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ABSTRACT

I devise a numerical method of high order in space (FDMHS) to simulate flow
past a finite plate and a semi-infinite plate. The method solves the incompressible
Navier-Stokes equation in the stream function-vorticity formulation. The focus is
to study a fundamental problem in fluid dynamics, namely, flow past sharp edges.
Resolving this flow structure is difficult, in particular at early times. The difficulty
is due to the fact that large velocity gradients and vorticity are present in a very
thin boundary layer attached to the plate initially. FDMHS is a splitting method,
implicit in time and uses compact fourth order finite differences. FDMHS has
demonstrated satisfactory performance in our numerical simulations.

For the finite plate case, three background flow are used: impulsively started,
uniformly accelerated, and oscillating. Resolved computations show structure of
the boundary layer separation and roll-up from very early times to relative large
times. For the impulsively started, the details of vorticity structure at early times
have been studied. We resolved the region of negative vorticity along the plate
induced by and entrained into the leading vortex. A secondary entrainment of
positive vorticity into the region of negative vorticity is also found. The maxi-
mum velocity decays as t−1/4 over a large initial time interval. For the uniformly
accelerated, we show evolution in the appropriate non-dimensional variables, and
find agreement with scaling laws observed in experiments. For the oscillating,
we compared the viscous simulation using FDMHS with an inviscid vortex sheet
method. Both are in excellent agreement at early times. There are difference at
later times most likely caused by wall vorticity which is not accounted for by the
vortex sheet model. The shed circulation is independent of viscosity initially for all
three background flows. The effect of viscosity on the vorticity evolution and on
quantities such as the shed circulation, core trajectory and vorticity, vortex size and
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width are also presented. For the semi-infinite plate case, we derived the scaling
rule and verified it numerically.

v



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Problem description 5

2.1 Driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Viscous flow past a finite plate . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Viscous flow past a semi-infinite plate . . . . . . . . . . . . . . . . . . 8

3 Numerical methods 12

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Finite Difference Method of High Order in Space (FDMHS) . . . . . . 14

3.2.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Two-level semi-Lagrangian method . . . . . . . . . . . . . . . 17

3.2.3 Solve the Poisson equation and compute the velocity near the
boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.4 Thomas’ formula . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.5 Two-level and three-level Crank-Nicolson methods . . . . . . 21

3.3 Efficient implementations . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



3.3.1 Parallel implementation and efficiency . . . . . . . . . . . . . 23

3.3.2 Domain decomposition and CG as the Poisson solver . . . . . 26

3.3.3 Adaptive domain . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 FDM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 EC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Vortex sheet method . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Determine the necessary resolution using FDMHS 32

4.1 Effects of the resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 The resolution for Re=500 . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 The resolution for other Reynolds numbers . . . . . . . . . . . . . . . 42

5 Determine the order of accuracy of FDMHS 44

5.1 Driven Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Order of accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2 Comparisons with other methods . . . . . . . . . . . . . . . . 48

5.2 Finite Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Order of accuracy in space . . . . . . . . . . . . . . . . . . . . . 51

6 Viscous flow past a finite plate 54

vii



6.1 Impulsive start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Evolution at an early time . . . . . . . . . . . . . . . . . . . . . 54

6.1.2 Evolution at a long time . . . . . . . . . . . . . . . . . . . . . . 61

6.1.3 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.4 Vortex size and width . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.5 Vortex core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.6 Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Uniform acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Dependence on the acceleration . . . . . . . . . . . . . . . . . 78

6.2.3 Vortex core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.4 Vortex size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.5 Dimensionless variables . . . . . . . . . . . . . . . . . . . . . . 83

6.2.6 Dependence on Rea . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.7 Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Oscillatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.3 Vortex core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



6.3.4 Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.5 Vortex width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.6 Shear layer strength . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Viscous flow past a semi-infinite plate 105

7.1 Derivation of the scaling rule . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Numerical verification of the scaling rule . . . . . . . . . . . . . . . . 107

8 Summary 110

Appendix 113

I: Far-field flow induced by the vortex sheet for the finite plate case . . . . 113

Bibliography 115

ix



List of Figures

2.1 (a) A schematic of driven cavity flow and (b) the computational
domain of the driven cavity problem. . . . . . . . . . . . . . . . . . . 6

2.2 (a) A schematic of flow past a finite plate, and (b) the computational
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Three far-fields flows in simulations of flow past a finite plate. (a)
Impulsively started, (b) Uniformly accelerated, (c) Oscillatory. . . . . 7

2.4 (a) A schematic of flow past a semi-infinite plate and (b) the compu-
tational domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Determine the computational domain of flow past a semi-infinite
plate.Solid line: the semi-infinite plate, dotted line: the computational
domain, dash-dotted line: the path of a fluid particle. . . . . . . . . . . 10

2.6 Domain independence verification of flow past a semi-finite plate.
(a) Three domains are chosen, black, blue and red. (b) Plot of maxi-
mum velocity Umax vs.t using these three domains. . . . . . . . . . . . 10

2.7 The domain decomposition of flow past a semi-infinite plate. The
simulation in sub-domain (cyan) is pre-computed and its results pro-
vide the incoming vorticity boundary condition for the main domain
(red), in which a following simulation is conducted. The overlap be-
tween the two regions is shown in green. . . . . . . . . . . . . . . . . 11

3.1 Spatial mesh grids near the solid boundary. . . . . . . . . . . . . . . . 20

3.2 The application of parallel FDMHS using 12 processors. Bold solid
line is the plate; bold dashed line is the center line of the plate; the
solid line around four sides sets the computational domain; black
dots are interior grid points; empty dots are boundary grid points. . 24

3.3 Strong scaling of FDMHS in the driven cavity problem. The figure
plots the speed up (tP/t1)vs.P, where tP is the runtime for a sample
problem with a fixed number of degrees of freedom (= 106) com-
puted on P processors. t1 is the runtime of the serial code. . . . . . . 25

x



3.4 A adaptive domain is used in flow past a finite plate to save compu-
tational expense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 (a) Order of accuracy in space and (b) in time, using EC4. The y axis
for both figures are the maximum errors over the whole domain.
The x axis for (a) is h and for textit(b) is ∆t. . . . . . . . . . . . . . . . 30

4.1 Vorticity contours for Re=500 at t =0.05 for the problem of flow past
a semi-infinite plate. The spatial mesh size and temporal step are (a)
h=0.0015625, ∆t=0.0001, (b) h=0.003125, ∆t=0.0001, (c) h=0.003125,
∆t=0.0002, (d) h=0.003125, ∆t=0.0004, (e) h=0.00625, ∆t=0.0002, (f)
h=0.0125, ∆t=0.0002, (g) h=0.0015625, ∆t=0.0001. The contour levels
of the vorticity are ±2[−8:8]. The vorticity is negative in dashed lines
and the positive in solid line. . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Vorticity contours at t=0.05 for Re=500 for the problem of impulsively
started flow past a finite plate. The mesh size and time step is (a)
h=0.00078125, ∆t = 5 × 10−5, (b) h =0.0015625, ∆t = 1 × 10−4, (c) h
=0.003125, ∆t=2 × 10−4, (d) h =0.00625, ∆t=4 × 10−4. ω = ±2[−5:12]. . . . 35

4.3 Vorticity contours at t=0.05 for Re=500, h = 0.003125 for the problem
of impulsively started flow past a finite plate. The time step is (a) ∆t
= 1 × 10−4, (b) ∆t = 2 × 10−4, (c) ∆t=2.5 × 10−4. ω = ±2[−5:12]. . . . . . . 36

4.4 Maximum velocity Umax vs. t for Re =500 using four mesh sizes,
h=0.00078125, h=0.0015625, h=0.003125 and h=0.00625. The time
steps are ∆t = 5 × 10−5, ∆t = 1 × 10−4, ∆t = 2 × 10−4 and ∆t = 4 × 10−4,
respectively. Plots of (b)(c)(d) are closeups of (a) over three different
time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Maximum velocity Umax vs.t for Re =500 using three mesh sizes,
h=0.0001953125, h=0.000390625 and h=0.00078125. The time steps
are ∆t = 2 × 10−6, ∆t = 4 × 10−6 and ∆t = 5 × 10−5, respectively. Plots
of (b) is a closeup of (a) in a smaller time interval. . . . . . . . . . . . . 39

4.6 vorticity contours near the tip for Re=500 at t=0.01. Three resolutions
are used with (a) h=0.003125, (a) h=0.0015625 and (a) h=0.00078125.
ω = ±2[−5:12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



4.7 Vorticity values along the plate for Re=500 at t=0.01. (b) is a closeup of
(a) near the plate tip. These curves that have negative values are from
above the plate, the other ones are from below the plate. h=0.003125
(dot-dashed line), h=0.0015625 (dashed line) and h=0.00078125 (solid
line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Plots of the stream function along the line x = 0.5, y ∈ [−0.2, 0.2]
for (a) Re=500 and (b) Re=2000. Three different mesh sizes are used,
h = 0.00625, h = 0.003125 and h = 0.0015625. Using results of
h=0.0015625 as the ’exact’ solution, the maximum errors in the stream
function along the line x = 0.5 ,y ∈ [−0.2, 0.2] for (c) Re=500 and (d)
Re=2000. t=0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Order of accuracy in time of FDMHS in driven cavity problem. Nine
time steps are used, ∆t = 0.0025 0.002 0.00125 0.001 0.0008 0.0005
0.0004 0.0002 and 0.0001. The mesh size is h = 0.015625. The com-
putation for each ∆t ends at t = 1. The result of ∆t=0.0001 is used as
the ’exact’ solution. The horizontal axis is the time step ∆t, and the
vertical axis is the error which is measured in the maximum norm
over the whole domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Order of accuracy of FDM2 and FDMHS in the driven cavity prob-
lem. The computation uses (a) FDM2, (b) FDMHS, and (c) FDMHS.
Six mesh sizes are h = 0.125, 0.0625, 0.03125, 0.015625, 0.0078125 and
0.00390625. The results of h=0.00390625 are used as the ’exact’ solu-
tion. The horizontal axis is the mesh size h, and the vertical axis is
the error which is measured in the maximum norm. The curves of
ψ, u and v are identical in(b) and (c), but curves forω are different. In
(b), the errors over the whole computational domain are considered,
and in (c), errors over the whole domain but excluding the regions
of two top corners, are considered. . . . . . . . . . . . . . . . . . . . . 47

5.3 The comparison between FDMHS and FDM2 in vorticity contours
for Re=10,000 at t=1. (a) Vorticity contours using FDM2, (b) Vorticity
contours using FDMHS. (c)(d) are closeup for (a)(b), respectively.
Both methods use the same coarse mesh sizes h=1/96, and the time
step ∆t is sufficiently small that the errors in space dominate. . . . . . 49

xii



5.4 The comparison between FDMHS and EC4 in vorticity contours and
instantaneous streamlines for Re=1000 at t=1. (a) Vorticity contours
and (b) instantaneous streamline using FDMHS. (c) vorticity con-
tours and (d) instantaneous streamline using EC4. The mesh size is
h=1/512, and the time step ∆t is small enough that the figures will
not change if using a finer ∆t. . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Instantaneous streamlines for Re=500 at t=0.04. . . . . . . . . . . . . . 51

5.6 (a) The values of the stream function along the line x = 0.5, y ∈
[−0.25, 0.25]. Four different mesh sizes are used, h=0.00625, h=0.003125,
h=0.0015625 and h=0.00078125. (b) absolute errors in the stream
function along the same line. Using h=0.00078125 as the ’exact’
solution. Re=500, t=0.04. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 Vorticity contours for Re=500 at t = 0.04. . . . . . . . . . . . . . . . . . 52

6.1 Vorticity contours for Re=500 at t = 0.0002, 0.0004, 0.001, 0.002, 0.004,
0.005, 0.01 and 0.02. For results at t = 0.0002, 0.0004 and 0.001, h =
0.000390625, ∆t = 2 × 10−6; for results at t = 0.002, 0.004, 0.005, 0.01
and 0.02, h = 0.00078125, ∆t = 1 × 10−5. ω = ±2[−5:12]. . . . . . . . . . . 57

6.2 Vorticity contours near the plate tip at time t=0.01 for Re=250, 500,
1000 and 2000. The contour levels are −2[−3:8] and 2[−3:12] for Re=200,
500, 1000 and −2[−5:8] and 2[−5:12] for Re=2000. . . . . . . . . . . . . . . 58

6.3 (a)Vorticity contours for Re=500 at t=0.04. four line segments are de-
picted, x=0.4, 0.425, 0.45 and 0.475. (b) shows the values of vorticity
along these lines segments. . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Migration of the negative vorticity region towards the plate center
by tracking the intersection of zero level streamline and the plate.
(a) Negative vorticity contours and instantaneous streamlines for
Re=500 at t=0.04. s measures the distance between the plate tip
and the intersection of zero level streamline and the plate. (b) The
evolution of s at discrete times is plotted in asterisks, the dashed line
is a least square fit of the data using the cubic interpolation. s is 0.5
at t = 0.0945. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiii



6.5 The maximum velocity Umax vs. t on a loglog scale, computed with
the indicated values of h. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Vorticity contours and instantaneous streamlines for Re=500 at t =
0.1, 0.2, 0.5 and 1. The contour levels of vorticity are ±2[−5:8] and the
contour levels of the stream function ψ are [−1 : 0.1 : 1]. . . . . . . . . 62

6.7 Continuation of figure 6.6. Vorticity contours and instantaneous
streamlines for Re=500 at t = 2, 3, 4 and 5. . . . . . . . . . . . . . . . . 63

6.8 The thickness of the negative vorticity region H at x = 0.4 vs.t for
Re=500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.9 Vorticity contours and instantaneous streamlines at t=1 for Re=20,
40, 126 and 200. The contour levels of the vorticity ω are ±2[−5:8] and
the contour levels of the stream function ψ are [−1 : 0.1 : 1]. . . . . . . 65

6.10 Continuation of figure 6.9. Vorticity contours and instantaneous
streamlines at t=1 for Re=500, 1000, 2000 and 4000. The contour
levels of the vorticity ω are ±2[−5:8] and the contour levels of the
stream function ψ are [−1 : 0.1 : 1]. . . . . . . . . . . . . . . . . . . . . 66

6.11 Vorticity contours and instantaneous streamlines for Re=4000 at t =
0.3, 0.6 and 0.9. The contour level of the vorticity ω is ±2[−5:8] and the
contour level of the stream function ψ is [−1 : 0.1 : 1]. . . . . . . . . . 67

6.12 Continuation of figure 6.11. Vorticity contours and instantaneous
streamlines for Re=4000 at t = 1, 1.5, 2, 2.5 and 3. . . . . . . . . . . . . 68

6.13 Vorticity contours and streamlines for Re=500 at t=0.5. s measures
the length of the vortex size which is the y-coordinate of the inter-
section between the y-axis and the zero level streamline . . . . . . . . 69

6.14 The loglog plots of (a) the scaled vortex size s/L vs.τ and (b) the
scaled vortex size s/L vs.Ut/L. The length of the plate is L = 1 and
τ = νt

L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.15 A schematic of the vortex width L of the contour level ω = 1. . . . . . 72

xiv



6.16 The vortex width L (ω = 1)vs.t for four Reynolds numbers Re = 250,
500, 1000 and 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.17 A Schematic of the integral region Ω (shadow) to compute the circu-
lation shed from the plate tip. . . . . . . . . . . . . . . . . . . . . . . . 75

6.18 The circulation shed from the tip Γ vs.t for four different Reynolds
numbers Re = 200, 500, 1000 and 2000 on (a) a linear scale, (b) a
logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.19 The circulation shedding rate dΓ/dt vs. t for four different Reynolds
numbers Re = 200, 500, 1000 and 2000. . . . . . . . . . . . . . . . . . . 76

6.20 Vorticity contours for a=100 at t = 0.02, 0.04, 0.06 and 0.08, ν=0.025.
The contours levels are ±2[−2:8]. . . . . . . . . . . . . . . . . . . . . . . 78

6.21 Continuation of figure 6.20. Vorticity contours for a=100 at t = 0.1,
0.2, 0.3 and 0.4, ν=0.025. The contour levels are ±2[−2:8]. . . . . . . . . 79

6.22 Vorticity contours at t=0.3 for a=10, 25 ,50, 75, 100 and 125, ν=0.025.
The contour levels are ±2[−2:8]. . . . . . . . . . . . . . . . . . . . . . . . 81

6.23 The scaled vortex size s
L vs. at2

L . . . . . . . . . . . . . . . . . . . . . . . 82

6.24 Vorticity contours at t∗ = 1.2 for Rea = 126.49, 200.00, 282.84, 346.41,
400.00, 447.21. The contour levels are ω∗ = ±2[−2:8]. . . . . . . . . . . . 84

6.25 Circulation shed from the tip Γ∗ vs. t∗ for Rea = 126.49, 200.00, 282.84,
346.41, 400.00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.26 Circulation shedding rate dΓ∗/dt∗ vs. t∗ for Rea =126.49, 200.00, 282.84,
346.41, 400.00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.27 Vorticity contours and instantaneous streamlines for Re=2000 at
t=0.5, 1, 2, 3, 3.5 and 3.8. The contour levels of the vorticity are
2[−5:10] and −2[1:8] and the contour levels of the stream function are
[−1 : 0.2 : 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xv



6.28 Locations of the vortex sheet and instantaneous streamlines for δ=0.1
at t=0.5, 1, 2, 3, 3.5 and 3.8, using vortex sheet method (all the
results using vortex sheet method hereinafter are courtesy of Monika
Nitsche). The contour levels of the stream function are [−1 : 0.2 : 1]. . 90

6.29 Left column: vorticity contours and instantaneous streamlines at t =
3.8. Re = 500, 1000 and 2000 (top to bottom), using FDMHS. The
contour levels of the vorticity are 2[−5:10] and −2[1:8]. Right column:
locations of the vortex sheet and instantaneous streamlines at t = 3.8
for δ = 0.2, 0.1 and 0.05 (top to bottom), using vortex sheet method.
The contour levels of the stream function are [−1 : 0.2 : 1]. . . . . . . 91

6.30 Vorticity contours and instantaneous streamlines for Re=4000 at
t=0.5, 1, 1.5 and 2. The contour levels of the vorticity are 2[−5:10] and
−2[1:8]. The contour levels of the stream function are = [−1 : 0.2 : 1]. . 92

6.31 Continuation of figure 6.30. Vorticity contours and instantaneous
streamlines for Re=4000 at t=2.5, 3, 3.5 and 3.8. . . . . . . . . . . . . . 93

6.32 The circulation shed from plate tip Γ vs.t for Re = 1000. Two mesh
sizes are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.33 The shed circulation Γ vs.t (a) using FDMHS for Re = 500, 1000 and
2000, and (b) using vortex sheet method for δ=0.2, 0.1 and 0.05. . . . 96

6.34 The circulation shedding rate dΓ/dt vs.t (a) using FDMHS for Re =
500, 1000 and 2000, and (b) using vortex sheet method for δ=0.2, 0.1
and 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.35 The vortex width L vs. t for Re = 2000. Three contour levels are
chosen ω = 1, 0.1 and 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.36 (a) The vortex width L ( ω = 1) vs.t for Re = 500, 1000 and 2000. (b)
The vortex width L vs.t for δ = 0.05, 0.1 and 0.2 using vortex sheet
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.37 Plots of horizontal velocity u along five lines x=0, 0.25, 0.5, 0.75 and
1. t=3.8 and Re=500, 1000 and 2000. . . . . . . . . . . . . . . . . . . . 100

xvi



6.38 Three scenarios to compute the horizontal velocity jump δu due to
(a) zero flow at infinity , (b) linear flow at infinity, and (c) u is of same
sign across y=0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.39 Plots of horizontal velocity u along five lines x=0, 0.25, 0.5, 0.75 and
1. t=0.5, 1, 2, 3 and 3.5, Re=2000. . . . . . . . . . . . . . . . . . . . . . 102

6.40 The shear layer strength δu along the plate for Re=2000 at t=0.5, 1, 2,
3 and 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.41 The shear layer strength δu along the plate for Re = 500, 1000 and
2000 at t=3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.42 (a) The vortex sheet strength σ along the plate at t=3.8 for δ=0.05, 0.1
and 0.2 using the vortex sheet method. (b) a closeup of (a) near the
plate tip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 (a)Vorticity contours for ν=0.01 at t=0.25. (b) Scaled vorticity con-
tours for ν=0.002 at t=0.002 in a scaled domain. The contour levels
of the vorticity are ±2[−2:8]. . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 (a) Predictions of the trajectories of the centroid for ν=0.005, 0.0025,
0.002 and 0.00125 based on one computation at ν=0.01. (b) The actual
trajectories of the centroid at ν=0.005, 0.0025, 0.002 and 0.00125 based
on the computations (cyan). . . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Location of point vortices and test points on half of the vortex sheet.
Solid line: vortex sheet, white dots: point vortices, dark dots: test
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvii



List of Tables

2.1 Determination of the plate length that should be included, in the
computation of flow past a semi-infinite plate, provided that the
terminal time is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The Comparison of three Poisson solvers: CG, BiCGS and GMRES[15].
FP stands for the problem of flow past a finite plate. FDM2 stands
for a finite difference method that is second order in space and time.
The computations are performed on my laptop. . . . . . . . . . . . . 19

3.2 Strong scaling of FDMHS in the problem of flow past a finite plate.
Number of micro seconds per time step for a fixed number of degrees
of freedom (DOF) (106). t1 is the runtime of parallel FDMHS using
one processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Weak scaling of FDMHS. Average number of micro second per time
step for a fixed number of degrees of freedom (= 2.56 × 104) per
processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Relative errors in Umax using (4.1). . . . . . . . . . . . . . . . . . . . . 37

4.2 Umax at ∆t for different h’s. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 The slopes of line segments in figure 5.2bc. Vorticity ω is for figure
5.2b and vorticity ω∗ is for figure 5.2c. . . . . . . . . . . . . . . . . . . 46

5.2 Maximum errors in the stream function along the line x = 0.5, y ∈
[−0.25, 0.25] for Re=500. The result at h = 0.00078125 is used as the
’exact’ solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Trajectory (xc, yc) and values ωc of the vortex core for Re=500 at
t=0.04. Using the solution at h = 0.00078125 to be the ’exact’ value. . 53

6.1 A summary of vortex size information for Re=40 and Re=126. . . . . 70

6.2 The trajectory (xc, yc) and values ωc of the vortex core for Re = 200,
500, 1000 and 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xviii



6.3 The trajectory (xc, yc) and values ωc of the vortex core for a = 10, 25,
50, 75 and 100, ν=0.025. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 The trajectory (xc, yc) and values ωc of the vortex core for Re=2000. . 94

6.5 The shear layer strength δu and the coordinates of the local extrema
of u above and below the plate. t=3.8 and Re=2000. The location of
the first local extrema below the plate is referred to as y below while
the one above is referred to as y above. . . . . . . . . . . . . . . . . . . 104

7.1 Parameters used in the computation for ν=0.01. The time step is ∆t,
the mesh size is h, and t is the terminal time. . . . . . . . . . . . . . . 107

7.2 The scaling in time and length at ν = 0.005, 0.0025, 0.002 and 0.00125
based on ν=0.01. The time scale is T, a length scale is L, and t′ is the
terminal time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xix



1 Introduction

Viscous fluid flow past a bluff body is a fundamental problem that has been studied
for more than ten decades, following Prandtl’s (1904) experiments. In his work,
Prandtl introduced the concept of a boundary layer, which is a layer of fluid in the
immediate vicinity of a wall in which the effect of viscosity is significant. Because
of viscosity, the fluid velocity equals the wall velocity at the boundary, while it
approaches the far field velocity Umax in a finite distance from the wall. This finite
distance is the boundary layer thickness δ, and it depends on viscosity ν and time t
in the form of δ ∼

√
νt. For steady walls, velocity gradients in the boundary layer,

and thus the vorticity, are proportional to Umax/
√
νt, and are especially large at early

times when t is small. The boundary layer separates in regions of large curvature,
or at corners, and rolls up forming a vortex, often referred to as the starting vortex.
The starting vortex is important in many applications. For example, it is associated
with the lift force that insects gain by flapping wings; with the force that acts on
pillars in a wavy viscous flow and with air swirls that form around buildings
exposed to large winds. Investigating the detailed structure and evolution of the
starting vortex helps understand this fundamental phenomenon.

My thesis focuses on boundary layer separation at the sharp edges of plates of
zero thickness. Vortex separation at edges is ubiquitous and has been the focus of
several experimental and numerical studies. The experimental studies most closely
related to this work are the following. Pierce [34] visualized flow past finite plates
and studied the effect of varying plate profiles. Taneda and Honji [44] varied the
background flow and found a scaling rule relating viscosity, time and vortex size.
Pullin and Perry [36] considered flow past wedges. Lian and Huang [28] obtained
data on the shed circulation. In all these experimental visualizations, one can see
that the boundary layer separates at the sharp edge and rolls up, forming a spiral
vortex. In many cases, the outer turn of the vortex spiral is observed to become
unstable and breaks up into a group of secondary vortices. Careful direct numerical
simulations of flow past bluff bodies have been performed by several researchers.
For example, Wang [50] used a fourth order finite difference scheme to simulate
flow past an elliptical wing undergoing heaving and pitching motion. Wang, Liu
and Childress [47] studied the flow past an ellipse. Several other authors have used
body-fitted grids or vortex particle methods to resolve flow past moving objects
[49, 3, 10, 20]. These flows are more complex than the one of interest here, and
the simulations are not focused on the detail we are looking for. The works most
closely related to ours are Koumoutsakos and Shields [23] (hereafter referred as
KS) and Luchini and Tognaccini [29] (hereafter referred as LT ). KS used a particle
method to resolve flow past a finite plate normal to the flow. he computed the
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separated, rolled up shear layer at large times, computed the drag coefficient and
recorded some large scale quantities. Flow past a zero thickness plate is difficult to
compute, and KS was one of the first times that successfully implemented a particle
method reproducing viscous diffusion between particles and viscous generation of
vorticity at walls. LT considered flow past a semi-infinite plate of zero thickness.
They used a finite difference method on a mesh growing self-similarly with the
flow. This technique make it possible to compute the flow to relatively large times.

However, these earlier works focus on large scales of the flow dynamics. Not
much detailed information is given, in particular at the early times of the formation
process in which velocity gradients and vorticity near the wall are large. Much re-
mains to be understood. The goal of my work is to use high resolution simulations
of the Navier Stokes equations to better understand details of the vorticity dynam-
ics, and details of characteristic properties of the flow, such as vortex core trajectory
and vorticity, vortex size, shed circulation and circulation shedding rate. We also
want to document the flow dependence on the fluid viscosity. This work is partly
motivated by vortex sheet simulations of vortex separation. Inviscid vortex sheet
and point vortex models have been used widely to simulate separation because of
their simplicity and significant computational efficiency [6, 12, 30, 48, 19, 41, 40, 2].
Comparison with either experiments or viscous simulations show that they recover
large scale aspects of the viscous flow surprisingly well [12, 37, 49, 46]. Nitsche and
Krasny [31], however, performed vortex sheet simulations of axisymmetric shear
layer separation and compared their results with laboratory experiments. They
observed a discrepancy in the circulation shedding rate at early times which led
to a 10% increase in the total shed circulation. They attributed this discrepancy to
the effect of viscosity at early times, in which the model’s assumption that a shear
layer separates tangentially from the edge does not hold. The work in this thesis
on planar separation will help elucidate details of the starting formation process
and its dependence on viscosity, and this, in turn, may lead to improved separation
models.

I will consider both oncoming flow past a finite plate normal to the flow, and
flow past a semi-infinite plate. The finite plate problem is more physically relevant
and more readily studied in laboratory experiments. Here we consider three types
of background flows: impulsively started, uniformly accelerated and oscillatory
motion. All these types of flows are important. The impulsive start mimics scenar-
ios in which forces act suddenly on an object with often destructive consequences.
Accelerated flows are easiest to reproduce, and the dependence of the solution on
different power law behavior is of interest. Oscillatory flows occur commonly in
biological systems such as swimming fish. Numerically, the finite plate has the
advantage that the area containing the vorticity is finite and the flow can be cap-
tured in a finite computational domain. Semi-infinite case is of interest because a
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scaling rule exists which relates the length scale, time and viscosity. According to
the scaling rule, the solution of flow at one viscosity could be obtained, by a scale,
from the results at any other viscosities. Therefore, computation at one viscosity is
all that are needed. However, the semi-infinite case is numerically more difficult
because the support of fluid vorticity is infinite. LT used an exponential decay
function to approximate the incoming vorticity. They also observed instabilities
in their solutions and it is not clear whether possibly inaccurate modelling of the
infinite boundary layer can cause these instabilities.

Computing the impulsively started flow past plates is difficult for several reasons.
The initial flow is singular at the tip with unbounded maximum velocities. The
boundary layer is thin at an early time stage (t << 1) or for a large Reynolds number
(ν << 1). Large velocity gradients and large vorticity that are present in this thin
layer would easily lead to numerical instability. The computational geometry is not
trivial as well since the domain containing the fluid has a slit due to the presence
of the plate. For the semi-infinite plate case, the physical domain is infinite. LT’s
method is very domain-specific and only applies to the semi-similar flow (e.g. the
flow past a semi-infinite plate). The vortex particle methods used by KS is relatively
low order, and does not reveal many details the flow dynamics at early times. I
chose to develop a fourth order finite difference method, referred to as FDMHS
(Finite Difference Method of High order in Space), to compute planar flow past
edges. Following the work of E & Liu, the method uses compact finite differences
and the Thomas formula to obtain vorticity at wall. It is a split method that treats
convection using a semi-Lagrangian method and diffusion using an implicitly high
order Crank-Nicolson method. These components were found to be necessary to
avoid numerical instabilities and resolve the flow, particularly at the early times,
of unbounded maximum velocities and very small length scales. FDMHS is imple-
mented in parallel using the MPI interface, and its parallel performance shows to
be quite efficient.

To validate the method we compare results with E & Liu for driven cavity flows
and found equally well performance to their method, and better performance than
a standard second order method. We tested order of convergence for driven cavity
and found fourth order in space, first order in time. For the much more singular
case of impulsively started flow past a finite plate, this method is between first
and second order in space. We can’t compare to other methods in literature since
order of convergence for the more singular case were not reported. However
we show that we can resolve the highly singular flow at very early times. We
have implemented the method and have resolved detailed aspects of the flows
considered. The impact of this work is the resolution in a regime not studied
before, and complements other work to give a more comprehensive picture of the
flow. We also studied flow quantities not looked at in detail before.
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The thesis is organized as follows. Section 2 describes the problems to be solved.
Section 3, 4, 5 describe the numerical method FDMHS and implementation details.
Section 3 provides the development of FDMHS and performance of the parallel
code. Some other methods that I have implemented in the thesis are also outlined.
Section 4 presents how I determine necessary resolutions for the computation.
Section 5 demonstrates the order of accuracy of FDMHS in space and time in
the driven cavity problem and impulsively started flow past finite plate. Section
6 applies FDMHS to the problem of viscous flow past a finite plate using three
different background flows, respectively. In the oscillatory case, results of FDMHS
are compared with the vortex sheet method. Section 7 applies FDMHS to the
problem of viscous flow past a semi-infinite plate. Finally, Section 8 summarizes
my results and provides some concluding remarks.
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2 Problem description

This section describes the three planar flows that are studied in this work: flow past
a finite and a semi-infinite plate, and the driven cavity problem which is used as a
test case. It includes all initial and boundary information on the stream function,
velocity and incoming vorticity that are required by the numerical method. The
problems are described in terms of Cartesian horizontal and vertical coordinates x,
y. The fluid velocity is u(x, y, t) = 〈u(x, y, t), v(x, y, t)〉, where t is time. In all cases,
the fluid is assumed to be incompressible and governed by the Navier-Stokes
equations (NSE). The stream function ψ(x, y, t) is defined to be in a way such that
u = O⊥ψ, and ω(x, y, t) = vx − uy is the scalar fluid vorticity.

2.1 Driven cavity

Figure 2.1a is a schematic of driven cavity problem considered here. The fluid is
contained in a square box open at the top. The velocity is zero at the three walls,
and equal to a prescribed parallel driving velocity at the top

Utop = 〈Utop, 0〉. (2.1)

The computational domain is shown in figure 2.1b. The domain is a square box

D = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. (2.2)

In the classical driven cavity problem, the driving velocity is constant, Utop =
constant. However, this induces a jump in the velocity at the top two corners, and
this singularity affects the accuracy of any numerical method. To better test the
accuracy of our method, we follow E & Liu [8] and set

Utop(x) = Ux2(1 − x)2 (2.3)

where U = 1. This driven velocity Utop is zeros actually at two top corners which
yields a less singular flow. The initial values of the stream function at the interior
grid points are

ψo : ψ(x, y, 0) = Utop(x)(y2
− y3) = x2(1 − x)2(y2

− y3). (2.4)

Corresponding boundary values of the stream function are

ψbd = 0 (x, y) ∈ ∂D. (2.5)

There is no incoming vorticity. This flow was computed by E & Liu using a compact
4th order finite difference scheme. In this work we will implement both E & Liu’s
method and the new method proposed in the thesis and compare results for the
purpose of validation of our method and to establish its order of accuracy.
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Figure 2.1: (a) A schematic of driven cavity flow and (b) the computational domain
of the driven cavity problem.

2.2 Viscous flow past a finite plate

Figure 2.2a is a schematic of the viscous flow past a finite plate. The plate, of length
L, is moving downwards with velocity 〈0,−U∞(t)〉 in direction normal to itself. We
will use a different frame in which the plate is stationary with zero velocity at the
wall, and the far field flow is moving upward, 〈0,U∞(t)〉.

It is assumed that the plate has zero thickness and the flow stays symmetric about
the center line of the plate. Therefore, the flow is computed only in the half plane
x ≥ 0. The computational domain, shown in figure 2.2b, is a rectangular box

D = {(x, y), 0 ≤ x ≤ xmax, ymin ≤ y ≤ ymax} (2.6)

with a slit

S = {(x, y), x ∈ [0,L/2], y = 0}. (2.7)

The center of the plate is at the origin (0, 0). We consider three far-field flows: im-
pulsively stated U∞(t) = 1, uniformly accelerated U∞(t) = at, where a is acceleration
and oscillatory U∞(t) = sin( πt

KC ), see figure 2.3.

The initial flow is given by the potential flow past a finite plate that matches the
prescribed far-field velocity. The corresponding stream function ψ∞(x, y, t) is the
imaginary part of the complex potential

W∞(x, y, t) = iU∞

√
z − L/2
z + L/2

= φ∞ + iψ∞, (2.8)
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Figure 2.2: (a) A schematic of flow past a finite plate, and (b) the computational
domain.
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Figure 2.3: Three far-fields flows in simulations of flow past a finite plate. (a)
Impulsively started, (b) Uniformly accelerated, (c) Oscillatory.

where z = 〈x, y〉, and φ is the velocity potential. For simplicity, I compute ψ∞
using an equivalent vortex sheet that induces U∞. This procedure is described in
Appendix I.

The boundary value of the stream function on the plate is zero,

ψbd : ψ(x, y, t) = 0, (x, y) ∈ S (2.9)

and the boundary values of the stream function on ∂D are computed using the
integral formulation (2.10)[33]

ψbd : ψ(x, y, t) = ψ∞(z, t) +

∫ ∫
D/S

ω(zo, t)G(z, zo)dzo, (x, y) ∈ ∂D. (2.10)
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The geometry-specific Green’s function G(x, y, x0, y0) for the finite plate is

G(x, y, xo, yo) = log

∣∣∣∣∣∣∣∣∣∣
√

z−L/2
z+L/2 −

√
zo−L/2
zo+L/2√

z−L/2
z+L/2 −

(√
zo−L/2
zo+L/2

)∗
∣∣∣∣∣∣∣∣∣∣ (2.11)

where z is a complex number z = x + iy and ∗ denotes the complex conjugate.
Note that one only needs to compute the integral over the portion of the domain
in which vorticity ω(zo) is non-zero to compute the integral of (2.10). In practice, I
only integrate over the portion of domain where |ω(zo)| ≥ 10−9.

The computations are performed using L = 1, the whole length of the plate, for
the case of the impulsively started and the uniformly accelerated far field flows
and L = 1 for the oscillatory far field flow. This is consistent with the geometry
used in [23] and [18], respectively.

2.3 Viscous flow past a semi-infinite plate

The flow past a semi-infinite plate is considered here. Figure 2.4a is a schematic
of viscous flow past a semi-infinite plate. The computational domain, shown in
figure 2.4b, is a rectangular box with a slit D/S where

D = {(x, y), xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}, (2.12)

S = {(x, y), x ∈ [xmin, 0], y = 0}. (2.13)

In practice, the plate actually occupies the whole negative x-axis with the tip at the
origin (0, 0).

The initial flow is the potential flow past a semi-infinite plate with the stream
function

ψ∞(x, y, t) = Ur1/2 cos
(

tan−1(y/x)
2

)
, (2.14)

where r =
√

x2 + y2, and U = 1.

The boundary values of the stream function on the plate is zero,

ψbd : ψ(x, y, t) = 0, (x, y) ∈ S (2.15)
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Figure 2.4: (a) A schematic of flow past a semi-infinite plate and (b) the computa-
tional domain.

and the boundary values of the stream function on ∂D are computed using (2.10)
as well,

ψbd : ψ(x, y, t) = ψ∞(z, t) +

∫ ∫
D/S

ω(z0, t)G(z, z0)dz0, (x, y) ∈ ∂D. (2.16)

The geometry-specific Green’s function for the semi-infinite plate is

G(x, y, xo, yo) =
1

2π
log

∣∣∣∣∣∣ (iz)1/2
− (izo)1/2

(iz∗)1/2 − (izo)1/2

∣∣∣∣∣∣ . (2.17)

The computational domain is always finite, though the boundary layer is of
infinite length. I will truncate the plate in the computation. The longer the terminal
time, the longer the plate should be counted. This is handled as follows.

The vorticity to the left of a line x = xmin is ignored. That is, we set the incoming
vorticity at x = xmin equal to zero. The value of xmin is chosen so that particles
initially at x = xmin traveling in the potential background flow do not reach a
region near the tip by the terminal time T. For example, using T = 0.03, xmin is
chosen to be -1 such that at the terminal time, the particle has not passed x =-1. A
sample trajectory of such a particle for t ∈ [0,T] is shown in figure 2.5. The particle
trajectories are computed by solving the ODE

dx
dt

= u∞(x, y)
dy
dt

= v∞(x, y) (2.18)

〈u∞(x, y), v∞(x, y)〉 = O⊥ψ∞(x, y), (2.19)

where 〈u∞, v∞〉 are velocities of the potential flow. The terminal positions of parti-
cles are provided.
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Figure 2.5: Determine the computational domain of flow past a semi-infinite
plate.Solid line: the semi-infinite plate, dotted line: the computational domain,
dash-dotted line: the path of a fluid particle.

To confirm that the error incurred by setting zero incoming vorticity does not
affect the results, the flow is computed in domains with xmin=-1,-2 and -3, shown in
figure 2.6a for ν=0.002. The numerical method is going to be described in section
3. The size of the computational domain in y direction is chosen large enough such
that it does not affect the result. These three computational domains are colored
as black, blue and red. The dark thick line in the figure represents the semi-infinite
plate. Black covers most of the plate while red contains the least. Figure 2.6b shows
the maximum velocity Umax in (x, y) ∈ D/S vs.t using these three domains. The
fact that Umax overlap using all three domains confirms that the error made by
imposing zero incoming vorticity in the smallest domain is negligible. In other
words, xmin = -1 is enough for the terminal time T=0.03, and the rest of the plate
could be truncated.
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Figure 2.6: Domain independence verification of flow past a semi-finite plate. (a)
Three domains are chosen, black, blue and red. (b) Plot of maximum velocity Umax

vs.t using these three domains.
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Table 2.1 shows a list of values of |xmin| for various terminal times T. For the

Terminal time T |xmin|

50 12.21
128 21.7
256 33.8

Table 2.1: Determination of the plate length that should be included, in the compu-
tation of flow past a semi-infinite plate, provided that the terminal time is given.

relatively large terminal times listed in this table, the value of xmin is so large in
magnitude that solving the problem using sufficient resolution on such a rectan-
gular domain is not feasible. We therefore break up the domain into two pieces
as illustrated in figure 2.7. The sub-domain is the long-thin rectangular box below
the plate and it contains the lower boundary layer; the main-domain is the rect-
angular box containing the plate tip and it contains the starting vortex of interest.
We pre-compute the vorticity in the sub-domain, and use its result as the incoming
boundary condition of vorticity for the main-domain. We thus do not account for
the effect of the starting vortex on the vorticity boundary layer far from tip. The
effect is expected to be small, but this still has to be confirmed numerically.

Figure 2.7: The domain decomposition of flow past a semi-infinite plate. The sim-
ulation in sub-domain (cyan) is pre-computed and its results provide the incoming
vorticity boundary condition for the main domain (red), in which a following sim-
ulation is conducted. The overlap between the two regions is shown in green.
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3 Numerical methods

3.1 Motivation

The governing equations are the 2D incompressible Navier-Stokes equations (NSE).
In the stream function-vorticity formulation, they are given by (3.1).

(a)
Dω
Dt

= νO2ω, (b) O2ψ = ω, (c) u = O⊥ψ = 〈−
∂ψ

∂y
,
∂ψ

∂x
〉, (3.1)

where u = 〈u, v〉 and D
Dt = ∂

∂t + u · O is the material derivative. The initial vorticity
ω(t = 0) is given. The velocity is zero at steady walls, and prescribed at infinity.
The Reynolds number is defined as

Re =
LU
ν

(3.2)

where L and U are the characteristic length and velocity, ν is kinematic viscosity.

Flow past plates considered here has a range of space and time scales. The
flow is initially singular with unbounded velocity at the tip of the plate. Large
velocity gradients are present within thin boundary layers in the vicinity of the
plate. Small length scales are given by the boundary layer thickness δ ∼

√
νt when

t or ν are small. Numerical methods to simulate such flow require that these small
length scales, as well as large scales at later times, be properly represented. To this
effect, I consider several methods in the literature and list their advantages and
disadvantages below.

E and Liu [8] presented an essentially compact fourth order scheme, referred to
here as EC4, and applied it to the driven cavity problem. It is a finite difference
method, fourth order in both space and time. It uses compact finite differences,
that is using information on nearby grid points, at interior and for the boundary
conditions. Vorticity generated at the walls is related to the stream function by
a fourth order Thomas’ formula. The fourth order Runge-Kutta method is used
to advance in time. Details of EC4 are described in section 3.4. Johnston [17]
implemented EC4 for the problem of viscous flow past a cylinder, and showed
well-resolved results of the boundary layer. I have implemented EC4 for the
driven cavity problem and reproduced E& Liu’s results. I have also applied EC4
to simulate flow past the semi-infinite plate and found it to be unstable near the
plate tip. The solution develops large extraneous oscillations that do not vanish
as the mesh is refined. This is attributed to the fact that the method is explicit
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in time and does not handle the large gradients near the wall. Some effort has
been made to make EC4 implicit in time, unsuccessfully. It is hard to make the
temporal derivative implicit while maintaining the compactness and the fourth
order accuracy in time.

Koumoutsakos and Shields [23], referred to as KS, used a particle method to
compute flow past a finite plate. These are Lagrangian methods that track par-
ticles which carry the fluid vorticity. They move with the fluid velocity, which
is computed using the Biot-Savart law, as an integral over the region containing
vorticity. Vorticity diffusion between particles is accounted for using the method of
particle strength exchange, Degond & Mas-Gallic[7]. For a review, see Koumout-
sakos [21]. Vorticity generation at the walls is based on the technique introduced
by Koumoutsakos & Pepin [24] which embodies Lighthill’s creation mechanism.
High resolution can be achieved in local regions by placing a large number of vor-
tex particles in those regions. This method was first applied to flow past a cylinder
[22], and then extended to planar flow past a finite plate [23], and has also been ap-
plied to 3D flow [20]. Eldredge modified a vortex particle method with a simplified
particle treatment near the boundary and applied it to simulate a flapping wing
with hovering insect kinematics. Particle-based methods provide an alternative to
grid-based method. However, the vortex particle method is of low order and the
simulations in the literature do not resolve small scale features.

Luchini and Tognaccini [29], referred as LT, used a a highly domain-specific finite
difference method to simulate flow past a semi-infinite plate. They used the scal-
ing property of the flow (also see section 2), to derive an alternative formulation
in which variables scale in time. They solved these scaled equation using a finite
difference method, in essence resolving small scales initially and large scales at later
times equally well. Their method uses an upwind scheme to treat vorticity con-
vection, the Crank-Nicolson method to advance in time, and the Thomas formula
to generate vorticity at the plate (see section 3.2.4). The method is formally second
order in space and time. LT use an exponentially decaying analytical function to
approximate the incoming vorticity from the boundary layers outside the compu-
tational domain. In the results, the outer spiral turn of the leading vortex becomes
unstable. It is not clear whether their boundary layer approximation introduces the
oscillations that leads to the unstable behavior. We will recompute this flow using
an alternative method and a different approximation of the incoming boundary
layer, computed numerically (see section 2.3), and use our results to resolve the
early dynamics, which are not studied in LT.

I decided to develop a new method to fulfill the goal of resolving the initially
singular flow. It is desired that this new method be suitable for problems with a
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large range of space and time scales, be capable of unveiling details of the flow
near the plate tip initially and be able to use large time steps while maintaining
numerical stability. We use some of the ideas in the works discussed above and
combine them with others. Based on our experience, the treatment of the temporal
derivative has to be implicit; the compactness and fourth order approximations are
preferred, since these properties yield lower truncation errors in the approximation;
and high resolution at early times is necessary to better represent the small scales
and large gradients near the plate. We denote this method as Finite Difference
Method of High Order in Space, FDMHS. The method is described below.

3.2 Finite Difference Method of High Order in Space (FDMHS)

FDMHS is a compact fourth order finite difference method using a regular, rectan-
gular grid to solve the 2D incompressible Navier-Stokes equations (NSE) in stream
function-vorticity formulation, 3.1. It requires initial and boundary conditions on
the stream function ψ and incoming vorticity at the boundary. Outgoing nonzero
vorticity at the boundary is approximated using extrapolation along characteristics.

We establish the finite difference grid in the 2D computational domain as

xmin = x0, x1, · · · xi, · · · , xNx−1, xNx = xmax, i = 0, · · · ,Nx (3.3)
ymin = y0, y1, · · · y j, · · · , yNy−1, yNy = ymax, j = 0, · · · ,Ny (3.4)

where xi = xmin + ih, y j = ymin + jh, and h = (xmax − xmin) /Nx =
(
ymax − ymin

)
/Ny.

Similarly, time is partitioned as

0 = t0, t1, · · · tn · · · , tN−1, tN = T, n = 0, · · · ,N (3.5)

where tn = n∆t and T = N∆t. ψn
i, j approximates ψ(xi, y j, tn), the value of the stream

function at the grid point (xi, y j) at time t = tn. The interior grid points are given
by 1 ≤ i ≤ Nx − 1 and 1 ≤ j ≤ Ny − 1. We now list some notation that will be used
in the following contents. ∆h is the five point stencil to approximate the Laplacian
operator O2; D2

x is the second order central difference to approximate ∂2/∂x2 and D2
y

is the second order central difference to approximate ∂2/∂y2; D̃x is the second order
central difference to approximate ∂/∂x and D̃y is the second order central difference
to approximate ∂/∂y; as follows,
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∆h f =
fi+1, j + fi−1, j − 4 fi, j + fi, j+1 + fi, j−1

h2 (3.6)

D2
x fi, j =

fi+1, j − 2 fi, j + fi−1, j

h2 (3.7)

D2
y fi, j =

fi, j+1 − 2 fi, j + fi, j−1

h2 (3.8)

D̃x fi, j =
fi+1, j − fi−1, j

2h
(3.9)

D̃x fi, j =
fi, j+1 − fi, j−1

2h
. (3.10)

FDMHS is a split method which, in rough terms, first solves the inviscid portion
of the transport equation (3.1)a,

∂ω∗

∂t
= −u · 5ω∗, that is

Dω∗

Dt
= 0, (3.11)

and then solves the viscous portion

∂ω
∂t

= ν 52 ω∗. (3.12)

Here, ω∗ denotes an intermediate vorticity value. (3.11) is solved using a semi-
Lagrangian scheme, which is second order in time and fourth order in space. (3.12)
is solved using a Crank-Nicolson method which is second order in time and fourth
order in space. Even though the scheme for each temporal step is relatively high
order in space and time, the splitting scheme reduces the overall order of accuracy
in time. In the next subsections, the whole algorithm is presented, followed by
details for each step.

3.2.1 The algorithm

Initialization. Prescribe the initial conditions of the stream function ψo, and give
the incoming vorticity condition if it is non-zero.

To advance from tn to tn+1,

Step 1: Solve the vorticity convection in the interior

dω∗

dt
= 0 (3.13)
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using a two-level semi-Lagrangian method. The method consists of three stages

1 For each interior grid point, assuming a particle sits here, find the location of
the particle at tn along the characteristic path. This is equivalent to solving

dz
dt

= u(z, t) z(tn+1) = (xi, y j). (3.14)

where z = 〈x, y〉.

2 Obtain the vorticity ω(z(tn), tn) of the particle from vorticity values at nearby
grid points using a fourth order bi-cubic interpolation.

3 Set ω∗(xi, y j, tn+1) = ω(z(tn), tn).

Step 2a: Compute ψbd using the integral formulation (2.10) for the finite plate, or
the equivalent (2.16) for the semi-infinite plate. The integral is computed using the
fourth order Simpson’s method. We integrate only over that portion of the domain
in which |ω| ≥ 10−9. For the driven cavity problem, set ψbd = 0.

Step 2b: Find the stream function in the interior by solving the Poisson equation

5
2ψ = ω∗ (3.15)

using a fourth order finite difference scheme [43]

(∆h +
h2

6
D2

xD2
y)ψn+1 = (1 +

h2

12
∆h)ω∗. (3.16)

The Conjugate Gradient method is used to invert the resulting linear system.

Step 3: Update the velocity

u = 5⊥ψ. (3.17)

on the interior grid points using a fourth order central difference method

un+1 = −D̃y(1 −
h2

6
D2

y)ψn+1 (3.18)

vn+1 = D̃x(1 −
h2

6
D2

x)ψn+1. (3.19)

Step 4a: Compute the vorticity on the walls using Thomas’ formula. For the
finite plate problem, the vorticity on all four sides of the rectangular domain is
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zero. Specify the incoming vorticity on incoming boundaries and set it using
extrapolation on the outgoing boundaries.

Step 4b: Update ωn+1 on the interior grid points from

∂ωn+1

∂t
= ν∆ω∗ (3.20)

using a three-level Crank-Nicolson method.

3.2.2 Two-level semi-Lagrangian method

The semi-Lagrangian method is widely used to solve the convection process for
partial differential equations. It is derived from the Lagrangian nature of flow
transport and allows computation on Cartesian grids. Traditional numerical tech-
niques for convection equation are subject to the CFL stability condition, which
imposes a restriction on the time steps in the computation. The semi-Lagrangian
method traces particles along the characteristic curve and this allows for a larger
time step.

Following [39][42][45], the two-level semi-Lagrangian technique basically uses
the information on the current time stage and one time stage before. The convection
equation in my method is

Dω
Dt

= 0. (3.21)

Suppose a fluid particle resides at a given grid point (xi, yi) at time tn+1. One obtains
the vorticity value ω(xi, yi, tn+1) carried by this particle through three stages. First,
find the particle’s position at the previous time, tn. This is equivalent to solving the
ODE

dz
dt

= u(z, t), z(tn+1) = (xi, yi). (3.22)

Then, recover the vorticity value ω(z(tn), tn) by values in its neighborhood. Last,
assign ω(xi, yi, tn+1) = ω(z(tn), tn). Repeat this process for all grid points (xi, yi).
Next, details of the computation is presented.

Integrate the ODE (3.22) and write the solution as

z(tn) = z(tn+1) −
∫ tn+1

tn

u(z(t), t)dt. (3.23)
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This integration can be evaluated using a Runge-Kutta method. Here, I use the
method proposed in [42] which is second order in time. Denoting ∆z = z(tn+1) −
z(tn) =

∫ tn+1

tn
u(z(t), t)dt and using the mid-point rule to approximate the integral in

(3.23), yields∫ tn+1

tn

u(z(t), t)dt = ∆tu(z(tn+ 1
2
), tn+ 1

2
) + O(∆t3) (3.24)

= ∆tu(z(tn+1) −
∆z
2

+ O(∆t2), tn+ 1
2
) + O(∆t3) (3.25)

= ∆tu(z(tn+1) −
∆z
2
, tn+ 1

2
) + O(∆t3). (3.26)

This is written as

∆z = ∆tu(z(tn+1) −
∆z
2
, tn+ 1

2
) + O(∆t3). (3.27)

(3.27) is an implicit formula for ∆z in terms of known velocity field at two previous
time stages. Using a second order extrapolation from two previous time stages to
find the velocity at tn+ 1

2

u(z, tn+ 1
2
) =

3
2

u(z, tn) −
1
2

u(z, tn−1) + O(∆t2), (3.28)

we obtain the following iterative scheme to compute ∆z,

∆z0 = ∆t
[3
2

u(z, tn) −
1
2

u(z, tn−1)
]
, (3.29)

∆zk = ∆t
[3
2

u(z −
1
2

∆zk−1, tn) −
1
2

u(z −
1
2

∆zk−1, tn−1)
]
, k = 1, 2, . . .(3.30)

Once ∆z is known, the departure point along the characteristics path is

z = z(tn+1) − ∆z. (3.31)

Usually, z will not coincide with a grid point. Therefore, the velocity u and vorticity
ω are obtained by interpolation from the known values in the neighborhood. The
fourth order bi-cubic interpolation is used since it has smaller truncation errors
than a lower order interpolation method, for example, the bilinear interpolation.

3.2.3 Solve the Poisson equation and compute the velocity near the boundary

In section 3.2.1, step 2, the boundary values of the stream function are required
in order to solve the Poisson equation, expressions of ψbd are given in section 2.
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Remember that for flow past plates, we use Biot-Savart formula to compute ψbd,
and the formula is calculated using the 2D Simpson integration technique which is
fourth order in space. Actually, the Biot-Savart formula can be used in the interior
as well to compute ψ. The problem is that the computational time is too expensive,
therefore, we solve for ψ using the Poisson equation instead.

The Poisson equation is solved by Conjugate Gradient (CG) (The tolerance is
the residual is ≤ 10−9). CG is one of the optimal options if the linear system is
positive definite and symmetric, other optimal options include methods based on
FFT, Multigrid, etc.. Therefore, CG is suitable for the driven cavity problem. For
the cases of flow past finite and semi-infinite plates, the linear system is positive-
definite but slightly non-symmetric due to the presence of the plate. A comparison
of the performance of CG, BiCGS (Bi-Conjugate Gradient Stabilize) and GMRES
(General Minimum Residual Scheme)[15] is shown in table 3.1 for the driven cavity
problem and the problem of flow past a finite plate. The computations are con-
ducted on my laptop. The CPU time is the time elapsed for a fixed number of
iterations. In the driven cavity problem, the number of grid points in the x and y
directions is 100 × 100 and the CPU time is for 100 iterations. For the finite plate
problem (FP), a second order finite difference method (FDM2) and FDMHS are
used. The CPU time is for 40 iterations, and the number of grid points are 40 × 40.
The Reynolds number is 20 for all. Apparently, CG converges in my problem for a
slightly non-symmetric linear system, and it takes the least time.

Driven Cavity
Method CPU time(sec)

CG 29.936
BiCGS 49.728

GMRES 420.5970

FP FDM2
Method CPU time

CG 4.82
BiCGS 5.94

GMRES 43.53

FP FDMH
Method CPU time

CG 61.64
BiCGS 63.96

GMRES 100.174

Table 3.1: The Comparison of three Poisson solvers: CG, BiCGS and GMRES[15].
FP stands for the problem of flow past a finite plate. FDM2 stands for a finite
difference method that is second order in space and time. The computations are
performed on my laptop.

In section 3.2.1, step 3, a fourth order one-sided finite difference method is used
to compute the velocity on the grid points next to the plate. The Biot-Savart
formula is used to compute the stream function ψ on ghost points just outside the
computational domain, given by i = Nx + 1,−1 ≤ j ≤ Ny + 1, i = −1,−1 ≤ j ≤
Ny + 1, j = Ny + 1,−1 ≤ i ≤ Nx + 1 and j = −1,−1 ≤ i ≤ Nx + 1, so that the fourth
order central difference method can be applied to interior grid points near the four
sides of the domain.
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3.2.4 Thomas’ formula

Following [8], Thomas’ formula is used to compute the vorticity generation from
the plate. Recall that the horizontal velocity u and vorticity ω are calculated using

u = −
∂ψ

∂y
, ω = (

∂2ψ

∂x2 +
∂2ψ

∂y2 ). (3.32)

The spatial grid points near a solid boundary are depicted in figure 3.1, where the

j=0

i

Figure 3.1: Spatial mesh grids near the solid boundary.

solid line is the plate, the solid dots are the actual grid points, and the empty dots
are the ghost points located outside of the domain. For simplicity, j = 0 represents
the plate. The horizontal velocity and the stream function, as well as the first and
second derivatives of ψ are all zero at j = 0.

ui,0 = 0, ψi,0 = 0,
(
∂ψ

∂x

)
i,0

= 0,
(
∂2ψ

∂x2

)
i,0

= 0. (3.33)

Using the second order central difference method to approximate ui,0

ui,0 =
ψi,1 − ψi,−1

2∆y
= 0, (3.34)

this yields

ψi,−1 = ψi,1. (3.35)

Using the second order central difference method to approximate vorticity on the
boundary ωi,0, one gets

ωi,0 =

(
∂2ψ

∂y2

)
i,0

= −
ψi,1 − 2ψi,0 + ψi,−1

∆y2 =
2ψi,1

∆y2 . (3.36)

Using (3.35) in (3.36), one gets

ωi,0 =
2ψi,1

∆y2 . (3.37)
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(3.37) concludes the second order Thomas’ formula.

The fourth order Thomas’ formula can be derived in a similar manner. Using
two fourth order finite differences to approximate ui,0, one writes

0 =
1

12
ψi,−2 −

2
3
ψi,−1 +

2
3
ψi,1 −

1
12
ψi,2 (3.38)

0 = −
1
4
ψi,−1 −

3
2
ψi,1 −

1
2
ψi,2 +

1
4
ψi,3. (3.39)

Note that ψi,0 is erased from equations above since it is zero. Considering ψi,−1 and
ψi,−2 as unknowns, one solves them to get

ψi,−1 = 6ψi,1 − 2ψi,2 +
1
3
ψi,3 (3.40)

ψi,−2 = 40ψi,1 − 15ψi,1 +
8
3
ψi,3. (3.41)

Applying the fourth order central difference to the vorticity ωi,0, one has

ωi,0 =

(
∂2ψ

∂y2

)
i,0

=
−

1
12ψi,−2 + 4

3ψi,−1 −
4
3ψi,1 −

1
12ψi,2

∆y2 =
6ψi,1 −

3
2ψi,2 + 4

9ψi,3

∆y2 . (3.42)

Using the expressions of ψi,−1 and ψi,−2 inωi,0, one solves these two equations to get

ωi,0 =
6ψi,1 −

3
2ψi,2 + 4

9ψi,3

∆y2 (3.43)

(3.43) concludes the fourth order Thomas’ formula.

The fourth order central difference scheme is used to compute ω∗ on the grid
point of the plate tip.

3.2.5 Two-level and three-level Crank-Nicolson methods

Starting with the diffusion equation

∂ω
∂t

= νO2ω (3.44)

and using a fourth order approximation in space, one gets

(1 +
h2

12
∆h)

∂ω
∂t

= ν(∆h +
h2

6
D2

xD2
y)ω. (3.45)
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The variable ωn+1 is the vorticity at the time stage tn+1. Apply the Taylor expansion
to ωn+1 in time,

ωn+1 = ωn + ∆t[
∆ωn

∆t
] + O(∆t2) (3.46)

where ∆ω means a small increment of ω in time. Now one has(
∂ω
∂t

)n

≈
∆ωn

∆t
+ O(∆t). (3.47)

The
(
∂ω
∂t

)
on the left hand side of (3.45) is approximated by ∆ωn+1

∆t , and for the right
hand side of (3.45), ω is split into two time stages, n and n + 1, by a weight β

ω ≈ βωn + (1 − β)ωn+1, (3.48)

where β is chosen to be 0.5 following a standard second order Crank-Nicolson
method. Therefore, (3.45) becomes

(1 +
h2

12
∆h)

∆ωn+1

∆t
= ν(1 − β)(∆h +

h2

6
D2

xD2
y)ωn + νβ(∆h +

h2

6
D2

xD2
y)ωn+1. (3.49)

Rearranging the above equation and using

ωn+1 = ωn + ∆ωn+1, (3.50)

one has

[1 +
h2

12
∆h − βν∆t(∆h +

h2

6
D2

xD2
y)]∆ωn+1 = ν∆t(∆h +

h2

6
D2

xD2
y)ωn. (3.51)

(3.50) and (3.51) concludes the two-level Crank-Nicolson method. This method is
first order in time, fourth order in space.

Similarly, one can derive a three-level Crank-Nicolson which has smaller errors
in time, see [14]. I have modified the three-level Crank-Nicolson method to make
it fourth order as well. This fourth order three level method is described next.

One starts with the difference equation (3.45) directly. A second order central
difference method is used to approximate ∂ω

∂t at the time stage n,

∂ω
∂t
≈

ωn+1
− ωn−1

2∆t
+ O(∆t2) (3.52)

=
∆ωn+1

2∆t
+

∆ωn

2∆t
+ O(∆t2). (3.53)
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The weight α is introduced to make the expression of ∂ω
∂t more general

∂ω
∂t
≈ (1 + α)

∆ωn+1

∆t
− α

∆ωn

∆t
. (3.54)

In my computation, α is chosen to be 0.5 following [14]. (3.54) is used to approxi-
mate the ∂ω

∂t on the left hand side of (3.45). Similarly, ω is split as

ω ≈ βωn + (1 − β)ωn+1, (3.55)

and used to replace ω on the right hand of (3.45). Therefore, one has

(1 +
h2

12
∆h)[(1 + α)

∆ωn+1

∆t
− α

∆ωn

∆t
] = ν(1 − β)(∆h +

h2

6
D2

xD2
y)ωn + νβ(∆h +

h2

6
D2

xD2
y)ωn+1.(3.56)

Rearrange the above equation to yield

[1 + h2

12∆h −
βν∆t
1+α (∆h + h2

6 D2
xD2

y)]∆ωn+1 = ν∆t
1+α (∆h + h2

6 D2
xD2

y)ωn + α
1+α (1 + h2

12∆h)∆ωn.(3.57)

The vorticity ω at time stage n + 1 is then computed by

ωn+1 = ωn + ∆ωn+1. (3.58)

(3.57) and (3.58) conclude the three-level Crank-Nicolson method. This method
is a second order in time, fourth order in space approximation to ωn on each grid
point based on the Taylor expansion.

3.3 Efficient implementations

3.3.1 Parallel implementation and efficiency

FDMHS is a compact finite difference method and this property makes it ideal to
exploit on modern multi-core clusters or supercomputers. I parallelized FDMHS
using the MPI interface and implemented the code on clusters at CARC (Center
for Advanced Research Computing) at UNM. Figure 3.2 illustrates the domain
decomposition of parallel FDMHS using twelve processors in the finite plate case.
The thin solid line around the rectangular box sets the size of the computational
domain. The bold solid line is the plate, the bold dashed line is the center line of
the plate. Black dots are interior grid points and empty dots are boundary grid
points. The grid points around each subdomain from inside serve as the boundary
grid points for its neighbors. At every time step, processors exchange information
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Figure 3.2: The application of parallel FDMHS using 12 processors. Bold solid line
is the plate; bold dashed line is the center line of the plate; the solid line around
four sides sets the computational domain; black dots are interior grid points; empty
dots are boundary grid points.

of boundary values, and the time this process takes is called the communication
cost.

The performance of a parallel program is a complex issue. The metrics that people
measure can be execution time, parallel efficiency, memory requirement, latency,
hardware requirement, etc.. The relative importance of these diverse metrics will
vary according to the nature of the problem. In my problem, I am interested in the
runtime of FDMHS in strong scaling and weak scaling. In strong scaling, the total
size of the problem or data is fixed, and one adjusts the number of processors. Let
tP denote the runtime using P processors. Speed up SP is the ratio t1/tP. Ideally,
using P processors is P times faster than using one processor, as t1/tP = P. The
speed up can be viewed as a normalization of the runtime, and it characterizes the
scalability of the program. In weak scaling, the size of the problem or data on each
processor is fixed, If more processors are used, the total size of the problem needed
to be adjusted.

We test the strong scaling in the driven cavity problem. The degree of freedom,
DOF, is the total number of grid points in the computation, it is 106. The compu-
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tations are performed on the cluster pequena at CARC of UNM. This cluster uses
InfiniBand interconnect and has 8 processors per node. Figure 3.3 shows the speed
up in strong scaling, t1 is the runtime of the serial code. This figure shows that
for P = 40, the speedup almost lies on the linear line, corresponding to almost
100% efficiency. Table 3.2 gives corresponding the runtime per DOF, t1 here is the
runtime of the parallel FDMHS on one processor. In my computation, the runtime
on one processor is greater than the runtime using the serial code.

We test the weak scaling in the problem of flow past a finite plate. A fixed number
of DOF (= 2.56 × 104) is assigned to each processor. Computations are performed
on the cluster nano at CARC of UNM. The cluster uses Myrinet interconnect, and
has 4 processors per node. Table 3.3 shows the average runtime per time step per
processor. The runtime scales well, and is basically independent of the number of
processors used.
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70
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t
1
/t

P
         

Figure 3.3: Strong scaling of FDMHS in the driven cavity problem. The figure plots
the speed up (tP/t1)vs.P, where tP is the runtime for a sample problem with a fixed
number of degrees of freedom (= 106) computed on P processors. t1 is the runtime
of the serial code.
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p 1 4 8 16 20 40 64
tPP/DOF (µs) 3197 3663 4457 2389 1670 1560 2824

Table 3.2: Strong scaling of FDMHS in the problem of flow past a finite plate.
Number of micro seconds per time step for a fixed number of degrees of freedom
(DOF) (106). t1 is the runtime of parallel FDMHS using one processor.

P 4 9 16 25
tPP/DOF (µs) 1428 1418 1465 1481

Table 3.3: Weak scaling of FDMHS. Average number of micro second per time step
for a fixed number of degrees of freedom (= 2.56 × 104) per processor.

3.3.2 Domain decomposition and CG as the Poisson solver

The domain decomposition is employed for simulations of flow past a semi-infinite
plate in order to count the vorticity along the plate at infinity, see section 2, and
CG is used for the Poisson equation, see section 3.2.3. Both techniques are stressed
here again is because that they are considered as efficient implementations as well.

3.3.3 Adaptive domain

For simulations of viscous flow past a semi-infinite (main domain) plates, the
computations use a thin domain initially, when the support of the vorticity is small
but the flow is highly singular, requiring small mesh sizes and time steps. At
later times, the computational domain will be increased adaptively, as indicated in
figure 3.4. This is still an on-going work.

Figure 3.4: A adaptive domain is used in flow past a finite plate to save computa-
tional expense.
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3.4 Other methods

The following sections give brief descriptions of a second order finite differ-
ence method (FDM2), the essentially compact scheme (EC4) and the vortex sheet
method. The results of those methods are compared with that of FDMHS in the
thesis.

3.4.1 FDM2

FDM2 solves the NSE (3.1) in the stream function vorticity formulation. The
algorithm of FDM2 is listed below.

Initialization. Prescribe the initial and boundary conditions of the stream function
ψo.

Advance the time from tn to tn+1,
Step 1: Obtain the stream function by solving the Poisson equation

5
2ψ = ω. (3.59)

on the interior grid points using the standard central differentiation

∆hψ
n+1 = ωn. (3.60)

Step 2: Compute the velocity

u = 5⊥ψ. (3.61)

on the interior grid points using a standard central difference method

un+1 = −D̃yψ
n+1 (3.62)

vn+1 = D̃xψ
n+1. (3.63)

Step 3a: Compute the vorticity on walls using a second order Thomas’ formula.

Step 3b: Update ωn+1 on the interior grid points

∂ωn+1

∂t
+ un+1

5 ωn = ν∆ωn (3.64)
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using a standard Crank-Nicolson method which is of second order accuracy in
space and time. The convective derivative u 5 ω is approximated using a upwind
scheme. Taking u∂ω/∂x for example,

ui, j > 0,
∂ω
∂x

=
ωi+1, j − ωi−1, j

2h
+
ωi−2, j − 3ωi−1, j + 3ωi, j − ωi+1, j

6h
+ O(h3) (3.65)

ui, j < 0,
∂ω
∂x

=
ωi+1, j − ωi−1, j

2h
+
ωi−1, j − 3ωi, j + 3ωi+1, j − ωi+2, j

6h
+ O(h3). (3.66)

Note that the above finite difference approximations are of order h3, they provide
a more stable scheme than the three-point upwind scheme, for example,

ui, j > 0,
∂ω
∂x

=
−ωi+2, j + 4ωi+1, j − 3ωi, j

2h
. (3.67)

3.4.2 EC4

The contents mainly follows E & Liu [8]. EC4 is an efficient numerical scheme to
solve the NSE (3.1) for the driven cavity problem. This method is coupled with
Runge Kutta method, and is fourth order in both space and time.

EC4 is based a reconstruction of the NSE. Using a fourth order operator on the
transport equation (3.1)a, one has(

1 +
h2

12
∆h

)
∂ω
∂t

+

(
1 +

h2

12
∆h

)
(u · 5)ω = ν

(
∆h +

h2

6
D2

xD2
y

)
5

2 ω + O(h4) (3.68)

with(
1 +

h2

12
∆h

)
(u·5)ω = D̃x(1+

h2

6
D2

y)(uω)+D̃y(1+
h2

6
D2

x)(vω)−
h2

12
∆h(uD̃xω+vD̃yω)+O(h4).

(3.69)
Let (1 + h2

12∆h)ω = ω̄, the algorithm of EC4 is listed as below

Initialization : Given ω0, compute

(1 +
h2

12
∆h)ω0 = ω̄0. (3.70)

Advance the time from tn to tn+1
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Step 1: Given ωn, compute ωn+1 by

ω̄n+1
− ω̄n

∆t
+D̄x(1+

h2

6
D2

y)(uω)+D̄y(1+
h2

6
D2

x)(vω)−
h2

12
∆h(uD̃xω+vD̃yω) = ν

(
1 +

h2

12
∆h

)
5

2ω.

(3.71)

Step 2: Solve for ψn+1 interior using

(∆h +
h2

6
D2

xD2
y)ψn+1 = ω̄n+1. (3.72)

Step 3: Solve for ωn+1 interior using

(1 +
h2

12
∆h)ωn+1 = ω̄n+1. (3.73)

Step 4: Update velocity using

un+1 = −D̃y(1 −
h2

6
D2

y)ψn+1 (3.74)

vn+1 = D̃x(1 −
h2

6
D2

x)ψn+1. (3.75)

The order of accuracy of EC4 is checked for the driven cavity problem described
in section 2. Figure 3.5a plots the maximum error at t = 1 in the stream function
ψ, the velocity components u and v, and the vorticity ω, computed with various
values of h=0.125, 0.0625, 0.03125, 0.015625, 0.0078125, and 0.00390625. The error
is computed using the results with h=0.001953125 as the ’exact’ solution. For
reference, the time step used throughout is ∆t=0.0025. The figure also plots a line
of slope 4. Therefore, this figure shows that all four quantities converge to fourth
order in space, as predicted theoretically by E & Liu.

Figure 3.5b shows the order of accuracy in time. It plots the maximum error
at t = 1 in the same quantities, computed with ∆t = 0.01, 0.005, 0.0025, 0.00125,
0.000625 and 0.0003125, where h=0.0078125. Here, the result with ∆t = 0.000078125
is used as the ’exact’ solution. The straight line has slope 4. Thus the figure shows
that the method is fourth order accurate in time. Note that the curves in figure
3.5b level up when ∆t is less than 0.00125, this is because either the spatial error
dominates.
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Figure 3.5: (a) Order of accuracy in space and (b) in time, using EC4. The y axis for
both figures are the maximum errors over the whole domain. The x axis for (a) is h
and for textit(b) is ∆t.
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3.4.3 Vortex sheet method

In the vortex sheet model the fluid is treated as a purely inviscid one. The plate is
modeled as a bound vortex sheet that satisfies zero normal flow through the plate.
A point vortex is released at each time step from the edges of the plate and the
shed vorticity is modeled as a regularized free sheet [27]. A key component is the
algorithm used to determine the shed circulation Γ(t). Here, we follow [31] and
impose the Kutta condition

dΓ

dt
= −

1
2

(u2
+ − u2

−
) , (3.76)

where u± are the tangential velocities left and right of the plate, at the edge. An
alternative method introduced by Jones [18] is based on representing the flow in
the complex plane (see also [19, 41, 40, 2]). The vortex sheet model depends on the
regularization parameter δ for the free sheet. For more details, see [31].
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4 Determine the necessary resolution using FDMHS

For cases of the impulsively started flow past a plate, and flow past a semi-infinite
plate, the initial flow is singular with unbounded velocity. It is difficult to accurately
resolve these flows at small times. However, my results show that with sufficient
resolutions in space and time, one actually can resolve the flow at any possible
time. The earlier the time is, the higher resolutions are required; the larger the
Reynolds number is, the higher resolutions are required. In this section, we are
going to determine what are necessary resolutions in space and time for the flow
at a given time of interest.

4.1 Effects of the resolution

Note that the thickness of the boundary layer is proportional to
√
νt. For a certain ν,

a necessary mesh size is required to represent the flow’s structure. This is analogous
to imposing a certain number of grid points per wavelength in Fourier analysis, in
order to represent the wave.

Figure 4.1 shows vorticity contours for Re= 500 at t=0.05 using three different
time steps ∆t=0.0001, 0.0002, 0.0004, and four mesh sizes h = 0.0015625, 0.003125,
0.00625, 0.0125, for the problem of flow past a semi-infinite plate. Figure 4.1a shows
the best result of all, it uses h = 0.0015625 and ∆t=0.0002. The figures at the second
row of figure 4.1 use the same h = 0.003125. There is a kink on the outer spiral,
and this kink is getting worse with ∆t becoming larger. The middle column of
figure 4.1 show a comparison of results using a fixed ∆t and increasing h (from
top to bottom). At h=0.00625, a negative region appears along the outer turn and
the profile of the outer vortex looks oscillatory. The negative region between the
positive starting vortex and the plate has an irregular shape. h=0.0125 gives the
worst result. The region of negative vorticity right above the plate disappears.

Figure 4.2 shows vorticity contours for Re=500 at t=0.05 for the problem of
impulsively started flow past a finite plate. Four mesh sizes are used, and the time
step is chosen small enough such that vorticity contours do not get a lot better by eye
(in terms of the smoothness of the contours). It occurred to me that the computation
for a fixed h is stable for a certain range of ∆t. Too large ∆t yields instability and too
small ∆t yields incorrect flow behavior. Figure 4.2ab seem to represent the vorticity
well and show no apparent difference. The instability appears in figure 4.2c with
a mesh size h=0.003125, and the instability gets worse in figure 4.2d with a mesh
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size h=0.00625. Therefore, one can say that a necessary mesh size of h=0.0015625 is
needed to resolve the vorticity at t=0.05 for Re=500. An example about the effect
of time step is shown in figure 4.3. This figure plots vorticity contours for Re=500
at t=0.05 as well, the mesh size is fixed at h=0.003125. Three time steps are chosen,
∆t = 1× 10−4, ∆t = 2× 10−4 and ∆t=2.5× 10−4. All three figures have instabilities, as
∆t gets bigger, the instability gets worse.

Therefore, our approach to determine if the flow is well resolved or not in the
computation is that if h is further refined, there are no visible changes. More
concisely, we will use enough number of grid points such that the flow looks like
resolved as shown in figure4.1a and figure 4.2ab for the given time of interest.
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Figure 4.1: Vorticity contours for Re=500 at t =0.05 for the problem of flow past a
semi-infinite plate. The spatial mesh size and temporal step are (a) h=0.0015625,
∆t=0.0001, (b) h=0.003125, ∆t=0.0001, (c) h=0.003125, ∆t=0.0002, (d) h=0.003125,
∆t=0.0004, (e) h=0.00625, ∆t=0.0002, (f) h=0.0125, ∆t=0.0002, (g) h=0.0015625,
∆t=0.0001. The contour levels of the vorticity are ±2[−8:8]. The vorticity is neg-
ative in dashed lines and the positive in solid line.
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Figure 4.2: Vorticity contours at t=0.05 for Re=500 for the problem of impulsively
started flow past a finite plate. The mesh size and time step is (a) h=0.00078125, ∆t
= 5×10−5, (b) h =0.0015625, ∆t = 1×10−4, (c) h =0.003125, ∆t=2×10−4, (d) h =0.00625,
∆t=4 × 10−4. ω = ±2[−5:12].
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Figure 4.3: Vorticity contours at t=0.05 for Re=500, h = 0.003125 for the problem of
impulsively started flow past a finite plate. The time step is (a) ∆t = 1× 10−4, (b) ∆t
= 2 × 10−4, (c) ∆t=2.5 × 10−4. ω = ±2[−5:12].
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4.2 The resolution for Re=500

The computations show that in order to resolve the flow for a larger Reynolds
number than Re=500 or at a smaller time than t=0.05, the mesh size h and time step
∆t are required to be smaller than h=0.0015625 and ∆t = 1 × 10−4. In other words,
the requirement on h and ∆t can be lessened if one is interested in results for a small
Reynolds number or at a large time. One numerical evidence is shown in figure 4.4.
This figure plots the maximum velocity Umax vs.t for Re=500 using four mesh sizes,
h=0.00078125, h=0.0015625, h=0.003125 and h=0.00625. The time period is from
0 to 0.04. Plots of figure 4.4bcd are closeups of figure 4.4a at three different time
intervals. In figure 4.4a, the Umax at all h’s are not smooth initially, that is the ’early
time stage’ at which the flow can not be resolved using these h’s. As t increases, the
Umax using these h’s start to converge (overlap), and the convergence is at different
times for different h’s. Taking the result of h=0.00078125 as the ’exact’ solution, the
solution of h=0.0015625 overlaps the ’exact’ solution around t = 1 × 10−3 as shown
in figure 4.4b, the time is around t = 2 × 10−3 for h=0.003125 as shown in figure
4.4c and around t = 4 × 10−3 for h=0.00625 as shown in figure 4.4d. To be more
precise, the relative errors at h=0.0015625, h=0.003125 and h=0.00625 are computed
as below

relative error =
Umax −Uex

max

Umax
(4.1)

and results are listed in table 4.1. For each row, h is fixed and t varies, the relative
error decreases as t increases. In each column, t is fixed and h varies, a small h has
a small relative error.

t= 0.01 t=0.02 t=0.04
h= 0.0015625 0.0084 0.0031 0.0001
h= 0.003125 0.1424 0.0125 0.0034
h=0.00625 0.1582 0.0898 0.0231

Table 4.1: Relative errors in Umax using (4.1).

Two other h’s are used in computations as well, they are h=0.0001953125 and
h=0.000390625. Figure 4.5 plots the corresponding Umax vs. t. Since the runtime is
expensive for these two h’s, the time period is from 0 to 0.0025 for h=0.0001953125
and from 0 to 0.0005 for h=0.000390625. Taking the result of h=0.00078125 as the
’exact’ solution again, the solution of h=0.0001953125 overlaps the ’exact’ solution
at around t = 2 × 10−4 as shown in figure 4.5a and for h=0.000390625, the error
seems quite small after the time t = 2.5 × 10−3 as shown in figure 4.5b.
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Figure 4.4: Maximum velocity Umax vs. t for Re =500 using four mesh sizes,
h=0.00078125, h=0.0015625, h=0.003125 and h=0.00625. The time steps are ∆t =
5× 10−5, ∆t = 1× 10−4, ∆t = 2× 10−4 and ∆t = 4× 10−4, respectively. Plots of (b)(c)(d)
are closeups of (a) over three different time intervals.

The singular behavior of the flow can be seen in Umax as well. Table 4.2 gives
the maximum velocity using six mesh sizes. Note that the time step ∆t is generally
different for each h, for some h’s, two ∆t’s are used. These computations are stable.
It is stressed that Umax is as large as 396 at t=1 × 10−6 using h=0.0001953125. For a
large h or ∆t, the solution is more dissipative, which results in a relatively smaller
Umax. Therefore, the conditions on h and ∆t are more severe if one wants to resolve
the flow at an early time.

Both velocity and vorticity have large gradients in the neighborhood of the plate
tip, the maximum vorticity, in the absolute value, is found near the tip for all
Reynolds numbers at all time. Figure 4.6 is a closeup of vorticity contours near the
plate tip for Re=500 at t=0.01. Results at three resolutions are plotted, h = 0.003125,
0.0015625 and 0.00078125. These figures show that vorticity of zero level (the thick
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Figure 4.5: Maximum velocity Umax vs.t for Re =500 using three mesh sizes,
h=0.0001953125, h=0.000390625 and h=0.00078125. The time steps are ∆t = 2×10−6,
∆t = 4 × 10−6 and ∆t = 5 × 10−5, respectively. Plots of (b) is a closeup of (a) in a
smaller time interval.

h ∆t Umax

0.0001953125 1 × 10−6 396
0.0001953125 2 × 10−6 157
0.000390625 4 × 10−6 111
0.00078125 1 × 10−5 61
0.00078125 5 × 10−5 61
0.0015625 2 × 10−5 43
0.0015625 1 × 10−4 43
0.003125 2 × 10−4 30
0.00625 4 × 10−4 21

Table 4.2: Umax at ∆t for different h’s.

line) converges to a curve, this curve divides the positive and negative vorticity. It
is stressed that the region of positive vorticity is being entrained by the negative
one, and the region of negative vorticity is being entrained by the positive one as
well. Such a flow feature has not been reported before, and more details about it
will be discussed in section 6.

The plate emanates vorticity, The amount of vorticity entering the flow differs at
different locations on the plate. The vorticity values on the plate are different from
above and below the plate. Figure 4.7 shows the vorticity values along the plate,
both from above and below. Three resolutions are used, h = 0.003125, 0.0015625
and 0.0078125, and their results converge in general except for a region near the
plate tip. It is stressed that the vorticity value goes extremely large near the tip.
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Figure 4.6: vorticity contours near the tip for Re=500 at t=0.01. Three resolutions
are used with (a) h=0.003125, (a) h=0.0015625 and (a) h=0.00078125. ω = ±2[−5:12].

The conclusion for this section is that impulsively started flow past a finite plate
is the most difficult one in computation, compared to the uniformly accelerated
flow where the flow velocity is continuous at t=0. The velocity for the impulsively
started flow is a heavy-side function with the discontinuity at t=0. The background
flow velocity is zero at t=0, and the velocity is a nonzero constant when t , 0. One
can resolve the flow outside a time neighborhood of t=0 and a space neighborhood
of the plate tip for a given time-space resolution.
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Figure 4.7: Vorticity values along the plate for Re=500 at t=0.01. (b) is a closeup
of (a) near the plate tip. These curves that have negative values are from above
the plate, the other ones are from below the plate. h=0.003125 (dot-dashed line),
h=0.0015625 (dashed line) and h=0.00078125 (solid line)
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4.3 The resolution for other Reynolds numbers

Based on the relation of boundary layer thickness δ ∼
√
νt, one fixes t and reduces

ν by four times to ν′ = ν/4, the layer thickness is reduced by a half, reaches to
δ′ ∼ δ/2. Keeping the same the number of grid points across the boundary layer,
the mesh size for ν′ at t halves, which gets to h′ = h/2. We take plots of the stream
function for Re=500 and 2000 for example, t=1. Note that for the finite plate case,
ν=0.002 corresponds to Re=500 and ν=0.0005 corresponds to Re=2000. Figure 4.8ab
plot the stream function along the line x=0.5, y ∈ [−0.2, 0.2] for Re=500 and 2000.
Three mesh sizes are used, h=0.00625, h=0.003125 and h=0.0015625. Using the
solution at h=0.0015625 as the ’exact’ one, figure 4.8cd plot the maximum errors
along the line for Re=500 and 2000, respectively. The maximum errors for Re=2000
using h=0.003125 is comparable to that for Re=500 using h=0.00625. Therefore, one
can say that a necessary mesh size of h=0.003125 is required to resolve the flow for
Re=500 at t=0.01.
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Figure 4.8: Plots of the stream function along the line x = 0.5, y ∈ [−0.2, 0.2]
for (a) Re=500 and (b) Re=2000. Three different mesh sizes are used, h = 0.00625,
h = 0.003125 and h = 0.0015625. Using results of h=0.0015625 as the ’exact’ solution,
the maximum errors in the stream function along the line x = 0.5 ,y ∈ [−0.2, 0.2] for
(c) Re=500 and (d) Re=2000. t=0.1.
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5 Determine the order of accuracy of FDMHS

This section presents the order of accuracy of FDMHS for both the driven cavity
problem and the flow past a finite plate. We plotted the maximum norm of errors
in the stream function, velocity and vorticity. In particular, we compare results of
vorticity contours between FDMHS, EC4 and FDM2. For the problem of flow past
a finite plate, since the flow is singular at the plate tip, the convergence rate is not
expected to be the same as that in the driven cavity problem. We plotted the values
of stream function along a line crossing the plate, as well as its maximum norm
of errors to test the order of accuracy. We also compute the relative errors in the
vortex core trajectory and vorticity.

5.1 Driven Cavity

Here we present results for driven cavity problem with smooth driving velocity,
section 2, for various Reynolds numbers, where the characteristic length L is the
length of one side of the cavity wall, the characteristic velocity is given by the
driving velocity, see (2.3).

5.1.1 Order of accuracy

Figure 5.1 shows the convergence in time for Re=100. Nine time steps are used, ∆t
= 0.0025 0.002 0.00125 0.001 0.0008 0.0005 0.0004 0.0002 and 0.0001. The mesh size
is h = 0.015625. The computation for each ∆t ends at t = 1. The result of ∆t=0.0001
is used as the ’exact’ solution. In figure5.1, the y axis is the maximum norm of
errors in the computational domain, x axis is the time step ∆t. The dashed line
is a straight line of slope 1. Note that FDMHS is formally second order in time.
However, all four flow quantities, vorticity, horizontal velocity, vertical velocity
and stream function here show first order of accuracy in time. The slope of at the
very left line segment for each quantity is about 1.5. This is caused by the simple
splitting scheme, and the semi-Lagrangian method. Typical examples about the
order of accuracy in time for semi-Lagrangian methods are provided by Falcone
and Ferretti [13]. In their work, they examined the convergence, stability and
accuracy for a class of high-order semi-Lagrangian advection schemes. The reason
why I use a second order semi-Lagrangian scheme in time though the convergence
study shows a first order is because that, the second order method allows a larger

44



time step and the accuracy can be better in solutions compared with that using a
first order method.
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Figure 5.1: Order of accuracy in time of FDMHS in driven cavity problem. Nine
time steps are used, ∆t = 0.0025 0.002 0.00125 0.001 0.0008 0.0005 0.0004 0.0002 and
0.0001. The mesh size is h = 0.015625. The computation for each ∆t ends at t = 1.
The result of ∆t=0.0001 is used as the ’exact’ solution. The horizontal axis is the
time step ∆t, and the vertical axis is the error which is measured in the maximum
norm over the whole domain.

Figure 5.2 examines the order of accuracy in space. Five mesh sizes are used, h =
0.125, 0.0625, 0.03125, 0.015625, 0.0078125 and 0.00390625, t=0.004. The time step
is ∆t = 10−6. The time step is small enough that the error in space dominates. The
results of h=0.00390625 are used as the ’exact’ solution. Figure 5.2a shows results
of FDM2. The dashed line is a straight line of slope 2. In this figure, the stream
function, velocity and vorticity all show second order convergence. Figure 5.2b
uses FDMHS. The dashed lines are straight lines of slope 3 and 4, respectively. In
this figure, the stream function and velocity show fourth order convergence. But
the vorticity is close to third order (the slope is about 3.2 in the last line segment for
vorticity). Figure 5.2c uses FDMHS as well. The curves of ψ, u and v are identical
in figure 5.2b and figure 5.2c, but curves for ω are different. In figure 5.2c the order
of accuracy in vorticity is close to fourth order (the slope is about 3.6 in the last line
segment for vorticity). The region over which the errors are computed is different
between figure 5.2b and figure 5.2c. The errors over the whole computational
domain are considered in figure 5.2b while the errors in small regions on the top
left and right corners are excluded, in figure 5.2c. The flow on the top two corners
has large velocity gradients and a large amount of vorticity is concentrated there.
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ψ u v ω ω∗
0.76 -0.12 0.33 0.56 0.70
1.09 0.17 0.51 2.81 2.18
2.63 1.51 1.72 -0.23 0.20
5.46 4.09 4.06 3.36 3.63

Table 5.1: The slopes of line segments in figure 5.2bc. Vorticity ω is for figure 5.2b
and vorticity ω∗ is for figure 5.2c.

Table 5.1 lists the order of convergence for figure 5.2bc. Note the truncation errors
using FDMHS is generally smaller than that using FDM2.
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Figure 5.2: Order of accuracy of FDM2 and FDMHS in the driven cavity problem.
The computation uses (a) FDM2, (b) FDMHS, and (c) FDMHS. Six mesh sizes
are h = 0.125, 0.0625, 0.03125, 0.015625, 0.0078125 and 0.00390625. The results of
h=0.00390625 are used as the ’exact’ solution. The horizontal axis is the mesh size
h, and the vertical axis is the error which is measured in the maximum norm. The
curves of ψ, u and v are identical in(b) and (c), but curves for ω are different. In
(b), the errors over the whole computational domain are considered, and in (c),
errors over the whole domain but excluding the regions of two top corners, are
considered.
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5.1.2 Comparisons with other methods

Figure 5.3 compares FDM2 and FDMHS in vorticity contours for Re=10,000 at
t=1. Both methods use the same coarse mesh sizes h=1/96, and the time step ∆t
is sufficiently small that the errors in space dominate. Figure 5.3a shows vorticity
contours using FDM2, and figure 5.3b uses FDMHS. Figure 5.3cd are closeup of
figure 5.3ab, respectively. It is stressed that, on the top right corner of the cavity,
FDM2 shows jagged contours , while FDMHS does not. Therefore, one can say
that FDMHS resolves the boundary layers better that of FDM2. Note, I am not not
looking at the convergent results of FDMHS and FDM2 here. I also implemented
EC4 [8] in the driven cavity problem. Figure 5.4 shows the comparison in vorticity
contours and instantaneous streamlines between EC4 and FDMHS for Re=1000 at
t = 1. The mesh size is h=1/512, and the time step ∆t is small enough that the
figures will not change if using a finer ∆t. Figure 5.4ab show vorticity contours
and instantaneous streamlines using FDMHS, respectively. Figure 5.4cd show
vorticity contours and instantaneous streamlines using EC4, respectively. These
two methods, FDMHS and EC4, show great agreement.

48



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) FDM2 (b) FDMHS

0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

(c) FDM2 zoom in

0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

(d) FDMHS zoom in

Figure 5.3: The comparison between FDMHS and FDM2 in vorticity contours for
Re=10,000 at t=1. (a) Vorticity contours using FDM2, (b) Vorticity contours using
FDMHS. (c)(d) are closeup for (a)(b), respectively. Both methods use the same
coarse mesh sizes h=1/96, and the time step ∆t is sufficiently small that the errors
in space dominate.
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Figure 5.4: The comparison between FDMHS and EC4 in vorticity contours and
instantaneous streamlines for Re=1000 at t=1. (a) Vorticity contours and (b) in-
stantaneous streamline using FDMHS. (c) vorticity contours and (d) instantaneous
streamline using EC4. The mesh size is h=1/512, and the time step ∆t is small
enough that the figures will not change if using a finer ∆t.
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5.2 Finite Plate

5.2.1 Order of accuracy in space

The order of accuracy of FDMHS in space is examined here for the problem of
impulsively started flow past a finite plate. The Reynolds number is 500 for all the
results in this section.

Figure 5.5 shows the instantaneous streamlines at t=0.04. We try to establish the
order of accuracy by looking at values of stream function in a region nearby the
plate tip. Figure 5.6a shows the values of the stream function along a line crossing
the plate tip, x=0.5, y ∈ [−0.25, 0.25]. Four different mesh sizes are used h=0.00625,
h=0.003125, h=0.0015625 and h=0.00078125. At the scale shown in this figure, it is
hard to see any difference for various h’s. Using the result of h = 0.00078125 as the
’exact’ solution ψex, the errors in the other three mesh sizes are computed as below,

error = |ψ(0.5, y) − ψex(0.5, y)|, −0.25 ≤ y ≤ 0.25. (5.1)

and plotted in figure 5.6b. One can see that the errors decrease as the mesh size
decreases, and the errors are largest near the plate tip at y = 0. Table 5.2 gives the
maximum errors errormax over y of figure 5.6b. It shows that the order of accuracy
in space is between one and two.

errormax = max|ψ(0.5, y) − ψex(0.5, y)|, −0.25 ≤ y ≤ 0.25. (5.2)

0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

Figure 5.5: Instantaneous streamlines for Re=500 at t=0.04.

Figure 5.7 shows vorticity contours at t=0.04. We also try to establish the order of
accuracy by looking at the vortex core trajectory and vorticity. In the figure, a large
vortex spiral has formed above the plate tip. The thick curve is actually composed
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Figure 5.6: (a) The values of the stream function along the line x = 0.5,
y ∈ [−0.25, 0.25]. Four different mesh sizes are used, h=0.00625, h=0.003125,
h=0.0015625 and h=0.00078125. (b) absolute errors in the stream function along
the same line. Using h=0.00078125 as the ’exact’ solution. Re=500, t=0.04.

h errormax

0.00625 0.0206
0.003125 0.0098
0.0015625 0.0022

Table 5.2: Maximum errors in the stream function along the line x = 0.5, y ∈
[−0.25, 0.25] for Re=500. The result at h = 0.00078125 is used as the ’exact’ solution.
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Figure 5.7: Vorticity contours for Re=500 at t = 0.04.

of vorticity contours with contour levels close to 0. The thick curve divides regions
of positive and negative vorticity. The vorticity is negative in the a region bounded
by the curve and the plate, and positive elsewhere. The vortex core is defined to be
the point of maximum vorticity above the region of negative vorticity. Note that
the vortex core is not the point of maximum vorticity globally. There are two other
large local maxima near the tip, one positive and one negative. Table 5.3 gives
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the coordinates of the vortex core (xc, yc), as well as the vorticity ωc at the vortex
core at t=0.04. Four mesh sizes are used, h=0.00625, h=0.003125, h=0.0015625 and
h=0.00078125. The locations of the vortex core have good agreement. Using the
solution at h=0.00078125 as ’exact’ solution, define the relative error in vorticity eω
and locations of core ecore as as

eω =
|ωc − ωex|

|ωex|
, ecore =

||zc − zex||2

||zex||2
(5.3)

where zc = 〈xc, yc〉. The last two columns of table 5.3 shows the relative errors of
eω and ecore at h=0.00625, h=0.003125 and h=0.0015625. The relative errors in ω is
roughly halved each time when h is halved. Therefore, a first order accuracy is
achieved in the values of the vortex core, thought errors in the locations of vortex
core hardly changes using h=0.003125 and 0.0015625.

h (xc, yc) ωc ecore eω
0.00625 (0.4937, 0.0625 ) 527 0.0046 0.0645

0.003125 (0.4906, 0.0625) 548 0.0016 0.0237
0.0015625 (0.4921, 0.0625) 557 0.0014 0.0072

0.00078125 (0.4914, 0.0625) 561

Table 5.3: Trajectory (xc, yc) and values ωc of the vortex core for Re=500 at t=0.04.
Using the solution at h = 0.00078125 to be the ’exact’ value.

At the end of this section, I conclude that the order of accuracy of FDMHS
is formally in fourth in space and two in time. According to results shown in
the driven cavity test, FDMHS is fourth order accuracy in space and first order
accuracy in time. In the problem of flow past a finite plate, FDMHS is between first
and second order in space. FDMHS is an enhancement of FDM2, and resolves the
flow as well as EC4.
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6 Viscous flow past a finite plate

This section presents numerical simulations of the viscous flow past a finite plate,
computed using FDMHS. In all cases, the parameters h and ∆t are chosen according
to the criterion presented in section 4.

6.1 Impulsive start

Impulsively started flow have applications in real life situations, for example,
the sudden occurrence of force exerted on an object, a gust of wind blowing a
tree. In some cases, the force or wind that come on a sudden are particularly
destructive. This section presents results of the viscous flow past a finite plate with
an impulsively started velocity

U∞(t) = 1. (6.1)

The Reynolds number Re = LU/ν is obtained using the length of the plate as the
characteristic length, and the far-field velocity U∞ as the characteristic velocity.
Sections 6.1.1 and 6.1.2 show the evolution of flow, from a very early time t=.0002
to a relatively large time t=5, and presents the dependence of the flow on Re. For
Re=4000, an instability is observed in the form of secondary vorticies along the
outer spiral turn. These are presented in section 6.1.3. The last sections, from 6.1.4
to 6.1.6 present global quantities such as characteristic width and height of the
vortical region, the core trajectory and maximum vorticity, and the circulation and
circulation shedding rate.

6.1.1 Evolution at an early time

Figure 6.1 shows the vorticity contours for Re=500 at a sequence of times at t =
0.0002, 0.0004, 0.001, 0.002, 0.004, 0.005, 0.01 and 0.02. The mesh size h = 0.000390625
for results at t = 0.0002, 0.0004, 0.001 and h = 0.00078125 for results at t = 0.002,
0.004, 0.005, 0.01, 0.02. The vorticity on the plate is not zero, but I make it zero for
the plot purpose.

As the background flow moves from bottom to top, a boundary layer of positive
vorticity forms on either side of the plate. This boundary layer is clearly visible
already at the first time shown, t=0.0002. However, immediately after the beginning
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of the motion the boundary layer loses its symmetry. Boundary vorticity from the
bottom layer moves around the tip of the plate and concentrates near the edge above
plate. This region of concentrated vorticity, referred to here as the starting vortex,
grows in time, as does the boundary layer thickness. The figure shows positive
and negative vorticity contour levels, ω = ±2[−5:12]. At the later times shown in
figure 6.1, one observes what appears to be a thick contour level beginning at
the tip and attaching back to the plate somewhere downstream of the tip. This
thick curve consists in reality of large number of contours of near zero vorticity,
and separates a region of negative vorticity, between the zero-level contour and
the plate, and positive vorticity, everywhere else. A closeup at the earliest times
computed shows that the region of negative vorticity appears immediately, for any
t > 0, and is visible in our results at ∆t, independent of the time step. Figure 6.1
shows that as time evolves, the region of negative vorticity grows. It becomes
thicker and longer. It is also stretched and entrained by the leading vortex.

Near the tip of the plate, the zero level contour appears to have a small dimple.
As was shown in the closeups in figure 4.6, this dimple is well resolved and a true
feature of the flow. It consists of positive vorticity that is entrained by the growing
region of negative vorticity. As opposed to the region of negative vorticity, this
secondarily entrained region of positive vorticity is not attached to the plate and
does not grow in time.

Figure 6.2 shows a closeup of the flow near the tip of the plate for various
Reynolds numbers, Re = 200, 500, 1000 and 2000, computed using h=0.00078125,
0.00078125, 0.00078125, 0.000390625 and ∆t = 5×10−5, 1×10−5, 2.5×10−5, 6.25×10−6,
respectively. One can see that the region of negative vorticity is stretched and
entrained more strongly for larger Re, and that the size of the dimple of entrained
positive vorticity decreases with increasing Re.

Details of the vorticity near the plate are shown in figure 6.3, 6.4. Figure 6.3b
plots the vorticity along four line segments x=0.4,0.425, 0.45 and 0.475, shown in
figure 6.3a, for the solution with Re=500 at t=0.04. It shows that the vorticity has
large gradients near the plate, and that the maximal plate vorticity increases as the
tip is approached. The maximum absolute vorticity is found near the tip of the
plate.

Figure 6.4 shows the size of the region of negative vorticity attached to the plate,
as a function of time, for the simulation with Re=500 at t=0.04. Figure 6.4a plots the
region of negative vorticity and the streamlines of the flow. The zero streamline
contour encloses a recirculating region of fluid. It leaves the tip of the plate and
reattaches to the plate downstream. Note that the point of reattachment of the
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zero streamline contour coincides approximately with the point of reattachment of
the zero vorticity contour. The distance s between the plate tip and the point of
reattachment of zero streamline is a measure of the length of the region of negative
vorticity. Figure 6.4b plots the migration of s vs. t. The data is obtained at discrete
times, shown by ∗. The dashed line is a least square fit of the data using a cubic
polynomial. By extrapolation, it is found that s=0.5 at t=0.0945. In other words,
the negative vorticity is expected to reach the plate center at t=0.0945.

Figure 6.5 plots the maximum velocity vs. time, computed with the indicated
values of h on a logarithmic scale. The data with the three largest values of h is the
same as the one shown in figure 4.4 on a linear scale. On the logarithmic scale, one
can see that the maximum velocity decays like

Umax ∼ t−1/4. (6.2)

The data for the smallest two values of h is somewhat vertically displaced from
the other three data sets. This may have to do with the time steps used, which
range from 10−6 to 10−4. This needs to be studied further. However, the slope in
the logarithmic scale is close to −1/4 as well.
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Figure 6.1: Vorticity contours for Re=500 at t = 0.0002, 0.0004, 0.001, 0.002, 0.004,
0.005, 0.01 and 0.02. For results at t = 0.0002, 0.0004 and 0.001, h = 0.000390625, ∆t
= 2 × 10−6; for results at t = 0.002, 0.004, 0.005, 0.01 and 0.02, h = 0.00078125, ∆t =
1 × 10−5. ω = ±2[−5:12].
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Figure 6.2: Vorticity contours near the plate tip at time t=0.01 for Re=250, 500, 1000
and 2000. The contour levels are−2[−3:8] and 2[−3:12] for Re=200, 500, 1000 and−2[−5:8]

and 2[−5:12] for Re=2000.
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Figure 6.3: (a)Vorticity contours for Re=500 at t=0.04. four line segments are
depicted, x=0.4, 0.425, 0.45 and 0.475. (b) shows the values of vorticity along these
lines segments.

0.3 0.4 0.5
−0.1

−0.05

0

0.05

0.1

0.15

s

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

s

t

t=0.0945, s=0.5

(b)

Figure 6.4: Migration of the negative vorticity region towards the plate center
by tracking the intersection of zero level streamline and the plate. (a) Negative
vorticity contours and instantaneous streamlines for Re=500 at t=0.04. s measures
the distance between the plate tip and the intersection of zero level streamline and
the plate. (b) The evolution of s at discrete times is plotted in asterisks, the dashed
line is a least square fit of the data using the cubic interpolation. s is 0.5 at t = 0.0945.
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6.1.2 Evolution at a long time

Figure 6.6 and figure 6.7 show vorticity contours and instantaneous streamlines
for fixed Re=500 at relatively large times, t =0.1, 0.2, 0.5,1,2, 3 and 5. The starting
vortex continues to increase in size with time. This region of negative vorticity has
extended all the way to the center of the plate (0, 0). The shape of vorticity contours
stays symmetric all the time. The vorticity boundary layer on the other side of
the plate is positive, and its thickness looks unchanged. The recirculation region
increases in length and the vortex width expands in the x direction.

The negative vorticity region is not uniform along the plate, and the thickness H
of the region changes with time as well. Figure 6.8a shows the vorticity contours for
Re=500 at t = 0.04. One picks a line at x=0.4, and figure 6.8b shows the evolution of
H for Re=500. H increases initially and then decreases. The maximum thickness is
0.156 around t=1.5. The decrease in H is attributed to the expansion of the starting
vortex. The size of the starting vortex is growing in all directions with time due to
effect of diffusion. The negative vorticity keeps being entrained and stretched by
the starting vortex.

Figure 6.9 and figure 6.10 show vorticity contours and instantaneous streamlines
at a fixed time t=1 for a sequence of Reynolds numbers, Re =20, 40, 126, 200, 500,
1000, 2000 and 4000. The flow topology does not vary a lot for different Reynolds
numbers. A single vortex spiral forms, and grows with time. For large Reynolds
number, for example Re=1000, there is a visible separated shear layer that rolls
up in spiral, and I will call it vortex band. Or in another word, the vortex band
is the region of vorticity that connects the major vortex spiral and the plate tip.
Vorticity has large diffusion for low Reynolds numbers. As the Reynolds number
becomes larger, the vortex band is tighter and the support of the whole vorticity
is smaller. The thickness of the negative vorticity region is smaller for a large
Reynolds number as well. These results show good agreement with results in the
literature [23][28][44].
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Figure 6.6: Vorticity contours and instantaneous streamlines for Re=500 at t = 0.1,
0.2, 0.5 and 1. The contour levels of vorticity are ±2[−5:8] and the contour levels of
the stream function ψ are [−1 : 0.1 : 1].
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Figure 6.7: Continuation of figure 6.6. Vorticity contours and instantaneous stream-
lines for Re=500 at t = 2, 3, 4 and 5.
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Figure 6.8: The thickness of the negative vorticity region H at x = 0.4 vs.t for
Re=500.
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Figure 6.9: Vorticity contours and instantaneous streamlines at t=1 for Re=20, 40,
126 and 200. The contour levels of the vorticity ω are ±2[−5:8] and the contour levels
of the stream function ψ are [−1 : 0.1 : 1].
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Figure 6.10: Continuation of figure 6.9. Vorticity contours and instantaneous
streamlines at t=1 for Re=500, 1000, 2000 and 4000. The contour levels of the vor-
ticity ω are ±2[−5:8] and the contour levels of the stream function ψ are [−1 : 0.1 : 1].
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6.1.3 Instability

The instability of the outer spiral turn that has been observed in experiments and
computations, are observed in my computation at Re = 4000 around t=1.5 . The
instability does not vanish if the mesh size is halved. The vorticity is smooth
initially. The secondary vortices first appear in the middle of the vortex band and
the instability tends to migrate toward the main spiral core. In the literature, the
instability is categorized as a Kevin-Helmholtz type instability. Remember that
Kevin-Helmholtz instability occurs when a vorticity shear layer is perturbed and
unstable modes keep growing. In my computations, however, it is still not clear
what the mechanism is to trigger the unstable modes in the numerical computation.
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Figure 6.11: Vorticity contours and instantaneous streamlines for Re=4000 at t =
0.3, 0.6 and 0.9. The contour level of the vorticity ω is ±2[−5:8] and the contour level
of the stream function ψ is [−1 : 0.1 : 1].
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Figure 6.12: Continuation of figure 6.11. Vorticity contours and instantaneous
streamlines for Re=4000 at t = 1, 1.5, 2, 2.5 and 3.
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6.1.4 Vortex size and width

After a time around 0.1, zero level streamline encloses a region of recirculation
downstream of the plate, which is referred to as the vortex size. The plate is always
a part of the vortex size boundary since the stream function is zero on the plate. The
stream function changes sign from the inner side of the vortex bubble to the outer
side. The vortex size s is defined as the y-coordinate of the intersection between
zero level streamline and the y-axis, see figure 6.13. The size s is growing with
time. A closer study of vortex size is shown later.

s
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Figure 6.13: Vorticity contours and streamlines for Re=500 at t=0.5. s measures the
length of the vortex size which is the y-coordinate of the intersection between the
y-axis and the zero level streamline

Taneda and Honji (1970) [44] conducted a series of laboratory experiments to
study the development of the separated flow past a finite plate. They found rela-
tions that connect the vortex size s, time t and the kinematic viscosity ν. According
to [44], the length of the scaled vortex size s/L is nearly proportional to (Ut/L)2/3

and τ = νt/L2,

s/L ∝ (Ut/L)2/3 and s/L ∝ τ, where τ = νt/L2 (6.3)

at small values of t such that (νt/L2) ≤ 1. Here U is the plate speed, and L is the
plate length. Figure 6.14 shows loglog plots of the scaled vortex size s/L vs.τ and
s/Lvs.(Ut/L), respectively, using results of my computations. One can see that the
scaled vortex size follows the 2/3 scaling rule generally while the growth rate slows
down near the tail of each curve. The scaled vortex size s/L is a function of τ taking
the form of

s/L = k(ν)τ2/3 (6.4)

where k(ν) is a function of the kinematic viscosity and the value of k(ν) is inversely
proportional in ν. In figure 6.14b, the curves at different Reynolds numbers seem
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to overlap each other. This indicates that the vortex size is not affected by viscosity.
Using a radical function of order 2/3 to fit the data of Re=40 (excluding the first
three points) in the least square sense, the relation between s/L and Ut/L in figure
6.14b is close to

s/L = 0.91(Ut/L)2/3. (6.5)

The results of other Reynolds numbers are below the line of equation (6.5) near
the tail. The equation (6.5) is very close to the relation of s/L = 0.89(Ut/L)2/3 in
[44]. Table 6.1 summarizes the results of vortex size measurements at Re = 40 and
Re = 126.

Re=40
τ Ut/L s/L (s/L)τ−2/3

0.0200 0.40 0.52 7.1
0.0300 0.60 0.73 7.6
0.0400 0.80 0.91 7.8
0.0500 1.00 1.07 7.9
0.0600 1.20 1.21 7.9
0.0700 1.40 1.33 7.8
0.0800 1.60 1.45 7.8
0.0900 1.80 1.56 7.8
0.1000 2.00 1.67 7.8
0.1100 2.20 1.77 7.7
0.1200 2.40 1.87 7.7
0.1300 2.60 1.97 7.7
0.1400 2.80 2.07 7.7
0.1500 3.00 2.16 7.7
0.1600 3.20 2.26 7.7
0.1700 3.40 2.33 7.6
0.1800 3.60 2.42 7.6
0.1900 3.80 2.50 7.6
0.2000 4.00 2.57 7.5
0.2100 4.20 2.65 7.5
0.2200 4.40 2.73 7.5
0.2300 4.60 2.81 7.5

Re=126
τ Ut/L s/L (s/L)τ−2/3

0.0032 0.40 0.49 22.7
0.0048 0.60 0.70 24.7
0.0063 0.80 0.86 25.1
0.0079 1.00 1.00 25.1
0.0095 1.20 1.13 25.1
0.0111 1.40 1.24 24.9
0.0127 1.60 1.35 24.8
0.0143 1.80 1.45 24.6
0.0159 2.00 1.54 24.4
0.0175 2.20 1.63 24.2
0.0190 2.40 1.71 24.0
0.0206 2.60 1.80 23.9
0.0222 2.80 1.87 23.7
0.0238 3.00 1.95 23.6
0.0254 3.20 2.02 23.4
0.0270 3.40 2.10 23.3
0.0286 3.60 2.16 23.1
0.0302 3.80 2.23 23.0
0.0317 4.00 2.30 22.9
0.0333 4.20 2.36 22.8
0.0349 4.40 2.41 22.6
0.0365 4.60 2.48 22.5

Table 6.1: A summary of vortex size information for Re=40 and Re=126.

The vortex width is defined to be the large extent ofω=1 contour in the x direction,
see figure 6.15. The width will be larger or smaller than L if the contour level ofω is
greater or smaller than 1. Figure 6.16 shows the band width (ω = 1)vs.t at Re=200,
500, 1000 and 2000 . The width grows with time. All curves seem to overlap each
other, and this indicates that the width is independent of the Reynolds number.
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Figure 6.14: The loglog plots of (a) the scaled vortex size s/L vs.τ and (b) the scaled
vortex size s/L vs.Ut/L. The length of the plate is L = 1 and τ = νt
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Figure 6.15: A schematic of the vortex width L of the contour level ω = 1.
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Figure 6.16: The vortex width L (ω = 1)vs.t for four Reynolds numbers Re = 250,
500, 1000 and 2000.
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6.1.5 Vortex core

Table 6.2 gives the trajectory of the vortex core at Re=200, 500, 1000 and 2000. The
coordinate of the core is (xc, yc), and the vorticity value at the core isωc. One can see
that the core moves vertically since xc rarely changes with time, and the value xc is
almost the same for all Reynolds numbers. In the vertical direction, the core moves
faster at a large Reynolds number. At a fixed time, the core value ωc increases as
the Reynolds number increases. This implies that more vorticity is carried by the
core at larger Reynolds numbers.

Re=200
t xc yc ω

0.5 0.48 0.33 42.77
1 0.48 0.54 22.06

1.5 0.48 0.68 16.59
2 0.49 0.78 13.60

2.5 0.49 0.85 11.55
3 0.49 0.91 10.06

3.5 0.49 0.96 8.85
4 0.49 1.02 7.79

4.5 0.49 1.09 6.95
5 0.49 1.16 6.33

Re=500
t xc yc ω

0.5 0.48 0.32 64.52
1 0.48 0.53 38.63

1.5 0.48 0.67 28.76
2 0.49 0.77 23.23

2.5 0.49 0.84 19.28
3 0.49 0.90 16.05

3.5 0.49 0.95 13.39
4 0.49 1.00 11.27

4.5 0.49 1.06 8.11
5 0.49 1.11 8.48

Re=1000
t xc yc ω

0.5 0.49 0.32 111.06
1 0.49 0.53 65.49

1.5 0.49 0.67 47.55
2 0.49 0.78 36.19

2.5 0.49 0.85 28.86
3 0.49 0.91 16.49

3.5 0.49 0.95 13.39
4 0.49 0.99 12.04

4.5 0.49 1.06 9.98
5 0.49 1.11 8.66

Re=2000
t xc yc ω

0.5 0.48 0.30 123.70
1 0.48 0.51 73.24

1.5 0.48 0.65 54.52
2.1 0.48 0.76 43.21
2.5 0.49 0.81 38.49
3 0.49 0.85 33.68

3.5 0.49 0.90 28.41
4 0.49 0.94 23.05

4.5 0.49 0.97 17.86
5 0.49 1.03 14.23

Table 6.2: The trajectory (xc, yc) and values ωc of the vortex core for Re = 200, 500,
1000 and 2000.
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6.1.6 Circulation

The circulation shed from the plate is calculated as an integration over an area Ω

Γ(t) =

∫ ∫
Ω

ω(z, t)dz. (6.6)

Vorticity is generated everywhere from the plate, but we want to count vorticity
shed from the tip only. The shaded area of figure 6.17 illustrates how the area Ω
is chosen. The computational domain is [0, xmax] × [ymin, ymax], and the plate tip
is at (L

2 , 0). xε is on left of the tip, and xε, ys is on the zero level vorticity. A small
triangle area between zero level vorticity and the plate is included to count a small
region of entrainment near the tip. The curve between xε, ys and xε, ye is part of the
vorticity contour of level ω = 0.1

Figure 6.18 shows shed circulation Γ vs.t for Re=200, 500, 1000 and 2000. Figure
6.18a uses a linear scale. Initially, Γ does not depend on Reynolds numbers, at
a large time period, more circulation is shed from the tip for a larger Reynolds
number. From the logarithmic scale, shown in figure 6.18b, one can see that the
circulation scales as t1/3 initially, and t1/2 later. The initial scaling follows the scaling
for the semi-infinite plate, section 7. At early times, these two flows are expected
to scale similarly.

Figure 6.19 shows the shedding rate dΓ/dtvs.t. The circulation shedding rate
dΓ/dt is computed using a second order central difference method in time. The
shedding rate is large initially and then slows down with time. The rate is big for
a large Reynolds number, and has no apparent dependence on Reynolds numbers.
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Figure 6.17: A Schematic of the integral region Ω (shadow) to compute the circula-
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Figure 6.18: The circulation shed from the tip Γ vs.t for four different Reynolds
numbers Re = 200, 500, 1000 and 2000 on (a) a linear scale, (b) a logarithmic scale.
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Figure 6.19: The circulation shedding rate dΓ/dt vs. t for four different Reynolds
numbers Re = 200, 500, 1000 and 2000.
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6.2 Uniform acceleration

The problem of accelerated background flow past a finite is not extensively stud-
ied in numerical computations, though it seems to be a natural problem in the
experimental aspect. The few results available, by KS, are much under-resolved
and inconsistent within the paper. Careful documentation of the dynamics of this
fundamental flow still needs to be done. This section presents the results for flow
past a finite plate with a uniformly accelerated flow

U∞(t) = at (6.7)

where a is the acceleration. The characteristic length L is the length of the plate.
However, it is not clear what characteristic velocity is. Therefore, results of sections
6.2.1, 6.2.2, 6.2.3 and 6.2.4 are presented in terms of viscosity, acceleration and
time. All the computations in this section are at ν=0.025. Six different values of
acceleration are chosen, a=10, 25, 50, 75, 100 and 125. Section 6.2.1 presents the
evolution of the vorticity contours. Section 6.2.2 concerns the dependence on a of
vorticity contours. Section 6.2.3 presents the trajectory and vorticity of the vortex
core. Section 6.2.4 concerns about the recirculation region. Section 6.2.5 presents
the dimensional analysis using a characteristic time T =

√
L/a, and introduces a

dimensionless parameter Rea. Section 6.2.6 shows dependence of vorticity contours
on Rea. Section 6.2.7 dependence of circulation on Rea.

6.2.1 Evolution

Figure 6.20 and figure 6.21 show the evolution of the vorticity for ν=0.025 at a =
100. h=0.00625 in the computation, ∆t starts with 5× 10−4 and decreases to 1× 10−5

after t=0.2. The flow structures are similar to that of the uniform background flow.
The starting vortex forms and rolls up. The region of negative vorticity is present
and extends towards the center of the plate.

These results were also presented by KS [23] using the vortex particle method,
(figure 25, figure 26 in their paper). The geometry, viscosity and the time of these
snapshots are the same in both theirs and my computations. The mesh size in KS
is unknown. However, our results are not quite in agreement. In their plots, the
region of negative vorticity is absent at t=0.02 and there is inconsistency in the
vortex size transition from t= 0.08 to 0.1 . The vorticity contours look noisy from
the very beginning, and they observed instability at t = 0.3 and 0.4 while my results
look stable.
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Figure 6.20: Vorticity contours for a=100 at t = 0.02, 0.04, 0.06 and 0.08, ν=0.025.
The contours levels are ±2[−2:8].

6.2.2 Dependence on the acceleration

Figure 6.22 compares the vorticity contours for a sequence of accelerations, a =
10, 25, 50, 75, 100 and 125, at t = 0.3. The time step should be bigger for a small
acceleration a due to a small maximum velocity, but I used the same ∆t as that for
a=100. For a large acceleration, the support of the vorticity is bigger, the region
of negative vorticity is more entrained by the positive vorticity region. There are
dimples above the tip of the plate for all a.

6.2.3 Vortex core

Results at five accelerations are compared in the trajectory and values of the vortex
core, a = 10, 25, 50, 75 and 100. Table 6.3 gives the coordinates of the vortex core
(xc, yc) and ωc for a sequence of times, t = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4.
One can see that, at a fixed acceleration a, the core moves vertically since xc rarely
changes with time. The values of xc are almost the same for all accelerations. In
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Figure 6.21: Continuation of figure 6.20. Vorticity contours for a=100 at t = 0.1, 0.2,
0.3 and 0.4, ν=0.025. The contour levels are ±2[−2:8].

the vertical direction, the core moves faster for a large acceleration.

The flow with ν=0.025 has large diffusion. If the velocity of the background flow
is constant, the vorticity at the vortex core would decrease with time, which has
been shown in section 6. My plausible explanation is that, the background flow
keeps feeding energy into the flow, and this energy input rate is constant with time
if the background velocity is constant. The effect of diffusion conquers the effect
of energy feeding in the uniform background flow case, therefore, ωc decreases
with time. There is an increasing amount of energy feeding into the flow if the
background velocity is accelerated. For a small value of the acceleration a, the
effect of diffusion dominates. Therefore, ωc still decreases with time, for example,
a=10 in table 6.3. If the acceleration a is large enough, one can see an increasing
value of the vortex core with the time, for example, a=25, 50, 75 and 100 in table
6.3.
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a=10, U∞ = at
t xc yc ω

0.10 0.49 0.012 85.50
0.15 0.49 0.031 69.66
0.20 0.49 0.106 61.98
0.25 0.49 0.181 59.71
0.30 0.49 0.268 58.10
0.35 0.49 0.368 55.69
0.40 0.49 0.487 52.17

a=25, U∞ = at
t xc yc ω

0.10 0.49 0.075 131.81
0.15 0.49 0.193 121.84
0.20 0.46 0.337 104.37
0.25 0.40 0.412 91.25
0.30 0.49 0.481 83.04
0.35 0.49 0.937 81.95
0.40 0.49 1.137 83.68

a=50, U∞ = at
t xc yc ω

0.10 0.49 0.181 196.03
0.15 0.49 0.312 154.03
0.20 0.49 0.437 133.78
0.25 0.49 0.918 125.88
0.30 0.49 1.187 131.56
0.35 0.49 1.456 138.96
0.40 0.49 1.725 145.39

a=75, U∞ = at
t xc yc ω

0.10 0.43 0.237 223.31
0.15 0.45 0.393 180.60
0.20 0.49 0.931 171.56
0.25 0.49 1.275 184.27
0.30 0.49 1.631 197.08
0.35 0.49 1.993 204.92
0.40 0.49 2.368 206.37

a=100, U∞ = at
t xc yc ω

0.10 0.49 0.262 247.43
0.15 0.49 0.645 209.10
0.20 0.49 1.156 222.45
0.25 0.49 1.555 240.40
0.30 0.49 2.000 250.51
0.35 0.49 2.435 253.50
0.40 0.49 2.893 249.50

Table 6.3: The trajectory (xc, yc) and values ωc of the vortex core for a = 10, 25, 50,
75 and 100, ν=0.025.
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Figure 6.22: Vorticity contours at t=0.3 for a=10, 25 ,50, 75, 100 and 125, ν=0.025.
The contour levels are ±2[−2:8].
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6.2.4 Vortex size

The vortex size is defined in the same way as in section 6.1. In the same work of
Taneda and Honji (1970) [44], they proposed that the scaled vortex size s

L , in the
uniformly accelerated flow case, is proportional to the acceleration a in the form of

s
L
∼ (

at2

L
)2/3 (6.8)

when τ < 0.1, where τ = νt
L2 . The plate length is L = 1. Both s

L and at2

L are
dimensionless.

Figure 6.23 shows s
L vs. at2

L for a = 10, 25, 50, 75 and 100. For all these data, τ is less
that 0.1. These curves in figure 6.23 increase rapidly initially, and later approach
a straight line of slope 2/3. Using a least square fit of these data with a radical
function of order 2/3 (dashed line in figure 6.23) to yield

s
L

= 0.519(
at2

L
)2/3 (6.9)

in the region where at2

L ≥ 1. Taneda and Honji has s
L = 0.48( at2

L )2/3. The two
coefficients are close.
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Figure 6.23: The scaled vortex size s
L vs. at2
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6.2.5 Dimensionless variables

The governing equation NSE (3.1) for the accelerated flow can be non-dimensional
using the characteristic length L as the length of the plate, the characteristic time T
as

T =

√
L
a
. (6.10)

the dimensionless variables are

x∗ =
x
L
, y∗ =

y
L
, t∗ =

√
a
L

t, (6.11)

u∗ =
u
√

aL
, ω∗ = ω

√
L/a, ψ∗ =

ψ

L3/2a1/2 (6.12)

and the dimensionless form of NSE

∂ω∗

∂t∗
+ u∗ · O∗ω∗ =

ν

L3/2a1/2 ∆∗ω∗ (6.13)

∆∗ψ∗ = ω∗. (6.14)

The far field background flow

U∗
∞

= t∗. (6.15)

The dimensionless parameter of the flow is

Rea =
L3/2a1/2

ν
. (6.16)

For reference of the following sections,

Γ∗ =
Γ

L3/2a1/2 . (6.17)

According to the dimensional analysis, the results shown in figure 6.20 6.21
correspond to Rea = 400a at a sequence of times t∗ = 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0 and
4.0.

6.2.6 Dependence on Rea

Next, we present the dependence on Rea at a fixed time t∗ for a sequence values
of Rea. Figure 6.24 shows contours of ω∗ at t∗=1.2 for a sequence of Rea = 126.49,
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200.00, 282.84, 346.41, 400.00 and 447.21. The size of the vortex is smaller for a large
Rea. The region of negative vorticity is more entrained by the leading vortex for a
large Rea, it is reminiscence of dependence on Re for the impulsively started case.
Also, the thickness of the negative vorticity region decreases as Rea increases.
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Figure 6.24: Vorticity contours at t∗ = 1.2 for Rea = 126.49, 200.00, 282.84, 346.41,
400.00, 447.21. The contour levels are ω∗ = ±2[−2:8].
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6.2.7 Circulation

The circulation shed from the plate tip is calculated in a way similar to that in
section 6.1, figure 6.17. Figure 6.25 shows the circulation Γ∗ vs.t∗ for Rea = 126.49,
200.00, 282.84, 346.41, 400.00. It is stressed that there is no apparent dependence
on Rea. The circulation Γ increases with time in a way faster than linear behavior.
The circulation shedding rate dΓ∗/dt∗ is computed using the central finite difference
method. Figure 6.25 shows the dΓ∗/dt∗vs.t∗. The rate dΓ∗/dt∗ increases with time as
well, and no apparent dependence on Rea is observed. Note that dΓ∗/dt∗ is not zero
when t∗ approaches to zero. The figure looks noisy around t∗=0.4, this is due the
integration region D that I used, figure 6.17. The region D does not give a good
approximation of the circulation Γ∗ during an early time stage.
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Figure 6.25: Circulation shed from the tip Γ∗ vs. t∗ for Rea = 126.49, 200.00, 282.84,
346.41, 400.00.
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6.3 Oscillatory

Vortex generation due to periodic motion happens in many real-life situations.
Biological rythms are periodic, swimming motions are periodic, forces of sloshing
waves hitting a pillar are periodic. For these reasons the periodic case is of interest
in itself. The oscillatory flow past a plate is also a classic test case for vortex sheet
separation algorithms. Several algorithms are used in practice, and yield slightly
different results. Having results from a fully resolved direct numerical simulation
available helps to evaluate these algorithms and potentially mimic the viscous
separation process better. This is further motivation for studying this case. For
reference, we present vortex sheet simulations of the oscillating flow in next to the
viscous simulations. Detailed comparisons and analysis remain to be performed.
This is work in progress.

This section presents results of flow past a finite plate with an oscillatory flow.
The background flow is

U∞(t) = sin(
πt
KC

), KC = 3.8. (6.18)

The characteristic length L is the length of the plate, and the characteristic velocity
U is the maximum of the background flow. The following section 6.3.1 presents the
evolution of the vorticity contours. Section 6.3.2 concerns the instability. Section
6.3.3 to section 6.3.5 provide results for some global quantities such as the vortex
core, circulation and vortex width. Section 6.3.6 shows approximation of the shear
layer strength.

6.3.1 Evolution

Figure 6.27 shows the vorticity contours and instantaneous streamlines of Re=2000,
at a sequence of times t=0.5, 1, 2, 3, 3.5 and 3.8. The starting vortex grows initially,
in a similar way as that of the impulsively started flow case, but it has a new feature
related to the secondary vortex of negative sign at the plate tip. This behavior is
related to the changing velocity of the background flow. For simplicity, I switch
the reference frame in the flow: the flow is stationary and the plate is moving in an
oscillatory manner. When the plate accelerates, the starting vortex gains velocity
and moves in the same direction with the plate. As the plate slows down, the
distance between the starting vortex and the plate is decreasing, the large velocity
of the leading vortex induces a secondary vortex to form at the tip. The zero level
streamline looks quite different from that of the impulsively started flow case. At
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t=3.8, a small vortex bubble is attached to the plate tip. This is also related to the
formation of the secondary vortex. Note that there is a hump on the top of the outer
turn at t=2. This hump actually occurs at t=1.9, when the acceleration changes sign.
The hump migrates downwards along the outer turn and becomes invisible in the
end.

Figure 6.28 shows vortex sheet and instantaneous streamlines at the same times
as figure 6.27, using the vortex sheet method for δ=0.05. Results of the vortex sheet
method are provided to compare to those of the viscous simulations using FDMHS.
In figure 6.28, the evolution of the vortex sheet is similar to the shear layer evolution
in figure 6.27. The vortex sheet grows downstream at the beginning and then tends
to wrap the plate tip in the end. The vortex size is similar to that of FDMHS at
t=0.5, but is smaller at other times. The vortex cores location is below y=1 at t=3,
3.5 in figure 6.28 while it is above y=1 in figure 6.27. At t=3.8, the vortex core is
around (1.2, 0.9) in both figures 6.28 and 6.27. The vortex sheet method reproduces
the general shape of the starting vortex fairly well, though the viscous simulations
give more details such as the secondary vortex, and the behavior of the negative
vorticity region.

Figure 6.29 compares results of FDMHS at various Reynolds numbers and the
vortex sheet method using various values of δ. Figure 6.29(the left column) shows
the vorticity contours and instantaneous streamlines at t=3.8 for Re=500, 1000
and 2000. For a large Reynolds number, the boundary layer is more tight and
the separated shear layer is more compact. The region of negative and positive
vorticity is more clearly separated for larger Reynolds number as well. The vortex
core location at these three Reynolds numbers is approximately at the same place,
around (1.2, 0.9). Figure 6.29(the right column) shows locations of the vortex sheet
and instantaneous streamlines at t = 3.8 for δ = 0.2, 0.1 and 0.05. Here δ can
be viewed as the artificial smoothing parameter introduced in the vortex sheet
method. As δ decreases, the vortex sheet reveals more details. The secondary
vortex sheet roll-up near the tip becomes tight as δ decreases. The vortex core
location with these three values of δ remains approximately the same, and it seems
lower than that of the viscous results.
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Figure 6.27: Vorticity contours and instantaneous streamlines for Re=2000 at t=0.5,
1, 2, 3, 3.5 and 3.8. The contour levels of the vorticity are 2[−5:10] and −2[1:8] and the
contour levels of the stream function are [−1 : 0.2 : 1].

89



−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

Figure 6.28: Locations of the vortex sheet and instantaneous streamlines for δ=0.1
at t=0.5, 1, 2, 3, 3.5 and 3.8, using vortex sheet method (all the results using vortex
sheet method hereinafter are courtesy of Monika Nitsche). The contour levels of
the stream function are [−1 : 0.2 : 1].
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Figure 6.29: Left column: vorticity contours and instantaneous streamlines at t = 3.8.
Re = 500, 1000 and 2000 (top to bottom), using FDMHS. The contour levels of the
vorticity are 2[−5:10] and −2[1:8]. Right column: locations of the vortex sheet and
instantaneous streamlines at t = 3.8 for δ = 0.2, 0.1 and 0.05 (top to bottom), using
vortex sheet method. The contour levels of the stream function are [−1 : 0.2 : 1].
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6.3.2 Instability

Instability is seen in the computational results for Re=4000. Figure 6.30 and figure
6.31 show the evolution of vorticity and stream function for Re = 4000. Instability
occurs around t = 1.5 but it does vanish if I halve the mesh size. Therefore, it is the
effect of the resolution.
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Figure 6.30: Vorticity contours and instantaneous streamlines for Re=4000 at t=0.5,
1, 1.5 and 2. The contour levels of the vorticity are 2[−5:10] and −2[1:8]. The contour
levels of the stream function are = [−1 : 0.2 : 1].
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Figure 6.31: Continuation of figure 6.30. Vorticity contours and instantaneous
streamlines for Re=4000 at t=2.5, 3, 3.5 and 3.8.
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6.3.3 Vortex core

Table 6.4 shows the trajectory of the vortex core for Re=2000. In the x direction,
the core moves back and forth from left to right. In the y direction, the core
moves monotonically upwards for some time and then moves downwards. This
is due to the deceleration of the background flow. The downward movement and
the decrease in velocity do not happen at the same time, actually the downward
movement has a time delay.

Re = 2000
t (xc, yc) ωc

0.1 (0.99, 0.01) 94.10
0.5 (0.96, 0.08) 50.03
1.0 (0.94, 0.25) 35.24
1.5 (0.95, 0.48) 28.92
2.0 (0.96, 0.72) 24.89
2.5 (0.93, 0.93) 22.02
3.0 (1.05, 1.04) 17.70
3.5 (1.25, 1.02) 11.38
3.8 (1.21, 0.95) 7.32

Table 6.4: The trajectory (xc, yc) and values ωc of the vortex core for Re=2000.
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6.3.4 Circulation

The circulation shed from the plate tip is calculated in a similar way to that in
section 6.1, figure 6.17. A convergence study is performed first at Re = 1000 in
figure 6.32. The figure plots Γ vs.t using two different mesh sizes of h = 0.00625 and
0.003125. One can see that Γ increases all the time until t=2.85, which is exactly 3/4
of the period KC. The maximum value of Γ is 6.39. After that, Γ starts to decrease.
Values of Γ using these two mesh sizes agree pretty well everywhere though they
are slightly different at t=3.8.

Figure 6.33 shows shed circulation Γ vs.t. Figure 6.33a is Γ vs. t using FDMHS
for Re= 500, 1000 and 2000. h = 0.003125 for all computations, and ∆t = 4 × 10−4,
2.5 × 10−4, 2 × 10−4, respectively. At an early time stage, the amount of circulation
shed from the plate tip is close for all three Reynolds numbers. After t = 2, the
differences in Γ start to show. More circulation is shed for larger Reynolds number.
The maximum value of Γ for Re = 2000 is about 6.5, it is reached at t = 2.9. After
that time Γ starts to decrease.

Figure 6.33b is Γ vs.t using the vortex sheet method for δ=0.2, 0.1 and 0.05. More
circulation sheds from the tip for larger δ at early times (t < 3). The maximum value
Γ for δ=0.05 is about 5.5, it is reached at t = 2.8. The difference between FDMHS and
the vortex sheet method becomes more clear if you look at the circulation shedding
rate, which is given below.

Figure 6.34 shows the circulation shedding rate dΓ/dt vs. t. Figure 6.34a is dΓ/dt
vs. t using FDMHS for Re=500, 1000 and 2000. dΓ/dt is computed using a second
order central difference method in time. The general shape of the three curves is
similar. dΓ/dt increases fast initially with a extrema of 3.5 at t =1.3, then decreases.
The curve of Re=2000 is relatively higher than the other two after t =1.3, this is
consistent with a relative larger value in Γ for Re=2000 in figure 6.33a.

Figure 6.34b is dΓ/dt vs.t using the vortex sheet method for δ=0.2, 0.1 and 0.05.
The shedding rate past an initial time period depends little on δ. Initially, it varies
with δ, but appears to converge to a curve in fairly good agreement with the viscous
simulations. The maximum value of the shedding rate is slightly smaller than that
in the viscous simulations. At larger time (t > 2.5), the values computed with the
vortex sheet method decrease faster than in the viscous case. This remains to be
studied further.

The viscous simulations using FDMHS show no difference in shed circulation
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Figure 6.32: The circulation shed from plate tip Γ vs.t for Re = 1000. Two mesh
sizes are used.
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Figure 6.33: The shed circulation Γ vs.t (a) using FDMHS for Re = 500, 1000 and
2000, and (b) using vortex sheet method for δ=0.2, 0.1 and 0.05.

and its rate for different Reynolds numbers at the early time stage. Therefore, one
can see that the results are independent of viscosity, at least in the planar flow case.
Furthermore, this conclusion also holds true for the cases of impulsively started
flow and uniformly accelerated flow. The reason which causes the discrepancy in
the axial symmetric case, observed by Nitsche and Krasny [31] might have some-
thing to do with the inner and outer approximations of the circulation shedding
rate.
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Figure 6.34: The circulation shedding rate dΓ/dt vs.t (a) using FDMHS for Re = 500,
1000 and 2000, and (b) using vortex sheet method for δ=0.2, 0.1 and 0.05.
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6.3.5 Vortex width

The vortex width is defined in the same way as that in section 6.1. Figure 6.35 shows
the vortex width Lvs.t for Re=1000. Three Ls are plotted, and they are determined
by the contour lines of ω = 1, ω = 0.1 and ω = 0.01. The width L is larger if one uses
a contour line at a smaller level.

Figure 6.36 compare the vortex widths of FDMHS and the vortex sheet method.
Figure 6.36a shows the width L vs.t for Re=500, 1000 and 2000, using FDMHS. The
level of the contour line is ω = 1. The width is larger at smaller Reynolds numbers
since the diffusion is larger. The width is about 2.1 for Re=2000 at t=3.8. Figure
6.36b shows the vortex width at δ= 0.05, 0.1 and 0.2, using the vortex sheet method.
The width is larger for smaller values of δ. The width is also about 2.1 for δ=0.05
at t=3.8.
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Figure 6.35: The vortex width L vs. t for Re = 2000. Three contour levels are chosen
ω = 1, 0.1 and 0.01.

6.3.6 Shear layer strength

Figure 6.37 shows the horizontal velocity u profiles along five lines, x = 0, x = 0.5,
x = 0.75 and x = 1 at t=3.8. The Reynolds numbers are Re=500, 1000 and 2000.
Remember that the plate tip is at (1, 0) here. The horizontal velocity u is always
zero on the plate, and it is below the plate when y < 0 while it is above the plate
when y > 0. In general, the horizontal velocity changes sign across the plate. The
horizontal velocity is both positive above and below the plate along the line x = 1.
The largest gradient in u occurs near the plate, and u changes more rapidly as the
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Figure 6.36: (a) The vortex width L ( ω = 1) vs.t for Re = 500, 1000 and 2000. (b) The
vortex width L vs.t for δ = 0.05, 0.1 and 0.2 using vortex sheet method.

Reynolds number gets large. The magnitude of u is bigger as the Reynolds number
gets large as well.

One quantity of interest is the tangential velocity jump δu. Define the shear layer
strength to be δu, and ultimately, we want to compare the shear layer strength with
the sheet strength in the vortex sheet model. Figure 6.38 illustrates three scenarios
to compute the δu. Figure 6.39 shows the evolution of the horizontal velocity u
along five lines x=0, x=0.25, x=0.5, x=0.75 and x=1 for Re=2000. The five figures
are snapshots at t=0.5, 1, 2, 3 and 3.5. The corresponding vorticity contours are
in figure 6.27abcde. Find the first local extrema of the horizontal velocity u above
and below the plate, respectively, then compute the difference in the value of u to
yield the shear layer strength. Figure 6.40 shows the shear layer strength along
the plate at the same five times t=0.5, 1, 2, 3 and 3.5. Just focus on the portion
at x ∈ [0, 0.8], the evolution of the shear strength is quite clear. The shear layer
strength at x ∈ [0.8, 1] is irregular because it is hard to determine δu there due to the
effect of the starting vortex. The starting vortex is close to the tip and the horizontal
velocity profiles look like spikes, therefore, my search algorithm does not pick the
extremum that we want.

Table 6.5 gives the shear layer strength at three locations along x ∈ [0, 1]. The
data is taken for Re=2000, t=3.8. The location of the first local extremum below the
plate is y below while y above is the one above. Figure 6.41 shows the shear layer
strength δuvs.x at t=3.8 for Re=500, 1000 and 2000. A total number of 320 locations
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Figure 6.37: Plots of horizontal velocity u along five lines x=0, 0.25, 0.5, 0.75 and 1.
t=3.8 and Re=500, 1000 and 2000.
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Figure 6.38: Three scenarios to compute the horizontal velocity jump δu due to (a)
zero flow at infinity , (b) linear flow at infinity, and (c) u is of same sign across y=0.

on the plate are picked for each curve. The strength is generally linear, while it
behaves non-linearly near the tip.

Figure 6.42 shows the vortex sheet strength σ along the plate at t=3.8 using vortex
sheet method. Figure 6.42b is a closeup of figure 6.42a. The curves from bottom to
top are for δ=0.05, 0.1 and 0.2, respectively. The vortex sheet strength seems be to
linear for x ≤ 0.6. All three curves shoot up near the x=1. The overall magnitude
of the vortex sheet strength is smaller than that using FDMHS. However, it is not
whether these quantities are comparable. In the viscous case, we are computing
the an jump in the velocity at a finite distance from the plate, and it is not clear if
this is an appropriate approximation of the vortex sheet strength.
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Figure 6.39: Plots of horizontal velocity u along five lines x=0, 0.25, 0.5, 0.75 and 1.
t=0.5, 1, 2, 3 and 3.5, Re=2000.
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Figure 6.40: The shear layer strength δu along the plate for Re=2000 at t=0.5, 1, 2, 3
and 3.5.
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Re = 2000, t = 3.8
x y below y above δu

0.25000 -0.05000 0.09688 0.56
0.75000 -0.05313 0.08125 1.79

Table 6.5: The shear layer strength δu and the coordinates of the local extrema of
u above and below the plate. t=3.8 and Re=2000. The location of the first local
extrema below the plate is referred to as y below while the one above is referred to
as y above.
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Figure 6.41: The shear layer strength δu along the plate for Re = 500, 1000 and 2000
at t=3.8.
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Figure 6.42: (a) The vortex sheet strength σ along the plate at t=3.8 for δ=0.05, 0.1
and 0.2 using the vortex sheet method. (b) a closeup of (a) near the plate tip.
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7 Viscous flow past a semi-infinite plate

Here we consider flow past a semi-infinite plate driven by the far field potential
with the stream function in the form of

ψ∞(z) = Ur1/2 cos
(

tan−1(y/x)
2

)
, (7.1)

where r =
√

x2 + y2, and U = 1. Because of the absence of the length scale, there
exists a scaling rule which relates the length, time and the kinematic viscosity.

In the following, I will derive the scaling rule, and then verify the rule numerically.
As for the previously considered flow, the flow is hard to resolve initially due the
singularity at the tip, and the large velocity gradients within a thin boundary layer
at an early stage of the evolution. Artificial small scales, or instability, would
appear if the flow is under resolved. I will clarify the effects of under resolution by
looking at a sequence of results based on different resolutions in time and space.
The results apply to the finite plate case as well.

7.1 Derivation of the scaling rule

For the potential flow past a semi-infinite plate, a vortex sheet could be formulated
as the semi-infinite plate being dissolved at t = 0. This vortex sheet is placed at
z = x + i0, x ≤ 0, with a complex potential W in the form of

W = φ + iψ = −iUz1/2 = −iUr1/2eiθ/2 (7.2)

where φ is the velocity potential, ψ is the stream function, θ is the argument of the
complex number z = x+ iy and r =

√
x2 + y2. U is a real positive number indicating

fluid velocity at a far field. Since the velocity potential is expressed as

φ = U(x2 + y2)1/4 sin

 tan−1 y
x

2

 , (7.3)

for the potential flow, and the velocity is defined as u = 〈u, v〉 = 〈
∂φ
∂x ,

∂φ
∂y 〉 = 〈−

∂ψ
∂y ,

∂ψ
∂x 〉,

the velocity on the plate is

u = Oφ = ±U|x|1/2, y = ±0. (7.4)
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Note that u is discontinuous across the sheet. The bold line in figure 7.1 represents
the vortex sheet, A′ is the starting point of the closed loop around the tip while A
is the ending point. The circulation Γ around this closed loop from A to A′ is

Γ =

∮ A′

A
u · ds = φ(A′) − φ(A) (7.5)

= 2U|x|1/2. (7.6)

Therefore, the circulation at the position (x, 0) on the sheet is 2U|x|1/2, and the
strength κ at (x, 0) is κ = U|x|−1/2. One would see that a singularity exists at the
tip of the sheet. This does not violate the Helmholtz-Kevin laws, which is that the
total circulation is zero along a closed loop fully immersed in the fluid, because the
contour A to A′ is not a closed loop lying entirely within the fluid but it intersects
the plate.

x

y
A

A’

Figure 7.1

The initial condition of z is obtained by considering Γ = 2U|x|1/2 or Γ = 2U|z|1/2

since y = 0 on the sheet. Solving for z, one has

z(Γ, 0) = −
1
4

Γ2/U2. (7.7)

It is equivalent to apply ψ∞ at t=0. Denoting L to be a length scale, and T to be a
time scale, introducing non-dimensional variables

x′ =
x
L
, [t′] =

t
T
, Γ′ = Γ

T
L2 , ω′ = ωT, u

′

= uT/L (7.8)

(7.7) becomes

Lz′ = −
1
4

(
L2Γ′

T

)2 1
U2 (7.9)

z′ = −
1
4

L3

T2 Γ′2
1

U2 . (7.10)

Similarly, the NSE (3.1) becomes

(a)
∂ω

′

∂t′
+ u

′

· Oω
′

=
T
L2νO

2ω
′

, (b) O2ψ
′

= ω
′

, (c) u′ = O⊥ψ′. (7.11)
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Let U=1, and L3/T2 = 1, (7.11) becomes

(a)
∂ω

′

∂t′
+ u

′

· Oω
′

= ν′O2ω
′

, (b) O2ψ
′

= ω
′

, (c) u′ = O⊥ψ′ (7.12)

where

ν
′

= νT/L2 = νT/T4/3 = νT−1/3, (7.13)

and (7.10) becomes

z′ = −
1
4

Γ′2. (7.14)

The equation

L = T2/3. (7.15)

is the scaling rule, it indicates that solutions with ν at time t are the same as solutions
with ν′ at time t′ with a scale.

7.2 Numerical verification of the scaling rule

A baseline simulation of viscous flow past a semi-infinite plate is run at ν=0.01. The
parameters that are used in the computation are given in table 7.1. Figure 7.2a is
the vorticity contours at t=0.25 and this result is used to compare with that at other
viscosities. A sequence of computations are run at ν′ = 0.005, 0.0025, 0.002, 0.00125
with a scaled time step, a mesh size and a domain, respectively. The corresponding
scale in length and time at these viscosities are given in table 7.2. According to the
scaling rule, it is believed that the vorticity at t = 0.25, ν = 0.01 should be exactly
the same as the vorticity at t = 0.002, ν=0.002 with a scale of 1

T , where T = 125.
The evidence is shown in figure 7.2b, which plots the vorticity contours at ν=0.002,
t=0.002 with the values of vorticity scaled by T=125. One can see that figure 7.2ab
are identical. The same comparisons is done at ν=0.005, 0.0025 and 0.00125, and
their plots are not shown since they are the same as figure 7.2a.

ν ∆t h Domain t
0.01 0.00025 0.003125 [−3, 1.5] × [−1, 2.5] 0.25

Table 7.1: Parameters used in the computation for ν=0.01. The time step is ∆t, the
mesh size is h, and t is the terminal time.
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ν′ ν
ν′ T L t′

0.005 2 8 2 0.3125
0.0025 4 64 4 0.00390625
0.002 5 125 16 0.002

0.00125 8 512 64 0.00048828125

Table 7.2: The scaling in time and length at ν = 0.005, 0.0025, 0.002 and 0.00125
based on ν=0.01. The time scale is T, a length scale is L, and t′ is the terminal time.
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Figure 7.2: (a)Vorticity contours for ν=0.01 at t=0.25. (b) Scaled vorticity contours
for ν=0.002 at t=0.002 in a scaled domain. The contour levels of the vorticity are
±2[−2:8].

Another quantity that I studied for the scaling rule verification is the trajec-
tory of the vorticity centroid (xcentroid, ycentroid). The coordinates of the centroid are
computed by

xcentroid =

∫ ∫
Ω

ωxdz (7.16)

ycentroid =

∫ ∫
Ω

ωydz (7.17)

(7.18)

where Ω is the whole computational domain. The predictions of the trajectories at
ν=0.005, 0.0025, 0.002 and 0.00125 based on one computation at ν=0.01 are shown
figure 7.3a. In this figure, only the centroid at ν=0.01 is numerically computed, and
others are predictions. Figure 7.3b shows the verification. The actual centroids of
ν=0.005, 0.0025, 0.002 and 0.00125 are plotted in cyan in figure 7.3b. The predictions
and the the numerical results match exactly.
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Figure 7.3: (a) Predictions of the trajectories of the centroid for ν=0.005, 0.0025,
0.002 and 0.00125 based on one computation at ν=0.01. (b) The actual trajectories
of the centroid at ν=0.005, 0.0025, 0.002 and 0.00125 based on the computations
(cyan).
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8 Summary

The main goal of this thesis was to use numerical simulatons to study a fundamental
problem in fluid dynamics, namely, flow past sharp edges. Some experimental and
numerical results are available in the literature, but much remains to be explored.

To that effect, a finite difference method of high order in space (FDMHS) has been
developed to study the boundary layer separation at sharp edges of flat plates. The
method solves the incompressible Navier-Stokes equations with constant density
in a rectangular domain with a slit in place of the plate. It is also implemented
to solve the driven cavity problem as a test case. The method uses a rectangular
mesh and the time-dependent variables, velocity, stream function and vorticity, are
evaluated at the grid points. Important features of FDMHS include the following.
(a) FDMHS uses compact fourth order finite differences in space. (b) FDMHS is
implicit in time, which is necessary because of the highly singular nature of the
flow. (c) It is a splitting method which treats the convection with a semi-Lagrangian
method, and the diffusion with a three-level Crank-Nicolson scheme of fourth order
in space. The three-level method was found to be more stable than a corresponding
two-level method. (d) FDMHS is fourth order in space and first order in time in
the driven cavity problem with a smooth top lid velocity. FDMHS is between
first and second order in space in the problem of impulsively started flow past a
finite plate. Evidence that FDMHS is an improvement over a second order finite
difference method has been shown. FDMHS also shows agreement with EC4 [8]
in the driven cavity problem. (e) FDMHS is parallelized using the MPI interface,
and shows good performance in strong and weak scalability on the multi-cluster
platform available to me.

This method has been implemented to simulate the flow induced by a finite
plate moving in direction normal to itself, and the flow past a semi-infinite plate.
In the finite plate case, three plate velocities are considered: impulsively started,
uniformly accelerated, and oscillating. We show that FDMHS resolves the detailed
structure of the flow. The main results of the simulation are the following, all of
which add to what is currently known about this basic flow.

(a) We resolve the boundary layer separation and roll-up from very early times
to relatively large times, t ∈ [0.00025, 5].

(b) We resolve details of the vorticity structure in the boundary layer at early
times that have not been studied before, in particular.
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(i) The region of negative vorticity along the plate induced by and entrained
into the leading vortex is resolved. It forms immediately after the flow
starts. The evolution of its height and length, and the vorticity along
and across the plate, are recorded.

(ii) A secondary entrainment of positive vorticity into the region of negative
vorticity was found. It is small and does not grow much.

(iii) For the impulsively started finite plate case, the maximum velocity,
which is initially unbounded, is found to decay as t−1/4 over a large
initial time interval.

(c) We resolve flow quantities such as the vortex core trajectory and vorticity,
vortex size, circulation and circulation shedding rate, and find the apparent
scaling behavior for the circulation.

(d) The effect of viscosity on the vorticity evolution and on quantities such as the
shed circulation from the plate tip, core trajectory, vortex width are presented.
In particular, the shed circulation Γ is independent of viscosity initially for all
three far field flows

(e) In the uniformly accelerated case, we show the evolution in the appropriate
non-dimensional variables, and find agreement with scaling laws observed
experimentally.

(f) We resolve flow past oscillating plate and compare with vortex sheet results.
For the planar case considered here, the circulation and the circulation shed-
ding rate at early times are in excellent agreement. There are difference at
later times most likely caused by wall vorticity which is not accounted for by
the vortex sheet model.

The problem of flow past a semi-infinite plate is still on-going. In the thesis, the
derivation of the scaling rule is presented which establishes the dependence of the
solution on the viscosity and time. The scaling rule is verified numerically in terms
of the vortex centroid trajectory and contours of vorticity. In future, I will compute
the flow of ν=0.002 to a time t=128, and the result will be used to investigate the
flow behavior at other viscosities.

The vortex sheet model for boundary layer separation used in section 6.3 approx-
imates the circulation shed from each side of the edge separately. Further work
regarding the applicability of this model must include computing these quantities
in the viscous case. Furthermore, the present computations need to be extended
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to axisymmetric flow to better evaluate axisymmetric vortex sheet models. Ax-
isymmetric separation is also quite interesting in itself, as it commonly occurs, for
example in bio-locomotion and in engineering technology.

Finally, we intend to broaden this work and apply it to wedges with finite nonzero
angles.
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Appendix

I Satisfying the far field velocity

Here we present the construction of the vortex sheet that induces the far field
velocity U∞ for the problem of flow past a finite plate. The vortex sheet is discrete
and approximated by a set of point vortices. The stream function and the vertical
velocity induced by a point vortex with a strength κ are

ψ(z) = −
κ

2π
log |z − zo|, v(z) = −

κ
2π

(x − xo)
(x − xo)2 + (y − yo)2 (8.1)

where zo is the location of the point vortex and z is where ψ and v are evaluated.
The vortex sheet overlaps the finite plate. , and due to the symmetry, only half
sheet is considered. Point vortices on the vortex sheet have Chebyshev positions
on the sheet

xk = cos(k∆α), yk = 0, k = 0, 1, · · · ,n. (8.2)

where ∆α = π/2n and n is the number of point vortices assigned. A set of test
points is also established at the Chebyshev middle positions, see Figure 8.1.

xtest
k = cos(k∆α +

∆α
2

), ytest
k = 0, k = 0, · · · ,n. (8.3)

Remember that the background flow is v = U∞ = 1, therefore, the vertical velocity

Figure 8.1: Location of point vortices and test points on half of the vortex sheet.
Solid line: vortex sheet, white dots: point vortices, dark dots: test points.

at each test point is

v j = −
1

2π

∑
k

 κk

2π

xtest
j − xk

(xtest
j − xk)2 + (ytest

j − yk)2
−
κk

2π

xtest
j + xk

(xtest
j + xk)2 + (ytest

j − yk)2

 + U∞(8.4)
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where j = 0, · · · ,n. The formulation contains contributions from point vortices and
the background flow. The second term in the square bracket is the vertical velocity
induced by the other half of the vortex sheet. The vortex sheet mimics the finite
plate and therefore, all v j=0. Solving for the strength of the discrete vortex sheet κk

by setting (8.4) equals zero, one can compute the far field stream function by

ψ∞(z) = −
1

2π

∑
k

κk log |z − zk|. (8.5)
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