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ABSTRACT 

 
Food hubs are organizations that manage the aggregation and distribution of local 

products, and are a small, but growing means to satisfy high demand for diverse, healthy 

diets. However, economic barriers inhibit small producers and distributors from 

developing mainstream, local consumer alternatives to industrial-scale products. To build 

a foodshed, distribution hubs could help overcome these challenges by reducing costs 

through shared refrigeration, processing, and transportation infrastructure. However, 

there is no theory to help plan them. I present and test theory to allocate foodshed 

infrastructure based on insight by Dunn, et al. (2011) that Shannon diversity measured 

relative to a whole set of sites, rather than site-by-site, reveals law-like scaling behavior. I 

accessed the US Dept of Agriculture’s 2011 Cropland Data Layer (CDL) for 40 crop 

cover types at 30 m resolution in New Mexico. I tested two competing hypotheses: 1) a 

site-specific and 2) a whole-system normalization of crop probabilities interpretable as 

the information experienced by producers versus a distributor, respectively. Directly 

edible and marketable crops were differentiated from forage crops for livestock because 

of the different destinations and infrastructure they require. A distributor with 

information about the whole foodshed experiences law-like increase in uncertainty with 

increasing observation scales. Since the distributor uncertainty about an area’s crop 



iv 

 

inventory is an order of magnitude lower than the producers’, a distributor should plan 

infrastructure at a scale that maximizes reduction of a producer’s uncertainty.  For all 

crops, I compared their relative contribution to total diversity per unit area so as to 

compare areas on the landscape with the highest capacity to diversify the foodshed as a 

whole. Development of a diverse foodshed will require knowledge of which products 

affect local diversity. This work grounds whole-foodshed planning in ecological theory, 

and contributes to understanding about how the conventional food system has allocated 

crop diversity.  
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1 

 INTRODUCTION 

 “...the term foodshed becomes a unifying and organizing metaphor for 
conceptual development that starts from a premise of the unity of place 
and people, of nature and society.” 

 Kloppenburg et al. (1996) 
 
 
Humans need a diverse diet to satisfy nutritional requirements, and thus diverse food 

systems to meet that need. High caloric yields are important, but as a singular focus of a 

food system, they obscure both direct external costs to consumer health from high 

calorie, low-nutrient foodstuffs (Tillotson, 2004; Conard and Ackerman 2010) and a web 

of indirect health costs to the environment: greenhouse gas emissions (GHG) from energy 

use (Weber and Matthews 2008), chemical-resistant pests (Owen and Zelaya 2005, 

Tabashnik et al. 2005), and soil degradation and runoff (Tilman et al. 2002, Pimentel et 

al. 2008, Patzek 2008). Today, food sustainability is contingent on building resilience 

into economically robust local systems within foodsheds that minimize or even mitigate 

these accumulating external costs, meanwhile retaining economic and environmental 

value (Kloppenburg 1996, Holling 2001, Folke 2006, Norris et al. 2008, Speth 2012). 

Across the nation, increasing demand for healthy, sustainable, and local products exceeds 

supply (Peters et al. 2009a, Conard 2010, USDA 2011a, USDA 2011b, Matson 2013).  

Food hubs—organizations that aggregate and manage the distribution of local products—

are identified by the US Department of Agriculture (2011a) as a promising means to 

satisfy demand (Matson 2013). Unmet demand is not an issue of local supply capacity. 

Rather, Peters et al. (2009b) suggest that the land in New York State could support all the 

nutritional requirements of either: most of its smaller cities, or 55% of New York City.  
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Connecting supply and demand requires strategies to recruit farm labor into new 

markets, as 30% of the agricultural workforce is above age 65 (USDA 2007). However, 

multiple foodshed stakeholders capable of filling this gap face economic barriers in a 

market dominated by infrastructure that incentivizes large-scale agriculture. The National 

Young Farmers Coalition (Shute 2011) identifies lack of capital as the biggest obstacle to 

small, beginning farmers.  

Also lacking is local infrastructure for shipping, storing, and processing the goods 

from small and midscale farms (Matson 2013). According to the Wallace Center (Dreier 

& Taheri 2008, 2009), distribution hubs can provide infrastructure that anchors small 

farmers to demand, thereby reducing both farmers’ and distributors’ costs via shared 

capital infrastructure. Hubs also have potential to be valuable community spaces and to 

improve food security in less-connected rural areas (Conard & Ackerman 2010, USDA 

2011a). 

Theory is lacking for where best to locate hubs and at what scale to build foodshed 

hub infrastructure that links concentrated urban demand to diffuse rural supply (USDA 

2011b). Of about 200 identified food hubs, most of which have emerged in the last 

decade, roughly half are economically viable (Matson 2013) which presents a challenge 

and opportunity to facilitate hub growth by applying theory of ecological diversity. 

Ultimately, all stakeholders in a local food system—consumers, producers, and 

distributors − rely on each other for health and prosperity. Thus, I offer tools to help 

allocate investment for hubs in a given foodshed by leveraging uncertainty in crop 

production to the mutual advantage of local food distribution. 
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I innovate and test theory to allocate local food infrastructure based on recent theories 

of scaling and diversity (e.g. Harte et al. 2005, Harte, Zillio et al. 2008, Dunn et al. 

2011). On a landscape, food producers experience uncertainty for lack of information 

about foodshed-wide demand and production by competitors. Meanwhile, distributors 

who develop economies of scale by aggregating local supply benefit from foodshed-wide 

information.  Information about transportation costs and production schedules 

contextualizes their experience of uncertainty to collective advantage.  

The producer’s perspective of uncertainty is familiar to ecology, which classically 

identifies relative species abundance site by site to measure diversity. There are many 

ways to quantify diversity, all of which have been shown to be statistical variants of 

Shannon diversity (Shannon et al. 1949, Hill 1973, Jost 2006).  Dunn et al. (2011) 

adopted a framework to normalize Shannon diversity (better understood as ‘uncertainty’, 

Pielou 1977) across all stream sites of a given Horton-Strahler order (Horton 1945, 

Strahler 1952), rather than along each individual stream. Adoption of such an approach 

that hierarchically considers parts of the system in relation to the whole (Allen and Starr 

1982) can elucidate a description of how a distributor experiences uncertainty on the 

landscape. Distribution hubs, sized and located on the basis of whole-system information, 

can provide many producers the benefit of reduced uncertainty about inventory. This 

effect is maximized at an optimal scale where the numerical difference between producer 

and distributor diversity is greatest.   

I sought to identify law-like behavior underlying the relationship between crop 

diversity and spatial scale and thereby identify an optimal areal extent for hub 

investment. I hypothesized that spatial patterns of crop diversity are governed by self-
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similar scaling laws since at broad scales, many self-similar geophysical factors constrain 

land occupancy: surface water, topography, soil composition, and weather patterns 

(Brown et al. 2002). More generally, agriculture feeds cities, which have recently been 

likened to organisms (Bettencourt et al. 2007, 2010, Samaniego and Moses 2008), based 

on earlier theory of space-filling fractal networks that support the metabolism and growth 

of all life (West et al. 1997, 1999). I investigate the implications of whole-system 

diversity for the producers of specific crops of different crop classes. Some crops enter 

the human food supply directly, while others are fed to animals first. Planners of 

infrastructure need to know how different crops within these classes affect diversity so 

that producers can respond adaptively. The theory presented here of optimal hub scale 

and location may help optimize the allocation of infrastructure in a cost-effective manner, 

based on mutual benefit, while informing strategies and policies to accelerate the 

development of local, resilient alternatives to the global food system.  
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METHODS 

Study area 

The study area was drawn entirely within the state boundaries of New Mexico, USA.  

The state (pop. 2,059,180) covers 31,491,531 ha (US Census 2010) between 37o
 N and 

31o 20’ N latitude, with elevation ranging from 867 to 4013.3 m (USGS 2001). Over the 

years 2000-2012, mean statewide annual temperature was 12.6 C and the mean statewide 

annual precipitation 32.59 cm, ranging from the hottest and driest year (13.2 C, 20.75 cm 

in 2012) to the coolest and wettest (12 C, 45.09 cm in 2004) (NOAA 2013). New Mexico 

hosts 8 Level III ecoregions of 84 in the conterminous United States (Omernik 1987, 

USEPA 2006) and a continuum of USDA Hardiness Zones 4b through 9a (USDA 2012). 

The NM growing season varies substantially based on elevation and terrain, but typically 

ranges from April/May to October/November (NOAA 2010a, 2010b).  Agricultural lands 

total 17,497,800 ha, 5.40% of which are crops, 86.95% pasture, 6.64% timber production, 

and 1.01% other, producing a total market value of $2,175,080,000 (USDA 2007). 

Although mean farm size in NM is 836 ha, it is worth noting that this mean reflects a 

bimodal distribution of farm sizes. Of 20,930 farms, 9,311 are cropland, and roughly as 

many are larger than 100 ha as are smaller than 4 ha (USDA 2007). There are 10,167 

irrigated farms (335,908 ha), split between 8,492 cropland farms (262,346 ha) and 2,918 

pastureland and other farms (73,562 ha) (USDA 2007). 

Crop Spatial Data 

The Cropland Data Layer (CDL) provides geographical information about 

agricultural land cover in the continental US (Boryan et al. 2011, Han et al. 2012). 
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The CDL is derived from several sources of satellite imagery and made available at 30-m 

resolution in Albers Equal Area Conical projection (USDA 2013).  I used 39 food-related 

cover types (of 53 total) reported for New Mexico in the CDL for the 2011 growing 

season and assigned types to one of two classes: (1) crops directly edible by humans and 

therefore of interest to stakeholders in the local food system; (2) forage commodities 

supportive of the livestock and dairy industry, generally harvested and distributed or 

consumed in situ (Table 1). I assigned crop types of ambiguous composition to both 

edible and forage classes by splitting abundance 50:50 between the two classes.  Areas of 

double crop categories of an edible and fiber (or forage) crop were classified as half 

edible and half forage.  Fallow/idle cropland was assigned to edible and forage 

categories.  These included fallow/idle and double crop categories, i.e., a succession of 

two crops in the same cell during 2011 of an edible crop and cotton or an edible crop and 

a forage crop.   Classes k = 1 and 2, and combined as class 3 were used experimentally to 

examine composition and diversity of a number, S(k), of crops from perspectives of 

different stakeholders.  Total crop type richness So = S(k=3) = 48 was subset to 33 types 

in the edible class and 15 types in the forage class. 

 Overall classification accuracy of row crops and annual fruit and vegetables is 70.8% 

trending upwards of 85-95% for major crop-specific land cover categories (USDA 2013).  

Accuracy rates below 70% are exclusive to minor crops such as triticale, watermelons, 

and onions, and for locations that hosted two crops in a year. Calculations were applied to 

76% (24,159,191 ha) of the state’s area within a square lattice of length L = 214 = 16,384 

30-m wide cells occupied by Ao = 8,099,291 ha of CDL types in this study (Figures 1 & 

2).  Crop areas were tallied in a hierarchical log base-4 series of nested square blocks 
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starting with unit cells at order ω = 0 and progressing to ω =14 = Ω, the highest order.  

Thus individual blocks at each order were composed of 30-m cells that covered areas 900 

× 22ω m2. 

Producer and distributor crop diversity 

The goals were to identify an optimal order and locations of proposed food hubs 

that could serve clusters of producers and simultaneously reduce transportation costs of a 

centralized distributor at an annual time scale.  I assumed producer’s precise knowledge 

is restricted to their own inventory.  In contrast, distributors enjoy a complete inventory 

of crops across the study area.  Thus, I normalized crop areas within and among blocks 

differently for producers and distributors, calculated respective entropies to characterize 

diversity and equivalently uncertainty, and compared mean entropies by order to identify 

an optimal hub scale at which a distributor’s uncertainty is lowest compared to 

producers’. 

Conceptually, producers were occupants of individual 26 = 64 x 64 cell blocks 

(368.64 ha each, n = 65,536) and defined the state of each block, i = 1, 2, … n(ω), as the 

vector of areas occupied by CDL categories j = 1, 2, … S(k).  For producers, proportions 

of crop areas 

( )

, , ,( , ) ( , ) / ( , )
S k

i j i j i j
j

p k a k a kω ω ω= ∑     [1] 

where 
( )

,( , ) 1
S i

i j
j

p kω =∑ for each block.  For distributors, proportions of crop areas 
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, ,( ) ( ) /i j i j op a Aω ω=      [2] 

where ,o i j
i j

A a=∑∑ and obeyed the conservation law 
( )

,( ) 1
oSn

i j
i j

p
ω

ω =∑∑  (Dunn et al. 

2011).  Probabilities were used to calculate Shannon entropy 

( )

, ,( , ) ( , ) log ( , )
S k

i i j i j
j

H k p k p kω ω ω= −∑  with the notable property that distributor entropies 

( , )d iH kω  from distributor probabilities (Eq. 2) were additive across the set of blocks and 

classes within each order while producer diversities ( , )p iH kω  were additive within each 

block for any subset of ( )S i .  By design, producer and distributor diversities were 

necessarily equal at ω = Ω , thereby giving closure (sensu Giampietro 2004) for a system 

constrained by total richness So and area Ao (Harte et al. 2008). 

I hypothesized that for a class k the hierarchical partitioning of crop areas among 

orders would produce mean values of distributor diversity that obey a Horton 

law ( ) exp( )dH c bω ω= +  where ( 1)log
( )

d
c

d

HR b
H
ω
ω
+

= = , the Horton ratio of diversity 

(Dunn et al. 2011).  To find potential hub locations, I sought *ω , the solution to 

( )( ) ( ) 0p d
d H H

d
ω ω

ω
− =  , where the maximum deviation between expected producer 

diversity and distributor diversity indicated the hub’s greatest power to reduce 

uncertainty among blocks.  I found *ω  for the edible class, the forage class, and the 

combination of edible and forage classes (Table 1) to represent perspectives of local food 

system stakeholders in the first case, livestock producers in the second, and the entire 
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agricultural community in the third. 

Scripts were written in the Python (v. 2.7) arcpy module to summarize the raster 

image so it could be interpreted by MATLAB (v.8) on a computer with 8 GB RAM. 

Multi-scale crop composition and fractal scaling 

I used principal components analysis to characterize relative crop abundance 

simultaneously in all blocks of orders 9 through 13.  For each order, areas were 

normalized to proportions that summed to unity across blocks.  Respective variances and 

covariances were added across orders before eigenanalysis so that blocks of any order 

could be assigned scores on each PCA axis.  Eigenvectors for PCA axis 1 were used to 

score blocks as linear functions of crop proportions.  A novel “glass blocks” visualization 

was used to examine variation in crop composition among locations and orders. 

I estimated box-counting fractal dimensions to characterize how crops filled space 

in the limit as box length, L = 900 2ω m2
, goes to zero (Mandelbrot 1983). Under the null 

hypothesis a fractal dimension D = 2.0 was expected where crops fill space in wall-to-

wall fashion or as a randomly distributed subset of the plane (Milne 1992).  Dimensions 

less than 2 were diagnostic of environmental constraints or management practices that 

limit crop distribution. Blocks were tallied if one or more crop types were present, 

visualized as a count of orders (Milne et al. 1996) that registered an occupation.  Tallies 

were fit as a power of box length to estimate the fractal dimension, D, the absolute value 

of the slope of log-log transformed counts and box length.  The Akaike Information 

Criterion, AICc, for small sample sizes (Hurvich and Tsai 1989) determined the upper 

limit, ωu, to the orders used to estimate D, with ωu = 13, 12, and 12 for edible, forage, 
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and combined classes, respectively. 
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RESULTS 

Multi-scale crop composition and fractal scaling 

I examined crop composition for orders 9 through 13 by displaying PCA axis 1 

scores of individual blocks in geographical space (Figure 3).  Scores were obtained from 

distributor probabilities to make blocks at various scales directly comparable. Axis 1 

represented 97-99% of the variance in separate analyses of edible, forage, and combined 

crops.  Edible crop composition was most differentiated in the eastern portion of the 

study area. Conspicuous nesting of boxes indicated concentrations of influential crop 

types as block size decreased.  Extreme negative PCA scores were due to winter wheat 

and fallow/idle cropland in the edible class with relatively large abundances and extreme 

values in the eigenvector (Table 1).  High PCA scores for forage crops were attributed to 

grassland which comprised 93% of forage area.  Grassland dominated in the analysis of 

combined specialty and forage crops and produced patterns at all scales that were 

indistinguishable from the PCA of forage crops alone.   

The box-counting fractal dimension of edible crops (D = 1.798, s.e. 05452, p < 

0.001) was significantly lower than 2.0 (t = -9.06, p = 0.0038) and significantly lower 

than that of the forage class (D = 1.876, s.e. 0.044, p < 0.001; t = -3.86, p = 0.02).  Thus, 

for any quadrupling of land area, forage crops exhibited 5.5% greater occupied area than 

edible crops, commensurate with the more spatially saturated forage cover (Figure 2).  

Considering all crops together (D = 1.876, s.e. 0.044, p < 0.001, Figure 4), the space-

filling tendency was dominated by grassland which induced a dimension equal to that of 

forage crops alone yet significantly less than 2  
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(t = -214.72, p < 0.001).  All three classes were restricted to subsets of the 2-dimensional 

plane. 

Scaling of crop diversity 

Distributor probabilities with the constraint 
( )

,( ) 1
oSn

i j
i j

p
ω

ω =∑ ∑  gave total 

diversities at each order 

   
( )

, ,( ) ( ) log ( )
oSn

T i j i j
i j

H p p
ω

ω ω ω= −∑ ∑  .   [3] 

 

which I compared to diversities obtained from the producer probabilities (Eq. 1).  

Striking differences in diversity were found in comparisons that involved stakeholder 

perspective, spatial scale, and class of crop.  Figure 5 shows the quartile distribution of 

diversity for producers and distributors at each order. Mean values at each order were 

fitted via linear regression. Distributor diversity of edible crop types exhibited clear 

Hortonian behavior across scales (b=1.26, R2 = .9997, p < 0.001).  Forage did not reveal 

as clear of a relation as for the distributor. For both edible and forage cover type classes, 

distributor diversity tended to be an order of magnitude lower than producer diversity at 

each order.  This allowed the identification of the optimal hub scale ω*, for edible 

(ω*=12) and forage (ω*=10) classes (Figure 6).  

Distributor and producer diversities, viewed at their respective optimal hub 

orders, were radically different both in magnitude and spatial distribution (Figure 7).  

Magnitudes of distributor diversities were necessarily lower because the sum of 

probabilities for any given block was much less than unity, while every vector of 
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producer probabilities was, by design, equal to unity.  For the same reason the spatial 

pattern of diversity differed between distributors and producers.  For distributors, peak 

diversity of edible crops centered over Roswell, New Mexico on the eastern border of the 

study area. For producers it reached a maximum near Las Cruces on the southern border.  

Comparing distributor to producer diversities of forage crops showed a westward shift of 

peak distributor diversity away from the northeast corner, accompanied by a latitudinal 

bifurcation that favored higher producer diversity north and south.   

Part-to-whole diversity relations and leverage 

For the study area as a whole (ω = Ω ), the contribution of crop j to total diversity 

simplified to 

   ( ) log ( )j j jH p p= − Ω Ω     [4] 

such that 
( )

( )
S k

T j
j

H HΩ = ∑ .  I examined per-area contributions of crops to total 

diversity by relating cumulative diversity 
( )

1

t S k

t j
j

H H
≤

=

= ∑ to cumulative area 

( )

1

t S k

t j
j

A A
≤

=

= ∑ (Figure 8). Within each class, crops were sorted from highest to lowest 

“leverage” ratio, /j j jH Aη =  to consider two null hypotheses. One, that mean ratios of 

individual crops equaled the respective class-wide ratio, (i.e., 

Ho:
( ) ( ) ( )1( ) /

( )

S k S k S k

j j j
i j j

k H A
S k

η η= =∑ ∑ ∑ ) which were rejected for edibles (t = 12.03, df = 

32, p < 0.0001) and forage crops (t = 8.17, df 14, p < 0.0001).  Two, that mean ratio 
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for crops of class k equaled the ratio for all crops combined, Ho: ( ) /T ok H Aη = .  Among 

edible crops, cherries and the double crop Durum wheat/sorghum led a majority of edible 

crops with numerically greater leverages than expected (t = 23.11, df 32, p < 0.0001; 

solid green boxes, Figure 8).  Two remaining edibles (i.e., fallow/idle and winter wheat) 

had leverage values below expected for edibles, thereby resulting in closure across the 

class.  Nine of 15 forage crops put the mean forage leverage above expected overall (t = 

8.03, df = 14, p < 0.0001) in the following order: double Durum wheat/sorghum, 

lettuce/cotton, barley/sorghum, oats/corn, millet, winter wheat/cotton, barley/corn, and 

winter wheat/corn. These evaded visualization as minute solid red boxes in the lower left 

corner of the blue forage box (Figure 8), while grassland (97% of forage area) with the 

lowest impact on diversity per area of all types, constituted the long horizontal box in the 

upper right corner. 

To display the spatial distribution of leverage among potential hubs, the sum of type 

areas weighted by leverage ratio, jη , was divided by the sum of areas weighted by the 

expected leverage, ( )kη , so that small areas of high-leverage crops would be amplified 

( / ( ) 1j kη η > ), and large areas of low-leverage crops would be diminished ( / ( ) 1j kη η < ). 

This exercise was repeated for the three different leverage ratios for edible, forage, and 

combined cover types (Figure 9 a, b, & c, respectively) to reveal cells at the hub scale 

along the western side of the study area whose areal composition of crop cover 

contributed more to the diversity of the whole foodshed relative to other blocks of the 

same scale.   
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DISCUSSION 

The identified asymmetry of producer and distributor perspectives is a useful 

comparison in that it reflects both real-world experience and underlying economic 

capacity to invest in foodshed infrastructure. Generally, food distributors are more tightly 

connected to demand than producers and thus to income, but producers supply the 

diversity of food to meet demand. 

The New Mexico foodshed is fractal, with spatial organization governed by law-like 

statistical behavior across scales. The maximum extent of inventory considered 

represents the context of both producer and distributor knowledge. From a producer’s 

perspective of uncertainty, only nearby inventory is considered. A distributor perspective 

integrates that knowledge of nearby inventory in the context of the whole foodshed, to 

the privilege of lower uncertainty. With a whole-system contextualization a distributor 

can expect an immutable logarithmic increase in uncertainty about supply inventory as 

hub infrastructure broadens its scope of aggregation. Across the same range of scales, 

producer uncertainty about inventory is much higher on average because it is based on 

information only from a local domain. This difference in uncertainty defines an optimal 

hub scale because of asymmetrical semantics of uncertainty and diversity that emerge 

from the producer and distributor perspectives. 

Distributors seeking to aggregate diverse local supply can offer producers access to 

demand and reduced overhead costs via shared hub infrastructure.  Investment in 

foodshed infrastructure entails risk, which is far more complicated than can be discussed 

here, but is nonetheless a function of uncertainty, scale, location, and perspective. If 

infrastructure is built on the premise of a distributor’s information, all users benefit 
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from lowered whole-system uncertainty. Specific aspects of planning a hub (i.e. 

refrigeration, storage space, processing equipment, packaging equipment, etc.) require 

anticipation of what inputs are received. The average diversity of those inputs is a 

predictable function of scale for a distributor, but not for producers.   

A distributor offers producers efficiency and lower uncertainty. Producers offer a 

distributor resilience, and higher diversity. Ergo, these mutually exploitable asymmetries 

of capacity and information can be leveraged for mutual benefit. 

In a world where the dominant means of food production are global and driven by a 

need for ever-increasing industrial efficiency, prudent communities will satisfy demand 

for food by investing in resilient local infrastructure as a complement to industrial 

strategies. The theory and analysis presented here can be a tool for distributors to take a 

whole-system view of diversity and identify optimal scale and location of infrastructure 

to maximize impact on foodshed development. The CDL has data of the same 30-m 

resolution used in this study for every year 2003-present. Further research about the 

temporal patterns of spatial diversity would provide a clearer picture for long-term 

infrastructure after assessing temporal variation in ω*. Some cover types in the CDL, like 

winter wheat and fallow/idle, represent an ecological aspect of food production that can 

help restore soil biota stressed by intensive chemical use. Since the industrial revolution, 

diverse landscapes have been subject to non-diverse practices to sidestep differences in 

location and achieve economies of scale in food production (Leach 1975). The 

incorporation of fossil energy to increase labor efficiency increased yields, but decreased 

energy efficiency is the precarious focus of today’s food system. According to resilience 

theory (Holling 2001; Ulanowicz et al. 2009), efficient systems emerge through the 
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expenditure of adaptive capacity, or resilience, and become adapted; resilience is thus in 

a trade-off with efficiency that sustainable systems seek to balance. Maize monoculture is 

an example of a system where exceptional production efficiency compromises its 

sustainability (Patzek 2008). In contrast to efficiency, diversity and redundancy of 

functional elements may be inefficient in labor or time, but these qualities of a system can 

diffuse the capacity of an external shock to disrupt flows of energy and matter essential to 

sustain it. From a thermodynamic standpoint, all enterprises of human civilization 

produce wealth by virtue of infrastructure that dissipates highly concentrated energy from 

fossil fuel and other sources to sustain economic growth (Schneider and Kay 1994, 

Garrett 2011). It is imperative to consider how energy and wealth are allocated to food 

infrastructure that sustains human society. 

The whole-system approach to define state-variables (Harte 2008) has its roots in 

statistical mechanics of physical systems and touches on a future pathway to consider 

how physical constraints shape the diversity of biota. Rosen (1989) posits a general 

renormalization to render equivalent patterns of “behavioral” state-variables (i.e. 

phenotypic or crop diversity) to “control” state-variables, i.e. environment.  

The clear difference between edible and forage crop classes lends weight to the 

relationship of diet and land use, adding a novel perspective on how agricultural land is 

partitioned among a diversity of crop types. Differences in diet, in relation to a 

foodshed’s capacity, have been examined in cities in New York State (Peters et al. 

2009b). Consumer flexibility in the context of local ecology matters for sustainability: 

livestock displace vegans in an omnivorous population if those livestock compete for 
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land. Animal products differ dramatically from vegetables, fruits, and grains, insofar as 

most of their carbon and energy costs are accrued prior to direct transport, suggesting 

layered complexity in the flows of energy that produce food (Weber & Matthews 2008). 

The trophic-dynamic concept of ecosystems is the theoretical lens through which space, 

energy, and food biomass can be seen as convergent.  Trophic-dynamics state that as 

energy and matter flow through a hierarchical food-chain, energy is degraded by an order 

of magnitude at each step (Lindeman 1947). Crops grown for a local vegetarian diet are 

the first trophic level of human consumption, whereas grains and pasturelands feed 

livestock that are the second trophic level. This theory predicts that for a given animal’s 

body size, its diet affects its spatial range and population density by an order of 

magnitude (Damuth 2007). New Mexico, whose rangelands occupy ten times as much 

space as croplands and yield ~95% of the net agricultural income (USDA 2011), 

exemplifies an agricultural landscape advantageously suited for the growth of local 

animal products. Livestock, especially ungulates, are the means through which humans 

transform diffuse solar energy (stored in cellulose) to concentrated food energy such as 

meat, dairy, and eggs. Knowledge of diet and nutritional differences is necessary to help 

make sensible decisions to plan diversity and capacity of foodsheds on the basis of local 

ecology. 

The fractal nature of crop diversity revealed by an hierarchical perspective is exciting 

for theoretical and practical reasons. Fractals are characterized by geometrical similarity 

between a whole system and its parts, which in nature emerges through self-organization. 

Hypothetically, the same scaling laws that apply to the agricultural landscape of New 

Mexico could be dilated to encompass the entire Southwestern United States. From a 
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practical perspective, shifting focus upscale and ‘downstream’ in the foodshed could aid 

in building regional networks of food hubs. Conversely, shifting focus to finer resolutions 

of crop diversity—polycultures, plant families, and population genetics—may very likely 

reveal the same stunning intricacies one finds in the infinitesimal folds of the Mandelbrot 

set. Imagine if instead of remotely-sensed, 30-m monoculture pixels there were a dataset 

built by a critical mass of small farmers cooperatively sharing their specific inventories 

on a smartphone app which could calculate drop-off locations for vegetable carpools to 

the local food hub, thereby streamlining the bulk delivery of fresh, healthy, diverse 

produce to nearby consumers. Though the scale of data presented here spans orders of 

magnitude, it is only a small part of the foodshed story waiting to be told by producers, 

distributors, and consumers alike. 
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Table 1: Cropland Data Layer types for the 2011 New Mexico growing season.  Crop 
areas are expressed as total area with accuracies according to USDA, National 
Agricultural Statistics Service (2013). Relative abundances are with respect to areas 
occupied in total (Ao), exclusively by edible types (Ae) and forage types (Af). 
Eigenvectors are from separate principal component analyses for each class; absolute 
values of 0.00 occur where the vector element was less than 0.01. Forage crops are 
indicated by dark shading and ambiguous crops that were split between edible and forage 
classes by lighter shading. 

 

 

   % Abundance relative to: PCA axis 1 eigenvector 
Cover Type Cover Area (ha) Accuracy (%) Ao Ae Af All Edible Forage 
Corn 17930.34 79.87 0.22 0.00 0.23 0.00 n/a 0.00 
Sorghum 29280.96 76.32 0.36 0.00 0.37 0.00 n/a 0.00 
Peanuts 927.27 65.61 0.01 0.41 0.00 0.00 -0.01 n/a 
Pop or Orn Corn 22.68 88.93 0.00 0.01 0.00 0.00 0.00 n/a 
Barley 1797.84 50.92 0.02 0.79 0.00 0.00 -0.01 n/a 
Durum Wheat 815.67 64.14 0.01 0.36 0.00 0.00 0.00 n/a 
Spring Wheat 279 0.00 0.00 0.12 0.00 0.00 0.00 n/a 
Winter Wheat 130228.29 83.10 1.61 57.28 0.00 0.02 -0.94 n/a 
Rye 680.85 62.72 0.01 0.30 0.00 0.00 0.00 n/a 
Oats 1558.71 52.66 0.02 0.69 0.00 0.00 0.00 n/a 
Millet 427.41 72.42 0.01 0.00 0.01 0.00 n/a 0.00 
Alfalfa 67525.38 91.06 0.83 0.00 0.86 0.00 n/a 0.00 
Dry Beans 1520.28 91.73 0.02 0.67 0.00 0.00 0.00 n/a 
Potatoes 228.42 99.62 0.00 0.10 0.00 0.00 0.00 n/a 
Other Crops 105.03 0.00 0.00 0.05 0.00 0.00 0.00 n/a 
Watermelons 51.93 23.53 0.00 0.02 0.00 0.00 0.00 n/a 
Onions 966.06 63.18 0.01 0.42 0.00 0.00 0.00 n/a 
Fallow/Idle Cropland 135658.26 71.85 1.67 29.83 0.86 0.01 -0.33 0.01 
Cherries 12.6 n/a 0.00 0.01 0.00 0.00 0.00 n/a 
Apples 232.47 n/a 0.00 0.10 0.00 0.00 0.00 n/a 
Grapes 27 n/a 0.00 0.01 0.00 0.00 0.00 n/a 
Pecans 9847.26 85.85 0.12 4.33 0.00 0.00 0.00 n/a 
Grassland Herbaceous 7661183.85 n/a 94.59 0.00 97.13 1.00 n/a 1.00 
Pasture/Hay 21297.96 n/a 0.26 0.00 0.27 0.00 n/a 0.00 
Pistachios 333.54 98.06 0.00 0.15 0.00 0.00 0.00 n/a 
Triticale 1361.7 50.22 0.02 0.60 0.00 0.00 0.00 n/a 
Peppers 1792.17 73.47 0.02 0.79 0.00 0.00 0.01 n/a 
Apricots 15.3 n/a 0.00 0.01 0.00 0.00 0.00 n/a 
Dbl Crop WinWht/Corn 3316.77 56.54 0.04 0.73 0.02 0.00 -0.03 0.00 
Dbl Crop Oats/Corn 215.19 72.60 0.00 0.05 0.00 0.00 0.00 0.00 
Lettuce 64.44 96.76 0.00 0.03 0.00 0.00 0.00 n/a 
Pumpkins 151.29 66.77 0.00 0.07 0.00 0.00 0.00 n/a 
Dbl Crop Lettuce/Cotton 25.38 n/a 0.00 0.01 0.00 0.00 0.00 0.00 
Dbl Crop Durum Wht/Sorghum 5.67 n/a 0.00 0.00 0.00 0.00 0.00 0.00 
Dbl Crop Barley/Sorghum 212.04 19.39 0.00 0.05 0.00 0.00 0.00 0.00 
Dbl Crop WinWht/Sorghum 4058.91 62.33 0.05 0.89 0.03 0.00 -0.03 0.00 
Dbl Crop Barley/Corn 3097.8 76.09 0.04 0.68 0.02 0.00 -0.02 0.00 
Dbl Crop WinWht/Cotton 2001.69 39.90 0.02 0.44 0.01 0.00 -0.02 0.00 
Cabbage 34.11 57.41 0.00 0.02 0.00 0.00 0.00 n/a 
Total area Ao: 8099291.52 % of Ao: 100.00 2.81 97.19    
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Figure 1. New Mexico study area (24,159,191 ha) and orientation.  Colors correspond to 

Cropland Data Layer types in the 2011 growing season. 
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Figure 2.  Densities (log10) of 30-m cells within 1474.56 ha blocks sampled from the 
USDA Cropland Data Layer occupied by: (a) combined edible crops, (b) forage crops 
including highly prevalent grassland, and (c) combined edible and forage for the 2011 
New Mexico growing season within the 24,159,191 ha study area. 
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Figure 3. Crop composition represented by: (a) principal component analysis axis 1 
eigenvectors and (b, c, d) PCA scores for blocks of orders 9-13 in analyses of edible, 
forage, and combined edible and forage classes, respectively.   Color spectrum from blue 
to red corresponds to box lengths short to long. 
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Figure 4.  Box-counting fractal scaling relations of edible and forages crop classes.  Top 
row:  maps at ω = 7 resolution of the number of orders 7-13 that included the cell within 
an occupied block. Bottom row: Power law relations with box-counting fractal 
dimensions for each crop class. 
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Figure 5. Quartiles (boxes) and mean values (open circles) of Shannon uncertainty at 
each order ω = 7, 8, 9…Ω organized by crop type and accounting schema. Identical axis 
scaling emphasizes differences between distributions. For both edible (top) and forage 
(bottom) crops, the difference between producer (left) and distributor (right) diversities 
show Hortonian behavior for distributors. Dashed lines are linear regressions of mean 
uncertainty values on order.  
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Figure 6. Optimal hub orders for edible (top) and forage (bottom) classes based on the 
difference between producer and distributor uncertainty (dashed line). Arrows indicate 
ω* at the maximum difference. Top: Poducers’ mean edible crop uncertainty is higher 
than distributor’s mean uncertainty across all orders < 14, and observed distributor mean 
uncertainty indistinguishable from the regression curve. Bottom: Distributor uncertainty 
for forage does not show perfect Hortonian scaling. As is the case with the edible crops, 
forage distributor and producer uncertainty reach closure at order Ω = 14.  

 

 



 

 

33 

 

 

Figure 7.  Distributor and producer diversities at optimal hub orders for edible (green, ω* 

= 12) and forage (red, ω* = 10) crop classes from the 2011 New Mexico growing season.  
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Figure 8. Part-to-whole relations of distributor diversity and area for edible and forage 
classes (blue boxes) and constituent crops (green and red boxes) for the 2011 New 
Mexico growing season.  Blue diagonal line with slope 0.78 indicates the ratio of log 
diversity to log area under the null expectation that edible and forage crops contribute 
equally to diversity per unit area.  Thin green and red diagonals indicate expected log-log 
diversity-to-area ratios for edible and forage classes, respectively.  For individual crops, 
solid boxes indicate diversity-to-area ratio greater than expected for the class and dashed 
boxes the opposite. 
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Figure 9. Spatial distributions of block leverages for: (a) edible (z-axis 0 – 2.5); (b) 
forage crops (z-axis 0 – 20) at optimal hub orders 12 and 10, respectively, based on 
within-class leverages; and (c) leverages of edible (green) and forage (red) crops on the 
common basis of leverage expected for all crops combined (z-axis 0 – 36). 
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