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Abstract 

For almost 100 million years, North and South America were isolated from each other. 

This long period of geologic separation led to the evolution of strikingly different 

mammalian faunas: marsupials were prevalent in South America, while ecosystems in 

North America were composed of placental mammals.  Roughly 3 Mya, a land bridge 

formed between the two continents leading to an accelerated exchange of mammalian 

fauna.  The Great American Biotic Interchange (or GABI, as this has come to be called,) 

led to the successful colonization of many North American species, but few South 

American species. The highly asymmetrical nature of the faunal exchange has puzzled 

paleontologists for more than a century.  We examined the GABI using an End-

Pleistocene dataset of non-volant mammals and their associated ecological 

characteristics. We employed classification trees to quantify the relative importance of 

traits that led to successful colonization. Our analysis suggests the most important factor 

was body size. For species originating in North America, small body size was beneficial, 
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but the pattern was reversed for those moving north from South America. We believe this 

morphological asymmetry was due to the different climate regimes present in North and 

South America. We propose an “Into the Tropics” model of colonization for taxa that 

follow Bergmann’s Rule. We find that dietary and environmental niche, or mode of birth 

(placental vs marsupial) were less important than suggested by previous studies. Our 

study strongly supports the role of climate in determining the composition of mammal 

communities.  
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Introduction 

The biogeographic and geological history of South America has led to a unique mammal 

community. Today, the Neotropics stretch from Tierra del Fuego to Mexico and Florida, 

where they transition to the Nearctic region with many shared flora and fauna. However, 

these ecoregion borders are recent phenomena. When Pangaea broke up in the Jurassic, 

what is now South America was part of Gondwanaland, a supercontinent that also 

included Africa, Australia, Antarctica, and the Indian subcontinent. Though mammals 

are a uncommon in the fossil record from this time, we know that, in the early Cenozoic, 

marsupials dominated the mammal fauna in Gondwanaland, while placental mammals 

had established in Laurasia (1). In South America, marsupial mammals, xenarthrans, and 

unusual placental ungulates continued to thrive into the Cenozoic alongside primates 

and caviomorph rodents that arrived sometime in the Eocene (2–4). Other than this 

incursion, the South American mammal fauna was remarkably isolated. Finally, some 

~3 million years ago (Mya), the South American mammal fauna was greatly altered by 

connection with North America, in an event known as the Great American Biotic 

Interchange (GABI). 

The biogeographic history of North America was quite different. Where South America 

was essentially an island for millions of years, North America was repeatedly 

interconnected with other land masses. Even after the breakup of Laurasia, North 

America was periodically connected with Asia via the Bering Land Bridge, allowing 

intermittent exchange between the mammal communities of the two continents (5–7). 

This lack of isolation meant the North American fauna was more cosmopolitan, and 

perhaps more competitive, than that of South America (5). The North American 
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mammals included proboscidians, true ungulates, carnivorans, insectivores, lagomorphs, 

and diverse rodent groups. Many mammals that are currently extinct in North America, 

such as camelids, were flourishing there in the Pliocene. Others, such as primates, 

became locally extinct in North America long before the GABI (5). 

The GABI occurred after the Isthmus of Panama connected North America to South 

America. The Caribbean plate carried much of what is now known as Central America 

eastward between North America and South America, eventually causing collision of the 

three land masses. Simultaneously, volcanic activity in Central America caused islands 

and finally a land bridge to form in what is now Panama. The timing of these events is 

still debated. Recent geological studies (8–10) suggest a land connection between North 

and South America was in place as early as 15 Mya. Biostratigraphic work on terrestrial 

mammals (11, 12) as well as marine invertebrates (13, 14) indicates that the connection 

between the Atlantic and Pacific Oceans was at least intermittently present until roughly 

3 Mya. I will use 3 Mya as the date the Isthmus of Panama permanently formed for the 

purposes of this paper, but this may need to be revised in future work. Once the 

continents of North and South America connected, plants and animals could move 

between the two continents. Once in the new region, a species could either die out, or 

thrive. Colonization is the process of dispersing to a new region, establishing there, and 

surviving. Some colonizer species may have speciated, while others maintained 

relatively low levels of diversity. For the purposes of this paper, we consider Central 

America as part of North America, because these two landmasses were in contact before 

the Isthmus of Panama formed. Therefore, South American mammals that colonized 

Central America were successful colonizers. 
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It has long been noted that mammal species from North America were apparently much 

more successful at colonizing South America than vice versa (5).These range expansions 

and dispersals began around 8 Mya with early dispersers such as ground sloths, and 

continued into the Pleistocene with animals such as canid carnivores (7, 12). North 

American groups that successfully colonized South America during this time include 

Proboscideans, Artiodactyls, Perrisodactyls, Carnivorans, and a truly stunning array of 

rodent groups. Conversely, only a few marsupials, primates, Xenarthrans, and rodents 

colonized North America from South America (7). The reasons behind this pattern have 

been sought after for nearly a century, but are still debated. 
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Table 1: Hypotheses that have been proposed to explain colonization patterns of 

mammals during the GABI. We used the variables listed to test these hypotheses. The 

relative importance of each variable in the trees will indicate which hypotheses are most 

relevant. 

 Hypothesis Citation Predictor Variables 

I Phylogenetic 

Superiority 

Simpson 

1980, Webb 

1985 

Order, Origin (North America) 

II Placental Superiority Lillegraven 

1974, but 

see Hamilton 

et al. 2010 

Birth (placental) 

III Lack of South 

American carnivores 

Patterson 

and Pascual 

1968, 

Marshall 

1988, 

Vermeij 1991 

Trophic group (meat and plant-

Dominant Omnivores) 

IV Lack of South 

American small 

mammals 

This study Mass (small size advantage), Order 

(Rodentia) 

V Grassland vs. Forest 

corridors 

Webb 1991 South America: Lifestyle (arboreal), 

Trophic (browser, frugivore). North 

America: Lifestyle (terrestrial), Trophic 

(grazer) 

VI Habitat Theory Vrba 1993 South America: Diet Generality. North 

America: Lifestyle (terrestrial), Trophic 

(grazer) 

VII Climate Hypothesis This study South America: Mass (large size 

advantage). North America: (small 

size advantage) 

VIII Generalists This study Diet Generality 

IX Dispersal Ability, 

Range Size 

This study Mass (large size advantage) 

X Speciation Capacity This study 

and Maurer, 

pers. comm. 

Species per Genus 

XI Flexibility of Body Plan This study 

and Maurer, 

pers. comm. 

Genera per Family, Log Mass Range 

XII Fast Life History This study Mass (small size advantage) 

 



5 
 

There are a myriad of hypotheses that have been proposed to explain the asymmetry of 

the GABI (Table 1). Some have been based on the evolutionary history of New World 

mammals. G. G. Simpson proposed that North American mammals had a competitive 

advantage over those from South America, because the North American fauna had been 

enriched by immigration from and competition with mammals from Eurasia (Hypothesis 

I). When the North American fauna moved south, their greater fitness allowed them to 

competitively exclude South American mammals. This is now known as the 

“phylogenetic superiority” hypothesis (5, 7, 15). However, it appears some South 

American lineages, such as the Notoungulata, were already going extinct when the 

GABI occurred, possibly due to climate change caused by the gradual formation of the 

Andes (2, 11, 16). This may have made South American ecosystems even more 

vulnerable to colonization (17). A related but distinct hypothesis, Hypothesis II, is that 

placental mammals are more energetically efficient than marsupials (15, 18). This is 

based on the assumption that marsupials are more primitive and less adapted than 

placental mammals. Marsupials do have lower metabolic rates than placentals – they use 

77% less energy than a placental mammal of the same body size (19), and have an 

average body temperature 2-3 °C lower than a similar placental mammal (20). Some 

have interpreted this to mean lower reproductive output in marsupials, but, in fact, 

marsupial reproduction has been shown to be as energy efficient as placental 

reproduction, and it may be advantageous under certain conditions (21, 22). It has also 

been suggested that there were few South American mammalian carnivores before the 

GABI, so the South American small mammals were naive to predators (Hypothesis III). 

When North American carnivores arrived in South America, the resident mammals were 
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easy prey, while the more savvy North American mammals evaded predation (2, 7). 

Since the fossil record in South America is less resolved than that of North America, 

especially in the smaller body size classes, this hypothesis has been difficult to evaluate. 

We hypothesize that South America may have had few small mammals filling small 

body size niches (Hypothesis IV). This could have been due to the isolation of the South 

American continent, which might result in unoccupied niche space. It could also be due 

to energetic constraints on small marsupials, which tend to have high field metabolic 

rates for their body size (23), but body size distributions of Australian marsupials show 

occupied small body size niches (24), which casts doubt on this suggestion. 

Another set of hypotheses draw on the ecological history of mammals involved in the 

GABI. In these explanations, the environmental niches of species determine 

advancement. Given that the environmental niche is crucial in determining a species’ 

range (25), we might expect species to shift their ranges in accordance with changes in 

climate that were occurring during the Plio-Pleistocene. Webb (26) proposed that North 

American mammals moved south primarily during dry, glacial climates, when the 

Isthmus of Panama was a grassland ecosystem, while South American mammals moved 

north during wetter interglacial climates, across an Isthmus covered in tropical rainforest 

(Hypothesis V). Hence, grassland species moved from North to South America, and 

rainforest species moved from South to Central America. According to this hypothesis, 

more North American species moved south because the source area of North America is 

larger (27). However, there is not convincing evidence that the North American mammal 

fauna was more diverse than the South American fauna before the interchange (28), 

which this hypothesis assumes. In addition, pollen records from the Neotropics suggest 



7 
 

that areas that are currently tropical rain forest were probably forest or dry woodland 

rather than grassland during cool, dry climate phases (29, 30). Finally, there is no reason 

why species from both continents could not disperse across the Isthmus during both 

climate phases. Another hypothesis that focuses on ecological differences between taxa 

to explain the pattern observed in the GABI is Vrba’s habitat theory (Hypothesis VI, 

32). Vrba suggests that, because most of South America is tropical, only South 

American generalists could have established in northern reaches, while all but the most 

specialized North American species would have been able to find a niche in South 

America. Additionally, because of temperature fluctuations due to glaciations, tropical 

forest habitats would have become so sparse during glacial time periods that forest 

species would have had high rates of extinction. Therefore, we would expect South 

American generalists in both diet and habitat to be the most successful at advancing into 

North America (31). North American open habitat specialists should be particularly 

successful advancers, though generalists from North America should also do well. A 

variation of this is our climate hypothesis (VII). Rather than focusing on biotic niche, 

this focuses on how the abiotic niche must vary between North and South America. The 

temperate climate of North America required animals to be capable of coping with a 

wide range of temperatures, particularly during glacial ages. Mammals of larger body 

size tend to have an easier time coping with cold temperatures (32), so South American 

mammals of larger body mass may have been more likely to colonize North America. In 

contrast, animals moving into the tropics were exposed to a more constant, amiable 

temperatures, so smaller bodied mammals should have been able to colonize South 

America. 
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We have gathered a few basic hypotheses that haven’t been widely considered in the 

context of the GABI, but are easily tested with this dataset. Based on the idea that 

dietary niches are relatively conserved within families (33), we assumed that families 

with the greatest number of different dietary niches were the most generalist. In 

Hypothesis VIII, we tested whether generalists were favored colonizers, as proposed for 

Xenarthra (34). In Hypothesis IX, we use body mass as a proxy for dispersal ability and 

range size, though these are only weakly correlated (35), and predict that larger genera 

will be more successful colonizers. Conversely, greater success colonizing success of 

smaller sized genera could indicate that a fast life history was needed to colonize a new 

continent, (Hypothesis XII.) Mammals of smaller size tend to have more offspring per 

year (22), and this could allow them to establish a new population more quickly and 

successfully than larger mammals. Finally, we use the number of species in a genus as 

an indicator of speciation capacity, (Hypothesis X,) and predict that, the more species a 

genus has, the more capable of colonizing it was. Colonizers may have been more 

successful because they possessed a body plan (36) which was inherently more 

adaptable to filling new niches, (Hypothesis XI.) We use the number of genera per 

family, as well as the range of log body mass, to approximate body plan flexibility. 

There is a major challenge to most of these hypotheses. They predict that the same 

pattern of colonization in the GABI should be found in all taxa. Yet there appears to be 

no consistent pattern of dispersal across lineages, even within vertebrates. Plants show 

even colonization between continents (37). Amphibians advanced primarily north from 

South America, the exception being salamanders (38, 39). Reptiles primarily diversified 

in Central America and advanced both north and south from there (38). The colonization 
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patterns in freshwater fish (40, 41) and birds (42–44) are still ambiguous. Some 

differences might be explained by dispersal ability (e. g., higher in plants and volant 

animals,) or degree of cold tolerance (mammals are more cold tolerant than ectotherms,) 

but this is unexplored. We still lack a cohesive understanding of the GABI. 

Here, we used a quantitative approach to distinguish between the many hypotheses that 

have been advanced. We used a machine learning method to examine the influences of a 

suite of evolutionary and ecological variables on colonization success. We employ a 

comprehensive database of Late Quaternary mammals (45), which includes information 

on body size, trophic group, birth mode, lifestyle, and taxonomy. We use a Late 

Quaternary dataset to avoid gaps in the fossil record of earlier periods, to exclude 

species that dispersed to new regions without establishing a population, and to be 

reasonably sure that the GABI was complete. Our analysis allows us to identify the 

evolutionary and ecological characteristics which contributed most to successful 

dispersal and colonization between the continents. 
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Results 

We find a similar proportion of colonizer taxa in each continent after the interchange 

(Fig. 1) as in previous studies (7, 30, 46). In North America, advancer taxa from South 

America make up 40% of the orders, but only ~6% of the species in the post-GABI 

mammal assemblage. In contrast, the North American advancers in South America make 

up 50% of the orders and 50% of the species.  
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Figure 1. Percentage of mammal community composed of advancers across 

continent and taxonomic level. The North American mammal community (above) 

contains ~40% colonizer orders, but only ~6% colonizer species. In contrast, the South 

American mammal community (below) contains ~50% colonizer orders and ~50% 

colonizer species. This suggests that South American orders did not speciate as 

prolifically as their North American equivalents. 
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The body size distributions of mammals after the GABI on both continents are very 

revealing (Fig. 2). In North America, South American colonizers were mainly of 

medium to large body sizes; the smallest were around 50g. In contrast, the North 

American advancers in South America were spread across the entire body size 

distribution, but were concentrated in the smaller body sizes. Today, these lineages 

make up about half of the lower body size mode in the South American mammal 

assemblage. Based on this, we expect body size to be an important predictor of 

colonizing in our models, and the sizes favored in colonizing to vary between 

continents. 
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Figure 2. Body size distributions across continent and taxonomic level. North 

American mammals are shown in blue, South American mammals in orange. In North 

America, both at the genus (A) and species level (C), South American mammals only 

occupy medium to large size bins. In South America, at the genus (B) and more clearly 

at the species level (D), North American mammals are found throughout the body size 

distribution, but dominate in the very small size bins. 
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Many variables we tested showed an association with dispersal in a bivariate linear 

model; mass range, trophic group, diet generalization, continent of origin, and the 

number of genera per family were all significantly related to colonization (p<0.05, z and 

p values in Appendix). However, there are strong correlations between the predictor 

variables in this dataset. This complicates interpretations and violates the assumption of 

independence in linear regressions. 

We carried out a classification tree analysis on the data from both continents. The 

resulting tree (Fig. 3,) shows several important trends. Variables that were of the most 

importance in our random forest model were mean mass, mass range, genera per family, 

species per genus, diet generalization, order, and fine trophic guild (Fig. 4A). Overall, 

those genera that produced more species were more likely to advance, as were families 

that produced more genera. Genera of smaller body size and larger size range were also 

more likely to advance, but there was considerable variation, with some lineages of 

larger-sized genera having a high likelihood of crossing. Greater generalization in diet 

was positively associated with crossing; though, again, there were exceptions, such as in 

genera with a large mass range but few species per genus. Trophic guilds with good 

chances of crossing included invertivores, omnivores, and frugivores in some cases. 

Orders with higher chances of advancing were Carnivora, Didelphimorphia, 

Perissodactyla, and Proboscidia, but chances of advancing varied with other 

characteristics.  Despite their relationship with advancing in linear models, continent of 

origin, coarse trophic group, and birth mode were not significant contributors to the tree.  

This tree was 75.91% accurate and explained 94.6% of the deviance in the data. The 

random forest showed that our model has an out-of-bag error rate of 30.3%, which is 
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better than chance based on a 44% chance of advancing. This tree models the factors 

contributing to advancement across continents, but we were also interested in 

differences between continents. 

  



16 
 

 

 

Figure 3. Classification tree for North and South America combined. The color of 

the branch indicates the likelihood of colonizing at that node. Variable abbreviations: 

Spp per Gen = Species per Genus, DietGen = diet generality, Genera per Fam = Genera 

per Family, Art = Artiodactyla, Carn = Carnivora, Dide = Didelphimorphia, Lago = 

Lagomorpha, Peri = Perissodactyla, Prim = Primates, Prob = Proboscidea, Rode = 

Rodentia, Xena = Xenarthrans, A-Dom = Animal-dominant Omnivore, Browse = 

Browser, Frug = Frugivore, Graze = Grazer, Invert = Invertivore, P-Dom = Plant-

dominant omnivore. 
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Figure 4. Importance of variables in the random forests. The importance of variables 

in the combined tree (A) is similar to the importance values in the trees separated by 

origin (B). Body size is clearly the most important variable. Some variables, such as 

birth mode, have almost zero importance in the trees. 
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We built separate decision tree models for genera from North America and genera from 

South America. Results for North America are similar to the cross-continent models 

(Fig. 5A). Mass range, diet generalization, animal-dominant omnivory, and the number 

of genera per family were all positively associated with colonization in linear 

regressions. Some trophic guilds were negatively associated with colonizing: frugivores, 

grazers, and plant-dominant omnivores were all less likely to cross. The decision tree 

model for North American genera shares the first few branches with the full tree, 

indicating the patterns in North America dominate that model. The importance of 

variables is also similar to the full tree (Fig. 4B), although fine scale trophic guild is of 

relatively greater importance. The tree for North America was 77.6% accurate and 

explained 97.7% of the variation in the data. Our random forest model of this data 

estimated the out-of-bag error rate at 35.3%, which is lower than the 54.7% chance of 

colonizing in the tree.  

The tree for South America (Fig. 5B) is quite different from the North American tree, 

although several of the same variables are significant. Having a large range of body 

sizes, more species per genus, and a larger mass all increase the likelihood of colonizing. 

The most important variables in the tree are similar to those for North American genera 

(Fig. 4B), except trophic group is somewhat more important. Birth mode is not an 

important contributor to advancing. The South America tree explains 76.6% of the 

variation in crossing, with an accuracy of 84%. However, the out-of-bag error rate is 

25.6%, and since this is higher than the 24% chance of advancing from South America, 

the results of this analysis must be interpreted with caution. This greater error rate is 



19 
 

likely a result of the small number of colonizers from South America: the smaller 

sample size makes model verification difficult. 
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Figure 5. Classification trees showing the likelihood of advancing from each 

continent. The North American advancement tree (A) is similar to the full tree, though 

with a slightly higher chance of advancement at the first node, and notable variation in 

the outer and terminal nodes. The South American advancement tree (B) is much 

simpler, with a lower chance of advancing. The South American tree explains less of the 

deviance in the data, and has an error rate slightly higher than the likelihood of 

advancing, and so must be interpreted with caution. Abbreviations as in Fig. 3. 
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Table 2: Hypotheses that have been proposed to explain colonization patterns of 

mammals during the GABI, with our conclusions indicated in column 4.  

 Hypothesis Citation Predictor Variables Conclusion 

I Phylogenetic 

Superiority 

Simpson 1980, 

Webb 1985 

Order, Origin (North 

America) 

Some 

Support 

II Placental 

Superiority 

Lillegraven 1974, 

but see Hamilton 

et al. 2010 

Birth (placental) Not 

Supported 

III Lack of South 

American 

carnivores 

Patterson and 

Pascual 1968, 

Marshall 1988, 

Vermeij 1991 

Trophic group (meat 

and plant-Dominant 

Omnivores) 

Some 

Support 

IV Lack of South 

American small 

mammals 

This study Mass (small size 

advantage), Order 

(Rodentia) 

Some 

Support 

V Grassland vs. 

Forest corridors 

Webb 1991 South America: Lifestyle 

(arboreal), Trophic 

(browser, frugivore). 

North America: 

Lifestyle (terrestrial), 

Trophic (grazer) 

Not 

Supported 

VI Habitat Theory Vrba 1993 South America: Diet 

Generality. North 

America: Lifestyle 

(terrestrial), Trophic 

(grazer) 

Some 

Support 

VII Climate 

Hypothesis 

This study South America: Mass 

(large size advantage). 

North America: (small 

size advantage) 

Strongest 

Support 

VIII Generalists This study Diet Generality Some 

Support 

IX Dispersal Ability, 

Range Size 

This study Mass (large size 

advantage) 

Some 

Support 

X Speciation 

Capacity 

This study and 

Maurer, pers. 

comm. 

Species per Genus Some 

Support 

XI Flexibility of Body 

Plan 

This study and 

Maurer, pers. 

comm. 

Genera per Family, Log 

Mass Range 

Some 

Support 

XII Fast Life History This study Mass (small size 

advantage) 

Some 

Support 
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Discussion 

Traditional Hypotheses 

Our findings lend support to some of the traditional hypotheses surrounding the GABI 

(Table 2.) The most famous, Simpson’s phylogenetic superiority hypothesis (Hypothesis 

I (5),) is tentatively supported. Regardless of taxonomic identity, North American 

lineages were more likely to colonize South America (see the first nodes of Fig. 5A and 

Fig. 5B.) Certain North American families and genera, particularly sigmodontine 

rodents, were more diverse as a result of the GABI, which suggests that these groups 

had advantages which made them more competitive and facilitated colonization. The 

success of North American genera may indeed have resulted from competition with or 

enrichment by Eurasian fauna in North America.  An aspect of the greater colonization 

success of North American genera may be that there were vacant niches in South 

America, particularly among small mammals and carnivores, (Hypotheses III and IV 

(2).) The great success of colonizing small mammals in South America would support 

this (Fig. 2B.) Because we used Late Quaternary assemblages, our data cannot 

differentiate between vacancies in these niches due to South American isolation, 

vacancies due to recent extinctions related to the formation of the Andes, and 

competitive displacement of South American small mammals and carnivores by North 

American colonizers. We hope to compare between these scenarios using data with 

greater time resolution in future work. 

Our findings disprove several hypotheses that have been proposed in past literature. 

Perhaps the oldest hypothesis about the GABI, the placental superiority hypothesis 

(Hypothesis II (18),) is clearly incorrect once continent is accounted for. South 
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American marsupial and placental mammals were equally likely to colonize North 

America. Birth mode was the variable with the lowest importance in all our models (Fig. 

4.) Despite their lower metabolic rate (19, 23) marsupials were as successful at 

colonizing as their placental counterparts. Nor do we find support for Hypothesis V, 

Webb’s (26) grassland corridor hypothesis. There is apparently no significance in 

whether a genus was adapted to grasslands or forests in how they colonized new 

territory, as there was little effect of being a grazer vs. a browser or terrestrial vs. 

arboreal in either our full tree (Fig. 3,) or in trees separated by continent (Fig. 5.) 

Hypothesis VI, habitat theory (31), is based upon selective pressures that we think were 

important in determining the direction of the GABI; the changeable environment in 

North America made it more difficult to colonize than South America. However, habitat 

theory is focused on how these climatic factors affect the preferred environment and diet 

of species. According to our findings, lifestyle and trophic group were not very 

important factors in whether a genus was able to colonize a new region (Fig. 4.) Diet 

generality was a moderately important factor, as in Hypothesis VIII, but was actually 

less important for South American mammals than for North American mammals (Fig. 

5.) Habitat theory is the right idea, with the wrong predictions. 

 

New Hypotheses 

This research shows that several important factors in the GABI were not emphasized by 

previous authors. Having a flexible body plan (Hypothesis XI,) was moderately 

important for mammal genera of both continents, as was having a high speciation 

capacity (Hypothesis X, Fig. 4.) A wide range in body size, which contributes to a 
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flexible body plan, was so important in our models that it split the first node in each of 

our trees (Fig. 3 and 5.) However, these hypotheses are supported with much caution, 

because of the potentially circular nature of the variables involved. It’s not possible to be 

sure from our data that a flexible body plan or a high number of species per genus were 

a cause of, or a result of, the GABI. Also, were North American genera more likely to 

possess these characteristics, due to enrichment from Eurasia (Hypothesis I,) or was 

their greater success due to some other factor? Further investigation of Hypotheses X 

and XI is necessary. 

Our analyses show that body size was the most important factor in determining 

colonization ability. Smaller was better when it came to colonizing South America. The 

North American genera in smaller size classes tended to be very successful colonizers. 

They made up the bulk of the genera in the smaller body size mode in South America 

after the interchange (Fig. 2.) Body mass was the most important variable in both our 

full tree and our North America tree (Fig. 4A and 4B.) We suspect the success of small 

North American genera is due to the correlation of fast life history with small body mass 

(Hypothesis XII (47).) Animals with fast life histories produce more offspring in a 

shorter amount of time than those with slow life histories (48). Species with fast life 

histories could have reproduced, established populations, monopolized resources, and 

even adapted to their new niches more quickly than species with slower life history (49). 

If more data were available, we could test this hypothesis by correlating the number of 

offspring per year with colonization. However, this is difficult because it is impossible 

to directly determine the number of offspring per year of extinct species, and adequate 

life history data are not available for many tropical extant species, particularly small 



25 
 

mammals living in South America. Conversely, for South American genera, larger 

bodied genera were more likely to colonize (Fig. 5B.) This supports Hypothesis IX; for 

South American genera, it was important to have a large range or greater dispersal 

ability.  

Together, these findings support Hypothesis VII, the climate hypothesis. The differences 

in patterns between continents suggest that the environmental differences between North 

and South America contributed to the different colonization success of these two faunas. 

The South American genera evolved under tropical environmental conditions which 

favor narrow, specialized niches and small geographic range sizes (50). Tropical species 

have evolved in a diverse environment in which biotic interactions hamper dispersal, so 

species may evolve to be less likely to disperse. These characteristics, though beneficial 

in their tropical home ranges, would be detrimental to a genus’s ability to disperse and 

establish in a new environment. Genera that reached North America met with a colder, 

unstable climate regime. (26, 31, 51). Only genera with the ability to cope with cold and 

shifting temperatures could adapt to this new environment (52, 53). Small bodied 

animals, with high surface areas relative to body volume, would be less likely to 

colonize this cold environment than larger bodied mammals. Larger genera could retain 

heat more effectively in cold conditions, giving them the opportunity to adapt to shifting 

conditions. This could contribute to the pattern of Bergmann’s Rule that we observe 

today (32). Only the larger species within a genus, or in this case, genera within a 

family, could establish populations in a cooler, fluctuating environment. In addition to 

evolving larger body sizes in situ in colder climates, larger bodied species could be more 

successful at colonizing colder climates. 
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Concurrently, conditions in the tropics, while not greatly conducive to dispersal, may 

favor establishing and speciating. North American genera invading South America 

found stable, productive environments favoring establishment of colonizers. They also 

found conditions that support high species diversity. The causes of high diversity in the 

tropics are debated and are probably manifold, but many of the hypotheses explaining 

this greater diversity could support colonization of new groups. If the tropics are a cradle 

of diversity (54), than colonizing genera could speciate more readily there. If they are a 

museum of diversity (55), colonizers would be less likely to go extinct. If evolutionary 

rates are faster there (50), than colonizers could rapidly adapt to their new environment. 

Conditions would particularly favor species with fast life histories, flexible body plans, 

and generalist niches, which could speciate and adapt to new niches readily. Conditions 

in temperate regions do not strongly favor specialization (56), giving the North 

American fauna an advantage in making it to a new region and adapting to a new 

environment. Genera with faster life histories, i.e. small body sizes, would be 

particularly favored colonizers, due to their ability to rapidly establish a population. 

Since high diversity in the tropics, fluctuating temperate climate regimes, and 

Bergmann’s Rule are all more or less the same in different parts of the world, this 

pattern of colonization may be widespread (57).  We suggest an “Into the Tropics” 

model to explain this pattern of colonization (as opposed to the “Out of the Tropics” 

model proposed by Jablonski et al. (58) using marine bivalves.)  
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“Into the Tropics” 

We propose a general model for biotic interchange events based on this pattern. This 

model is geared toward taxa that demonstrate Bergmann’s Rule, such as turtles and 

birds, which are under similar selection regimes to those experienced by mammals in the 

GABI. In an interchange event, initially, medium to large animals should disperse to 

temperate areas, and animals of all sizes to tropical areas. Conditions favoring 

diversification should then allow the animals moving into the tropics to establish 

populations and diversify, with small, fecund species favored. Meanwhile, larger 

animals in the temperate region will expand their ranges but experience little speciation, 

while smaller animals may go extinct. This is similar to the ideas behind habitat theory 

(Hypothesis VI (31),) but instead of dietary generalists from the tropics colonizing 

temperate areas successfully, it is the thermal generalists which are most successful. In 

the same respect, it is not temperate species with dietary niches adapted to a changing 

tropical environment that colonize – rather, it is those which can most readily adapt and 

speciate. 

Further research must be done to confirm how dependent this pattern is on the isolation 

of the tropical area. It is possible we observe this pattern because of empty small 

mammal and carnivore niches in South America (Hypotheses III and IV,) and if this is 

the case, than the “Into the Tropics” model won’t be supported in other biotic 

interchanges. If the model holds regardless of isolation of the tropical continent, then it 

is supported. If this pattern of colonization is only found when the tropical continent is 

isolated, than competition and empty niches in South America were likely the more 

important factors in the GABI. We hope to test this hypothesis in future work by 
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comparing the GABI with other biotic interchanges. For example, when the Tethyan 

Seaway closed in the Early Miocene, tropical Africa/Arabia connected with temperate 

Eurasia for the first time in roughly 150 million years (57). According to the “Into the 

Tropics” model, small mammal genera from Eurasia should have successfully colonized 

Africa, while only larger mammals from Africa should have colonized Eurasia. 

The Trans-Indonesian interchange, over Wallace’s line, could test the “Into the Tropics” 

model as well. Oceania/Australia is the more isolated, but temperate area. Did species 

move from tropical Asia toward isolated Australia? Or, did these species move from 

more temperate Australia to more tropical Asia, as our hypothesis would predict? In 

contrast, interchange across the Beringian land bridge, between Eurasia and more 

isolated North America, should have been balanced. Though one continent was more 

isolated, both were temperate, and so selection regimes should have been similar.  

Based on the “Into the Tropics” model, we can also make predictions about how non-

mammalian taxa should have behaved during the GABI. Organisms which readily 

disperse great distances, such as migratory birds and plants with wind-dispersed seeds, 

shouldn’t have been affected by the GABI. By the time the GABI occurred, they should 

have dispersed throughout the Americas, and we expect them to already have greater 

diversity in tropical areas. Taxa that do not show a clear body size trend with latitude, 

such as marine bivalves (59), or that are larger toward the tropics, such as most 

squamate reptiles (60) and freshwater fish (61), may show the opposite pattern. They 

should be more diverse in South America and move into North America, regardless of 

South America’s isolation. This is in contrast to many previous hypotheses about the 

GABI, which implied that all animal taxa should show the same colonization pattern as 
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mammals. Taxa that do follow Bergmann’s Rule, such as turtles, salamanders, and 

dispersal-limited birds (32), should show the same pattern as mammals – an “Into the 

Tropics” colonization. 

 

Conclusion 

The patterns we observed in the GABI were the result of subtle interactions of 

environmental and intrinsic factors. Earlier hypotheses explaining these patterns 

emphasized environmental and particularly dietary niches of species, but our findings 

suggest these were not very important in determining the composition of mammal 

assemblages. Instead, we found that more general characteristics, such as body size, 

were the most important. Environmental characteristics of the destination continent were 

more important than the conditions on the continent where genera originated. The 

latitudinal diversity gradient and Bergmann’s Rule played a much greater role in 

determining advancement of mammals than has ever been considered in previous 

research. Finally, we wish to emphasize the need to use quantitative approaches in 

answering paleoecological questions. Our decision tree approach revealed patterns that 

wouldn't have been elucidated otherwise. Our inclusion of small mammals in our 

analysis also added a dimension other researchers haven't looked at, and our results 

would not have been complete without this data. 
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Methods 

Data 

We used the MOM dataset, v. 3.6.1 (45) for all analyses. MOM contains taxonomic, 

trophic, body size, and distributional information about all known species of mammal 

worldwide extant at the End-Pleistocene. We limited our study to terrestrial, nonvolant 

North and South American mainland species. Species native to Central America are 

considered North American for the purpose of this dataset, based on the shared 

geological history between North and Central America. We excluded marine and volant 

mammals due to their unique metabolic requirements (35), though we included semi-

aquatic mammals, which give birth on land. Analysis was conducted at the genus level, 

and genera in which any species was found on the continent opposite its origin were 

considered successful colonizers. 

Variables employed in our analysis included: taxonomic order (62), continent of origin, 

mean log body mass, trophic group, diet generalization, mode of life, mode of birth, 

number of species per genus, and number of genera per family. Each variable related to 

one or more hypotheses discussed in Table 1. Order was used as a rough proxy for 

phylogeny in this study, (although some classifications used in this dataset, such as the 

group Insectivora, are now defunct.) The continent of origin was identified for each 

genus based on (5). Genera which originated in Eurasia and Central America were 

considered North American. We used two different scales of trophic group: coarse and 

fine. The coarse scale trophic variable examined whether genera consume plant material, 

animal material, or are omnivorous. The fine scale trophic variable contained more 
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specific detail, including distinctions such as grazer and browser. Diet generalization 

was the number of fine scale trophic groups found in the parent family of a given genus. 

The lifestyle variable was used to differentiate arboreal, aquatic, fossorial, and terrestrial 

genera. Birth mode differentiated between placental and marsupial mammals. We also 

looked at the number of species per genus and genera per family, to examine the 

contributions of speciation capacity and body plan flexibility, respectively (36). 

The MOM dataset is constructed at the species level, which is inappropriate for our 

analyses. Species durations may be much shorter than the interval during which the 

GABI occurred, so species could have gone extinct between colonization and our Late 

Quaternary data. Thus, we aggregated data to a higher taxonomic level, which allowed 

us to reduce the effects of speciation in the millennia since the GABI. We averaged body 

mass of all within a genus to obtain a single mass estimate. We subtracted the smallest 

from the greatest log transformed body size within each genus to obtain the mass range. 

Doing this in log space controlled for bias toward large body size in size range. We used 

the most common trophic group and mode of life for each genus. In cases of ties, we 

used the trophic group or mode of life that was most common for the family and also 

found within the genus. 

 There are several variables we would have ideally included in our analysis if data were 

readily available.  For instance, geographic range size and location could affect the 

opportunity a genus had to colonize, but these data are not available for both continents 

during the Pliocene. Similarly, life history data, such as number of offspring per year, 

are very limited for South American mammals, as well as many North American small 
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mammals, and are nearly impossible to determine for extinct species. We therefore 

assume that body size is a good proxy for life history (47). 

Ideally, our analysis would employ a dataset constructed for the End-Pliocene. Such a 

dataset does not currently exist. This is largely due to the low resolution of the South 

American fossil record; much of the continent is tropical and therefore has poor 

fossilization conditions, and screen washing to uncover small fossils has only recently 

become routine. However, there are several reasons we believe our approach of 

employing an End-Pleistocene record is valid. First, the GABI was not an event that 

occurred in a single time period. Some species crossed the Central American Seaway via 

island chains at least 8 Mya, while others crossed closer to when the Isthmus formed 

around 3 Mya. Other species may not have crossed until the Pleistocene. There is no 

single time slice in the fossil record that includes all of the GABI. Using the End-

Pleistocene, we can be reasonably sure that the GABI has completed. We can avoid bias 

towards large body sized species in the fossil record.  We can also remove any effect 

from species that crossed the land bridge but did not establish. Therefore, we believe this 

the best possible way to study the GABI given the data available. 

Analysis 

We carried out bivariate linear regressions between colonization and each predictor 

variable to examine general trends, both with the full dataset and within individual 

continents. All analyses were performed in the R statistical environment (63). 

We used classification trees to relate likelihood of colonization to the predictor variables 

in our dataset (64). Classification trees are an excellent method for this type of study. 
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They make no assumptions about the normality or independence of variables. Moreover, 

classification trees can incorporate quantitative and categorical variables, and they can 

identify nonlinear interactions and context dependency within data. We built trees using 

the rpart package (65) for the entire dataset and for genera native to each continent, to 

examine different influences on advancement success in different regions. We quantified 

model fit using percent deviance explained (%DE).  

To compare the relative importance of different predictor variables within our models, 

and to control for the effects small changes in the data can sometimes have on 

classification trees, we also carried out three random forest models, using the R package 

randomForest (66). Random forest models build a series of bootstrapped trees (in this 

case, 500), using a random subsample of the data. These trees are then combined, and 

the importance of different variables is determined based on those that appear across all 

trees. We used the GINI index to measure the relative importance of each variable in the 

models. Random forests also give an out-of-bag (OOB) error rate for the trees, which we 

used to determine significance of the model. If the error rate was lower than that of a 

null model, it was considered significant. In this case, the null model was the overall 

chance of colonizing without incorporating any predictor variables. 
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Appendix 

Table A. The results of analyses for the full dataset and with continents separated are 

shown in this table. Regressions shown are between each variable and colonization. For 

categorical variables, a different z and p value is returned for each category (* ~ p < 

0.05; ** ~ p < 0.01; *** ~ p < 0.001.) Importance is the GINI index from the random 

forests of each tree. This value is relative within each tree, and isn’t directly comparable 

across trees. 

  Both Continents North America South America 

Variable Category Regression Importance Regression Importance Regression Importance 

Order Artiodactyla z = -0.631, 

p = 0.527 

15.75 z = -0.631, 

p = 0.528 

8.13 - 3.51 

 Carnivora z = 1.231, 

p = 0.281 

 z = 1.231, 

p = 0.218 

 -  

 Didelphimorphia z = -0.333, 

p = 0.739 

 -  z = -0.769, 

p = 0.442 

 

 Insectivora z = -1.813, 

p = 0.070 

 z = -1.813, 

p = 0.070 

 -  

 Lagomorpha z = -1.235, 

p = 0.217 

 z = -1.235, 

p = 0.217 

 -  

 Litopterna z = -0.010, 

p = 0.992 

 -  z = -0.006, 

p = 0.995 

 

 Microbiotheria z = -0.007, 

p = 0.995 

 -  z = -0.004, 

p = 0.997 

 

 Notoungulata z = -0.010, 
p = 0.992 

 -  z = -0.006, 
p = 0.995 

 

 Paucituberculata z = -0.012, 

p = 0.991 

 -  z = -0.008, 

p = 0.994 

 

 Perissodactyla z = 0.014, 

p = 0.989 

 z = 0.022, 

p = 0.983 

 -  

 Primates z = -0.939, 

p = 0.348 

 -  z = -0.508, 

p = 0.612 

 

 Proboscidea z = 0.969, 
p = 0.333 

 z = 0.969, 
p = 0.333 

 -  

 Rodentia z = 0.097, 

p = 0.922 

 z = 1.457, 

p = 0.145 

 z = -2.099, p = 0.036* 

 Xenarthra z = -1.305, 
p = 0.192 

 -  z = -0.636, 
p = 0.525 

 

Origin North America z = 1.166, 

p = 0.244 

6.74 - - - - 

 South America z = -5.291, p < 0.001*** - - - - 

Birth marsupial z = -1.567, 

p = 0.117 

0.55 - - z = -1.567, 

p = 0.117 

0.52 

 placental z = 1.068, 

p = 0.286 

 - - z = -0.835, 

p = 0.404 

 

Trophic 

(coarse) 

animal z = -0.311, 

p = 0.756 

4.2 z = 0.471, 

p = 0.638 

3.05 z = -1.497, 

p = 0.134 

0.93 

 omnivore z = 1.602, 

p = 0.109 

 z = 2.107, 

p = 0.035* 

 z = -0.134, 

p = 0.893 

 

 plant z = -1.992, 
p = 0.046* 

 z = -0.704, 
p = 0.481 

 z = -1.248, 
p = 0.212 

 

Trophic (fine) animal dom. 

omni. 

z = 1.689, 

p = 0.091 

15.98 z = 2.832, 

p = 

0.005** 

12.03 z = -1.449, 

p = 0.147 

2.91 

 browser z = -3.172, 

p = 

0.002** 

 z = -2.579, 

p = 

0.010** 

 z = -0.595, 

p = 0.552 

 

 frugivore z = -1.757, 
p = 0.079 

 z = -1.735, 
p = 0.083 

 z = -0.073, 
p = 0.446 

 



35 
 

Table A continued 

  Both Continents North America South 

America 

Variable Category Regression Importance Regression Importance Regression Importance 

 grazer z = -2.498, 

p = 0.012* 

 z = -3.005, 

p = 
0.003** 

 z = -0.763, 

p = 0.446 

 

 invertivore z = 1.951, 

p = 0.051 

 z = -2.451, 

p = 0.014* 

 z = 0.342, 

p = 0.732 

 

 meat z = -0.186, 
p = 0.852 

 z = -1.358, 
p = 0.174 

 z = 0.206, 
p = 0.837 

 

 plant dom. 

omni. 

z = -0.676, 

p = 0.498 

 z = -1.613, 

p = 0.107 

 z = 0.506, 

p = 0.613 

 

 piscivore z = -1.598, 
p = 0.110 

 z = -2.560, 
p = 0.010* 

 -  

Lifestyle aquatic z = -0.444, 

p = 0.657 

5.85 z = -0.566, 

p = 0.571 

3.39 z = 0, p = 1 2.83 

 arboreal z = -0.144, 
p = 0.886 

 z = 0.980, 
p = 0.327 

 z = -0.582, 
p = 0.561 

 

 marine BOL z = -0.709, 

p = 0.478 

 z = -0.367, 

p = 0.713 

 -  

 terrestrial z = 0.280, 
p = 0.779 

 z = 0.775, 
p = 0.438 

 z = -0.994, 
p = 0.320 

 

 terr/aquatic z = 0.719, 

p = 0.472 

 -  z = 0.371, 

p = 0.711 

 

 terr/fossorial z = -1.096, 

p = 0.273 

 z = -0.558, 

p = 0.577 

 z = -0.015, 

p = 0.988 

 

Diet 

Generalizatio
n 

- z = 4.636, 

p < 
0.001*** 

13.45 z = 3.869, 

p < 
0.001*** 

9.15 z = -0.079, 

p = 0.937 

2.53 

Mass - z = -1.156, 

p = 0.248 

33.74 z = -0.965, 

p = 0.335 

26.65 z = 0.742, 

p = 0.458 

10.47 

Mass Range - z = 2.484, 
p = 0.012* 

20.03 z = 2.009, 
p = 0.045* 

14.15 z = 1.624, 
p = 0.104 

6.91 

Species per 

Genus 

- z = 0.999, 

p = 0.318 

15.16 z = 0.558, 

p = 0.577 

9.46 z = 0.540, 

p = 0.589 

7.05 

Genera per 
Family 

- z = 5.370, 
p < 

0.001*** 

16.7 z = 3.686, 
p < 

0.001*** 

11.56 z = -0.348, 
p = 0.728 

4.25 
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