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DEVELOPMENT OF SCORING RUBRICS AND PRE-SERVICE TEACHERS’ 

ABILITY TO VALIDATE MATHEMATICAL PROOFS 

 

by 

 

Timothy J. Middleton 

 

B.S., Educational Curriculum and Instruction, Texas A&M University, 1990 

M.S., Mathematics, University of New Mexico, 2009 

 

ABSTRACT 

 

 The basic aim of this exploratory research study was to determine if a specific 

instructional strategy, that of developing scoring rubrics within a collaborative classroom 

setting, could be used to improve pre-service teachers’ facility with proofs. During the 

study, which occurred in a course for secondary mathematics teachers, the primary focus 

was on creating and implementing a scoring rubric, rather than on direct instruction about 

proofs. In general, the study had very mixed results. Statistically, the quantitative data 

indicated no significant improvement occurred in participants’ ability to validate proofs. 

However, the qualitative results and the considerable improvement by some participants 

warrant further investigation of the attempted instructional technique. 
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Chapter 1 

Introduction 

 

 Several research studies conducted over the past three decades have demonstrated 

the various problems encountered by students and teachers when trying to understand and 

write formal mathematical proofs (e.g., Bell, 1976; Harel & Sowder, 1998; Knuth, 2002a, 

2002b; Selden, A., & Selden, J., 2003; Senk, 1985). However, few researchers have 

tested new instructional strategies in this area (e.g., see Goff, 2002). The basic aim of my 

research was to determine if a specific instructional strategy, that of developing scoring 

rubrics within a collaborative classroom setting, could be used to improve pre-service 

teachers’ facility with proofs. In particular, the study tried to ascertain how the 

development and utilization of rubrics for scoring mathematical arguments, as well as the 

associated classroom discussions, affected pre-service teachers’ ability to validate a 

proof, to recognize the logical structure required for a proof, and to identify the specific 

errors in an invalid proof. The research reported in this thesis represents an exploratory 

investigation of an indirect approach to teaching proof validation. The primary focus in 

class was on creating and implementing a scoring rubric, rather than on direct instruction 

about proofs.  

Contextual Background 

 My study arose in the context of questions posed by other mathematicians and 

researchers. What do students believe makes a proof valid? How do students define or 

identify correct mathematical reasoning? What are the difficulties students have with 

validating proofs? In the context of my work, “validating a proof” means determining if a 
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specified mathematical argument in fact represents a valid proof of the statement given. 

Many researchers have documented the fact that high school and undergraduate students, as 

well as high school teachers, are not proficient with proofs. In particular, studies by Bell 

(1976), Harel & Sowder (1998), Herbst (2002), Knuth (2002a, 2002b), Moore (1994), 

Selden & Selden (1995, 2003), Senk (1985), and Thompson (1996) found the following: 

• Pre-college students, undergraduates, and secondary teachers tend to focus on 

the superficial details of an argument, such as the format or language used in 

the presentation, rather than the mathematical reasoning of the argument. For 

example, subjects in these studies would determine that a given argument 

represented a correct proof simply because it appeared to use correct 

mathematical notation, when in fact it proved the converse. 

• Students cannot determine the logical structure of mathematical statements so 

as to know how a correct proof should be structured. Also, students generally 

are unable to recite definitions and do not see how the definitions dictate the 

possible structure for a proof. 

• Students possess little or no intuitive understanding of the mathematical 

concepts they are working with and cannot create their own examples to gain 

a better understanding of a mathematical statement. Moreover, students 

misunderstand the use of examples and counterexamples in establishing the 

veracity of a statement. 

• Even undergraduates in transition or bridge courses that teach logic and the 

writing of proofs cannot validate proofs. This is also true of pre-service and 

in-service teachers. 
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• Secondary teachers have little understanding of the role of proofs within the 

mathematical community or within secondary education. 

 Reviewing the literature related to proofs, I began to ask other questions. What 

can mathematics educators do about the difficulty students have with proofs? Can 

particular instructional methods improve students’ facility with proof? What aspects of 

my course can lead to improved mathematical reasoning? Can one course be a catalyst 

for change? Teaching high school calculus for 11 years, I had seen that many students 

entered the course with insufficient algebra skills. Rather than focus directly on 

reteaching algebra skills, I learned that a more successful approach was to simply 

incorporate algebra review in the context of solving the more complicated problems that 

arise in calculus. My experience with contextual learning, therefore, generated the idea of 

not teaching proof methods directly, but in the context of another focus. Moreover, in my 

secondary classes, I had frequently used scoring rubrics to assess complicated student 

work, such as creative projects. Therefore, when I learned that I would be teaching Math 

338: Mathematics for Secondary Teachers at the University of New Mexico, I had 

already planned to introduce the students to the use of scoring rubrics in math. A 

synthesis of my experiences with contextual learning, my growing interest in student 

difficulties with proofs, and my plan to introduce pre-service teachers to scoring rubrics 

led to the creation of the study reported in this paper. 

Research Questions 

 The focus of the study thus became the use of an indirect instructional technique 

to improve participants’ facility with proofs. Specifically, the research addressed the 

question “Does the development and utilization of rubrics for scoring mathematical 
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arguments, as well as the associated classroom discussions, improve pre-service teachers’ 

ability to validate a proof, to recognize the logical structure required for a proof, and to 

identify the specific errors in an invalid proof?” This was not a definitive study, but an 

exploratory investigation of this question. Other supporting questions drove my research 

design. What is the nature of the changes my student-participants experience with regard 

to analyzing mathematical arguments? Which aspects of the instructional approach seem 

to help the most? Which aspects seem to interfere? What are the correct ways to measure 

these changes? 

Structure of the Study 

 Since my questions aimed to reveal potentially complicated interactions, the study 

employed action research techniques and used a mixed methods design, combining both 

quantitative and qualitative data. The study did not involve a statistically significant 

number of participants, so purely quantitative methods would not have been appropriate. 

Also, qualitative methods were more helpful in clarifying the connection between the 

intervention technique and any improved performance by participants. Quantitative data 

sources included the results of the Pre-Test and the Post-Test (Appendices A and B). 

These tests included both multiple-choice and open-ended items. Participants were 

allowed to take as much time as they wanted to complete each test. Qualitative data came 

from a variety of sources that arose as normal instructional activities in class, such 

prompted responses written by student-participants and preliminary scorings collected 

from participants as the class developed a rubric. My own field notes as the teacher-

researcher also became a source of qualitative data. 

4 



 Subjects in the study were students enrolled in Math 338: Mathematics for 

Secondary Teachers at the University of New Mexico during the Fall 2003 semester. This 

class met one evening per week, so all references to a specified week involve a single 

class period. The study lasted a total of 14 weeks. After an introduction to the study, 

student-participants took the Pre-Test. Then, over the course of six weeks, the 

participants and I developed a scoring rubric for mathematical arguments, tested and 

refined the rubric by using it to score proof attempts that I presented to the class, and 

discussed our experiences both verbally and in writing. At the end of the study, 

participants took the Post-Test. A more specific timeline for the study can be found in 

Chapter 3: Methods. 

 As the study progressed, I realized that student-participants had very diverse 

conceptions and experiences related to rubrics. One of the first steps, therefore, was to 

define locally what type of rubric I and the participants would be developing 

collaboratively. We explored examples of three different styles of rubrics, which I 

classified as holistic style, matrix style, and outline-and-point-value style. Further 

explanations of these three styles and references to the examples used in the study can be 

found in Chapter 4: Results. I specified that the outline-and-point-value style would be 

the type of rubric we would develop for our work with scoring mathematical arguments. 

The question that then drove the next few weeks of work was “What do we need in a 

rubric for proofs?” 

Overview of Results 

 In general, the study had very mixed results. Statistically, the quantitative data 

indicated no significant improvement occurred in participant responses from the Pre-Test 
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to the Post-Test. Tracking the progress of several student-participants through the 

qualitative data sources revealed several potentially complex interactions occurred. Some 

participants became concerned about how the score from the rubric would be translated 

into a grade for students in their classes. The rubric therefore seemed to interfere with 

their focus on analyzing arguments. For other participants, the rubric seemed to confuse 

them by adding another layer of complexity. However, eight participants did show 

improvement from the Pre-Test to the Post-Test. In fact, two participants more than 

doubled their number of correct responses. Investigating their work with the rubric 

indicated that the development of the rubric did in fact help them be more attentive to the 

important aspects of a mathematical argument, including the overall logical flow or 

structure of an argument. Due to the small sample size, no inferences can be drawn from 

the quantitative data. However, the qualitative results and the considerable improvement 

by some participants warrant further investigation of the attempted instructional 

technique. 
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Chapter 2 

Review of Literature 

 

 Many recent research studies have investigated the experiences that students have 

with writing and analyzing mathematical proofs and that teachers have with teaching 

proofs. The associated literature clearly indicates the need for improved instruction when 

teaching proof both to high school students and to undergraduates, particularly those who 

aspire to become secondary mathematics teachers. To put the purpose and results of my 

study in context, the following review of literature includes articles by several authors 

regarding the role of proof in mathematics and more specifically in mathematics 

education. Based on this exploration of previous research, I became intrigued by the idea 

of devising an approach to presenting proofs in a mathematics course for pre-service 

teachers that would facilitate their understanding of proofs. 

Proofs for Understanding 

 Upon first thinking about proofs, one may believe that proofs are absolute and 

very little doubt surrounds the purpose, validity, and meaning of proof. However, 

mathematical philosophers throughout the ages have held different, often conflicting 

beliefs concerning the need for proofs and the formality and absoluteness thereof (Hanna, 

1995; Harel & Sowder, 1998; Hersh, 1993; Kleiner & Movshovitz-Hadar, 1990; 

MacKernan, 1996). For instance, in the era shortly after World War II, mathematicians 

often took one of two differing views regarding proofs: that of formalism (classicism) or 

that of constructivism. Formalists generally accepted the laws of formal logic and built 

proofs based on a set of accepted axioms, statements that are considered to be 
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unprovable. Constructivists rejected the law of the excluded middle with regard to 

infinite sets and were skeptical of the axiom of choice (Hersh, 1993). By the end of the 

20th century, however, little remained of the controversy surrounding these assumptions 

and most proofs implicitly accept them as true. In a similar way, mathematicians 

currently engage in debates about whether or not to accept new forms of proof that have 

arisen as a result of technology, such as computer-generated proofs and graphical 

representations of mathematical concepts. A now classic example is Appel and Haken's 

proof of the four-color theorem. Some mathematicians are concerned about the fallibility 

of electronic processes, particularly those originating from human errors in the 

production of software, whereas others object to the fact that computer-generated proofs 

hide the nature of the proof and therefore do not provide insight as to why a theorem is 

true (Hersh, 1993). 

 Consequently, the evolution of ideas about what constitutes a proof points out that 

perhaps more central to the work of mathematics educators are the roles that proof plays 

within the mathematical community rather than the actual methods of proof. Lately, 

researchers and philosophers have generally agreed upon several main purposes of proof 

(Bell, 1976; Hanna, 2000; Knuth, 2002a). Indisputably, proofs serve to verify the truth of 

a mathematical statement, and it is this role of proof that is most familiar to students of 

mathematics. However, proof also serves as a form of communication between 

mathematicians and as such represents the product of social interactions. Additionally, 

proofs can lead to the discovery or creation of new mathematics, as was the case in the 

development of non-Euclidean geometries. A fourth role of proof is the systemization of 

mathematical results into a coherent structure of axioms, definitions, and theorems. 
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Finally, proofs can demonstrate why a particular mathematical statement is true by 

illuminating the underlying concepts. In her often-cited work "Proofs That Prove and 

Proofs That Explain", Hanna (1989) considers this role of proof as the most important for 

educators. She advocates the use of proof as a tool for promoting a deeper understanding 

of mathematical definitions and theorems in the classroom—a theme that surfaces in 

other articles as well (de Villiers, 1995; Hanna, 1995, 2000; Hersh, 1993; Knuth, 2002a, 

2002b). 

Proofs in Mathematics Education 

 Since proof plays such complex and varied roles within the mathematical 

community, mathematics educators warn that a curriculum devoid of meaningful 

excursions into proofs, as is often the case in elementary and secondary mathematics 

classrooms, does not reflect the true nature of mathematics. Moreover, with very little 

previous exposure to formal proof, students in the U.S. are unreasonably expected to 

master the complex aspects of proof in a single course— high school geometry. 

Consequently, NCTM (2000) and others (Sowder & Harel, 1998; Thompson, 1996) have 

advocated increased attention to proof and deductive reasoning throughout the K-12 

curriculum. Also, NCTM states that "reasoning and proof are not special activities 

reserved for special times or special topics in the curriculum but should be a natural, 

ongoing part of classroom discussions, no matter what topic is being studied" (p. 342), 

rather than treating proof simply for the sake of proof. 

 Some authors, however, believe that many educators may be exaggerating the 

need for proofs in pre-college mathematics. Wheeler (1990) feels that attempts within the 

classroom to reproduce the social nature of mathematical proof are inherently artificial. 
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He also asserts that the complex nature of proofs and the incredible diversity among the 

forms of acceptable proofs make the learning of proofs, particularly in high school, an 

incredibly difficult goal. Articles by Herbst (2002) and Slomson (1996) agree, stating that 

the teaching of proofs places conflicting demands on secondary teachers. According to 

Almeida (1996), teachers should understand that students' informal arguments are an 

important component in the development of mathematical reasoning. Furthermore, 

Fischbein (1982) and Hewitt (1996) advocate that students must gain an intuitive 

familiarity with mathematical concepts before they can hope to produce formal proofs. 

MacKernan (1996) states that in fact much of mathematics is the result of induction and 

intuition rather than formal proof. 

 Regardless of their views about the amount of emphasis formal proofs should 

receive, researchers agree that the current methods of dealing with proofs in high school 

are misleading, impractical, insufficient, and even counter-productive (Epp, 1994; Herbst, 

2002; Senk, 1985; Slomson, 1996; Sowder & Harel, 1998; Thompson, 1996). Typical 

high school curricula only include proofs in geometry classes and even then only teach 

proofs as a formula to follow (two-column proofs being the classic form). Because 

students are seldom challenged to prove statements that they do not already perceive as 

"obviously" true, proofs produce little enlightenment for students and even encourage the 

notion that mathematics is a static subject in which all the answers are already known.  

Research Investigating the Experiences of Pre-College Students With Proofs 

 The difficulty pre-college students have with proofs has been well documented 

over the last 30 years. One of the first research studies in this area was completed by Bell 

(1976), who found that almost half of the 14- to 15-year-old students he surveyed could 
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not even read and understand given mathematical propositions involving simple number 

and geometry concepts, much less begin correct explanations for the validity of the 

propositions. Bell also discovered that the students completely avoided the use of algebra 

in proofs. Perhaps more importantly, his work brought to the forefront many of the topics 

that would later be explored more extensively by other mathematics educators, including 

(a) the various roles that proof plays in mathematics and the importance of the role of 

explanation in mathematics classrooms, (b) the discrepancy between formal proofs and 

the type of evidence that students find convincing, (c) the schemes that students use to 

attempt a proof, and (d) the difficulties students have with even beginning proofs due to a 

lack of conceptual understanding of the statement or an inability to ascertain the logical 

structure of the statement.  

 High school students' inability to start a proof also surfaced in other studies. A 

comprehensive study by Senk (1985) of 1520 students from 11 schools in 5 states 

reported that as much as 47% of students scored 0 out of 4 on some of the requested 

proofs, meaning that students wrote nothing, or only incorrect or useless deductions. 

Surprisingly, all the students had completed a year-long geometry course that included 

proofs and the proofs used in the study were similar to those given in standard geometry 

textbooks. Investigating proofs by contradiction, Thompson (1996) found that many 

students could not write the correct negation of the original statement in question, which 

represents the first step in an indirect proof. 

 Another important facet of students' ability to construct proofs is their belief about 

the nature of proofs. Chazan (1993) found that students are unclear about what actually 

constitutes a proof. About one-fourth of the subjects in his study believed that empirical 
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evidence, such as measuring a few examples, provided a "proof" of a general statement in 

geometry. Many other students wavered between this belief and one that asserted 

deductive arguments are necessary for a proof. A more troublesome finding for Chazan 

was that once a theorem was proven deductively in class, many students still did not 

believe the theorem. That is, students did not understand or accept the generality of a 

proof.  

 In contrast to studies such as those above that explore only cognitive aspects of 

proof, Hoyles (1997) argues that mathematics education researchers must also investigate 

the systemic influences of school and curriculum organization on students' facility with 

proofs. For example, Healy and Hoyles (2000) found evidence that the National 

Curriculum mandated by England and Wales in 1995 had impacted student perceptions 

about proof. Students in their nationwide study generally used empirical arguments for 

their own proofs, but realized that these would not receive the highest marks from 

teachers and that a valid proof must be general. Students found arguments containing 

algebraic expressions difficult to follow and instead preferred narrative arguments. In 

fact, students experienced more success when constructing a proof using words and 

found these types of proofs to be more explanatory than those involving algebraic 

manipulations. Healy and Hoyles attribute these findings in part to the structure of the 

National Curriculum, which includes proofs in the Attainment Target associated with 

mathematical investigations. Unintentionally, this structure implied that proofs are the 

final stage in a developmental sequence characterized by data collection and informal 

testing of concepts with empirical examples. Moreover, the structure of the Curriculum 

implied that proofs should be independent of algebraic and geometric contexts. Their 
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study also found evidence of social influences on student performance, noting a smaller 

variation across schools in the performance of females than the variation for males, and 

discovered influences related to the organization of the school, such as the amount of 

time allotted for mathematics instruction or the grouping of students by ability level. 

Research Investigating the Experiences of Undergraduates With Proofs 

 Unfortunately, the problems faced by high school students with proofs are not 

often solved in college. Mathematics education researchers have completed numerous 

studies that examine the ability of undergraduates to read and write proofs. These 

investigations have involved students in transition or "bridge" courses that explicitly 

teach proofs (Goff, 2002; Moore, 1994; Selden, A., & Selden, J., 2003; Selden, J., & 

Selden, A., 1995) as well as students in advanced undergraduate college mathematics 

courses that require the writing of proofs (Harel & Sowder, 1998). More specifically, 

some studies have involved pre-service teachers, that is, students in a college math course 

explicitly designed to prepare them for teaching mathematics at the elementary or 

secondary level (Even, 1993; Jones, 2000). However, these latter studies will be 

discussed in the next section regarding pedagogical aspects of proofs. This section 

focuses on the difficulties undergraduates have in mastering proofs. The research shows 

that although undergraduates may have a better grasp of proofs than do high school 

students, several deficiencies remain, as does the tendency to complete proofs without 

understanding the mathematical concepts involved. 

 Moore (1994) notes that students are expected to write proofs in real analysis, 

linear algebra, abstract algebra, and other upper-division courses even though (a) students 

often have only seen proofs in a high school geometry course and therefore have no real 
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context for working with proofs; (b) precise definitions and proofs, such as ε −δ  proofs 

for limits, have been almost completely eliminated from the basic calculus courses 

preceding upper-level undergraduate math classes; and (c) many colleges do not offer a 

course that introduces proof writing and thereby attempts to ease the transition to upper-

level mathematics courses. He conducted a study in one of these transition courses 

designed to teach students how to read and write proofs and to acquaint students with 

some of the pervasive ideas in mathematics. Moore found that students could not even 

begin a proof because they lacked basic preliminary tools. First of all, most students in 

the course possessed little or no intuitive understanding of the mathematical concepts 

they were working with and could not create their own examples to gain a better 

understanding of a mathematical statement. Subjects in the study also could not 

understand or use mathematical notation correctly. Moreover, students generally were 

unable to recite definitions and did not see how the definitions dictated the possible 

structure for a proof.  

 Annie and John Selden (1995, 2003) have discovered similar deficiencies in 

students' ability to tackle proofs. They found that undergraduates had difficulties 

unraveling the logical structure of mathematical statements, particularly those given in an 

informal form typical of most textbooks (Selden, J. & Selden, A., 1995). For example, 

"differentiable functions are continuous" lacks an explicit "if-then" structure. Selden and 

Selden assert that students' inability to unpack the logical structure of a statement 

represents an important obstacle to students' ability to determine a correct proof 

framework, the overall organization of a proof. They also reported that students had other 

difficulties in validating proofs, that is, in determining if an argument represents a correct 
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proof (Selden, A. & Selden, J., 2003). Students often focused on the form of an argument, 

rather than the content, incorrectly judging an invalid argument to be a proof simply 

because it followed a typical structure students had seen previously. This was one of the 

several ways in which the researchers realized that students tended to look for local errors 

in the arguments but not global ones. For example, 50% of the subjects in their study 

initially believed a given argument of a particular statement represented a correct proof 

when in fact it was a proof of the converse. Also, students often judged the validity of 

proofs largely based on their ability to understand the mathematics involved or based on 

the stylistic clarity of the argument.  

 Whereas some mathematics educators focused on studying what difficulties 

students have with proofs, Harel and Sowder (1998) attempted to explore why students 

have trouble. They realized that proof has meant different things to different people 

throughout history and their study researched the basic conceptions undergraduates have 

about proofs. They found that students had differing ideas about what constitutes a 

convincing argument, thereby giving rise to different proof schemes. In the context of 

Harel and Sowder’s study, proof schemes do not refer to the various methods of formal 

mathematical proof, such as proof by induction or proof by contradiction. Instead, a 

scheme refers to the internal and external concepts and processes students use to 

convince themselves that a statement is true or false. These schemes can sometimes 

involve formal proof, but as Harel and Sowder discovered, students often find other 

methods to be more convincing. The researchers suggest three main categories for proof 

schemes, each of which has two or more subcategories, for a total of more than a dozen 

separate schemes. The first category encompasses external conviction proof schemes. For 
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example, a student may believe a statement is true simply because a person of authority, 

such as the instructor, has said so. Similarly, the students may accept an argument as a 

convincing "proof" based solely on the format of the proof. Harel and Sowder attribute 

students' dependence on these schemes to the emphasis in schools on writing proofs 

simply for the sake of writing proofs, without stressing the underlying mathematical 

concepts. The other two categories involve a more internal processing of truth. Regarding 

the first of these, empirical proof schemes, the authors found that a significant portion of 

students use the process of induction to arrive at mathematical conclusions (not the 

formal method of proof by induction), but many misunderstood the use of examples and 

counterexamples in establishing the veracity of a statement. Although Harel and Sowder 

feel that examples and inductive reasoning provide students with mathematical insight, 

they express concern that students often do not move beyond these schemes. Finally, the 

researchers group other approaches as analytical proof schemes, including both 

transformational thinking and axiomatic methods, but found that few students master 

these methods. Even students that become proficient with true mathematical proofs often 

tend to do so only when considering familiar objects such as the set of reals. The work by 

Harel and Sowder suggests that since most students consider external and empirical 

schemes convincing they may see little need to improve their analytical proof skills, 

which perhaps explains the previously discussed outcomes of other research studies. 

Pedagogical Aspects of Proof 

 The findings above raise an important concern above how the limited grasp of 

mathematical concepts affects the ability of college students to become effective 

secondary teachers after they graduate. Certainly, students who found little meaning in 
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the proofs they were asked to do as undergraduates will very likely become teachers who 

do not value proofs in secondary classrooms. Also, even if students graduated with 

excellent math skills, does having technical expertise with a concept necessarily imply an 

advanced facility in teaching that concept? Recent studies have investigated the 

interactions between content knowledge and teaching effectiveness, as well as revealing 

some of the difficulties teachers face in bringing mathematical ideas into the classroom.  

 Research by Ruhama Even (1993) explored the connections between a teacher's 

subject-matter knowledge and his or her pedagogical content knowledge, specifically 

with regard to the definition of a function. Her work found that many pre-service teachers 

did not possess a concept image of functions that included the essential ideas of 

arbitrariness and univalence, and these omissions were even more evident in the 

pedagogical approaches they would take with students. Instead, these prospective 

teachers had a tendency to provide explanations that viewed functions simply as an 

operational process or viewed functions as having certain (incorrect) properties, such as a 

"smooth" graph. Arbitrariness refers to the concept that functions are not necessarily 

represented by equations, formulas, smooth graphs, or a set of "known" functions.  Half 

of the subjects indicated that equations were the dominant basis for their conception of a 

function. Many went so far as to say that all functions can be represented by an equation 

or formula. Additionally, when deciding if  
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describes a function, participants often were troubled by the fact that the graph was not 

continuous. Furthermore, whereas most participants correctly believed that an infinite 

number of functions exist passing through three given points, a significant portion also 
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intimated that these functions could only be chosen from certain sets or families of 

functions. Univalence refers to the concept that each element in the domain is mapped to 

only one element in the range. Even found that the prospective teachers generally 

incorporated the idea of univalence in their definition of a function or explanations to 

students, but very few could explain the reason for this requirement. Therefore, they 

favored the emphasis of procedural knowledge over understanding, such as using the 

vertical line test to determine if a relation represents a function rather than discussing the 

mathematical benefits of functions over other relations. 

 The dependence of teachers on certain procedures or formats was also noticed in 

other research studies. For example, Knuth (2002a, 2002b) discovered a surprising 

tendency to focus on the superficial details of an argument, such as the format or 

language used in the presentation, rather than the mathematical reasoning of the 

argument. The experienced teachers participating in his study often categorized proofs 

based on degrees of formality and they had difficulty recognizing non-proofs when the 

argument appeared to have an archetypal form such as proof by induction. These results 

are not surprising given the discussions above regarding undergraduates and proofs. 

Herbst (2002) goes further, suggesting that the format of proofs may actually be the 

reason instructors have difficulty teaching proofs. His analysis of a high school 

mathematics lesson indicates that presenting the traditional two-column format for 

proofs, usually in a geometry course, creates conflicting demands on the teacher. By 

exposing the limitations of the formal two-column proof, Herbst challenges mathematics 

educators to try alternate approaches that align more closely with current ideas about the 

nature and role of proof. In particular, he believes that the two-column format diminishes 
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the role of proof for understanding and instead reduces proofs to the memorization of a 

rote procedure. 

 Discerning teachers' beliefs about the role of proof in mathematics and in 

mathematics education represented another component of Knuth's study (2002a, 2002b). 

For example, whereas participants expressed the view that the main purpose of proof is to 

establish the truth of a statement, few exhibited trust in this aspect of proof. The teachers 

often tested mathematical statements empirically with atypical examples, even after 

agreeing that an argument succeeded in proving the statement for all cases.  "A 

significant number of these same teachers seemed to believe that a proof is a fallible 

construct—that counterexamples or other contradictory evidence may exist—or they 

expressed some other measure of doubt about the generality of a proof" (Knuth, 2002a, p. 

401). More importantly, Knuth found little evidence that the teachers viewed proof as a 

vehicle for promoting insight or understanding in the classroom. They realized that 

proofs give reasons why a statement is true, but did not seem to recognize that proofs can 

also reveal underlying mathematical principals and relationships. Hence, teachers 

questioned the centrality of proof in secondary mathematics classrooms. In direct 

opposition to the stance advocated by NCTM in Principles and Standards for School 

Mathematics (2000), participants generally relegated the teaching of proofs only to select 

students, such as honors students, or only in select upper-level classes, such as calculus. 

 Jones (2000) used concept maps to investigate the conceptions of proof held by 

student teachers in the UK. After creating a list of important terms, each student teacher 

used these terms to create a concept map representing his or her knowledge and beliefs 

about the interconnections among ideas regarding proof. The maps were scored and then 
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correlated with measures of each participant's mathematical knowledge and teaching 

competency. (Jones admitted that the educational community at that time was not in 

agreement about the scoring of concept maps.) The study found that having the most 

advanced technical expertise with mathematics did not necessarily translate into being the 

best math teacher. That is, a high level of subject matter knowledge does not guarantee 

the kind of knowledge needed for effective teaching, which instead requires a rich 

understanding of the interconnections among mathematical ideas.  

Innovations in the Teaching of Proofs 

 The wealth of studies describing the abysmal state of proof in mathematics 

classrooms clearly indicates the need for new instructional approaches. Because of the 

student errors investigated in their two research studies, Selden and Selden (1995, 2003) 

believe students should be presented with opportunities for and explicit instruction in 

validating proofs as a means of improving their own ability to construct proofs. They also 

assert that logic should be taught in the context of actual proofs rather than as a separate 

unit preceding proofs. Among others, Bell (1976), Dean (1996), Harel and Sowder 

(1998), and Movshovitz-Hadar (1988) advocate the use of "proof-eliciting problems" to 

stimulate the type of classroom interactions and student participation that foster 

mathematical understanding and improved conceptions about proof.  

The goal is to help students refine their own conception of what constitutes 

justification in mathematics: from a conception that is largely dominated by 

surface perceptions, symbol manipulation, and proof rituals, to a conception that 

is based on intuition, internal conviction, and necessity (Harel & Sowder, 1998,  

p. 237). 
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An important component of these activities is that students should not readily know the 

correct answer. Instead, students work individually or in groups to solve a novel problem. 

When they share their solutions with the class, other students may be concerned about the 

legitimacy of the steps taken and expect justifications or explanations, which can 

eventually lead to proofs. In this way, students appreciate and understand the 

mathematics better because they helped to create it. Moreover, students see a real need 

for proofs.  

 Despite research indicating that students often confuse empirical evidence with 

mathematical proof, some mathematics educators advocate the use of technology in 

teaching proofs (de Villiers, 1995; Touval, 1997). Graphing calculators, mathematics 

programs such as Maple and Mathematica, and dynamic software such as Cabri-

Géomètre and Geometer's Sketchpad allow students to quickly generate numerous 

examples and therefore develop and test conjectures empirically. Since students find this 

type of evidence more convincing than a formal proof anyway, the role of proof in the 

classroom shifts from that of verification to that of explanation and systemization. In this 

way, de Villiers suggests that students gain a better appreciation for the true nature of 

proofs; the development of proofs in the classroom more closely resembles the 

development of proofs by mathematicians. 

 Other instructional strategies advocated by educators for improving student 

facility with proofs are cooperative learning and the inclusion of writing within the 

mathematics classroom. Goff (2002) found that using standard composition techniques, 

such as writing for peers, peer critiquing, and small group discussions, not only improved 

students' understanding of proofs but also improved overall classroom instruction. The 
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beliefs inherent in his study were that (a) "the ability to write mathematically is an 

important part of becoming a good mathematician" (p. 239); (b) that students are rarely 

taught how to write well mathematically, even in "bridge" courses that teach proof 

writing; (c) that cooperative learning or peer-assisted learning improves overall student 

performance and academic abilities; and (d) that using techniques typically employed in 

English courses for teaching composition would improve students' mathematical 

compositions as well. In particular, he analyzed the results of two exercises given in his 

Spring 2002 discrete mathematics course. In the first exercise, students individually 

wrote a proof for a problem in set theory. Divided into groups of four, they then critiqued 

the proofs of the other students in their group. Afterwards, each group presented a single 

collectively written proof to the instructor for evaluation. Goff deliberately chose a 

relatively simple problem so that students could focus on the writing of the proof rather 

than on the mathematical content of the problem. He conjectured that the errors he found 

in the final group-written proofs could have been attributed to mathematical 

misunderstandings of the students or to the difficulty for students of combining English 

phrases and mathematical symbols. In either case, he believes the errors prompted 

discussions that demonstrated to the class the value of peer-assisted learning.  

 In the second exercise, which occurred later in the course, Goff (2002) assigned 

each student within a group a different problem to prove, although all the problems were 

derived from related concepts. Thus, students critiquing another's proof would not be 

subconsciously inclined to fill in missing details since they had not attempted the same 

proof. Goff hoped this would encourage students to write a more persuasive and careful 

proof. Bringing two copies to class, students first turned in a copy to the instructor before 

22 



having the second copy critiqued by their peers. In this way, the instructor hopefully 

could better determine the effect of the peer critiques on a student's understanding of the 

proof by comparing the first copy of the proof turned in at the beginning of class with a 

new, possibly revised proof turned in after the review process. Students were more 

familiar with the peer critique method at this point; however, numerous common errors 

still showed up in the final proofs. Discovering these common errors allowed Goff to 

learn which concepts were more difficult for his students and adjust instruction 

accordingly. Also, he asserts that students enhanced their ability to write mathematically 

by having both to write proofs and to critique them. 

Conclusion 

 Mathematics educators and philosophers have come to realize that proofs serve 

important and distinct roles within the discipline. Of course, proofs serve to verify that a 

statement is true and help mathematicians systemize results. But proofs are also created 

in a social context through the communication of mathematicians, for whom proofs serve 

to illuminate the nature of the mathematics underlying a theorem. It is in this context that 

proofs would best be utilized in the secondary classroom, that is, for demonstrating why a 

particular mathematical concept works the way it does. To teach proofs only in the 

context of geometry, to present only the two-column format for proofs, or to teach proofs 

only to a select few is remiss and untrue to the nature of mathematics in many ways. 

 However, the current methods of teaching proofs seem to be inadequate. Many 

studies have found that students and teachers emphasize form to the extent that they often 

cannot identify a non-proof if it follows a standard proof method. A recurrent theme is 

the discrepancy between what is considered a valid proof and what actually convinces 
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students or even teachers that a statement is true. A reasonable conclusion that arises 

from this research is that students are not taught to value understanding in mathematics. 

Instead, they are expected to perform mathematics well. Starting in elementary school 

and progressing through undergraduate mathematics, students memorize algorithms for 

solving mathematical problems, memorize theorems, and memorize acceptable formats 

for proofs but are rarely asked to understand why or how these work. Consequently, 

students in college mathematics programs often graduate with a limited grasp of proof. 

Especially with regard to proofs, they simply were not taught well. How, in turn, can 

those that become teachers be expected to teach well? Their experiences as 

undergraduates cause a focus on memorization and adherence to format, which set up 

barriers to understanding. Also, effective teaching requires a different kind of knowledge 

than subject matter knowledge, so even good mathematics students do not necessarily 

make good math teachers. Instead, teachers must have a well-developed concept image 

that includes a sophisticated network of connections among ideas. Most importantly, that 

concept image must include valuing proofs for understanding.  

 Providing future teachers with a pedagogically rich concept of proof will require 

attention in both undergraduate mathematics courses and teacher preparation courses 

(Jones, 2000; Knuth, 2002a). "In short, teachers need, as students, to experience proof as 

a meaningful tool for studying and learning mathematics" (Knuth, 2002a, p. 403). The 

intent of my study was to provide that experience in a teacher preparation course for 

secondary mathematics teachers. 
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Chapter 3 

Methods 

 

 Because studying the development of mathematical understanding is quite 

complex, much of the research in mathematics education in a particular area begins with 

small, focused, qualitative studies. This study is no exception. Many research articles 

addressing issues of students’ development of mathematical reasoning have used 

qualitative methods of study, sometimes mixed with a bit of quantitative methods (e.g., 

Even, 1993; Selden, A., & Selden, J., 2003). Most studies that are relevant to this work 

were quite specific, focusing on a particular topic (proofs) and usually restricting 

themselves to only one or two aspects of that topic, such as how well students unpack the 

logic of math statements (e.g., Selden, J., & Selden, A., 1995; Thompson, 1996). I 

discovered that initial formulations of this project were too ambitious, as much of the 

current work done in this area is the result of years of research, often starting with a Ph.D. 

dissertation and continuing from there. In particular, thinking about the complexities of 

students’ difficulties with proofs is easy; however, studying those difficulties is hard. 

Therefore, this study represents only a small part of a much bigger picture. This project 

focused on exploring a particular instructional technique aimed specifically at pre-service 

and in-service secondary math teachers.  

Action Research and Mixed Methods Design 

 It was important to me to do a project that took some of the theoretical results that 

have already been reported in the literature and applied it in a classroom setting. Thus, 

this study employed action research methods in order to determine if there is a 
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correlation between the development of scoring rubrics and improvements in students’ 

ability to identify correct mathematical reasoning. Here, action research (also known as 

practitioner research) refers to the practice in education of investigating an instructional 

strategy by actually implementing it in the classroom and documenting the results. That 

is, action research is “learning by doing” (O’Brien, 1998, ¶ 3). However, as O’Brien 

states, “what separates this type of research from general professional practices, 

consulting, or daily problem-solving is the emphasis on scientific study, which is to say 

the researcher studies the problem systematically and ensures the intervention is informed 

by theoretical considerations” (1998, ¶ 5). 

 An important aspect of practitioner research is that the study leader has a first-

hand and often tacit knowledge about the area of concern. True practitioner research 

develops from an instinctual professional frustration or dilemma personally connected to 

or perceived by the researcher. Although I have limited experience with teaching proofs 

directly, I can say that the vast majority of students I have worked with do not possess 

good mathematical reasoning skills and probably would be unable to write or validate 

proofs. Moreover, in the graduate math courses I took, many of the other graduate 

students did not exhibit the attention to detail necessary for proof construction and 

validation. I often found myself pointing out glaring gaps in their logic. Thus, although I 

do not have practitioner experience with the difficulties of teaching proofs, my other 

experiences align well with the research previously cited about the wide-spread problems 

students have constructing mathematical arguments. 

 The sample size for this project made purely quantitative methods inappropriate. 

Also, quantitative methods would not have been helpful in clarifying the connection 
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between my intervention techniques and any improved performance by students. Thus, a 

mixed methods design was chosen for the research, which combined both quantitative 

and qualitative procedures. The quantitative portion of a mixed methods design serves to 

form the skeleton of the research, while the qualitative portion adds “flesh” to the study. 

That is, the quantitative data addresses the basic question: “Does this instructional 

strategy help?” However, the qualitative methods provide a more in-depth picture of 

when and how it might help. Changes in the performance of individual students were 

tracked from the Pre-Test through the qualitative data measures to the Post-Test.  

 Utilizing the framework suggested by Creswell (2003), the following four 

components guided the mixed methods design: 

• Theoretical Perspective 

The study emanated from gaps and suggestions found in the math education 

literature, as well as my own observations, about difficulties students have 

with proofs. In particular, few studies had investigated any intervention 

techniques aimed to improve student understanding of proofs. 

• Implementation Sequence 

The data collection method was sequential, but alternating. That is, data were 

collected over a period of time rather than during a single event, and in 

general, the quantitative and qualitative portions of the study did not occur 

simultaneously. 

• Priority 

The strength of the study lay in the qualitative data measures because the 

sample was too small to make meaningful statistical inferences. 
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• Integration 

The data were “mixed” during the analysis phase of the study. That is, the 

quantitative and qualitative data generally were not considered together until 

analyzing the results at the end of the study. 

Participants 

 Subjects in the study were students enrolled in Math 338: Mathematics for 

Secondary Teachers at the University of New Mexico during the Fall 2003 semester. This 

course explores secondary mathematics topics from an advanced standpoint and is 

designed to meet the needs of pre-service and in-service teachers; in fact, the course is 

open only to prospective and in-service teachers of secondary mathematics. All students 

in the course were invited to participate in the study, and all students accepted the 

invitation by signing the Consent to Participate in Research form (Appendix C). 

Therefore, sixteen subjects participated in the research study (six women and ten men). 

The research, however, did not consider the variables of gender, race, or ethnicity. 

 The participants in the course had a wide variety of mathematical experiences and 

abilities. Some were “typical students” who were finishing their first degree and 

considering the teaching profession. Other study members had been in other careers for 

many years and had returned to school to become mathematics teachers. Some 

participants had completed calculus (three semesters), differential equations, and linear 

algebra. Others had not been in a math class for five or more years. Some had even taught 

math before, or were currently teaching math, but needed to complete requirements for 

certification in New Mexico. This information about the background of the participants 

was collected anecdotally through class conversations; it was not requested of the 
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participants as part of this study. In fact, in order to ensure confidentiality, no identifying 

information was collected from participants besides their name and gender. Therefore, 

only the student’s current work in the course were considered and discussed in this study. 

 For collaborative work during the study, participants were not assigned to 

particular groups in class. Instead, they established informal fluid groups. That is, 

students were allowed to work in groups of their own choosing, which varied from week 

to week and ranged in size from two to six.  

 All participants reported having some previous experience with scoring rubrics. 

For nearly all of the students, this experience was limited to having some of their papers 

in English or history courses graded using some type of rubric. No subjects reported 

having developed and used a scoring rubric themselves. Prior to starting the study, I had 

scored a couple of homework assignments in Math 338 using a rubric, and participants 

were given copies of the rubrics used along with the graded assignments. In general 

though, participants had very little exposure to the processes by which scoring rubrics are 

developed and implemented. 

Instruments, Data Sources, and Artifacts 

 Quantitative data in this study resulted from two researcher created instruments: 

the Pre-Test (Appendix A) and the Post-Test (Appendix B). These tests sought to 

measure a participant’s ability to determine the correctness of proofs, to specify the 

logical structure required for a proof, and to point out the specific errors in an invalid 

proof. Most of the questions on the two tests presented a mathematical argument 

purporting to prove a given statement and then asked for two responses. First, 

participants were to choose which of four possible statements best described the 
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argument. Then, participants were to write an explanation for their choices. A few of the 

questions on each test had a slightly different format or only asked for one of these two 

types of responses, since some questions did not lend themselves to this format. In total, 

the Pre-Test contained ten open-ended items asking for examples or explanations and 

eight multiple-choice items. For simplicity, the one true-false item was counted as a 

multiple-choice item. Because of a change in the direction of the study (described in 

Chapter 5: Discussion), only 13 items from the Pre-Test also appeared on the Post-Test, 

including seven multiple-choice items and six open-ended items. The Post-Test then 

introduced four new multiple-choice or true-false items, and four new open-ended items. 

These new questions helped to ascertain if participants simply remembered the Pre-Test 

questions or could demonstrate achievement on new questions. On the Post-Test, the 

order of the questions from the Pre-Test was changed and intermixed with the new 

questions.

 The qualitative data in this study came from a variety of sources that arose from 

instructional activities in class, as well as my own field observation notes as the teacher-

researcher. Data items collected from student-participants included scoring exercises 

using the draft rubrics, participant notes taken in class, and responses to reflective writing 

prompts. Only photocopies of student work were used for the study, and I applied 

removable (Post-It®) tape to cover over any names prior to photocopying, replacing them 

instead with pseudonyms as described in the Validity section below. A complete list of 

all data items, artifacts, and instruments incorporated in the study is given below. The 

following data items were collected from participants: 
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1. Pre-Test [Week 5] 

2. a. Participant class notes [Week 8] 

b. Initial scoring exercise for Arguments M and L in class [Week 8] 

c. Response to Prompt 1 in class [Week 8] 

3. a. Participant class notes [Week 9] 

b. Scoring exercise for Arguments E and L in class using Rubric Draft 1 

[Week 9] 

c. Response to Prompt 2 in class [Week 9] 

4. Scoring exercise for Argument M using Rubric Draft 1 [assigned Week 9; 

collected Week 10] 

5. Scoring exercise for Argument J in class using Rubric Draft 2 [Week 10] 

6. Scoring exercise for Arguments G and K [assigned Week 10; collected Week 

11] 

7. Scoring exercise for Arguments P and Q in class [Week 13] 

8. Response to Prompt 3 [assigned Week 13; collected Week 14] 

9. a. Post-Test [Week 14] 

b. Response to Prompt 4 on Post-Test [Week 14] 

The following instruments and data items were created and/or collected by me as the 

teacher-researcher: 

1. Pre-Test [Week 5] (Appendix A) 

2. Field Notes [ongoing] 

3. Rubric Draft 1 [Week 9] and Rubric Draft 2 [Week 10] (Appendix D) 

4. Examples of other rubrics [Week 9] (Appendix E) 
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5. Arguments L, M, E, J, G, K, Y, P, and Q, in that order (Appendix F) 

6. Prompt 1 [Week 8] , Prompt 2 [Week 9], Prompt 3 [Week 13], and Prompt 4 

[Week 14] (Appendix G) 

7. Post-Test [Week 14] (Appendix B) 

Procedures 

 Students in Math 338 were notified about the study on the first day of class. Initial 

approval for the study was granted by the IRB at the University of New Mexico prior to 

the first day of class. Students were informed both verbally and in writing about the 

purpose, procedures, and potential risks of the research, as well as the voluntary nature of 

participating in the study and the process for voluntarily ending their participation. All 

students in the course were invited to participate, and all students agreed to participate by 

completing a signed Consent to Participate in Research form (Appendix C). The study 

began during the fifth week of class with the Pre-Test. The Pre-Test was not timed, and 

participants took from 30 minutes to one hour to complete the Pre-Test. Three weeks 

later and continuing for the next five weeks, the teacher-researcher led the class in 

discussing, developing, experimenting with, and reevaluating a scoring rubric for 

mathematical arguments purporting to be proofs. The class met only once per week for  

2-1/2 hours per session, and the discussions and work surrounding the rubric’s 

development generally took 30 to 50 minutes of that time. The rubric’s development 

involved researcher-led collaborative discussions involving all participants, individual 

writing assignments, opportunities to experiment with the rubric individually and 

collaboratively, and a few short homework assignments. On the 14th week of class, the 

Post-Test was administered and two final writing assignments were collected. Like the 
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Pre-Test, the Post-Test was not timed, and participants took from 30 minutes to an hour 

to complete it.  

 Much of the preliminary work in developing the rubric centered around 

arguments attempting to prove the statement “For any positive integer n, if  is a 

multiple of 3, then n is a multiple of 3.” This statement and Arguments J, G, and K 

considered in class were modified with permission from the work by Selden and Selden 

(2003). Using these arguments as examples, I then created Arguments L, M, and E, also 

for the statement “For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3.” Finally, I created 2 additional statements and 3 associated arguments. Argument Y 

represented an attempted proof of the statement “If a number is not divisible by 2, then it 

is not divisible by 6.” Arguments P and Q represented proof attempts for the statement 

“In a triangle with side lengths a, b, and c, if 

2n

2n

2 2a b c2+ = , then the triangle is a right 

triangle.” All arguments used while developing the rubric are given in Appendix F. 

Timeline for the Study 

 The timeline below identifies the specific activities that occurred each week and 

the associated data items that were collected from each participant. The researcher’s field 

observation notes were ongoing and are therefore not included in the list. Artifacts such 

as Rubric Draft 2, Argument K, and Prompt 1 are contained in the appendices, as are the 

Pre-Test and Post-Test. References to the associated appendices are given above. The 

word “we” refers to the instructor-researcher and the student-participants collectively. 

Most activities occurred as typical instructional pieces of a normal collaboratively-

constructed (learner-centered) math course, with dialogue from both the instructor and 

the students. 
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Week 1: Students were informed about the study. 

 Item(s) Collected: None 

Week 2: Students were provided more information about the study. 

 Item(s) Collected: None 

Week 3: Students were given informed consent forms. Most were collected 

immediately. 

 Item(s) Collected: Consent to Participate in Research form 

Week 4: All students elected to participate in the study and returned an informed 

consent form. 

 Item(s) Collected: Consent to Participate in Research form 

Week 5: The study began, and the Pre-Test was administered without a time constraint. 

 Item(s) Collected: Pre-Test 

Week 8: The students were asked to score Arguments L and M using any method. We 

discussed their methods and results. Students completed written responses to 

Prompt 1, and we discussed their responses on a voluntary basis. We began 

discussing what components were desired in a scoring rubric. 

 Item(s) Collected: Participant notes, scoring exercise for Arguments L and M, 

response to Prompt 1 

Week 9: We discussed different types of scoring rubrics and looked at a few examples. 

I clarified the type that I intended for us to develop. We identified some of the 

components in a mathematical argument to be evaluated by a rubric. From 

this, we developed Rubric Draft 1. Participants used Rubric Draft 1 to score 

Argument E collaboratively. They scored Argument L individually, then 
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collaboratively. Participants completed responses to Prompt 2, and were 

assigned homework – re-score Argument M using Rubric Draft 1. 

 Item(s) Collected: Participant notes, scoring exercise for Arguments E and L, 

response to Prompt 2 

Week 10: We discussed participant concerns about the use of rubrics to score 

mathematical arguments. I informed students that they are welcome to 

disagree with my perspective. Students turned in their scoring exercise for 

Argument M using Rubric Draft 1. Student work from the previous two 

sessions was returned, which prompted discussion leading to the development 

of Rubric Draft 2. Participants worked collaboratively to score Argument J 

using Rubric Draft 2. After discussing the results, participants were assigned 

homework – score Arguments G and K using Rubric Draft 2 and provide 

explanations for the scores. 

 Item(s) Collected: Scoring exercise for Argument M 

Week 11: Students turned in their scoring exercise for Arguments J, G, and K. Further 

discussions were delayed until the next week. 

 Item(s) Collected: Scoring exercise for Arguments J, G, and K 

Week 12: Student work from the previous two weeks was returned. Participants’ 

questions and concerns were addressed, leading to further discussions about 

mathematical arguments and about rubrics. In particular, participants wanted 

feedback about how I would score the previous arguments. We had further 

discussions regarding the idea of overall logical structure and developed an 
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outline for a proof of the statement “Any point on the perpendicular bisector 

of line segment AB is equidistant from A and B.” 

 Item(s) Collected: None 

Week 13: We discussed the use of the rubric for arguments with more complicated 

logical structures and considered Argument Y. Participants then worked 

collaboratively to score Argument P and individually to score Argument Q 

using Rubric Draft 2. We discussed the results of this scoring exercise and 

addressed further concerns about how to apply the rubric. Participants were 

assigned homework – complete a response to Prompt 3. 

 Item(s) Collected: Scoring exercise for Arguments P and Q 

Week 14: Students turned in their responses to Prompt 3. The Post-Test was 

administered without a time constraint, and participants completed responses 

to Prompt 4 at the end of the test. The study concluded. 

 Item(s) Collected: Response to Prompt 3, Post-Test, response to Prompt 4 

Scoring and Coding of the Pre-Tests and Post-Tests 

 The arguments appearing on the Pre-Test and Post-Test were crafted to contain 

only one basic flaw so that the multiple-choice items consisted of mutually exclusive 

choices regarding the validity of an argument. That is, only one correct answer existed for 

each multiple-choice item on the Pre-Test and Post-Test. My initial review of the tests 

therefore looked at simply the correctness of each participant’s multiple-choice 

responses. (Note: The Pre-Test also contained items pertaining to the original thesis 

involving examples and counterexamples, described in Chapter 5: Discussion. These 
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items were ignored for this study, which considered only the items pertaining to 

validating mathematical arguments.) 

 Once the multiple-choice responses were scored, I considered participants’ open-

ended responses. After a cursory look at these responses, a descriptive system was 

developed for coding the open-ended responses, which is given below. The Pre-Tests 

were scored and coded before any other aspects of the study began, such as developing 

the rubric in class. Open-ended responses that earned a code of I, II, or III were counted 

as “correct” and are reflected as such in Chapter 4: Results. The Post-Tests were scored 

and coded in the same way, without looking back at participants’ results on the Pre-Tests. 

After coding responses on the Post-Tests, however, I then verified my coding by cross-

referencing the responses and codes applied on the Pre-Test. The following codes were 

used: 

I. The multiple-choice answer is correct. The reasoning in the explanation is 

correct and clearly worded. 

II. The multiple-choice answer is correct. The reasoning in the explanation seems 

to be correct but the wording is less than clear. 

III. The multiple-choice answer is incorrect. However, the reasoning in the 

explanation is correct and clearly worded (possibly indicating a 

misunderstanding about the answer choices rather than the argument and its 

error). 

IV. The multiple-choice answer is correct. However, the reasoning in the 

explanation is incomplete, flawed, or irrelevant, or the wording is very 

unclear. (Thus, I could not tell if the participant had correctly identified the 
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error but had difficulty explaining it or if the participant simply guessed 

correctly.) 

V. The multiple-choice answer is incorrect. However, the explanation contains at 

least some correct reasoning or some correct and relevant knowledge 

statements. 

VI. The multiple-choice answer is incorrect. Also, the explanation contains mostly 

incorrect reasoning or irrelevant statements. 

VII. No explanation is given.  

Analyzing the Qualitative Data 

 Qualitative data sources consisted of my field observation notes, as the instructor-

researcher, and items collected weekly from student-participants, such as responses to 

reflective writing prompts, practice scoring exercises using the draft rubrics, and 

participant notes taken in class. The major analysis technique was identification of 

themes. I reviewed these data sources in a variety of ways. I identified themes in my 

researcher field notes. I also studied five particular cases, looking for themes within each 

case’s work and across the five case studies. Finally, I combined the work from my field 

notes with that from the case studies. 

Validity 

 Several measures were taken to increase the validity of the study. First and 

foremost were the steps taken to ensure confidential and voluntary participation in the 

study. From the first day of class, students in the class were informed that the study 

would take place throughout the semester. All students were invited to participate in the 

study, although the instructor repeatedly stressed both verbally and in writing that neither 
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participation nor lack of participation would have any effect on a student’s grade in the 

course. All students in the course were required to complete the Pre-Test, prompt-

response writing assignments, rubric scoring exercises, and Post-Test as normal 

instructional activities of the class. These un-graded assignments were collected as part of 

the course expectations without regard to a student’s participation in the study. However, 

a student’s work was only used in the research study if he or she allowed me to do so by 

signing and returning the Consent to Participate in Research form (Appendix C). 

Participating in the study neither increased nor decreased the amount of work students 

had do in the course, nor did it improve or change their grades in any way. Participation 

simply meant that a student gave me permission to use his or her work in my research 

study. Fortunately, all students in the course agreed to participate. 

 Protecting the privacy and confidentiality of all participants was of utmost 

importance so as to increase participants’ trust in the study and willingness to be open 

and honest in their work. No personal or identifying information was collected from 

participants except their names and gender. Once students had agreed to participate in the 

study, a hand-written list was generated that associated each participating student with a 

pseudonym, which was used throughout the study to analyze a participant’s work over 

time. The pseudonyms were random generic student names, none of which were 

equivalent to the names of any students in the class. Any and all references in the study to 

participating students are pseudonyms. Only photocopies of student work were used for 

the study, and I applied removable (Post-It®) tape to cover over any names prior to 

photocopying, replacing them instead with pseudonyms. Thus, the sole connection 

between the data collected for the study and actual student names was the temporary list 
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generated at the beginning of the study correlating participants with a pseudonym. These 

procedures applied to all student work and my own field observation notes.  

 The study’s design was also meant to increase its validity. Data was collected 

over a period of time, rather than during a single event, which added depth and reliability 

to the results. Moreover, the variety of data measures, both quantitative and qualitative, 

allowed for triangulation of results. In particular, the qualitative data added depth and 

understanding to the quantitative results. Furthermore, collecting the notes that 

participants took as we developed the rubric helped me verify my perceptions of the 

discussions. Also, participants were not given a time limit in which to complete the Pre-

Test or Post-Test. Therefore, these tests were not a measure of speed and hopefully 

measured a participant’s knowledge accurately 

 Finally, the methods used to score or code participant responses added to the 

validity of the study. For example, when coding the open-ended responses on the Pre-

Test and Post-Test, I coded responses for the same question on all tests before moving to 

the next question so as to be more consistent in the coding. Also, I first coded the Post-

Test independently of the Pre-Test, but then verified and aligned my coding by cross-

referencing the responses and codes applied on the Pre-Test. The coding for all of the 

open-ended responses on the Pre-Test and Post-Test was checked at least three times in a 

variety of ways to ensure consistency and accuracy. The content analysis of the various 

data sources in the rubric developmental work was also checked a number of times, 

looking for themes both across activities and across individuals. Finally, the statistics 

describing the results of the Pre-Test and Post-Test were checked using a calculator as 

well as through the use of a spreadsheet. 
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Chapter 4 

Results 

 

 As stated in Chapter 3: Methods, the framework guiding my mixed methods 

design initially treated the quantitative and qualitative data separately. Hence, they are 

treated separately in this chapter. In Chapter 5: Discussion, the data are combined to 

provide a more integrated analysis of the results. 

Quantitative Results 

 As mentioned previously, the Pre-Test contained extraneous questions relating to 

the original, unused thesis involving examples and counterexamples. Of the remaining 

questions, seven were multiple-choice items (including the one true-false item), and six 

were open-ended items asking for clarification about the multiple-choice responses. All 

13 of these items were used on both the Pre-Test and the Post-Test (Appendixes A and B, 

respectively). Figures 1 and 2 compare the number of correct responses, out of the 16 

participants, on the Pre-Test versus the Post-Test for each of these items. Figure 1 

considers the multiple-choice responses, and Figure 2 considers the open-ended 

responses. 

 The total number of correct multiple-choice responses increased from the Pre-Test 

to the Post-Test, although this increase was not statistically significant. Considering all 16 

participants, 112 total correct answers were possible for the multiple-choice responses. 

On the Pre-Test, there were 46 correct multiple-choice responses. On the Post-Test, this 

amount increased minimally to 48, which is a 1.8% increase out of the total possible. The 

increase in the total number of correct open-ended responses was more pronounced. 
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Considering all 16 participants, 96 total correct answers were possible for the open-ended 

responses. On the Pre-Test, there were 34 correct open-ended responses, whereas on the 

Post-Test, this amount increased to 41. This represents a 7.3% increase out of the total 

possible. 

 

 

 

Figure 1. Number of correct multiple-choice responses by item on Pre-Test versus  

Post-Test. 

There exists x such that 
2x is rational

If n(n+2) is divisible by 2, 
then n is divisible by 2 

True/False/Counterexample 
If 2 0x − <  and 2 4 0x − = , then 2x ≥  

The sum of two even integers 
is even 

If the diagonals of a rectangle are 
perpendicular, then it’s a square 

All squares are 
rectangles 

Zero is even 

Number of Participants with Correct Response 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
Pre-Test Post-Test 
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Figure 2. Number of correct open-ended responses by item on Pre-Test versus Post-Test. 
 

 

 

 Figures 3 and 4 display the number of participants earning a given score on the 

multiple-choice items of the Pre-Test and Post-Test, respectively. Figures 5 and 6 display 

the number of participants with a given score on the open-ended items for each test. Here, 

a participant's score simply means the total number of correct responses for the indicated 

portion of the test. As stated before, open-ended responses that received a code of I, II, or 

III were counted as correct. 

 

There exists x such that 
2x is rational

If n(n+2) is divisible by 2, 
then n is divisible by 2 

True/False/Counterexample 
If 2 0x − <  and 2 4 0x − = , then 2x ≥  

The sum of two even integers 
is even 

If the diagonals of a rectangle are 
perpendicular, then it’s a square 

All squares are 
rectangles 

Number of Participants with Correct Response 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
Pre-Test Post-Test 
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Figure 3. Number of participants with a given score on the multiple-choice items of the 

Pre-Test. 
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Figure 4. Number of participants with a given score on the multiple-choice items of the 

Post-Test. 
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Figure 5. Number of participants with a given score on the open-ended items of the  

Pre-Test. 
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Figure 6. Number of participants with a given score on the open-ended items of the  

Post-Test. 
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 Considering the multiple-choice responses, 8 student-participants improved their 

score from the Pre-Test to the Post-Test, 7 participants scored lower, and 1 participant 

made the same score. Considering the open-ended responses, 7 students improved from 

the Pre-Test to the Post-Test, 5 students scored lower, and 4 students made the same 

score. Overall, considering both multiple-choice and open-ended responses, 8 participants 

improved, 7 scored lower, and 1 stayed the same. One of the most notable results, 

however, is that no participant did better with multiple-choice responses and worse with 

open-ended responses, or vice versa. That is, if a student's score on the multiple-choice 

responses increased from the Pre-Test to the Post-Test, then his or her score on the open-

ended responses stayed the same or also increased. This was also true of decreases. 

 Although student-participants did indicate an overall improvement on both the 

multiple-choice responses and the open-ended responses, paired t-tests indicated no 

significant difference existed between the results of the Pre-Test and the results of the 

Post-Test on the 13 common items. The p-value for the multiple-choice responses was 

0.827, for the open-ended responses was 0.300, and for the two responses combined was 

0.551, all of which were above the desired significance level of 0.05. Thus, the results for 

specific individuals are more notable in regards to this study. These are explored later. 

 Participants seemed to handle the new questions on the Post-Test a bit better than 

the questions that appeared on both tests. Of the multiple-choice items appearing on both 

tests, 41.1% of the responses were correct on the Pre-Test, and 42.9% were correct on the 

Post-Test. Of the open-ended items appearing on both tests, 35.4% of the responses were 

correct on the Pre-Test, and 42.7% were correct on the Post-Test. However, 48.4% of the 
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multiple-choice responses and 48.4% of the open-ended responses were correct for the 

eight new items appearing only on the Post-Test. 

 Most of the purported proofs or arguments presented on the Pre-Test and Post-

Test were followed by both a multiple-choice item and a corresponding open-ended item. 

For those arguments appearing on both the Pre-Test and the Post-Test, the difference 

between the number of participants giving a correct multiple-choice response and the 

number of participants giving a correct open-ended response was no more than two. 

However, the discrepancy between multiple-choice responses and open-ended responses 

was greater for some of the new arguments presented on the Post-Test. For example, 

considering the argument in items #10 and #11 of the Post-Test (involving the statement 

“If triangle ABC is an isosceles triangle with congruent sides AB  and AC , then the base 

angles ( ABC∠  and ACB∠ ) are congruent.”) only 2 participants gave a correct multiple-

choice response, but 7 gave a correct open-ended response explaining the flaw in the 

argument. Conversely, for the argument presented in item #19 of the Post-Test (involving 

the statement “If x is divisible by 5 and y is divisible by 3, then yx +  is divisible by 8.”) 

15 of the 16 participants correctly identified the argument as not being a valid proof, but 

only 10 gave a correct explanation for the error. 

Qualitative Results 

 Qualitative data sources consisted of my field observation notes, as the instructor-

researcher, and items collected weekly from student-participants, such as responses to 

reflective writing prompts, practice scoring exercises using the draft rubrics, and 

participant notes taken in class. The primary analysis was reviewing the work for themes, 

which revealed that three particular challenges were evident during the study. First, the 
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participants and I had to develop a common understanding of the type of rubric we would 

create. Second, many participants focused on the rubric as a vehicle for assigning a grade 

rather than as a tool for measuring what a student understands mathematically. Third, 

some participants revealed incomplete proof conceptions and struggled to look beyond 

the superficial aspects of mathematical arguments, such as formatting and notation. 

 Initial confusion about rubrics. The first discussion regarding scoring rubrics 

occurred during the 8th week of class, three weeks after the Pre-Test. This initial 

discussion and participants’ written prompt responses revealed that, whereas most 

participants had a basic grasp of the intent of rubrics, they had differing but minimal 

experiences with rubrics. Moreover, none had seen the use of scoring rubrics in a math 

classroom besides two homework assignments I had graded using a rubric early in the 

course. Thus, an initial obstacle to our work was developing a common understanding of 

the type of scoring rubric we would create. 

 In response to the question “What is a rubric?”, the following verbal answers 

arose indicating an understanding of the intent of rubrics: 

• a matrix style scoring device 

• a standard set of checkpoints to be compared with students’ answers 

• an outline of a grading process 

• a guideline or framework so the teacher grades consistently 

• a set of clear expectations or criteria for a given score 

A theme that clearly surfaced, therefore, was that most participants believed the purpose 

of a rubric was to reduce subjectivity and increase consistency. Also, participants felt 

strongly that rubrics can be very beneficial in letting students know what is expected of 
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them, provided the rubric is given to students before an assignment is completed. The 

participant Kim stated that a rubric “provides info on what areas are strengths and what 

areas need more work.” 

 However, participants generally did not have the same idea as I did about the 

format for a rubric. Most had only seen the holistic type of rubric that describes all the 

qualities necessary for a certain grade. Instead, I envisioned the type of rubric that 

delineates the specific components or aspects to be considered in scoring student work 

and assigns points along a specified scale for how well each aspect is evidenced in the 

work. Also, different aspects may have different scales or weights. I discussed three 

general aspects of student work that I try to assess when using scoring rubrics: accuracy 

of the mathematics involved, depth of understanding or mastery, and quality of the 

presentation. 

 Knowing that many different ideas existed about what we were attempting to do, I 

started our second week of work with the rubric (Week 9 of the study) by having more 

discussions about rubrics. I categorized three different styles of rubrics by way of 

examples. The three styles specified below are not technical labels, but simply the 

locally-defined labels used for the purposes of the discussion with the study participants. 

1. Holistic: This style of rubric describes the general characteristics of the entire 

work necessary to attain a certain grade. Two examples I presented of this 

type were the 3-Point Rubric for Medium Constructed Response Items from 

the Colorado Department of Education (2003) and the Rubric for Grading 

Daily Work (Appendix E) that I had previously developed for my own high 

school courses. 
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2. Matrix: This style of rubric presents an array that separates the various general 

aspects to be considered when scoring a student’s work and then describes the 

qualities of a response exhibiting differing degrees of accomplishment for 

each aspect. The weight of different aspects towards the final score can be 

varied. The aspects considered are often very general, such as conceptual 

understanding, procedures or strategies, and presentation or communication. 

The example I gave participants of this type was the Classic Math Rubric 

from Exemplars® (2003). 

3. Outline-and-Point-Value: This style of rubric gives a detailed list of the 

specific components or aspects to be considered when scoring a student’s 

work and then has a numerical scale along which each aspect is scored. Like 

the matrix style, the weight of the different aspects can vary. However, the 

aspects identified are quite specific to the assignment and not as general as 

those in a matrix style rubric. Because this style delineates the scoring items 

more fully, written descriptions of the reasons for a certain score are not 

given. The Bulletin Board Project scoring rubric (Appendix E) developed for 

my high school courses served as an example of this style of rubric. 

 I stated that we would be developing a rubric using the third or outline-and-point-

value style. The explanation about the different styles, along with the examples 

presented, seemed to solidify the class’ understanding of my goal. After the second week 

of discussions with examples, participants seemed to understand the type of rubric we 

were developing. They did not seem to dispute or struggle with the type of rubric, only 

how the rubric was being used and if a rubric was at all appropriate. 



51 

 Grade issues. To start our discussions (Week 8) about using rubrics to score 

arguments, I asked participants to consider Arguments L and M (Appendix F). 

Specifically, I asked them, on their own, to decide if each argument represented a valid 

proof and then to determine a grade for each. Participants could use whatever scoring 

system they wanted, as long as they informed me of the scale and tried to give reasons for 

the scores they assigned. That is, they could give the argument a standard letter grade or 

assign it some number of points out of a total number of possible points (e.g. – the 

argument merits 16 out of 20 points). Initially using the word “grade” instead of “score” 

created an obstacle that was difficult to overcome for several participants. I did not make 

a distinction between these terms until later when the issue of using a rubric to assign 

grades arose. I definitely should have been more careful about this from the beginning. 

However, I could also argue that trying to make a distinction for this initial activity would 

have ruined its impact and spontaneity. 

 Throughout the following weeks’ discussions, the issue about grades became a 

recurring theme. Beginning with our second discussion (Week 9), most students assumed 

that the score from the rubric would be translated directly into a grade. For example, if an 

argument earned 10 out of 20 points on the rubric, then the student who wrote the 

argument would get a grade of 50%, or a failing grade. I stated that this did not have to be 

the case. Instead, the score could be scaled or augmented in some way to produce a grade 

more in line with teacher or class expectations. For example, a teacher could give a 

student a “completion grade” of 50% for doing the work and then add on points based on 

the score from the rubric. That is, if an argument earned 10 out of 20 points on the rubric, 

the author of the argument could receive a grade of 50 + 50 (10/20) = 75%, or a C. Over 
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the next two weeks, I repeated the point that grades are more of a local issue that teachers 

could deal with in their own way. Instead, we were trying to create a rubric for evaluating 

a student’s understanding of proofs so that teachers could more easily assign the grades, 

as they see fit, for complex tasks such as writing mathematical arguments.  

 Despite my explanation on several occasions that grades were more of a 

subjective issue, David represents an example of a participant who struggled with the 

grade issue throughout most of the study. On the first attempt to score arguments, which 

was before developing the rubric, David understood that Argument M was better than 

Argument L, and even knew basically where the errors were in each. After our first 

development and use of a rubric during Week 9, David’s conflict about grades came to 

light. In particular, he felt that his original score for Argument L was more accurate than 

that given by the rubric because he thought of the rubric’s score as an exact grade to be 

given (see previous paragraph). His original grade was D–, whereas the rubric gave a 

“grade” of F–, which he thought was unfair. “I would not give an F– for this effort even 

though it is poor,” David remarked. Despite his issue with grades, he succinctly states the 

main error in the argument: “doesn’t understand induction.” He was also quite consistent 

with his classmates in his scoring using the rubric. 

 In the next homework assignment, looking at Argument M again with the draft 

rubric, David continued to interpret the raw score from the rubric as the actual grade 

despite what I had said in class. In this assignment, he saw that dividing by zero would be 

a problem and even realized that the original statement negated this possibility. That is, 

he looked very carefully at the argument and had enough of a grasp of mathematics to 

identify a subtle point often missed by students. However, he overlooked the real error in 
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the argument and instead deducted points incorrectly for a wording issue, possibly 

indicating that his problem with the grade seemed to distract him from correctly 

analyzing the argument. During Week 10, I had another discussion about grades, but 

David continued to indicate a struggle with grades in the homework assigned afterwards. 

In his analysis of Argument G, he was distracted by the fact that his interpretation of the 

rubric led to penalizing a student twice for the same mistake, thereby giving a grade he 

felt was unfairly low.  

 There is a marked lack of discussion about grades in his subsequent scoring of 

Argument K. Perhaps this is due to the fact that the proof was basically correct and his 

notion of the appropriate grade coincided with the “grade” given by the rubric. By Week 

13, David seemed to be doing better with the rubric. His scorings for Arguments P and Q 

were nearly identical to mine. There are at least two possible explanations: the arguments 

contained much neater errors, or David was actually becoming more comfortable with the 

rubric. If the latter, the results of his Post-Test indicate that his facility with the rubric 

perhaps occurred a bit too late. 

 Another important participant concern related to grades was the possibility that 

the rubric would cause an incorrect argument to be penalized twice for the same mistake. 

Participants, especially David, Sean, and Chris, became very engrossed in the discussion 

about where to count off for a particular mistake so as not to cause the “double whammy” 

effect. As Chris stated during Week 9, “That’s not fair to take off twice.” I acknowledged 

that this may occur sometimes, but our job was to delineate the components or aspects of 

an effective argument well enough in the rubric so as to minimize this occurrence. The 

on-going development of the rubric focused on clearly separating critical yet distinct 
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aspects of a mathematical argument. Serendipitously, the concerns about the double-

whammy effect forced us to create a better rubric and forced participants to identify the 

errors in each argument more carefully. When group members disagreed about the score 

for a given argument, a common phrase was “Let’s start at the top of the rubric.”  

 Proof Conceptions. Even the initial development and use of a rubric made 

students aware of how difficult scoring proofs will be as a teacher. Participants 

understood that teachers must have a solid grasp of their expectations for student work in 

order to create an effective rubric. As Sean stated, “Assessing students’ understanding is 

harder than it sounds.” Students never explicitly made the connection that scoring 

arguments was difficult because they did not fully understand proofs themselves, but the 

rumblings of such a connection were apparent in participants’ self-reflection, such as 

those associated with Prompt 2 (Appendix G). 

 During Week 9, after clarifying the type of rubric to use, participants were asked 

to delineate the components or aspects we should look for in an argument. Nearly all 

began by listing superficial format aspects, such as "states the given," "states the 

conclusion," and "uses two columns to list steps and associated reasons." These reflect 

the findings of other researchers who discovered that students focus on specific details 

rather than the overall picture (Knuth, 2002a, 2002b; Selden, A., & Selden, J., 2003). 

Moreover, very few student-participants recalled having seen a paragraph-style proof, 

and none had actually written an argument formatted in paragraph form. This suggests 

that participants have not needed to demonstrate any level of proficiency with proofs 

since their high school geometry class, where the two-column approach is often regarded 

as the only way to present an argument. This style starts by stating the given and ends by 
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formally restating the conclusion deduced. One column contains the mathematical 

statements that result from previous statements, and the other column provides the 

theorem or reason behind each step.  

 I did not get a formal assessment of students' proof conceptions. My sense was 

that they vaguely understood proofs to be absolute arguments, but how deeply they truly 

grasped this idea was unclear. The generality necessary in a valid proof was discussed on 

several occasions. Although students seemed to know superficially that proofs must be 

general, I was never quite convinced they truly understood how an argument establishes 

this trait. That is, they seem to embrace the idea that proofs need to be general, whether 

or not they could recognize when an argument accomplished this. 

 After some lengthy discussion, participants eventually were able to identify some 

of the deeper, more mathematical aspects of a valid proof. These aspects resulted from 

the need to delineate the components to include on the rubric. 

• proves the general case 

• each step is valid 

• provides clear connections between steps or ideas 

• "goes in the right direction" 

 However, several students continued to struggle with a faulty understanding of 

proofs. Jennifer, for example, clearly had exposure to proofs in college math courses. She 

wrote about the difficulty she was having with proofs in her real analysis course, and she 

was familiar with terms such as “conditional statement” and “contrapositive.” 

Throughout Weeks 9 to 13, though, Jennifer focused primarily on presentation aspects of 

arguments. When her explanations were content-oriented, they were often confusing or 
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off track. Rarely did she catch the most critical flaws of an argument, especially if they 

involved the overall structure, direction, or “flow” of an argument. Chris, John, and Eric 

were other participants who had difficulty with the overall logical structure of arguments, 

as well as some of the algebra and number sense required for understanding the 

arguments. 

 Despite these struggling students, however, the discussions had a different tone 

even after the first draft of the rubric. Rather than focusing on format, many participants 

began their analysis of an argument by looking at the first item on the rubric, overall 

logical structure.  



Chapter 5 

Discussion 

 

 In general, the study had very mixed results. Statistically, the quantitative data 

indicates no significant improvement occurred in participant responses from the Pre-Test 

to the Post-Test. Tracking the progress of several students through the qualitative data 

sources reveals several potentially complex interactions occurring for participants. For 

some students, the development of the rubric seemed to help them be more attentive to 

the important aspects of a mathematical argument, including the overall logical flow or 

structure of an argument. This was especially true for Maria and Julie, who more than 

doubled their number of correct responses on the items appearing on both tests. For other 

student-participants, such as Jennifer, the rubric seemed to confuse them by adding 

another layer of complexity. Still other participants, who seemed quite mathematically 

capable based on their comments and insights in class, seemed to get caught up in the 

grading aspect of the rubric. Of note here are David and Sean. However, several 

confounding factors in the study could be avoided in future work, suggesting that further 

research of the attempted instructional technique (development and use of scoring rubrics 

as a method to improve teachers’ ability to validate proofs) may prove valuable. 

Complex Interactions 

 Based on work collected from participants for the study, as well as other work not 

affiliated with the study, I had a tacit sense of each individual’s mathematical ability. A 

satisfying aspect of the study was that the variety of abilities of participants made for a 

good sample. I was able to look at the impact of the instructional technique on a wide 
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range of mathematical competencies. One student had never seen proofs of any kind in 

his math classes. Another student was in a real analysis course that heavily involved 

proofs. Almost none of the members of the study, however, seemed to have been 

challenged to think carefully about mathematics, especially in the context of applications 

(word problems). Instead, they were more comfortable with an instructor working an 

example at the board that they would then simply mimic in homework. In-depth, critical, 

mathematically-rich, and innovative thinking was challenging for most of them. 

 Two of the more capable students, though, were Sean and David. The comments 

and insights they provided throughout the course demonstrated mathematical intuition 

and a capacity for creative thought in mathematics. As such, their performance on the 

Post-Test was surprisingly low. For them, the development of the scoring rubric seemed 

not to help because they were distracted by the issue of grades. Oddly, David’s 

assessment of mathematical arguments became increasingly accurate and sophisticated 

towards the end, and was quite in line with my own judgments of the arguments. I 

therefore believe that the rubric was not necessarily the primary cause for his difficulties. 

Instead, simply my language during the study, especially at the beginning, created 

conflicts in his thinking. Had David and others been able to work another week or two 

with the rubric, I suspect they could have moved past the issue of grades and focused 

better on the mathematical flaws in each argument. 

 For some student-participants, such as Jennifer, the rubric seemed to confuse 

them by adding another layer of complexity. The reasoning that Jennifer presented, both 

on the practice scoring exercises and on the Post-Test, indicated that she had only a 

passing familiarity with proofs. Her analysis of many arguments focused primarily on 
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superficial details, such as the wording or format of the argument. When her explanations 

attempted to go deeper or cite specific mathematical flaws, they were often confusing or 

off track. Her ability did not seem to improve as the study progressed, despite the whole-

class activities and interactions, such as developing the rubric, discussing the critical 

aspects of a valid argument, and working cooperatively to implement the rubric.  

 In contrast to David, Sean, and Jennifer, some students demonstrated a significant 

improvement in their facility with mathematical arguments. Among these were Maria and 

Julie. In fact, Maria’s improvement (Post-Test versus Pre-Test results) correlates strongly 

with our work developing and implementing a scoring rubric for mathematical 

arguments. 

 Maria seems to have had at least some initial knowledge of proofs. For example, 

she used the word “contrapositive” on an early assignment during Week 8. She perhaps 

had also been introduced to formal logic, as indicated by her use of the symbol “~” for 

the negation of a statement (Week 9). This probably explains why she was one of the first 

student-participants to begin correctly identifying the flaws in the arguments discussed 

during the study. For Argument M (all arguments used in class are found in Appendix F), 

collected during Week 10, half of the participants in some way indicated that a flaw 

existed with the portion of the argument in which n = 3
k
n

⎛
⎝⎜

⎞
⎠⎟

 implied n was a multiple  

of 3, but none explicitly said that 
k
n

 may not be an integer. This is basically the only flaw 

with this argument. Maria was the closest to understanding this flaw, saying that the 

argument “should have stated that 
k
n

 is an integer.” Her wording on this seems to 
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indicate that she understood the necessity of 
k
n

 being an integer for the argument to be a 

valid proof, but that she perhaps did not realize 
k
n

 may not be an integer in all cases. 

 During our first discussion of Week 8, Maria also indicated some previous 

knowledge and insight about rubrics. She knew they were “a list of rules used for 

grading” that reduce guesswork when grading and would require some experience so that 

the teacher learns what he or she expects to see in student work. However, as we 

developed a rubric in class for scoring mathematical arguments, Maria initially struggled 

with implementing it. For our work during Week 9, she believed that Argument E was 

better than Argument L, yet her first attempt at using the draft rubric at that point gave 

Argument L a better score. This discrepancy concerned Maria. As mentioned above, 

Maria was the only student to specifically identify the problem in Argument M; however, 

she deducted points for the argument’s flow or connection between steps rather than for 

its mathematical correctness. That is, she basically understood the math and followed the 

argument well, but still was struggling with the use of the rubric. For Argument J, scored 

in groups during Week 10, Maria was very harsh. The most noticeable error for most 

students was the double use of the letter n, which appears in different contexts on both 

sides of the equal sign. Maria realized the argument was incorrect, but did not find the 

few merits of the argument. For example, Argument J clearly attempts to address the 

general case, though poorly. However, Maria gave zero points for this aspect on the 

rubric. Maria was aware of her difficulty with using the rubric. Throughout the first few 

weeks, she repeatedly mentioned that she was unsure about using the rubric correctly and 

that our work exploring arguments had even caused her to doubt her own grasp of proofs. 
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 Nevertheless, Maria’s later work demonstrated an excellent facility with the 

rubric and with identifying flaws in mathematical arguments. For example, prior to the 

rubric, she felt that Argument L was very poorly done. Using the rubric, however, she 

realized that the argument’s principal error was not addressing the general case, but she 

also realized that it indicated some knowledge about the correct direction for a valid “if-

then” proof. Her specificity about this aspect of the argument hints that the rubric caused 

her to think more carefully about the components of a valid proof. By Week 10, the 

rubric was reaching its final form. Student-participants used the rubric to score 

Arguments G and K individually for homework. Maria did better with these. She 

correctly identified the main problems in the arguments and deducted points in more 

appropriate places on the rubric. For example, her scoring of Argument G almost exactly 

matched my own. She correctly and specifically found the only error in Argument K, but 

was a bit harsh in its scoring. All in all, though, she seemed to be using the rubric more 

effectively by this point, and had little problem correctly specifying the errors in the 

arguments. By Week 13, Maria had really caught on to the rubric. She was fairly close to 

my scoring for Argument P, which participants scored collaboratively in small groups, 

and agreed exactly with my scoring for Argument Q, which participants completed 

individually. More importantly, her reasoning for the scores she gave was completely on 

target and indicated a sophisticated understanding of the nuances in each argument. 

 Maria noted that she preferred scoring arguments as a group, even though she 

seemed to do better when she graded them individually. Interestingly, she realized that as 

a teacher she will most likely be scoring her students’ arguments on her own and 

comments that outside input in the scoring process would probably not be helpful since 
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only she would know exactly how she had taught her class to do proofs. Insights like 

these clearly indicated that Maria obtained an intuitive general understanding of rubrics, 

as well as competence with the specific rubric we developed for scoring mathematical 

arguments. 

 Maria’s improved skill with rubrics was mirrored by her improved facility with 

mathematical arguments. On the Pre-Test, she had only 2 correct multiple-choice 

responses and 3 correct open-ended responses. On the Post-test, however, all of her 

answers and explanations were correct, except the one about isosceles triangles (item #10 

on the Post-Test), which one could argue was a correct proof since it did not really use 

the fact that the third side was also called p. Her Pre-Test clearly shows that she was 

trying to think analytically about each of her responses, but she simply missed the mark 

on many of the questions. Her answers on the Post-Test, though, are not only correct, but 

her explanations were succinct and completely on target. In the end, Maria improved 

dramatically. She commented that the rubric helped her to look for the important aspects 

of a proof, such as the overall structure, and therefore she felt that she gained a “better 

facility with proofs.” She also seemed to have a good idea about the usefulness of rubrics 

as a teacher, saying that they are beneficial for both students and teachers. She wrote, 

“They allow students to know what is expected in their work,” and “They give teachers a 

good structure for grading.” 

 Another surprising yet interesting result indicates that many student-participants 

were gaining a better facility with investigating mathematical arguments. Item #19 on the 

Post-Test (involving the statement “If x is divisible by 5 and y is divisible by 3, then 

yx +  is divisible by 8.”) contained a typographical error. At least 7 participants 
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recognized this fact and stated that the problem contained a misprint, rather than citing 

the typographical error as the flaw in the argument. Thus, they were still focused on the 

formatting details of an argument, but their sophistication with analyzing arguments had 

improved to the point of recognizing an unintended flaw. This was foreshadowed by their 

scoring of Argument J, in which nearly every participant identified the redundant use of 

the variable. 

Confounding Factors 

 Three primary factors affected the study negatively. The most important of these 

was a “false start.” Before the semester began, the original focus of the study was to be 

the development of scoring rubrics as a means to improve participants’ facility with 

mathematical arguments. Due to concerns about the complexity of this focus, I was 

advised to concentrate on the idea of examples and counterexamples in understanding 

mathematical arguments. However, most students did well with the items involving 

examples and counterexamples on the Pre-Test, which left little room for showing any 

improvement in this area. The test could have been changed to illuminate participants’ 

range of facility with examples and counterexamples better, but the timeline for the study 

did not allow for the design and proctoring of a new Pre-Test. Moreover, the creativity 

involved for participants to develop their own examples and counterexamples would have 

been difficult to measure and to teach. Fortunately, the Pre-Test did still include useful 

information about participants’ ability to identify correct mathematical reasoning. 

Therefore, the study then returned to its original focus of developing and implementing 

scoring rubrics as a means of improving student-participants’ facility with validating 

proofs. Appropriate IRB approval was obtained for each new manifestation of the study. 
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 As a consequence of the false start, the Pre-Test contained questions that 

ultimately were irrelevant to the study about rubrics. Moreover, the rest of the study 

became rushed; activities were completed back to back. Ideally, the activities for this 

study should have been spaced throughout the semester better. A result of the rushed 

schedule was that I could not postpone the Post-Test, even though my years of teaching 

experience gave me a very definite sense that the weather was affecting the mood and 

involvement of the participants that day. Also, having the Post-Test close to the end of 

the semester may have interfered with participants’ ability to concentrate since they 

potentially had finals and projects in other classes to consider.  

 A second factor confounding the study was that the Pre-Test and Post-Test were 

not piloted before being used in the study. Therefore, issues arose regarding the wording 

and clear presentation of some items. For example, the argument presented in item #8 of 

the Post-Test (involving the statement “For any integer n, if  is odd, then n is odd.”) 

was valid; however, it did not explicitly state that the contrapositive had been proved 

rather than the original statement. The reasoning provided by many participants on the 

associated open-ended item indicated that they could follow the logical flow and 

algebraic details of the argument, but that they did not quite see the contrapositive 

construction. In fact, a couple of other participants explicitly stated that the argument was 

not valid specifically because it did not say “by contrapositive.” That is, they seemed to 

understand the argument completely, but the wording of the item interfered with their 

ability to give a correct multiple-choice response. (Note: The decision not to explicitly 

state “by contrapositive” was made with the belief that doing so would cause participants 

to automatically determine the argument to be valid simply because it included a “fancy” 

2n
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mathematical term they recognized but perhaps did not completely understand. Adding a 

second argument that also involved the words “by contrapositive” but was not valid 

perhaps could have helped to distinguish whether participants understood the 

construction of the arguments or focused merely on the mathematical terminology.)  

The typographical error mentioned earlier on item #19 of the Post-Test could have also 

been avoided if the test had been piloted first. Surprisingly, many of the participants 

pointed out the typographical error in their explanations for the open-ended portion of the 

question; that is, they realized that that particular error was typographical and not the 

intended error in the validity of the argument. Finally, the error in Item #10 (involving 

the statement “If triangle ABC is an isosceles triangle with congruent sides AB  and AC , 

then the base angles (  and ABC∠ ACB∠ ) are congruent.”) of the Post-Test was unclear. 

The argument used the same letter to represent two possibly different lengths of a 

triangle. The intent of the item was for participants to see that the double use of the 

variable meant the argument only proved the given statement for one case, that of an 

equilateral triangle. However, the construction of the rest of the argument did not rely on 

the incorrect double use of the variable. Many participants therefore stated that the 

argument represented a valid proof. Six participants identified the incorrect use of the 

variable, and one specifically stated that the double use of the variable did not actually 

affect the validity of rest of the argument. Piloting the test first could have led to a clearer 

presentation of this item. 

 The third factor having a noticeable negative impact on the study was the 

confusion created by not being clear from the beginning with the words “grade” and 

“score.” This was partially due to an incomplete discussion regarding rubrics at the 
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beginning of the study. Student-participants had differing conceptions about rubrics. 

Moreover, a lack of experience about how to assign grades caused the participants to 

make assumptions about the connection between our work with scoring rubrics and its 

affect on a student’s grade.  

Further Work 

 Clearly, the first change in any future study would be to keep the focus on rubrics. 

The items on the Pre-Test that were geared towards the focus on mathematical examples 

and counterexamples would be eliminated. Also, a better introduction to rubrics would 

facilitate classroom discussions regarding their use in scoring proof attempts. In 

particular, the teacher-researcher would need to present several different types of rubrics, 

giving examples of each, with the intention of directing student-participants towards the 

specific style of rubric to be used later with mathematical arguments. The researcher 

should basically plan to have one full discussion regarding rubrics before ever launching 

into the idea of using them with mathematical arguments. Additionally, with a clear focus 

from the beginning, the researcher could start the study earlier in the course, providing a 

more flexible schedule and allowing the Post-Test to be administered before the last push 

at the end of the semester.  

 In addition to correcting and improving the Pre-Test and Post-Test based on the 

previous discussion of their flaws, other changes could provide more reliable instruments 

for gauging participant progress. First, the items that were added to the Post-Test were 

good and should be incorporated into the Pre-Test. Doing so would provide a better basis 

for comparing results before and after the implementation of the instructional technique. 

Second, the structure of the tests could be more consistent. In particular, each argument 
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presented should be followed by both a multiple choice item and an open-ended item. 

Third, any changes to the tests should first be piloted with a different set of student-

participants, not involved with the study regarding rubrics, in order to check the clarity of 

the questions.  

 Another change in the study that I recommend is to be more careful with the use 

of the words “grading” and “scoring.” I intended for us, the researcher and the 

participants, to develop a method for scoring mathematical arguments – to delineate the 

various components of a mathematical argument and rate students on a scale regarding 

their performance with these components. How teachers convert that score into the grade 

assigned to a student is a different matter. Being clear and up front about the distinction, 

as well as discussing ways teachers can convert the score into a grade, would hopefully 

eliminate the concern some participants may have about the use of the scoring rubrics, 

thereby allowing the participants to focus better on the content of the rubric.  

 Finally, recent research articles have exposed the variety of beliefs (many 

incorrect) that students have about proofs and how this affects their judgment of proofs 

(Harel & Sowder, 1998; Moore, 1994; Selden, A. & Selden, J., 2003). What do students 

believe is a proof? Although this study relates strongly to this question, the study did not 

specifically try to ascertain students’ proof conceptions or beliefs. Instead, the study 

focused simply on students’ facility with mathematical arguments. That is, the focus was 

on “what can students do?” not “why do they do it?” Although the discussions regarding 

the development of the rubric certainly were the result of student beliefs about proofs, 

trying to investigate their proof conceptions as a separate component of the study would 

have added significant complexity. Perhaps any further work with the instructional 
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technique used in this study could try to interconnect student beliefs about proofs, as well 

as their ability to validate mathematical arguments, with the development of a scoring 

rubric for those arguments. 

Conclusion 

 The outstanding progress shown by Maria, as well as other participants such as 

Julie, indicates that the attempted instructional technique (using scoring rubrics to 

improve teacher understanding of proofs) may still have merit. Moreover, in regards to 

mathematics teacher education, the attempted technique addresses two important topics at 

once – scoring rubrics and proofs. I am convinced that correcting and improving the 

clarity of the two tests, addressing the potential confusion between grades and scores, and 

presenting a more thorough introduction to scoring rubrics at the beginning of another 

study has the potential of producing more notable results. 
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Appendix D 

Rubric Drafts 

Below are the two major drafts of the scoring rubric as it was developed collaboratively 

in class. Rubric Draft 1 was written by hand at the board and is simply retyped here. 

Rubric Draft 2 appears basically in the same form that was printed for participants. 

 

Rubric Draft 1 

1) Overall logical structure    0 3 6 

2) Valid steps 

a) Algebra correct     0 2 4 

b) Flow/connections     0 1 2 

3) Proves what was to be proven 

a) Demonstrates grasp of concepts  0 2 4 

b) Attempts to prove general case  0 2 4 
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Rubric Draft 2 

 
Scoring Rubric for Proofs 

1. Process
A. Argument clearly addresses the 

general case (if appropriate) 
B. Overall logical structure of the 

argument is appropriate for the 
assertion 

C. Flow of the argument and 
connections among steps are clear 
and appropriate 

2. Mechanics
A. Individual steps and statements in 

the argument are correct 
B. Argument demonstrates mastery of 

all pertinent concepts 

 
 
0 2 4 
 
 
0 3 6 
 
 
0 1 2 
 
 
 
0 2 4 
 
0 2 4 

Comments 
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Appendix E 

Example Rubrics 
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Appendix F 

Arguments Presented to Participants During the Study 

 

Argument L 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: If , then 2 9n = 3n = . 

  

 divisible also divisible 

 by 3  by 3 

 If , then 2 36n = 6n = . 

 If , then 2 81n = 9n = . 

 Thus, by induction, if  is a multiple of 3, so is n. 2n

 

Argument M 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let  be a multiple of 3; that is, 2n 2 3n k=  for some integer k.  

 Since , then 2 3n = k 3n n k=⋅ . 

 So, 3kn
n

=  or 3 kn
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 Thus, n is a multiple of 3. 

 Hence,  is a multiple of 3 implies n is a multiple of 3. 2n
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Argument E 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let n be a positive integer such that 3n k=  for some integer k.  

 Then . 2 2 2(3 ) 9 3(3 )n k k k= = = 2

q

n

2

 That is,  for some integer . 2 3n = 23q k=

 Hence, if  is a multiple of 3, then n is a multiple of 3. 2n

 

Argument J 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Assume that  is an odd positive integer that is divisible by 3. 2n

 That is, . 2 2 2(3 1) 9 6 1 3 ( 2) 1n n n n n n= + = + + = + +

 Therefore,  is divisible by 3. 2n

 Assume that  is even and a multiple of 3. 2n

 That is, . 2 2 2(3 ) 9 3 (3 )n n n n= = =

 Therefore,  is a multiple of 3. 2n

 If we factor , we get 3 ( , which means n is a multiple of 3. 2 9n n= 3 )n n

 

92 



Argument G 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let n be a positive integer such that  is a multiple of 3. 2n

 Then , where m3n m= +∈  (set of positive integers). 

 So, . 2 2 2(3 ) 9 3(3 )n m m m= = = 2

x

 This breaks down into 3  times 3 , which shows m is a multiple of 3.  m m

 

Argument K 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let n be an integer such that 2 3n = , where x is any integer. 

 Then 3 divides , or 2n 23 n . 

 Since , then 2 3n = x 3n n x= .  Thus, 3 n . 

 Therefore, if  is a multiple of 3, then n is a multiple of 3. 2n
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Argument Y 

Statement: If a number is not divisible by 2, then it is not divisible by 6. 

Proof: Let n be a number that is divisible by 6. 

 Then  for some integer k. 6n = k

q

2

 Hence,  for some integer q. 2(3 ) 2n k= =

 Therefore, n is divisible by 2. 

 Thus, by contrapositive, the statement is correct. 

 

Argument P 

Statement: In a triangle with side lengths a, b, and c, if 2 2a b c+ = , then the 

triangle is a right triangle. 

Proof: Consider the triangle shown with side lengths 2a = , , and 2b = 3c = . 

 Then a b  since 2 2 2c+ ≠ 22 22 2 3+ ≠ . 

 Therefore, the triangle is not a right triangle.  

 Thus, by contrapositive, the statement is correct. 

 

2 2 

3 
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Argument Q 

Statement: In a triangle with side lengths a, b, and c, if 2 2a b c2+ = , then the 

triangle is a right triangle. 

Proof: Consider an equilateral triangle  with side lengths of s (with ABC 0s ≠ ). 

 That is, a s , = b s= , and c s= . 

 Since m A , triangle  is not a right triangle. 60m B m C∠ = ∠ = ∠ = °

2c+ ≠ 2

ABC

 Also, a b  since 2 2 2 2s s s+ ≠  (with 0s ≠ ). 

 That is, triangle ABC  is not a right triangle implies . 2 2a b c+ ≠ 2

 Thus, by contrapositive, the statement is correct. 

 C 

A B 

a s=b s=  

c s=
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Appendix G 

Writing Prompts 

 

The following prompts were used to solicit written responses from study participants. 

Participants completed responses for Prompts 1, 2, and 4 in class the same day the 

prompts were presented. Participants completed a response for Prompt 3 as homework. 

 

Prompt 1 

To ascertain what you already know about rubrics, provide a one or two sentence 

response to each of the following items. 

1) What is a rubric? 

2) Describe your experience(s) with rubrics. (What courses have you been in that 

used rubrics for grading your work? Was the rubric approach helpful? Have 

you ever graded student work using a rubric?) 

3) Why or how is a rubric helpful? 

4) What do you believe is involved in developing rubrics for scoring student 

work? 

 

96 



Prompt 2 

1) How does the new score for Argument L (after discussion) compare/relate to 

the original score you gave the “proof” last week? 

2) Do you think the new score or the previous score is more appropriate? (fair, 

accurate) Explain briefly. 

3) Has developing the rubric reminded you of or taught you anything about 

proofs? Explain. 

 

Prompt 3 

Do you prefer scoring the proofs individually or in a group? Why? What is an 

advantage of each? 

 

Prompt 4 

1) What was most beneficial for you from the work with scoring rubrics for 

proofs? 

2) Do you feel this work improved your facility with proofs? How so, or why 

not? 

3) Would you be very likely to use scoring rubrics in your own classroom? 

(Maybe not for proofs; probably not for every assignment) Why or why not? 
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