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Abstract

Intensive computational methods have been used by Earth scientists in a wide

range of problems in data inversion and uncertainty quantification such as earth-

quake epicenter location and climate projections. To quantify the uncertainties re-

sulting from a range of plausible model configurations it is necessary to estimate

a multidimensional probability distribution. The computational cost of estimating

these distributions for geoscience applications is impractical using traditional meth-

ods such as Metropolis/Gibbs algorithms as simulation costs limit the number of

experiments that can be obtained reasonably. Several alternate sampling strategies

have been proposed that could improve on the sampling efficiency including Multiple

vii



Very Fast Simulated Annealing (MVFSA) and Adaptive Metropolis algorithms. As

a goal of this research, the performance of these proposed sampling strategies are

evaluated with a surrogate climate model that is able to approximate the noise and

response behavior of a realistic atmospheric general circulation model (AGCM). The

surrogate model is fast enough that its evaluation can be embedded in these Monte

Carlo algorithms. The goal of this thesis is to show that adaptive methods can be

superior to MVFSA to approximate the known posterior distribution with fewer for-

ward evaluations. However, the adaptive methods can also be limited by inadequate

sample mixing. The Single Component and Delayed Rejection Adaptive Metropo-

lis algorithms were found to resolve these limitations, although challenges remain

to approximating multi-modal distributions. The results show that these advanced

methods of statistical inference can provide practical solutions to the climate model

calibration problem and challenges in quantifying climate projection uncertainties.

The computational methods would also be useful to problems outside climate pre-

diction, particularly those where sampling is limited by availability of computational

resources.

viii



Contents

List of Figures xi

List of Tables xvii

1 Introduction 1

2 A Physical Surrogate Climate Model 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Milankovitch Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Climate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Surrogate Climate Model . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 The Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Monte Carlo Methods 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Gibbs and Metropolis samplers . . . . . . . . . . . . . . . . . . . . . 18

ix



Contents

3.3 Multiple Very Fast Simulated

Annealing (MVFSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Adaptive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 SCAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 FAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Multiple-Try Metropolis . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Simulated Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Computational Approaches Applied to a Climate Model 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Root Mean Square (RMS) Probability Error . . . . . . . . . . . . . . 42

4.3 Appraisal of a few forward evaluations on the climate model . . . . . 46

4.4 Relevance of the parameter S . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusions and future work 61

References 65

x



List of Figures

1.1 A map of predicted global warming at the end of the 21st century

according to the HadCM3 climate model with a business-as-usual

emissions scenario (IS92a). (Source: Global Warming Art (2007)). . 3

1.2 A comparison of predictions of temperature anomalies from 8 dif-

ferent climate models assuming the SRES A2 emissions scenario

(Source: Global Warming Art (2007)). . . . . . . . . . . . . . . . . . 4

2.1 Earth’s orbital geometry parameters: Obliquity (Earth’s axial tilt),

Eccentricity (how elliptical the Earth’s orbit around the Sun is),

and longitude of Perihelion (point of closest approach to the Sun).

(Source: Windows for the Universe (UCAR) (2007)). . . . . . . . . . 7

2.2 Variations in Earth’s orbit, the resulting changes in solar energy flux

at high latitude, and the observed glacial cycles (Source: Global

Warming Art (2007)). . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Eccentricity (e(t)), Obliquity (Φ(t)), and longitude of Perihelion (λ(t))

time series: 500,000 yrs before present. . . . . . . . . . . . . . . . . 10

xi



List of Figures

2.4 AGCM response of annual and zonal mean lowest level temperature

(Kelvin degrees) from 70◦ S to 90◦ S (over Antarctica) to known con-

tinuous changes in Earth’s orbital geometry for the past 165 thou-

sand years (e(t), λ(t), and Φ′(t) are known time series). Panel (a)

shows the model response (in gray) with least squares fitted solution

(black curve) given by equation (1). The least squares fitted solution

includes an obliquity component (b), and a precessional component

(c). The residual between the least squares fitted solution and the

AGCM is shown in panel (d). . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Likelihood for orbital forcing parameters. Left column: S=1. Right

column: S=47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Target distribution with 2 local modes and 1 global mode: π(m) =

3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4) . . . . . . . . . . . . . . . . . . 18

3.2 Gibbs sampler applied to the target distribution π(m) = 3
9
N(−45, 25)+

1
9
N(2, 9)+ 5

9
N(30, 4). Top: The black solid line represents the actual

pdf, and the white bars, the plot of the histogram. Bottom: Trace

plot of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Metropolis-Hastings algorithm applied to the target distribution π(m) =

3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using as proposal distribution

a N(m(k−1), V ). Top: The black solid line represents the actual pdf,

and the white bars, the plot of the histogram. Bottom: Trace plot

of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xii



List of Figures

3.4 Multiple Very Fast Simulated Annealing algorithm applied to the

target distribution π(m) = 3
9
N(−45, 25)+ 1

9
N(2, 9)+ 5

9
N(30, 4), using

400 independent initial points. Top: The black solid line represents

the actual pdf, and the white bars, the plot of the histogram. Bottom:

Trace plot of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Metropolis-Hastings algorithm applied to the target distribution π(m) =

3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using as proposal distribution

a N(m(k−1), 1). Top: The black solid line represents the actual pdf,

and the white bars, the plot of the histogram. Bottom: Trace plot

of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Adaptive Metropolis algorithm applied to the target distribution

π(m) = 3
9
N(−45, 25)+ 1

9
N(2, 9)+ 5

9
N(30, 4), using as initial proposal

distribution a N(m(t−1), 1). Top: The black solid line represents the

actual pdf, and the white bars, the plot of the histogram. Bottom:

Trace plot of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Adaptive Metropolis algorithm applied to the target distribution

π(m) = 3
9
N(−45, 25)+ 1

9
N(2, 9)+ 5

9
N(30, 4), using as initial proposal

distribution a N(m(t−1), 2). Top: The black solid line represents the

actual pdf, and the white bars the plot of the histogram. Bottom:

Trace plot of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 DRAM algorithm applied to the target distribution π(m) = 3
9
N(−45, 25)+

1
9
N(2, 9) + 5

9
N(30, 4). Strategy used: First and second proposal dis-

tributions use same variance V = 1. Top: The black solid line repre-

sents the actual pdf, and the white bars, the plot of the histogram.

Bottom: Trace plot of iterations. . . . . . . . . . . . . . . . . . . . . 31

xiii



List of Figures

3.9 DRAM algorithm applied to the target distribution π(m) = 3
9
N(−45, 25)+

1
9
N(2, 9) + 5

9
N(30, 4). Strategy used: the variance on the second

stage proposal is a factor of the variance of the first stage proposal,

V2 = 0.1∗V1, where V1 = 10. Top: The black solid line represents the

actual pdf, and the white bars, the plot of the histogram. Bottom:

Trace plot of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Multiple-try Metropolis algorithm applied to the target distribution

π(m) = 3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using k = 10 different

proposed new values at every time. Top: The black solid line repre-

sents the actual pdf, and the white bars, the plot of the histogram.

Bottom: Trace plot of iterations. . . . . . . . . . . . . . . . . . . . . 34

3.11 Simulated Tempering algorithm applied to the target distribution

π(m) = 3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using 10 heated distri-

butions with a cooling schedule similar to MVFSA. Top: The black

solid line represents the actual pdf, and the white bars, the plot of

the histogram. Bottom: Trace plot of iterations. . . . . . . . . . . . 35

3.12 Swapping algorithm applied to the target distribution π(m) = 3
9
N(−45, 25)+

1
9
N(2, 9) + 5

9
N(30, 4), using 3 parallel chains starting from different

points over the parameter space. Top: The black solid line repre-

sents the actual pdf, and the white bars, the plot of the histogram.

Bottom: Trace plot of iterations. . . . . . . . . . . . . . . . . . . . . 38

4.1 Bivariate scatter plots of orbital forcing parameters. First column:

FAM. Second column: SCAM. Third column: DRAM. Fourth col-

umn: MVFSA. Fifth column: METSA. . . . . . . . . . . . . . . . . 42

4.2 Comparison for Obliquity parameter. Top left: PPD estimation.

Bottom: Ergodic quantile estimation (97.5%). . . . . . . . . . . . . 50

xiv



List of Figures

4.3 Comparison for Obliquity parameter. Top: RMS as function of iter-

ations. Bottom: RMS as function of time (seconds). . . . . . . . . . 51

4.4 Comparison for Longitude of Perihelion parameter. Top left: PPD

estimation. Bottom: Ergodic quantile estimation (97.5%). . . . . . . 52

4.5 Comparison for Longitude of Perihelion parameter. Top: RMS as

function of iterations. Bottom: RMS as function of time (seconds). . 53

4.6 Comparison for Eccentricity parameter. Top left: PPD estimation.

Bottom: Ergodic quantile estimation (97.5%). . . . . . . . . . . . . 54

4.7 Comparison for Eccentricity parameter. Top: RMS as function of

iterations. Bottom: RMS as function of time (seconds). . . . . . . . 55

4.8 Box plots of the samples from different methods. Top: Obliquity.

Middle: Longitude of Perihelion. Bottom: Eccentricity. . . . . . . . 56

4.9 Autocorrelation function of orbital forcing parameters. First column:

FAM. Second column: SCAM. Third column: DRAM. Fourth col-

umn: MVFSA. Fifth column: METSA. . . . . . . . . . . . . . . . . 57

4.10 Bivariate scatter plots of orbital forcing parameters with just 500

iterations. First column: FAM. Second column: SCAM. Third col-

umn: DRAM. Fourth column: MVFSA. Fifth column: METSA. . . 58

4.11 Histograms with just 500 iterations (black bars). PPD Estimated us-

ing 100,000 iterations from the FAM algorithm (red line). First col-

umn: FAM. Second column: SCAM. Third column: DRAM. Fourth

column: MVFSA. Fifth column: METSA. . . . . . . . . . . . . . . . 59

xv



List of Figures

4.12 First row: Estimated PPD using an adaptive method. Using the

S parameter (solid line) and using a non-informative prior (dotted

line). Second row: Box plots of posterior samples. . . . . . . . . . . 60

5.1 Surrogate Climate Model with two solutions (modes). Comparative

PPD estimation using Adaptive Metropolis methods and Simulated

Annealing based techniques. Top: Comparison for Obliquity param-

eter. Bottom: Comparison for Longitude of Perihelion parameter. . 64

xvi



List of Tables

4.1 Time in seconds spent per computational method to compute one

iteration with the climate surrogate model. . . . . . . . . . . . . . . 41

4.2 Comparative estimation after 500 forward evaluations. E(m∗) is the

minimum of the cost function, Φ is the Obliquity, λ is the Longitude

of Perihelion and e is the Eccentricity. . . . . . . . . . . . . . . . . . 47

xvii



Chapter 1

Introduction

Monte Carlo inversion techniques were first used by Earth scientists more than 30

years ago as a method to estimate the parameters of computer models that simulate

real, physical systems. Given randomly selected parameter values, the best computer

model results were tested for their fit to the observed data and then the model was

accepted or rejected to finally make predictions about the physical system of interest.

As more computational power became available, Monte Carlo methods have shown

to be important in the analysis of nonlinear inverse problems where simple gradient

descent algorithms fail and multi-modality of the cost function results in multiple

possible solutions.

Monte Carlo techniques can be divided as sampling methods and as optimization

methods. Monte Carlo sampling is useful where calculus-based methods fail to search

an optimal solution and characterize uncertainty. The Metropolis algorithm and the

Gibbs sampler are the most widely used Monte Carlo samplers for this purpose.

Monte Carlo optimization methods are powerful tools when searching for global

optimal solutions amongst numerous local optima. Simulated annealing and genetic

algorithms have shown their strengths in this respect. Some important areas where

1



Chapter 1. Introduction

Monte Carlo inversion became feasible are problems in seismology in the latter part of

the 1960s. Since that time, they have been applied to a wide range of problems such

as earthquake epicenter location, Kozlovskaya (2000), atmospheric remote sensing,

Haario et al. (2004), sea-borne radar applications, Yardim et al. (2006) and so forth.

One area of paramount importance for having more quantitative approaches to

evaluating parametric uncertainties in Earth sciences is prediction of global warm-

ing. Models referenced by the Intergovernmental Panel on Climate Change Third

Assessment Report (IPCC-TAR (2001)) predict that global temperatures are likely

to increase (Figure 1.1) by 1.1 to 6.4◦C (2.0 to 11.5◦F) between 1990 and 2100. The

uncertainty in this range comes from both the difficulty in predicting the amount

of future greenhouse gas emissions and uncertainties regarding climate sensitivity.

There has been limited progress in understanding and quantifying sources of this

uncertainty. What has been done stems mainly from the analysis of multiple model

responses to similarly applied forcings (e.g. Gates et al. (1999); Joussaume and

Taylor (2000); Meehl et al. (2000)). The 2001 IPCC report, in its assessment of

current research needs, calls for “a much more comprehensive and systematic system

of model analysis and diagnosis, and a Monte Carlo approach to model uncertainties

associated with parameterizations” (Section 8.10, McAvaney et al. (2001)). There

has been some recent progress along these lines including work with models of re-

duced complexity (Forest et al., 2000, 2001, 2002) and perturbed physics ensembles

with a general circulation model (Allen (1999); Murphy et al. (2004); Stainforth et

al. (2005); Collins et al. (2006); Jackson et al. (2008)).

A large disparity exists among various climate models (Figure 1.2) in their predic-

tion of global mean surface air temperature when atmospheric CO2 is doubled com-

pared to present concentrations. There is an overwhelming number of reasons why

these differences could exist. Although each climate model has been optimized to re-

produce observational means, each model contains slightly different choices of model

2



Chapter 1. Introduction

Figure 1.1: A map of predicted global warming at the end of the 21st century
according to the HadCM3 climate model with a business-as-usual emissions scenario
(IS92a). (Source: Global Warming Art (2007)).

parameter values as well as different parameterizations of under-resolved physics.

Multi-model systems could be more reliable than single-model systems. In this

matter, Tebaldi et al. (2005) propose a Bayesian statistical model that combines

information from a multi-model ensemble of atmospheric ocean general circulation

models (AOGCM) and observations to determine the probability distribution of fu-

ture climate change. Barnett et al. (2006) use multiple versions of the HadAM3

GCM to quantify the uncertainty in changes in extreme event frequency in response

to doubled CO2. Collins et al. (2006) also compare multi-model ensembles of models

from the IPCC-4AR (2007) with the predictions using the HadCM3 to quantify un-

certainties in transient climate change using a perturbed physics approach in which

modeling uncertainties are sampled systematically by perturbing uncertain parame-

ters. Lopez et al. (2006) develop a Bayesian statistical model to produce probabilistic

projections of regional climate change using observations and ensembles of GCMs.

3



Chapter 1. Introduction

Figure 1.2: A comparison of predictions of temperature anomalies from 8 different
climate models assuming the SRES A2 emissions scenario (Source: Global Warming
Art (2007)).

Kettleborough et al. (2007) discuss a method for estimating uncertainty in future

climate change using Monte Carlo Sampling.

A range of model hierarchies have been used to quantify the sources and impacts

of climate modeling uncertainties: general circulation models, models of reduced com-

plexity, and surrogate or emulator models. General circulation models are the most

demanding computationally and simulate the detailed interactions among the atmo-

spheric, oceanic, land surface, and sea ice components of the climate system and are

usually developed by national model development centers such as the Hadley Center

and their version 3 coupled Atmosphere-Ocean system (HadCM3) and the National

Center for Atmospheric Research and their version 3 Community Climate System

Model (CCSM3). As an example of the typical computational expense of these mod-

els, it takes 16 processors of a computational cluster 24 hours to simulate 10 years of

climate. This expense has motivated some researchers to consider models of reduced

4



Chapter 1. Introduction

complexity where one or more spatial dimensions of a climate model are eliminated

(e.g. Forest et al., 2000, 2001, 2002). The present research uses a surrogate climate

model that mimics the equilibrium space-time response of an Atmospheric GCM to

changes in multiple model parameters from a set of previously run experiments to

test different sampling strategies for quantifying parametric uncertainties.

The main goal of this thesis is to study how we may estimate probability distribu-

tions for parameters in climate models and assess which methods are more adequate

for this purpose. However, the computational algorithms used in this work can be

applied more generally to sample target distributions in any statistical inference

problem. The methods used are in no way standard for the current state of the art

within the climate literature. By applying adaptive methods we can approximate

the posterior probability distribution (PPD) of the climate model parameters with

few forward evaluations. The results obtained not only could be used to improve the

calibration of a climate model, but also to test the strength of scientific inferences

from observational data. Moreover, the strategically chosen samples could also serve

as the basis for creating a statistical climate emulator model on which other, more

standard MCMC sampling strategies could be used for generating accurate measures

of the posterior distribution.

5



Chapter 2

A Physical Surrogate Climate

Model

2.1 Introduction

Global warming by definition is the increase in the average temperature of the Earth’s

near-surface air and the oceans. The purpose of this chapter is to unfold the main

elements to understand the relationship between the Earth’s physical system and the

change of the surface air temperature in the planet. Section 2.2 explains the theory

that relates the orbital mechanics of the Earth with the variation in the surface air

temperature. Section 2.3 describes a procedure to use the output from an Atmo-

spheric General Circulation Model to build a surrogate climate model. Section 2.4

explains the details of the surrogate climate model, and finally Section 2.5 provides

a description about the concept of cost function, one of the key elements to make

inference about the parameters on the climate system.

6



Chapter 2. A Physical Surrogate Climate Model

Figure 2.1: Earth’s orbital geometry parameters: Obliquity (Earth’s axial tilt), Ec-
centricity (how elliptical the Earth’s orbit around the Sun is), and longitude of Per-
ihelion (point of closest approach to the Sun). (Source: Windows for the Universe
(UCAR) (2007)).

2.2 Milankovitch Cycles

Milankovitch (1941) proposed that variations in the Earth’s orbit cause climate vari-

ability through a local thermodynamic response to changes in insolation. The Earth’s

orbital geometry parameters (obliquity, longitude of perihelion and eccentricity) are

astronomical factors that influence the timing and intensity of the seasons. The

properties of the solar forcing result from variations in the obliquity of the Earth’s

spin axis relative to the plane of the Earth’s orbit about the Sun, precession of the

Earth’s spin axis, and the eccentricity (non-circularity) of the Earth’s orbit (Fig-

ure 2.1). The obliquity varies on a time cycle of about 40,000 yrs. This changes the

geographical distribution of insolation on both a seasonal and annual mean basis.

The Earth’s spin axis completes one precessional cycle in about 20,000 yrs. The pre-

cession effect acts to increase insolation during the season the Earth is at its closest

approach to the Sun (the perihelion). Because insolation is greater for all latitudes

7



Chapter 2. A Physical Surrogate Climate Model

Figure 2.2: Variations in Earth’s orbit, the resulting changes in solar energy flux at
high latitude, and the observed glacial cycles (Source: Global Warming Art (2007)).

at perihelion, the precessional forcing is in phase globally for any given time of year.

Unlike obliquity, precession does little to alter the geographical distribution of annual

mean insolation. Variations in eccentricity, ocurring on approximately 100,000 year

time scales, has a small influence on annual mean insolation. Their main effect is to

modulate the strength of the precessional forcing. According to Milankovitch theory,

the precession of the equinoxes, variations in the tilt of the Earth’s axis (obliquity)

and changes in the eccentricity of the Earth’s orbit are responsible for causing the

observed 100,000 yrs cycle in ice ages by varying the amount of sunlight received

by the Earth at different times and locations, particularly high northern latitude

summer, (Figure 2.2).
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2.3 Climate Model

Jackson and Broccoli (2003) taking advantage of the short equilibration time (10

yrs) of an atmospheric general circulation model (AGCM), land surface model and

a static mixed-layer ocean model (i.e. including a thermodynamic model of sea

ice), derive the equilibrium climate response to accelerated variations in Earth’s

orbital configuration over the past 165,000 yrs. More precisely, they estimate the

sensitivity of each orbital component by fitting a time series of the evolution of each

orbital component with the model output. They can estimate an amplitude of that

component within the time series. This amplitude represents the sensitivity of the

region and season to changes in that orbital component.

The sensitivity of surface air temperature to obliquity forcing Ao,ijk and pre-

cessional forcing Ap,ijk can be defined for particular latitudes i, longitudes j, and

seasons k. They represent the climate model’s response to the seasonally and lati-

tude varying changes in insolation for a given unit change in orbital parameter values.

They are derived from an ordinary multiple least squares fitting procedure between

modeled variations in climate found within a climate model integration of the past

165,000 yrs forced only by changes in Earth’s orbital geometry and two basis func-

tions representing the known temporal variations in obliquity and precession. In

particular, the obliquity basis function Ao,ijkΦ
′(t) consists of an unknown sensitiv-

ity Ao,ijk and the time series of obliquity variations Φ′(t) over the past 165,000 yrs,

where Φ′(t) = Φ(t) − Φo, is the deviation of obliquity from its 165,000 yrs mean

(Φo = 23.3515◦). The precessional basis function Ap,ijke(t)cos(φp,ijk − λ(t)) consists

of an unknown sensitivity Ap,ijk, an unknown phase angle of response φp,ijk, the time

series of eccentricity e(t), and the time series of the longitude of the perihelion λ(t).

The time series e(t), λ(t), and Φ′(t) are known from orbital mechanics and were used

as input values in the AGCM which calculates the changes in insolation as a function

of latitude and season for each year of the experiment (Figure 2.3).
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Figure 2.3: Eccentricity (e(t)), Obliquity (Φ(t)), and longitude of Perihelion (λ(t))
time series: 500,000 yrs before present.

The multiple least squares fitting procedure provides estimates of Ao,ijk, Ap,ijk,

and φp,ijk that best represent the climate model’s response to the time evolving

changes in orbital forcing. For instance, the variations in surface air temperature

with respect to the 165,000 yrs annual mean for a given region and season Tijk(t)

may be represented by,

Tijk(t) = Ao,ijkΦ
′(t) + Ap,ijke(t)cos(φp,ijk − λ(t)) + Rijk(t), (2.1)

where Rijk(t) is a residual. The fitting procedure described above also allows one

to construct a surrogate climate model using the estimated latitude, longitude, and

seasonal obliquity and precessional forcing sensitivities. Figure 2.4 gives a comparison

of the ability of the least squares fitting procedure with imposed time variations in

10
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Earth’s orbital geometry to reproduce the AGCM’s response to the annual mean

air temperature in Antarctica averaged from 70◦ S to 90◦ S and separated into its

obliquity, precessional, and residual components. This is done by averaging together

the sensitivities of all latitude, longitude, and seasons for this region and estimating

the response by imposing the changes in the obliquity and precessional components.

2.4 Surrogate Climate Model

The surrogate model is based on surface air temperature fields generated by an

AGCM in its response to changes in three parameters specifying Earth’s orbital

geometry over the past 165,000 yrs. The response can be approximated in terms

of obliquity and precession components by using the multiple least squares fitting

procedure described in the previous section. We will use this surrogate climate

model to test sampling strategies as a follow-up study to Jackson et al. (2004),

which consider the same surrogate model as in this research but mostly compares

Multiple Very Fast Simulated Annealing (MVFSA) with the Metropolis/Gibbs and

Grid search algorithms. One of the main goals of my thesis was to evaluate factors

affecting the efficiency and accuracy of alternative sampling strategies to the MVFSA

and Gibbs/Metropolis algorithms.

We denote the Earth’s orbital geometry parameters and their physical range

as obliquity, Φ ∈ (22◦, 25◦), eccentricity, e ∈ (0, 0.05) and longitude of perihelion,

λ ∈ (0◦, 360◦), therefore the dependency on t is omitted for the surrogate climate

model. The observed data is a 3D array dobs,ijk which represents the observed surface

temperature anomalies with respect to the long term 165,000 yrs mean at latitude

i, longitude j, and season k. The grid spacing is approximately 4.5◦ latitude by

7.5◦ longitude, then the latitude can take I = 40 different values, and the longitude

J = 48. The season takes K = 12 values, which are selected days throughout the

11



Chapter 2. A Physical Surrogate Climate Model

Thousands of years before present

Lo
we

st 
Le

ve
l Te

mp
era

tur
e [

K]

Obliquity Component

Precessional Component

Residual

(a)

(b)

(c)

(d)

Figure 2.4: AGCM response of annual and zonal mean lowest level temperature
(Kelvin degrees) from 70◦ S to 90◦ S (over Antarctica) to known continuous changes
in Earth’s orbital geometry for the past 165 thousand years (e(t), λ(t), and Φ′(t) are
known time series). Panel (a) shows the model response (in gray) with least squares
fitted solution (black curve) given by equation (1). The least squares fitted solution
includes an obliquity component (b), and a precessional component (c). The residual
between the least squares fitted solution and the AGCM is shown in panel (d).

year. Each value of k would apply for that season and for all time t over the past

165,000 years. The observed data are simulated using Φ = 22.625, e = 0.043954, and

λ = 75.93, as ideal values for the climate model. We approximate the data using the

relationship, dobs,ijk = gijk(m)+ηijk, where m = (Φ, e, λ) is the vector of parameters,
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g represents the forward operator and it has the same dimensionality as dobs,ijk. The

definition of the function g is crucial since it is completely defined by the physical

system. The term ηijk is a Gaussian error with estimated variance given by Bijk; this

array represents the variance of the observations at each grid point. This variability

comes from the 1,500 year integration of the model itself, but with the appropri-

ate seasonal and climatological averages (i.e. 10 year means of particular seasons).

Typically, in Earth science models the observational uncertainties are assumed as

Gaussian, see Jackson et al. (2004), Tebaldi et al. (2005), and Lopez et al. (2006).

In this thesis, the surface air temperature anomaly to a given change in the three

parameters that define the Earth’s orbital geometry is gijk(m). The surrogate climate

model is defined as follows,

gijk(m) = Âo,ijkΦ
′ + eÂp,ijkcos(φ̂p,ijk − λ) + R̂ijk, (2.2)

where φ̂p,ijk is the phase of the response to precessional forcing and R̂ijk are the

residuals averaged over time obtained from the AGCM in (2.1). This term is added

to represent the effects of internal variability on 10 year seasonal means. Repeated

experiments of the climate model will cycle through 1 of 150 possible values of R̂ijk

that come from a 1,500 year long control integration of the AGCM. Âo,ijk and Âp,ijk

are the sensitivity of temperature to changes in obliquity and precession obtained

using the time series fitting procedure in (2.1).

2.5 The Cost Function

The cost function or misfit function is a measure of the deviation generated from the

observed data (dobs) and the data generated from the model (g(m)). In general, the

cost function can be represented as E(m) = ||dobs − g(m)||, where m is any given

vector of parameters of interest from the physical system, and the difference between
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the data and the model is given by a specific metric. The cost function can be defined

in many ways. For instance, in Mu et al. (2003),

E(m) ≈
1

2N

N
∑

i=1

(

K
∑

j=1

a2
j

λ2
j

)

i
,

where aj are the coefficients of a series of empirical orthogonal functions that recon-

struct modeled-observational differences and λj is the variance accounted for by the

jth component, in other fields this is known as principal component analysis (PCA).

Wang (2007) uses the following cost function to investigate El Nino Southern

Oscillation (ENSO) sensitivity,

E(m) =
1

5

{(varmod − varobs)
2

σvar

+
(skwmod − skwobs)

2

σskw

+

(kurmod − kurobs)
2

σkur
+

1

6

∑

τ

(cormod(τ) − corobs(τ))
2

σcor(τ)

}

,

where m = (varmod, skwmod, kurmod, cormod), here var, skw, kur, and cor are vari-

ance, skewness, kurtosis, and autocorrelation of the time series; σ· is the data uncer-

tainty and τ is the time lag. This cost function is defined as a weighted average of

the mean square error of multiple characteristics of ENSO statistics.

In the surrogate climate model considered here, the cost function is defined as,

E(m) =
1

2

I
∑

i=1

J
∑

j=1

K
∑

k=1

B−1
ijk(dobs,ijk − gijk(m))2, (2.3)

where m = (Φ, e, λ) is the vector of Earth’s orbital geometry parameters (obliquity,

eccentricity, and longitude of perihelion). On the climate model studied here there

is just one field, surface air temperature anomalies, however we can have N different

sets of observations, such as seasonal and annual mean surface air temperature, pre-

cipitation, winds, and clouds at different latitudes. It is proposed that, the likelihood

function takes the form,

L(dobs|m, S) ∝ exp{−SE(m)}. (2.4)
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The parameter S is connected to Bijk according to Jackson et al. (2004) as a scaling

factor. S performs the function of weighing the significance of model-data differences.

Large values of S would imply small errors between the data and the model and would

result in highly peaked probability distributions. To illustrate this, we fixed S = 47

based on the expertise and initial knowledge given in Jackson et al. (2004) as an

appropriate value for this parameter. To gain some initial insight of the likelihood

function for the surrogate climate model, we can plot the profile likelihood for each

parameter. Since we already know the optima values for the simulation study about

this model (Φ = 22.625, e = 0.043954, λ = 75.93),we fix two parameters on their

optimum value and we evaluate the third one using a 20,000 point grid evaluation.

Figure 2.5 shows the profile likelihoods for each parameter, Φ, e and λ for two

different values of S. Due to internal variability, the climate model can take on

a range of likelihood values for any given combination of orbital parameter values.

This scatter from internal variability (noise term in (2.2)) is seen within Figure 2.5

as the thin vertical lines that follow the broader scale variations in likelihood values.

These broad scale variations reflect the smoothly evolving changes in climate that

accompany changes in orbital geometry.
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Figure 2.5: Likelihood for orbital forcing parameters. Left column: S=1. Right
column: S=47.
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Chapter 3

Monte Carlo Methods

3.1 Introduction

This chapter is a review of some Monte Carlo (MC) and Markov Chain Monte Carlo

(MCMC) algorithms used to get samples from target distributions. To illustrate

the different methods, we consider an example of a multi-modal univariate proba-

bility density which is challenging to sample using standard approaches. The target

distribution is a mixture of univariate normal distributions with different means,

variances, and component weights. The target density function is defined by,

π(m) =

(

3

9

)

1
√

(25)(2π)
exp{−

1

2(25)
(m + 45)2} +

(

1

9

)

1
√

(9)(2π)
exp{−

1

2(9)
(m − 2)2} +

(

5

9

)

1
√

(4)(2π)
exp{−

1

2(4)
(m − 30)2}. (3.1)

The mixture weights (3
9
+ 1

9
+ 5

9
= 1) must add up to 1 so π(m) is a probability density

function (pdf). Figure 3.1 shows a graph of π(m). We can notice that π(m) has two
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Figure 3.1: Target distribution with 2 local modes and 1 global mode: π(m) =
3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4)

local modes and one global mode. Numerical methods used to find the global mode

like the Newton-Raphson algorithm can get easily stuck at a local mode, in this kind

of situation.

The cost or misfit function is defined through the relationship π(m|·) ∝ exp{−E(m)},

where E(m) is the cost function. In the case of a univariate Normal distribution with

mean zero and variance equal to 4, the cost function is E(m) = − 1
2(4)

m2. In the

case of a mixture of Normals, E(m) = −log(π(m)) since we cannot factor any of the

terms due to the different weights and variances of the mixture components.

3.2 Gibbs and Metropolis samplers

Geman and Geman (1984) consider that a Gibbs distribution π can be uniquely
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determined by

π(xs|xr, r 6= s) =
π(ω)

∑

xs∈∆ π(ω)
s ∈ S, ω ∈ Ω.

Where S = {s1, ..., sN} is a set of sites and Ω = {ω = (xs1
, ..., xsN

)| xsi
∈ ∆, 1 ≤

i ≤ N} is the set of all possible configurations. In geosciences, Sambridge and

Mosegaard (2002), use the right side of this formula to define the Gibbs sampler

algorithm while Gelfand and Smith (1990) proposed to use the left side to iteratively

sample the full conditional distributions of each parameter. The Gibbs sampler is

a version of an importance sampling technique that improves the efficiency of the

calculation by sampling model parameters sets from the Gibbs distribution which

is, in effect, equivalent to the desired posterior probability distribution (PPD). This

approach requires the parameter space to be subdivided into a number of equally

spaced intervals.

According to Sen and Stoffa (1996), the probability distribution function of a

parameter m can be approximated via the Gibbs Sampler algorithm as follows,

• First we define,

P (m = mj) =
exp{ 1

T
E(mj)}

∑N
j=1 exp{ 1

T
E(mj)}

, j = 1, ...N, (3.2)

where N is the number of values that the parameter m can take, so m is being

discretized. T is a temperature parameter. A canonical value is T = 1. E(m)

is the misfit function or cost function.

• A value is drawn from (3.2) and is always retained.

• This procedure is repeated for the N values that m can take. (N forward

evaluations).

Figure 3.2 shows that this version of the Gibbs algorithm can work very well in a

univariate case, but is also extremely inefficient since the grid defined on the param-
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Figure 3.2: Gibbs sampler applied to the target distribution π(m) = 3
9
N(−45, 25) +

1
9
N(2, 9) + 5

9
N(30, 4). Top: The black solid line represents the actual pdf, and the

white bars, the plot of the histogram. Bottom: Trace plot of iterations.

eter space required 10, 000 equally spaced points. The selected N values of mj are

completely arbitrary and chosen before the algorithm is implemented. This proce-

dure is different from the statistical version proposed by Gelfand and Smith (1990),

which can be used only in problems of dimensionality greater or equal than 2.

The Metropolis-Hastings (M-H) algorithm (Hastings (1970)) is a variation of the

Metropolis scheme (Metropolis et al. (1953)), that requires a probability function

q as a proposal. This proposal or jump distribution affects the way in which new

models are accepted. The rule is to accept a new model m(k+1) with probability,

α(m(k), m(k+1)) = min

(

1,
π(m(k+1))q(m(k+1), m(k))

π(m(k))q(m(k), m(k+1))

)

.

We applied the M-H algorithm with a random walk proposal distribution to the

target distribution π(m) of (3.1). The algorithm steps are,
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Figure 3.3: Metropolis-Hastings algorithm applied to the target distribution π(m) =
3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using as proposal distribution a N(m(k−1), V ).

Top: The black solid line represents the actual pdf, and the white bars, the plot of
the histogram. Bottom: Trace plot of iterations.

• Set an initial value m(0).

• At iteration k + 1 sample a possible new value y for m(k+1) from a Normal

distribution with mean m(k−1) and variance V . We will use the notation q(·)

to denote the proposal distribution for the new possible values of m.

• We accept y with probability α(m(k), m(k+1)).

Figure 3.3 shows that the M-H algorithm has a good performance, but one of its

main drawbacks is setting the value of V , the variance of the proposal distribution

must take. In order to get good results this value must be tuned carefully. For the

mixture of Normals example, V was set equal to 1000 to allow efficient sampling

from the parameter space. The acceptance rate resulted in a value around 40%.
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Another version of the Metropolis algorithm proposed by Sen and Stoffa (1996)

is the Multiple Metropolis Simulated Annealing (METSA). This method is started

from several independent initial points to improve the sampling of π. At every point,

candidates are drawn at random. The acceptance/rejection rule is to accept a new

value with probability min
(

1, exp(−(E(m(k+1)) − E(m(k)))/T )
)

. Adding T to the

algorithm allows to sample regions of the parameter space with high density.

3.3 Multiple Very Fast Simulated

Annealing (MVFSA)

One may use the temperature parameter within the Metropolis algorithm to take ad-

vantage of the well known features of stochastic optimizers from Simulated Annealing

(Kirkpatrick et al. (1983)) and the Very Fast Simulated Annealing (Ingber (1989)) to

locate the global minimum of the cost function E(m) by very slowly lowering the tem-

perature parameter. Ingber (1989) propose the selection of model parameters given

a current selection m
(k)
i within VFSA so that m

(k+1)
i = m

(k)
i + yi(m

max
i − mmin

i ), yi

is generated according to a Cauchy distribution which is dependent on the cooling

schedule at iteration k, Tk = Toexp(−α(k − 1)1/d). The scalars mmax
i and mmin

i are

the maximum and minimum values that the parameter i can take. The acceptance

criterion for successive model selections is the same as for the Metropolis algorithm.

Also Sen and Stoffa (1996) and Jackson et al. (2008) argue that one may allow

for numerous repetitions of the minimization procedure to strike a balance between

estimating a multidimensional posterior probability density (PPD) and finding the

global minimum. This is known as the MVFSA algorithm and it has the following

features:

• Optimization: Take advantage of the well known characteristics of stochastic
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Figure 3.4: Multiple Very Fast Simulated Annealing algorithm applied to the target
distribution π(m) = 3

9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using 400 independent

initial points. Top: The black solid line represents the actual pdf, and the white
bars, the plot of the histogram. Bottom: Trace plot of iterations.

optimizers from Simulated Annealing (SA) and VFSA.

• Multiple: Instead of using a single initial value as SA or VFSA, we can use

“multiple” initial values over the parameter space.

• Sampling: For each single initial value, propose a new candidate using a

random walk combined with a random number sampled from a Cauchy distri-

bution that is dependent on the cooling schedule. Acceptance of the proposed

value is similar to a Metropolis step.

• Flexibility: Two additional parameters such as moves/temperature and ntarget

add flexibility to the VFSA algorithm to control sampling efficiency for a spec-

ified number of dimensions.
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In our example, MVFSA follows the next steps:

• Set an initial value m(0).

• Set mmin as the minimum value that m can take and mmax as the maximum

value that m can take. Therefore mmin ≤ m(k) ≤ mmax.

• Compute m(k+1) = m(k) + y(mmax − mmin), where y is drawn from a Cauchy

distribution. The realization of y is obtained using the next formula

y = sign(u −
1

2
)Tk

(

(

1 +
1

Tk

)|2u−1|

− 1

)

where u is a random number from a Uniform distribution over (0, 1) and Tk is

the temperature parameter and is defined by Tk = T0e
−α(k−1)1/d

, where T0 = 1,

α = 0.9, and d = 2.

• Define moves/temperature as the number of times that m can change before

lowering the temperature T .

• Evaluate E(m(k+1))

• Evaluate ∆E = E(m(k+1)) − E(m(k)) and if ∆E ≤ 0 then accept m(k+1) as a

new value for m. If ∆E > 0, then accept m(k+1) as a new value with probability

min
(

1, exp{−∆E
T
}
)

.

• Define ntarget as the maximum number of failed attempts at finding an ac-

ceptable set of values for m before stopping.

• Repeat the previous steps for every single point in the grid defined over the

parameter space. This step is what turns the VFSA into a MVFSA.

As we can see in Figure 3.4, although MVFSA sampling is based on stochastic

optimization, the PPD derived through the MVFSA algorithm is broader than what
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may be obtained through the Metropolis/Gibbs sampler as a result of the multiple

independent initial values over the parameter space. In order to get these results, we

set moves/temperature equal to 5, ntarget equal to 25 and the number of points on

the grid equal to 400. The unusual behavior in the trace plot is explained by the fact

that MVFSA is not an MCMC method since its design uses multiple independent

initial points over the parameter space.

3.4 Adaptive Methods

One of the issues with the Metropolis or the Metropolis-Hastings algorithm is the

choice or tuning of an effective proposal distribution to keep acceptance rates at a

30− 40% level, Figure 3.5 shows samples from a M-H using a random walk proposal

with variance V = 1. Alternatively Haario et al. (1999) suggested a method called

Adaptive Proposal (AP) that basically updates the proposal distribution with the

knowledge we have so far learned about the target distribution. Furthermore Haario

et al. (2001) proposed a variation of the AP algorithm called Adaptive Metropolis

(AM) which is a non-Markovian algorithm that has the correct ergodic properties.

The AM has two versions, one called Single Component Adaptive Metropolis

(SCAM) and the full component version (FAM). Haario et al. (2004) applied the

SCAM algorithm to a 90 dimension inversion problem about gas profiles (GOMOS)

in a successful way. Another powerful variant is called Delayed Rejection Adaptive

Metropolis (DRAM) that combines the Delayed Rejection scheme (Tierney and Mira

(1999)) with the AM.
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Figure 3.5: Metropolis-Hastings algorithm applied to the target distribution π(m) =
3
9
N(−45, 25) + 1
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N(30, 4), using as proposal distribution a N(m(k−1), 1).

Top: The black solid line represents the actual pdf, and the white bars, the plot of
the histogram. Bottom: Trace plot of iterations.

3.4.1 SCAM

Let π denote the density of our target distribution, typically a PPD which we can

evaluate up to a normalizing constant. The sequence m(0), m(1), ... denotes the full

states of the process, that is, we consider a new state updated as soon as all the

d components of the state have been separately updated. We denote mi,k−1 =

(m
(0)
i , ..., m

(k−1)
i ) as the sampled vector for the i-th parameter up to state k− 1. The

adaptive scheme is done through the variance equation V
(k)
i = sdV (mi,k−1) + sdǫ.

Where V (mi,k−1) = 1
k−1

∑k−1
r=0(m

(r)
i − mi)

2, mi = 1
k

∑k−1
r=0 m

(r)
i , sd is a positive con-

stant and 0 < ǫ < 1. When updating on the i-th parameter m
(k)
i at state k, we apply

a one dimensional Metropolis step:

• Sample zi ∼ N(m
(k−1)
i , V

(k)
i )
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• Accept the candidate point zi with probability

min

(

1,
π(m

(k)
1 , ..., m

(k)
i−1, zi, m

(k−1)
i+1 , ..., m

(k−1)
d )

π(m
(k)
1 , ..., m

(k)
i−1, m

(k−1)
i , ..., m

(k−1)
d )

)

in which case we set m
(k)
i = zi, and otherwise m

(k)
i = m

(k−1)
i .

When parameters of the target function are highly correlated the SCAM can suffer

from poor mixing as well as the Metropolis algorithm. A remedy to this problem is

to rotate the proposal distribution during the early stage of the sampling (i.e. during

the burn-in period). The rotation can be done by computing the covariance matrix

of the chain so far detected and then computing the eigenvalues of the covariance

matrix. We sort the eigenvalues from the largest to the smallest one and we use this

order as sampling directions for the parameters in the SCAM algorithm.

3.4.2 FAM

Suppose that at time t − 1 we have sampled the states m(0), ..., m(t−1) where m(0) is

the initial state and is a vector of dimension d. Then a candidate point z is sampled

from the proposal distribution qt(·|m
(0), ..., m(t−1)), which now may depend on the

whole history. The candidate z is accepted with probability,

α(m(t−1), z) = min

(

1,
π(z)

π(m(t−1))

)

,

in which case we set m(t) = z, and otherwise m(t) = m(t−1).

The proposal distribution qt(·|m
(0), ..., m(t−1)) employed in the FAM algorithm

is a multivariate Gaussian distribution with mean at the current point m(t−1) and

covariance matrix Ct. The matrix Ct is computed using the sampled covariance

matrix of the parameters up to time t. The crucial aspect regarding the adaptation

is how the covariance of the proposal distribution depends on the history of the chain.
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In the FAM algorithm this is solved by setting Ct = sdCt−1 + sdǫId after an initial

period, where sd is a positive constant that depends only on the dimension d and

ǫ > 0 is a constant that we may choose very small. The role of ǫ is to ensure that

Ct does not become singular. Let us define the matrix Mt with dimensions d by t

as the matrix of sampled values up to t.

Mt =











m
(1)
1 m

(2)
1 . . . m

(t)
1

...
...

...
...

m
(1)
d m

(2)
d . . . m

(t)
d











We select an initial time t0 for the length of an initial period and define

Ct =







C0, if t ≤ t0

sdCt−1 + sdǫId, if t > t0

We can compute the covariance matrix for time t ≤ t0 as

Ct =
1

t − 1
Mt

(

It −
1

t
1t1

′
t

)

Mt

′,

where It is an identity matrix of size t, and 1t is a row vector of ones with length t.

To avoid too much computational cost we can use recursive formulas for the mean

and the covariance. Then we can easily define the recursion for the vector of means

as

mt =
t − 1

t
mt−1 +

1

t
m(t)

and for t > t0. The recursion for the covariance matrix is,

Ct =
t − 2

t − 1
Ct−1 + mt−1m

′
t−1 +

1

t − 1

[

m(t)m(t)′ − tmtm
′
t

]

As a basic choice for the scaling factor sd we can adopt the value sd = (2.4)2/d

as in Gelman et al. (1996). In contrast to the SCAM algorithm all parameters are

sampled at once in the FAM scheme. The AM chain defined above simulates properly
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Figure 3.6: Adaptive Metropolis algorithm applied to the target distribution
π(m) = 3

9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using as initial proposal distribution

a N(m(t−1), 1). Top: The black solid line represents the actual pdf, and the white
bars, the plot of the histogram. Bottom: Trace plot of iterations.

the target distribution π: for any bounded and measurable function f : S → ℜ, it

holds almost surely that

lim
n→∞

1

n + 1

(

f(m0) + f(m1) + · · ·+ f(mn)
)

=

∫

S

f(m)π(dm).

For a detailed proof of this result, see Haario et al. (2001). To illustrate how the

adaptive Metropolis works, we show a couple of examples: (1) Figure 3.6 uses a

random walk proposal with initial variance V = 1, and while the results are not

completely accurate, we can say that it does a better job estimating the target

distribution than a traditional M-H. (2) Figure 3.7 shows how a little increase in

the variance of the proposal distribution (V = 2) improves a lot the results. In both

Figures we did not use a burn-in period to emphasize that the adaptation starts from

the very beginning.
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Figure 3.7: Adaptive Metropolis algorithm applied to the target distribution
π(m) = 3

9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using as initial proposal distribution a

N(m(t−1), 2). Top: The black solid line represents the actual pdf, and the white bars
the plot of the histogram. Bottom: Trace plot of iterations.

3.4.3 DRAM

Haario et al. (2006) combine the ideas of Delayed Rejection (DR) and Adaptive

Metropolis to improve the efficiency of MCMC algorithms. The basic idea of DR is

that upon rejection in a M-H, instead of advancing time and retaining the current

position, a second state move is proposed. The acceptance probability of the second

state candidate is computed so that reversibility of the Markov chain relative to the

distribution of interest is preserved. The process of delaying rejection can be iterated

for a fixed or random number of stages. The DR can be also considered as a way of

combining different proposals to allow the sampler to explore the parameter space

more efficiently.

Suppose the current position of the Markov chain is m(t−1). A new candidate z1
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Figure 3.8: DRAM algorithm applied to the target distribution π(m) =
3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4). Strategy used: First and second proposal dis-

tributions use same variance V = 1. Top: The black solid line represents the actual
pdf, and the white bars, the plot of the histogram. Bottom: Trace plot of iterations.

is generated from a proposal q1(m
(t−1), ·) and accepted with probability

α1(m
(t−1), z1) = min

(

1,
π(z1)q1(z1, m

(t−1))

π(m(t−1))q1(m(t−1), z1)

)

.

Upon rejection, instead of retaining m(t) = m(t−1), as we would do in a standard

M-H, a second state move z2 is proposed. The second state proposal is allowed to

depend not only on the current position of the chain but also on what we have just

proposed and rejected q2(m
(t−1), z1, ·). The second state proposal value z2 is accepted

with probability

α2(m
(t−1), z1, z2) = min

(

1,
π(z2)q1(z2, z1)q2(z2, z1, m

(t−1))(1 − α1(z2, z1))

π(m(t−1))q1(m(t−1), z1)q2(m(t−1), z1, z2)(1 − α1(m(t−1), z1))

)

.

There is a number of different strategies to combine DR and AM. In order to be

efficient, the proposal distribution must somehow be tuned to the shape and size of
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Figure 3.9: DRAM algorithm applied to the target distribution π(m) =
3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4). Strategy used: the variance on the second

stage proposal is a factor of the variance of the first stage proposal, V2 = 0.1 ∗ V1,
where V1 = 10. Top: The black solid line represents the actual pdf, and the white
bars, the plot of the histogram. Bottom: Trace plot of iterations.

the target distribution. One solution is to use adaptation only for the burn-in period

and discard the part of the chain where adaptation has been used. In that respect,

the adaptation can be thought as an automatic burn-in. The idea of diminishing

adaptation is that when adaptation works well, its effect gets smaller and we might

be able to prove the ergodicity properties of the chain even when adaptation is used

throughout the whole simulation. This is the idea behind AM adaptation. On the

other hand, the DR method allows us the use of the current rejected values without

losing the Markovian property and thus allows to adapt locally to the current location

of the target distribution. As an example of two different strategies to use DRAM

we will use DR on the first 200 iterations and we will update the variance of the

proposals after this period and every 100th iteration using the AM. Figure 3.8 is

using the first stage and second stage proposals with initial variance V = 1. In
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Figure 3.9, we used a first stage proposal with initial variance V1 = 10 while the

second stage proposal has an initial variance V2 = 0.1 ∗ V1, this strategy allows us to

make both global and local steps through the parameter space.

3.5 Multiple-Try Metropolis

Liu et al. (2000) introduced the multiple-try Metropolis (MTM) algorithm. They

claim that the algorithm improves exploration of neighboring regions defined by the

transition kernel q(θ, φ). They define weights w(θ, φ) = π(φ)q(θ, φ)λ(θ, φ), where

λ(θ, φ) is a nonnegative symmetric function in θ and φ with λ(θ, φ) > 0 whenever

q(θ, φ) > 0. Suppose that θ is the current state of the Markov chain, then one

iteration of the algorithm proceeds according to the following steps:

• Draw a random sample φ∗
1, ..., φ

∗
k from q(θ, ·);

• Draw φk from {φ∗
1, ..., φ

∗
k} with probability proportional to w(φ∗

j , θ);

• Draw φ1, ..., φk−1 from q(φk, ·);

• Calculate the acceptance probability

α = min

(

1,
w(φ∗

1, θ) + ... + w(φ∗
k, θ)

w(φ1, φk) + ... + w(φk, φk)

)

.

If the move is accepted, set φ = φk. If the move is not accepted, set φ = θ.

Two of the λ functions introduced by Liu et al. (2000) are λ1(θ, φ) = 2q(θ, φ) + q(φ, θ)−1

and λ2(θ, φ) = q(θ, φ)q(φ, θ)−α. When α = 1, w(θ, φ) can be thought of as weights

obtained in a weighted resampling algorithm with proposal density q(θ, φ) and tar-

get π. Figure 3.10 shows that MTM samples pretty well the target distribution with

k = 10, and the proposal is a random walk with variance V = 100. While the num-

ber of iterations is the same as for the other examples, the number of evaluations of
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Figure 3.10: Multiple-try Metropolis algorithm applied to the target distribution
π(m) = 3

9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using k = 10 different proposed new

values at every time. Top: The black solid line represents the actual pdf, and the
white bars, the plot of the histogram. Bottom: Trace plot of iterations.

the target distribution is approximately 200,000 since we need to evaluate the target

distribution at each of the φ∗
1, ..., φ

∗
k, and at each of the φ1, ..., φk−1 to compute the

acceptance probability α. This could be a major concern with this technique if the

cost to evaluate π is too high.

3.6 Simulated Tempering

This algorithm proposed by Marinari and Parisi (1992) and later by Geyer and

Thompson (1995) is motivated by the idea of using a temperature parameter to

control the simulation of the target distribution π in the same spirit as the Simulated

Annealing method. In the Simulated Tempering (ST) method the target distribution
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Figure 3.11: Simulated Tempering algorithm applied to the target distribution
π(m) = 3

9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using 10 heated distributions with a

cooling schedule similar to MVFSA. Top: The black solid line represents the actual
pdf, and the white bars, the plot of the histogram. Bottom: Trace plot of iterations.

is assumed to be π(m) ∝ hi(m)p(i), where hi(m) is the ith heated distribution. For

instance, hi(m) = π(m)1/Ti , with i = 1, ..., k possible heated distributions. The

values p(i) are called pseudo-priors and they must be chosen in advance. The ST

algorithm follows the next steps:

• Set an initial value m(0).

• Set the pseudo-priors as p(i) = 1
k
, i = 1, ..., k.

• Set a finite cooling schedule for the temperature of size k. Let say (T1, ...Tk),

where T1 > T2 > ... > Tk. The index i will represent any of these k values.

• At iteration t update m using a M-H or GS step for πi(m). Note that the index

i is fixed.
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• Set j = i ± 1 according to probabilities qi,j, where q1,2 = qk,k−1 and qi,i+1 =

qi,i−1 = 1
2

if 1 < i < k. The interpretation of qi,j is the probability to move

from Ti to Tj .

• Accept the transition from i to j with probability

r = min

(

1,
hj(m)p(j)qj,i

hi(m)p(i)qi,j

)

• Adjust pseudo-priors p(i). This can be done by looking at the time spent by

the sampler at each heated distribution.

Figure 3.11 shows that ST can obtain acceptable results, but we can appreciate

that one of the local modes is underestimated and the other one is overestimated.

Disadvantages on this algorithm are the calculation of the auxiliary probabilities p(i),

selecting properly the proposal distribution to sample from that we have to use on

the M-H step and the definition of the cooling schedule. In this example, the p(i)’s

were adjusted after an exploratory run by looking at the time spent per each heated

distribution. The variance V on the M-H step was equal to 100 and the cooling

schedule was chosen from the MVFSA algorithm.

3.7 Swapping

As mentioned in Holloman (2002), in the swapping algorithm the idea is to run

parallel chains using M-H steps and then propose a way to exchange the values on

each chain. We will discuss the case when there are only three chains, by following

the next steps:

• Set an initial value m
(0)
i for each chain, i = 1, 2, 3.
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• Run parallel M-H steps and accept the new values yi with its respective prob-

ability

min

(

1,
π(m

(k)
i )q(m

(k)
i ), m

(k−1)
i )

π(m
(k−1)
i )q(m

(k)
i ), m

(k−1)
i )

)

, i = 1, 2, 3.

• At iteration k perform a swapping step, randomly choose a neighboring pair,

say i and j, propose swapping m
(k)
i and m

(k)
j and accept it with probability

min

(

1,
πi(m

(k)
j )πj(m

(k)
i )

πi(m
(k)
i )πj(m

(k)
j )

)

.

Each parallel M-H uses as proposal distribution a random walk with adaptive vari-

ance (N(m
(k−1)
i , Vk)). The initial variance V , is set to be equal to 1. Allowing ex-

change of information among chains makes more flexible the selection of initial points

to implement this method. Figure 3.12 shows very good results for this methodol-

ogy. For this example we chose completely different initial values for each chain and

far away from each other on the parameter space. The variances on each proposal

distribution were calibrated via adaptive schemes.
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Figure 3.12: Swapping algorithm applied to the target distribution π(m) =
3
9
N(−45, 25) + 1

9
N(2, 9) + 5

9
N(30, 4), using 3 parallel chains starting from differ-

ent points over the parameter space. Top: The black solid line represents the actual
pdf, and the white bars, the plot of the histogram. Bottom: Trace plot of iterations.
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Chapter 4

Computational Approaches

Applied to a Climate Model

4.1 Introduction

The computational effort of evaluating the cost function in climate models has made

the Metropolis/Gibbs traditional schemes useless in this context. Other methods of

the previous chapter were discarded as well because they need either too much tuning

or too much iterations to be made in the context of climate model calibration. In the

former case, Simulated Tempering requires too much tuning of the pseudo-priors and

the proposals to be considered. Among the latter, the Swapping method requires

multiple chains to be run in parallel and an extra step to exchange information among

chains to be implemented properly. Multiple-try Metropolis requires a lot of forward

evaluations due to the use of multiple proposals which makes it not suitable for the

climate model. On the other hand, the MVFSA algorithm provides fast, approximate

but biased answers to solve the problem of mapping the multidimensional PPD. In

order to reach a balance between efficiency and precision we consider the use of
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adaptive methods.

In the case of the climate model described in Chapter 2, we simulate samples

from the posterior distribution of interest π(m, S|dobs) using a two step scheme. We

considered flat priors on all the orbital forcing parameters and since S can be seen

as a precision parameter it is reasonable to choose a Gamma distribution as a prior.

The hyperparameters α0 = 552.25 and β0 = 11.75 were fixed by expertise to provide

a prior distribution with E(S) = 47 and V ar(S) = 4. We will discuss this issue

further on Section 4.3. π(m|S, dobs) is sampled accordingly through the SCAM and

FAM algorithms and then we simulate from π(S|m, dobs) directly from a Gamma

distribution with parameters α∗ = α0 and β∗ = β0 + E(m(k)).

We compare five different computational techniques, three adaptive methods

(FAM, DRAM and SCAM) and two algorithms based on the simulated anneal-

ing scheme (MVFSA and METSA) in the context of the surrogate climate model

described in Chapter 2. Our main goal is to provide alternatives to traditional al-

gorithms such as the Gibbs sampler and the Metropolis-Hastings (Hastings (1970))

that have little chances to succeed in the climate model problem either because they

need a lot of forward evaluations to solve the inverse problem or because we may

have difficulties finding a good proposal distribution to sample the parameter space.

To make a fair comparison among methods we use a Sun Ultra 2 (Solaris 8) server

with 2400 Mhz in CPU and 2048 MB in memory to run the FORTRAN code of each

algorithm.

One of the main concerns on climate models is the time spent in performing for-

ward computations. We did several runs of 100,000 iterations to estimate the time

in seconds that every method uses to make one iteration for the climate model. We

found there is no significant difference among FAM, METSA and MVFSA. DRAM

is slower than these three algorithms because of the delayed rejection. SCAM is

three times slower than FAM to compute one evaluation of the climate model as
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one would expect since it is sampling each parameter conditional on the other pa-

rameters. Should the dimension of the parameter space increase to N , then the

SCAM algorithm would spend N times what FAM would have used to make one

iteration. Table 1 shows the time in seconds that each algorithm takes to compute

one iteration.

Method Time (sec)
FAM 0.06054

DRAM 0.10146
SCAM 0.18148

METSA 0.06340
MVFSA 0.06291

Table 4.1: Time in seconds spent per computational method to compute one iteration
with the climate surrogate model.

Additionally, we looked at the bivariate scatter plots (Figure 4.1) of the samples

from the different methods corresponding to each orbital parameter. For the adaptive

methods, we use a burn in period of 20,000 iterations while in the case of MVFSA

and METSA there is no burn in period and their sampling design is based on multiple

independent starting points over the parameter space. These scatter plots reveal that

all methods sample the regions of the parameter space where the optimum is located.

However, the dispersion of the samples based on the Simulated Annealing methods

is higher than the one from adaptive methods. While the adaptive methods use

one single point and adapt themselves to reach the target distribution, the MVFSA

and METSA need to start at different independent initial points to collect all the

information that they require to estimate the PPD.
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Figure 4.1: Bivariate scatter plots of orbital forcing parameters. First column: FAM.
Second column: SCAM. Third column: DRAM. Fourth column: MVFSA. Fifth
column: METSA.

4.2 Root Mean Square (RMS) Probability Error

Besides assessing the time that each method uses to make forward evaluations of the

climate model, we consider an empirical measure of convergence for any proposed

algorithm. For every parameter θ, the RMS probability error is defined as follows:

RMSi(θ) = ||Prob
(θ)
i − Prob(θ)

π ||

where i goes from 0 to the maximum number of iterations and || · || denotes the Eu-

clidean norm. Prob
(θ)
i is a vector that contains the frequencies to plot a histogram

using the samples generated from a specific method (FAM, SCAM, DRAM, MVFSA
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or METSA) at iteration i. Prob
(θ)
π is a vector of frequencies from the target distri-

bution π based on the same bins used for Prob
(θ)
i . Since we do not have available

the actual frequencies based on π, we replace them by those obtained with the whole

sample simulated from the FAM since this algorithm has ergodic properties. RMS

has the desired property that it goes to zero as i goes to infinity when the method

being used converges to the target distribution. The RMS also provides a measure

of how fast an estimated PPD from the samples of any particular method stops

changing over iterations.

As shown in Villagran et al. (2008) every method provides a PPD centered on

the target value (see, Figure 4.2) of obliquity, Φ = 22.625. MVFSA and METSA

provide a distribution with long tails due to their design based on multiple initial

values and Simulated Annealing compared to the distribution of obliquity obtained

with FAM, SCAM and DRAM. A goal for climate models is to estimate properly the

uncertainty about parameters of interest. For instance, we consider the estimation

of the 97.5% quantile for every parameter. We estimated the 97.5% quantile per

iteration and for all the methods. The quantile estimation via MVFSA and METSA

is at a value of 24.2, while with the other methods the estimated quantile is at 23.

One comment in Sen and Stoffa (1996) and Jackson et al. (2004) is that MVFSA

is preferred over Metropolis/Gibbs algorithms because of the reduction in required

number of forward evaluations and the time needed to estimate the PPD. In Fig-

ure 4.3, we can see that DRAM and SCAM have the lowest RMS up to iteration

30,000, after which FAM has the minimum RMS value. The RMS values of MVFSA

converge as quick or quicker than those of DRAM and SCAM but they do not reach

zero. One concern with the RMS as a measure to compare how fast the algorithms

converge to the target distribution, is that it is presented as a function of the itera-

tions. This could be misleading since it does not consider that every method requires

a different number of model evaluations to make one iteration. To overcome this issue
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we propose to look at the RMS as a function of time. In this case DRAM fairs better

than SCAM within the first hundreds of seconds. Perhaps the most surprising aspect

of these results is the slow convergence rate of FAM. One would have expected FAM

to be fast, similar to the DRAM and SCAM results, since it integrates information

about previous samples to generate an improved proposal distribution. We hypothe-

size that the calibration of the covariance matrix for the proposal distribution in this

problem is particularly difficult because of the need to restrict orbital forcing param-

eter values to a particular range. We suspect that the DRAM algorithm is able to

overcome this problem by adding a second stage proposal with more precision which

allows us to improve the mixing at the beginning of the algorithm. It is not entirely

clear to us why SCAM was able to perform so well relative to FAM. However, SCAM

handles one parameter at each stage and therefore it is simpler to deal both with the

parameter physical restrictions and with the correlation among parameters.

For the Longitude of Perihelion parameter, Figures 4.4 and 4.5 show similar re-

sults as described for the previous Figures. In this case DRAM and SCAM converge

as fast to an answer compared to MVFSA and METSA. The estimated 97.5% quan-

tile via MVFSA and METSA is now 3 times greater than the same estimated quantile

for the other methods. In the case of the Eccentricity parameter (Figures 4.6 and 4.7),

FAM and SCAM have some differences on the estimation of the PPD, this is because

the FAM uses as a proposal distribution a multivariate normal density which could

lead into many rejections of new candidates points due to the physical restrictions

on the orbital forcing parameters. On the other hand, the estimated PPD under

DRAM is similar to the one obtained via SCAM. For the Eccentricity parameter,

there are no differences on the estimation of the 97.5% quantile. However, this is not

the case for the estimation of the 2.5% quantile as we can see from the box plots in

Figure 4.8.

We looked at the sample autocorrelation function (ACF) of each parameter (Fig-
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ure 4.9) for all the algorithms that are being considered. This is a well known way

to assess how every algorithm is mixing along iterations, the smaller the autocor-

relations the better the method is moving across the parameter space. We noticed

that FAM has the worst autocorrelations, this is no surprise since the algorithm is

sampling all the parameters at once from a multivariate Gaussian distribution and

the physical restrictions on each parameter make difficult to achieve acceptances that

satisfy the restrictions. By using DRAM, we reduce the autocorrelations of the FAM

but they are not as good as the autocorrelations of SCAM. In fact, SCAM is very

efficient in terms of chain mixing even though it is the slowest one in computer time

spent per iteration. The adaptive methods have acceptance rates at around 45%.

METSA and MVFSA are similar in terms of autocorrelation, their autocorrelation

function values are not so large because the sampling design on these algorithms

is based on multiple initial points that are not connected to each other along the

iterations.
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4.3 Appraisal of a few forward evaluations on the

climate model

Even though the surrogate climate model used here is cheap enough to make forward

evaluations without consideration of the execution time, climate modelers have an

interest in making inferences about models that may take hours to days to execute

a single iteration of a stochastic sampler. In these cases one may only have a limited

number of samples to work with. Looking for an algorithm that is efficient to sample

from becomes a mandatory task. From a statistical standpoint, a statistical climate

model or emulator can avoid computational limitations as shown in Sansó et al.

(2008). Depending on the problem characteristics, this may not always be an easy

task especially if the region of acceptability is a small fraction of the parameter

space volume. Therefore, inefficient samplers fail to capture the most important

regions. We considered a Gaussian spatial model to approximate the surface of

the surrogate climate model parameters but we did not obtain good results. We

believe this was a result of not having enough information or understanding about

the climate model characteristics to formulate a statistical version. Also, stationary

models are limited for the output arising from our surrogate model. Therefore, there

will likely continue to be a need for efficiently sampling schemes to achieve good

inferences with few evaluations. We chose only 500 forward evaluations for testing

the sampling strategies.

In Figure 4.10, we see that based on 500 iterations MVFSA and METSA sample

various points over the parameter space, but a few hundreds iterations are not enough

to establish a pattern on the bivariate plots. On the other hand, SCAM and DRAM

show a very good concentration of the samples. These bivariate plots look much

alike the scatter plots we get using the entire run from the adaptive methods. The

behavior of the FAM algorithm although disappointing, is expected since the proposal
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cannot be easily tuned with a small number of iterations. There is no burn-in period

considered in the samples of FAM, DRAM and SCAM used to produce this Figure.

In Table 4.2, we compare the uncertainty estimation of the parameters and the

minimum values of the cost function. The performance of SCAM and DRAM are

remarkable since they not only find a minimum cost with few forward evaluations,

but they also provide acceptable estimates of the 95% credible intervals of the orbital

forcing parameters. The 95% credible intervals for the methods based on Simulated

Annealing are not informative at all because they practically covered the entire pa-

rameter space.

Method E(m∗) Φ2.5% Φ97.5% λ2.5% λ97.5% e2.5% e97.5%

FAM 0.8411 22.6817 22.7813 0.2248 3.4413 0.0101 0.0331
SCAM 0.1912 22.1644 23.1309 60.6625 91.5434 0.0312 0.0495
DRAM 0.1943 22.1665 22.9816 62.7528 141.1550 0.0113 0.0491
MVFSA 0.2019 22.1595 24.5072 18.3329 311.9383 0.0089 0.0482
METSA 0.2029 22.0631 24.2744 38.6806 353.6220 0.0029 0.0481

Table 4.2: Comparative estimation after 500 forward evaluations. E(m∗) is the
minimum of the cost function, Φ is the Obliquity, λ is the Longitude of Perihelion
and e is the Eccentricity.

In Figure 4.11, we compare the estimation of the marginals using 500 iterations to

the estimation made with 100, 000 samples from the FAM. With only 500 iterations,

FAM does a poor job estimating the marginals while DRAM and SCAM seem to

do a very good job for Longitude of Perihelion and Eccentricity. For Obliquity the

estimation is acceptable. The factor h on the second stage proposal for DRAM is

producing a large impact compared to AM for the results based with only a few

iterations. MVFSA and METSA present a lot of mass on the tails in comparison

to the results of the FAM with 100,000 iterations. From a practical standpoint,

the main problem with FAM is its difficulty to tune up the covariance matrix from
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the proposal distribution in a parameter space where there are physical restrictions.

There are different strategies to combine both the delayed rejection and the adaptive

Metropolis algorithms. The strategy that achieves best results for the climate model

is to implement the AM for a short period of time to compute the covariance matrix

Ct of the first state proposal distribution and then construct the matrix Vt = hCt,

which has more precision given that we selected h ≤ 0.01. Vt is used in the second

stage proposal. By doing this, we allow DRAM the chance to take two different steps:

(first stage) one that allows global moves to sample along the parameter space and

(second stage) another step that allows to sample with more precision from points

in the parameter space where the posterior distributions have more density.

Using a small number of forward evaluations we have gained appreciation of how

well the computational methods presented in this research work in this context.

The main strengths and weaknesses of every sampling scheme has been emphasized.

While Simulated Annealing based sampling schemes present a very good tool to

optimize the problem, SCAM and DRAM reach the balance between sampling and

optimization with few iterations.

4.4 Relevance of the parameter S

As mentioned in Section 2.4, the parameter S performs the function of weighing the

significance of model-data differences and was included in our inferences of parametric

uncertainty. S has its own prior probability distribution that provides information

about observational and other uncertainties that are hard to quantify within the

metric of model skill E(m) such as correlations among a suite of observations. In

Figure 4.12, we can see what happens if we use a non-informative prior on S, our

results only reflect the form of the likelihood function of each parameter when we

set S = 1. In our case, the prior mean value of S is elicited to be 47, a number
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much larger than 1 which reflects the fact that many surface temperature points

are highly correlated. This correlation increases the ability to detect the effects of

Earth’s orbital geometry on observations of surface air temperature and sharpens

the PPD around the correct orbital configuration.

The results in this thesis are consistent with the findings of Sansó et al. (2008)

where they use an emulator of their climate model based on a Gaussian process. They

use the MIT 2D climate model that controls the large-scale response of the climate

system to external forcings. In that paper, the authors find that when they use non-

informative priors on the climate model parameters, they obtain vague posteriors.

Since S is used to assist on the optimization process of the cost function of the

climate model, we may think that it has a positive support. A convenient form for a

prior on S is the Gamma probability distribution. The simplicity of this assumption

makes possible to sample directly from the full conditional P (S|m, d). More on the

interpretation and the motivation of this S parameter can be found in Jackson et al.

(2008).

49



Chapter 4. Computational Approaches Applied to a Climate Model

22 22.5 23 23.5 24 24.5 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Obliquity

FAM

SCAM

DRAM

MVFSA

METSA

0  10000  20000  30000  40000  50000  
22

22.5

23

23.5

24

24.5

25

Iterations

O
bl

iq
ui

ty

Quantile Estimation − 97.5%

FAM

SCAM

DRAM

MVFSA

METSA

Figure 4.2: Comparison for Obliquity parameter. Top left: PPD estimation. Bottom:
Ergodic quantile estimation (97.5%).

50



Chapter 4. Computational Approaches Applied to a Climate Model

0  10000  20000  30000  40000  50000  
0

5

10

15

20

25

Iterations

R
M

S
Obliquity

FAM

SCAM

DRAM

MVFSA

METSA

0 500 1000 1500
0

5

10

15

20

25

Time in seconds

R
M

S

Obliquity
FAM

SCAM

DRAM

MVFSA

METSA

Figure 4.3: Comparison for Obliquity parameter. Top: RMS as function of iterations.
Bottom: RMS as function of time (seconds).

51



Chapter 4. Computational Approaches Applied to a Climate Model

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

Longitude of Perihelion

FAM

SCAM

DRAM

MVFSA

METSA

0  10000  20000  30000  40000  50000  
0

50

100

150

200

250

300

350

Iterations

Lo
ng

itu
de

 o
f P

er
ih

el
io

n

Quantile Estimation − 97.5%

FAM

SCAM

DRAM

MVFSA

METSA

Figure 4.4: Comparison for Longitude of Perihelion parameter. Top left: PPD
estimation. Bottom: Ergodic quantile estimation (97.5%).

52



Chapter 4. Computational Approaches Applied to a Climate Model

0  10000  20000 30000 40000  50000  
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iterations

R
M

S
Longitude of Perihelion

FAM

SCAM

DRAM

MVFSA

METSA

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time in seconds

R
M

S

Longitude of Perihelion

FAM

SCAM

DRAM

MVFSA

METSA

Figure 4.5: Comparison for Longitude of Perihelion parameter. Top: RMS as func-
tion of iterations. Bottom: RMS as function of time (seconds).

53



Chapter 4. Computational Approaches Applied to a Climate Model

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50

60

70

80

90

100

Eccentricity

FAM

SCAM

DRAM

MVFSA

METSA

0  10000  20000 30000  40000 50000  
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Iterations

Ec
ce

nt
ric

ity

Quantile Estimation − 97.5%

FAM

SCAM

DRAM

MVFSA

METSA

Figure 4.6: Comparison for Eccentricity parameter. Top left: PPD estimation. Bot-
tom: Ergodic quantile estimation (97.5%).

54



Chapter 4. Computational Approaches Applied to a Climate Model

0  10000 20000  30000  40000  50000  
0

100

200

300

400

500

600

700

800

Iterations

R
M

S
Eccentricity

FAM

SCAM

DRAM

MVFSA

METSA

0 500 1000 1500
0

100

200

300

400

500

600

700

800

Time in seconds

R
M

S

Eccentricity

FAM

SCAM

DRAM

MVFSA

METSA

Figure 4.7: Comparison for Eccentricity parameter. Top: RMS as function of itera-
tions. Bottom: RMS as function of time (seconds).

55



Chapter 4. Computational Approaches Applied to a Climate Model

FAM SCAM DRAM MVFSA METSA
22

22.5

23

23.5

24

24.5

25

Ob
liqu

ity

FAM SCAM DRAM MVFSA METSA
0

50

100

150

200

250

300

350

Lo
ng

itud
e o

f P
eri

he
lion

FAM SCAM DRAM MVFSA METSA
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Ec
cen

tric
ity

Figure 4.8: Box plots of the samples from different methods. Top: Obliquity. Middle:
Longitude of Perihelion. Bottom: Eccentricity.

56



Chapter 4. Computational Approaches Applied to a Climate Model

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

S
a

m
p

le
 A

C
F

 
O

b
liq

u
it
y

FAM

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

SCAM

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

DRAM

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

MVFSA

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

METSA

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

S
a

m
p

le
 A

C
F

 
L

o
n

g
it
u

d
e

 o
f 
P

e
ri
h

e
lio

n

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
a

m
p

le
 A

C
F

 
E

c
c
e

n
tr

ic
it
y

0 50 100
−0.2

0

0.2

0.4

0.6

0.8

1

Lag
0 50 100

−0.2

0

0.2

0.4

0.6

0.8

1

Lag
0 50 100

−0.2

0

0.2

0.4

0.6

0.8

1

Lag
0 50 100

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

Figure 4.9: Autocorrelation function of orbital forcing parameters. First column:
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Figure 4.10: Bivariate scatter plots of orbital forcing parameters with just 500 iter-
ations. First column: FAM. Second column: SCAM. Third column: DRAM. Fourth
column: MVFSA. Fifth column: METSA.
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Figure 4.11: Histograms with just 500 iterations (black bars). PPD Estimated using
100,000 iterations from the FAM algorithm (red line). First column: FAM. Second
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Figure 4.12: First row: Estimated PPD using an adaptive method. Using the S
parameter (solid line) and using a non-informative prior (dotted line). Second row:
Box plots of posterior samples.
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Conclusions and future work

Sen and Stoffa (1996) stated that traditional methods such as Metropolis or Gibbs

sampler were not sufficiently practical for finding inversion solutions due to their

high cost in terms of the time required making forward evaluations and the amount

of tuning these algorithms need. MVFSA and METSA were proposed as algorithms

to overcome these problems. Indeed they provide approximate and fast answers

to estimating the PPD. These methods share the same design based on multiple

independent initial starting values, cooling schedule and a Metropolis acceptance

rule for new candidates. Adding multiple initial points to these algorithms helps to

provide more information about the parameter space similar to a grid point search.

They differ in the proposal distribution since MVFSA uses a Cauchy distribution

dependent on the cooling schedule to sample candidates from high density regions

while METSA uses a random walk proposal and the temperature cooling schedule

is present only in the acceptance/rejection step. However, by its design MVFSA

has biases estimating the tails of the PPD of the climate model parameters. Annan

and Hargreaves (2007) noted that we can consider either MVFSA or METSA as

sophisticated heuristic methods to estimate the PPD.
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The series of adaptive methods proposed by Haario et al. (1999, 2001, 2004, and

2005) are setting a breakthrough in Monte Carlo methods by introducing adaptive

schemes that are successful in finding the target distribution not only in theory but

also in practice despite the fact that these are non Markovian algorithms.

The results in Chapter 4 show that compared to FAM, DRAM, or SCAM, which

all provided nearly identical estimates of the marginal PPD, marginals derived from

MVFSA and METSA sampling had similar modes, but with broader 95% credible

intervals. For instance, the Longitude of Perihelion (λ = 75.93) parameter, the 95%

posterior credible interval using the FAM scheme is (60.291, 90.676) compared to

(23.274, 280.675) that was obtained using MVFSA. The inclusion of the parameter

S in the estimation process provides prior information about the significance of model

differences with the target observations.

The main goal of this dissertation was to compare sampling efficiencies and ac-

curacies among different proposed methods for estimating parametric uncertainties

of a climate model. The DRAM and SCAM sampling algorithms are particularly

effective on both of these accounts. In terms of the RMS criterion, the adaptive

methods were as efficient as MVFSA to reach convergence, but without its sampling

biases.

The decision to choose either the full component version (FAM) or the single

component version (SCAM) of the adaptive methods should be based on the prob-

lem at hand. FAM has great speed but also needs to calibrate the covariance matrix

of the parameters of interest. As we observed, this could be a drawback in parameter

spaces with physical restrictions. We propose to employ DRAM when such problem

exists and obtained substantial improvements on the results. On the other hand,

SCAM does not have to deal with inversion of covariance matrices but it pays a

price regarding computational time as soon as the dimensionality of the problem

increases. As a caveat, the results obtained from the methods used in this research
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only apply to non-linear inverse problems with unimodal posteriors. On the other

hand, the results of Chapter 3 provide good evidence of how these methods work

with a one-dimensional multi-modal distribution. In general, finding a good pro-

posal distribution to sample from is difficult even for adaptive methods when the

posterior distribution of interest has multiple modes, Jackson et al. (2004) proposed

a modification to (2.2),

gijk(m) = 2sgn(Φ′Âo,ijkeÂp,ijkcos(λ−φ̂p,ijk))

√

|Φ′Âo,ijkeÂp,ijkcos(λ − φ̂p,ijk)|+R̂ijk,

to permit the existence of two solutions. Figure 5.1 shows that adaptive methods fail

to find the second solution because of the combination of non-linearity and multi-

modality in this problem. Even though MVFSA found both solutions, it is unclear

how well the PPD is estimated due to the inherent biases of this method.

Ongoing work is being done to develop computational methods that have a bal-

ance between sampling a multi-modal PPD and reducing the cost in making forward

evaluations in climate models. As part of future research is the study of an MCMC

based over a nonparametric surface that approximates the PPD, such idea has been

developed by Sambridge (1999) using Voronoi cells.

In terms of efficiency of estimation and ensemble generation in climate modeling,

a statistical emulator is a computationally efficient approximation to a complex com-

puter model as mentioned in Annan and Hargreaves (2007) and depicted in Sansó

et al. (2008). Although, we share the same goals as Sansó et al. (2008) our problem

is different since we are making evaluations directly on the climate model and not

based on a statistical emulator.

One can use the results obtained in this research to suggest how with relatively few

model integrations, one may draw inferences of how observational data may constrain

uncertain model parameters or physical hypotheses about how nature works. The

potential applications are broad and may prove invaluable for problems that are
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Figure 5.1: Surrogate Climate Model with two solutions (modes). Comparative
PPD estimation using Adaptive Metropolis methods and Simulated Annealing based
techniques. Top: Comparison for Obliquity parameter. Bottom: Comparison for
Longitude of Perihelion parameter.

currently limited by computational requirements of the forward model.
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