
University of New Mexico
UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

7-2-2011

Analysis of the organization and dynamics of
proteins in cell membranes
Flor Aurelia Espinoza Hidalgo

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Mathematics & Statistics ETDs by an authorized administrator of UNM Digital Repository. For more information, please
contact disc@unm.edu.

Recommended Citation
Espinoza Hidalgo, Flor Aurelia. "Analysis of the organization and dynamics of proteins in cell membranes." (2011).
https://digitalrepository.unm.edu/math_etds/16

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/16?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu




Analysis of the Organization and
Dynamics of Proteins in Cell Membranes

by

Flor Aurelia Espinoza Hidalgo

B.S., Mathematics, Universidad Nacional de Piura, 1998
M.S., Applied Mathematics, Rensselaer Polytechnic Institute, 2002

M.S., Applied Mathematics, University of New Mexico, 2006

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Mathematics

The University of New Mexico

Albuquerque, New Mexico

May, 2011



c©2010, Flor Aurelia Espinoza Hidalgo

iii



Dedication

A ti mi Angel Querido

This is dedicated to my family, specially to my brother Angel. Who helped my

parents support my college studies. He also supported part of my expenses to attend

my first international summer school in applied mathematics in Chile and my

attendance at workshops in Mathematics in two cities in Peru.

To my parents, for all of their hard work in raising and educating nine children,

and to my brothers and sisters for all of their love and moral support.

To my adopted American mother, Mary Colleen Seyboth, for all her continuous love

and encouragement since I met her.

To my son, Michael whose love made my distance epsilon (very small number) to

give up a PhD an infinitely large number and made my desire to finish it, an

infinitely small epsilon. Every day and night I stayed away from him I tried to

make the latest epsilon converge faster to zero. To my husband Henry, for taking

care of our son while I was finishing this thesis.

To all of my freaking friends for all of their moral support, encouragement and the

wonderful times we spent together.

iv



Acknowledgments

I heartily acknowledge Dr. Stanly Steinberg, my advisor and dissertation chair, for
continuing to encourage me during my studies as a student, teaching assistant and
research assistant. His guidance and professional style will remain with me as I con-
tinue my career.

I also thank my committee members, Dr. Deborah Sulsky, Dr. Helen Wearing,
and Dr. Janet Oliver, for their valuable recommendations pertaining to this study
and assistance in my professional development.

Special thanks, to Dr Cristina Pereyra, for her research, teaching and service
mentoring and to Claudia Gans for her continuous service in the Mathematics and
Statistics Department.

This work is a result of a collaboration with researchers from the Spatiotemporal
Modeling Center. Gratitude is extended to the Spatiotemporal Modeling Center for
the funding provide for this research. Specially thanks to Dr Oliver for her invaluable
help in the revision and editing of this thesis.

To Dr Michael Collins, Dr. William Siegmann and Ms. Laurie Fialkowsky, for
their support and guidance during my first years as a graduate student in the United
States.

To Dr. Michael Wester for his help with the computer programming. And, to
my dear friend Lily Chylek for her collaboration with the cartoons for this thesis.

To my family and friends who gave me immeasurable support over the years.
Your encouragement is greatly appreciated.

v



Analysis of the Organization and
Dynamics of Proteins in Cell Membranes

by

Flor Aurelia Espinoza Hidalgo

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Mathematics

The University of New Mexico

Albuquerque, New Mexico

May, 2011



Analysis of the Organization and
Dynamics of Proteins in Cell Membranes

by

Flor Aurelia Espinoza Hidalgo

B.S., Mathematics, Universidad Nacional de Piura, 1998

M.S., Applied Mathematics, Rensselaer Polytechnic Institute, 2002

M.S., Applied Mathematics, University of New Mexico, 2006

PhD., Mathematics, University of New Mexico, 2011

Abstract

Cells communicate with the outside world through membrane receptors that rec-

ognize one of many possible stimuli (hormones, antibodies, peptides) in the extracel-

lular environment and translate this information to intracellular responses. Stimula-

tion of the cells produces changes in the organization and dynamics of the receptors

that are critical to signal transduction. Problems in signaling networks are impor-

tant in understanding many diseases including cancer, allergy and asthma, so there

is great interest in understanding these changes. Biologists in the Spatiotemporal

Modeling of Cell Signaling Center (STMC) have generated a large amount of data

about the high affinity receptor FcεRI, that is found in mast cells and basophils.

The activation of this receptor starts when IgE bound to FcεRI is crosslinked by a

stimulus, that is, a multivalent antigen, initiating a tyrosine kinase signaling cascade
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that triggers histamine release and other preformed inflammatory mediators that are

stored in cytoplasmic granules.

My STMC collaborators have created two kinds of data about receptor organiza-

tion and dynamics. They produce static snapshots of the organization of the recep-

tors by fixing the cells and then labeling the receptors with nano-gold particles and

imaging the cell membrane using high-resolution transmission electron microscopy.

They study the motion of the receptors by labeling them with quantum dots in living

cells and then making movies of the motion of the dots using high resolution fluo-

rescence microscopy and video imaging. All of the data are dose-response where the

dose is the amount of stimulus given to the cell and the responses are given by the

distribution and dynamics. The main goal of this thesis is to quantify the changes

in receptor distribution and dynamics during signaling.

Previously, the organization of the receptors was studied using spatial statistics.

We have improved this analysis using hierarchical clustering and dendrogram anal-

ysis. Clusters of receptors are determined by choosing a distance and then putting

any two particles in the same cluster if they are closer than this distance. The prob-

lem is how to choose this distance? Our algorithm produces the intrinsic clustering

distance that is determined from the data using the hierarchical clustering algorithm.

Next, we compare this number to the number provided by randomly generated data

to produce the clustering ratio that we use to quantify how clustering increases with

increasing stimulus.

Previously, the dynamic data were analyzed using the mean squared displacement

to produce a diffusion coefficient. We use time-series analysis applied to the jumps,

the difference in the position of a particle in two successive frames of the movies,

to provide significantly more nano-scale information about the motion. A serious

difficulty that we overcame is that the quantum dots blink, so there are missing data

when the dots are off. For unstimulated cells, one important result is that the jumps

viii



are not normally distributed because there is an excess of short jumps, indicating the

presence of small (less than 70nm in diameter) confinement zones in the membrane.

When the cells are stimulated, the motion rapidly slows and the jumps show an even

greater excess of small jumps indicating a further level of receptor confinement.
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Chapter 1

Introduction

The problems addressed in this thesis arose out of interdisciplinary research being

done at UNM in the Center for the Spatiotemporal Modeling of Cell Signaling [50].

This interdisciplinary Center involves faculty and students with expertise in cell

biology, mathematics, statistics, physics, engineering and computation. The main

goal of the Center (and a central problem in cell biology) is to understand how living

cells communicate with the external world. In general, signal transduction pathways

are triggered by the binding of external stimuli, for example hormones or antigens,

to receptors embedded in the cell membrane.

Much of the experimental research in the Center is focused on observing and

understanding how the spatial and temporal organization of these receptors changes

during signaling. To this end, Center biologists have been generating data on the

spatial organization of the molecules by labeling them with nano-gold particles and

then imaging the particles using high resolution electron microscopy. The data con-

sist of snapshots of the organization of the receptors at selected times after the onset

of signaling [50]. While the spatial resolution of these measurements is very high,
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the temporal resolution is poor. To generate data with high temporal resolution,

Center members have recently developed methods to label receptors with fluorescent

quantum dots and then create video rate movies of the trajectories of the dots using

super-resolution fluorescence microscopy [5, 6, 4]. The data sets are very large, pro-

viding unprecedented details of the membrane organization and dynamics. Both the

static electron microscopy data and the dynamic fluorescence microscopy data are

stimulus-response, where the cell are exposed to different strengths of a stimulus and

then respond with changes in the spatial organization and dynamics of the receptors.

The motion of the quantum dots is erratic and thus needs to be analyzed using

random walks. In Chapter 2 we give an overview of random walks in discrete and

continuous spaces. Examples of random walks in one and two dimensional spaces are

discussed along with the calculation of the mean square displacement and diffusion

constant. The master equation for several types of walks are derived and used to

analyze the random walk. Particularly important and hard to find elsewhere is the

section on vector valued random variables that forms the basis for our analysis of

the dynamic data.

The mathematical tools for understanding spatial organization are spatial statis-

tics and cluster analysis (see e.g. [64, 9, 16, 27]). Previously, these tools were applied

to better understand the spatial organization of molecules on the cell membrane

based mainly on static data [79, 73, 53, 76, 72, 52, 56, 77, 50, 84]. To use these tools,

biologist had to compare graphs computed from the data to theoretical graphs. In

Chapter 3 we develop a hierarchical clustering algorithm to quantify clustering and

we use the results to quantify the clustering of the biological static data. The new

statistics based on hierarchical clustering and dendrogram analysis produce numer-

ical values that increase with increasing stimulus. Consequently, it is now easy to

check rigorously that our clustering algorithm produce consistent results.

In Chapter 4 we develop algorithms for doing time-series analysis of the dynamic
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data on quantum dot mobility and use the results to analyze two sets of dose-response

data. Historically, such data were analyzed using the mean squared displacement and

the diffusion coefficient. Because we are interested in the short-time behavior of the

receptors, the averaging in the mean squared displacement is counter productive.

Thus we focus on the jumps in the data, which are the difference in the positions of

the dots between successive frames in the movies. An important discovery is that

the jumps are not normally distributed and so cannot be adequately described by a

diffusion coefficient.

In Chapter 5 we summarize the work done and give some implications of our

results. Ideas for future research are presented. We are particularly interested in

using the results presented here to develop models of the motion and interaction of

receptors.

1.0.1 Introduction to the Cell Membrane

Macromolecules on the cell membrane such as transmembrane receptors are spe-

cialized integral membrane proteins that take part in communication between the

cell and the outside world. This communication is done when extracellular signal-

ing molecules bind to receptors, triggering changes in the function of the cell. This

process is called signal transduction. The binding typically causes a reorganization

of receptor topography in the membrane that translates to a cascade of chemical

changes on the intracellular side of the membrane. In this way, the receptors play a

unique and important role in cellular communications and signal transduction.

The activation of receptors controls cell migration, adhesion, secretion, survival,

differentiation and proliferation via networks of signaling proteins and lipids acting

downstream of activated membrane receptors. In turn, problems in these signaling

network cause many diseases including cancer, allergy and asthma. Consequently, a
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IgE
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βγ γ

α

FcεRI

Figure 1.0.1: IgE bound to its high affinity receptor FcεRI. Modified image taken
from [34]

detailed understanding of signaling processes are critical in human health. Because

there is still no clear molecular understanding of how receptor engagement and redis-

tribution in membranes translates to intracellular responses, research is still needed

to more completely understand the initiation of signaling processes. We set out to

contribute to this need through detailed analysis of the spatial and temporal orga-

nization of receptors in the membranes of fixed and living cells. In this work, we

focus on the IgE high affinity receptor FcεRI, see Figure 1.0.1, but our analysis can

be applied to many other receptors.

Our receptor of interest, FcεRI is expressed on circulating blood basophils and

tissue mast cells and mediates allergic responses. The FcεRI, consists of four protein

subunits, three (the alpha and two gamma subunits) that possess a single membrane-

spanning domain and a third, the beta subunit, that crosses the membrane four times,

resulting in a total of seven transmembrane domains as shown in Figure 1.0.1. The al-
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pha subunit has a large extracellular domain that binds IgE with high affinity, essen-

tially creating an additional subunit for the receptor. The beta and gamma subunits

have very small extracellular domains and larger intracellular domains characterized

by the presence of repeated motifs, called ITAMs (immunoreceptor tyrosine-based

activation motifs) that are critical for signaling.

For the IgE receptor to create a signal, its alpha subunit first must bind to an IgE

molecule with specificity for an allergen. In life, this specificity can be to cat dan-

der, juniper, ragweed and many other environmental agents. Laboratory scientists

typically use IgE with specificity for common chemicals, for example dinitrophenol.

The key feature of the allergen is that it must be at least bivalent. Most antigens

are highly multivalent including common pollens and also the engineered laboratory

allergen, DNPn-BSA (where n refers to the number of DNP molecules attached to

a single molecule of bovine serum albumin, a common protein). The multivalency

ensures that a single allergen will bind to two or more receptors, creating dimers

or higher oligomers on the cell membrane. Under moderate to strong stimulation,

signaling complexes consist of from a few to a hundred or more receptor molecules

in a cluster, 6.3.1- 6.3.5 from Appendix 3.

It is clear that the clusters are dynamic, that is, non-crosslinked receptors and

other membrane-associated molecules may enter a cluster and then leave in short

periods of time. Receptor crosslinked by multivalent antigen increases cluster size

and initiates a sequence of biochemical events including the activation of intracellular

protein tyrosine kinase molecules, and the subsequent membrane recruitment and

activation of a cascade of molecules that generate physiological responses. The most

important early signaling response (measured in minutes), and the one responsible

for immediate allergy symptoms, is the release of histamine and other preformed

inflammatory mediators that are stored in cytoplasmic granules. The most important

late signaling responses (measured in hours), and the one responsible for allergies
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becoming more severe and life-threatening with repeated exposures, is the synthesis

and release of cytokines that interact with other immune cells to cause the synthesis

of more IgE and to maintain basophils and mast cells in an easily activated (primed)

state. Some of the events linking receptor cross linking to physiological responses

are given in Figure 1.0.2.

A strong reason for studying FcεRI is that the static organization of the receptors

has been studied extensively [75, 45, 85, 81, 84, 77, 70, 50, 52, 52, 72, 76, 73], while

the dynamics have been more recently studied using quantum-dot particle tracking

techniques [4]. However, the data sets have not been integrated for a comprehensive

analysis of spatio-temporal organization of the membrane during signal initiation.

There is now substantial experimental evidence that the spatio-temporal properties

of these signaling receptors strongly influence signal transduction.

The study of the spatial and temporal aspects of cell signaling [79, 73, 53, 76, 72,

52, 56, 77, 50] is part of the rapidly expanding field of nano-science: the understand-

ing of the natural world at the nanometer scale. If the cells studied are suspended

in a liquid so that they are nearly spherical, then they are approximately 8 microns

(or micrometer µm) or 8,000 nanometers (nm) in diameter. Typically, cells are stud-

ied while they are adhered to a microscopy cover slip where they are substantially

thinner and wider than 8 microns. The most detailed studies of the organization of

proteins in the cell membrane have used transmission electron microscopy (TEM)

which can locate electron dense objects with a nanometer scale accuracy. The recep-

tors studied are approximately 10nm in diameter. They are localized in fixed (dead)

cells by attaching a probe to the receptor. These probes are typically 5nm to 10nm

diameter gold particles.

The motion of macromolecules on the cell membrane is studied using single par-

ticle tracking methods (SPT) [29, 31, 65, 35, 48, 19, 20, 24, 71, 15, 63]. Samples

of paths are given in Figures 6.4.10 and 6.4.11 from Appendix 4. As in TEM, but
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now in living cells, the molecules of interest are labeled with a probe, which until

recently has typically been a 40nm gold particle. SPT then uses optical microscopy

and mathematical algorithms to localize the centroid of the particle with an accuracy

of about 30 nanometers [59, 26]. The observed motion is erratic and is thus modeled

as a random walk [49, 57, 68, 58, 59, 10]. Biophysicists typically analyze SPT data

using the mean squared displacement (MSD), which for random walks generated by

mean-zero, independent and identically distributed (IID) jumps, is proportional to

time. Usually the estimates of the MSD for biological data are not proportional to

time, and consequently the diffusion is viewed as anomalous [49]. Recently in [82]

the statistical properties of the motion has been studied using time-series analysis.

Some recent tracking techniques emphasize the use of smaller (5-20 nm) quantum

dot probes [5, 42, 39, 17, 40, 14], which allow several particles to be tracked simul-

taneously with an accuracy of about 20nm [44]. The data are commonly taken at

video rate (1/30 second) but can be taken much faster [36]. The data sets acquired

by fluorescent SPT have been used to provide insight into the dynamic organization

of the membrane in living cells.

Ordered regions of membrane, known variously as microdomains, lipid rafts and

protein islands, are thought to influence the motion. These are likely involved in the

initiation of signaling cascades by providing favored locations for receptors to interact

productively with ligands (see e.g. [18, 67, 2, 11, 12, 28, 38, 3, 45]). Lipid rafts are

estimated by several groups to be less than 70nm in diameter ([23, 69, 55]), which is

substantially below the resolution of the standard optical microscope (200-300nm).

Additionally, the cytoskeleton near the cell membrane has been proposed to restrict

the motion of the receptors [35]. The relevant part of the cytoskeleton is commonly

called a corral or picket fence. Previous work by cell biologists in the Center provided

direct evidence for the existence of large (500-1000 nm scale) cytoskeletal corrals that

confine the movement of IgE receptors [5]. The results in this thesis are exciting to
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the biologists in part because they add to the very small body of direct evidence for

smaller scale (< 70nm) confinement zones in mast cell membranes.
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Figure 1.0.2: Crosslinked IgE bound to its high affinity receptor FcεRI and their
signaling events. Image taken from [34]
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Chapter 2

Random Walks

2.1 Introduction

The motion of many micro-organisms, cells and animals can be modeled as a random

walk process. In this chapter we introduce the mathematics behind simple random

walks. This study is motivated by the applications of random walks to many bi-

ological processes. We are particularly interested in the motion of proteins in cell

membranes. Our protein of interest is the IgE-FcεRI receptor. The motion of this

receptor is very erratic and can be modeled as a random walk [82, 84]. Most of the

material for this review was taken from [1, 10, 25]. Additionally, the recent review

[13] presents several applications. Most of the concepts discussed are illustrated by

Matlab functions.

We begin our study with the definition of a random variable and the differences

between independent and dependent random variables. Next, random variables in

a discrete space are presented, along with basic operations and definitions of the

expected value and higher moments, Then, random walks with discrete jumps are

discussed and the derivation of the master equation. The mean square displacement
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and the diffusion constant are discussed as well. In a similar way, random variables in

a continuous space are presented, along with basic operations and definitions of the

expected value and higher moments, Then, random walks with continuous jumps are

discussed and the derivation of the master equation. Finally, we discuss vector-valued

random variables, which are used in the analysis of the organization and dynamics

of the IgE-FcεRI receptor.

2.2 Random Variables

A random variable or stochastic variable is a variable whose value might represent

the possible outcomes of a yet-to-be-performed experiment. Intuitively, a random

variable can be thought of as a quantity whose value is not fixed, but which can take

on different values; a probability distribution is used to describe the probabilities of

different values occurring. A prototypical example of a random variable is a coin

toss. In this experiment, a person flips a coin and then reports how the coin falls as

either a head or tail. Assuming that the coin flip is fair, that is, nothing is done to

determine the outcome of the flip, then the probability of getting a head is one-half

and the probability of getting a tail is one-half. This means we expect to get a head

about one half of the flips and a tail in about one half of the flips. We will model

this process with a random variable E that we will write as

E =







head, 1
2

tail, 1
2







.

or

E =

{

head,
1

2
; tail,

1

2

}

We will also write

Pr(E = head) =
1

2
and Pr(E = tail) =

1

2
.

11
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For this random variable, head and tail are the outcomes or samples while 1/2 is

the probability of getting one of the outcomes. Another way to set up these random

variable is to use numbers for the values, say the number of heads:

R =







1, 1
2

0, 1
2







. (2.2.1)

There are natural ways of combining random variables, some of which will play

an important role in modeling. For the coin flip, we can consider two people flipping

coins:

R1 =







1, 1
2

0, 1
2







, R2 =







1, 1
2

0, 1
2







These variables are identical, but their outcomes don’t depend on each other. These

kinds of variables are called independent random variables. The subscripts on the R

variables indicate that they are independent. And, they are identically distributed

(ID) because they are really the same random variable. Such random variables are

called IID – independent identically distributed random variables. To model one

person flipping two coins, or one person flipping one coin twice, we create a new

random variable X from R1 and R2:

X = {R1,R2} =



























{1, 1}, 1
4

{1, 0}, 1
4

{0, 1}, 1
4

{0, 0}, 1
4



























.

Here we have used that the probability of two independent events occurring is the

product of the probabilities of each of the events.

We can generate another random variable by just counting the number of ones
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(number of heads) in the flips:

Y =



























2, 1
4

1, 1
4

1, 1
4

0, 1
4



























.

This representation of Y is OK, but there is no need to list a result twice, so an

equivalent, but preferred representation, is

Y =



















0, 1
4

1, 1
2

2, 1
4



















.

Here we have used the fact that the probability of one or the other of two independent

events, getting {1, 0} or {0, 1}, is the sum of their probabilities.

Two critically important facts about probabilities are that if X and Y are two

independent random variables, then

Pr(X ∩Y) = Pr(X = x and Y = y) = Pr(X = x) ∗ Pr(Y = y) ,

Pr(X ∪Y) = Pr(X = x or Y = y) = Pr(X = x) + Pr(Y = y) − Pr(X = x) ∗ Pr(Y = y) .

Next, the number of heads occurring in the flips of 3 coins is

Y =



























0, 1/8

1, 3/8

2, 3/8

3, 1/8



























.

As we can notice, there is a beautiful connection between these probabilities and

the expansion of the sum of two variables to a power. Recall that

(a+ b)3 = a3 + 3 a2 b+ 3 a b2 + b3 .
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Figure 2.2.1: Binomial distribution

For a = b = 1, we see that

23 = 1 + 3 + 3 + 1 or 1 =
1

8
+

3

8
+

3

8
+

1

8
.

So the sum of the probabilities in Y is 1.

Generalizing this gives

(x+ y)n =
n
∑

m=0

(

n

m

)

xn−m ym ,

The coefficients of the powers of x and y are known as the binomial coefficients:
(

n

m

)

=
n!

m! (n−m)!
, 0 ≤ m ≤ n .

Setting x = y = 1 gives

2n =
n
∑

m=0

(

n

m

)

or 1 =
n
∑

m=0

1

2n

(

n

m

)

. (2.2.2)

So the probability of getting m heads in tossing n different coins or in n tosses of

one coin is

pnm =
1

2n

(

n

m

)

. (2.2.3)
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This probability distribution is shown in Figure 2.2.1. For each n, p(n,m) is a

binomial probability distribution that will play an important role in understanding

random walks.

For applications to random walks, the symmetric version of the coin flip,

J =







1, 1
2

−1, 1
2







,

will play an important role in random walks.

To illustrate the definition of dependent random variables we will give a simple

example. Consider two friends with coins. The first flips a coin while the second,

instead of flipping a coin, just says what the friend said. We can describe this by

letting let R be the coin flipping random variable of

R =







1, 1
2

0, 1
2







,

and S be the random variable

S =







1 if R = 1, 1
2

0 if R = 0, 1
2







.

Such random variables are called correlated. Note that

Pr(R = 1 and S = 1) = 1/2 ,

P r(R = 1) ∗ Pr(S = 1) = 1/4 ,

so that one of the important rule about independent random mentioned above is not

true for all dependent random variables.
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2.3 Discrete Real Valued Random Variable

A real-valued discrete random variable R is given by a list of outcomes and proba-

bilities:

R =



















































r1, p1

r2, p2

. . . . . .

rm, pm

. . . . . .

rM , pM



















































,

where M > 0 and 1 ≤ m ≤ M . It is possible to have an infinite number of entries

in a discrete random variable. In our biological applications, we need the outcomes

rm to be real numbers. The outcomes rm are also called results or samples. The

probabilities pm are real numbers satisfying 0 ≤ pm ≤ 1 and

M
∑

m=1

pm = 1 .

It is convenient to allow pm = 0 or pm = 1. We can also write this random variable

more compactly as

R = {{rm, pm}; 1 ≤ m ≤ M} . (2.3.4)

In the case that there are infinitely many entries we write

R = {{rm, pm};m ≥ 1} .

It is also possible to write random variables in a simplified standard form where

the values are unique, that is, if rm = rn then m = n. If pm = 0 then rm can

never happen, so the entry {rm, pm} can be eliminated from the random variable.

For simplified random variables, it can be convenient to order the entries so that
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rm > rm+1 or rm < rm+1. Two simplified real valued random variables with the

same probabilities pm are not equivalent. One simple example of a discrete random

variable is (2.2.1). Some important examples are, the uniform random variable U

and the binomial random variable B. The uniform random variable of size N is:

UN = {{n, 1/N}, 1 ≤ n ≤ N} .

As an example, the uniform random variable for N = 3 is,

U3 =



















1, 1/3

2, 1/3

3, 1/3



















, (2.3.5)

In Matlab the command rand generates uniformly distributed numbers in the

interval [0,1]. This is a continuous, rather than a discrete, random variable. Such

random variables will be discussed in section 2.6.

The binomial random variable B is defined by:

B(N) = {{n, 2−N

(

N

n

)

}, 0 ≤ n ≤ N} .

whose probability distribution (2.2.3) was derived in the previous section.

Infinite Discrete Random Variables

The law of small numbers is important in situations where a small number m of

objects are created randomly. The fact that the random variable produces an integer

allows us to simplify our notation by setting rm = m, so the random variable is

written

R = {{m, pm};m ≥ 1} .

17
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In many situations, the probablity of getting m objects, pm, can be modeled using

the Poisson distribution. The Poisson distribution has a parameter λ and is given

by

pm =
λme−λ

m!
, m ≥ 0 . (2.3.6)

2.3.1 Operations

Let R and S be random variables defined by,

R = {{ri, pi}; 1 ≤ i ≤ I} , S = {{sj, qj}; 1 ≤ j ≤ J} ,

with I > 0 and J > 0. We first observe that if f(x) is a real valued function of a

real variable, then we can apply f to any real valued random variable and obtain a

new random variable:

f(R) = {{f(ri), pi}; 1 ≤ i ≤ I} . (2.3.7)

We will use both powers, f(x) = xk, and linear functions, f(x) = a x + b, in this

discussion.

Because we can add, subtract, multiply and divide real numbers, we can perform

the same operations on real valued random variables:

R+ S = {{ri + sj , pi qj}; 1 ≤ i ≤ I , 1 ≤ j ≤ J} ,

RS = {{ri sj, pi qj}; 1 ≤ i ≤ I , 1 ≤ j ≤ J} ,

with subtraction and division (must assume divisor is not zero) being defined simi-

larly. Note that it may happen that r = rm + rj for more than one value of m or j,

in which case the distribution can be simplified.

18
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For an example to illustrate the sum of two random variables, we will choose both

R and S equal to U3 and to be independent. In this case, R and S are IID and

R+ S =























































































1 + 1, 1/9

2 + 1, 1/9

3 + 1, 1/9

1 + 2, 1/9

2 + 2, 1/9

3 + 2, 1/9

1 + 3, 1/9

2 + 3, 1/9

3 + 3, 1/9























































































=























































































2 1/9

3, 1/9

4, 1/9

3, 1/9

4, 1/9

5, 1/9

4, 1/9

5, 1/9

6, 1/9























































































=







































2 1/9

3, 2/9

4, 3/9

5, 2/9

6, 1/9







































.

Note that the probabilities in the simplified random variable are from the binomial

distribution.

2.3.2 Expected Value

The expected value of the random variable R is

E(R) =
M
∑

m=1

rm pm . (2.3.8)

This is a fundamental tool for analyzing random variables. The value does not

depend on the random variable being simplified. That is, the expected value is the

same for any two random variables that simplify to the same random variable. We

will use unsimplified random variables in some of our calculations. Note that if we

keep the pm fixed and change the rm, then the expected value changes. Consequently,

such random variables are not equivalent.

For the random variable U3 defined in (2.3.5),

E(U3) =
1

3
+ 2

1

3
+ 3

1

3
=

1 + 2 + 3

3
= 2 .
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For the uniform distribution, the expected value is just the average of the values

of the distribution. For other random variables, the expected value is a weighted

average.

If f is any real valued function defined on R, then from (2.3.7), we see that

E(f(R)) =
M
∑

m=1

f(rm) pm . (2.3.9)

The facts that for independent random variables R and S,

E(R+ S) = E(R) + E(S) and E(RS) = E(R)E(S) . (2.3.10)

will be used repeatedly. To see these facts are correct, write

E(R+ S) =
M
∑

m=1

J
∑

j=1

(rm + sj) pm qj

=
M
∑

m=1

J
∑

j=1

(rm pm qj + sj pm qj)

=

M
∑

m=1

J
∑

j=1

rm pm qj +

M
∑

m=1

J
∑

j=1

sj pm qj

=

M
∑

m=1

rm pm +

J
∑

j=1

sj qj

= E(R) + E(S)

A similar argument works for the product of two random variables.

If R and S are IID and have the same distribution as U3, then, using our result

above, the expected value is

E(R+ S) = 2
1

9
+ 3

2

9
+ 4

3

9
+ 5

2

9
+ 6

1

9
=

2 + 6 + 12 + 10 + 6

6
= 36/9 = 4 .

And, E(R) = E(S) = E(U3) = 2 so we have E(R+ S) = E(R) + E(S).
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2.3.3 Moments

Computing moments are an important step in analyzing random variables. The

moments Mn = Mn(R), n ≥ 0 of the random variable R are given by

Mn(R) = E(Rn) =

M
∑

m=1

rnm pm , n ≥ 0 .

First, note that M0(R) = 1 and that M1(R) = E(R), the expected value of R.

As an example, we compute the zero, first and second moments of the uniform

random variable U3 (2.3.5)

M0(U3) =
1

3
+

1

3
+

1

3
=

1 + 1 + 1

3
= 1 ,

M1(U3) =
1

3
+ 2

1

3
+ 3

1

3
=

1 + 2 + 3

3
= 2 ,

M2(U3) =
1

3
+ 4

1

3
+ 9

1

3
=

1 + 4 + 9

3
=

14

3
.

The mean µ and the variance σ2 of a random variable R are defined by

µ = µ(R) = E(R) , σ2 = σ2(R) = E((R− µ)2) .

Next, since the expected value is linear operator,

E((R− µ)2) = E(R2 − 2µR+ µ2)

= E(R2)− E(2µR) + E(µ2)

= M2 − 2µ2 + µ2

= M2 −M2
1 ,

and consequently

σ2 = M2 −M2
1 .
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The standard deviation σ is the square root of the variance. This is an important

result used regularly in statistics.

From the above example, we see that

µ(U3) = 2 , σ2(U3) =
2

3
.

Standard Random Variables

Here is another illustration of the use of random variables to produce a very useful

result. Random variables tend to have many parameters which can make them

hard to understand. Linear transformations can be used to eliminate some of the

parameters. So if

R = {{rm, pm}; 1 ≤ m ≤ M}

and if a and b are real numbers, then set

X = aR+ b = {{a rm + b, pm}; 1 ≤ m ≤ M} .

Next, note that

E(X) = aE(R) + b = a µ+ b .

If we choose b = −aµ, then E(X) = 0 and

X = a (R− µ) .

Then,

E(X2) = a2(M2 − 2µ2 + µ2) = a2(M2 − µ2) .

If we choose

a2 =
1

M2 − µ2
=

1

M2 −M2
1

=
1

σ2
,
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we have

X =
1

σ
(R− µ) ,

with

E(X) = 0 , E(X2) = 1 .

We will often put random variables in a form so the E(X) = 0 and E(X2) = 1.

As an example, let X = U3. From the above calculations we see that µ = µ(X) =

2 and σ2 = σ2(X) = 3/2. Consequently, the random variable

Z =

√

2

3
(X − 2)) =



















−
√

2
3
, 1/3

0, 1/3

+
√

2
3
, 1/3



















has

µ = E(Z) = 0 , σ2 = E(Z2) = 1 .

Estimating Random variable from Data Using Moments

Given a data set of samples xi, 1 ≤ I, with I > 0. The computed moments could

be used to estimate the the random variable X that generated the data . Here, we

assume that the xi contain only K discrete values yk, 1 ≤ k ≤ K. First count the

number ck of times that yk occurs in the sample. Now
∑K

k=1 ck = I so set pk = ck/I

to get a probability. Consequently, the estimated random variable is

Y = {{yk, pk} ; 1 ≤ k ≤ K} .

The moments of X can be estimated from the data as

Mn(X) ≈ Mn(Y) . (2.3.11)
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The estimated moments are then given by

Mn(Y) = E(Yn) =

K
∑

k=1

ynk pk =
1

I

K
∑

k=1

ynk ck .

As ck merely counts the number of times yk appears in the xi, this is the same as

Mn(Y) = E(Yn) =
1

I

I
∑

i=1

xn
i , (2.3.12)

which eliminates the need to count the occurrences yk in the data values. We will

also approximate the mean and standard deviation by

µ(X) ≈ µ(Y) , σ(X) ≈ σ(Y) .

Many data sets of interest in applications are do not have a finite set of values.

In this case, the data can be placed into a finite number of bins and the center of

the bins can be used as the finite set of discrete values.

2.4 Random Walks with Discrete Jumps

Random walks on lattices are commonly used in modeling discrete jumps. This type

of walk is by far the easiest of the random walks to work with. We will start with

walks in one dimension, that is, walks on a line. A novel aspect of this presentation

is that, from the beginning, we will explicitly introduce spatial and temporal steps

∆x > 0 and ∆t > 0. This is important in modeling data so that the models have

the correct spatial and temporal scales. This also allows the spatial and temporal

scales in a model to be changed correctly which is critical for multi-scale modeling.

A wonderful thing about random walks is that there are two mathematically

equivalent ways of viewing them. One is that you are a random walker and you

will use some random variable to decide where to move next. This idea is used to

24



Chapter 2. Random Walks

−3 −2 −1 0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

x

t

1 Random Walks With 32 Jumps
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16 Random Walks With 32 Jumps

a b

Figure 2.4.2: Examples of random walks in 1D with 32 jumps, a) one random walk
and b) sixteen random walks

simulate random walks. The other view is that you are an observer at some point

and you count the number of walkers that end up at your position and count where

they came from. This latter view is described by what is commonly called the master

equation. This duality can be used to quickly and easily see many important things

about random walks.

If i and n are integer indices, and

xi = i∆x , tn = n∆t ,

then a lattice is given by the points

(xi, tn) , −∞ < i < ∞ , 0 ≤ n < ∞ .

Random walks are generated by a random variable J that gives the jumps in the

walk. The simplest walk is given by the jumps

J = ∆x







−1 , 1/2

1 , 1/2







=







−∆x , 1/2

∆x , 1/2







. (2.4.13)
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Figure 2.4.3: Number of walkers at position in the lattice after 32 jumps, a) 1000
walkers and b) 10,000 walkers

.

Simulating Random Walks

To simulate a random random walk on a one dimensional lattice, we assume that

we have a walker at the point (xi, tn) and then move the walker to one of the points

(xn ±∆x, tn+1) with probability 1/2. An example with 32 time steps and ∆x = ∆t =

1 is shown in figure 2.4.2a. The walker’s positions are connected with a straight line

for clarity. We only need to consider walkers that start at x0 = 0, as walkers that

start at any other point have paths that are simple translations of paths starting at

0. Figure 2.4.2b shows 16 such walks.

How Far do Random Walkers Go?

An important problem in random walks is to characterize how fast the walkers diffuse,

that is, how far away form x = 0 do the walkers get in some probabilistic sense. To get

a better idea of the answer to this problem, we simulate M = 1, 000 and M = 10, 000
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Figure 2.4.4: Probabilities that the walkers are at a given point in the lattice after
32 jumps, a) 1,000 walkers and b) 10,000 walkers

.

walkers for N = 32 time steps and then plot the number of walkers at each position

in figure 2.4.3. Note that because N is even there are only walkers at positions that

are an even integer. We see that most of the walkers ended up near where they

started.

In simulations of many random walks, if we divide the number of walkers ending

up at a given point by the total number of walkers, we will get the probability of a

walker ending up at a given position. The transition from a number to a probability is

important. A way to think about this is to consider the number of walkers becoming

very large. The number of walkers at each point will then become very large while

the probabilities will converge to a finite value. For our example shown in figure

2.4.3, this produces the probabilities shown in figure 2.4.4. Note that the walkers

can go at most 32 steps away from x = 0. The plot of 10,000 walker’s probability

distribution indicates that most of the walkers only go between 5 and 10 steps away

from x = 0 in 32 steps.
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N µN σN

1,000 0.3380 5.5972
10,000 0.0634 5.6991

Table 2.4.1: Mean and standard deviation for random walkers

A probabilistic way to quantify how far the walkers move is to compute their mean

position and the standard deviation about the mean. So, if xm,n is the position of

walker m at time t = n∆t, then the moments of the positions at time t are estimated

by (2.3.12):

Mp(Xn) ≈
M
∑

m=1

xp
m,n .

Then, the moments can be used to estimate µ = M1 and σ = M2 − M2
1 . The

estimates for some simulated data are given in Table 2.4.1. It appears that the

mean µ is converging to 0 and standard deviation σ is converging to 5.7 as the

number of walkers M becomes large. The plots in 2.4.4 confirm that these estimate

are reasonable. We will use the power of random variable analysis to see the exact

values for this problem.

2.4.1 Probabilistic Description of a Random Walk and

Derivation of the Master Equation

The probability that a walker is at a point (xi, tn) in the lattice at time t = n∆t is

given by the random variable

Xn = {{(xi, tn) , pni } ;−∞ < i < ∞} , n ≥ 0 , (2.4.14)

where pni ≥ 0 and

∑

i

pni = 1 .
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0 1
128

0 7
128

0 21
128

0 35
128

0 35
128

0 21
128

0 7
128

0 1
128

0
0 0 1

64
0 3

32
0 15

64
0 5

16
0 15

64
0 3

32
0 1

64
0 0

0 0 0 1
32

0 5
32

0 5
16

0 5
16

0 5
32

0 1
32

0 0 0
0 0 0 0 1

16
0 1

4
0 3

8
0 1

4
0 1

16
0 0 0 0

0 0 0 0 0 1
8

0 3
8

0 3
8

0 1
8

0 0 0 0 0
0 0 0 0 0 0 1

4
0 1

2
0 1

4
0 0 0 0 0 0

0 0 0 0 0 0 0 1
2

0 1
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Table 2.4.2: Probabilities generated by the master equation for 0 ≤ n ≤ 8.

Let Jn, n ≥ 1 be IID random variables with the same distribution as J. Then

the random walk Xn is determined by giving a probability distribution X0 at time

t = 0 and then setting

Xn = Xn−1 + Jn , n ≥ 1 . (2.4.15)

The initial position of the walkers is X0. On a lattice, the probability distribution

of X0 is the Kronecker delta that is defined by

δi =







1 if i = 0 ,

0 if i 6= 0 .
(2.4.16)

The master equation for a random walk tells us how to compute the probabilities

of walkers being at a point in the grid. Intuitively, there are only two possible ways

of getting to the point (xi, tn) = xi,n, coming from xi+1,n−1 with probability 1/2

or coming from xi−1,n−1 with probability 1/2. Consequently, the probabilities for

(2.4.15) must be given by

pni =
1

2
pn−1
i−1 +

1

2
pn−1
i+1 , n ≥ 1 , −∞ ≤ i ≤ ∞ , (2.4.17)

with p0i = δi. In Table 2.4.2 we show the probabilities defined by the master equation

up to n = 8. Note that the walkers skip over lots of points, that is, pni = 0 if n+ i is

an odd number. Also, all nonzero values of pni must have −n ≤ i ≤ n.
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Next, we show the derivation of the master equation. The rule for adding random

variables applied to (2.4.15) give

Xn−1 + Jn =

{{

xj,n−1 + k∆x ,
1

2
pn−1
j

}

;−∞ < j < ∞, k = ±1

}

.

To find the probabilities pni for Xn, we must simplify the previous expressions. Thus

we must find out when j + k = i. There are two possibilities j = i− 1 and k = 1 or

j = i+ 1 and k = −1. Consequently the partially simplified expression is

Xn =













xi−1,n−1 +∆x , 1
2
pn−1
i−1

xi+1,n−1 −∆x , 1
2
pn−1
i+1







;−∞ < i < ∞







.

Now simplify the right hand side of this gives

Xn =













xi,n ,
1
2
pn−1
i−1

xi,n ,
1
2
pn−1
i+1







;−∞ < i < ∞







= {{(xi, tn) , pni } ;−∞ < i < ∞} .

This implies that

pni =
1

2
pn−1
i−1 +

1

2
pn−1
i+1 , n ≥ 1 , −∞ < i < ∞ .

which is the master equation (2.4.17).

Deriving an Analytic Formula for The Master Equation

To find an analytic formula for the master equation (2.4.17) we define

qni = 2n pni ,

which changes the master equation to

qni = qn−1
i−1 + qn−1

i+1 , n ≥ 1 , −∞ < i < ∞ .

The initial condition is given by the Kronecker delta. Some qni are shown in table

2.4.3. All qni are zero except when n + i is even and −n ≤ i ≤ n. The values in the

table are binomial coefficients of the form
(

n

k

)

,
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0 1 0 9 0 36 0 84 0 126 0 126 0 84 0 36 0 9 0 1 0
0 0 1 0 8 0 28 0 56 0 70 0 56 0 28 0 8 0 1 0 0
0 0 0 1 0 7 0 21 0 35 0 35 0 21 0 7 0 1 0 0 0
0 0 0 0 1 0 6 0 15 0 20 0 15 0 6 0 1 0 0 0 0
0 0 0 0 0 1 0 5 0 10 0 10 0 5 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 4 0 6 0 4 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 3 0 3 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Table 2.4.3: Coefficients generated by the recursion for qni for 0 ≤ n ≤ 10.

but what is k? When i = −n the value is 1 which means that k must be 0 or n.

Consider the fact that q3
−1 = 3. So n = 3 and i = −1 and we need k = 1. We see

that k = (n + i)/2 works. If you try a few other values you will see that this must

be correct:

pni =







1
2n

(

n
n+i
2

)

, if n+ i is even,

0 , if n+ i is odd.

pni is a binomial distribution.

2.4.2 Mean Square Displacement

In some of our previous examples, we saw that the standard deviation gave a reason-

able probabilistic estimate of how far the walker move in a given time. Classically,

the square of the standard deviation, which is the variance, is used to measure this

and is called the mean square (or squared) displacement. For any random walk given

by (2.4.15),

E(Xn) = E(Xn−1) + E(Jn) .
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We will assume that E(Jn) = 0, and E(X0) = 0. Consequently E(Xn) = 0 for all

n, confirming what we saw from the simulations. The mean square displacement

(MSD) is simply the second moment of the positions at time t = n∆t:

MSDn = E(X2
n) .

Because E(Xn) = 0, theMSDn is also the variance σ
2
n ofXn where σn is the standard

deviation of of Xn. It is σn that measures how far the walkers diffuse.

If E(J2
n) = σ2 and E(Jn) = 0 then,

MSDn = E(X2
n)

= E((Xn−1 + Jn)
2)

= E(X2
n−1) + 2E(Xn−1)E(Jn) + E(J2

n)

= E(X2
n−1) + E(J2

n)

= E(X2
n−1) + σ2 .

This type of formula is called recursive. Such formulas are very useful for under-

standing and usually quite easy to program. Consequently

MSDn = nσ2 + E(X2
0) .

We are assuming that E(X2
0) = 0, so

MSDn = nσ2 = σ2
n .

We will also write this as

MSD(t) = t
σ2

∆t
.

In the simulations described in section 2.4, J is the simple probability distribution

(2.4.13) so E(J) = 0 and E(J2) = ∆x2, that is σ = ∆x. Also the walkers all started

at x = 0, then E(X0) = 0 and E(X2
0) = 0. Consequently, for this walk,

MSDn = n∆x2 ,
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or

MSD(t) =
∆x2

∆t
t .

If N = 32 and ∆t = 1, we see that σN =
√
N = 4

√
2 ≈ 5.6569 . The differences

between the values estimated above and the true values are

N µN − µ σN − σ

1,000 0.3380 -0.0597

10,000 0.0634 0.0422

2.4.3 Diffusion Constant

Diffusion describes the spread of particles through random motion from regions of

higher concentration to regions of lower concentration. The terminology in the liter-

ature about types of diffusion is quite variable. For example we could call this type

of diffusion normal or simple. An experiment to observe normal diffusion would be

to put a drop of ink in a large volume of water and measure how the ink diffuses. For

this type of diffusion, experimentalists have found that the mean square displacement

is

MSDexp(t) = K t = K n∆t .

Where K is a constant. For historical reasons that will be explained later, the

diffusion constant is defined to be D = K/2, then

MSDexp(t) = 2D t = 2Dn∆t . (2.4.18)

To model this type of diffusion, we set the experimental MSD equal to the theoretical

MSD to get

2Dn∆t = n∆x2 .
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Consequently,

D =
∆x2

2∆t
. (2.4.19)

This result is very important for modeling. In many modeling situations the diffusion

constant can be estimated, so we must set up the lattice so that the above relationship

holds.

Modeling Data

When modeling data, the strategy is to first estimate the diffusion constant and then

use the diffusion constant (2.4.19) to choose ∆x and ∆t.

A common modeling situation is to have data on the positions of some number

M of particles at N times. If the positions are xm,n and 1 ≤ m ≤ M , 0 ≤ n ≤ N

and tn = n∆t, then the displacement of the particles is given by

ym,n = xm,n − xm,0 , 1 ≤ m ≤ M , 0 ≤ n ≤ N .

If the motion of the particles is random, then the expected value of their positions,

µn = E(ym,n) =
1

M

M
∑

m=1

ym,n ,

should be near zero. If this is the case, then the mean square displacement of the

particles is given by

MSDn = E(y2m,n) =
1

M

M
∑

m=1

y2m,n ,

and should be linear in n.

After we discuss some more general random walks we will find a simpler way to

estimate the diffusion constant. When we do this, we will introduce the jumps for
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the data:

jm,n = xm,n − xm,n−1 , 1 ≤ m ≤ M , 1 ≤ n ≤ N .

An important point: For our theoretical random walks, the jumps are all the same

size. For the particles data, this is not very likely, which is an important limitation of

this simple model. To compensate for this limitation, a modeler can simulate with a

significantly smaller time step then the time step in the data. Of course this implies

that the spatial step must also be smaller. This can be also be corrected for by using

a more complex random walk.

2.5 Continuous Real Value Random Variable

In the probability literature, random variables with a continuum state space are

commonly called continuous random variables. Real value random variables can

have three types of of state spaces:

• finite set of values;

• countable infinite set of values;

• a continuum of values.

Random variables with a finite set of values or a countable set of values can be

easily studied together and are called discrete random variables, or more precisely,

random variables with a discrete state space. A continuum, for example all of the real

numbers or the real numbers in the unit interval [0,1], contains an infinite number of

values, but this infinity is infinitely larger than a countable set. As a consequence,

for a continuum random variable, the probability of drawing a given value must be
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zero. What is correct is that the probability of drawing a real number in a non-trivial

interval is nonzero.

We will begin with a standard example of the uniform distribution on the interval

[0, 1]. Many packages for numerical computation have a program that will produce a

random number between 0 and 1. In Matlab this command is rand. On a computer

it is impossible to generate “true” random numbers, so the numbers that computers

generate are commonly called pseudo-random. In any case, these pseudo-random

number are fine for studying phenomena in the real world and thus we drop the

pseudo. The point is that the real numbers in [0, 1] are a continuum and consequently

the probability of drawing any given real number is zero. Let U be the uniform

random number generator of a random variable What is important about U is that

if a, b ∈ R and 0 ≤ a ≤ b ≤ 1 then

Pr(a ≤ U ≤ b) = b− a , (2.5.20)

which is just the length of the interval. Since

Pr(U = 0) = 0 and Pr(U = 1) = 0 ,

it is also true that

Pr(a < U < b) = b− a .

2.5.1 Probability Density Functions

In this section we consider random variables that have a probability density function

(PDF). As we will see later, there are random variables that do not have a PDF! A

PDF p is any function defined on R which satisfies

p(x) ≥ 0 ,

∫

∞

−∞

p(x) dx = 1 .
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The random variable X generated by the PDF p is defined by

Pr(a ≤ X ≤ b) =

∫ b

a

p(x) dx . (2.5.21)

The cumulative distribution function for p is

P (x) = Pr(X ≤ x) =

∫ x

−∞

p(y) dy ,

so the previous formula can be written

Pr(a ≤ X ≤ b) = P (b)− P (a) .

A random variable is a continuous random variable if the function P is continuous.

Any random variable with a PDF is continuous.

We will write X ∼ p to indicate that p is the probability density (PDF) of X and

X ∼ P to indicate that P is the cumulative distribution function (CDF) of X. We

will also write X ∼ p to indicate that p is the PDF and P is the CDF of X.

There are some tricky things about PDFs. First, it is not correct to say that the

probability of drawing x is p(x). It is correct to say that the probability of drawing

a number in a small interval of length ∆x containing x is approximately p(x)∆x.

It is common to write ∆x as dx. To make the notation for random variable with a

PDF notation more consistent with the notation for discrete random variables, we

could say that the random variable is given by

{x, p(x)} for all x ∈ R ,

but this can be interpreted as the probability of drawing x is p(x) which we will

avoid. A far better notation is

{x, p(x) dx} for all x ∈ R ,

where we consider dx to be infinitely small. This notation is really useful! In more

theoretical discussions, p(x) dx is called a probability measure.
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Figure 2.5.5: Distribution plots, a) Uniform PDF, b) Normal PDF, c) Uniform CDF,
d) Normal CDF

.

The probability density function u for the uniform distribution U ∼ u is given

by

u(x) =



















0 if x < 0

1 if x ≥ 0 and x ≤ 1

0 if x > 1

(2.5.22)
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A plot of u is given in figure 2.5.5a. The CDF for the uniform distribution is U is

U(x) =



















0 if x < 0

x if x ≥ 0 and x ≤ 1

1 if x > 1

A plot of U is given in Figure2.5.5c.

An equally important PDF is the normal density function

n(x) =
e−

x2

2

√
2 π

, (2.5.23)

which determines the normal random variable N ∼ n. A plot of this density function

is given in figure 2.5.5b. For this PDF,

Pr(a ≤ N ≤ b) =

∫ b

a

n(x) dx .

In matlab the command randn generates normally distributed random numbers. The

CDF for the normal distribution is

N(x) =
1

2

(

erf

(

x√
2

)

+ 1

)

,

which is shown in Figure 2.5.5d.

General Random Variables

For continuous random variables we will need the continuum analog of the discrete

Kronecker delta distribution (2.4.16), which is the continuum Dirac delta distribu-

tion. This analog is not continuous, so we take a brief excursion into general random

variables. All real-value random variables do have a cumulative distribution function

(CDF), which means that

P (x) = Pr(X ≤ x)

39



Chapter 2. Random Walks

is well defined. This cumulative distribution function must satisfy

0 ≤ P (x) ≤ 1 ,

P (x) ≤ P (y) when x ≤ y ,

P (−∞) = 0 ,

P (∞) = 1

and P is right continuous. The probability that X is in the interval (a, b] is given by

Pr(a < X ≤ b) = P (b)− P (a) .

In these statements, one must be careful about the use of < and ≤ unless the random

variable is continuous.

The CDF of the Dirac delta distribution D0 is given by

Pr(D0 ≤ x) =







0 if x < 0 ,

1 if x ≥ 0 .
(2.5.24)

This function is known as the Heavyside function H(x), so D0 ∼ H . Note that

H(0) = 1. To the right of 0, that is for x > 0, H(x) = 1 while to the left of 0, that is

for x < 0, H(x) = 0. So H is right continuous at x = 0 and continuous at all other

points.

The Heavyside function is not continuous at x = 0, so D0 is not a continuous

random variable, and consequentlyD0 cannot have a PDF that is a function. Another

way to describe the Dirac delta is that it is given by δ(x) dx. It is common to call

δ the Dirac delta function, but δ is not a function and thinking that it is can easily

lead to errors. If the CDF P (x) is differentiable and X ∼ P , then X ∼ p where

p =
dP

dx
,

or

dP = p dx .
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2.5.2 Operations

If P is a random variable and f is a real valued function on the real line R, then

Q = f(P) is also a random variable. The CDF for Q is

Q(x) = Pr(Q ≤ x) = Pr(f(P) ≤ x) .

However, the set of y where f(y) ≤ x can be very complicated and this can make

Q(x) difficult to compute. This is the continuum analog of the problem as trying to

simplify discrete random variables. We will proceed by simply using the analogs of

the discrete random variable results. We have also observed that we can compute

expected values for discrete random variables without simplifying them. So we take

advantage of this here. One case we can do is when f(x) = a+ b x is linear. If P ∼ p

then (see (6.1.1))

q(x) =
1

b
p(
x− a

b
) . (2.5.25)

If P ∼ p and Q ∼ q are independent random variables then the sum S = P+Q

and product T = P ∗ Q of these random variables are given by (see (6.1.3) and

(6.1.4))

s(x) =

∫

∞

−∞

p(y) q(x− y) dy , t(x) =

∫

∞

−∞

p(y) q(
x

y
)
1

y
dy . (2.5.26)

Additionally if R ∼ r is another independent continuous random variable, then the

sum and product satisfy

P+Q = Q+P , P ∗Q = Q ∗P , R ∗ (P+Q) = R ∗Q+R ∗P . (2.5.27)

The expected value of the sum and product of two independent continuous random

variables satisfy

E(P+Q) = E(P) + E(Q) , E(PQ) = E(P)E(Q) . (2.5.28)
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2.5.3 Expected Value and Moments

The continuum analog of the expected value (2.3.8) for X ∼ p is given by

E(X) =

∫

∞

−∞

x p(x) dx . (2.5.29)

The analog of the discrete formula (2.3.9) for Q = f(X) is then

E(Q) =

∫

∞

−∞

x q(x) dx =

∫

∞

−∞

f(y) p(y) dy . (2.5.30)

So even though q can be very difficult to compute, the expected value is far easier

to compute.

And, the moments of the random variable X ∼ p are

Mn(X) = E(Xn) =

∫

∞

−∞

xn p(x) dx .

As with discrete random variables, the mean of X is defined to be

µ = µ(X) = M1(X) ,

while the standard deviation σ is given by

σ2 = σ2(X) = M2(X)−M2
1 (X) = M2(X)− µ2 .

The moments of a general random variable X ∼ P are given by

Mn(X) =

∫

∞

−∞

xn dP (x) ,

which is a Stieltjes integral. In the case that P is differentiable, dP (x) = P ′ dx =

p(x) dx and then this reduces to the moments discussed above. If P = D0, the Dirac

Measure, then P is given by the Heavyside function H (2.5.24), and then

Mn(D0) =

∫

∞

−∞

f(x) dH(x) = f(0) .

and consequently the moments of δ are given by

∫

∞

−∞

xn δ(x) dx =







1 if n = 0 ,

0 if n > 0 .
(2.5.31)
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Standard Random Variables

If X ∼ p is a random variable, f(x) = a x+ b and Q = f(X), then

E(Q) = E(f(X)) =

∫

∞

−∞

(a x+ b) p(x) dx = aM1 + b = a µ+ b .

If we choose b = −aµ, then E(Q) = 0 and

Q = a(X− µ) ,

Next,

E(Q2) =E(a2(X− µ)2)

=a2E((X− µ)2)

=a2E((X2 − 2µX+ µ2))

=a2(E(X2)− 2µE(X) + µ2)

=a2(M2 − 2µ2 + µ2)

=a2(M2 − µ2)

=a2 σ2(X) .

So if we choose

a2 =
1

σ2(X)
,

then E(Q2) = 1.

The uniform random variable U from (2.5.22) has mean

µ =

∫ 1

0

x dx =
x2

2

∣

∣

∣

∣

1

0

=
1

2
,

and standard deviation

σ2 =

∫ 1

0

(x− 1

2
)2 dx =

1

12
.
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Figure 2.5.6: Mean zero normal distributions for σ = 0.5, 1.0, 5.0
.

Consequently, the random variable S = 2
√
3(U − 1/2) has mean 0 and standard

deviation one. We will call this the symmetric uniform random variable.

The normal distribution (2.5.23) N has the PDF

n(x) =
e−

x2

2

√
2 π

. (2.5.32)

This distribution has mean zero and standard deviation one. Consequently, the

general normal distribution

Nµ,σ = σN+ µ , (2.5.33)

has mean µ and standard deviation σ. Using (2.5.25) with f(x) = σ x+ µ, the PDF

for this random variable is

Nµ,σ ∼ n(x, µ, σ) =
1

σ
n(

x− µ

σ
) =

e−
(x−µ)2

2σ2

√
2 π σ

. (2.5.34)

Figure 2.5.6 displays mean zero normal distributions with different standard devi-

ation values. The cumulative distribution function (CDF) for the general normal
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distribution is

Nµ,σ =
1

2

(

1 + erf

(

x− µ√
2σ

))

where erf is the error function.

2.6 Random Walks with Continuum Jumps

Much of what we did for lattice based walks transfers to random walks who’s jumps

are given by continuum valued IID random variables Jn. The motion of the random

walkers will then be described by continuum valued IID random variables Xn that

give the positions of the walkers at time tn = n∆t where ∆t > 0 and n ≥ 0.

One important difference is that there is no ∆x as there is with walks generated by

discrete valued random variables. So, let Jn be IID random variables with the same

distribution. Then the positions of the walkers are given by

X0 = D , Xn = Xn−1 + σ Jn , 1 ≤ n ≤ N , (2.6.35)

where σ is a constant and N > 0. We assume that has E(J) = 0 and E(J2) = 1.

Also D ∼ δ dx is the Dirac delta distribution (2.5.24) and consequently E(X0) = 0

and E(X2
0) = 0.

As in the discrete case, we will set up the random walk so that the same situation

can be modeled using different ∆t. First,

E(Xn) = E(Xn−1) + E(Jn) = E(Xn−1) .

Because E(X0) = E(D) = 0 we have that E(Xn) = 0. Again, as in the discrete case

MSDn = E(X2
n) = E(X2

n−1) + σ2E(J2) .

Also E(D2) = 0,

MSDn = nσ2 or MSD(t) = t
σ2

∆t
.
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So, as in the discrete case, we require

MSD(t) = 2D t ,

where D is the diffusion constant for the process being modeled. Consequently

2D t = t
σ2

∆t
,

or

σ2 = 2D∆t .

In our simulations we will choose

σ =
√
2D∆t . (2.6.36)

With this setup and t = n∆t we now have

MSD = MSD(t) = E(X2
n) = nσ2 = n 2D∆t = 2D t ,

that is, the mean squared displacement is linear in t.

Simulating Random Walks

It is very common to use a normal distribution N ∼ n in modeling. Figure 2.6.7 dis-

plays sixteen random walks using normal distribution with mean zero and standard

deviation one. The matlab command randn was used to generate these walks.

2.6.1 The Master Equation

Here we will assume that the distribution for the jumps J ∼ j has mean zero and

standard deviation one. From (2.5.25),

σJ ∼ 1

σ
j(
x

σ
) .
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Figure 2.6.7: Sixteen random walks in 1D
.

Formula (2.5.26) implies that if the continuous random variables Xn ∼ pn(x), then

pn(x) =

∫

∞

−∞

1

σ
j(
y

σ
) pn−1(x− y) dy .

is the master equation for this random walk.

Next, we investigate what happens as we take smaller and smaller time steps ∆t.

First make the change of variables y = σ u to get

pn(x) =

∫

∞

−∞

j(u) pn−1(x− σ u) du .

We will assume that j is symmetric, that is, j(−x) = j(x). First we break up the

integral into two parts:

pn(x) =

∫

∞

0

j(u) pn−1(x− σ u) du+

∫ 0

−∞

j(u) pn−1(x− σ u) du .

Setting u = −u in the second part and the symmetry of j gives

pn(x) =

∫

∞

0

j(u) pn−1(x− σ u) du+

∫

∞

0

j(u) pn−1(x+ σ u) du .
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Because j is a symmetric probability distribution,

pn−1(x) =

∫

∞

−∞

j(u)pn−1(x) du = 2

∫

∞

0

j(u)pn−1(x) du .

Combining the previous two formulas gives

pn(x)− pn−1(x) =

∫

∞

0

j(u)
(

pn−1(x+ σ u)− 2 pn−1(x) + pn−1(x− σ u)
)

du .

Dividing by ∆t and using (2.6.36) gives

pn(x)− pn−1(x)

∆t
= 2D

∫

∞

0

u2 j(u)
pn−1(x+ σ u)− 2 pn−1(x) + pn−1(x− σ u)

(σu)2
du .

To simplify our notation, replace n by n+ 1 in the previous, and then assume there

is a function f(x, t) so that pn(x) = f(x, n∆t) and then

f(x, t+∆t)− f(x, t)

∆t
= 2D

∫

∞

0

u2 j(u)
f(x+ σ u, t)− 2 f(x, t) + f(x− σ u, t)

(σu)2
du .

Because σ goes to zero as ∆t goes to zero, if we fix u and take the limit, we get

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) .

The solution of this diffusion equation with Dirac delta measure as initial data is

given by the Gaussian

u(x, t) =
e−

x2

4D t

√
4D tπ

.

So we see that as we make ∆t smaller, now matter what jump distribution j we

use so long as it is mean zero and second moment one, the positions of the random

walkers become normal distributed.

Analyzing Data

We generate a random walk with 500 positions, shown in figure 2.6.8. This random

walk was generated using normally distributed jumps with µ = 0 and σ = 3. Next,
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Figure 2.6.8: Analysis of generated data
.

using (2.3.12) we compute the mean and standard deviation of the generated jumps,

which are µ = −0.0691 and σ = 3.0138. Then jumps are divide in ten equally

space intervals also referred as bins. The probability of a jumps being in a bin is

computed by the number of jumps in the bin divide by the total number of jumps.

The centers of the bins along with their probabilities are displayed in figure 2.6.8b.

From this figure we see that the distribution of the jumps looks normally distributed

as expected.

2.7 Vector-Valued Random Variables

In this section we will work with random walks in the plane which are described by

vector-valued random variables. Given two random variables X and Y defined on

the same probability space the vector-valued random variable ~V = (X,Y) generates

pairs of random variables (x, y). The joint probability distribution for X and Y

defines the probability of events defined in terms of both variables. In the case of
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only two random variables, this is called a bivariate distribution, but the concept

generalizes to any number of random variables, giving a multivariate distribution.

The cumulative distribution function for a pair of random variables is defined in

terms of their joint probability distribution. It is given by

P (x, y) = Pr(X ≤ x, Y ≤ y) .

In this study, we are only interested random variables that have a PDF,

~V ∼ p , p = p(x, y) ,

such that

P (x, y) =

∫ x

−∞

∫ y

−∞

p(r, s) dr ds

is the CDF for ~V. In this case, 0 ≤ p ≤ 1 and
∫

∞

−∞

∫

∞

−∞

p(x, y) dx dy = 1 .

For our applications, we are interested in the case when

p(x, y) = q(x) r(y) . (2.7.37)

Which is equivalent to X and Y being independent. Therefore ~V ∼ q(x) r(y).

2.7.1 Operations, Mean and Moments

Let ~V and ~U be two vector random variables define as

~V = (X,Y), ~U = (R,S)

Then the sum of the two vector random variables is given by

~V + ~U = (X+R,Y + S) .
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For vector random variable, we are interested in the scalar or dot product

~V ◦ ~U = XR+YS ,

which produces a scalar (real-valued) random variable (rather than a vector). There

is also a scalar product that produces a vector random variable. So if a is a scalar,

then

a ~V = (aX, aY) .

The expected value of a vector-valued random variable is

E(~V) = (E(X), E(Y)) .

For the dot product,

E(~V ◦ ~U) = E(XR+YS) ,

but if, as we assume, X, Y, R and S are independent, then

E(~V ◦ ~U) = E(X)E(R) + E(Y)E(S) .

The mean and standard deviation of a random variable are given by

µ = µ(~V) = E(~V) , σ2 = σ2(~V) = E((~V − µ) ◦ (~V − µ)) .

Note that µ is a vector and σ is a scalar. As products of several vectors are not well

defined, they cannot be used to define higher moments. We can define moments with

two indices for ~V = (X,Y) by

Mj,k = Mj,k(~V) = E(Xj Yk) =

∫

∞

−∞

∫

∞

−∞

xjykp(x, y) dx dy , j, k ≥ 0 .
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2.7.2 Polar Coordinates

In the plane, it is useful to use polar coordinates to represent the jumps. Polar

coordinates are given by

x = r cos(θ) , y = r sin(θ) ,

r =
√

x2 + y2 , θ = arctan(x, y) ,

where arctan gives a value in [−π, π] such that if r 6= 0 then cos(θ) = x/r and

sin(θ) = y/r, and consequently tan(θ) = y/x if x 6= 0. If (x, y) = (0, 0) then θ = 0

(in Matlab).

In terms of random variables, if a jump is given by ~J = (∆X,∆Y), then the

length of the jump L and the angle Θ between the jump vector and the x-axis are

L = ‖~J‖ =
√

~J ◦ ~J =
√
∆X2 +∆Y2 , Θ = arctan(∆X,∆Y) . (2.7.38)

Conversely, if L and Θ are given,

X = L cos(Θ) , Y = L sin(Θ) .

The random variables X and Y are independent if and only if the random variables

L and Θ are independent as will be shown in the next section.

Next, we study the connection between the PDFs for ∆X and ∆Y in rectangular

coordinates and L and Θ in polar coordinates. Assume that ∆X and ∆Y are

independent, normally distributed with mean zero and standard deviation σ. If we

use the fact that dx dy = r dr dθ for polar coordinates, then the joint probability

measure for ∆X and ∆Y is

1

σ
√
2 π

e−
x2

2σ2 dx
1

σ
√
2 π

e−
y2

2σ2 dy =
1

σ2 2 π
e−

x2+y2

2σ2 dx dy (2.7.39)

=
r

σ2
e−

r2

2σ2 dr
dθ

2 π
.
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Consequently, L and Θ are independent, Θ is uniformly distributed in [−π, π], and L

has a simple Weibull probability distribution (2.7.40). Reversing the argument shows

the converse is also true. The three dimensional analog of this argument produces

the Maxwell-Boltzmann velocity distribution commonly used in thermodynamics.

The simple Weibull distribution is defined by

w(r, σ) =
1

σ
w(

r

σ
) , w(r) = r e−

r2

2 . (2.7.40)

And, its first and second moments are

M1 =

√

π

2
, M2 = 2 σ2.

Next, assume that ~J is mean zero which is true if and only if X and Y are mean

zero. Also assume X and Y are independent, so that

σ2 = E(~J ◦ ~J) = E(∆X2 +∆Y2) = E(L2) .

This motivates the definition special, single indexed, higher moments of vector-valued

random variables:

Mi(~J) = E(Li) . (2.7.41)

As usual, M0 = 1. And, if X and Y are IID with mean µ = 0 and standard deviation

σ, then

M2(J) = 2 σ2 .

For data, the one-index moments are estimated using

Mi =
1

N

N
∑

n=1

Li
n . (2.7.42)

If the probability distribution function (PDF) of the jump lengths L is given by a

radial distribution p(r), then the moments of the distribution are given by

Mk =

∫

∞

0

rkp(r) dr , 0 ≤ k . (2.7.43)
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2.7.3 Random Walks in the Plane

The jumps for a random walk in the plane are given by independent vector random

variables

~Jn = (∆Xn,∆Yn) , 1 ≤ n ≤ N , (2.7.44)

where ∆Xn and ∆Yn are independent real random variables. The positions of ran-

dom walkers in the plane are given by

~P0 = (X0,Y0) , ~Pn = ~Pn−1 + ~Pn , 1 ≤ n ≤ N , (2.7.45)

2.7.4 Mean Squared Displacement

The mean squared displacement is the expected value of the square of the lengths of

the paths:

MSDn = E(‖~Pn‖2) . (2.7.46)

For the moment, we do not assume that the jumps are normally distributed. We do

assume the jumps are IID, their components are independent, and they are mean

zero. If the second moment M2 of the jumps is finite, then

MSDn = E
(

‖~Pn‖2
)

= E

(

‖
n
∑

k=1

~Jk‖2
)

=
n
∑

k=1

E
(

‖~Jk‖2
)

=

n
∑

k=1

E
(

L2
k

)

= M2 n , (2.7.47)
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so the MSD grows linearly with the time step n. If the time step in the walk is ∆t

and t = n∆t, then

MSD(t) = MSDn = M2 n =
M2

∆t
t . (2.7.48)

In the case that the components of the jumps are normally distributed with mean

zero and standard deviation σ or equivalently, the length of the jumps have a simple

Weibull distribution with second moment M2 = 2 σ2 then

M2(~J) = ‖J‖2 = E(X2 +Y2) = 2 σ2 .

In this case,

MSDn = 2 σ2 n , MSD(t) =
2 σ2

∆t
t . (2.7.49)

For n-dimensional walks, M2 = nσ2.
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Spatial Analysis of the Static Data

Using Hierarchical Clustering and Dendrograms To

Quantify the Clustering of Membrane Proteins

3.1 Abstract

Cell biologists have developed methods to label membrane proteins with gold nanopar-

ticles and then extract spatial point patterns of the gold particles from transmission

electron microscopy images using image processing software. Previously, the resulting

patterns were analyzed using the Hopkins statistic, which distinguishes non-clustered

from modestly and highly clustered distributions, but is not designed to quantify the

number or sizes of the clusters. Clusters of gold particles were defined by a separate

analysis that requires the choice of a distance, for example 50nm, and then two par-

ticle were put in the same cluster if they were closer than this distance. Here, we

implemented a hierarchical clustering and dendrogram algorithm which makes use

of the command dendrogram from Matlab, to extract a number, the intrinsic clus-
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tering distance, that automates the identification of clusters, eliminating the need

to choose a distance. To quantify the extent of clustering, we compare the cluster-

ing distance between the experimental data being analyzed and simulated random

data for the same number of particles as the experimental data. Results are ex-

pressed as a new dimensionless number, the clustering ratio, that now facilitates

the comparison of clustering between experiments. Replacing the chosen cluster dis-

tance by the intrinsic clustering distance emphasizes densely packed clusters that are

likely more important to downstream signaling events. We test the analysis against

electron microscopy images from an experiment in which mast cells were exposed

for 1-2 minutes to increasing concentrations of antigen that binds the high affinity

IgE receptor, FcεRI, then fixed and the FcεRI beta subunit labeled with 5nm gold

particles. The clustering ratio analysis confirms the increase in clustering with in-

creasing antigen dose predicted from visual analysis and from the Hopkins statistic.

Access to a robust and sensitive tool to both observe and quantify clustering is a

key step towards understanding the detailed fine scale structure of the membrane

and, ultimately, to determining the role of spatial organization in the regulation of

transmembrane signaling.

Key Words: dendrogram, dendogram, hierarchical cluster analysis, dose response.
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3.2 Introduction

Cells communicate with the outside world through membrane receptors that recog-

nize one of many possible stimuli (hormones, antibodies, peptides, other cells) in the

extracellular environment and translate this information to intracellular responses.

Changes in the organization and composition of the plasma membrane are critical to

this process of transmembrane signal transduction [46], so there is great interest in

understanding the organization of membrane proteins in resting cells and in tracking

their dynamic reorganization during signaling [78, 50, 37, 80, 74, 5, 46].

In the center for the Spatiotemporal Modeling of Cell Signaling, high resolution

information about the spatial organization of membranes is generated by transmis-

sion electron microscopy. We stimulate cells for selected times, then rapidly rip

and fix membrane sheets, cytoplasmic face up. We then label the cytoplasmic tails

of specific transmembrane proteins, as well as proteins that are recruited to mem-

branes, using functionalized gold nanoparticles [50, 74]. Sometimes the stimuli are

also tagged with electron-dense nanoprobes (nanogold, quantum dots) to identify ac-

tivated receptors from the outside of the cell. After labeling, samples are processed

for transmission electron microscopy (TEM) and spatial point patterns of the centers

of the gold nanoparticles are generated from the TEM images using image processing

software [8, 84].

Previously, the Hopkins, and sometimes the Ripley, statistic [84, 66] were used

to characterize the distributions of membrane proteins in resting and activated cells.

These statistics are given by a plot of the statistic for simulated random data to

be compared with a plot of the statistic computed from the experimental data

[50, 80, 84]. These methods can distinguish between more and less clustered data.

However, they do not provide a straightforward quantitative measure of the extent

of clustering. Many of our figures will contain a plot of the Hopkins statistic to
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illustrate its consistency with and difference from our new method.

Here, we describe a new method that provides a number to identify clusters and

compare the extent of clustering between experimental conditions. The method first

uses the hierarchical clustering algorithm to compute a hierarchy of clusters that

depends on a clustering distance d. Two data points are in the same cluster if the

distance between them is less than or equal to d. The information about the hier-

archy is then used to compute the intrinsic clustering distance dI that characterizes

the distance between points in clusters. This distance characterizes the nano-scale

structure of any clustering in the data. The dendrogram function from Matlab is

used to generate and display the hierarchical clustering of the data.

We can also generate a hierarchy for simulated random data. The simulated data

are typically less clustered than our biological data and consequently dI for random

data is larger than that of the biological data. In both cases, the amount of clus-

tering is strongly dependent on the number of particles in the image. For randomly

generated data, we provide a simple formula for estimating dI as a function of the

number of particles. To obtain a more intuitive and useful description of the cluster-

ing, we introduce the clustering ratio ρI that is the ratio of the intrinsic distance for

simulated random data divided by the intrinsic distance for the experimental data.

Importantly, ρI is a dimensionless number that tells us how much more clustered the

biological data are in comparison with simulated random data.

Because there are a finite number of points in the image, the clusters only change

at a finite number of values di which are all of the distances between pairs of

points. The dendrogram displays this information. A minor complication is that

the dendrogram code in Matlab considers a single point whose distance from all

other points is greater then d as a cluster. We are only interested in clusters that

contain at least two points. The clustering algorithm returns a list of all clusters for

each di; consequently it is easy to compute the number of clusters, the number of
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points in clusters, and other details of the clustering.

We begin our discussion in Section 3.4 by giving an algorithm for computing the

clusters in the data given by a distance d. Based on this clustering, we introduce

hierarchical clustering and dendrograms and then define a function that gives the

number of non-trivial clusters as a function of d. This section includes several simple

examples.

In Section 3.5 we introduce a function C(d) that gives the number of clusters

as a function of the clustering distance d. The intrinsic clustering distance dI is

then defined to be the distance for which there is a maximum number of clusters.

Clustering for simulated random data is studied and used to normalize the clustering

distance for the biological data. The normalized clustering distance is a dimensionless

number that we call the intrinsic clustering ratio that we use to quantify the clustering

in the data.

In Section 3.6 we use our tools to analyze electron microscopy images from an

experiment in which mast cells were exposed for one or two minutes to increasing

concentrations of antigen targeting the high affinity IgE receptor, FcεRI, then fixed

and the FcεRI β subunit tagged with 5nm gold particles (see Figure 1.0.1). As ex-

pected, the intrinsic clustering distance dI decreases with increasing stimulation and

consequently the intrinsic clustering ratio increases with stimulation. Surprisingly,

for the clustering in the data set analyzed here, the clustering is proportional to the

logarithm of the stimulus concentration.

Section 3.7, contains a summary of what has been done and Appendix 6.3 contains

samples of the images we used to analyze the biological data.
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Figure 3.3.1: Crosslinked IgE bound to its high affinity receptor FcεRI, labeled with
a gold particle.

3.3 Biological Experiments and Data

The experiments focus on the RBL-2H3 mast cell line that expresses the high affinity

IgE receptor, FcεRI. This receptor binds IgE with high affinity and with no apparent

effect on receptor distribution or cellular activity. We know from previous work that

IgE-receptor complexes are distributed non-randomly (in small and large clusters)

over the cell surface in the absence of stimulus [51, 61, 78]. Cells are activated by the

addition of multivalent antigen to physically crosslink the cell surface IgE-receptor

complexes. The minimal signaling unit is a receptor dimer. In general, multivalent

ligand crosslinks multiple receptors. The large stable clusters of crosslinked receptors

that form on antigen-activated cells, especially after prolonged incubation, are often

called aggregates.

The particular data set used to establish the usefulness of the intrinsic clustering

distance was previously analyzed using the Hopkins statistic and cluster counts in

[6]. In this experiment, mast cells were primed by incubation with IgE that recog-
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nizes dinitrophenol (anti-DNP-IgE) and were activated by incubation with increasing

amounts of DNPn-BSA, where n = 25, which refers to the number of DNP molecules

attached to a single molecule of bovine serum albumin. In this particular experiment,

the activation period was short - only one or two minutes. The cells were then rapidly

cooled, their upper cell membrane ripped off onto a TEM grid and light fixative was

added to limit further movement of membrane components. The membrane sheets

were labeled for 20 minutes using 5nm gold particles functionalized to recognize the

cytoplasmic tails of the FcεRI β subunit, Figure 3.3.1. Labeling conditions were

adjusted so that more than 70 % of the receptors were labeled. Specimens were

subsequently fixed strongly, processed for TEM and digital images representing a

2266nm by 2266nm part of the membrane were collected using an Hitachi H7500

electron microscope.

The image processing software in [84] was used to generate a list of the coordinates

of the centers of the gold particles with an accuracy of under one nanometer. There

are typically a few hundred points in a data set. For reasonable estimates of the cell

membrane area this is in agreement with papers [22, 80] that give the total number

of receptors on the cell membrane is between 2 ∗ 105 and 4 ∗ 105. We use the units

nanometers (nm) to measure length and minutes to measure time. The stimulus is

measured in micrograms per milliliter (ug/ml).

The number of particles in each image in the experimental data is displayed in

Table 3.3.1. The data are dose-response where the dose is the amount of stimulus

s used and the response is the amount of clustering, which will be described later.

Because each micrograph is from a unique cell, each image represents its own separate

experiment. In general, ten images were collected for each stimulus concentration.

The number of gold particles in the each micrograph is shown in the columns labeled

1 through 11. A dash entry means that there was a technical problem (out of focus

or rips or folds in the membrane) with the experiment. When discussing these data
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s t 1 2 3 4 5 6 7 8 9 10 11 exp.
0.000 1 142 135 100 81 152 183 229 103 192 177 - 3362-3371
0.001 1 72 163 259 293 221 433 468 456 468 458 - 3404-3413
0.010 1 373 246 331 575 304 366 324 523 241 241 - 3394-3403
0.100 1 263 371 435 233 - 274 237 453 376 340 157 3383-3393
1.000 1 149 382 654 296 - 246 246 233 185 159 174 3372-3382

0.001 2 409 380 - - - - - - - - - 3360-3361
0.010 2 164 200 129 253 171 173 150 165 236 252 - 3350-3359
0.100 2 332 384 75 77 236 116 130 153 179 151 - 3340-3349
1.000 2 235 166 248 228 229 101 91 233 231 203 - 3330-3339

Table 3.3.1: Biological data sets: column 1 is the amount s of stimulus in ug/ml
added, column 2 is time t in minutes at which the cells were fixed, columns labeled
1 through 11 give the number of particles in each data set. A dash indicates experi-
ments where there was a technical problem or the experiment was not needed. The
last column gives the names of the files containing the data.

below, we will omit the file labels as they are the same as in this table.

We need some quantitative information to analyze the biological data. As noted

above, the TEM images are squares 2266nm on a side. The FcεRI are trans-

membrane receptors that are approximately 10nm in diameter (see Figure 1.0.1).

The gold particles can have some variation in size and shape, but they are all nearly

spherical with a diameter of approximately 5nm. The gold particles are coated with

a thin bio-film. Consequently, distance between the centers of the gold particles

should all be greater than 5nm. One complication is that the number of particles

per TEM image varies between 72 and 654, which strongly impacts the clustering

whatever the stimulus. Our algorithm will compensate for this.
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3.4 Mathematical Background

We begin with a description of an algorithm for determining clusters. Based on

this we introduce hierarchical clustering and dendrograms which we compute using

the Matlab function dendrogram. The hierarchy is parameterized by a clustering

distance d > 0. Next we introduce the function C(d) that gives the number of

clusters as a function or d. The intrinsic cluster distance dI is distance that gives

the first maximum of C(d). The number dI is a characteristic of the membrane

nanostructure.

The biological data consist of J > 0 particles which will be modeled as points in

the Cartesian plane:

pj = (xj , yj) , 1 ≤ j ≤ J .

Clusters are defined in term of the eucledian distance between points:

dj,k = ‖pj − pk‖ =
√

(xj − xk)2 − (yj − yk)2 .

To define the clusters in the data we must choose a clustering distance d. Then if

two points satisfy dj,k ≤ d, they are in the same cluster. This distance function was

chosen because it is reasonable to assume that two proteins in the cell membrane are

more likely to interact the physically closer they are to each other.

An algorithm to find the clusters in the data, given d, can be defined recursively.

But first, if A and B are two clusters containing points aα, and bβ , then the distance

between the two clusters is

d(A,B) = min
α,β

d(aα, bβ) .

Suppose at some stage of the algorithm I clusters Ci have been identified. These

clusters must contain at least one point, so I ≤ J . Now, for all i ≤ I, for all j,

i < j ≤ I, if d(Ci, Cj) ≤ d, then set Ci = Ci ∪ Cj, delete cluster Cj, set I → I − 1
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Figure 3.4.2: A dendrogram for 10 random points.

and reduce by one the index of all clusters with index greater than j. Continue until

the clusters stop changing. More details can be found in the Matlab Dendrogram

algorithm (http://stmc.health.unm.edu). The programs that are part of Matlab have

names that all in lower case, programs written by the authors will start will a capital

letter. Henceforth, cluster means a non-trivial cluster, that is, a cluster that has

more than one point. To make the clusters clear in plots of particle position we use

the Matlab function convhull to enclose clusters in their convex hull. An example

is given in Figure 3.4.3a below, where the cutoff distance for determining the clusters

was d = 149. This distance is the intrinsic cluster distance for this data, as will be

explained below.
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3.4.1 Dendrograms and Hierarchical Clustering

Dendrogram are tree diagrams that are a graphical representation of a hierarchical

clustering of a given data. In our case, the hierarchy is parameterized by the clus-

tering distance d and the dendrogram displays how the clusters change as d changes.

We use the function dendrogram from the statistics toolbox in Matlab to compute

the hierarchy of clusters and display the dendrogram. An example of 10 random

points is given in Figure 3.4.2a, while the dendrogram for these points is given in

Figure 3.4.2b. The vertical axis on the dendrogram plot gives the clustering distance

d, while the horizontal axis gives the clusters as determined by dendrogram. For the

data shown in Figure 3.4.2b, for d < 100 there are no clusters, and for d > 1, 000 all

the points are in one cluster.

To see the clusters, consider a value of d between the smallest distance between

any two particles and the distance where there is only one cluster. If a horizontal

line is drawn at the point d, then the intersection of this line with all of the vertical

lines gives all of the clusters determined by the clustering distance d. The horizontal

lines connecting two cluster is at a height d where the two or more clusters merge

into one. For d = 200 there is one nontrivial cluster consisting of the points {5, 10}.
For d = 300 we have two clusters, the previous and {3, 4}. For d somewhat less than

600 two clusters merge into the cluster {5, 10, 1, 8}.
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Figure 3.4.3: Simulated random data with 100 points: a) the clusters with their
convex hulls for dI = 149nm; b) the number of clusters C(d) with a vertical line at
dI ; c) dendrogram of 100 points using 30 nodes; d) the Hopkins clustering test.
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3.5 Analysis Tools

The goal of this section is to describe the concept of the intrinsic clustering distance

dI that will characterize the nanoscale distance between particles that are in clusters.

We do this by using hierarchical clustering, which is part of Matlab’s dendrogram

software that computes the clusters as a function of the clustering distance d, to

compute the function C(d) that gives the number of non-trivial clusters determined

by the distance d. First C(d) ≥ 0. For small d, the clusters given by dendrogram each

contain one particle and are thus trivial, so C(0) = 0. For our data, there can only

be one cluster for d > 2266
√
2nm, because this is the amount of membrane imaged.

Typically there is only one cluster for d greater than a few hundred nanometers. We

define the intrinsic clustering distance dI to be smallest value of d for which there is

a maximum number of clusters, that is, for all d, C(d) ≤ C(dI) and if C(d) = C(dI)

then dI ≤ d.

To illustrate our ideas, we generated a modest example with 100 random points in

a region the same size as that in our biological data and plotted these points in Figure

3.4.3a. Typically, the images of biological data contain several hundred points, but

some do contain fewer than 100 points. We then computed C(d) and plotted the

result in 3.4.3b. The maximum of C(d) is at d = 149nm, so dI = 149nm. Next

the clusters for d = 149nm were computed and the convex hulls of the clusters were

put into Figure 3.4.3a. The dendrogram in Figure 3.4.3c reduces the 100 points to

30 nodes. Figure 3.4.3d shows the Hopkins statistic (Appendix 6.2) which indicates

some clustering within the randomly generated data as the bar graph has moved to

the right of the expected curve for random data. This is because the Hopkins test

is not accurate for data sets that contain a small numbers of points. The fact that

dI is large indicates the data are indeed random. It is clear that a more quantitative

assessment would really be helpful in assessing the clustering in this data.
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The function C(d) is noisy, as is indicated in Figure 3.4.3b for random data and

Figure 3.5.5 for the biological data, which will induce noise in the value of dI . We

tried fitting parts of the C(d) curve with some smooth simple functions, and then

computing the maximum of the smooth function. However, this made no significant

improvement in our estimates.

For the biological data, the average number of particles in an image is 252. The

Dendrogram program reduces this number of points to 30 nodes, as illustrated in

Figure 3.4.3c. This emphasizes the large scale structure of the clustering, so is only

of modest interest. Consequently, we will emphasize dendrograms of small subsets

of our data.

What we are really interested in is how much more clustering is in the biological

data than in the randomly generated data. Because the number of particles in

a biological image is highly variable, we need to study the clustering in random

data as a function of the number of points in an image. This can then be used to

normalize the intrinsic clustering distance, producing a clustering ratio that we use

to characterize the amount of clustering in biological data. Note that because the

biological data are highly variable, we will need to compute averages over the data

sets with the same stimulus to obtain reasonable results.

3.5.1 Simulated Random Data

An important factor is that, for a fixed clustering distance d and a fixed region, the

number of clusters in simulated random data increases as the number of particles

M increases. To understand how this affects the biological data, we simulated a

distribution of M random particles 100 times and then computed the average µ(dI)

and standard deviation σ(dI) of the intrinsic distances. These are tabulated in Table

3.5.2 for several values of M . An example of one of the simulations is shown in
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M µ(dI) σ(dI)
100 135 18
200 98 9
300 80 7
400 69 5
800 49 3

Table 3.5.2: The mean and standard deviation of the intrinsic distance dI for 100
simulations using M particles.
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Figure 3.5.4: Nonlinear Fit of the random intrinsic distance from Table 3.5.2.

Figure 3.4.3.

To compare the intrinsic distance for biological data to that for simulated random

data, we will need the values of dI for many values M other than those in Table 3.5.2.

These data are plotted in Figure 3.5.4 and produce a curve that looks like the plot

of the reciprocal of a polynomial. Consequently, we fit the curve with a function

dIr(M) of the form

dIr(M) =
A

1 +BMC
(3.5.1)
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using fminsearch. This produces

dIr(M) =
707.1970

1 + 0.3242M0.5582
(3.5.2)

that is also plotted in Figure 3.5.4. The fit is excellent with a relative mean square

error of 0.3%. Note that dIr(M) very slowly goes to zero as M goes to infinity.

It is typical for the number of particles in the images to be analyzed to vary

substantially. To compensate for this, we introduce the clustering ratio

ρI =
dIr
dI

(3.5.3)

which measures how much more the biological data clusters as compared to simulated

random data for same number of particles. It is the clustering ratio that provides

an intuitively reasonable measure of clustering. It is also reasonable to define the

clustering ratio as the reciprocal of ρI , that is, as dI/dIr. Our choice makes ρI

increase with increasing stimulus, and thus is more intuitive.
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Figure 3.5.5: Plots of the number of clusters as a function of the cluster distance
d for each stimulus at time = 1min for the experiments with the largest number of
points (3368, 3408, 3402, 3386, 3379).
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s t 1 2 3 4 5 6 7 8 9 10 11

0.000 1 78 80 140 75 23 72 27 96 38 20 -
0.001 1 68 31 66 23 82 37 32 32 27 53 -
0.010 1 45 17 20 20 23 29 36 24 43 35 -
0.100 1 20 16 16 48 24 16 17 17 23 21
1.000 1 15 17 25 17 29 16 16 23 16 14

0.001 2 24 36 - - - - - - - - -
0.010 2 19 79 65 41 37 34 22 30 33 35 -
0.100 2 21 16 20 14 21 20 16 17 16 23 -
1.000 2 30 26 21 12 25 32 24 22 22 23 -

Table 3.5.3: The intrinsic distance for the biological data: column 1 is the amount
of stimulus s added; column 2 is time t at which the cells were fixed and columns
labeled 1 through 11 give the values of dI .

1 2 3 4 5 6 7 8 9
s t dI ppc tnp tnc mcs ppc mcs

0.000 1 57 72 149 40 8 65 10
0.001 1 41 73 329 93 11 75 14
0.010 1 28 72 352 91 10 81 16
0.100 1 21 71 314 77 11 87 34
1.000 1 20 68 272 82 9 92 33

0.001 2 30 76 395 97 9 86 15
0.010 2 39 70 189 49 10 71 12
0.100 2 19 68 183 55 10 90 36
1.000 2 23 70 197 48 11 89 57

Table 3.5.4: column 1, Stimulus s; column 2, time t; Column 3-9, weighted averages
of the data sets, column 3, intrinsic distance dI ; column 4, percentage of particles in
clusters (ppc); column 5, total number of particles (tnp); column 6, total number of
clusters (tnc); column 7, maximum cluster size (mcs) using dI ; For comparison with
previously published results [6], columns 8-9 use a fixed cluster distance of 50nm:
column 8, percentage of particles in clusters (ppc); column 9, maximum cluster size
(mcs).
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Figure 3.5.6: Plot of the intrinsic distance dI for t=1min from Table 3.5.4.
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3.6 Analysis of the Biological Data

We now use the intrinsic clustering ratio ρI to reanalyze the data described in Section

3.3. But before that, we will check the behavior of the clustering distance dI that is

given in Table 3.5.3. At time t = 1min, the trend is that dI decreases for increasing

stimulus dose. At time t = 2min, data were not taken for zero stimulus as this would

be similar to the data at t = 1. For stimulus 0.001ug/ml only two data sets were

taken. For t = 2 the remaining data show some decrease with increasing stimulus.

In the t = 1min case, the intrinsic distance varies from 140nm down to 14nm. By

t = 2min, the variation is smaller, 79nm down to 12nm.

Examples of the plot of the number of clusters C(d) as a function of the cluster

distance d are given in Figure 3.5.5. The vertical line is at dI , that is, at the first

maximum of C(d). For this figure we chose the data sets with the largest number of

points for each value of the stimulus.

To study the nanoscale structure of the membrane, we introduce the notion of

a dense (compact) cluster as a cluster determined using the distance dI . Previously

clusters were determined by a fixed distance, for example 43nm in [6]. From Table

3.5.3, we see that dI is usually smaller than this distance, so the particles in clusters

are typically closer together than when 43nm is used. When dI ≤ 20nm, the receptors

must be nearly touching as they are about 10nm in diameter.

For a set of points in the plane, the Dendrogram algorithm computes: intrin-

sic distance (dI), total number of clusters (tnc), maximum cluster size (mcs) and

percentage of particles in clusters (ppc). Since the particles per TEM image varies

between 72 and 654 (Table 3.3.1) we present a weighted average of the computed

values for each data set (stimulus) in Table 3.5.4. To compute the weighted average,

let ni, 1 ≤ i ≤ I be the number of points in the images in a data set; here I = 10.
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Then set

N =

I
∑

i=1

ni , wi =
ni

N
,

If qi, 1 ≤ i ≤ I, are given data, then the weighted average of data is

Q =
I
∑

i=1

wi qi

Table 3.5.4 gives the weighted average of the several quantities related to the

biological data and in Figure 3.5.6 we plot the intrinsic distance dI for t = 1 min.

Densities of clusters are determined using dI . We include some data using a fixed

cluster distance of 50nm for comparison with the new method of determining clusters.

column 3: For t = 1, dI decreases with increasing stimulus; for t = 2, dI is small

and decreases a little.

column 4: The percentage of particles in clusters is essentially a constant 70% for

all the data. However, dI decreases with increasing stimulus.

column 5: The total number of particles has substantial variation.

column 6: The total number of clusters has substantial variation.

column 7: The maximum cluster size in this data set is essentially a constant 10

particles.

column 8: Using a fixed cluster distance of 50nm, the percentage of particles in

clusters for t = 1 increases from about 65% to 92%. For t = 2 and a strong

stimulus, the percentage of particles in clusters is about 89%.

column 9: Again using a cluster distance of 50nm, the mean cluster size shows a

strong increase with increasing stimulus.
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s t µ(ρI) σ(ρI)
0.000 1 2.47 1.51
0.001 1 2.12 0.85
0.010 1 2.87 1.04
0.100 1 4.07 1.04
1.000 1 5.15 1.79

0.001 2 2.42 0.62
0.010 2 3.07 1.38
0.100 2 6.25 2.12
1.000 2 4.52 1.31

Table 3.6.5: Stimulus s, time t, mean µ and standard deviation σ of the clustering
ratio ρI from Table 3.6.6.

For the biology, it is important to know when the FcεRI are interacting. These

molecules are about 10nm in diameter. In our data the gold particles are linked to

the β subunit of the receptor. So it is unlikely that particles that are 50nm apart

will interact, while at 20nm, it is far more likely that the receptors are interacting.

3.6.1 Clustering Ratio

We now use the clustering ratio ρI (3.5.3) to quantify how the clustering depends

on the stimulus. For the biological data, the mean and standard deviation over

the experiments with the same stimulus are given in table 3.6.6. The averages are

not weighted because the variation of the number of particles in an image has been

compensated for in the definition of ρI . We first observe that, for the unstimulated

data, the clustering as measured by the ρI , is over twice what is seen in simulated

random data. Next, at t = 1min, there is a clear trend for the clustering to increase

as the stimulus increases. In fact, at t = 1min, we see that increasing the stimulus
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s time 1 2 3 4 5 6 7 8 9 10 11
µg/ml min ρI ρI ρI ρI ρI ρI ρI ρI ρI ρI ρI

0.000 1 1.47 1.47 0.96 1.98 4.84 1.42 3.39 1.39 2.62 5.18 -
0.001 1 2.30 3.47 1.31 3.52 1.13 1.80 2.00 2.03 2.37 1.22 -
0.010 1 1.60 5.20 3.82 2.89 3.46 2.50 2.14 2.52 2.08 2.55 -
0.100 1 4.27 4.51 4.16 1.89 - 3.49 5.62 3.83 4.21 3.27 5.22
1.000 1 7.49 4.18 2.16 4.74 - 3.05 5.52 5.67 4.41 6.81 7.46

0.001 2 2.86 1.98 - - - - - - - - -
0.010 2 5.65 1.24 1.85 2.13 2.84 3.08 5.09 3.57 2.73 2.49 -
0.100 2 3.63 4.43 7.67 10.83 4.29 6.31 7.48 6.53 6.44 4.85 -
1.000 2 3.01 4.11 4.19 7.64 3.66 4.20 5.87 4.12 4.14 4.22 -

Table 3.6.6: The clustering ratio: column 1 is the amount of stimulus added; column
2 is time at which the cells were fixed; and columns labeled 1 through 11 give the
values of ρI .

by a factor of 10 increases the clustering ratio by approximately 1.03. More precisely

µ(ρI) ≈ 1.03 log(s) + 5.09

At 2min the relationship between the stimulus is more complex but is larger for the

strongly stimulated cells than for the unstimulated. It is also important to note that

the standard deviation σ is quite large. This quantifies the amount of variation in

the data, which is quite large, but does not increase as fast as the mean µ. For

example, for 2min with stimulus 0.100ug/ml, µ is quite large, but so is the standard

deviation. It is possible that running more experiments would reduce the standard

deviation and reduce µ to a value more in line with the other experiments.

For more details, all of the clustering ratios for each data set is given in Table

3.6.6.
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Figure 3.6.7: Experiment 3368, stimulus s = 0.000ug/ml, intrinsic distance dI =
27nm.
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Figure 3.6.8: Experiment 3410, stimulus s = 0.001ug/ml, intrinsic distance dI =
32nm.
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Figure 3.6.9: Experiment 3397, stimulus s = 0.010ug/ml, intrinsic distance dI =
20nm.
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Figure 3.6.10: Experiment 3390, stimulus s = 0.100ug/ml, intrinsic distance dI =
17nm.
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Figure 3.6.11: Experiment 3374, stimulus s = 1.000ug/ml, intrinsic distance dI =
25nm.
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s dI N file
0.000 27 229 3368
0.001 32 468 3410
0.010 20 575 3397
0.100 17 453 3390
1.000 25 654 3374

Table 3.6.7: The stimulus s, the intrinsic distance dI for the data sets with the largest
number of particles N for each stimulus and t = 1min.

3.6.2 Fine Scale Cluster Structure

To illustrate how compact clusters can be used to understand membrane organization

we have included five Figures 3.6.7, 3.6.8, 3.6.9, 3.6.10 and 3.6.11. Note that because

we are looking at a single image for each stimulus, the values of dI need not decrease

with increasing stimulus. For each value of the stimulus and for t = 1min we chose

data from the experiment with the largest number of points N (see Table 3.6.7) and

then found the largest compact cluster and plotted the cluster and it’s dendrogram.

For these data, dI is small, between 17nm and 32nm so the clusters are compact.

The gold particles are drawn to scale, that is with 5nm circles. It is important to

emphasize that the sizes of the gold particles may vary by as much as one nm.

The dendrograms are quite useful in understanding the clusters. For example, in

Figure 3.6.7 we see that particles {1, 2, 3, 4, 5, 6} are a compact group, particles {7,
8, 9 } form a less compact group, and these two groups are only about 25nm apart.

The cluster in Figure 3.6.8 has a similar structure.

What is really apparent is that there is very little special structure in these

clusters. This is probably due to to the multivalent nature of the ligand. Currently,

the laboratory is generating data using ligands with small valency. Here we expect

to see special cluster appearing, for example, linear chains of cross linked receptors.
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3.7 Discussion

It is well-known that membrane proteins are distributed non-randomly in the plasma

membranes of animal cells. Evidence for this heterogeneity has been used to support

the existence of a variety of membrane subdomains, including lipid rafts, protein is-

lands and cytoskeletal corrals [46, 50] It is also well-known that protein distributions

change when cells are stimulated. In the case of the high affinity IgE receptor, FcεRI,

of mast cells, the change induced by the addition of multivalent antigen involves a

reorganization of 5nm gold particles marking receptors from singlets and small clus-

ters to larger clusters, accompanied by biochemical and physiological responses by

the activated cells. This ligand-driven redistribution of receptors has been observed

by both scanning and transmission electron microscopy [61, 50] and has been con-

firmed using both the Hopkins and Ripley statistics [84, 6]. However, until now there

has not been a good quantitative way to identify clusters and to compare clustering

between experimental conditions.

Here, we modified a hierarchical clustering algorithm to extract a number, the

intrinsic clustering distance, that quantifies the density of the clustering in electron

microscopy images. The dendrograms of the clusters provide a detailed summary

of membrane receptor organization on the 10nm scale and so should have impor-

tant applications in understanding the molecular organization of membranes. Using

the intrinsic clustering distance, we introduce a dimensionless number, the intrinsic

clustering ratio, that compares the amount of clustering of particles in a set of exper-

imental images with the amount of clustering in simulated random data that contain

the same number of particles. It is important that this number is determined by an

algorithm, and is independent of user input.

We applied the analysis to an experiment in which the mast cell FcεRI was acti-

vated for one or two minutes with increasing concentrations of multivalent antigen,
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then receptors were tagged with gold nanoparticles and their distributions captured

by electron microscopy and analyzed. Our results confirm the decrease in clustering

distance with increase in stimulation and the increase in numbers of clusters with in-

creasing antigen dose already inferred from visual inspection of micrographs and from

Hopkins and Ripley analysis. The analysis appears to be both robust and sensitive.

In support of robustness, the change in the clustering ratio with increasing stimu-

lation is readily detected even though the amount of clustering varies substantially

between images from ten different cells exposed to the same experimental condi-

tions. In support of sensitivity, the change in the clustering ratio with increasing

stimulation is detected even though the particles are significantly clustered before

the addition of stimulus. Remarkably, the clustering ratio is proportional to the

logarithm of the stimulus concentration for the experiments analyzed here. Further

analysis will determine if this is unique to the current data set.
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Temporal Analysis of the Dynamic

Data

Insights Into Cell Membrane Microdomain Organi-

zation from Live Cell Single Particle Tracking of the

High Affinity IgE Receptor, FcεRI, of Mast Cells

4.1 Abstract

Current models propose that the plasma membrane of animal cells is composed of

heterogeneous and dynamic microdomains known variously as lipid rafts, protein

islands and cytoskeletal corrals. However, much of the experimental evidence for

these membrane compartments is indirect. Recently, live cell single particle tracking

(SPT) studies using quantum dot-labeled IgE bound to the high affinity IgE recep-

tor (QD-IgE-FcεRI) provided direct evidence for the confinement of receptors within

micrometer scale cytoskeletal corrals. Movement of the actin-based cytoskeleton
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enabled receptors to move between adjacent corrals. Receptor mobility was dra-

matically reduced upon addition of multivalent antigen to crosslink receptors and

initiate signal transduction. Here, we apply time-series analysis, modified to account

for the blinking of the quantum dots, to provide a more detailed analysis of jump

sizes for the monomeric QD-IgE-FcεRI receptor complexes (unstimulated receptors).

We find that the jumps are non-normally distributed, with jumps of less than 70nm

predominating over longer jumps. These results demonstrate clearly the presence

within the micron-scale cytoskeletal corrals of smaller subdomains that provide an

additional level of receptor confinement. We extend the analysis to the case of

antigen-stimulated receptors. Addition of stimulus causes a rapid slowing of recep-

tor motion followed by a long tail of very short jumps (typically less or equal than

50nm) with almost no long jumps. The sharply reduce receptor mobility measured

in the stimulated data sets likely reflects both the membrane heterogeneity revealed

by the confined motion of the monomeric QD-IgE-FcεRI receptor complexes and the

antigen-induced cross linking of these complexes into dimers and higher oligomers.

Key Words: live cell, FcεRI, IgE, microdomains, cytoskeletal corrals, single particle

tracking, quantum dots, blinking, time series, jump sizes, time dependent diffusion

coefficient.
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4.2 Introduction

Some of the most compelling experimental evidence for the heterogeneous organiza-

tion of the cell membrane has come from experiments in which individual membrane

proteins were tagged with an electron-dense or fluorescent probe and the motion of

the individual tag was followed over periods ranging from seconds to tens of min-

utes. Such single particle tracking (SPT) experiments are typically analyzed using

the mean squared displacement (MSD) method and the motion is classified by the

diffusion coefficient derived from the displacement. These analyses have revealed

a range of possible behaviors for membrane proteins, including free diffusion, re-

stricted or confined diffusion (when particles move within corrals or microdomains),

directed movement (when receptors appear to interact with cytoskeletal tethers) and

immobility [5, 60, 59, 30, 41].

In [82], time-series analysis [62] was introduced to better understand some SPT

data that used relatively large (∼ 40 nm) gold particles as labels and bright-field

microscopy to do the tracking. Here we extend the time-series analysis to tracking

measurements using much smaller (5-10 nm), highly fluorescent quantum dot labels.

MSD analyses of the tracks made by the labeled receptors were reported previously

in [41, 5, 6, 4], see also [39, 42, 40]. Our main goal here was to extract additional

fine scale information about the dynamics and organization of the membrane from

this data set.

The data we analyze are movies of the motion of quantum dot-tagged IgE (QD-

IgE) bound to the high affinity IgE receptors on mast cell membranes. Time-series

analysis focuses on the jumps in the motion, that is, the differences in the positions of

a quantum dot at the end and beginning of a frame in the movie. The main difference

between the data measured with QD labels vs gold labels is that the quantum dots

blink and that the lengths of the on and off times are highly variable, see Appendix
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6.4. Mathematically, the probability distributions of the on and off times have long

tails. Thus standard techniques used to analyze data sets with missing data are not

applicable. A second important problem is that there is significant small scale error

of about 20nm in determining the positions of the quantum dots. A minor point is

that the algorithms that are used to produce the paths of the quantum dots from

the movies are probabilistic and consequently introduce a very small percentage of

unreasonable paths that we eliminate from our analysis. These path construction al-

gorithms are now being improved, but the improvements will not change our analysis

or conclusions.

We begin our discussion in Section 4.3 by giving an overview of the experiments

and reporting on a few simple tests that produce some basic information about the

data. Monovalent quantum dot-immunoglobulin E (QD-IgE) complexes provide a

non-perturbing label for the high affinity IgE receptor, FcεRI, that is abundantly

expressed on mast cells (and is responsible for the symptoms of allergy and asthma).

Results of SPT experiments with only this non-perturbing fluorescent label present

are called “unstimulated data”. Cells were activated by the addition of increasing

doses of non-fluorescent multivalent antigen to crosslink the QD-IgE-tagged recep-

tors. Results of experiments with both QD-IgE and crosslinker present are called

“stimulated data”. In all cases, high resolution fluorescence microscopy and video

imaging produced movies of the positions of the centers of the quantum dots as they

moved in the cell membrane. We worked with two independent data sets. Access to

duplicate data sets gives some indication of how much the analysis varies between

experiments.

In Section 4.4, we present the mathematical tools needed for time-series analysis.

An important point is that time series analysis requires the data to be ergodic and

stationary. For simple random walks, this is never the case for the positions for the

particles, but is true for the jumps. Thus, we focus on the jumps and not on the
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mean squared displacement (MSD) of the positions of the particles. In the past, most

work characterized the motion by a diffusion coefficient. We prefer to work with the

more detailed description provided by the probability distribution functions (PDFs)

for the jumps and with the standard deviation of the jump lengths which gives an

estimate of the size of the jumps. The diffusion coefficient is given by a simple

formula involving the standard deviation and the time step. The blinking of the

QDs significantly impacts the construction of these tools.

In the case of unstimulated data, in Section 4.5, we first provide evidence that the

jump data are ergodic and stationary as is required by standard time-series analysis.

We also show that the jumps are not significantly auto-correlated. This justifies

putting all of the jumps for all paths and all times into a single data set. These are

extremely large data sets: they contain over 350,000 jumps. We next show that the

jump components are mean zero and have a standard deviation between 97nm and

99nm. Knowing this, if the jumps are normally distributed, we fit the data with a

mean zero normal distribution with the same standard deviation. Plots of the data

distribution and the normal fit show that the jumps are not close to being normally

distributed. Instead, there is a large excess of jumps whose components are smaller

than 50nm, while there are far fewer jumps with components between 50nm and

190nm. We interpret this to mean that there are significant inhomogeneities in the

membrane on a scale smaller that 50nm.

Having normally distributed jumps is equivalent to the angles of the jumps being

uniformly distributed and the jump lengths having a simple chi or equivalently, a

simple Weibull distribution [82]. We show that the angles of the jumps are uni-

formly distributed. Consequently the jump lengths cannot have a simple Weibull

or chi distribution. However we can fit the jumps with 2 closely related probability

distribution functions: the general chi distribution and the general Weibull distribu-

tion. We also use a power-law PDF that was designed to detect power-law behavior

89



Chapter 4. Temporal Analysis of the Dynamic Data

for short and long jumps. All of the fits have small relative mean square error. These

fits produce an estimate of the standard deviation that can be used to determine a

corresponding simple chi or Weibull distribution. From the plots of the distributions

we see that there is an excess of jump lengths less than 70nm. The 50nm estimate

from the jump component corresponds to a jump length of 70nm.

All of the fits produce the same power-law behavior for small jump sizes. The

chi distribution suggests that we can model the motion as diffusion in a fractal space

of dimension approximately 3/2. This also produces an estimate of the amount of

barriers to diffusion in the cell membrane (see [33, 32] for models of diffusion with

barriers).

In Section 4.6 we analyze the data from the stimulated cells. This analysis is more

complicated as the addition of stimulus means that the data are not stationary. For

non-stationary data we cannot mix data at different times. Importantly, despite the

large sizes of the data sets, at any given time there only are about 30 QDs on, and

consequently, the time dependent data are noisy. From plots of the time dependent

data, we see that adding the stimulus causes a rapid slowing of the motion and then

a long tail. Similar results were obtained in [5, 6, 4] using MSD based analysis of

the diffusion coefficient. We analyze the transient data by fitting the time dependent

standard deviation of the jumps with an exponential function and a power law. This

produces a mean lifetime α (half-life is
√
2α) for the slowing of the motion. For

weakly stimulated cells, the mean lifetimes are erratic while for strongly stimulated

cells the mean lifetimes go from a few tens of seconds to a few seconds with increasing

stimulus.

Importantly, the tail data sets are stationary for concentrations of stimulus, so

we can apply the same analysis as for the unstimulated cells. We see that the jump

components are not normally distributed, with PDFs resembling those of the un-

stimulated data, but with an even larger proportion of short jumps than in the
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Figure 4.3.1: The longest tracks for the unstimulated data.

unstimulated data. Furthermore, the average jump lengths are shorter in the stim-

ulated data. The jump angles are again uniformly distributed, so we fit the jump

sizes with general Weibull, chi and power-law distributions. For small jump sizes, all

three fits indicate that the diffusion can be modeled as motion in a fractal fractional

dimensional space. The dimension varies, but for the chi distributions is about 5/4.

For intermediate jump sizes, the power-law fits are significantly better than the chi

or Weibull and give powers going from 6.7 down to 2.5 for the decreasing probability

of the jumps for longer sizes.

We also include four appendices the contain addition information to support our

conclusions.

4.3 The Biological Data

The experimental data were generated using RBL-2H3 rat mast cells, that express

high levels of the IgE receptor, FcεRI. To prepare the cells for an experiment, they are
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Figure 4.3.2: IgE-FcεRI and QD-IgE-FcεRI complexes. Modified image taken from
[34].

exposed to a dilute solution of anti-DNP IgE labeled with a mixture of QD625 and

QD705 quantum dots (QD-IgE). Next, they are exposed to a concentrated solution of

dark (unlabeled) anti-DNP IgE. As a result, most of the FcεRI in the cell membrane

are in a IgE-FcεRI complex, but only a small percentage of the complexes are labeled

with a quantum dot (QD-IgE-FcεRI complex). A cartoon of the tetrameric IgE

receptor and bound IgE (or QD-IgE) is given in Figure 4.3.2. All experiments are

performed at physiological temperatures (37oC).

We work with duplicate sets of biological data, labeled A and B. The data are

dose-response where the dose is the concentration of stimulus added and the response

is measured by tracking and then analyzing the motion of the QDs. For each data

set, the cells were stimulated with six different concentrations of the multivalent

antigen DNP25-BSA: 0.000; 0.001; 0.010; 0.100; 1.000 and 10.00ug/ml. When the

stimulus is zero, the cells are said to be unstimulated.

Ten seconds after an experiment is started, the cells are stimulated by the addition

of multivalent antigen which can cross link both IgE-FcεRI or QD-IgE-FcεRI, also
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illustrated in Figure 4.3.2, making them into signaling competent dimers and higher

oligomers [4, 6]. The QDs are tracked using a wide-field fluorescence microscope

and a digital CCD camera that makes a movie by taking an image over 1/20th of

a second for 3,000 frames, corresponding to a total time of 150 seconds. Image

processing software is used to locate the center of the QDs in each of the frames with

an error of approximately 20nm [44].

A important difficulty in analyzing the data is that the QDs blink, that is, they

emit light for some period of time, then turn off for a period of time and may repeat

this several times. Appendix 6.4 has detailed information about the statistics of

the blinking. The blinking is illustrated in Figure 4.3.1 (more figures are given in

Appendix 6.5).

To follow the QDs in time, dots that are near each other in successive frames are

connected. This is done probabilistically, that is, the closer two dots are, the higher

the probability that the algorithm will connect the dots. The results of this process

is to produce a set of segments where the QDs are on in successive frames. The next

step is to connect the segments to make a path, which is again done probabilistically.

This algorithm can connect segments where the dot is off for up to 32 frames. In

the processed data, a path is a track that is a list of the form (xn, yn, vn), where 1

≤ n ≤ N , and N is the total number of frames in the movie. If vn = 1, the QD is

on, otherwise vn = 0 and the QD is off. If vn = 1, then ~Pn = (xn, yn) are an estimate

of the position of the center of the QD. The first vn = 1 gives the start time t0 of the

path, the last vn = 1 gives the end time tf of the path. If vn = 1 and vn−1 = 1 then

~Jn = ~Pn − ~Pn−1 is a valid jump.

In the track figures, the start of the path is given by a black circle and the end

by a black diamond. The part of the path where the QD is on is drawn as a blue

line unless it is on for only one frame in which case it is drawn as a blue star. If

two segments where the QD is on are joined by a segment of k frames where the dot
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A B
stimulus tracks jumps cells tracks jumps cells

0.000 10,894 407,669 19 9,848 353,368 16
0.001 1,726 85,906 4 3,113 122,761 3
0.010 2,151 96,179 4 2,622 106,649 5
0.100 1,838 89,380 4 2,809 119,306 5
1.000 1,178 61,928 3 2,327 123,053 5
10.000 1,802 91,142 4 3,050 139,236 5

Table 4.3.1: The number of tracks, jumps and cells in data sets A and B.

A B
stimulus min mean max min mean max

0.000 101 136 172 81 118 162
0.001 14 29 41 24 41 60
0.010 16 32 50 17 36 52
0.100 14 30 49 21 40 58
1.000 10 21 35 22 41 62
10.000 15 30 44 29 46 54

Table 4.3.2: The minimum, mean, and maximum of the number of QDs on at each
time.

is off, the end of the first segment is joined to the beginning of the second segment

with a dotted red line. This line is divided into k segments by red x’s. Each track

is assigned a number. In the caption of the figure, this number is given along with

the concentration of stimulus used. Next the number of time steps in the path is

given along with t0 that is the start time for the path, tf is the time when the path

ends and ts is the time when the stimulus was added. The smallest rectangle that

the path will fit in has sides given by MaxDistX and MaxDistY.

In some respects, the data sets are very large, in others they are really quite

small. There is more unstimulated data because this case was run as independent

experiments, as for the stimulated cells, but it was also run in parallel with each
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of the stimulated cell experiments. From Table 4.3.1 we see that a large number of

tracks were generated, resulting in a very large number of valid jumps. This table

also gives the number of cells used to generate the data. Table 4.3.2 shows that very

few QDs are on in each frame of the movie. Consequently, the data in a single frame

will be very noisy. Careful time-series analysis will, in some cases allow combining

the data for all times. These data sets are very large so the noise will be substantially

decreased. We could have combined the data sets A and B. However, independent

analysis of these duplicate experiments was useful for validating our conclusions.

4.4 Analysis Tools

We describe the time-series analysis tools that we will use to gain insight into the

fine scale information in the biological data. The discussion closely follows that in

[82] where more details can be found. We also describe how to estimate continuous

probability distribution functions for large data sets.

The paths of the QDs are very erratic, so we will model the QDs positions using

a vector valued random variable:

~Pn = (Xn, Yn) , 1 ≤ n ≤ N , (4.4.1)

where Xn and Yn are real valued random variables and N is an integer greater than

zero. The jumps are also random variables:

~Jn = ~Pn − ~Pn−1 = (∆Xn,∆Yn) , 2 ≤ n ≤ N . (4.4.2)

In polar coordinates, the lengths of the jumps Ln and the angles Θn between the

jump vectors and the x-axis are also random variables:

Ln = ‖ ~Jn‖ =
√

∆X2
n +∆Y 2

n , Θn = arctan(∆Xn,∆Yn) , 2 ≤ n ≤ N , (4.4.3)
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where arctan gives a value in [−π, π] such that if Ln 6= 0, then cos(Θn) = ∆Xn/Ln

and sin(Θn) = ∆Yn/Ln, and consequently, tan(Θn) = ∆Yn/∆Xn if ∆Xn 6= 0. If

J = (0, 0), then Θ = 0 (in Matlab). The angles Θn give the directions of the jumps.

An important null hypothesis is that the Cartesian coordinates ∆X and ∆Y are

independent and each is IID and normally distributed with mean zero and standard

deviation σ. Equivalently, L and Θ are independent, with Θ uniformly distributed

in [−π, π], and L has the simple Weibull or chi probability distribution

w(r, σ) =
r

σ2
e−

r2

2σ2 . (4.4.4)

The application of elementary time series methods [62] requires the data to be

ergodic and stationary. Intuitively, ergodic requires the statistics of the random vari-

ables to be independent of the time or spatial point. To be stationary, the mean and

standard deviation of the data must not depend on time. We do not expect the data

where the cells are stimulated to be ergodic as the state of the cell is time depen-

dent. Additionally, the positions ~Pn in a random walk are not stationary because

their standard deviation, which is proportional to the mean squared displacement,

grows with time. In such a situation, the standard statistical approach is to study

the time series of the differenced data, which for particle tracking data is just the

jumps ~Jn. Consequently, our analysis will focus on the jumps. We will not assume

that the jumps ~Jn are stationary, independent or identically distributed (IID). We

will test the jump data for these important properties.

4.4.1 Time Series with Blinking

For a given stimulus, a data set will contain M tracks with N = 3000 time steps

(frames) described by

~Pm,n = (Xm,n , Ym,n) , vm,n , 1 ≤ m ≤ M , 1 ≤ n ≤ N . (4.4.5)
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If vm,n = 1 then the position ~P is a valid estimate of the position of the QD, otherwise

~P is not valid data. The jumps are

~Jm,n = ~Pm,n − ~Pm,n−1 = (∆Xm,n,∆Ym,n) , 1 ≤ m ≤ M , 2 ≤ n ≤ N . (4.4.6)

For the jump data, ~Jm,n is valid if vm,n = vm,n−1 = 1, or equivalently if

Vm,n = vm,n−1 ∗ vm,n = 1 . (4.4.7)

The length of the jumps and the angle between the jumps and the x-axis are:

Lm,n =‖ ~Jm,n‖ =
√

∆X2
m,n +∆Y 2

m,n (4.4.8)

Θm,n =arctan(∆Xm,n,∆Ym,n) , 1 ≤ m ≤ M , 2 ≤ n ≤ N . (4.4.9)

Because of the blinking, we will need to count the valid jumps as we compute

statistics. At each time step n, the number of valid jumps is given by

Kn =
M
∑

m=1

Vm,n .

The time-dependent mean or expected value of the jumps is

~µn = E( ~Jn) =
1

Kn

M
∑

m=1

Vm,n
~Jm,n . (4.4.10)

The time-dependent variance of the jumps is

σ2
n =

1

Kn

M
∑

m=1

Vm,n ( ~Jm,n − ~µn) · ( ~Jm,n − ~µn) , (4.4.11)

while the standard deviation is just σn. The time-dependent moments of the jump

lengths are

M (i)
n =

1

Kn

M
∑

m=1

Vm,n L
i
m,n , i ≥ 0 . (4.4.12)
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Note that for mean zero data, M
(2)
n = σ2

n. In Appendix 6.6, we show that the

time-dependent diffusion coefficient is given by

Dn =
σ2
n

4∆t
=

M
(2)
n

4∆t
, (4.4.13)

where ∆t is the time step at which the data is taken.

Due to the blinking of the QDs we assumed that the data for unstimulated cells

is ergodic, so data at different times can be compared. The total number of valid

jumps in a data set is given by

K =

N
∑

n=1

M
∑

m=1

Vm,n .

In this case, the mean or expected value of the jumps is

µ = E(J) =
1

K

N
∑

n=1

M
∑

m=1

Vm,n
~Jm,n , (4.4.14)

while the variance of the jumps is

σ2 =
1

K

N
∑

n=1

M
∑

m=1

Vm,n ( ~Jm,n − µ) · ( ~Jm,n − µ) , (4.4.15)

and the standard deviation is σ. The moments of the jump lengths are

M (i) =
1

K

N
∑

n=1

M
∑

m=1

Vm,n L
i
m,n , i ≥ 0 . (4.4.16)

4.4.2 Approximate Continuous Probability Distribution Func-

tions

Because we have such large data sets, we will describe our random variables using

continuous distribution functions. For large data sets of real numbers yi, 1 ≤ i ≤ I,

I >> 1, we will choose a number a so all (or maybe almost all) of the yi satisfy
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−a ≤ yi ≤ a. We will then divide the interval [−a, a] into an 2N + 1 intervals of

length ∆x = 2 a/(2N + 1). The centers of the intervals are then given by

xn = n∆x , −N ≤ n ≤ N ,

and the intervals are given by

In = [(n− 1/2)∆x, (n+ 1/2)∆x] , −N ≤ n ≤ N . (4.4.17)

These intervals are going to be referred as bins.

Now let Mn be the number of data points yi ∈ In and then set

M =

N
∑

n=−N

Mn , pn =
Mn

M ∆x
, −N ≤ n ≤ N . (4.4.18)

The pn give an approximation to a continuous probability distribution in the sense

that

N
∑

−N

pn ∆x = 1 . (4.4.19)

The mean and standard deviation of the data can be estimated using

µ = M (1) =
N
∑

−N

xn pn ∆x , M (2) =
N
∑

−N

x2
n pn ∆x , σ2 = M (2) − µ2 . (4.4.20)

4.5 Analysis of the Data for Unstimulated Cells

In this section we use time series to analyze the unstimulated data. Because of the

biology of the data, we are assuming that it is ergodic. We begin by computing the

time dependent mean and standard deviation of the data. As noted in section 4.3,

these data are noisy, but still, we can see that the data sets do not have a noticeable

trend, supporting that they are stationary. Next, we compute the autocorrelation

coefficients to show that the jumps at different times are independent. With this
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Figure 4.5.3: Time dependent means of the x and y jumps.

in place, we can now use all of the jumps at all times to estimate the PDF of the

positions, lengths and angles of the jumps. The important result is that the positions

of the jumps are not normally distributed, as should be expected as the cell membrane

is a complex medium. Also, during this analysis we found that the path-connecting

algorithm was producing a very small percentage of anomalous large jumps that we

must correct for.
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Figure 4.5.4: Time dependent standard deviations of the x and y jumps.

4.5.1 Stationarity of the Jumps

We support that the biological data is stationary by showing that the time-dependent

mean and standard deviation of the jump components do not have trends.

The time-dependent means (4.4.10) for the x and y jump components of data

sets A and B are given in Figure 4.5.3. In Figure 4.5.4 the time-dependent standard

deviations (4.4.11) for the jumps are given. There are no obvious trends in the time-

dependent means and standard deviations of the jumps. This indicates that the data
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k 0 1 2 3 4 5
A 1.0000 0.0480 -0.0439 -0.0233 -0.0112 0.0002

random 1.0000 -0.0000 -0.0003 -0.0017 -0.0020 -0.0031
B 1.0000 0.0535 -0.0484 -0.0216 -0.0119 -0.0132

random 1.0000 -0.0000 -0.0007 0.0012 -0.0001 0.0009

Table 4.5.3: Autocorrelation coefficients of the jump lengths and their corresponding
coefficients for the generated random jump lengths.

sets are stationary, so that we can combine data at different times.

4.5.2 Jump Autocorrelation Coefficients

To test if jump components are independent, we compute their autocorrelation coef-

ficients. It is important to notice that the autocorrelation coefficients for the jumps

only make sense for jump components in the same path, so we compute these for all

paths and then average them over all paths. The indicator function for the tracks is

Qm,n,k = vm,n vm,n+1 vm,n+k vm,n+k+1 , 1 ≤ n ≤ N , 1 ≤ m ≤ M , k ≥ 0 ,

(4.5.21)

and then set

Tm,k =

N−k
∑

n=1

Qm,n,k .

If Tm,k 6= 0, the set

ρ̃m,k =

∑N−k
n=1 Jm,n ◦ Jm,n+k Qm,n,k

Tm,k
.

and then the autocorrelation coefficients for each track are

ρm,k =
ρ̃m,k

ρ̃m,0
.
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The auto correlation coefficients for the full data set are given by the weighted average

of the track coefficients, so if

Tk =

M
∑

m=1

Tm,k ,

and Tk 6= 0 then the autocorrelation coefficients are

ρk =
1

Tk

M
∑

m=1

ρm,k Tm,k . (4.5.22)

In practice, k must be much smaller than N . Because of the normalization, ρ0 = 1.

For the unstimulated data, we computed the autocorrelation coefficients for 0 ≤
k ≤ 5 and display them in Table 4.5.3. To understand the significance of these

coefficients, we computed the autocorrelation coefficients for simulated IID normally

distributed random jumps with mean (4.4.14) and standard deviation (4.4.15) of the

full data set. Here it is important to take into account the blinking of the QDs,

so for the generated data, the autocorrelation coefficients were computed using the

same valid positions as the biological data, and averaged over 100 simulations. These

results are also displayed in Table 4.5.3.

The autocorrelations in the biological data for k = 2, 3, 4 are about twenty times

larger than the coefficients for the random data, but are so small that we will assume

they are zero. With this assumption, it is reasonable to model the jump data IID

and consequently the position data as a random walk.

4.5.3 Analyzing the Distribution of the Jump Components

During our analysis we noticed some problem with the large jumps, so we begin by

briefly looking at the jump sizes. We use the material in Section 4.4.2 with 500 bins

to estimate the PDF of the jump sizes and display these in Figure 4.5.5. We see that

the data analysis algorithms that construct the paths introduce a dramatic reduction
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Figure 4.5.5: PDFs of the jump lengths.

x y
N µ σ µ/σ µ σ µ/σ

A 405,600 0.2713 97.4370 0.0028 -0.1351 97.7000 -0.0014
B 351,700 -0.1184 98.2590 -0.0012 0.0631 99.0700 0.0006

Table 4.5.4: Number of jumps N , mean µ, standard deviation σ and mean zero test
µ/σ for the x and y components of the PDFs shown in Figure 4.5.6.

in the number of jumps at 346nm. Therefore, in our analysis we discarded all the

jumps bigger than 346nm. This is a very small percentage of the total data: 2,069

jumps or less than 0.5% of the data for data set A; and 1,668 or less than 0.5% of

the data for data set B.

We now try to find a simple PDF that could generate the components of the

jumps, again by binning the data using 500 bins (4.4.18) and displaying the results

in Figure 4.5.6. We estimated the mean and standard deviation of the components

(4.4.20) and recorded these in Table 4.5.4. We use the dimensionless parameter µ/σ

to estimate the size of the mean, which is close to zero as expected. The standard
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deviations are about 98nm. We use the standard deviations to determine a mean zero

normal distribution that best fits the biological data and also plot these in Figure

4.5.6. These plots indicate that the distribution of the components are not normally

distributed.

More importantly, from Figure 4.5.6 we see that for approximately |x| < 50nm,

there is an excess of short jumps. For approximately 50 < |x| < 190nm, the are

fewer jumps than in a normal distribution. A simple explanation for the short jumps

is that there are barriers to long jumps in the cell membrane and the scale of these

barriers is less than 50nm for the components of the jumps.

To carefully test if the x and y jumps are normally distributed we use the two-

sample Kolmogorov-Smirnov goodness-of-fit hypothesis test (kstest2 in the Matlab

statistics toolbox). The null hypothesis is that the jump x and y components and

their generated normal fit come from a normal distribution. We use a stringent

significance level α = 0.0001. The p-values for data set A and B for both x and y

components are 0.000. The decision to reject the null hypothesis occurs when the

significance level α = 0.0001 equals or exceeds the p-value. As indicated by Figures

4.5.6 this is a strong rejection of the null hypothesis, so the x and y components are

not normally distributed.

4.5.4 Analyzing the Distribution of the Angles and Jump

Lengths

For IID random walks, the components are normally distributed if and only if the

jump angles are uniformly distributed, and the jump lengths have a simple chi dis-

tribution [82], which is the same as the simple Weibull distribution. The previous

discussion shows that the components of the jumps are not normally distributed.

Thus it cannot be the case that both the jump angles are uniformly distributed and
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GW chi PL
k s e d s e α β s e

A 1.49 130.39 0.0035 1.35 116.79 0.0086 1.54 9.78 561.02 0.0031
B 1.55 133.70 0.0022 1.41 116.37 0.0056 1.59 14.10 663.27 0.0020

Table 4.5.5: General Weibull (GW), chi and power-law (PL) fit parameters to the
PDF of the jump lengths, and their relative mean square errors (e).

the jump lengths have a simple chi or Weibull distribution. Intuitively, we expect

that the jump angles are uniformly distributed.

To estimate the distribution of the angles we divided [−π π] into 500 bins and then

binned the angles and computed their PDF and display these in Figure 4.5.7. For the

angles to be uniformly distributed, their PDF is 1/2 π = 0.1592. For both data sets

the mean of the angles differs from this by less than .0001. We also we generated the

same number of angles as in the data, binned the results, and plotted these PDFs in

the figures. These plots are very similar to the plots of the data. We also plot the

mean and standard deviation of the angles to help in comparing the plots. To test

if the angles are uniformly distributed we again use the two-sample Kolmogorov-

Smirnov goodness-of-fit hypothesis test with a significance level α = 0.0001. The

null hypothesis is that these angles come from a uniform distribution. The p-value

for data set A is 0.8970, and for data set is 0.6556. The rejection the null hypothesis

occurs when the significance level, α equals or exceeds the p-value, so we cannot

reject the null hypothesis. The size of the p-values strongly supporting the modeling

of the jump angles with the uniform distribution.

Now we know that the jumps cannot have a simple chi or simple Weibull PDF,

so we will check if the PDFs of the data are given by any of three other distributions

[82]. The general Weibull PDF is w(r, s, k) = w(r/s, k)/s where

w(r, k) = k rk−1e−rk (4.5.23)
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where k > 0, s > 0 and r > 0. The simple Weibull is given by k = 2 in which case

s = σ. The chi PDF is c(r, s, d) = c(r/s, d)/s where

c(r, d) =
2

2d/2Γ(d/2)
rd−1 e−

r2

2 (4.5.24)

r ≥ 0, s > 0, d ≥ 1, the gamma function satisfies Γ(n) = (n−1)! when n is an integer

and s = σ. The power-law distribution was devised in [82] where it was called the

long-short distribution. It is designed to test for power laws for both small and large

r. It is given by p(r, s, α, β) = p(r/s, α, β)/s, where

p(r, α, β) =
α (β − 1) rα−1

(1 + rα)β
(4.5.25)

and r ≥ 0, s > 0, d > 0 and β > 1.

The parameters for the fits along with the mean square relative error for the fits

are given in Table 4.5.5. The relative errors are all less than one percent, so the fits

are very good. We plot the jump lengths PDFs along with the three fits in Figure

4.5.8. From this figure, we see that all fits under estimate the number of jumps

near r = 50nm. For r large, the Weibull and chi distributions decay exponentially,

but the chi decays faster than the Weibull. Both under estimate the number of

long jumps with the Weibull being better than the chi. The power-law provides the

best estimates for the larger jump sizes. The decay for large r of the power-law

distribution is of the form

p ≈ C r−γ , γ = α(β − 1) + 1 . (4.5.26)

For data set A, γ = 14.521 and for data set B, γ = 21.829, so the decay of the long

jumps is quite rapid.

All these distribution have the same power law near r = 0:

p ≈ C rd−1 , d ≈ 3/2 .
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The fact that d is closer to 3/2 than to 2 indicates that the PDF of the jump lengths

are not close to normally distributed. It is interesting that the estimates of d are

so consistent for the different distributions. This indicates that this behavior is very

robust.

To better understand the consequence of d being 3/2, we compare the chi and

Weibull distributions for the data to the theoretical distribution for IID jumps that

are normally distributed. The second moment of the general chi PDF (Appendix

6.7.2) is

M (2) = s2 d . (4.5.27)

We use this to compute the M (2) for the data using the values of s and d that are

given in Table 4.5.5. Then we use

d = 2 , s =

√

M (2)

d
,

to compute the distribution expected in the case of normal diffusion. The plots of

the distributions given in Figure 4.5.9 clearly indicate that there are excessive short

jumps for small r. We now repeat this for the Weibull distribution. The second

moment of the Weibull PDF (Appendix 6.7.1) is

M (2) = s2Γ(1 +
2

k
) , (4.5.28)

which we use to compute the M (2) for the data using the values of s and k for the

data that are given in Table 4.5.5. Then we use

d = 2 , s =

√

M (2)

Γ(1 + 2
k
)
,

to compute the distribution expected in the case of normal diffusion. Again, the plots

of the distributions given in Figure 4.5.9 clearly indicate that there are excessive short

jumps for small r.
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chi Weibull rc
A 64nm 75nm 70nm
B 64nm 77nm 70nm

Table 4.5.6: Estimates of the point with the smallest |r| where the normal and data
distributions curves cross.

One way to quantify the excess short jumps is to use the first point where the two

PDF curves cross which we give in Table 4.5.6. The crossing point is the smallest

value of |r| where the normal and data curves cross. For the components, for both

the A and B data sets, we estimate the crossing points as xc = 50nm and yc = 50nm

using Figure 4.5.6 and then set

rc =
√

x2
c + y2c .

For the chi and and Weibull distributions, we use the smallest value of r where the

curves in figure 4.5.9 cross. All of these estimates say that there is a substantial

excess of jumps substantially shorter than 70nm. It is reasonable to attribute this

excess of small jumps to obstructions to the motion of the receptors on the tens of

nano-meter scales. Many receptors must encounter obstruction on a smaller scale

than indicated by Table 4.5.6.

Moreover, for IID random walks in spaces of dimension d that have normally

distributed jumps, the distribution of the jumps sizes is given by c(r, s, d), so d gives

an estimate of the dimension of the space in which the diffusion is occurring. It

appears as if the cell membrane has dimension d ≈ 3/2, which is really a measure

of how much the jump sizes are reduced from normal diffusion in the cell membrane

[82]. We can also interpret this result to mean that the diffusion is in a fractal space

of dimension approximately 3/2. In [82], the data sets are much smaller, so the

results are much noisier, but still d was found to smaller than two.
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4.5.5 Summary

This section began by showing that it is reasonable to assume that the jump data

for unstimulated cells is ergodic, stationary and without significant autocorrelations.

Consequently, the data can be studied using time-series analysis. The fitting of the

distributions of the components of the jumps shows that there is an excess of short

jumps. We also show that the jump angles can be assumed uniformly distributed,

but that the jump lengths cannot be modeled by a simple chi or Weibull distribution.

However, the jump lengths distribution can be fit with a general chi, general Weibull

or a power law. All these fits show that the distribution behaves like rd−1 where

d ≈ 3/2, which implies there is an excess of short jumps as compared to normally

distributed jumps. The fit by the chi distribution suggest that the motion of the QDs

can be modeled as diffusion in a fractal space of dimension 3/2. Finally, we compared

the general chi and general Weibull fits to simple chi and simple Weibull distributions

with the same standard deviation to see that there are substantial barriers to free

diffusion well below a 70nm scale. For jumps of intermediate size, the power-law

distribution gives the best fit and estimates that the power-law decay is very fast.

These results have significant implications for biologists studying membrane dy-

namics and heterogeneity. Current models suggest that the movement of proteins

in membranes is confined by interactions with membrane structures such as lipid

rafts, protein islands and cytoskeletal corrals [54, 45, 36, 43]. Previous analysis of

data sets similar to those studied here provided clear evidence for the existence of

micron-scale cytoskeletal corrals that form large confinement zones for QD-IgE-FcεRI

complexes [5, 6, 4]. Our more detailed analysis establishes the presence of additional

confinement zones on the order of tens of nanometers within the actin-defined cor-

rals. Previous high resolution electron microscopy (EM) showed that receptors are

distributed in small clusters across the membrane [4, 72, 61]. These clusters increase

in size with increasing stimulus. The nanometer-scale clusters seen previously by EM
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are very likely a freeze-frame representation of membrane microdomain organization

now revealed by live cell single particle tracking.

4.6 Analysis of the Data for Stimulated Cells

Plots of the time dependent standard deviation in Figure 4.6.10 show that the mo-

tion of the QDs can be broken into three parts: random stationary motion before

the stimulus is applied; a slowing of the motion that is highly stimulus dependent;

and then a long period of slower motion in the tail of the time series. The plots

also include some fits to the data that will be explained below. The means and

standard deviations of the components shown in Figures 6.8.16, 6.8.17, 6.8.18 and

6.8.19 confirm this conclusion. The most striking feature of the data sets shown in

these figures is that they are noisy. This is because, at any given time, there are

approximately 30 QDs on (see Table 4.3.2), which is a small data set. In the analysis

here, as before, we removed jumps larger than 346nm. The analysis here agrees with

and substantially extends that in [41, 5, 6, 4]

4.6.1 Analyzing the Slowing

From Figure 4.6.10 we see that the decrease in the standard deviation of the jump

sizes for the weak stimuli 0.001 and 0.01 are very small, while for the strong stimuli

0.1, 1 and 10 the decrease is dramatic. We quantify this by fitting the standard

deviation with both a decaying exponential and a power law. Because of the noise in

the data and the small change in the standard deviation, the fits for the weak stimuli

are not reliable. For the strong stimuli, the fits are excellent. The exponential fits

provides a mean lifetime that quantifies how much faster the transition occurs for

increasing stimulus. The power law confirms that the transition is more rapid for
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exponential fit power-law fit
stimulus Sl Sr α r Sl Sr β r

0.001 67.33 65.20 16.67 12.2 68.61 65.34 12.42 12.2
0.010 65.84 64.53 10.17 11.6 65.80 64.46 1.32 11.6
0.100 67.90 52.80 15.61 12.8 68.52 52.00 1.21 12.8
1.000 68.51 41.71 4.85 13.3 68.76 41.57 2.84 13.3
10.000 69.48 49.27 0.81 12.3 69.50 49.27 13.55 12.3

Table 4.6.7: The parameters for the exponential and power-law fits of the time-
dependent standard deviation of the jump lengths for data set A.

exponential fit power-law fit
stimulus Sl Sr α r Sl Sr β r

0.001 68.77 65.67 2.82 11.1 69.10 65.70 4999.70 11.1
0.010 68.00 64.33 18.96 11.4 69.10 64.74 66.97 11.4
0.100 70.45 54.44 32.46 10.8 70.90 33.24 0.23 10.8
1.000 69.11 42.64 5.66 10.5 69.52 42.39 2.47 10.5
10.000 69.76 49.09 1.81 9.9 69.78 49.05 5.99 9.9

Table 4.6.8: The fit parameters for the exponential and power-law fits of the time-
dependent standard deviation of the jump lengths for data set B.

increasing stimulus.

To quantify the transition between the behavior of the cells before and after

stimulation, we fit the time-dependent standard deviation of the jump sizes with an

exponential function of the from

S(t) = (Sl − Sr) ∗ e−max(0,(t−ts))/α + Sr . (4.6.29)

Here S, measured in nanometers, is the approximation to the standard deviation, t

is time in seconds, ts = 10 seconds (200 time steps) is the time at which the cells

were stimulated, and α, β (4.6.30), Sl and Sr are parameters to be computed. The

function S is the constant Sl for 0 ≤ t ≤ ts and S(t) decays exponentially to the

value Sr, see Figure 4.6.10. To capture any scaling behavior we used a power-law fit
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of the form

S(t) =
Sl − Sr

(1 + max(0,t−ts)
ts

)β
+ Sr . (4.6.30)

Again, S is the constant Sl for 0 ≤ t ≤ ts and has a power-law decay to Sr. However,

β is dimensionless. The coefficients for these fits are given in Tables 4.6.7 and 4.6.8.

In all cases the fits are excellent. For high stimulus cases, the exponential fits agree

with those used in [5] to fit the diffusion coefficient.

Because the residuals r are essentially the same, the curves shown in Figure 4.6.10

are indistinguishable. Importantly, due to the noise in the data and the small decay

in the standard deviation, the fits for weak stimuli are very sensitive to the starting

values used in the fitting algorithm and thus are not reliable. Also, for the weak

stimuli, the difference between Sl and Sr is less than 3nm, which is much smaller

than the variation in the data and thus can not be significant. For the strong stimuli,

the difference is 20nm or more, which indicates a significant slowing in the motion

of the QDs. For both the A and B data sets and both fits, as the stimulus increases,

Sl remains constant about 68nm, and Sr decreases form about 65nm to 49nm.

In the exponential fit, the coefficient α has units of seconds and is called the

mean lifetime (the half-life is
√
2α) and gives the time t − ts in seconds where

S(t) = S(ts)/e. The mean lifetime α is erratic for weak stimuli. For the strong

stimulus, the mean lifetime is in seconds: for A they are 16, 5, and 1; while for B

they are 32, 6, and 2. In the literature, after a small multiple of these times, the QDs

are said to be immobilized. However, as the standard deviation never drops to one

half of the standard deviation before stimulation, complete immobilization is never

achieved.

An unexpected result is that Sr steadily decreases with increasing stimulus except

for the last case where the stimulus is 10.000. This behavior is confirmed by the

power-law analysis and is essentially the same for both data sets A and B. For strong
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A B
stimulus exp PL exp PL

0.001 24.15 1.65 5.15 0.05
0.010 9.80 10.95 37.80 0.35
0.100 53.15 82.15 100.95 124.75
1.000 19.30 30.55 22.50 38.90
10.000 3.05 3.15 6.75 8.65

Table 4.6.9: The time in seconds after the stimulus was added for the exponential
(exp) and power-law (PL) fits of the standard deviation of the jumps to become
stationary.

A B
s tnj njltb njr nja tst tnj njltb njr nja tst

0.001 85,906 76,096 130 75,966 17.75 122,761 115,831 292 115,539 10.05
0.010 96,179 83,010 137 82,873 19.80 106,649 100,536 180 100,356 10.35
0.100 89,380 45,748 43 45,705 63.15 119,306 30,982 34 30,948 110.95
1.000 61,928 48,308 8 48,300 29.30 123,053 92,935 29 92,906 32.50
10.000 91,142 83,102 78 83,024 13.05 139,236 125,074 82 124,992 16.75

Table 4.6.10: The stimulus s, total number of jumps (tnj), number of jumps in the
tail (njltb), number of jumps bigger than 346nm to be removed from the tail (njr),
number of jumps used in the tail analysis (nja). tst is the time at which the time
series becomes stationary.

stimuli, the mean lifetime steadily decreases and the exponent β in the power-law fit

steadily increases.

For the strong stimuli, the power-law fits of the decay in time of the standard

deviation give β = 1.2, 2.8, 13.5 in data set A and β = .2, 2.5, 6.0 in data set B. The

values of β ≤ 3 indicate a very slow decay.
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A B
s data chi GW data chi GW

0.001 115.3 185.6 108.8 119.9 259.8 117.8
0.010 114.1 143.6 113.6 115.6 165.2 111.3
0.100 83.8 42.2 63.2 81.1 33.6 56.5
1.000 68.8 47.9 51.2 64.4 32.2 43.7
10.000 81.0 55.1 63.8 77.2 46.4 59.7

Table 4.6.11: Summary of the standard deviations of the jump components where
the data values are given by (4.6.31), chi is the standard deviation given by the chi
fit and GW is the standard deviation given by the Weibull fit.

4.6.2 Analyzing the Tails

To apply the analysis used for the data from unstimulated cells to the tails of the

data for the stimulated cells, we estimate the time tst at which the motion becomes

stationary by computing the smallest time tst for which S(tst)− Sr ≤ 1nm, which is

10s more than the times in Table 4.6.9. These times: 53, 19, 3 for data set A; and

101, 23, 7; for data set B; are more than three times longer than the mean lifetimes:

16, 5, and 1 for data set A; 32, 6, and 2 for data set B. The tail of the time series

is defined as the data for times t such that tst ≤ t ≤ 150s. As before, these times

are erratic for the weak stimuli, but for the strong stimuli, the times decrease with

increasing stimuli. We will use the tst from the exponential fit for our analysis, but

the analysis is not very sensitive to the choice of tst.

We now analyze jump components, angles, and lengths for the tails. For the

components, the results are similar to the unstimulated case, so most of the results

are detailed in Appendix 6.8.2 where the PDFs of the component data are in Figures

6.8.20 and 6.8.21 and the parameters for the PDFs are in Tables 6.8.3 and 6.8.4. In

Table 4.6.11, we present the standard deviations σ of the jumps in where

σ =
√

σ2
x + σ2

y , (4.6.31)
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GW Chi PL
k s e d s e α β s e γ

0.001 1.35 99.16 0.0147 1.20 96.31 0.0286 1.49 3.63 169.49 0.0111 4.92
0.010 1.39 96.40 0.0138 1.25 90.81 0.0279 1.60 2.98 128.46 0.0075 4.17
0.100 1.41 56.39 0.0354 1.28 51.47 0.0572 1.95 1.79 37.33 0.0059 2.54
1.000 1.55 47.58 0.0229 1.44 40.47 0.0347 2.02 2.04 39.93 0.0026 3.10
10.000 1.46 57.79 0.0228 1.34 51.45 0.0388 1.89 2.05 47.61 0.0029 2.98

Table 4.6.12: General Weibull (GW), chi and power-law (PL) fit parameters to the
PDF of the jump lengths of the tail, and their relative mean square errors (e), for
data set A. The last column is the power-law exponent given by (4.5.26).

GW Chi PL
k s e d s e α β s e γ

0.001 1.43 105.71 0.0082 1.28 97.98 0.0176 1.54 4.71 229.65 0.0061 6.71
0.010 1.40 98.95 0.0131 1.26 92.83 0.0259 1.58 3.27 147.14 0.0081 4.59
0.100 1.39 50.03 0.0437 1.26 45.80 0.0686 2.00 1.68 29.96 0.0059 2.36
1.000 1.48 39.82 0.0321 1.36 34.83 0.0495 2.05 1.80 27.62 0.0016 2.64
10.000 1.42 53.38 0.0255 1.30 48.51 0.0445 1.88 1.95 40.67 0.0027 2.78

Table 4.6.13: General Weibull (GW), Chi and power-law (PL) fit parameters to the
PDF of the jump lengths of the tail, and their relative mean square errors (e), for
data set B. The last column is the power-law exponent given by (4.5.26).

and where σx is the standard deviation of the x-components and σy is the standard

deviation of the y-components given in Tables 6.8.3 and 6.8.4.

As in the unstimulated case, the angles are uniformly distributed; plots of the

PDFs of the binned angles are in in Figures 6.8.22 and 6.8.23 and the p-values are

given in Table 6.8.5.

We now focus on the jump lengths. As before, the PDFs of the jump lengths

cannot have a simple Weibull or simple chi distribution, so we fit the the distribution

of the jump length with the general Weibull (4.5.23), general chi (4.5.24) and power-

law (4.5.25) distributions, which are shown in Figure 4.6.11. These plots show that
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there is a higher proportions of short jumps in the tails of the stimulated data then

for the unstimulated data. The fit parameters are shown in Table 4.6.12 for data set

A, and in Table 4.6.13 for data set B.

We now quantify the shortening of the jump sizes by using the standard deviation

of the jumps in Table in 4.6.11 that are computed directly from the data. We can

also convert the parameters in Tables 4.6.12 and 4.6.13 to estimate the standard

deviation. For the general chi distribution, (4.5.27) gives

σ =
√
M (2) = s

√
d ,

and for the general Weibull distribution, (4.5.28) gives

σ =
√
M (2) = s

√

Γ(1 +
2

d
) ,

These estimates of σ are also recorded in Table 4.6.11. The estimates from the

power-law distribution are not useful because of the analytic distribution has a long

slowly decaying tail which produces large and sometimes infinite values for σ.

Again, we see that the results are erratic for weak stimuli. For the strong stimuli

the reduction in the standard deviation σ is dramatic, but we still see a modest

increase in σ for stimulus 10.000. The estimates directly using the jump data are more

realistic than those using the analytic PDFs. From Table 4.5.4, the unstimulated

data give estimates for σ of about 138nm. The weakly stimulated cells give an

estimate of about 117nm and the stimulated data, about 70nm. As with some other

parameters, σ increases a little for stimulus 10.000.

From the chi distribution fit, we find that the motion can be modeled as diffusion

in a space of dimension 5/4 as compared to the dimension of 3/2 for the unstimulated

data.

These figures indicate, and the mean square error confirms, that the power-law

fit is the best. For power laws, the exponent must satisfy γ > 1 and if the analytic
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A B
stimulus ≤50 50-190 ≥190 ≤50 50-190 ≥190

0.001 33.578 56.208 10.214 29.420 59.400 11.180
0.010 33.445 56.650 9.905 31.927 57.812 10.262
0.100 55.312 40.337 4.350 60.120 35.723 4.157
1.000 63.133 34.752 2.115 69.995 28.136 1.869
10.000 54.039 42.486 3.475 57.792 39.134 3.074

Table 4.6.14: Mean Percentage of jump length sizes in the tails of the data, for data
sets A and B.

distribution function is to have a finite moment of order k then it must be the case

that γ − k > 1. If γ < 3, then the analytic distribution function does not have a

finite second moment and consequently the diffusion is anomalous [59, 47, 83]. In

the data sets A and B there are six cases that are anomalous. However, the sizes

of the jumps are bounded above by the size of the cell, so the diffusion on the cell

membrane is not anomalous, just the power-law model is. Never the less, the sizes

of the intermediate length jumps scale as in anomalous diffusion.

4.6.3 Analysis of Small Jumps in the Tails

To better understand the dynamics of the growth of the percentage of of short jumps

and the decay of long jumps, we divide the jump sizes into three bins: short jumps

that are smaller than 50nm; medium jumps that are between 50nm and 190nm;

and long jumps that are greater than 190nm. In the unstimulated data about 20%

of the jumps are short, 60% are medium, and 20% are long. In Figure 4.6.12 we

show how, over time, the percentage of jump length sizes in the tails change as the

stimulus increase. More precisely, before the time series becomes stationary, the

percentage of short jumps increases while the percentage of long jumps decreases. In

Table 4.6.14 we give the percentages averaged over time of the jump sizes. We see
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that the percentage of short jumps increases dramatically, while the percentage of

long jumps decreases a modest amount, so the medium jumps decrease substantially.

As expected, the percentage of short jumps increases significantly with increasing

stimulus.

4.6.4 Summary

For the stimulated data we break up the time series into three parts, the motion be-

fore stimulation, a period after the stimulus is added where the motion slows rapidly,

and the tail of the time series where the motion looks like that of the unstimulated

cells but is substantially slower. We classify the stimuli into weak (0.001, 0.010) and

strong (0.100, 1.000, 10.000). The effects of the weak stimuli are small and difficult

to quantify because of the noise in the data. For the strong stimuli, the mean lifetime

of the change from the motion in unstimulated cells to the stationary motion in the

tails of the time series decrease rapidly with increasing stimulus.

We analyzed the motion in the tails the same way we analyzed the data for

unstimulated cells. The jump components are not normally distributed and the

normal fits to the PDFs of the components of the jumps suggest that there is an

even higher proportion of short jumps than in the data for unstimulated cells. As

before, the jump angles are uniformly distributed. For the data from stimulated cells,

especially for the stronger stimuli, the power-law fits to the jump sizes is significantly

better that the general chi or general Weibull. The chi fit shows that the short jumps

scale as like r−(d−1) for d in the range 1.2 to 1.4, the general Weibull has a range of

1.4 to 1.6 and the power law gives a range of 1.5 to 2.0. For mid-range jumps, while

many of the power-law fits indicate that the intermediate jump lengths scale as in

anomalous diffusion. The values of d for the chi distribution suggest that the motion

of the QDs can be modeled as diffusion in a fractal space of dimension near 5/4.
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We complete this section with some graphics that illustrate the time dependence

of the percentage of the jumps that are short, intermediate and long. One can clearly

see that the percentages do not change much for weak stimuli. For strong stimuli,

the percentage of short jumps grows rapidly for early times and then levels off, while

the percentage of long jumps decreases with time.

These results again have important implications for improving our understand-

ing of membrane organization and dynamics. Previous high-resolution electron mi-

croscopy experiments have shown that the extent of receptor clustering increases

with increasing stimulus [4, 72, 61]. In [21], we used hierarchical clustering and

dendrograms to improve the quantification of clustering observed using TEM meth-

ods. The new dynamic data confirm that receptor mobility decreases dramatically

under conditions that support the formation of larger clusters of crosslinked recep-

tors [6]. However, the crosslinked receptors are not strictly immobile since very

short jumps are still present in the tails of the data sets. The continued presence

of short jumps could reflect the transient release of QD-IgE-FcεRI complexes within

the clusters from their DNP-BSA tether, with rapid recapture. It could also suggest

that the tethers remain somewhat flexible, enabling limited mobility even in highly

crosslinked IgE-FcεRI complexes.

120



Chapter 4. Temporal Analysis of the Dynamic Data

−300 −200 −100 0 100 200 300
0

1

2

3

4

5

6
x 10

−3 Stimulus = 0 ug/ml

x

p

 

 

data
fit

−300 −200 −100 0 100 200 300
0

1

2

3

4

5

x 10
−3 Stimulus = 0 ug/ml

x

p

 

 

data
fit

−300 −200 −100 0 100 200 300
0

1

2

3

4

5

6
x 10

−3 Stimulus = 0 ug/ml

y

p

 

 

data
fit

−300 −200 −100 0 100 200 300
0

1

2

3

4

5

x 10
−3 Stimulus = 0 ug/ml

y

p

 

 

data
fit

A B

Figure 4.5.6: Distributions and their normal fits of the x and y jumps.
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Figure 4.5.7: Data angles and generated random angles for data sets A and B.

122



Chapter 4. Temporal Analysis of the Dynamic Data

50 100 150 200 250 300

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x 10
−3

Stimulus =  0.000 ug/ml 

r (nm)

P
D

F

 

 

data
GW
Chi
PL

50 100 150 200 250 300

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x 10
−3

Stimulus =  0.000 ug/ml 

r (nm)

P
D

F

 

 

data
GW
Chi
PL

A B

Figure 4.5.8: Jump lengths PDFs with the general Weibull (GW), chi and power-law
(PL) fits.
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Figure 4.5.9: Comparison of the jump size distributions for the data with the jump
sizes for a simple chi or Weibull distributions with the same standard deviation.
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Figure 4.6.10: Time-dependent standard deviations of the jump lengths and their
exponential and power-law fits.
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Figure 4.6.11: Jump lengths PDFs with the general Weibull, chi and power-law fits.
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Figure 4.6.12: The time dependent percentages of the jump lengths.
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Contributions, Summary and

Future Research

5.1 Contributions

As a research assistant in the Center for Spatiotemporal Modeling of Cell Signaling

(STMC) I had the opportunity to be part of an interdisciplinary group where people

from different fields like, cell biology, mathematics, statistics, physics, engineering

and computer science work together to address problems in cell signaling. In this

center, everyone uses a unique language to communicate their ideas, results and

future directions. One important result of this experience was that I learned how to

communicate with not only the biologists, but many of the other people involved in

the center.

It is well known that the spatial and temporal organization of membrane receptors

are critical to the initiation of cell signaling. But, to this time, the spatial-temporal

behavior of these receptors is still not well understood. This thesis makes significant

advances in improving our understanding at a spatial scale under 100nm. To do
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this, the biologists in the center provided me with two types of data: static and

dynamic. My contribution was to develop or improve algorithms for analyzing these

data, use these algorithms to analyze the static and dynamic data, create graphics

displays for the data and the results, and then write drafts of sections of the papers

describing these results. All of this was reviewed by my advisor and Professor Oliver

who directs the Center.

For the static data, the β unit of the IgE high affinity receptor receptor FcεRI

was labeled with 5nm gold particles and then imaged using TEM. These probes

provide great spatial but poor temporal resolution of the receptor organization and

dynamics. The biologists provided digital transmission electron microscopy images

of these experiments. Then, I used image processing software based on ImageJ

to obtain the locations of the center of the gold particles. For the resulting data

sets, I introduced a new algorithm for quantifying the organization or clustering of

the receptor. This clustering algorithm provides important information about the

clustering such as, percentage of particles in clusters, the total number of clusters

and their sizes. The algorithm significantly extends the hierarchical clustering and

dendrogram algorithm from Matlab. My extensions introduced the new concept of

an intrinsic clustering distance that is important in understanding the structure of

the clusters. Next, I compare this distance to the the distance for simulated random

data to compute the clustering ratio. It is this number the quantifies the clustering

in the biological data. An important result is that the clustering ratio is proportional

to the logarithm of the stimulus.

For the dynamic data, the IgE bounded to it high affinity receptor FcεRI was

labeled with quantum dots. Advantages of the quantum dots is that they are bright

and do not bleach. A disadvantage is that they blink. These probes provide a great

temporal resolution but poor spatial resolution. For this data, the positions of the

quantum dots were provide to us as arrays of frames of movies. Dr. Michael Wester
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wrote the code to read the positions from these frames. Previously Dr. S. Steinberg

had developed time-series analysis methods to analyze single particle tracking data

where the probes were gold nano-particles. I extended these tools to cope with the

blinking of the quantum dots. I also corrected for the problem that the tracking

algorithm that connects that quantum dots between consecutive frames produces

less than 0.5% of unreasonable jumps that were removed. A side effect was to verify

that accuracy of the tracking algorithm written by my STMC collaborators.

Next, I checked that it was reasonable to apply time-series analysis to the the

jump data for the tracks. I analyze the jump data in both rectangular and polar

coordinates and found, for example, the the components were far from normally dis-

tributed. However the angles of the jumps were uniform, so I focused on analyzing

the jump lengths. The probability distribution functions for the jumps were esti-

mated from the data and the fit with three different analytic distribution functions:

the well known General Weibull and Chi distributions; and with a new Power Law

distribution. An important result is that, in unstimulated cells, I provide strong

evidence of barriers to free diffusion on a scale less than 70nm.

Next, for the data from stimulated cells, I observed that the averages and stan-

dard deviations of the jump show an stationary behavior before the stimuli were

added, then the standard deviation of the jump lengths of the receptors is reduced

over a short period of time, after which they show a stationary behavior as in the

unstimulated cells. I used exponential an a power law to fit to find the time it takes

to reach the stationary behavior. The tails of the data were than analyzed in the

same manner as the unstimulated data.

All the programs used in this analysis were written in Matlab and are or will be

available in the STMC web site (http://stmc.health.unm.edu).
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5.2 Summary

This thesis analyzes the distribution and mobility of the high affinity IgE receptor,

FcεRI, in the membrane of mast cells during the initiation of cell signaling responses.

The data, generated at the Center for Spatiotemporal Modeling of Cell Signaling,

provide two views of the organization of the receptors in the cell membrane, that

we call static and dynamic. The static view, obtained by electron microscopy of

nanogold-labeled receptors on fixed cells, has very high spatial resolution with mod-

est temporal resolution. The dynamic view, obtained by fluorescence microscopy

of quantum dot-labeled receptors on live cells, gives time resolved information with

modest spatial resolution. Although the imaging methods are different, the exper-

iments are the same. Cells are incubated before the experiment with a high con-

centration of IgE specific for dinitrophenol (anti-DNP-IgE) so that every receptor

is occupied. This is often called sensitization; the same sensitization is present in

humans who are allergic to say ragweed, but are not having symptoms because they

are not inhaling ragweed pollen. Cells with IgE but no allergen/antigen are called

unstimulated. The cells are stimulated by the addition of a synthetic multivalent

antigen, DNP-coupled bovine serum albumin (DNP-BSA). Each BSA molecule has

an average of 25 covalently bound DNP molecules (DNP25-BSA) and can crosslink

the IgE-receptor complexes to form dimers and higher oligomers. Receptor crosslink-

ing signals the cells to activate biochemical pathways that trigger many responses,

including the release of inflammatory molecules that cause the immediate symptoms

of allergy and asthma.

From the static data, the biologists have seen that the receptors are distributed as

clusters even in unstimulated cells and have also observed tighter and larger clusters

in stimulated cells. They have spatial statistics tools to decide if the clustering in

a particular experiment is strong, modest, or weak. Our hierarchical clustering and

dendrogram algorithm provides new tools that quantify the numbers and tightness
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of the clusters. The new tools reveal increased clustering between unstimulated and

stimulated cells at early times (one minute after the addition of antigen) and at

relatively low concentrations of stimulus. They provide for the first time a number,

the clustering ratio, to compare clustering between experimental conditions.

Our use of time-series analysis on the dynamic data has revealed new information

about the nanometer scale motion of the receptors. For unstimulated cells, our

discovery of an excess of jumps of length less than 100nm provides direct evidence for

the existence of submicron scale barriers to free diffusion in biological membranes.

Biologists have speculated on the existence of such barriers, variously called lipid

rafts, protein islands and microdomains, but have had little direct evidence prior to

this analysis. We note that the barriers revealed here are different from the much

larger (micron scale) cytoskeletal corrals reported in a previous STMC publication

using the same QD-IgE labels to track receptor dynamics (Andrews et al., 2008).

Thus detailed analysis of the same data sets have revealed several levels of receptor

confinement in the mast cell membrane.

Our analysis of the data for stimulated cells, confirms that the motion of the

receptors slows rapidly after stimulation (also the topic of a previous STMC pub-

lication; Andrews et al., 2009) and provides a mean lifetime to quantify this. The

previous work suggested that the slowing is followed by receptor immobilization. Our

more detailed analysis indicates that in fact the receptors retain some limited mobil-

ity after crosslinking. However the residual motion is substantially slower that the

motion of the unstimulated receptors and the data sets have almost no long jumps,

indicating a further level of receptor confinement. The continued presence of short

jumps suggest that the IgE-DNP bonds between the receptors remain somewhat flex-

ible, enabling limited mobility even in highly crosslinked receptor complexes. Some

of the short jumps could also reflect the transient release of DNP-IgE tethers within

the clusters with rapid recapture.
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5.3 Future Research

The cell membrane is far too complex to model the motion and organization of

receptors from first principles using currently available tools. In future work, we will

attempt to use the phenomenological models of receptor motion and interaction to

pinpoint the important aspects of the membrane organization that affect the motion

of the receptor. By phenomenological, we mean models that reproduce the clustering

in the static data and the motion seen in the dynamic data. We first will develop

models that “appear to the eye” to be reasonable, and then use a powerful set of

statistical tools that we have developed to make a detailed comparison between the

model and the data. If we can develop reasonable models then, in collaboration with

the Center biologists, we will conjecture biological explanations for the features of

the model and design experiments to test these ideas.

The present results provide a starting point. In unstimulated cells, we have

shown that the excess of short receptor jumps (dynamic data) is associated with the

presence of receptor clusters (static data). After stimulation, the tighter packing

(reduced intrinsic clustering distance) of receptors (static data) is associated with

even shorter receptor jumps (dynamic data). These results strongly suggest a direct

link between receptor clustering and receptor jump sizes but do not constitute proof

of the relationship. Center biologists are generating static and dynamic data with

cells that have been manipulated to change membrane properties or cytoskeleton-

membrane interactions. Analysis of these data will test if the association between

receptor packing distance and jump sizes is consistent and robust. They are also

measuring signaling responses in the manipulated cells. Continued analysis of these

data will test the importance of membrane organization and dynamics to signal

transduction.
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Appendices

Supplementary Information for Chapter 2

6.1 Discussion of Random Variables

We have found that, the PDF of a random variable provides us with quick insight into

several important properties of continuous random variables. We begin by looking

at functions of random variables.

6.1.1 Functions of Random Variables

We first derive a formula for the PDF for the random variable Q = f(P) where

P ∼ P ∼ p is a continuous random variable with PDF p and f is a smooth 1-1 map

of R onto R with f ′ ≥ 0 so that the inverse function f−1 of f is well defined. First

Q(x) = Pr(f(P) ≤ x) = Pr(P ≤ f−1(x)) = P (f−1(x)) . (6.1.1)
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If P is represented as

{x, p(x) dx}

then Q = f(P) is given by

{f(x), p(x) dx} .

Setting x = f−1(y) so that Q is given by

{y, p(f
−1(y))

f ′(f−1(y))
dy} ,

and thus

q(y) =
p(f−1(y))

f ′(f−1(y))
.

Alternatively, the chain rule gives the PDF of Q as

q(x) =
dQ

dx
=

p(f−1(x))

f ′(f−1(x))
. (6.1.2)

Using the change of variables x = f(y) we see that
∫

∞

−∞

q(x) dx =

∫

∞

−∞

q(f(y)) df(y) =

∫

∞

−∞

p(y)

f ′(y)
f ′(y) dy =

∫

∞

−∞

p(y) dy = 1 .

Also p ≥ 0 as is f ′, so, at least, q is a PDF! Additionally, the first moment of Q is
∫

∞

−∞

xn q(x) dx =

∫

∞

−∞

fn(y) q(f(y)) df(y)

=

∫

∞

−∞

fn(y)
p(y)

f ′(y)
f ′(y) dy

=

∫

∞

−∞

fn(y) p(y) dy .

In particular, the expected value of Q = f(P) is

E(Q) =

∫

∞

−∞

x q(x) dx =

∫

∞

−∞

f(y) p(y) dy .

Important examples of f are f(x) = xn where n is an odd integer. Interestingly, this

formula does not require f be one to one and onto.
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6.1.2 Formulas for the PDF of Sums and Products of Ran-

dom Variables

When forming new random variables from some given random variables, the difficult

problem is to find a simplified description for the variables. However, in the discrete

case we could find formulas for the moments of the new random variables without

simplifying them. In the continuum case this is harder to do.

The random variables for the sum S and product T of two random variables can

be described by

{x+ y, p(x) dx q(y) dy} , {x y, p(x) dx q(y) dy} .

To simplify the expression for a sum, we introduce z = x + y and then eliminate

y = z − x with x fixed. So dy = dz and thus the expression for the sum of two

random variables becomes

{z, p(x) dx q(z − x)dz} = {z, p(x) q(z − x) dx dz} .

The second term holds for all x, we must add up these terms:

z, s(z) = {z,
∫

∞

−∞

p(x) q(z − x) dx}

or

s(z) =

∫

∞

−∞

p(x) q(z − x) dx . (6.1.3)

For the product, we introduce z = x y, fix x and eliminate y = z/x, so dy = dz/x

and then we get

{z, p(x) q(z
x
)
1

x
dx dz} .

This gives

t(z) =

∫

∞

−∞

p(x) q(
z

x
)
1

x
dx . (6.1.4)
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6.1.3 Expected Values

The proofs of the (2.5.28) are based on interchanging the order of integration:

E(S) =

∫

∞

−∞

x s(x) dx

=

∫

∞

−∞

∫

∞

−∞

x p(y) q(x− y) dy dx

=

∫

∞

−∞

∫

∞

−∞

(x− y + y) p(y) q(x− y) dx dy

=

∫

∞

−∞

∫

∞

−∞

p(y) (x− y) q(x− y) dx dy

+

∫

∞

−∞

∫

∞

−∞

y p(y) q(x− y) dx dy

=

∫

∞

−∞

p(y)E(Q) dy +

∫

∞

−∞

y p(y) dy

= E(Q) + E(P) ,

and

E(T) =

∫

∞

−∞

x t(x) dx

=

∫

∞

−∞

∫

∞

−∞

x p(y) q(
x

y
)
1

y
dy dx

=

∫

∞

−∞

∫

∞

−∞

p(y) q(
x

y
)
x

y
dx dy

=

∫

∞

−∞

∫

∞

−∞

y p(y) q(
x

y
)
x

y

dx

y
dy

=

∫

∞

−∞

y p(y)E(Q) dy

= E(Q)E(P) .
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Supplementary Information for Chapter 3

6.2 The Hopkins Statistic Test

Given a data set D containing the positions Pi = (xi, yi), 1 ≤ i ≤ M of M objects in

the plane. The Hopkins statistics test is based on the null hypothesis, H0, the objects

in D are uniformly distributed, and examines whether the observed distribution

differs from this assumption.

Let P̃j = (x̃j , ỹj), 1 ≤ j ≤ N , N << M be N sampling points placed randomly

in D. Then, let Uj be the minimum distance from P̃j to Pi, and let Wj be the

minimum distance from a randomly selected object Pi in D to its nearest neighbor.

The Hopkins statistic test is defined as,

H =

∑N
j=1 Uj

∑N
j=1 Uj +

∑N
j=1 Wj

Under the null hypothesis, H0, on average Uj is the same as Wj, implying ran-

domness and hence H should be about 0.5. However if the objects are aggregated

or clustered, than Uj should be larger than Wj . Therefore, H should be larger than

0.5, almost equal to 1.

6.3 Largest Number of Particles

We selected the experiments with the largest number of particles for time t = 1min

and then plotted the particle positions with the clusters marked by their convex hull,

C(d) with dI marked with a vertical line and the Hopkins test for that data. To see

the gold particles in the TEM image you will need to magnify the image with your

reader.
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Figure 6.3.1: Experiment 3368, stimulus=0.000ug/ml, time=1min, number of parti-
cles M=229, a) TEM image b) number of clusters using convex hulls at the intrinsic
distance dI = 27nm, c) Hopkins’s test, d) number of clusters.
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Figure 6.3.2: Experiment 3410, stimulus=0.001ug/ml, time=1min, number of parti-
cles M=468, a) TEM image b) number of clusters using convex hulls at the intrinsic
distance dI = 32nm, c) Hopkins’s test, d) number of clusters.

140



Chapter 6. Appendices

0 500 1000 1500 2000
0

500

1000

1500

2000

x (nm)

y 
(n

m
)

a) b)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

H −− The Hopkins Statistic

P
D

F

 

 

data
random

0 50 100 150 200 250
0

20

40

60

80

100

120

140

distance(nm)

nu
m

be
r 

of
 c

lu
st

er
s

c) d)

Figure 6.3.3: Experiment 3397, stimulus=0.010ug/ml, time=1min, number of parti-
cles M=575, a) TEM image b) number of clusters using convex hulls at the intrinsic
distance dI = 20nm, c) Hopkins’s test, d) number of clusters.
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Figure 6.3.4: Experiment 3390, stimulus=0.100ug/ml, time=1min, number of parti-
cles M=453, a) TEM image b) number of clusters using convex hulls at the intrinsic
distance dI = 17nm, c) Hopkins’s test, d) number of clusters.
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Figure 6.3.5: Experiment 3374, stimulus=1.000ug/ml, time=1min, number of parti-
cles M=654, a) TEM image b) number of clusters using convex hulls at the intrinsic
distance dI = 25nm, c) Hopkins’s test, d) number of clusters.
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A B
stimulus on off on off

p1 p2 p1 p2
0.000 1.27 1.02 1.26 0.89
0.001 1.33 1.00 1.26 0.92
0.010 1.29 0.96 1.29 0.94
0.100 1.32 0.95 1.28 0.92
1.000 1.39 0.98 1.24 0.91
10.000 1.36 0.94 1.31 0.93

Table 6.4.1: The power-law decay for the on and off times of the QDs.

Supplementary Information for Chapter 4

6.4 QD Blinking Times

It is important for our analysis to understand that, due to the blinking of the QDs,

very few QDs are on at any given time step. The minimum, mean, and maximum of

the dots that are on at any given time are given in Table 4.3.2. At any given time,

less than 2% of the dots are on, so statistics that are a function of time will be noisy.

The lengths of the QD on times are strongly dependent on the algorithm that

connects dots at successive time steps, while the off times are strongly dependent on

the algorithm that connects runs of on times. It is known that the on and off times

of the QDs satisfy a power law with exponent approximately 3/2 [7], so we fit the

function that gives the number of on and off times of a given length with

on(i) = q1 i
−p1 , off(i) = q2 i

−p2

The resulting coefficients are given in Table 6.4.1. The plots of the fits are given in

figures 6.4.6 and 6.4.7. Note that there is a jump to zero going from run length 32 to

33 in the off times. This is caused by the path construction algorithm that connects
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segments of on times having a limit of 32 off times in between the on times. Because

of this, the power-law fit was made using the first 32 data points.

If we set y1 = log(on), y2 = log(off) and τ(i) = log(i), then

y1(i) = log(q1)− p1τ(i) , y2(i) = log(q2)− p2τ(i) ,

and consequently

p1 = −y1(i)− y1(i− 1)

τ(i)− τ(i− 1)
, p2 = −y2(i)− y2(i− 1)

τ(i)− τ(i− 1)

These divided differences are plotted in Figures 6.4.8 and 6.4.9. Consistently, the on

times divided differences are very noisy after run length 10. For the off times, there

is less noise.

6.4.1 The Largest Segment in Each Track

Using the information from the QD blinking analysis and from Figures 6.4.6 and 6.4.7

we identified the tracks with the largest segments Figures 6.4.10 and 6.4.11. Since

in these segments the QD are on we can enclose them by their convex hulls. From

these figures we can also identify the free, restricted and confined motion mentioned

in section 4.2.

In Figures 6.4.12 and 6.4.13 we plot the largest segments with different colors

for the jump sizes, black for jumps less or equal to 25nm, green for jumps bigger

than 25nm and less or equal than 50nm, blue for jumps bigger than 50nm and less

or equal than 190nm, and red for jumps greater than 190nm. From these figures we

can see how the the number of black and green jumps, i.e., jumps less or equals than

50nm increases as the stimulus increases.
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Figure 6.4.6: Fits of the on and off times for data set A.
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Figure 6.4.7: Fits of the on and off times for data set B.
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Figure 6.4.8: The divided differences for data set A.
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Figure 6.4.9: The divided differences for data set B.
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Figure 6.4.10: The largest segments for data set A.
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Figure 6.4.11: The largest segments for data set B.
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Figure 6.4.12: The largest segments and their different jump lengths for data set A.

152



Chapter 6. Appendices

1.67 1.68 1.69 1.7 1.71 1.72 1.73 1.74 1.75 1.76

x 10
4

1.57

1.58

1.59

1.6

1.61

1.62

1.63

1.64

1.65

x 10
4

Particle positions of the largest segment, Track 2260, Stimulus = 0 ug/ml
TimeSteps = 545,  t

0
 = 100.25s, t

f
 = 127.50s,  t

s
 = 10.00s 

MaxDistX = 1054.6nm, MaxDistY = 844.5nm

x (nm)

y 
(n

m
)

2.1 2.15 2.2 2.25 2.3 2.35

x 10
4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

x 10
4

Particle positions of the largest segment, Track 107, Stimulus = 0.001 ug/ml
TimeSteps = 831,  t

0
 = 12.50s, t

f
 = 54.05s,  t

s
 = 10.00s 

MaxDistX = 3016.9nm, MaxDistY = 3548.4nm

x (nm)

y 
(n

m
)

1.68 1.69 1.7 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

x 10
4

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

x 10
4

Particle positions of the largest segment, Track 1889, Stimulus = 0.01 ug/ml
TimeSteps = 330,  t

0
 = 109.00s, t

f
 = 125.50s,  t

s
 = 10.00s 

MaxDistX = 1102.9nm, MaxDistY = 725.6nm

x (nm)

y 
(n

m
)

1.305 1.31 1.315 1.32 1.325 1.33 1.335 1.34 1.345

x 10
4

1.79

1.8

1.81

1.82

1.83

1.84

1.85

1.86

x 10
4

Particle positions of the largest segment, Track 1040, Stimulus = 0.1 ug/ml
TimeSteps = 758,  t

0
 = 102.65s, t

f
 = 140.55s,  t

s
 = 10.00s 

MaxDistX = 434.4nm, MaxDistY = 776.2nm

x (nm)

y 
(n

m
)

1.24 1.26 1.28 1.3 1.32 1.34

x 10
4

2.04

2.05

2.06

2.07

2.08

2.09

2.1

2.11

2.12

2.13
x 10

4

Particle positions of the largest segment, Track 158, Stimulus = 1 ug/ml
TimeSteps = 1298,  t

0
 = 30.65s, t

f
 = 95.55s,  t

s
 = 10.00s 

MaxDistX = 1151.4nm, MaxDistY = 911.9nm

x (nm)

y 
(n

m
)

2.1 2.11 2.12 2.13 2.14 2.15 2.16 2.17

x 10
4

1.67

1.68

1.69

1.7

1.71

1.72

1.73

1.74

x 10
4

Particle positions of the largest segment, Track 376, Stimulus = 10 ug/ml
TimeSteps = 653,  t

0
 = 117.35s, t

f
 = 150.00s,  t

s
 = 10.00s 

MaxDistX = 760.8nm, MaxDistY = 835.0nm

x (nm)

y 
(n

m
)

Figure 6.4.13: The largest segments and their different jump lengths for data set B.
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A B
stimulus track nts MaxDistX MaxDistY track nts MaxDistX MaxDistY

0.000 10,503 1,042 8328nm 3959nm 9,108 966 2027nm 3277nm
0.001 134 1,486 1421nm 714nm 2,023 867 1639nm 2457nm
0.010 951 752 3507nm 3678nm 1,109 911 3861nm 1599nm
0.100 573 988 502nm 317nm 1,040 1,362 1187nm 2102nm
1.000 293 1,363 250nm 326nm 161 1,616 1383nm 786nm
10.000 1,484 1,615 654nm 766nm 1,721 1,137 381nm 538nm

Table 6.5.2: Paths with the largest number of time steps (nts). MaxDistX and
MaxDistY are defined in (6.5.5).

6.5 Examples of Long Tracks

The blinking of the QDs is illustrated in Figures 6.5.14 and 6.5.15. These figures

show the longest path for each experimental condition. The parameters MaxDistX

and MaxDistY give the size of the smallest rectangle that contains the path:

MaxDistX = max
i

xi −min
i

xi, MaxDistY = max
i

yi −min
i

yi , (6.5.5)

where (xi, yi) are the positions where the QD is on. In Table 6.5.2 we summarize

some information about big tracks.

154



Chapter 6. Appendices

4.6 4.8 5 5.2 5.4 5.6

x 10
4

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
x 10

4

Plot of big track 10503, Stimulus = 0 ug/ml
TimeSteps = 1042,  t

0
 = 71.50s, t

f
 = 123.60s, t

s
 =  10.00s 

MaxDistX = 8327.8nm, MaxDistY = 3958.8nm

x (nm)

y 
(n

m
)

 

 

start
isolated
dot on
dot off
missing
end

1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58

x 10
4

1.63

1.64

1.65

1.66

1.67

1.68

1.69

1.7

1.71

1.72
x 10

4

Plot of big track 134, Stimulus = 0.001 ug/ml
TimeSteps = 1486,  t

0
 = 31.05s, t

f
 = 105.35s, t

s
 =  10.00s 

MaxDistX = 1420.9nm, MaxDistY = 713.6nm

x (nm)

y 
(n

m
)

 

 

start
isolated
dot on
dot off
missing
end

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

x 10
4

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
x 10

4

Plot of big track 951, Stimulus = 0.01 ug/ml
TimeSteps = 752,  t

0
 = 21.05s, t

f
 = 58.65s, t

s
 =  10.00s 

MaxDistX = 3507.2nm, MaxDistY = 3677.6nm

x (nm)

y 
(n

m
)

 

 

start
dot on
isolated
dot off
missing
end

1.16 1.17 1.18 1.19 1.2 1.21 1.22

x 10
4

1.67

1.675

1.68

1.685

1.69

1.695

1.7

1.705

1.71
x 10

4

Plot of big track 573, Stimulus = 0.1 ug/ml
TimeSteps = 988,  t

0
 = 99.95s, t

f
 = 149.35s, t

s
 =  10.00s 

MaxDistX = 502.4nm, MaxDistY = 317.2nm

x (nm)

y 
(n

m
)

 

 

start
isolated
dot on
dot off
missing
end

1.975 1.98 1.985 1.99 1.995 2 2.005

x 10
4

1.595

1.6

1.605

1.61

1.615

1.62

1.625

1.63
x 10

4

Plot of big track 293, Stimulus = 1 ug/ml
TimeSteps = 1363,  t

0
 = 81.75s, t

f
 = 149.90s, t

s
 =  10.00s 

MaxDistX = 249.8nm, MaxDistY = 327.5nm

x (nm)

y 
(n

m
)

 

 

start
dot on
dot off
missing
end

1.98 1.99 2 2.01 2.02 2.03 2.04 2.05

x 10
4

1.66

1.67

1.68

1.69

1.7

1.71

1.72

1.73

1.74
x 10

4

Plot of big track 1484, Stimulus = 10 ug/ml
TimeSteps = 1615,  t

0
 = 69.25s, t

f
 = 150.00s, t

s
 =  10.00s 

MaxDistX = 654.3nm, MaxDistY = 766.3nm

x (nm)

y 
(n

m
)

 

 

start
dot on
end

Figure 6.5.14: Data set A: tracks with the largest paths.
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Figure 6.5.15: Data set B: tracks with the largest paths.
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6.6 The Mean-Squared Displacement

The definition of the mean-squared displacement must be modified to account for the

blinking of the QDs, see Section 4.4. We do not use the mean-squared displacement

(MSD) in our analysis because it is strongly dependent on the blinking of the QDs. As

show below, the diffusion coefficient has a simple definition in terms of the standard

deviation of the jump lengths. The standard deviation has units of nanometers and

so is more easily compared to other quantities that we compute. Additionally, for

stimulated data, the usual definition of the MSD must be modified to have a starting

time to account for the lack of ergodicity in the data.

For independent identically distributed (IID) Jn, the MSD is given by the diffusion

coefficient D:

MSD(t) = 4D t (6.6.6)

Also, the coefficient of t in the MSD is determined by the second moment of the

jump sizes:

MSDn = M (2) n (6.6.7)

If the time step in the walk is ∆t and t = n∆t, then

MSD(t) = MSDn = M (2) n =
M (2)

∆t
t (6.6.8)

Consequently, the diffusion coefficient is given by

D =
M (2)

4∆t
(6.6.9)

In the case that the components of the jumps are normally distributed with mean

zero and standard deviation σ or equivalently, the length of the jumps have a simple

Weibull distribution with second moment M (2) = 2 σ2 then

MSDn = 2 σ2 n , MSD(t) =
2 σ2

∆t
t (6.6.10)
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For the stimulated data, the MSD cannot be averaged over a path as the data is

not ergodic. Consequently we define the time-dependent diffusion coefficient by

Dn =
M

(2)
n

4∆t
(6.6.11)

Our time dependent diffusion coefficient does not depend on how the paths are

connected, but in general agrees with the coefficients found in [4].
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6.7 Derivations of Second Moments of the Gen-

eral Weibull and Chi PDFs

The gamma function is defined by

Γ(z) =

∫

∞

0

tz−1 e−t dt (6.7.12)

And, by integration by parts we obtain,

Γ(z + 1) = z Γ(z) (6.7.13)

6.7.1 General Weibull Second Moment

From 4.5.23 the general Weibull PDF is

w(r, s, k) =
k

s
(
r

s
)k−1e−( r

s
)k (6.7.14)

The second moment of w is

M2(w) =

∫

∞

0

r2w(r, s, k) dr (6.7.15)

then

∫

∞

0

r2w(r, s, k) dr =

∫

∞

0

r2 (
k

s
)(
r

s
)k−1e−( r

s
)k dr

= 2

∫

∞

0

r e−( r
s
)k dr

=
2 s2

k

∫

∞

0

t
2
k
−1 e−t dt, where t = (

r

s
)k

=
2 s2

k
Γ(

2

k
), using (6.7.12)

= s2 Γ(
2

k
+ 1), using (6.7.13)
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6.7.2 Chi Second Moment

From 4.5.24 the chi PDF is

c(r, s, d) =
2

s 2d/2 Γ(d
2
)
rd−1 e−

r2

2 (6.7.16)

The second moment of c is

M2(c) =

∫

∞

0

r2 c(r, s, d) dr (6.7.17)

then

∫

∞

0

r2 c(r, s, d) dr =
2 s

2d/2 Γ(d
2
)

∫

∞

0

(
1

s
)d−1 rd (

r

s
) e−

1
2
( r
s
)2 dr

=
2 s d

2d/2 Γ(d
2
)

∫

∞

0

(
r

s
)d−1 e−

1
2
( r
s
)2 dr

=
s2 d

Γ(d
2
)

∫

∞

0

t
d
2
−1 e−t dt, where t =

1

2
(
r

s
)2

= s2 d, using (6.7.12)
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x y
s N µ σ µ/σ µ σ µ/σ

0.001 75,966 -0.0600 81.100 -0.0007 -0.1139 81.932 -0.0014
0.010 82,873 0.0218 79.904 0.0003 -0.0514 81.392 -0.0006
0.100 45,705 0.1525 58.850 0.0026 0.1052 59.692 0.0018
1.000 48,300 0.3216 49.407 0.0065 0.0355 47.876 0.0007
10.000 83,024 -0.1742 56.890 -0.0031 0.0339 57.596 0.0006

Table 6.8.3: Data set A, stimulus s, number of jumps N , mean, standard deviation
and mean zero test for the x and y components of the PDFs shown in Figures 6.8.20
and 6.8.21.

6.8 Additional Information for Stimulated Cells

We add plots of the time dependent mean and standard deviation for the stimulated

data that support the breaking of the time into three parts and that the tails of the

data are stationary. Next, we present plots of the components of the jumps along

with their best normal fit. We also compute the means over time of the means of

the jump lengths, standard deviation of jump lengths and the diffusion coefficient.

6.8.1 Mean and Standard deviation of the Tails

In figures 6.8.16 and 6.8.17 we provide plots of the time dependent mean (4.4.10)

for the data. In Figures 6.8.18 and 6.8.19 we give the plot of the time dependent

standard deviation (4.4.11) of the data.

6.8.2 Analyzing the Tails

As for the unstimulated data, we find the PDFs of the components of the jumps

by dividing the intervals −346 ≤ ∆x,∆y ≤ 346 into 500 equal sub-intervals. Using
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x y
s N µ σ µ/σ µ σ µ/σ

0.001 115,539 -0.1436 84.807 -0.0017 0.0267 84.690 0.0003
0.010 100,356 0.1688 81.368 0.0021 -0.5431 82.116 -0.0066
0.100 30,948 -0.6980 56.400 -0.0124 0.0363 58.329 0.0006
1.000 92,906 -0.0933 45.300 -0.0021 -0.4470 45.783 -0.0098
10.000 124,992 0.0557 54.942 0.0010 -0.2751 54.256 -0.0051

Table 6.8.4: Data set B, stimulus s, number of jumps N , mean, standard deviation
and mean zero test for the x and y components of the PDFs shown in Figures 6.8.20
and 6.8.21.

this we bin the components for the jumps and then estimate the mean and standard

deviation from (4.4.20) and record them in Tables 6.8.3 and 6.8.4. The means divided

by their standard deviation (mean zero test) are essentially zero.

We use the estimated standard deviations to determine a normal distribution

that best fits the biological data; they are plotted in Figures 6.8.20 and 6.8.21. As

with the unstimulated data, the plots in these figures indicate that the PDF are

not normally distributed which is confirmed by the two sample Kolmogorov-Smirnov

test.

In all cases, we observe that for approximately |x| < 50nm, there is an excess of

short jumps compared to the normal distribution and that this excess is bigger than

the unstimulated data. For approximately 50nm< |x| <190nm, the are fewer jumps

than in a normal distribution.
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Figure 6.8.16: Time dependent means of the x and y jumps for data set A.
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Figure 6.8.17: Time dependent means of the x and y jumps for data set B.
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Figure 6.8.18: Time dependent standard deviations of the x and y jumps for data
set A.
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Figure 6.8.19: Time dependent standard deviations of the x and y jumps for data
set B.
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Figure 6.8.20: Distributions and their normal fits of the x and y jumps in the tails
of data set A.
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Figure 6.8.21: Distributions and their normal fits of the x and y jumps in the tails
of data set B.
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Figure 6.8.22: Data angles and generated random angles in the tails of data set A.
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A B
stimulus H p H p

0.001 0.000 0.4031 0.000 0.6019
0.010 0.000 0.3198 0.000 0.7614
0.100 0.000 0.2184 0.000 0.4031
1.000 0.000 0.2491 0.000 0.1907
10.000 0.000 0.2184 0.000 0.6019

Table 6.8.5: The two sample Kolmogorov-Smirnov test for the jump angles.

For the jump angles, as before, we divide [−π, π] into 500 bins and then bin

the angles and computed their PDFs, which are displayed in Figures 6.8.22 and

6.8.23. As with the unstimulated data the mean angle is 0.1592 as is true for the

uniform distribution which is equal to 1/2 π. This and the results of the two sample

Kolmogorov-Smirnov test shown in Table 6.8.5, strongly support that the angles are

uniformly distributed.

6.8.3 Means of the Time Dependent Jump Lengths, Stan-

dard Deviation and Diffusion Coefficients

In tables 6.8.6 and 6.8.7, we give the means over time of the jump lengths, standard

deviations, and diffusion coefficients, before the stimulus and in the tails. The means

before stimulation are essentially constant, while in the tails, the means of the jump

lengths decrease from about 119nm to 55nm, and the means of the standard devi-

ations decrease from about 72nm to 48nm. The means of the diffusion coefficients

decrease from about 0.068ug/ml to 0.030ug/ml We can also see that the diffusion

coefficient for stimulus 0.001 is smaller than that for the unstimulated data which is

0.093nm.
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before stimulus tail
stimulus MJL MSDJL MDC MJL MSDJL MDC

0.001 102.4006 68.6032 0.0778 92.8836 65.1098 0.0657
0.010 100.8631 65.5379 0.0737 89.4505 64.2782 0.0621
0.100 104.6642 68.4782 0.0794 63.6439 53.4268 0.0359
1.000 108.2829 68.8532 0.0838 50.5700 41.0609 0.0225
10.000 115.4477 69.4573 0.0923 58.4415 48.6962 0.0301

Table 6.8.6: Means of the jump lengths (MJL), means of the standard deviations
of the jump lengths (MSDJL) and means of the diffusion coefficients (MDC), before
the stimulus and in the tails for data sets A.

before stimulus tail
stimulus MJL MSDJL MDC MJL MSDJL MDC

0.001 119.6342 69.1438 0.0970 95.8469 65.5385 0.0686
0.010 121.4886 69.0355 0.0995 88.9692 64.4548 0.0616
0.100 127.5226 70.6710 0.1075 63.9434 55.6298 0.0369
1.000 122.2057 69.5363 0.1006 45.0944 42.8372 0.0202
10.000 114.0410 69.9440 0.0910 54.9216 48.3871 0.0275

Table 6.8.7: Means of the jump lengths (MJL), means of the standard deviations of
the jump lengths (MSDJL)and means of the diffusion coefficients (MDC), before the
stimulus and in the tails for data sets B.
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Figure 6.8.23: Data angles and generated random angles in the tails of data set B.
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