

birth or egg hatching; molting cycle, collagen and cuticulin-based cuticle;  

nematode larval development; positive regulation of multicellular 

organism growth; reproduction; translation 

Cellular component: ribosome 

Molecular function: structural constituent of ribosome 

K11H12.8 

Unclassified 

K11H12.7 

Unclassified 

K11H12.6 

Unclassified 

K11H12.11 

Unclassified 
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K11H12.3 

Biological process: reproduction 

K11H12.4 

Unclassified 

K11H12.10 

Unclassified 

K11H12.5 

Unclassified 

cutl-28 (F41A4.1) 

Biological process: blood coagulation; determination of adult lifespan; 

proteolysis 

Cellular component: extracellular region 

Molecular function: protein binding 

cutl-26 (Y55F3C.7 - partial duplication) 

Unclassified 

3. Chromosome V: 

7B: 19,505,848..20,101,145 

16B*: 19,295,123..19,839,705 

16D: 19,746,828..19,885,746 

16E*: 19,295,580..19,840,162 

50A*: 19,780,484..19,972,052 

50B: 19,781,064..19,972,507 

50C: 19,659,829..19,976,506 
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50D: 19,780,935 ..19,966,260 

50E: 19,780,952..19,966,162 

66C: 19,393,526..20,054,330 

66E*: 19,295,300..19,839,882 

C2*: 19,295,101..19,839,683 

Overlapping region: 19,781,064-19,839,683 = 58,620 bp 

11 protein-coding ORFs 

fbxa-118 (M162.8 – partial duplication) 

Molecular function: protein-binding 

fbxa-194 (M162.11) 

Molecular function: protein-binding 

srt-45 (M162.3) 

Unclassified 

clec-258 (M162.2) 

Molecular function: carbohydrate-binding 

clec-259 

Molecular function: carbohydrate-binding 

M162.7 

Unclassified 

Y116F11B.2 

Unclassified 

daf-28 (Y116F11B.1) 
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Biological processes: dauer larval development; determination of adult 

lifespan; regulation of insulin receptor signaling pathway; regulation of 

transcription factor import into nucleus 

Cellular components: extracellular regions; extracellular space 

Molecular functions: hormone activity; insulin receptor binding 

Y116F11B.17 

Unclassified 

pcp-4 (Y116F11B.3) 

Biological processes: proteolysis 

Cellular components: membrane raft 

Molecular functions: serine-type peptidase activity 

srw-38 (Y116F11B.5) 

Cellular components: integral component of membranes 

Overlapping Deletions: 

4. Chromosome X: 

16A: 817,573..830,086 

19A: 800,773..827,100 

19E: 821,499..829,454 

C5: 823,167..827,286 

Overlapping region: 823,167-827,100= 3,934 bp 

1 protein-coding ORFs 

daf-3 (F25E2.5 - partial deletion) 
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Biological process: dauer larval development; negative regulation of 

transcription from RNA polymerase II promoter; regulation of pharyngeal 

pumping; regulation of transcription, DNA-templated; transforming 

growth factor beta receptor signaling pathway 

Cellular component: condensed chromosome; cytoplasm; intracellular; 

nucleus; transcription factor complex 

Molecular function: enhancer sequence-specific DNA binding; sequence-

specific DNA binding transcription factor activity 

5. Chromosome V: 

16D: 7,663,133..7,687,447 

19C: 7,642,395..7,682,740 

50B: 7,650,284..7,693,435 

50C: 7,647,125..7,696,096 

50D*: 7,653,667..7,680,465 

50E*: 7,652,044..7,682,914 

Overlapping region: 7,663,133-7,680,465= 17,333 bp 

4 protein-coding ORFs 

C12D5.5 

Unclassified 

C12D5.4 

Unclassified 

C12D5.3 

Unclassified 
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Cyp-33A1 (C12D5.7 - partial deletion) 

Biological process: oxiation-reduction process 

Molecular function: heme binding; iron ion binding; oxidoreductase 

activity, acting on donors, with incorporation or reduction of molecular 

oxygen 

6. Chromosome X: 

66D: 7,528,608..7,529,729 

66E: 7,528,608..7,529,729 

C3*: 7,527,813..7,529,236 

Overlapping region: 7,528,608-7,529,236= 629 bp 

1 protein-coding ORFs 

ceh-14 (F46C8.5 - partial deletion) 

Biological process: regulation of transcription, DNA-tempated; 

thermosensory behaviour 

Cellular component: nucleus 

Molecular function: DNA binding; protein binding; sequencespecific 

DNA binding; sequence-specific DNA binding transcription factor 

activity; zinc ion binding 

7. Chromosome I: 

C1: 15,060,622..15,071,438 

C2: 15,060,388..15,071,427 

C4: 15,060,388..15,071,427 

C5: 15,061,973..15,071,438 
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Overlapping region: 15,061,973..15,071,427= 9,455 bp 

4 rRNA genes 

rrn-1.1 (F31C3.7) 

rrn-2.1 (F31C3.11) 

rrn-3.1 (F31C3.9) 

rrn-1.2 (F31C3.8) 

8. Chromosome X: 

50C: 1,029..273,082 

50D: 1,029..295,671 

Overlapping region: 1,029..273,082 = 272,054 bp 

CE7X_3.1 

Unclassified 

Y73B3A.1 

Unclassified 

Y73B3A.20 

Unclassified 

Y73B3A.18 

Biological process: embryo development ending in birth or egg hatching, 

hermaphrodite genitalia development, reproduction 

Y73B3A.3 

Biological process: embryo development ending in birth or egg hatching 

Y73B3A.4 

Unclassified 
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elk-2 (Y73B3A.5) 

Biological process: embryo development ending in birth or egg hatching, 

hermaphrodite genitalia development, negative regulation of vulval 

development 

fbxa-221 (Y73B3A.15) 

Molecular function: protein binding 

fbxa-222 (Y73B3A.22) 

Molecular function: protein binding 

fbxa-16 (Y73B3A.14) 

Unclassified 

Y73B3A.13 

Unclassified 

Y73B3A.7 

Unclassified 

cal-6 (Y73B3A.12) 

Biological process: embryo development ending in birth or egg hatching, 

receptor-mediated endocytosis, reproduction 

Molecular function: calcium-ion binding 

Y73B3A.8 

Unclassified 

Y73B3A.11 

Unclassified 

Y73B3A.9 
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Unclassified 

Y73B3A.10 

Biological process: cellular protein metabolic process, reproduction 

Molecular function: ATP binding 

T08D2.1 

Biological process: locomotion, transport 

Cellular component: integral component of membrane 

T08D2.4 

Molecular function: protein binding, zinc ion binding 

T08D2.5 

Unclassified 

T08D2.6 

Unclassified 

T08D2.7 

Biological process: protein phosphorylation 

Molecular function: ATP binding, protein binding, protein kinase activity, 

transferase activity, transferring phosphorus-containing groups 

T08D2.8 

Molecular function: binding 

Y73B3B.1 

Molecular function: protein binding 

Y73B3B.3 

Unclassified 



163 
 

set-28 (Y73B3B.2) 

Molecular function: protein binding 

AC8.4 

Unclassified 

AC8.3 

Unclassified 

AC8.7 

Unclassified 

AC8.11 

Unclassified 

AC8.10 

Unclassified 

AC8.12 

Unclassified 

set-33 (Y108F1.3) 

Biological process: embryo development ending in birth or egg hatching, 

nematode larval development, RNA interference 

Molecular function: protein binding 

math-43 (Y108F1.4) 

Unclassified 

Y108F1.5 (partial deletion) 

Molecular function: helicase activity, protein binding 
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Supplemental Figure C.1. Illustration of Caenorhabditis elegans experimental 
evolution study with mutation accumulation (MA) and adaptive recovery phases. A. 
The MA experiment was initiated by establishing 74 lines descended from a single, 
mated fog-2 female whose additional descendants were expanded for several generations 
and frozen as ancestral, pre-MA controls. Each generation, the MA regime comprised (i) 
population bottlenecks of one random female worm and two male siblings (Ne = ~2.67) 
per generation, and (ii) RNAi-mediated knockdown of the mismatch repair gene msh-2. 
The MA experiment with msh-2 RNAi was terminated at 50 generations and extant MA 
lines were subjected to 15 additional generations of full-sib mating without msh-2 RNAi 
to maximize homozygosity. B. To enable fitness/adaptive recovery of mutationally 
degraded lines, five MA lines (MA7, 16, 19, 50 and 66) exhibiting the greatest decline in 
fitness following the MA regime were expanded into five sublines (A-E) and 
independently maintained at large population sizes in the absence of msh-2 RNAi. New 
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generations were established every four days by agar chunk transfers that enabled 
maintenance of large population sizes across generations. For simplicity, the fitness 
recovery phase displayed in the figure only depicts population expansion for one MA line 
and its five descendant sublines, A-E. 

 
 
Supplemental Figure C.2. Increase in the frequency of parallel duplication events in 
two populations containing an overlapping region on Chromosome II. The average 
copynumber per haploid genome was calculated from qPCR results and is indicated on 
the vertical axis. The number of recovery generations is indicated on the horizontal axis. 
 

 
 
Supplemental Figure C.3. Increase in the frequency of parallel duplication events in 
two populations containing an overlapping region on Chromosome IV. The average 
copynumber per haploid genome was calculated from qPCR results and is indicated on 
the vertical axis. The number of recovery generations is indicated on the horizontal axis.  
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Supplemental Figure C.4. Increase in the frequencies of five unique duplications 
that lack overlap in their duplication spans. Frequencies of five unique duplications in 
adaptive recovery populations 7B, 16C, 50A, and 50D. The average copy-number per 
haploid genome was calculated from qPCR results and is indicated on the vertical axis.  
The number of recovery generations is indicated on the horizontal axis. 
 
 

 
 
Supplemental Figure C.5. Increase in the frequencies of four unique duplications 
that lack overlap in their duplication spans. Frequencies of four unique duplications in 
adaptive recovery populations 19C, and 19E. The average copy-number per haploid 
genome was calculated from qPCR results and is indicated on the vertical axis. The 
number of recovery generations is indicated on the horizontal axis. 
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Supplemental Figure C.6. Increase in the frequencies of parallel deletion events in 
two control populations, C2 and C4, containing an overlapping region on 
Chromosome I. The average copy-number per haploid genome was calculated from 
qPCR results and is indicated on the vertical axis. The number of recovery generations is 
indicated on the horizontal axis. The results show a strong decline in average copy-
number of these two independent deletions that were initially detected by oaCGH. The 
deletions have reached fixation when the average copy-number has reached 0. 
 

 
 
Supplemental Figure C.7. Increase in the frequencies of parallel deletion events in 
three adaptive recovery populations (16A, 19A, and 19E), containing an overlapping 
region on Chromosome X. The average copy-number per haploid genome was 
calculated from qPCR results and is indicated on the vertical axis. The number of 
recovery generations is indicated on the horizontal axis. The results show a strong decline 
in average copynumber of these three independent deletions that were initially detected 
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by oaCGH. The deletions have reached fixation when the average copy-number has 
reached 0. 
 

 
 
Supplemental Figure C.8. Increase in the frequencies of parallel deletion events in 
two adaptive recovery populations (66D, and 66E) and one control population (C3) 
containing another overlapping region on Chromosome X. The average copy-number 
per haploid genome was calculated from qPCR results and is indicated on the vertical 
axis. The number of recovery generations is indicated on the horizontal axis. The results 
show a strong decline in average copy-number of these three independent deletions that 
were initially detected by oaCGH. The deletions have reached fixation when the average 
copynumber has reached 0. 
 

 
 
Supplemental Figure C.9. Copy-number decreases for five unique deletion events in 
two adaptive recovery populations (66B, and 66D) that lack overlap in their deletion 
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spans. The average copy-number per haploid genome was calculated from qPCR results 
and is indicated on the vertical axis. The generation from which the copy-number was 
estimated is indicated on the horizontal axis. The deletions have reached fixation when 
the average copy-number has reached 0. 
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Appendix D 

Code for programs for Chapter 4 

Code for JCFqPCR_bs_sim_5_Ct_sets.m 

%JCFqPCR_bs_sim_5_Ct_sets.m 

%James Farslow (jfars@unm.edu) 

%30 Jan 2015 

%Bootstrap simulation - 5 sets of Ct values 

%This program will simulate 4 methods of bootstrapping CIs and also 

%calculate CIs based on the square root of the sum of the squares of the group SEmeans. 

%The four bootstrap methods are: 

%   1 - group means method - should be preferred if n > 10? 

%       bootstraps each group to create a new mean for each group 

%   2 - Single Paired (dCt) resampling method (mine) - not REST (Pfaffl 2002) 

%       Pair the values within test and ref DNA Cts. Bootstrap: randomly select one 

%       pair for each, then determine ddCt from them 

%   3 - Single Random resampling (mine) 

%       Bootstrap: Randomly select one Ct from each group, use those to 
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%       calculate ddCt 

%   4 - Paired Means Method 

%       Pair the values within test and ref Cts, bootstrap paired values 

%       and calculate new dCt means to determine ddCt 

%This simulation is not analyzing biological replicates, only a single 

%run of technical replicates. 

%This simulation includes only ddCt values, not copy numbers which are 

%derived from them. 

%This simulation also includes varying ddCt values from -4 to +4 

%Note: ddCt = -4 indicates an N-fold increase of 16x 

%       ddCt = +4 indicates an N-fold decrease of 1/16 x 

clc; 

clear; 

rng('shuffle'); 

tic; 

%set parameters 

cycDiff = [-4 0 4]; %cycle difference range for ddCt 
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lencycDiff = length(cycDiff); 

reps = input('Number of trials: '); 

num = input('Number of Cts: '); 

alph = .05;  %set alpha (which is a reserved word), error level 

df = (4*num)-4; %degrees of freedom 

Tvalue = input(sprintf('Tcrit value from table (df = %d,a = %4.3f): ',df,alph/2));  %with 4 

sets of Ct values, df = 4n-4 

mn1 = 19;  %fix mu parameter mean for R/R' 

mn2 = 19;  %fix mu parameter mean for T/R' 

mn3 = 20;  %fix mu parameter mean for R/T' 

bootreps = 10000; %number of bootstrap repetitions 

%sig = [0.05:0.05:0.5];  %sigma parameter values 

sig = [.05:.1:.45]; 

lenSig = length(sig); 

groupCorFac = 1;  %correction factors must be set based on N(Ct) 

pairCorFac = 1;  %correction factor of 1 means no correction 

count1 = zeros(lenSig,lencycDiff);  %initialize counts for proportion mu capture 

count2 = zeros(lenSig,lencycDiff); 
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count3 = zeros(lenSig,lencycDiff); 

count4 = zeros(lenSig,lencycDiff); 

countC = zeros(lenSig,lencycDiff);  %calculated method 

countR = zeros(lenSig,lencycDiff);  %is mu within data range? 

trData = zeros(reps,15,lenSig,lencycDiff);  %set array for trials data 

mnTr1 = zeros(lenSig,lencycDiff);  %mean trials data 

mnTr2 = zeros(lenSig,lencycDiff); 

mnTr3 = zeros(lenSig,lencycDiff); 

mnTr4 = zeros(lenSig,lencycDiff); 

mnTrC = zeros(lenSig,lencycDiff); 

mnLo1 = zeros(lenSig,lencycDiff);  %mean lower CI 

mnLo2 = zeros(lenSig,lencycDiff); 

mnLo3 = zeros(lenSig,lencycDiff); 

mnLo4 = zeros(lenSig,lencycDiff); 

mnLoC = zeros(lenSig,lencycDiff); 

mnUp1 = zeros(lenSig,lencycDiff);  %mean upper CI 

mnUp2 = zeros(lenSig,lencycDiff); 
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mnUp3 = zeros(lenSig,lencycDiff); 

mnUp4 = zeros(lenSig,lencycDiff); 

mnUpC = zeros(lenSig,lencycDiff); 

sdTr1 = zeros(lenSig,lencycDiff);  %trials standard deviation 

sdTr2 = zeros(lenSig,lencycDiff); 

sdTr3 = zeros(lenSig,lencycDiff); 

sdTr4 = zeros(lenSig,lencycDiff); 

sdTrC = zeros(lenSig,lencycDiff); 

csdTr = zeros(lenSig,lencycDiff); 

proCount1 = zeros(lenSig,lencycDiff); %proportion with mu in range  

proCount2 = zeros(lenSig,lencycDiff); 

proCount3 = zeros(lenSig,lencycDiff); 

proCount4 = zeros(lenSig,lencycDiff); 

proCountC = zeros(lenSig,lencycDiff); 

proCountR = zeros(lenSig,lencycDiff); 

mnCount1 = zeros(lencycDiff);  %mean of proportion mu in range 

mnCount2 = zeros(lencycDiff); 
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mnCount3 = zeros(lencycDiff); 

mnCount4 = zeros(lencycDiff); 

mnCountR = zeros(lencycDiff); 

mnCountC = zeros(lencycDiff); 

trueDdct = zeros(lencycDiff,1); 

%set warning boxes 

figure(100); 

clf(100); 

text(0,.5,sprintf('Simulation In Progress\n Please Do Not Touch'),'FontSize',40); 

set(100,'Position',[250 400 800 

200],'Name','Warning','NumberTitle','off','MenuBar','none'); 

set(gca,'Visible','off'); 

%figure(100) 

figure(101); 

clf(101); 

text(0,.5,sprintf('Simulation In Progress\n Please Do Not Touch'),'FontSize',40); 

set(101,'Position',[-1000 300 800 200],'Name','Extended 

Warning','NumberTitle','off','MenuBar','none'); 



176 
 

set(gca,'Visible','off'); 

%figure(101) 

%wait bar diff cycle 

wtbr3 = waitbar(0,'cycDiff Loops Complete'); 

set(wtbr3, 'Position',[15 500 300 50],'Name','cycDiff'); 

%set cycle diff loop 

for indc = 1:lencycDiff 

    %wait bar sigma 

    wtbr1 = waitbar(0,'Sigma Loops Complete'); 

    set(wtbr1, 'Position',[332 500 300 50],'Name','Sigma'); 

    %set mu parameter for T/T' - changes 

    mn4 = 20 + cycDiff(indc); 

    %set sigma loop 

    for inds = 1:lenSig 

        %wait bar trials 

        wtbr2 = waitbar(0,'Trials Loops Complete'); 

        set(wtbr2, 'Position',[650 500 300 50],'Name','Trials'); 
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        %set trials loop 

        for ind1 = 1:reps 

            clc;        %display to command window which sigma and trial iteration 

            fprintf('Cycle Difference: %d\n',cycDiff(indc)); 

            fprintf('Sigma: %4.2f\n',sig(inds)); 

            fprintf('Trial: %d\n',ind1); 

            fprintf('Simulation elapsed time: %d hr %d min %d 

sec',floor(toc/3600),floor((toc/60)-floor(toc/3600)*60),floor(toc-floor(toc/60)*60)); 

            %timer box 

            figure(102); 

            clf(102); 

            text(-.1,.5,sprintf('Elapsed Time\n%d hr %d min %d sec\nN(Ct) = 

%d',floor(toc/3600),floor((toc/60)-floor(toc/3600)*60),floor(toc-

floor(toc/60)*60),num),'FontSize',36); 

            set(102,'Position',[20 50 450 

275],'Name','Timer','NumberTitle','off','MenuBar','none'); 

            set(gca,'Visible','off'); 

            %figure(102) 
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            %get a set of Ct values for this trial 

            data(1:num,1) = normrnd(mn1,sig(inds),num,1);  %one set of Ct values 

            data(1:num,2) = normrnd(mn2,sig(inds),num,1);  %one set of Ct values 

            data(1:num,3) = normrnd(mn3,sig(inds),num,1);  %one set of Ct values 

            data(1:num,4) = normrnd(mn4,sig(inds),num,1);  %one set of Ct values 

            %is the mean within the extreme values range?  see method 3 below 

            %in other words, within the range of the data 

            %data is arranged as: 

                %col 1 - R/R' 

                %col 2 - T/R' 

                %col 3 - R/T' 

                %col 4 - T/T' 

            %Formula: ddCt = (T/T'-T/R')-(R/T'-R/R') 

            %                   (4 - 2) - (3 - 1) 

            %bootstrap 1 - group means method 

            %create bootstrap data array 

            bsData = zeros(bootreps,1); 
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            for ind2 = 1:bootreps 

                %randomly select from each Ct group, make new groups 

                tempData = zeros(num,4); 

                x(1:num,1:4) = randi(num,num,4); %resample selection - uniform distribution 

from 1 to num 

                tempData(1:num,1) = data(x(1:num,1),1);  %use random numbers to resample 

each group of Ct values 

                tempData(1:num,2) = data(x(1:num,2),2); 

                tempData(1:num,3) = data(x(1:num,3),3); 

                tempData(1:num,4) = data(x(1:num,4),4); 

                %calculate means of each group 

                mnBsData1 = mean(tempData(1:num,1)); 

                mnBsData2 = mean(tempData(1:num,2)); 

                mnBsData3 = mean(tempData(1:num,3)); 

                mnBsData4 = mean(tempData(1:num,4)); 

                %calculate ddCt for that bootstrap iteration, store in bootstrap array 

                %Formula: ddCt = (T/T'-T/R')-(R/T'-R/R') 

                bsData(ind2) = (mnBsData4-mnBsData2)-(mnBsData3-mnBsData1); 



180 
 

            end; 

            %sort bootstrap array 

            sortData = sort(bsData); 

            %get median, upper and lower CIs from bootstrap, store in trial array 

            %columns 1, 2, and 3 

            trData(ind1,1,inds,indc) = sortData(floor(bootreps/2)); %median 

            trData(ind1,2,inds,indc) = sortData(ceil((1-(alph/2))*bootreps)); %upper 

            trData(ind1,3,inds,indc) = sortData(floor(bootreps*alph/2)); %lower 

            %test for mu capture, add to count1 

            %use correction factor 

            upper = trData(ind1,1,inds,indc)+groupCorFac*(trData(ind1,2,inds,indc)-

trData(ind1,1,inds,indc));%mean + corrected (upper - mean) 

            lower = trData(ind1,1,inds,indc)-groupCorFac*(trData(ind1,1,inds,indc)-

trData(ind1,3,inds,indc));%mean - corrected (mean - lower) 

            %determine true ddCt value 

            trueDdct(indc) = (mn4 - mn2)-(mn3 - mn1); 

            if (lower < trueDdct(indc) && upper > trueDdct(indc))  %no change from true 

ddCt 
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               count1(inds,indc) = count1(inds,indc)+1;  

            end 

            %boostrap 2 - Single Pairwise Reallocation Method - not REST, see 

            %Pfaffl (2002), REST program.   

            %Assumes R/R' and R/T' as well as T/T' and T/R' are paired 

            %Change data sets to dCt values, then resample pairs randomly to 

            %obtain ddCt values 

            %May need to look at this one seperately.  How does the 

            %distribution change if we change the pairings? 

            %reset bootstrap array 

            bsData = zeros(bootreps,1);   

            for ind2 = 1:bootreps 

                %create paired arrays 

                dCt1 = data(:,4)-data(:,2);  %T/T'-T/R' 

                dCt2 = data(:,3)-data(:,1);  %R/T'-R/R' 

                %randomly select one dCt from each group 

                x = randi(num,2,1); %resample selection - uniform distribution from 1 to num 
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                y1 = dCt1(x(1)); 

                y2 = dCt2(x(2)); 

                %calculate ddCt and store in bootstrap array 

                bsData(ind2) = y1-y2; 

            end 

            %sort bootstrap data 

            sortData = sort(bsData); 

            %get median, upper and lower CIs from bootstrap, store in trials array 

            %columns 4, 5, and 6 

            trData(ind1,4,inds,indc) = sortData(floor(bootreps/2)); %median 

            trData(ind1,5,inds,indc) = sortData(ceil((1-(alph/2))*bootreps)); %upper 

            trData(ind1,6,inds,indc) = sortData(floor(bootreps*alph/2)); %lower 

            %test for mu capture, add to count2 

            %use correction factor 

            upper = trData(ind1,4,inds,indc)+pairCorFac*(trData(ind1,5,inds,indc)-

trData(ind1,4,inds,indc));%mean + corrected (upper - mean) 

            lower = trData(ind1,4,inds,indc)-pairCorFac*(trData(ind1,4,inds,indc)-

trData(ind1,6,inds,indc));%mean - corrected (mean - lower) 



183 
 

            if (lower < trueDdct(indc) && upper > trueDdct(indc))  %no change from ddCt 

               count2(inds,indc) = count2(inds,indc)+1;  

            end 

            %bootstrap 3 - Single Random Reallocation Method 

            %select one Ct value from each group and calculate ddCt from that 

            %reset bootstrap array 

            bsData = zeros(bootreps,1); 

            for ind2 = 1:bootreps 

                %randomly select one Ct from each group 

                x = randi(num,4,1); %resample selection - uniform distribution from 1 to num 

                y1 = data(x(1),1);  % R/R' 

                y2 = data(x(2),2);  % T/R' 

                y3 = data(x(3),3);  % R/T' 

                y4 = data(x(4),4);  % T/T' 

                %calculate ddCt and store in bootstrap array 

                %Formula: ddCt = (T/T'-T/R')-(R/T'-R/R') 

                bsData(ind2) = (y4-y2)-(y3-y1); 
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            end 

            %sort bootstrap data 

            sortData = sort(bsData); 

            %get min and max of the sorted data to maximum range of ddCts 

            %Is mu within this range? 

            minData = min(sortData); 

            maxData = max(sortData); 

            %test for mu capture, add to countR - within range? 

            if (minData < trueDdct(indc) && maxData > trueDdct(indc)) 

               countR(inds,indc) = countR(inds,indc)+1;  

            end 

            %get median, upper and lower CIs from boostrap, store in trials array 

            %columns 7, 8, and 9 

            trData(ind1,7,inds,indc) = sortData(floor(bootreps/2)); %median 

            trData(ind1,8,inds,indc) = sortData(ceil((1-(alph/2))*bootreps)); %upper 

            trData(ind1,9,inds,indc) = sortData(floor(bootreps*alph/2)); %lower 

            %test for mu capture within CI 
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            if (trData(ind1,9,inds,indc) < trueDdct(indc) && trData(ind1,8,inds,indc) > 

trueDdct(indc)) 

               count3(inds,indc) = count3(inds,indc)+1;  

            end 

            %bootstrap 4 - Paired Means Method 

            %Pair the Ct values within test and reference DNA, resample the 

            %dCt values and calculate the means, then determine ddCt from 

            %those means 

            %reset bootstrap array 

            bsData = zeros(bootreps,1); 

            for ind2 = 1:bootreps 

                %create paired arrays 

                dCt1 = data(:,4)-data(:,2);  %T/T'-T/R' 

                dCt2 = data(:,3)-data(:,1);  %R/T'-R/R' 

                %randomly resample from these arrays 

                x = randi(num,num,2); %resample selection - uniform distribution from 1 to 

num 

                rdCt1 = dCt1(x(:,1)); %resampled dCt1 
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                rdCt2 = dCt2(x(:,2)); %resampled dCt2 

                %get means 

                mndCt1 = mean(rdCt1); 

                mndCt2 = mean(rdCt2); 

                %calculate ddCt and store in bootstrap array 

                %Formula: ddCt = (T/T'-T/R')-(R/T'-R/R') 

                bsData(ind2) = (mndCt1)-(mndCt2); 

            end 

            %sort bootstrap data 

            sortData = sort(bsData); 

            %get median, upper and lower CIs from boostrap, store in trials array 

            %columns 10, 11, and 12 

            trData(ind1,10,inds,indc) = sortData(floor(bootreps/2)); %median 

            trData(ind1,11,inds,indc) = sortData(ceil((1-(alph/2))*bootreps)); %upper 

            trData(ind1,12,inds,indc) = sortData(floor(bootreps*alph/2)); %lower 

            %test for mu capture, add to countR - within range? 

            if (trData(ind1,12,inds,indc) < trueDdct(indc) && trData(ind1,11,inds,indc) > 

trueDdct(indc)) 
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               count4(inds,indc) = count4(inds,indc)+1;  

            end 

            %Calculated method -technical reps 

            %calculate mean, standard deviation, SEmean, and CIs, store in trials array 

            %columns 13 (mean), 14 (upper CI), and 15 (lower CI) 

            %calculate means of each group 

            mnData1 = mean(data(1:num,1)); 

            mnData2 = mean(data(1:num,2)); 

            mnData3 = mean(data(1:num,3)); 

            mnData4 = mean(data(1:num,4)); 

            %Formula: ddCt = (T/T'-T/R')-(R/T'-R/R') 

            trData(ind1,13,inds,indc) = (mnData4-mnData2)-(mnData3-mnData1); 

            %get standard deviation, std for each group, then calculate 

            %combined std and SEmean 

            [means,stands] = getCtStats(data); 

            SET = sqrt(((stands(4)^2)+(stands(2)^2))/num); 

            SER = sqrt(((stands(3)^2)+(stands(1)^2))/num); 
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            SEmean = sqrt(SET^2+SER^2); 

            calcCI = SEmean*Tvalue; 

            trData(ind1,14,inds,indc) = trData(ind1,10,inds,indc)+calcCI; %upper Ct CI 

            trData(ind1,15,inds,indc) = trData(ind1,10,inds,indc)-calcCI; %lower Ct CI 

            %test for mu capture, add to countC 

            if (trData(ind1,15,inds,indc) < trueDdct(indc) && trData(ind1,14,inds,indc) > 

trueDdct(indc))   

               countC(inds,indc) = countC(inds,indc)+1;  

            end 

            %extend waitbar trials 

            waitbar(ind1/reps,wtbr2); 

        %end trials loop 

        end; 

        delete(wtbr2); 

        %determine count proportion for each sigma per cyc diff 

        proCount1(inds,indc) = count1(inds,indc)/reps; 

        proCount2(inds,indc) = count2(inds,indc)/reps; 

        proCount3(inds,indc) = count3(inds,indc)/reps; 
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        proCount4(inds,indc) = count4(inds,indc)/reps; 

        proCountC(inds,indc) = countC(inds,indc)/reps; 

        proCountR(inds,indc) = countR(inds,indc)/reps; 

 

        %get means of trials data 

        mnTr1(inds,indc) = mean(trData(:,1,inds,indc)); 

        mnTr2(inds,indc) = mean(trData(:,4,inds,indc)); 

        mnTr3(inds,indc) = mean(trData(:,7,inds,indc)); 

        mnTr4(inds,indc) = mean(trData(:,10,inds,indc)); 

        mnTrC(inds,indc) = mean(trData(:,13,inds,indc)); 

        mnUp1(inds,indc) = mean(trData(:,2,inds,indc)); 

        mnUp2(inds,indc) = mean(trData(:,5,inds,indc)); 

        mnUp3(inds,indc) = mean(trData(:,8,inds,indc)); 

        mnUp4(inds,indc) = mean(trData(:,11,inds,indc)); 

        mnUpC(inds,indc) = mean(trData(:,14,inds,indc)); 

        mnLo1(inds,indc) = mean(trData(:,3,inds,indc)); 

        mnLo2(inds,indc) = mean(trData(:,6,inds,indc)); 
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        mnLo3(inds,indc) = mean(trData(:,9,inds,indc)); 

        mnLo4(inds,indc) = mean(trData(:,12,inds,indc)); 

        mnLoC(inds,indc) = mean(trData(:,15,inds,indc)); 

        %get standard deviation of the mean distributions 

        sdTr1(inds,indc) = std(trData(:,1,inds,indc)); 

        sdTr2(inds,indc) = std(trData(:,4,inds,indc)); 

        sdTr3(inds,indc) = std(trData(:,7,inds,indc)); 

        sdTr4(inds,indc) = std(trData(:,10,inds,indc)); 

        sdTrC(inds,indc) = std(trData(:,13,inds,indc)); 

        %calculate the standard deviation based on the Ct distribution sigma 

        csdTr(inds,indc) = sqrt(2*sig(inds)^2);   % 

        %extend waitbar sigma 

        waitbar(inds/lenSig,wtbr1); 

    %end sigma loop 

    end; 

    delete(wtbr1); 

    %extend waitbar cycDiff 
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    waitbar(indc/lencycDiff,wtbr3); 

    %get means of counts over sigma 

    mnCount1(indc) = mean(proCount1(:,indc)); 

    mnCount2(indc) = mean(proCount2(:,indc)); 

    mnCount3(indc) = mean(proCount3(:,indc)); 

    mnCount4(indc) = mean(proCount4(:,indc)); 

    mnCountC(indc) = mean(proCountC(:,indc)); 

    mnCountR(indc) = mean(proCountR(:,indc)); 

%end cycle diff loop  

end 

runtime = toc; 

%fprintf simulation time, number of trials, number of Cts values, means of  

%proportion mu capture - can't do the last after adding cycle differences 

clc; 

fprintf('Simulation elapsed time: %d hr %d min %d 

sec\n',floor(runtime/3600),floor((runtime/60)-floor(runtime/3600)*60),floor(runtime-

floor(runtime/60)*60)); 

fprintf('Total Trials: %d\t\tNumber of Cts: %d\n',reps*lenSig*lencycDiff,num); 
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% fprintf('Means of mu capture percent:\n'); 

% fprintf('\tGroup means method: %5.2f\n',mnCount1*100); 

% fprintf('\tPairwise Reallocation Method: %5.2f\n',mnCount2*100); 

% fprintf('\tRandom Pairing Method: %5.2f\n',mnCount3*100); 

% fprintf('\tCalculated SE Method: %5.2f\n',mnCountC*100); 

commandwindow; 

%strike the gong to signal finished 

load gong.mat; 

sound(y, Fs); 

close(100); 

close(101); 

close(102); 

delete(wtbr3); 

%first get date and convert to string for file names 

labelDate = datestr(now,'yyyymmddHH'); 

%determine fixed sigma and cycDiff points to use - midrange 

fixSigma = ceil(lenSig/2); 
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fixcycDiff = ceil(lencycDiff/2); 

%figure 1 - boxplot of trial means for each sigma, bootstrap 1 (column 1), 

%midrange of cycDiff 

figure(1);clf(1); 

boxData(:,:) = trData(:,1,:,fixcycDiff); 

boxplot(boxData); 

set(1,'Position',[10 420 625 300],'Name','Group Means Method, Trial Medians');  

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Group Means Method\nBootstrapped Median ddCt Distributions vs. 

Sigma\nNumber of Cts = %d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%writeName = strcat('C:\James\Research\Lab_Work\Bootstrapping Protocol\Data\5 Set 

Figures and Data\',labelDate,'_5_set_sim_',num2str(num),'_Cts_Figure_1'); 

%saveas(h1,writeName,'fig'); 

%figure 2 - boxplot of trial means for each sigma, bootstrap 2 (column 4), 

%midrange of cycDiff 

figure(2);clf(2); 
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boxData(:,:) = trData(:,4,:,fixcycDiff); 

boxplot(boxData); 

set(2,'Position',[10 420 625 300],'Name','Single Paired Resampling Method, Trial 

Medians'); 

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Single Paired Resampling Method\nBootstrapped Median ddCt Distributions 

vs. Sigma\nNumber of Cts = %d, Cyc Diff = 

%d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%figure 3 - boxplot of trial means for each sigma, bootstrap 3 (column 7), 

%midrange of cycDiff 

figure(3);clf(3); 

boxData(:,:) = trData(:,7,:,fixcycDiff); 

boxplot(boxData); 

set(3,'Position',[10 420 625 300],'Name','Single Random Resampling Method, Trial 

Medians'); 

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 
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title(sprintf('Single Random Resampling Method\nBootstrapped Median ddCt 

Distributions vs. Sigma\nNumber of Cts = %d, Cyc Diff = 

%d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%figure 4 - boxplot of trial means for each sigma, bootstrap 4 (column 10), 

%midrange of cycDiff 

figure(4);clf(4); 

boxData(:,:) = trData(:,10,:,fixcycDiff); 

boxplot(boxData); 

set(4,'Position',[10 420 625 300],'Name','Paired Means Method, Trial Medians');  

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Paired Means Method\nBootstrapped Median ddCt Distributions vs. 

Sigma\nNumber of Cts = %d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%figure 5 - boxplot of trial means for each sigma, calculated (column 13), 

%midrange of cycDiff 
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figure(5);clf(5); 

boxData(:,:) = trData(:,13,:,fixcycDiff); 

boxplot(boxData); 

set(5,'Position',[10 420 625 300],'Name','Calculated SE Method, Trial Means'); 

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Calculated SE Method\nCalculated ddCt Distributions vs. Sigma\nNumber 

of Cts = %d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Calculated ddCts','FontSize',12); 

%figure 6 - boxplot of trial means for each cycDiff, bootstrap 1 (column 1), 

%midrange of sigma 

figure(6);clf(6); 

boxData2(:,:) = trData(:,1,fixSigma,:); 

boxplot(boxData2); 

set(6,'Position',[10 35 625 300],'Name','Group Means Method, Trial Medians'); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Group Means Method\nBootstrapped Median ddCt Distributions vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 
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xlabel('Cycle Difference','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%figure 7 - boxplot of trial means for each cycDiff, bootstrap 2 (column 4), 

%midrange of sigma 

figure(7);clf(7); 

boxData2(:,:) = trData(:,4,fixSigma,:); 

boxplot(boxData2); 

set(7,'Position',[10 35 625 300],'Name','Single Paired Resampling Method, Trial 

Medians'); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Single Paired Resampling Method\nBootstrapped Median ddCt Distributions 

vs. Cycle Difference\nNumber of Cts = %d, Sigma = 

%3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%figure 8 - boxplot of trial means for each cycDiff, bootstrap 3 (column 7), 

%midrange of sigma 

figure(8);clf(8); 
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boxData2(:,:) = trData(:,7,fixSigma,:); 

boxplot(boxData2); 

set(8,'Position',[10 35 625 300],'Name','Single Random Resampling Method, Trial 

Medians'); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Single Random Resampling Method\nBootstrapped Median ddCt 

Distributions vs. Cycle Difference\nNumber of Cts = %d, Sigma = 

%3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%figure 9 - boxplot of trial means for each cycDiff, bootstrap 4 (column 10), 

%midrange of sigma 

figure(9);clf(9); 

boxData2(:,:) = trData(:,10,fixSigma,:); 

boxplot(boxData2); 

set(9,'Position',[10 35 625 300],'Name','Paired Means Method, Trial Medians'); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 
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title(sprintf('Paired Means Method\nBootstrapped Median ddCt Distributions vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14); 

ylabel('Bootstrapped ddCt Medians','FontSize',12); 

%figure 10 - boxplot of trial means for each cycDiff, calculated (column 13), 

%midrange of sigma 

figure(10);clf(10); 

boxData2(:,:) = trData(:,13,fixSigma,:); 

boxplot(boxData2); 

set(10,'Position',[10 35 625 300],'Name','Calculated SE Method, Trial Means');  

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Calculated SE Method\nCalculated ddCt Distributions vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14); 

ylabel('Calculated ddCts','FontSize',12); 

%figure 11 - boxplot of upper CI values for each sigma, bootstrap 1 (column 

%2), midrange of cycDiff 

figure(11);clf(11); 
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upperData(:,:) = trData(:,2,:,fixcycDiff); 

boxplot(upperData); 

set(11,'Position',[650 420 625 300],'Name','Group Means Method, Trial Upper CIs');  

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Group Means Method\nUpper CI Distribution vs. Sigma\nNumber of Cts = 

%d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 12 - boxplot of upper CI values for each sigma, bootstrap 2 (column 

%5), midrange of cycDiff 

figure(12);clf(12); 

upperData(:,:) = trData(:,5,:,fixcycDiff); 

boxplot(upperData); 

set(12,'Position',[650 420 625 300],'Name','Single Paired Resampling Method, Trial 

Upper CIs'); 

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Single Paired Resampling Method\nUpper CI Distribution vs. 

Sigma\nNumber of Cts = %d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 
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xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 13 - boxplot of upper CI values for each sigma, bootstrap 3 (column 

%8), midrange of cycDiff 

figure(13);clf(13); 

upperData(:,:) = trData(:,8,:,fixcycDiff); 

boxplot(upperData); 

set(13,'Position',[650 420 625 300],'Name','Single Random Resampling Method, Trial 

Upper CIs'); 

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Single Random Resampling Method\nUpper CI Distribution vs. 

Sigma\nNumber of Cts = %d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 14 - boxplot of upper CI values for each sigma, bootstrap 4 (column 

%11), midrange of cycDiff 

figure(14);clf(14); 

upperData(:,:) = trData(:,11,:,fixcycDiff); 
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boxplot(upperData); 

set(14,'Position',[650 420 625 300],'Name','Paired Means Method, Trial Upper CIs');  

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Paired Means Method\nUpper CI Distribution vs. Sigma\nNumber of Cts = 

%d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 15 - boxplot of upper CI values for each sigma, calculated (column 

%14), midrange of cycDiff 

figure(15);clf(15); 

upperData(:,:) = trData(:,14,:,fixcycDiff); 

boxplot(upperData); 

set(15,'Position',[650 420 625 300],'Name','Calculated SE Method, Trial Upper CIs');  

set(gca,'XTick',[1:lenSig],'XTickLabel',sig,'YGrid','on'); 

title(sprintf('Calculated SE Method\nUpper CI Distribution vs. Sigma\nNumber of Cts = 

%d, Cyc Diff = %d',num,cycDiff(fixcycDiff)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Calculated CI Upper Bound','FontSize',12); 
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%figure 16 - boxplot of upper CI values for each cycDiff, bootstrap 1 (column 

%2), midrange of sig 

figure(16);clf(16); 

upperData2(:,:) = trData(:,2,fixSigma,:); 

boxplot(upperData2); 

set(16,'Position',[650 35 625 300],'Name','Group Means Method, Trial Upper CIs');  

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Group Means Method\nUpper CI Distribution vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 17 - boxplot of upper CI values for each cycDiff, bootstrap 2 (column 

%5), midrange of sig 

figure(17);clf(17); 

upperData2(:,:) = trData(:,5,fixSigma,:); 

boxplot(upperData2); 

set(17,'Position',[650 35 625 300],'Name','Single Paired Resampling Method, Trial Upper 

CIs'); 
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set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Single Paired Resampling Method\nUpper CI Distribution vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 18 - boxplot of upper CI values for each cycDiff, bootstrap 3 (column 

%8), midrange of sig 

figure(18);clf(18); 

upperData2(:,:) = trData(:,8,fixSigma,:); 

boxplot(upperData2); 

set(18,'Position',[650 35 625 300],'Name','Single Random Resampling Method, Trial 

Upper CIs'); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Single Random Resampling Method\nUpper CI Distribution vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 19 - boxplot of upper CI values for each cycDiff, bootstrap 4 (column 
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%11), midrange of sig 

figure(19);clf(19); 

upperData2(:,:) = trData(:,11,fixSigma,:); 

boxplot(upperData2); 

set(19,'Position',[650 35 625 300],'Name','Paired Means Method, Trial Upper CIs');  

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 

title(sprintf('Paired Means Method\nUpper CI Distribution vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Bootstrapped CI Upper Bound','FontSize',12); 

%figure 20 - boxplot of upper CI values for each cycDiff, calculated (column 

%14), midrange of sig 

figure(20);clf(20); 

upperData2(:,:) = trData(:,14,fixSigma,:); 

boxplot(upperData2); 

set(20,'Position',[650 35 625 300],'Name','Calculated SE Method, Trial Upper CIs');  

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff,'YGrid','on'); 
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title(sprintf('Calculated SE Method\nUpper CI Distribution vs. Cycle 

Difference\nNumber of Cts = %d, Sigma = %3.2f',num,sig(fixSigma)),'FontSize',16); 

xlabel('Sigma','FontSize',14); 

ylabel('Calculated CI Upper Bound','FontSize',12); 

%figure 21 - 3D bar plot of proportion of trials with mu capture, x = per 

%sigma, y = per cycDiff, z = proportion capture, bootstrap 1 

figure(21);clf(21); 

bar3(proCount1); 

set(21,'Position',[125 100 1000 600],'Name','Group Means Method, Capture Proportion');  

axis([.5 lencycDiff+.5 .5 lenSig+.5 0 1.1]); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff); 

set(gca,'YTick',[1:lenSig],'YTickLabel',sig); 

title(sprintf('Group Means Method\nMu Capture Proportion vs. Cycle Difference and 

Sigma \nNumber of Cts = %d',num),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14,'Rotation',25); 

ylabel('Sigma','FontSize',14,'Rotation',-35); 

zlabel('Capture Proportion','FontSize',14); 

%figure 22 - 3D bar plot of proportion of trials with mu capture, x = per 
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%sigma, y = per cycDiff, z = proportion capture, bootstrap 2 

figure(22);clf(22); 

bar3(proCount2); 

set(22,'Position',[125 100 1000 600],'Name','Single Paired Resampling Method, Capture 

Proportion'); 

axis([.5 lencycDiff+.5 .5 lenSig+.5 0 1.1]); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff); 

set(gca,'YTick',[1:lenSig],'YTickLabel',sig); 

title(sprintf('Single Paired Resampling Method\nMu Capture Proportion vs. Cycle 

Difference and Sigma \nNumber of Cts = %d',num),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14,'Rotation',25); 

ylabel('Sigma','FontSize',14,'Rotation',-35); 

zlabel('Capture Proportion','FontSize',14); 

%figure 23 - 3D bar plot of proportion of trials with mu capture, x = per 

%sigma, y = per cycDiff, z = proportion capture, bootstrap 3 

figure(23);clf(23); 

bar3(proCount3); 
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set(23,'Position',[125 100 1000 600],'Name','Single Random Resampling Method, 

Capture Proportion'); 

axis([.5 lencycDiff+.5 .5 lenSig+.5 0 1.1]); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff); 

set(gca,'YTick',[1:lenSig],'YTickLabel',sig); 

title(sprintf('Single Random Resampling Method\nMu Capture Proportion vs. Cycle 

Difference and Sigma \nNumber of Cts = %d',num),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14,'Rotation',25); 

ylabel('Sigma','FontSize',14,'Rotation',-35); 

zlabel('Capture Proportion','FontSize',14); 

%figure 24 - 3D bar plot of proportion of trials with mu capture, x = per 

%sigma, y = per cycDiff, z = proportion capture, bootstrap 4 

figure(24);clf(24); 

bar3(proCount4); 

set(24,'Position',[125 100 1000 600],'Name','Paired Means Method, Capture Proportion'); 

axis([.5 lencycDiff+.5 .5 lenSig+.5 0 1.1]); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff); 

set(gca,'YTick',[1:lenSig],'YTickLabel',sig); 
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title(sprintf('Paired Means Method\nMu Capture Proportion vs. Cycle Difference and 

Sigma \nNumber of Cts = %d',num),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14,'Rotation',25); 

ylabel('Sigma','FontSize',14,'Rotation',-35); 

zlabel('Capture Proportion','FontSize',14); 

%figure 25 - 3D bar plot of proportion of trials with mu capture, x = per 

%sigma, y = per cycDiff, z = proportion capture, calculated 

figure(25);clf(25); 

bar3(proCountC); 

set(25,'Position',[125 100 1000 600],'Name','Calculated Method, Capture Proportion');  

axis([.5 lencycDiff+.5 .5 lenSig+.5 0 1.1]); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff); 

set(gca,'YTick',[1:lenSig],'YTickLabel',sig); 

title(sprintf('Calculated Method\nMu Capture Proportion vs. Cycle Difference and Sigma 

\nNumber of Cts = %d',num),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14,'Rotation',25); 

ylabel('Sigma','FontSize',14,'Rotation',-35); 

zlabel('Capture Proportion','FontSize',14); 
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%figure 26 - 3D bar plot of proportion of trials with mu in range, x = per 

%sigma, y = per cycDiff, z = proportion in range,  

figure(26);clf(26); 

bar3(proCountR); 

set(26,'Position',[125 100 1000 600],'Name','Proportion Within Range'); 

axis([.5 lencycDiff+.5 .5 lenSig+.5 0 1.1]); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff); 

set(gca,'YTick',[1:lenSig],'YTickLabel',sig); 

title(sprintf('Proportion Mu Within Range vs. Cycle Difference and Sigma \nNumber of 

Cts = %d',num),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14,'Rotation',25); 

ylabel('Sigma','FontSize',14,'Rotation',-35); 

zlabel('Capture Proportion','FontSize',14); 

%calculate correlation of trueDdct capture proportion and sigma 

%Do it with capture proportion and cycDiff 

%bootstrap 1 

corStat1A = zeros(lencycDiff,2);  %gets Pearson correlation and p-value 

X1 = zeros(lenSig,2);           %relative to sigma with cycDiff fixed 
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X1(:,2) = sig'; 

for ind1 = 1:lencycDiff 

    X1(:,1) = proCount1(:,ind1);  

    [RHO1 PVAL1] = corr(X1); 

    corStat1A(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

corStat1B = zeros(lenSig,2);  %gives Pearson correlation and p-value 

X1 = zeros(lencycDiff,2);           %relative to cycDiff with sigma fixed 

X1(:,2) = cycDiff'; 

for ind1 = 1:lenSig 

    X1(:,1) = proCount1(ind1,:);   

    [RHO1 PVAL1] = corr(X1); 

    corStat1B(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

%bootstrap 2 

corStat2A = zeros(lencycDiff,2);  %gets Pearson correlation and p-value 

X1 = zeros(lenSig,2);           %relative to sigma with cycDiff fixed 
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X1(:,2) = sig'; 

for ind1 = 1:lencycDiff 

    X1(:,1) = proCount2(:,ind1);  

    [RHO1 PVAL1] = corr(X1); 

    corStat2A(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

corStat2B = zeros(lenSig,2);  %gives Pearson correlation and p-value 

X1 = zeros(lencycDiff,2);           %relative to cycDiff with sigma fixed 

X1(:,2) = cycDiff'; 

for ind1 = 1:lenSig 

    X1(:,1) = proCount2(ind1,:);   

    [RHO1 PVAL1] = corr(X1); 

    corStat2B(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

%bootstrap 3 

corStat3A = zeros(lencycDiff,2);  %gets Pearson correlation and p-value 

X1 = zeros(lenSig,2);           %relative to sigma with cycDiff fixed 
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X1(:,2) = sig'; 

for ind1 = 1:lencycDiff 

    X1(:,1) = proCount3(:,ind1);  

    [RHO1 PVAL1] = corr(X1); 

    corStat3A(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

corStat3B = zeros(lenSig,2);  %gives Pearson correlation and p-value 

X1 = zeros(lencycDiff,2);           %relative to cycDiff with sigma fixed 

X1(:,2) = cycDiff'; 

for ind1 = 1:lenSig 

    X1(:,1) = proCount3(ind1,:);   

    [RHO1 PVAL1] = corr(X1); 

    corStat3B(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

%bootstrap 4 

corStat4A = zeros(lencycDiff,2);  %gets Pearson correlation and p-value 

X1 = zeros(lenSig,2);           %relative to sigma with cycDiff fixed 
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X1(:,2) = sig'; 

for ind1 = 1:lencycDiff 

    X1(:,1) = proCount4(:,ind1);  

    [RHO1 PVAL1] = corr(X1); 

    corStat4A(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

corStat4B = zeros(lenSig,2);  %gives Pearson correlation and p-value 

X1 = zeros(lencycDiff,2);           %relative to cycDiff with sigma fixed 

X1(:,2) = cycDiff'; 

for ind1 = 1:lenSig 

    X1(:,1) = proCount4(ind1,:);   

    [RHO1 PVAL1] = corr(X1); 

    corStat4B(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

%calculated 

corStatCA = zeros(lencycDiff,2);  %gets Pearson correlation and p-value 

X1 = zeros(lenSig,2);           %relative to sigma with cycDiff fixed 
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X1(:,2) = sig'; 

for ind1 = 1:lencycDiff 

    X1(:,1) = proCountC(:,ind1);  

    [RHO1 PVAL1] = corr(X1); 

    corStatCA(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

corStatCB = zeros(lenSig,2);  %gives Pearson correlation and p-value 

X1 = zeros(lencycDiff,2);           %relative to cycDiff with sigma fixed 

X1(:,2) = cycDiff'; 

for ind1 = 1:lenSig 

    X1(:,1) = proCountC(ind1,:);   

    [RHO1 PVAL1] = corr(X1); 

    corStatCB(ind1,:) = [RHO1(2,1) PVAL1(2,1)]; 

end 

%store data in excel file, one for each bootstrap style and one for 

%calculated, one worksheet for each ddCt (cycDiff) 

%Group means method data - bootstrap 1 
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for ind1 = 1:lencycDiff 

    %write to xls file 

    writeData1 = 

{'ddCt',cycDiff(ind1);'Trials',reps;'Bootstraps',bootreps;'Cts',num;'Alpha',alph; 

        'True ddCt',trueDdct(ind1);'Mean Proportion in CI',mnCount1(ind1); 

        'Mean Proportion in Range',mnCountR(ind1); 

        'Pearson Correlation of Proportion in CI (capture) and Sigma at Fixed ddCts:','ddCt'; 

        '','Correlation';'','P-Value'}; 

    writeData2 = [cycDiff;corStat1A(:,1)';corStat1A(:,2)']; 

    writeData3 = {'Pearson Correlation of Proportion in CI and ddCt at Fixed 

Sigmas:','Sigma'; 

        '','Correlation';'','P-Value'}; 

    writeData4 = [sig;corStat1B(:,1)';corStat1B(:,2)']; 

    writeData5 = {'Ct Distribution Sigma';'Calculated ddCt Std Dev from Ct Distribution 

Std Devs';'Actual ddCt Std Dev from Trial ddCts';'Proportion in CI';'Proportion in 

Range';'Trial Means'; 

        'Trial Lower CIs';'Trial Upper CIs'}; 
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    writeData6 = 

[sig;csdTr(:,ind1)';sdTr1(:,ind1)';proCount1(:,ind1)';proCountR(:,ind1)';mnTr1(:,ind1)';m

nLo1(:,ind1)';mnUp1(:,ind1)']; 

    writeName = strcat(labelDate,'_5_set_sim_group_means_',num2str(num),'_Cts','.xls'); 

    xlswrite(writeName,writeData1,ind1,'A1'); 

    xlswrite(writeName,writeData2,ind1,'C9'); 

    xlswrite(writeName,writeData3,ind1,'A12'); 

    xlswrite(writeName,writeData4,ind1,'C12'); 

    xlswrite(writeName,writeData5,ind1,'A16'); 

    xlswrite(writeName,writeData6,ind1,'B16'); 

end 

%Single paired resampling method data - bootstrap 2 

for ind1 = 1:lencycDiff 

    %write to xls file 

    writeData1 = 

{'ddCt',cycDiff(ind1);'Trials',reps;'Bootstraps',bootreps;'Cts',num;'Alpha',alph; 

        'True ddCt',trueDdct(ind1);'Mean Proportion in CI',mnCount2(ind1); 

        'Mean Proportion in Range',mnCountR(ind1); 
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        'Pearson Correlation of Proportion in CI (capture) and Sigma at Fixed ddCts:','ddCt'; 

        '','Correlation';'','P-Value'}; 

    writeData2 = [cycDiff;corStat2A(:,1)';corStat2A(:,2)']; 

    writeData3 = {'Pearson Correlation of Proportion in CI and ddCt at Fixed 

Sigmas:','Sigma'; 

        '','Correlation';'','P-Value'}; 

    writeData4 = [sig;corStat2B(:,1)';corStat2B(:,2)']; 

    writeData5 = {'Ct Distribution Sigma';'Calculated ddCt Std Dev from Ct Distribution 

Std Devs';'Actual ddCt Std Dev from Trial ddCts';'Proportion in CI';'Proportion in 

Range';'Trial Means'; 

        'Trial Lower CIs';'Trial Upper CIs'}; 

    writeData6 = 

[sig;csdTr(:,ind1)';sdTr2(:,ind1)';proCount2(:,ind1)';proCountR(:,ind1)';mnTr2(:,ind1)';m

nLo2(:,ind1)';mnUp2(:,ind1)']; 

    writeName = 

strcat(labelDate,'_5_set_sim_single_paired_resampling_',num2str(num),'_Cts','.xls'); 

    xlswrite(writeName,writeData1,ind1,'A1'); 

    xlswrite(writeName,writeData2,ind1,'C9'); 

    xlswrite(writeName,writeData3,ind1,'A12'); 
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    xlswrite(writeName,writeData4,ind1,'C12'); 

    xlswrite(writeName,writeData5,ind1,'A16'); 

    xlswrite(writeName,writeData6,ind1,'B16'); 

end 

%Single random resampling method data - bootstrap 3 

for ind1 = 1:lencycDiff 

    %write to xls file 

    writeData1 = 

{'ddCt',cycDiff(ind1);'Trials',reps;'Bootstraps',bootreps;'Cts',num;'Alpha',alph; 

        'True ddCt',trueDdct(ind1);'Mean Proportion in CI',mnCount3(ind1); 

        'Mean Proportion in Range',mnCountR(ind1); 

        'Pearson Correlation of Proportion in CI (capture) and Sigma at Fixed ddCts:','ddCt'; 

        '','Correlation';'','P-Value'}; 

    writeData2 = [cycDiff;corStat3A(:,1)';corStat3A(:,2)']; 

    writeData3 = {'Pearson Correlation of Proportion in CI and ddCt at Fixed 

Sigmas:','Sigma'; 

        '','Correlation';'','P-Value'}; 

    writeData4 = [sig;corStat3B(:,1)';corStat3B(:,2)']; 
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    writeData5 = {'Ct Distribution Sigma';'Calculated ddCt Std Dev from Ct Distribution 

Std Devs';'Actual ddCt Std Dev from Trial ddCts';'Proportion in CI';'Proportion in 

Range';'Trial Means'; 

        'Trial Lower CIs';'Trial Upper CIs'}; 

    writeData6 = 

[sig;csdTr(:,ind1)';sdTr3(:,ind1)';proCount3(:,ind1)';proCountR(:,ind1)';mnTr3(:,ind1)';m

nLo3(:,ind1)';mnUp3(:,ind1)']; 

    writeName = 

strcat(labelDate,'_5_set_sim_single_random_resampling_',num2str(num),'_Cts','.xls'); 

    xlswrite(writeName,writeData1,ind1,'A1'); 

    xlswrite(writeName,writeData2,ind1,'C9'); 

    xlswrite(writeName,writeData3,ind1,'A12'); 

    xlswrite(writeName,writeData4,ind1,'C12'); 

    xlswrite(writeName,writeData5,ind1,'A16'); 

    xlswrite(writeName,writeData6,ind1,'B16'); 

end 

%Paired means method data - bootstrap 4 

for ind1 = 1:lencycDiff 

    %write to xls file 
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    writeData1 = 

{'ddCt',cycDiff(ind1);'Trials',reps;'Bootstraps',bootreps;'Cts',num;'Alpha',alph; 

        'True ddCt',trueDdct(ind1);'Mean Proportion in CI',mnCount4(ind1); 

        'Mean Proportion in Range',mnCountR(ind1); 

        'Pearson Correlation of Proportion in CI (capture) and Sigma at Fixed ddCts:','ddCt'; 

        '','Correlation';'','P-Value'}; 

    writeData2 = [cycDiff;corStat4A(:,1)';corStat4A(:,2)']; 

    writeData3 = {'Pearson Correlation of Proportion in CI and ddCt at Fixed 

Sigmas:','Sigma'; 

        '','Correlation';'','P-Value'}; 

    writeData4 = [sig;corStat4B(:,1)';corStat4B(:,2)']; 

    writeData5 = {'Ct Distribution Sigma';'Calculated ddCt Std Dev from Ct Distribution 

Std Devs';'Actual ddCt Std Dev from Trial ddCts';'Proportion in CI';'Proportion in 

Range';'Trial Means'; 

        'Trial Lower CIs';'Trial Upper CIs'}; 

    writeData6 = 

[sig;csdTr(:,ind1)';sdTr4(:,ind1)';proCount4(:,ind1)';proCountR(:,ind1)';mnTr4(:,ind1)';m

nLo4(:,ind1)';mnUp4(:,ind1)']; 

    writeName = strcat(labelDate,'_5_set_sim_paired_means_',num2str(num),'_Cts','.xls'); 
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    xlswrite(writeName,writeData1,ind1,'A1'); 

    xlswrite(writeName,writeData2,ind1,'C9'); 

    xlswrite(writeName,writeData3,ind1,'A12'); 

    xlswrite(writeName,writeData4,ind1,'C12'); 

    xlswrite(writeName,writeData5,ind1,'A16'); 

    xlswrite(writeName,writeData6,ind1,'B16'); 

end 

%Calculated method data  

for ind1 = 1:lencycDiff 

    %write to xls file 

    writeData1 = 

{'ddCt',cycDiff(ind1);'Trials',reps;'Bootstraps',bootreps;'Cts',num;'Alpha',alph; 

        'True ddCt',trueDdct(ind1);'Mean Proportion in CI',mnCountC(ind1); 

        'Mean Proportion in Range',mnCountR(ind1); 

        'Pearson Correlation of Proportion in CI (capture) and Sigma at Fixed ddCts:','ddCt'; 

        '','Correlation';'','P-Value'}; 

    writeData2 = [cycDiff;corStatCA(:,1)';corStatCA(:,2)']; 
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    writeData3 = {'Pearson Correlation of Proportion in CI and ddCt at Fixed 

Sigmas:','Sigma'; 

        '','Correlation';'','P-Value'}; 

    writeData4 = [sig;corStatCB(:,1)';corStatCB(:,2)']; 

    writeData5 = {'Ct Distribution Sigma';'Calculated ddCt Std Dev from Ct Distribution 

Std Devs';'Actual ddCt Std Dev from Trial ddCts';'Proportion in CI';'Proportion in 

Range';'Trial Means'; 

        'Trial Lower CIs';'Trial Upper CIs'}; 

    writeData6 = 

[sig;csdTr(:,ind1)';sdTrC(:,ind1)';proCountC(:,ind1)';proCountR(:,ind1)';mnTrC(:,ind1)';

mnLoC(:,ind1)';mnUpC(:,ind1)']; 

    writeName = strcat(labelDate,'_5_set_sim_calculated_',num2str(num),'_Cts','.xls'); 

    xlswrite(writeName,writeData1,ind1,'A1'); 

    xlswrite(writeName,writeData2,ind1,'C9'); 

    xlswrite(writeName,writeData3,ind1,'A12'); 

    xlswrite(writeName,writeData4,ind1,'C12'); 

    xlswrite(writeName,writeData5,ind1,'A16'); 

    xlswrite(writeName,writeData6,ind1,'B16'); 

end 
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fprintf('\n\nComplete . . .\n'); 

 

Code for function getCtStats.m 

function [dataN,stdev] = getCtStats (data) 

%This function accepts a 2D array of Ct data from a qPCR and returns 

%normalized data (to the mean) and the standard deviations of each reaction type 

[m,n] = size(data); 

dataN = zeros(m,n); 

for ind1 = 1:n %normalizes to the mean by column 

    dataN(:,ind1) = data(:,ind1)-mean(data(:,ind1)); 

    stdev(ind1) = std(data(:,ind1)); 

end 

 

Code for JCFqPCR_bs_sim_calculated_methods2.m 

%JCFqPCR_bs_sim_calculated_methods2.m 

%James Farslow (jfars@unm.edu) 

%4 Aug 2015 (version 1 written 11 Jul 2015) 
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%Calculated method simulation  

%This program will simulate the calculated method of combined data 

%This simulation is analysing biological replicates with technical 

%replicates. 

%This simulation includes only ddCt values, not copy numbers which are 

%derived from them. 

%This simulation also includes varying ddCt values from -4 to +4 

%Note: ddCt = -4 indicates an N-fold increase of 16x 

%      ddCt = +4 indicates an N-fold decrease of 1/16 x 

clc; 

clear; 

rng('shuffle'); 

tic; 

%set parameters 

cycDiff = [-4 0 4]; %cycle difference range for ddCt 

lencycDiff = length(cycDiff); 

reps = input('Number of trials: '); 
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num = input('Number of Cts: '); 

alph = .05;  %set alpha (which is a reserved word), error level 

Zdf = num-1; %bio rep degrees of freedom 

ZTvalue = input(sprintf('Tcrit value from table method 2(df = %d,a = %4.3f): 

',Zdf,alph/2));  %with 4 sets of Ct values, df = 4n-4 

mn1 = 19;  %fix mu parameter mean for R/R' 

mn2 = 19;  %fix mu parameter mean for T/R' 

mn3 = 20;  %fix mu parameter mean for R/T' 

bootreps = 10000; %number of bootstrap repetitions 

sig = [.05:.1:.45]; %Ct distribution sigma parameter values 

lenSig = length(sig); 

biosig = 1; %additional sigma among bio reps 

countC2 = zeros(lenSig,lencycDiff); %initialize counts for proportion mu capture 

countZC1 = zeros(lenSig,lencycDiff); 

proCountC2 = zeros(lenSig,lencycDiff); %proportion with mu in range  

proCountZC1 = zeros(lenSig,lencycDiff); 

mnCountC2 = zeros(lencycDiff);  %mean of proportion mu in range 

trueDdct = zeros(lencycDiff,1); 
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biorepDdct = zeros(lenSig,lencycDiff,reps); 

%set warning boxes 

figure(100); 

clf(100); 

text(0,.5,sprintf('Simulation In Progress\n Please Do Not Touch'),'FontSize',40); 

set(100,'Position',[250 400 800 

200],'Name','Warning','NumberTitle','off','MenuBar','none'); 

set(gca,'Visible','off'); 

%figure(100) 

figure(101); 

clf(101); 

text(0,.5,sprintf('Simulation In Progress\n Please Do Not Touch'),'FontSize',40); 

set(101,'Position',[-1000 300 800 200],'Name','Extended 

Warning','NumberTitle','off','MenuBar','none'); 

set(gca,'Visible','off'); 

%wait bar diff cycle 

wtbr3 = waitbar(0,'cycDiff Loops Complete'); 

set(wtbr3, 'Position',[15 500 300 50],'Name','cycDiff'); 



228 
 

%figure(101) 

%set cycle diff loop 

for indc = 1:lencycDiff 

    %wait bar sigma 

    wtbr1 = waitbar(0,'Sigma Loops Complete'); 

    set(wtbr1, 'Position',[332 500 300 50],'Name','Sigma'); 

    %set mu parameter for T/T' - changes 

    mn4 = 20 + cycDiff(indc); 

    %get trueddCt from means of distributions 

    trueDdct(indc) = (mn4 - mn2) - (mn3 - mn1); 

    %set sigma loop 

    for inds = 1:lenSig 

        %wait bar trials 

        wtbr2 = waitbar(0,'Trials Loops Complete'); 

        set(wtbr2, 'Position',[650 500 300 50],'Name','Trials'); 

        %set trials loop 

        for ind1 = 1:reps 
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            clc;        %display to command window which sigma and trial iteration 

            fprintf('Cycle Difference: %d\n',cycDiff(indc)); 

            fprintf('Sigma: %4.2f\n',sig(inds)); 

            fprintf('Trial: %d\n',ind1); 

            fprintf('Simulation elapsed time: %d hr %d min %d 

sec',floor(toc/3600),floor((toc/60)-floor(toc/3600)*60),floor(toc-floor(toc/60)*60)); 

            %timer box 

            figure(102); 

            clf(102); 

            text(-.1,.5,sprintf('Elapsed Time\n%d hr %d min %d sec\nN(Ct) = 

%d',floor(toc/3600),floor((toc/60)-floor(toc/3600)*60),floor(toc-

floor(toc/60)*60),num),'FontSize',36); 

            set(102,'Position',[20 50 450 

275],'Name','Timer','NumberTitle','off','MenuBar','none'); 

            set(gca,'Visible','off'); 

            %figure(102) 

            %get deviation shifts for bio reps 

            shift1 = normrnd(0,biosig,1,1); 
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            shift2 = normrnd(0,biosig,1,1); 

            shift3 = normrnd(0,biosig,1,1); 

            %get sets of Ct values for each  biorep in this trial 

            data1(1:num,1) = normrnd(mn1,sig(inds),num,1);  %one set of Ct values 

            data1(1:num,2) = normrnd(mn2,sig(inds),num,1);  %one set of Ct values 

            data1(1:num,3) = normrnd(mn3,sig(inds),num,1);  %one set of Ct values 

            data1(1:num,4) = normrnd(mn4,sig(inds),num,1);  %one set of Ct values 

            data2(1:num,1) = normrnd(mn1,sig(inds),num,1);  %one set of Ct values 

            data2(1:num,2) = normrnd(mn2,sig(inds),num,1);  %one set of Ct values 

            data2(1:num,3) = normrnd(mn3,sig(inds),num,1);  %one set of Ct values 

            data2(1:num,4) = normrnd(mn4,sig(inds),num,1);  %one set of Ct values 

            data3(1:num,1) = normrnd(mn1,sig(inds),num,1);  %one set of Ct values 

            data3(1:num,2) = normrnd(mn2,sig(inds),num,1);  %one set of Ct values 

            data3(1:num,3) = normrnd(mn3,sig(inds),num,1);  %one set of Ct values 

            data3(1:num,4) = normrnd(mn4,sig(inds),num,1);  %one set of Ct values 

            %data is arranged as: 

                %col 1 - R/R' 
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                %col 2 - T/R' 

                %col 3 - R/T' 

                %col 4 - T/T' 

            %Formula: ddCt = (T/T'-T/R')-(R/T'-R/R') 

            %                   (4 - 2) - (3 - 1) 

            %calculate mean ddCt and variance, 

            %tech rep 1 calculate means of each group 

            mnData11 = mean(data1(1:num,1)); 

            mnData12 = mean(data1(1:num,2)); 

            mnData13 = mean(data1(1:num,3)); 

            mnData14 = mean(data1(1:num,4)); 

            %Formula: ddCt = (T/T'-T/R')-(R/T'-R/R') 

            mnTech1 = shift1+(mnData14-mnData12)-(mnData13-mnData11); 

            biorepDdct(inds,indc,ind1) = mnTech1; 

            %tech rep 2 calculate means of each group 

            mnData21 = mean(data2(1:num,1)); 

            mnData22 = mean(data2(1:num,2)); 
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            mnData23 = mean(data2(1:num,3)); 

            mnData24 = mean(data2(1:num,4)); 

            mnTech2 = shift2+(mnData24-mnData22)-(mnData23-mnData21); 

            %tech rep 3 calculate means of each group 

            mnData31 = mean(data3(1:num,1)); 

            mnData32 = mean(data3(1:num,2)); 

            mnData33 = mean(data3(1:num,3)); 

            mnData34 = mean(data3(1:num,4)); 

            mnTech3 = shift3+(mnData34-mnData32)-(mnData33-mnData31); 

            %added - calculate data set 1 as if it were bioreps 

            %Answer the question what does happen if you treat the data as 

            %if it were paired? 

            %pair the data and look at capture rate 

            %No figures, just print the results 

            Zdct1 = data1(:,4)-data1(:,2); 

            Zdct2 = data1(:,3)-data1(:,1); 

            Zddct = Zdct1 - Zdct2; 
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            %get sd 

            Zsdddct = std(Zddct); 

            Zseddct = Zsdddct/sqrt(num); %se mean 

            ZCI = Zseddct*ZTvalue; 

            upper = mean(Zddct) + ZCI; 

            lower = mean(Zddct) - ZCI; 

            %test for mu capture 

            if (lower < trueDdct(indc) && upper > trueDdct(indc))   

               countZC1(inds,indc) = countZC1(inds,indc)+1;  

            end 

            %calculate standard deviation for 3 bioreps 

            sd2Biorep = std([mnTech1 mnTech2 mnTech3]); 

            SE2Biorep = sd2Biorep/sqrt(3); %N=3, df = 2 

            CI2 = SE2Biorep * 4.303; %different 2.776 

            mnDdct2 = (mnTech1+mnTech2+mnTech3)/3; 

            upper2 = mnDdct2 + CI2; %actually lower N-fold 

            lower2 = mnDdct2 - CI2; %actually upper N-fold 
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            %test for mu capture, add to countC2 

            if (lower2 < trueDdct(indc) && upper2 > trueDdct(indc))   

               countC2(inds,indc) = countC2(inds,indc)+1;  

            end 

            %extend waitbar trials 

            waitbar(ind1/reps,wtbr2); 

        %end trials loop 

        end; 

         delete(wtbr2); 

         %determine count proportion for each sigma per cyc diff 

         proCountC2(inds,indc) = countC2(inds,indc)/reps; 

        proCountZC1(inds,indc) = countZC1(inds,indc)/reps; 

         %extend waitbar sigma 

        waitbar(inds/lenSig,wtbr1); 

    %end sigma loop 

    end; 

     delete(wtbr1); 
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     %extend waitbar cycDiff 

    waitbar(indc/lencycDiff,wtbr3); 

     %get means of counts over sigma 

    mnCountC2(indc) = mean(proCountC2(:,indc)); 

%end cycle diff loop  

end 

%overall mean capture rate 

mnData = mean(mean(proCountC2)); 

Zcapture = mean(mean(proCountZC1)); 

runtime = toc; 

%fprintf simulation time, number of trials, number of Cts values, means of  

%proportion mu capture 

clc; 

fprintf('Simulation elapsed time: %d hr %d min %d 

sec\n',floor(runtime/3600),floor((runtime/60)-floor(runtime/3600)*60),floor(runtime-

floor(runtime/60)*60)); 

fprintf('Total Trials: %d\t\tNumber of Cts: %d\n',reps*lenSig*lencycDiff,num); 

fprintf('Mean of Biorep mu capture percent: %5.2f\n',mnData*100); 
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fprintf('Mean of paired test mu capture percent: %5.2f\n',Zcapture*100); 

commandwindow; 

%strike the gong to signal finished 

load gong.mat; 

sound(y, Fs); 

close(100); 

close(101); 

close(102); 

delete(wtbr3); 

%do an anova on biorep method - proCountC2 

%rows - sigma, columns = cycDiff 

%run 2 way anova 

%figure 1 for table 

[p,table,stats] = anova2(proCountC2,1); 

fprintf('ANOVA: Rows = Sigma, Columns = ddCt\n'); 

set(1,'Position',[10 570 450 150]); 

%figure 2 - 3D scatter plot of proportion of trials with mu capture, x = per 
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%sigma, y = per cycDiff, z = proportion capture, calculated bioreps 

figure(2);clf(2); 

bar3(proCountC2); 

set(2,'Position',[125 100 1000 600],'Name','Calculated Biorep Method for Combined 

Data, Capture Proportion'); 

axis([.5 lencycDiff+.5 .5 lenSig+.5 0 1.1]); 

set(gca,'XTick',[1:lencycDiff],'XTickLabel',cycDiff); 

set(gca,'YTick',[1:lenSig],'YTickLabel',sig); 

title(sprintf('Calculated Biorep Method, Combined Data\nMu Capture Proportion vs. 

Cycle Difference and Sigma \nNumber of Cts = %d',num),'FontSize',16); 

xlabel('Cycle Difference','FontSize',14,'Rotation',25); 

ylabel('Sigma','FontSize',14,'Rotation',-35); 

zlabel('Capture Proportion','FontSize',14); 

%  

fprintf('\n\nComplete . . .\n'); 
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