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Abstract

The Zernike polynomials are an infinite set of orthogonal polynomials over the unit

disk, which are rotationally invariant. They are frequently utilized in optics, opthal-

mology, and image recognition, among many other applications, to describe spherical

aberrations and image features. Discretizing the continuous polynomials, however,

introduces errors that corrupt the orthogonality. Minimizing these errors requires

numerical considerations which have not been addressed. This work examines the

orthonormal polynomials visually with the Gram matrix and computationally with

the rank and condition number. The convergence of the Fourier-Zernike coefficients

and the Fourier-Zernike series are also examined using various measures of error.

The orthogonality and convergence are studied over six grid types and resolutions,

polynomial truncation order, and function smoothness. The analysis concludes with

design criteria for computing an accurate analysis with the discrete Zernike polyno-

mials.
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Chapter 1

Introduction

1.1 Overview

The preferred tool for advanced geometric analysis of optical aberrations to describe

complex distributions in a circular domain are the Zernike polynomials (ZP). The

ZP are a complete, orthogonal basis which are rotationally invariant (Fig. 1.1 illus-

trates a few). They also describe optical aberrations observed in physical systems

in a convenient and concise manner [34]. Application of the ZP to digital images,

however, requires sophisticated techniques to preserve their accuracy, orthogonality,

and convergence. This work critically examines the orthogonality of the discrete

Zernike polynomials (DZP) and the convergence of the Fourier-Zernike series (FZS)

and Fourier-Zernike coefficients (FZC).

Figure 1.1: Seven examples of the Zernike polynomials.

1



Chapter 1. Introduction

1.2 Problem Description

The continuous ZP are a complete, orthogonal polynomial basis over the unit disk

which is rotationally invariant [4]. The DZP, however, are not. Straightforward

applications typically compute the ZP without considering how the grid type, grid

resolution, series truncation, or the smoothness affect the accuracy.

The DZP sampled over a discrete grid does not preserve the orthogonality and

most applications do not realize the potential errors. There are currently no guide-

lines or criteria for choosing a grid type or the number of grid points. Furthermore,

there are few studies on how the grid affects the accuracy of the solutions [35]. A

feasible number of polynomials available for an analysis is also limited by the com-

putational resources, and certainly cannot be infinite. Most studies utilize low-order

approximations by convention, not by accuracy considerations [2, 3, 11, 14, 35].

An additional source of error that appears in a finite series approximation is the

Gibbs-Wilbraham phenomenon. This artifact appears when the original function

has discontinuities or insufficient smoothness for uniform convergence of the partial

sum. The characteristic ringing has been observed in the image reconstruction from

the ZP, but not addressed [35].
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Chapter 1. Introduction

1.3 Solution Approach

The orthogonality of the DZP and convergence of the FZS and FZC require numerical

examination. The orthogonality may be observed and quantified with tools from

linear algebra: Gram matrix, rank, and condition number. Since the convergence

depends on many factors, the errors require numerical exploration as a function of

each parameter.

The Gram matrix is a valuable tool to visually inspect which elements in a basis

overlap, or have a non-zero inner product. The Gram matrix computes the inner

product between every element in a set [19]. It not only shows overlap between

the elements, but it also shows which elements have unit length. In addition to

the qualitative review, the rank and condition number deliver critical, quantitative

measures of the orthogonality and solution stability. The rank of a system measures

the maximal number of linearly independent elements, while the condition number

estimates the amount of accuracy which may be lost when computing a solution with

the system [19, 26, 8].

In this analysis, the DZP are computed over six grid types at various resolu-

tions. The orthogonality is examined using the Gram matrix for a few combinations.

The rank and condition number are then computed for large array of grid combi-

nations and examined for conditions which produce DZP systems of full-rank and

well-conditioned. Several measures of error and basic image normalization are intro-

duced. The convergence of the solutions for the FZC and FZS are then examined

over the various DZP systems. Smoothing an image prior to computing the FZC

or FZS reduces the Gibbs-Wilbraham phenomenon, and is examined as a function

of the smoothing amount. The orthogonality analysis and convergence observations

should yield valuable guidelines for selecting parameters to perform an analysis with

the DZP.
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1.4 Thesis Outline

This work critically examines the orthogonality and convergence of the DZP over

various grids and resolutions, polynomial truncation order, and function smoothness

using a smoothing filter.

Ch. 2 reviews the continuous Zernike polynomials. It presents previous applica-

tions and a summary of the historical development. It also introduces the definitions,

properties, and illustrations of the ZP. It begins with the classical derivation by Born

and Wolf and presents an alternative formulation using normalization of the orthog-

onality constant. It then elaborates on the orthogonalization process that Zernike

originally employed and suggests that it may be used numerically to re-enforce the

orthogonality of the discrete system. Using the ZP as a basis for the Fourier-Zernike

series expansion of a function in terms of the Fourier-Zernike coefficients is also

discussed.

Ch. 3 presents the discrete Zernike polynomials. It examines the various grids

and techniques utilized in the calculation of the DZP. Various grids are introduced

including some from the literature and new ones for comparison. The Fourier-Zernike

coefficients are computed simultaneously from a matrix equation, not from individual

calculations of each coefficient. The orthogonality of the system is then examined

using the Gram matrix, rank, and condition number. Ch. 3 also introduces several

measures of error. The convergence of the Fourier-Zernike coefficients and series is

then examined as a function of various parameters.

Ch. 4 concludes this work, summarizing the techniques and criteria to observe

for an accurate analysis using the Zernike polynomials.
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Chapter 2

Continuous Zernike Polynomials

2.1 Overview

The ZP were originally derived by Frederick (Frits) Zernike in 1930’s during his

development of phase-contrast microscopy [36]. They were later examined further,

derived rigorously and shown to be a unique set of polynomials which is orthogonal

over the unit disk, contains only polynomials that are invariant to rotations about

the origin, and contains only one polynomial for each pair of permissible values of

the order and repetition pair (n,m) [4]. Unlike previous tools outlined by Seidel,

they offered the ability to describe separate and higher-order spherical aberrations.

While the low-order ZP are similar to the aberrations described by Seidel, they

are not equivalent, and require different considerations upon their applications [34].

The ZP are typically utilized in applications requiring a descriptive function over a

circular aperture, particularly in microscopy, ophthalmology, and image processing

[2, 14, 9]. They have also been utilized to describe spherical aberrations, wavefront

analysis, atmospheric turbulence, engineering defects, corneal topology, and image

discrimination [7, 12, 22, 11, 27, 1].
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Chapter 2. Continuous Zernike Polynomials

The ZP possess the necessary properties to build a foundation for image analysis

and reconstruction and additional properties for practical applications. The ZP are

an infinite set of 2-dimensional polynomials that form a complete, orthogonal basis

over the unit disk [5]. This ensures the existence of a unique description in terms

of ZP of any function defined over the unit disk. The ZP are rotationally invariant

and possesses many other derived invariants [25, 9]. Furthermore, they behave well

under rotation, preserving the magnitude of the modes and only changing their

phase. The selection of the ZP over any other basis is primarily due to their physical

interpretation of wavefront aberrations. The ZP describe the same aberrations (e.g.,

astigmatism, coma, trefoil, etc.) observed in optical systems to provide a convenient

and concise description [34]. The ZP are also a suitable basis for pattern recognition

in images with arbitrary rotation.

Sec. 2.2 outlines the derivation of the ZP and how the rotational invariance,

orthogonality, and normalization define this unique set of polynomials. Sec. 2.3

presents the generalized formulation of the ZP with both the traditional normaliza-

tion and the modified normalization constants. Then Sec. 2.4 discusses the use of

the ZP as a basis for expanding a function in terms of the Fourier-Zernike series and

reconstructing the function from the representation in Fourier-Zernike coefficients.

Sec. 2.5 concludes the discussion of the continuous ZP.
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Chapter 2. Continuous Zernike Polynomials

2.2 Derivation

A summary of the important results and properties is presented here, while a com-

plete derivation is available in Principles of Optics, appx. VII, [5]. Infinitely many

complete sets of polynomials exist which satisfy the following orthogonality condition

over the closed unit disk, Ω = D.

¨
Ω

V ∗β (x, y)Vα(x, y)dΩ = Aαβδαβ, (2.1)

where Vα and Vβ are functions from the set, δ is the Kronecker delta, Aαβ is the nor-

malization constant, and ∗ denotes the complex conjugate. The first major property

that distinguishes the ZP from other sets is the rotational invariance, i.e. rotations

about the origin by some angle as given below.

x̃ = +x cos θ + y sin θ,

ỹ = −x sin θ + y cos θ.
(2.2)

Since each polynomial V (x, y) is transformed into a polynomial of the same form,

we obtain the following relationship:

V (x̃, ỹ) = G(θ)V (x, y). (2.3)
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From this result, explicit properties on the continuous function, G, follow:

G(0) = 1, (2.4a)

G(θ + 2π) = G(θ), (2.4b)

G(θ1 + θ2) = G(θ1)G(θ2), (2.4c)

The function which uniquely satisfies those requirements is the natural, exponential

function for any integer, `.

G(θ) = ei`θ. (2.5)

It has been shown that V (x, y) is rotational invariant about the origin if and only

if it has the following form [4]:

V (ρ cos θ, ρ sin θ) = R(ρ)ei`θ. (2.6)

It can be seen that R(ρ) = V (ρ, 0) is only a function of ρ. Expanding in powers

of cos θ and sin θ, it follows that V is a polynomial in x and y of degree n if and

only if R is a polynomial in ρ of degree n when n is greater than or equal to |`|

and n is even or odd according to ` being even or odd. The second major property

that distinguishes the ZP is that they contain a single polynomial for each pair of

permissible values of the degree, n, and the angular dependence, ` (i.e. integers n

and ` such that n ≥ 0, n ≥ |`| and n− |`| is even).

8



Chapter 2. Continuous Zernike Polynomials

The ZP have the following separable form for the radial and azimuthal components,

V `
n (ρ, θ) = R`

n(ρ)ei`θ. (2.7)

Using the orthogonality property from Eq. 2.1 and substituting in the form of

the ZP, Eq. 2.7, the orthogonality condition on the radial function R follows,

ˆ 1

0

R`
n1

(ρ)R`
n2

(ρ)ρdρ =
A`n1n2

2π
δn1n2 , (2.8)

with the weighted inner product,

〈f(ρ), g(ρ)〉 =

ˆ 1

0

f(ρ)g(ρ)ρdρ. (2.9)

The radial polynomial is obtained by taking the restrictions on n and ` and or-

thogonalizing the standard polynomial basis with the weighting factor ρ. An appro-

priate normalization constant is traditionally chosen such that R−`n = R`
n. To obtain

the following, real ZP, an additional variable, m, is used to separate the complex

exponential, where m = |`| is a strictly, non-negative integer.

V +m
n (ρ, θ) = cos(mθ)Rm

n (ρ),

V −mn (ρ, θ) = sin(mθ)Rm
n (ρ).

(2.10)
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Chapter 2. Continuous Zernike Polynomials

n m = 0 m = 1 m = 2
0 1
1 ρ
2 2ρ2 − 1 ρ2

3 3ρ3 − 2ρ
4 6ρ4 − 6ρ2 + 1 4ρ4 − 3ρ2

5 10ρ5 − 12ρ3 + 3ρ
6 20ρ6 − 30ρ4 + 12ρ2 − 1 15ρ6 − 20ρ4 + 6ρ2

7 35ρ7 − 60ρ5 + 30ρ3 − 4ρ
8 70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1 56ρ8 − 105ρ6 + 60ρ4 − 10ρ2

9 126ρ9 − 280ρ7 + 210ρ5 − 60ρ3 + 5ρ

Table 2.1: Orthogonalizing the standard polynomial basis {ρ0, ρ1, ρ2, ...} with the
weighted inner product yields the radial ZP, Rm

n (ρ). They increase order in powers
of 2 due to the weighted inner product.

The first few radial ZP are shown explicitly in Tab. 2.1 for n ≤ 9,m ≤ 2. Since the

number of ZP grow in a triangular fashion, they contain K = 1
2
(nmax + 1)(nmax + 2)

linearly independent polynomials in xp, yq, and xrys for 0 ≤ p, q, r + s ≤ nmax,

where nmax is the maximum degree. Therefore every polynomial in x, y and xy

may be expressed as a linear combination of a finite number of ZP, V ±mn , and the

set is complete by the Weierstrass approximation theorem [5]. Furthermore, the ZP

are the unique set which is orthogonal over D, contains only polynomials that are

invariant to rotations about the origin, and contains only one polynomial for each

pair of permissible values of the order and repetition pair (n,m) [4].

This section presented the required form of the ZP for rotational invariance, the

orthogonality condition on the radial polynomials, the orthogonalization procedure

to generate the radial polynomials, and the unique enumeration of the polynomials

by their order, n, and repetition number, m. The next section presents formulas and

illustrations of the ZP.
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Chapter 2. Continuous Zernike Polynomials

2.3 Formulation

The normalization factor has traditionally been obtained by normalizing the poly-

nomial such that V ±mn (1, 0) = 1, as Zernike performed. Also note that the symbol V

appears frequently in literature discussing the traditional Zernike polynomials. Uti-

lizing properties of the hyper-geometric polynomials, particularly their orthogonality

and normalization, the generalized formulation is given by [5]:

V +m
n (ρ, θ) = cos(mθ)

n−m
2∑

s=0

rmn (s)ρn−2s,

V −mn (ρ, θ) = sin(mθ)

n−m
2∑

s=0

rmn (s)ρn−2s,

rmn (s) =
(−1)s(n− s)!

s!
(
n+m

2
− s
)
!
(
n−m

2
− s
)
!
.

(2.11)

The orthogonality condition is

ˆ 2π

0

ˆ 1

0

(
V ±m2
n2

(ρ, θ)
)∗ (

V ±m1
n1

(ρ, θ)
)
ρdρdθ =

π

n+ 1
δm1m2δn1n2 . (2.12)

The ZP are shown in Figs. 2.1 and 2.2 up to the 10th degree. Note that in these

figures Z±mn = V ±mn . The order, n, increases along the diagonal from the top-left to

the bottom-right. The positive repetition numbers, m, are above the diagonal while

the negative values are below. The subsets of polynomials with identical repetition

numbers are grouped along the diagonals. The ZP increase in the radial oscillations

for increasing orders (compare Z0
0 through Z0

10) while they increase in the angular

oscillation for increasing repetition numbers (compare Z0
0 through Z10

10). The poly-

nomials with negative repetition numbers are identical to the polynomials with the

positive repetition number rotated by π
2m

radians.
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Chapter 2. Continuous Zernike Polynomials

Figure 2.1: The continuous Zernike polynomials plotted in 2 dimensions up to the
10th degree. The radial oscillations increase for increasing orders (subscript) while
the angular oscillations increase for increasing repetition numbers (superscript). In
this pseudo-color scale, green represents zero, red represents positive values, and blue
represents negative values.
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Figure 2.2: The continuous Zernike polynomials plotted in 3 dimensions up to the
10th degree.
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Chapter 2. Continuous Zernike Polynomials

For this analysis with the ZP, an alternative normalization is utilized to simplify

the orthogonality relationship. This is achieved by absorbing the normalization factor

into the definition of the polynomials. These modified polynomials are represented by

the symbol Λ, which looks like an upside-down V , to emphasize their subtle difference

from the traditional Zernike polynomials. The orthonormal Zernike polynomials are

then,

Λ+m
n (ρ, θ) =

√
n+ 1

π
cos(mθ)

n−m
2∑

s=0

rmn (s)ρn−2s,

Λ−mn (ρ, θ) =

√
n+ 1

π
sin(mθ)

n−m
2∑

s=0

rmn (s)ρn−2s,

rmn (s) =
(−1)s(n− s)!

s!
(
n+m

2
− s
)
!
(
n−m

2
− s
)
!
.

(2.13)

The orthogonality condition becomes,

ˆ 2π

0

ˆ 1

0

(
Λ±m2
n2

(ρ, θ)
)∗ (

Λ±m1
n1

(ρ, θ)
)
ρdρdθ = δm1m2δn1n2 . (2.14)

This section presented the traditional ZP, normalized for unity amplitude, and

the modified ZP, normalized to produce an orthonormal set. The next section utilizes

the ZP as a basis to expand a function in a series.
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2.4 Fourier-Zernike Series and Coefficients

Since the ZP are a complete and orthogonal set of unique polynomials, we can

describe a function, f , using the ZP as a basis. This decomposition will be referred

to as the Fourier-Zernike series (FZS). The FZS is composed of the addition of the

ZP, Λm
n , and the magnitude of each ZP, referred to as the Fourier-Zernike coefficients

(FZC), λmn . The symbol to represent the coefficients, λ, was selected to parallel the

symbol selected for the modified polynomials. Each coefficient is the projection of

the function onto each ZP given by the following equation:

λmn =

ˆ 2π

0

ˆ 1

0

Λm
n (ρ, θ)f(ρ, θ)ρdρdθ. (2.15)

The FZS is assembled by adding the contribution from all polynomials, summing

over both indices,

f(ρ, θ) =
∞∑
n=0

n∑
m=−n

m−n is even

λmn Λm
n (ρ, θ). (2.16)

The next section summarizes the properties and formulation of the ZP presented

in this chapter.
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2.5 Summary

This chapter introduced the Zernike polynomials. The rotation invariance required

the polynomials to be of the form, R(ρ)eimθ. To find the radial polynomials, Rm
n , we

then utilized the weighted, inner product (Eq. 2.9), to orthogonalize the standard

polynomial basis, {ρ0, ρ1, ...}. After computing the explicit formulation of a few

polynomials (Tab. 2.1), the generalized Zernike polynomials were obtained for any

order, n, and repetition number, m, and rendered them up to the 10th order (Fig.

2.1). The traditional formulation of the ZP were then modified the to obtain the

orthonormal, ZP, Λm
n (Eq. 2.13). Finally, the Fourier-Zernike series (Eq. 2.16) and

coefficients (Eq. 2.15) were presented which serve as the theoretical foundation to

develop the discrete tools in the next chapter.
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Chapter 3

Discrete Zernike Polynomials

3.1 Overview

Application of the ZP to image analysis requires computation on modern computers

with floating point arithmetic. This requires discretization of both the domain and

the polynomials. Furthermore, since it is not possible to compute an infinite number

of terms in the FZS, we can only compute the ZP up to some maximum order, nmax.

All approaches to compute the discrete Zernike polynomials (DZP) necessarily

introduce numerical errors due to grid selection, quantization, and round-off errors.

The goal is to examine which techniques minimize the errors to maximize the orthog-

onality and convergence. This chapter explores the techniques necessary to compute

the representation of an image in terms of the FZC, and how to reconstruct the

image from the FZS.
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Sec. 3.2 introduces various grids that partition the domain into subdomains. The

grid algorithms are discussed including the generation of grids with similar numbers

of subdomains. Sec. 3.3 discusses the formulation of the FZC as a matrix equation.

In this formulation, tools from linear algebra are employed to analyze the system.

Sec. 3.4 examines the orthogonality of the system evaluated over each grid using

the Gram matrix. This provides a visual inspection tool of the linear independence

between the ZP as a basis. From there, the condition number and rank of the systems

are computed in Sec. 3.5. This provides a quantitative measure to compare the

orthogonality. The performance of the various grids is compared in an exploratory

study of the dependence of the orthogonality on the grid type and resolution.

Sec. 3.6 presents several formulas to quantify the error (e.g., root-mean squared,

peak signal-to-noise ratio, etc.) between two images on the same grid. These error

formulas will be utilized extensively in the remainder of the analysis. Sec. 3.7 dis-

cusses basic techniques to resample digital images in the standard Cartesian grid onto

the various other grids. Moreover, it examines the errors introduced by resampling.

Sec. 3.8 then examines the convergence of FZC. Rotational invariance is also

briefly examined. Sec. 3.9 utilizes the FZC to construct the FZS and reconstruct the

original image. The errors between the reconstructed image and the original image

are analyzed for the dependence on various parameters.
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3.2 Grid Partitioning

A grid is a collection of vertices connected in a simple pattern that partitions the

entire domain, or picture, into a finite set of subdomains, or picture elements (pixels).

For this analysis, six tessellation techniques were selected to offer a comparison of

which technique is best suited for computation of the ZP. The grid types are: (1)

Cartesian, (2) simple polar (polar1), (3) improved polar (polar2), (4) advanced polar

(polar3), (5) triangular, and (6) random. The Cartesian grid (including one converted

to polar coordinates) is commonly utilized in literature in performing calculations

on data from an image [1, 2, 3, 11, 25, 27, 28]. It has been widely employed in

many applications, despite the incomplete partitioning of the unit disk and offers

questionable performance [35]. The improved polar grid has also been utilized in

literature, but facilitates more accurate calculations in the polar coordinate system,

showing a notable increase in computational stability [9, 35]. The simple polar and

advanced polar grids are introduced here for calculations also in the polar coordinate

system, but have not been observed in any applications. The triangular grid is

used commonly in finite element analysis, but is introduced to this application for

exploration. The random grid is generally not utilized in any applications, but is

utilized here as a baseline; to characterize the performance of the designed grids over

a totally arbitrary selection of points.

An ideal grid covers the entire domain with no overlap or gaps: Ω =
⋃J
j=1 Ωj,

where Ωj1

⋂
Ωj2 = ∅ when, j1 6= j2. The perimeter of a real grid, however, may not

entirely cover the unit disk and pixels can even extend outside of it. The three basic

types of pixels are a triangle, square, or sector. A collection of all the pixel faces over

a grid for rendering is referred to as a patch. Patches are only composed of polygons,

typically triangles, so curved boundaries appear as straight lines between the vertices.

To facilitate relevant comparisons between the various grids, it is necessary to employ

the same number of pixels regardless of the partitioning technique. Due to necessary

19



Chapter 3. Discrete Zernike Polynomials

variations in the grid generating techniques, however, the actual number of pixels in

each grid, np, varies slightly from the requested number of pixels, nreq, but typically

< 5%.

The Cartesian grid, shown in Fig. 3.1(a), is an adaption from standard image

formats which utilizes equally sized, square pixels over a square domain. The pixels

with center-points outside of the unit disk are discarded and only the ones inside will

be used for computation. The total area is the number of pixels, np, times the area

of a single pixel. The actual number of pixels utilized in the grid is np ≈ π
4
nreq, to the

nearest integer, representing the ratio of the area of the disk to the area of a square.

The Cartesian patch, shown in Fig. 3.1(b), is a color rendering of the Cartesian grid.

The face of each square pixel is colored according to the value of that pixel.
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Figure 3.1: A Cartesian grid outlined in (a) and rendered in (b) is partitioned using
square pixels over the unit disk. Only the pixels with center-points (black points)
inside the unit circle (red circle) are retained for computation.
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The simple polar grid, shown in Fig. 3.2(a), is generated by equally spacing

the radial and angular coordinates. For simplicity, the number of angular divisions,

nθ, is set as a fixed multiple of the number of angular divisions, nr, specifically 4.

The actual number of pixels in the grid is then, np = nrnθ = 4n2
r. The number of

radial divisions is approximately nr ≈
√

nreq

4
, to the nearest integer, where nreq is the

requested number of points. The resulting pixels are sectors that cover the entire,

closed unit disk with no overlaps or gaps. The area of each sector depends on the

radius to the center of the jth pixel, [ap]j = 2π
nrnθ

[rp]j. The patch over the simple

polar grid is shown in Fig. 3.2(b).
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Figure 3.2: A simple polar grid (a) partitioned from sectors of uniform radial and
angular spacings. The center-point of each pixel (black dot) is spaced evenly between
the divisions, and does not represent the center of mass for a given pixel. The color
rendering in (b) uses triangles and cannot accurately represent the curved boundaries.
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An improved polar grid [35] of pixels with equal area is shown in Fig. 3.3(a).

Similar to the simple polar grid, the improved polar grid is a function of two variables:

nr specifies the number of radial divisions and nθ for the angular divisions. The

angular divisions in this case, however, increases as the radius increases, so nθ only

specifies the initial number of angular divisions at the center. The total number of

pixels in this grid is n2
rnθ, so the area of each pixel is π

n2
rnθ

. To reduce the number

of parameters for creating this grid, the number of angular divisions is set to a

constant, nθ = 4. The pixels in this grid are also sectors, similar to the simple polar

grid, and cover the entire, closed unit disk with no overlap or gaps. The patch over

the improved polar grid is shown in Fig. 3.3(b). The rendered patch appears to have

gaps between the pixels (prominent in the center), but is merely an artifact of the

triangles used to connect the vertices.
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Figure 3.3: An improved polar grid (a) partitioned from sectors of uniform radial and
adaptive angular spacings. The center-point of each pixel (black dot) is spaced evenly
between the divisions. The apparent gaps between the pixels in the color rendering
(b) are not real, but artifacts from the triangles used to connect the vertices.
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The advanced polar grid, shown in Fig. 3.4(a), is generated in the same fashion

as the simple polar grid, but with varying spacing in the radial coordinate. The

vertices were first generated as the square root of the radial coordinate, [rv]j =
√
rj,

where rj are linearly spaced points between and including [0, 1]. The point inside

each pixel, referred to as the central-point to distinguish it from the center-point (i.e.

midpoint) and the centroid (i.e. center of mass), was calculated from the following

formula:

rp =
2

3

r2
v1

+ rv1rv2 + r2
v2

rv1 + rv2
,

θp = θv2 − θv1

(3.1)

which improves the convergence of the following integral,

ε =
1

r2 − r1

ˆ r2

r1

(f(r)− f(rp)) rdr, (3.2)

The number of angular divisions, nθ, is set as a fixed multiple of the number of

angular divisions, nr, specifically 2. This is chosen to avoid oversampling in either

coordinate. The actual number of pixels in the grid is then, np = nrnθ = 2n2
r. The

number of radial divisions is approximately nr ≈
√

nreq

2
, to the nearest integer, where

nreq is the requested number of points. The resulting pixels are sectors that cover the

entire, closed unit disk with no overlaps or gaps. The area of each sector depends on

the number of angular divisions and the radial boundaries, ap = π
nθ

(r2
v2
− r2

v1
). The

patch over the advanced polar grid is shown in Fig. 3.4(b).
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Figure 3.4: The advanced polar grid (a) is a variation of the simple polar grid with
finer spacing toward the perimeter. This feature was added from the observation
that the radial ZP oscillate frequently there. The rendering of the grid (b) again
shows how the pixels are represented with finer, radial resolution at the perimeter
but have constant, angular resolution.

A triangular grid of pixels with approximately equal area is shown in Fig. 3.5(a).

A grid generator [24] attempts to evenly space the vertices over the domain by a

forcing-based smoothing procedure. The result produces near, equilateral triangles

with similar area. Since the procedure optimizes the spacing between the vertices,

the exact number of pixels in a grid only approximately equals the requested number

of pixels. The empirical relationship between the desired vertex spacing, h, to the

requested number of pixels was approximated by h = 10(−0.02262x2−0.34003x+0.14158)

where x = log10 nreq. The points inside of these triangular pixels is calculated from

the centroid (center-of-mass) of their vertices. Since this grid is composed of triangles,

there is some gap between the boundary of the triangles and the unit circle. The

patch rendering the colors over the triangular grid is shown in Fig. 3.5(b).
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Figure 3.5: A triangular grid (a) is generated by a forced smoothing of the distance
between the vertices. After the distances between adjacent vertices reaches an opti-
mum value, each center-point is calculated as the center of mass of the vertices. The
rendering of the triangular grid (b) is composed of triangles with similar, but not
equal, area.

A random grid is shown in Fig. 3.6(a). The location of the vertices are randomly

generated in Cartesian coordinates using a uniform distribution. Any vertices outside

of the unit circle are discarded. Additional vertices are then placed on the perimeter

at equally spaced angles. Next, the vertices are connected to form triangles using

the Delaunay tessellation algorithm. The point inside each pixel is calculated as the

centroid of their vertices. The number of vertices left inside the unit circle after

elimination is nin ≈
(
π
4

) (2nreq

π

)
. The number of vertices added to the perimeter is

nper ≈
√
nin. After the Delaunay tessellation, the number of pixels, np, is roughly

equal to the number of requested points, nreq, on average. The patch over the

random grid is shown in Fig. 3.6(b). This technique frequently produces acute and

near degenerate triangles. The perimeter of the tessellation also does not meet the

unit circle, resulting in gaps.
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Figure 3.6: A random grid (a) generated from a uniform distribution over Cartesian
coordinates. Vertices outside the unit circle are discarded and additional vertices on
the unit circle are added and connected using a Delaunay tessellation. The rendering
of the grid (b) shows high variation in the size and orientation of the triangles. Near
degenerate triangles occur often.

Using a single ZP for comparison, each of the previously described grids were

used to sample the polynomial at approximately 1,000 and 10,000 pixels. The ZP

Λ−4
20 is chosen for a relatively high degree of variation in both the radial and angular

coordinates, which represents most of the remaining ZP of equal order. The low-

resolution grids of 1,000 points are selected to demonstrate particularly how each grid

loses information about the polynomial when under-sampling. The high-resolution

grids of 10,000 points are chosen to demonstrate how well each grid can render the

polynomial. The results are shown in Figs. 3.7 through 3.12. It is important to

qualitatively examine the smoothness, symmetry, and convergence.
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Since the ZP are smooth polynomials in the continuous domain, they should

also show smooth transitions between values of adjacent pixels. This polynomial

should also have symmetry with respect to rotation (θ′ = θ + jπ
4
, j = 1, 2, ..., 7) and

mirror reflections (e.g., about θ = jπ
4
, j = 0, 1, 2, 3). Lastly, the sampled polynomial

should converge uniformly over the domain for increasing grid resolutions. The

following examination is not intended to be comprehensive, but rather a preemptive

breakdown of the strengths and weaknesses that each grid offers. To facilitate a rough

comparison, the properties of each grid will be judged by the following subjective

descriptors: excellent, good, fair, poor. The comparison is summarized at the end of

this section in Tab. 3.1.
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Figure 3.7: Λ−4
20 sampled over the Cartesian grid with (a) 1,020 points and (b) 10,029

points. The polynomial in (a) has poor smoothness or symmetry, whereas, in (b) it
is better, but only on the interior. The convergence is fair since the values around
the perimeter remain irregular even while the central region appears good.

The Λ−4
20 polynomial sampled at low resolution 3.7(a) and high resolution 3.7(b)

over the Cartesian grid shows fair representation overall. The low-resolution grid

introduces significant variability between adjacent pixels and virtually no symmetry.

While the smoothness does improve at the higher resolution grid on the interior, it

remains poor around the perimeter values. The symmetry also improves, but not

greatly, again due to the variability at the perimeter. The convergence is rated as

fair mostly since the interior appears to improve but the perimeter remains highly

variable.
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Figure 3.8: Λ−4
20 sampled over the simple polar grid with (a) 1,024 points and (b)

10,000 points. The polynomial has excellent smoothness and excellent symmetry at
both resolutions. The convergence is good over most of the domain, but, the pixels
around the perimeter appear to omit finer details in the radial coordinate.

The Λ−4
20 polynomial sampled at low resolution 3.8(a) and high resolution 3.8(b)

over the simple polar (polar 1) grid shows good representation overall. The pixel

values transition smoothly azimuthally at both resolutions, while they transition

rapidly, but as required, radially. Thus the smoothness for the simple polar grid is

rated as good. The polynomial appears to have perfect symmetry at both resolu-

tions and receives an excellent rating. The convergence was rated as good since the

interior appears to improve very well but low-resolution version loses detail around

the perimeter.
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Figure 3.9: Λ−4
20 sampled over the improved polar grid with (a) 1,024 points and (b)

10,000 points. The polynomial has excellent smoothness and excellent symmetry at
both resolutions. The convergence is only rated as good, since the pixels around the
perimeter obscure significant details in the radial coordinate.

The Λ−4
20 polynomial sampled at low resolution 3.9(a) and high resolution 3.9(b)

over the improved polar (polar 2) grid shows almost identical behavior as the simple

polar grid. The convergence, however, is only as fair since it appears that the center

of the polynomial is oversampled at the expense of under-sampling the perimeter.

It appears that this grid significantly over-samples the azimuthal coordinate at all

radial segments.

30



Chapter 3. Discrete Zernike Polynomials

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Polar3 Grid, n
p
 = 968, n = 20, m = −4

(a)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Polar3 Grid, n
p
 = 10082, n = 20, m = −4

(b)

Figure 3.10: Λ−4
20 sampled over the advanced polar grid with (a) 968 points and (b)

10,082 points. The polynomial has excellent smoothness and excellent symmetry.
The convergence is rated as excellent; it appears that the polynomials is represented
very well at both resolutions over the entire domain. The high-resolution version
appears as a refinement of the low-resolution one over the entire domain. Also notice
that the polynomial in (b) renders the most detail around the perimeter than any
other grid.

The Λ−4
20 polynomial sampled at low resolution 3.10(a) and high resolution 3.10(b)

over the advanced polar (polar 3) grid shows improved representation at both reso-

lutions. The smoothness over the high-resolution sampling appears superb over the

entire domain. While the smoothness of the low-resolution version appears somewhat

abrupt, this is, however, tolerable since the transitions represent the polynomial’s

transitions. This grid, like the previous grids in the polar domain, also has excellent

symmetry. Furthermore, the convergence of the polynomial on this grid appears

substantially improved; most notably around the perimeter. Not only does the low-

resolution grid appear to render the polynomial very well, but the high-resolution

also reveals more details. Overall, the advanced polar grid rates excellent in all areas.
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Figure 3.11: Λ−4
20 sampled over the triangular grid with (a) 977 points and (b) 10,257

points. The triangular grid is similar to the Cartesian and improved polar grids since
it is composed of pixels with similar area. This grid renders the perimeter better
than the crude Cartesian approximation, but not as well as any of the polar-type
grids.

Λ−4
20 sampled at low resolution 3.11(a) and high resolution 3.11(b) over the tri-

angular grid shows fair representation of the polynomial overall. The smoothness is

poor at the lower resolution but is good at higher resolution. The symmetry is also

poor at the lower resolution and good at the higher resolution. The convergence, like

that of the Cartesian grid, rates only fair since significantly more points are required

to render a better approximation of the polynomial, yet still contains irregularities

around the perimeter.
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Figure 3.12: Λ−4
20 sampled over the random grid with (a) 1,020 points and (b) 10,041

points. The random grid has poor smoothness, symmetry, and convergence at both
resolutions. As expected, these qualities suffer from the the haphazard location and
size of the pixels.

The low-resolution 3.12(a) and high-resolution 3.12(b) random grids both poorly

represent the Λ−4
20 polynomial overall. The polynomial rendered at either resolution

shows virtually no smoothness or symmetry. Increasing the number of samples does

not appear to improve the representation by any appreciable amount.
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Cartesian Polar 1 Polar 2 Polar 3 Triangular Random
Smoothness fair excellent excellent excellent fair poor

Symmetry fair excellent excellent excellent fair poor
Convergence fair good fair excellent fair poor

Table 3.1: The qualitative assessment of the grids representing the ZP Λm
n shows

better marks for the grids in the polar coordinate system.

The preliminary examination of the various grids shows that using rectangular

or triangular elements (as opposed to sectors) to represent the ZP Λm
n have serious

limitations. Tab. 3.1 summarizes the initial assessment of how well each grid ranks

with smoothness, symmetry, consistency, and convergence. Sectors, in the same

polar coordinate system as the polynomials, have a clear advantage qualitatively.

All the grids in polar coordinates appear generally represent the polynomial fairly

well. The uniform pixel area in the improved polar grid (polar 2), however, over-

samples around the perimeter azimuthally at the expense of under-sampling there

radially. The pixels at the perimeter in most cases had marginal convergence and

consistency. The center of Λm
n , and similarly for the other ZP not shown, showed

fewer oscillations in the radial coordinate toward the center and more oscillations

toward the perimeter. The oscillations in the azimuthal coordinate, however, were

independent of the radial location; not surprisingly, when considering the regularity

of the sine and cosine functions. After this preliminary, qualitative examination, the

advanced polar (polar 3) grid, with more samples toward the perimeter, seems to

be better suited to represent the ZP. The next section utilizes these grids to sample

the entire set of ZP as a system of matrix equations using these grids to develop the

DZP.
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3.3 Discrete Zernike Polynomial System

To explore the suitability of the DZP as a basis for digital image analysis, it is critical

to examine the orthogonality of the polynomials and reconstruction accuracy of the

set. Prior to that task, the ZP first described in Eq. 2.13 on page 14 must be recast

into the discrete domain, i.e., into a matrix equation.

First, a finite set of the order and repetition pairs are generated up to some

maximal order, nmax: n = [n1, n2, ..., nK ] and m = [m1,m2, ...,mK ], where K =

1
2
(nmax + 1)(nmax + 2). A single variable, k, indexes all of the DZP. The order

in which the (n,m) pairs are sorted is discussed later near Tab. 3.2. The ZP and

function are then approximated with piecewise-constant approximations by sampling

at the center-point of each pixel over a grid with J pixels, as in the following:

Λ = [Λjk],

Λjk = Λmk
nk

(xj, yj),
(3.3)

and,

f = [fj],

fj = f(xj, yj).
(3.4)
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From Eq. 2.15, the constant terms move out of the integration, the integration

becomes a summation, to obtain the approximated FZC of the function, f , up to

order nmax:

λ̃k =
J∑
j=1

ωjfjΛjk, (3.5)

where,

ωj =

ˆ
Ωj

dΩ (3.6)

represents the area of the jth pixel.

To recover the approximated function, the DZP are multiplied by their respective

FZC and summed over all polynomials. Similar to Eq. 2.16 for the FZS, we have

the following, truncated approximation to the function at each of the pixels, for

j = 1, 2, ..., J .

f̃j =
1

ωj

K∑
k=1

λ̃kΛjk (3.7)

Modifying Eqs. 3.3 and 3.4 to implicitly include the weight terms, Λ̂jk =
√
ωjΛjk

and f̂j =
√
ωjfj, leads to the following system,

Λ̂λ̃ = f̂ (3.8)

where Λ̂ is J ×K, λ̃ is K × 1, and f̂ is J × 1.
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Again, J is the total number of pixels in the grid and K is the total number of

polynomials up to order nmax. This change allows use of the standard, inner product

for later computations instead of the weighted inner product.

As mentioned earlier, it is important to discuss the order in which the DZP are

collected. Three ordering schemes are presented in Tab. 3.2. For this analysis, it was

found that sorting the DZP by their repetition number then by their order (the 3rd

scheme in Tab. 3.2) reduced the condition number of the Gram matrix (discussed

in the following sections). This sorting scheme is standard for the remainder of

this analysis unless stated otherwise. The second ordering scheme is convenient for

initial computation of the polynomials, but then they are re-sorted to third scheme

for analysis of the system.

1 2 3
k n m n m n m
1 0 0 0 0 4 −4
2 1 −1 1 +1 3 −3
3 1 +1 1 −1 2 −2
4 2 −2 2 +2 4 −2
5 2 0 2 −2 1 −1
6 2 +2 2 0 3 −1
7 3 −3 3 +3 0 0
8 3 −1 3 −3 2 0
9 3 +1 3 +1 4 0

10 3 +3 3 −1 1 +1
11 4 −4 4 +4 3 +1
12 4 −2 4 −4 2 +2
13 4 0 4 +2 4 +2
14 4 +2 4 −2 3 +3
15 4 +4 4 0 4 +4

Table 3.2: Three sorting schemes of the order and repetition numbers, up to nmax =
4 ⇒ K = 15. The first scheme sorts by n then by m. The second scheme sorts
ascending by n, then descending by the magnitude of m. The third scheme sorts by
m then by n.
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This section developed the formulas for computing the approximate FZC and

FZS as a matrix equation. The J ×K matrix Λ̂ contains all of the DZP up to the

maximum order nmax which utilizes J pixels from one of the previously described

grids, and K polynomials where K = 1
2
(nmax + 1)(nmax + 2). The next section

introduces the Gram matrix for examining the orthogonality of the DZP.
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3.4 Gram Matrix

The Gram matrix, also known as the Gramian, is the compilation of a set of vectors,

{Λ∗k} for k = 1, 2, ..., K, in an inner product space, which is Hermitian and positive

semidefinite, with the entries given by [29]:

Gk1k2 = 〈Λ∗k1 ,Λ∗k2〉 , (3.9)

The assembled matrix for the DZP appears as,

G =


〈Λ∗1,Λ∗1〉 〈Λ∗1,Λ∗2〉 · · · 〈Λ∗1,Λ∗K〉

〈Λ∗2,Λ∗1〉 〈Λ∗2,Λ∗2〉 · · · 〈Λ∗2,Λ∗K〉
...

...
. . .

...

〈Λ∗K ,Λ∗1〉 〈Λ∗K ,Λ∗2〉 · · · 〈Λ∗K ,Λ∗K〉

 . (3.10)

When the set is orthonormal, the Gram matrix reduces to the identity matrix. Non-

zero values in any of the off-diagonal locations indicates that those vectors overlap,

i.e., are not orthogonal. The Gram matrix allows us to examine the orthogonality of

the DZP over a given grid and up to some maximum order.

The Gram matrix for this analysis appears in the following associated system of

normal equations:

Λ̂TΛ̂λ̃ = Λ̂Tf (3.11)
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The new matrix, G = Λ̂TΛ̂, is the Gram matrix of the system associated with

Λ̂. When assembling the DZP matrix, Λ̂, each polynomial is explicitly normalized

numerically. This ensures that all of the diagonal elements of the Gram matrix

precisely equal 1, as in the following,

Λ̂∗k →
Λ̂∗k

‖Λ̂∗k‖2

⇒
〈
Λ̂∗k, Λ̂∗k

〉
= 1 (3.12)

Ideally, the off diagonal elements in G would be zero or close to zero given machine

precision; ε ≈ 2−52 ≈ 10−16 for double precision arithmetic. The DZP are sorted first

by the repetition number, m, then by the order, n. In this fashion, the orthogonality

of the subsets of polynomials with equal m appear in the Gram matrix as blocks

on the diagonal. The block in the center is the largest since this subset of purely

radial polynomials (i.e., m = 0) has the most members. The orthogonality of the

subsets of polynomials grouped with equal n appear spotted throughout the entire

matrix. The off-diagonal, non-zero blocks indicate interference between polynomials

of various orders, n, while the on-diagonal, non-zero blocks indicate interference

between polynomials of similar repetition, m. Figs. 3.13 through 3.18 illustrate the

Gram matrix associated with the 6 grids at 3 different resolutions: 20, 200, and 2,000

pixels. The maximum polynomial order is constant, nmax = 10⇒ K = 66.
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(a) (b)

(c) (d)

Figure 3.13: The Gram matrix G is shown in a linear colorscale for the DZP up to
the 10th degree over the Cartesian grid for: (a) 21, (b) 208, and (c) 1,976 points. The
image in (d) is the same Gram matrix as in (c) but uses a logarithmic colorscale. The
off-diagonal entries tend toward zero for increasing resolution, np, but are still quite
evident as in (d). This indicates that the system does not improve orthogonality
rapidly.
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The images in Fig. 3.13 illustrates the the Gram matrix for the DZP over the

Cartesian grid at several resolutions: 21 points in (a), 208 in (b), and 1,976 in both

(c) and (d). Fig. 3.13(a) shows many non-zero entries off of the diagonal indicating a

significant amout of aliasing between the polynomials. Essentially, the set of polyno-

mials is not adequately represented and the system is highly dependent. The pattern

indicates that polynomials which are even/odd with sgn(mk1) = sgn(mk2) generally

only interfere with each other for any given order. This suggests that the interference

pattern is caused by the symmetry in the grid combined with the alignment of the

polynomials. Fig. 3.13(b) shows similar behavior as in (a) but with a reduced effect.

The effect almost disappears in Fig. 3.13(c) except for some residual interference

along the block-diagonal elements. This indicates a strong interference within the

subsets of polynomials with the same repetition number, m. The Gram matrix in

Fig. 3.13(d) is identical to that in (c) but rendered in a logarithmic colorscale. The

even/odd interference pattern re-emerges and indicates that the orthogonality of the

polynomials converges slowly.
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(a) (b)

(c) (d)

Figure 3.14: The Gram matrix G is shown in a linear colorscale for the DZP up to the
10th degree over the simple polar grid for: (a) 16, (b) 196, and (c) 1,936 points. The
image in (d) is the same Gram matrix as in (c) but uses a logarithmic colorscale. The
far, off-diagonal entries are ≈ 10−16, effectively zero; indicating ideal orthogonality.
The block-diagonal elements, however, still show significant interference for all grid
resolutions.
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The images in Fig. 3.14 illustrates the the Gram matrix for the DZP over the

simple polar grid at several resolutions: 16 points in (a), 196 in (b), and 1,936 in both

(c) and (d). Fig. 3.14(a) shows non-zero entries off of the diagonal across horizontal

and vertical strips and on the block diagonals. The strips indicate interference from

a particular repetition number with all of the other polynomials, while the block

diagonal elements indicate interference within each of the families of repetition num-

ber. The interference along the strips is due to under-sampling in the azimuthal

coordinate and quickly vanishes at higher resolutions as in Fig. 3.14(b) and (c). The

interference within each of the subsets of repetition numbers remains significant even

at the higher resolution as seen in (c). Under the greater scrutiny of the logarithmic

colorscale as in (d), we can see that all of the aliasing, except for the block-diagonal

elements, disappears, i.e. ≈ 10−16. This a direct result of sampling the DZP in polar

coordinates.
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(a) (b)

(c) (d)

Figure 3.15: The Gram matrix G is shown in a linear colorscale for the DZP up
to the 10th degree over the improved polar grid for: (a) 16, (b) 196, and (c) 1,936
points. The image in (d) is the same Gram matrix as in (c) but uses a logarithmic
colorscale. Most of the far, off-diagonal entries are effectively zero (≈ 10−16), but
there is significantly more interference than in the previous simple polar grid. The
block-diagonal elements remain prominent as in the previous grid.
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The images in Fig. 3.15 shows the the Gram matrix for the DZP over the im-

proved polar grid at several resolutions: 16 points in (a), 196 in (b), and 1,936 in

both (c) and (d). The image in Fig. 3.15(a) shows interference between the polyno-

mials, but not at any regular or repeatable occurrence. At such low resolutions on

the grid, the alias may be due to a combination of under-sampling both the radial

and azimuthal coordinates. At higher resolutions, as in (b) and (c), the only re-

maining interference is between the subsets of polynomials with identical repetition

numbers. The image in (d), however, shows that in greater detail, an interference

pattern is still present. This patter is similar to the one originally observed with the

Cartesian grid; the even/odd polynomials tend to only interfere with the even/odd

polynomials. This is likely due to the similar symmetry that this grid shares with the

Cartesian grid: both grids have perfect symmetry about the horizontal and vertical

axes through the origin. This increases the ability of polynomials with similar sym-

metry to the grid to cause interference and reduce the convergence to an orthogonal

system.
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(a) (b)

(c) (d)

Figure 3.16: The Gram matrix G is shown in a linear colorscale for the DZP up
to the 10th degree over the advanced polar grid for: (a) 18, (b) 200, and (c) 2,048
points. The image in (d) is the same Gram matrix as in (c) but uses a logarithmic
colorscale. Similar to the orthogonality of the simple polar grid, the far, off-diagonal
entries are ≈ 10−16, effectively zero which indicates ideal orthogonality. The block-
diagonal elements still show interference at all grid resolutions, but much less than
any other grid.
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The images in Fig. 3.16 shows the the Gram matrix for the DZP over the ad-

vanced polar grid at several resolutions: 18 points in (a), 200 in (b), and 2,048 in

both (c) and (d). The image in Fig. 3.16(a) shows heavy interference which quickly

vanishes as in (b) and (c). The non-zero elements along the diagonal blocks in (d)

indicates that the polynomials within the subsets of identical repetition numbers still

interfere with each other. Similar to the results observed with the simple polar grid

in Fig. 3.14(d), the polynomials with different repetition numbers, m, are effectively

orthogonal. This is evident from the trivial values, ≈ 10−16, off the diagonal and

off of the diagonal blocks. The values in the diagonal blocks for the advanced polar

grid, however, are typically at least an order of magnitude smaller than those in the

simple polar grid.
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(a) (b)

(c) (d)

Figure 3.17: The Gram matrix G is shown in a linear colorscale for the DZP up to
the 10th degree over the triangular grid for: (a) 18, (b) 203, and (c) 1,954 points. The
image in (d) is the same Gram matrix as in (c) but uses a logarithmic colorscale. At
low resolution (a), the under-sampled DZP show significant interference with many
other of the polynomials in an interesting pattern. At the higher resolutions, as
in (b) and (c), the interference appears to decrease, except for the block diagonal
elements. As we can see in (d), however, the DZP still show non-trivial interference
between all polynomials where the elements are ≈ 10−5.
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Fig. 3.17 shows the the Gram matrix for the DZP over the triangular grid at

several resolutions: 18 points in (a), 203 in (b), and 1,954 in both (c) and (d). The

image in Fig. 3.17(a) shows interference between the majority of the polynomials.

The interference is spread over polynomials of similar order: even/odd polynomials

interfere with even/odd polynomials, respectively. In this case, it does not depend

on the sign of the repetition number, as in the case with the Cartesian and improved

polar grids. This aliasing is likely due to under-sampling in the azimuthal coordinate.

Also present is the interference between polynomials within the families of identical

repetition numbers. This is again seen from the non-zero elements in the blocks on

the diagonal, as in (b) and less pronounced in (c). The image in Fig. 3.17(d) shows

tremendous interference between all polynomials regardless of order or repetition.

This is likely due to inadequate resolution near the perimeter, as observed in the

previous section for this grid.
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(a) (b)

(c) (d)

Figure 3.18: The Gram matrix G is shown in a linear colorscale for the DZP up to
the 10th degree over the random grid for: (a) 21, (b) 204, and (c) 2,024 points. The
image in (d) is the same Gram matrix as in (c) but uses a logarithmic colorscale. At
low resolution (a), the under-sampled DZP show tremendous interference between all
polynomials. At the higher resolutions, as in (b) and (c), the interference decrease,
except for the block diagonal elements similar to the behavior in the triangular grid.
As we can see in (d), however, the DZP show even more interference between all
polynomials where the elements are ≈ 10−4 or more.
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Lastly, the images in Fig. 3.18 shows the the Gram matrix for the DZP over the

random grid at several resolutions: 21 points in (a), 204 in (b), 2,024 in (c), and 2,054

in (d). The image in Fig. 3.18(a) shows substantial interference between the all of

the polynomials, especially toward the corners which represents the high-order DZP

sensitive to misrepresentation at the perimeter. Fig. 3.18(b) shows lower values,

but, the interference is still spread over all polynomials. The interference further

decreases, as in (c), but is still much higher (≈ 10−4) than desirable, as in (d).

The Gram matrix computed at several resolutions for each grid type provides

a valuable inspection tool to examine the orthogonality of DZP. In all cases, it is

apparent that the polynomials within the subsets of identical repetition number, m,

typically interfere with each other. While this aliasing was present for all systems,

it was, however, less pronounced in the advanced polar grid. It is also common to

observe polynomials of interfere with each other with similar parity; even/odd poly-

nomials interfered with even/odd polynomials, respectively, as seen in the Cartesian,

improved polar, and triangular grids. Based on the results illustrated here, the ran-

dom, triangular and improved polar grids appear to have the least orthogonality,

while the advanced polar, simple polar and the Cartesian have the best. The Gram

matrix shows even more insight to the orthogonality of the DZP, but what is needed

is a quantitative metric to determine what resolution, np, is best for a given order,

nmax. The next section computes the rank and condition number to accomplish this.
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3.5 Rank and Condition

In this section, the condition number and rank are computed to numerically explore

which systems of the DZP are well-conditioned and full-rank. After a brief review

of the necessary definitions, the condition number and rank are then be computed

for each of the 6 grids previously described at various resolutions, np, and maximum

polynomial order, nmax.

The rank of a matrix, R(Λ̂) = r, can be defined as the number of independent

columns, r [19]. The J ×K matrix, Λ̂, is said to have full-rank, or linearly indepen-

dent, when the rank is equal to the number of columns. The system is rank-deficient,

or linearly dependent, otherwise, r < K. To facilitate a comparison of systems with

various sizes, the rank will be normalized by the number of columns, such that the

rank is bound in the interval [0, 1],

R(Λ̂)

K
. (3.13)

The condition number of a square matrix, A, is commonly defined as [19, 26, 8]:

κ(A) = ‖A‖‖A−1‖, (3.14)

and in the case of a rectangular, or least-squares system, it generalizes to,

κ(Λ̂) = ‖Λ̂‖‖Λ̂+‖, (3.15)

where + represents the pseudo-inverse or the Moore-Penrose inverse of Λ̂.
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The condition number varies widely over many orders of magnitude, 1 ≤ κ(Λ̂) ≤

∞. To facilitate a comparison of various orders, the order of the condition number

will be taken from the common logarithm. This is also a convenient estimation for

the degree of accuracy we can attain a solution; one can generally expect to lose

log10 κ(Λ̂) digits of accuracy computing a solution using Λ̂.

The rank and condition number are both computed numerically from the singular

value decomposition (SVD). The SVD translates a matrix into a diagonal form,

provided the proper orthogonal coordinates for the domain and range. The SVD

of an J × K matrix (J ≥ K), Λ̂, is the product of a diagonal matrix of singular

values, Σ, the left singular vectors, U , and the right singular vectors, V , which has

the following form [8]:

Λ̂ = UΣV∗,

Σ = diag(σ1, σ2, ..., σK),

U∗U = I,

V∗V = I,

(3.16)

where the singular values are ordered largest to smallest.

The induced matrix norm in the condition number, ‖·‖, is typically taken as the

2-norm. In this case the condition number is given by the ratio of the largest singular

value, σ1 to the smallest singular value, σK ,

κ(Λ̂) = ‖Λ̂‖2‖Λ̂
+‖2 =

σ1

σK
. (3.17)
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The SVD is also utilized to estimate the rank. For a linearly dependent system,

the singular values tend to decrease by many orders of magnitude after the principal

singular values. The rank is calculated by counting the number on non-trivial singular

values above a threshold [17],

τ = Kε(σ1) (3.18a)

R(Λ̂) =
K∑
k=1

σk > τ (3.18b)

where ε(·) is the machine precision to the next, larger floating point number (ε ≈

2−52 ≈ 10−16 for double precision variables) [17].

A numerical exploration of the rank and condition number was performed over

each of the 6 grids at various resolutions and maximum order of the DZP. The number

of points, np, in each grid ranged logarithmically from 101 to 105. The maximum or-

der of the DZP, nmax, range linearly from 2 to 50. At each combination of (nmax, np),

the rank and condition number are computed from the economic SVD. When the

normalized rank was near unity, 1
K
R(Λ̂) > 0.99, the system is considered full-rank

and the order of the condition number is also computed, log10 κ(Λ̂). The results are

plotted over logarithmic coordinates to emphasize the the change from full-rank to

rank-deficient over the apparent minimum-resolution barrier; the rank is unity above

some line in each image, but deteriorates rapidly below it. The boundary between

full-rank and the rank-deficient domains is estimated. The minimum-resolution cri-

teria is then computed using a linear fit.
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Figure 3.19: The normalized rank (a) and the order of the condition number (b) for
the Cartesian grid. The condition number rises at higher polynomial orders faster
than the minimum resolution criteria.
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Figure 3.20: The normalized rank (a) and the order of the condition number (b) for
the simple polar grid. The condition number is very high at the higher polynomial
orders.
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Figure 3.21: The normalized rank (a) and the order of the condition number (b) for
the improved polar grid. The condition number is also very high at high polynomial
orders.
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Figure 3.22: The normalized rank (a) and the order of the condition number (b) for
the advanced polar grid. The condition number appears much lower, even at high
polynomial orders.
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Figure 3.23: The normalized rank (a) and the order of the condition number (b)
for the triangular grid. The condition number is moderate at the higher polynomial
orders.
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Figure 3.24: The normalized rank (a) and the order of the condition number (b)
for the random grid. The condition number is also moderately high at the high
polynomial orders.
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Fig. 3.19(a) shows the normalized rank of the DZP system computed on the

Cartesian grid. For this system, the transition region between rank-deficient and

full-rank appears rather sharp. Fig. 3.19(b) reveals that even when the system

has full rank, the condition number increases faster for increasing, nmax. The rank

and condition number of the polar1 and polar2 grids show similar behavior in Fig.

3.20 and Fig. 3.21. The minimum resolution criteria of the polar3 grid, however, is

noticeably higher in Fig. 3.22(a). Despite this higher and broader transition region,

the condition number of the polar3 grid, Fig. 3.22(b), is dramatically lower compared

to similar locations on all of the other graphs. This suggests that the DZP over the

polar3 grid have better orthogonality. The rank of the triangular and random grids,

Fig. 3.23(a) and Fig. 3.24(a), show low and sharp transition regions, similar to that

of the Cartesian. The condition number of the triangular and random grids, Fig.

3.23(b) and Fig. 3.24(b), however, are noticeably lower.

Grid Type Minimum Resolution Criteria
Cartesian log10 np > 1.73 log10 nmax + 0.27
Polar 1 log10 np > 1.85 log10 nmax + 0.29
Polar 2 log10 np > 1.85 log10 nmax + 0.29
Polar 3 log10 np > 2.03 log10 nmax + 0.28
Triangular log10 np > 1.78 log10 nmax + 0.11
Random log10 np > 1.76 log10 nmax + 0.14

Table 3.3: The minimum number of pixels, np, for the discrete system to be full-rank
depends on the maximum order, nmax, of the DZP system, and varies by grid type.
The minimum resolution criteria for the various grids were similar, except for the
advanced polar grid (polar 3) which is slightly higher.

Tab. 3.3 summarizes the minimum-resolution criteria necessary for full-rank DZP

systems, but is not sufficient for stability and accuracy. These formulas serve as

guideline for selecting the minimum number of points when creating a grid as a

function of the maximum polynomial order. The formula for the advanced polar

grid is slightly higher and serves as a conservative, single guideline.
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Figure 3.25: The condition number versus the polynomial order for each grid with
(a) ≈ 5, 000, (b) ≈ 10, 000, (c) ≈ 33, 000, and (d) ≈ 100, 000, pixels for various orders
of DZP. The condition number for the system over the polar 3 grid is typically much
lower than the other grids. The results in (d) reveal the barrier in double-precision
arithmetic for nmax > 40.
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The condition number in Fig. 3.25 shows that additional resolution is required

for a high quality solution. Utilizing the results from the previous, exploratory

computations and selecting a few resolutions, the condition number as a function of

the polynomial order is shown for grids with approximately 5,000, 10,000, 33,000,

and 100,000 pixels. These resolutions are the total number of pixels over the circular

domain. Translating this to common resolutions for an image on a square domain

is made by
√

4
π
np as a rough estimate. This suggests that we would require images

with resolutions of 80 × 80, 116 × 116, 200 × 200, and 356 × 356, which are all

modest resolutions by current computing standards. The condition number generally

improves for increasing resolutions, as shown in Fig. 3.26. Fig. 3.26(a) also shows

that the advanced polar grid is a well-conditioned system for all resolutions, but the

Cartesian grid closes the gap at higher resolutions. Fig. 3.26(b) shows that increasing

the order beyond nmax > 40 all systems loose conditioning. This is a computational

barrier imposed by double-precision arithmetic.
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Figure 3.26: The condition number of the DZP systems for nmax = (a) 40, and (b)
50. The condition number decreases as expected for increasing grid resolutions as in
(a). The advanced polar grid has the smallest condition number for all these grid
resolutions above the minimum-resolution criteria. The condition numbers in (b) are
not only significantly higher, but also encounters a computational barrier.

In this section, the rank and condition number of the DZP matrix, Λ̂, are com-

puted at various grid resolutions and polynomial orders for each of the grids. An

exploratory computation yielded valuable information where the systems had full-

rank and are well-conditioned. A minimum-resolution criteria is estimated for all of

the grids which established an absolute lower bound on the grid resolution required

to solve for the DZP at a selected order. The condition number showed that ad-

ditional resolution is required for stability and accuracy, and that these resolutions

are attainable by current image processing standards. Furthermore, computation of

DZP above the 40th order is not recommended. The next section presents several

normalized measures to discuss the error convergence in the subsequent sections.
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3.6 Error

There are various measures to quantify the error between two images: some are

commonly used in the field of image analysis [33, 30, 32, 13], some are used in

matrix analysis [19, 26], while others are introduced in this section. The two images

are referred to as the reference image Iref., and the test image, Itest. The errors

are non-dimensional either by their typically formulation or use some property of

the reference image to induce the normalization. The images must have the same

number of pixels, J , and corresponding pixels, Itest
j ≈ Iref.

j .

The normalized, mean absolute error measures the average residual [30], normal-

ized by the range of observed values in the reference image,

εmean(Iref., Itest) =
1
J

∑J
j=1

∣∣Iref.
j − Itest

j

∣∣
maxj Iref.

j −minj Iref.
j

. (3.19)

The normalized, maximum absolute error measures the maximum residual, nor-

malized by the range of observed values in the reference image,

εmax(Iref., Itest) =
maxj

∣∣Iref.
j − Itest

j

∣∣
maxj Iref.

j −minj Iref.
j

. (3.20)

The normalized, root-mean-squared error measures the variation of the residuals

[33], normalized by the range of observed, reference values,

εrms(I
ref., Itest) =

√√√√∑J
j=1

(
Iref.
j − Itest

j

)2∑J
j=1

(
Iref.
j

)2 . (3.21)
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The peak, signal-to-noise ratio (PSNR) measures the power of a signal versus the

power of the corrupting noise (in dB) [32]. PSNR is also used frequently as a metric

in analysis of lossy compression algorithms [13], and is given by,

εpsnr(I
ref., Itest) = 20 log10

 maxb Iref.√
1
J

∑J
j=1

(
Iref.
j − Itest

j

)2

 . (3.22)

where, maxb Iref. is the maximum value for the bit-depth of the reference image (e.g.,

255 = 2b − 1 for an 8-bit image). When dealing with normalized images, however,

this is replaced by the maximum value obtained from the referenced image.

The angle which measures the closeness of fit is typically used in analysis of the

solutions of least-squares problems [26]. Given the matrix problem Ax = b with the

solutions x = A−1b and y = Ax, the closeness of fit is given by θ = cos−1 ‖y‖
‖b‖ , where

0 ≤ θ ≤ π
2

and all norms are in the 2-norm. In this image analysis, we have,

εθ(I
ref., Itest) = cos−1 ‖Itest‖

‖Iref.‖
= sin−1 ‖Iref. − Itest‖

‖Iref.‖
. (3.23)

An additional measure is how a solution ‖y‖ falls short of the maximum possible

value [26], η = ‖A‖‖x‖
‖y‖ , where 0 ≤ η ≤ κ(A). In this particular analysis, it becomes,

εη(I
ref., Itest) =

‖Λ̂‖‖λ̃‖
‖Itest‖

. (3.24)
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In this section, various error measures have been presented for later use in the

analysis of the DZP on an associated grid. The error types are: mean, max, RMS,

PSNR, θ, and η. Each of these error measures different qualities about the residuals

between a test image and the reference image. These error formulations are utilized

in the following sections to examine the convergence of the resampled images on the

new grids and the reconstructed images from the FZS solutions.
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3.7 Image Resampling

Introducing a grid with a new set of pixels requires interpolation of the pixel values

in the original or source image. It has already been shown that the convergence rate

of the re-sampled image is proportional to the size of the new pixels to the order of

the interpolant up to some constant which depends on the smoothness of the original

image [35]. The goal of this section is to quantify the errors, as a function of the grid

resolution np, introduced by re-sampling onto a grid, and subsequently re-sampling

back to the original image domain all using linear interpolation. Also of interest is

how the use of a smoothing pre-filter can improve the re-sampling process, when fine

details from the image are not required.

(a) (b) (c)

(d) (e) (f)

Figure 3.27: The re-sampling process to produce the approximated image. The
original image in (a) is: (b) converted to grayscale, (c) cropped, (d) re-sampled onto
the triangular grid, and (e) re-sampled back to the original pixels. The absolute
value of the residual between (c) and (e) shows in (f) that regions of high-contrast
and high-detail lose the most information, as expected.
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Fig. 3.27 illustrates the steps necessary to examine the re-sampling process. The

original color image in (a) is first converted to the grayscale image in (b) using the

formula, Ij = 0.2989Rj + 0.5870Gj + 0.1140Bj, for the jth pixel, where R, G, B are

the red, green, and blue channels [18]. The image in (b) is circularly cropped within

the radius ρ0 = 250, to obtain the image in (c), retaining only 196,231 pixels of the

original 393,216, or 50%. Using linear interpolation, the image in (d) is computed

from the pixel values in (c); in this case, a triangular grid with only np = 2, 000 pixels,

or 1% of the 196,231. Those values are then used to produce the approximated image

in (e). The residual image in (f) is the absolute value of the difference between (c) and

(e) rendered in pseudo-color. The errors are then computed for a series of standard

images utilizing this technique. Fig. 3.28 shows the 24 images utilized in this analysis

[15].

67



Chapter 3. Discrete Zernike Polynomials

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 3.28: Standard test images used for the re-sampling analysis. The original
images are 768× 512, 0.39 Mpixel, 24-bit color, with lossless compression.
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Figure 3.29: The errors associated with re-sampling onto a grid and back decrease for
the mean and RMS errors (a) and (c) with increasing grid resolutions, as expected,
but do not vanish. The max error and PSNR (b) and (d) show sudden improvements
near np ≈ 104.
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For increasing grid resolutions, the errors over the entire image decreases, as

expected. Fig. 3.29 shows the results of the resampling errors. The results are

averaged over the entire set of test images for each of the grid types. The grids

with uniform pixel areas (i.e., Cartesian, polar 2, and triangular) perform slightly

better than the others. This is presumably because constant pixel area preserves

the original resolution evenly over the entire region, while the larger and/or odd

shaped pixels of the other grids tend to lose detail. The errors are measured up to

np ≈ 316, 000, higher than the original ≈ 200, 000 pixels in the original images. This

demonstrates that even at oversampled grid resolutions, the process of re-sampling

introduces non-trivial errors. The results also show that the different measures of

error are relatively consistent between grid types.

(a) (b)

Figure 3.30: An original image in grayscale (a), and the smoothed version in (b)
using a Gaussian, low-pass filter with standard deviation of 4 pixels (1.6% of ρ0).

All the errors associated with the re-sampling process rapidly decrease by discard-

ing the details of the original image with the use of a pre-filter. A common tool for

smoothing is the 2-dimensional convolution of the image with a Gaussian, low-pass

filter (GLPF), as shown in Fig. 3.30 [10]. This particular image is smoothed with a

discrete Gaussian kernel of standard deviation, σ = 4 pixels, representing only 1.6%

( σ
ρ0

= 0.016) of the aperture radius, ρ0 = 250 pixels.
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Figure 3.31: The mean, max, RMS and PSNR errors in (a) through (d) all indicate
a rapid decrease in the residuals for increasing GLPF kernel size.
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To examine the effect that smoothing has on the errors, the grid resolution is fixed,

np ≈ 105, while the size of the smoothing kernel varies. The results are averaged from

all of the 24 test images. The size of the GLPF varies from 1 to 10 pixels or 0.4 to

4.0% of ρ0. Fig. 3.31 shows that the errors decrease rapidly with increase smoothing.

This shows the errors from resampling a smoothed image and does not include the

error from smoothing the original image. Even for a slight amount of smoothing,

the errors decrease by an order of magnitude. The grids with uniform-area pixels

(Cartesian, polar 2, and triangular) obtain slightly better performance.

In this section, the process of re-sampling onto the grids from Sec. 3.2 was

shown to introduce errors. These errors are non-trivial even for grids at higher

resolution than the original image. If the image resolution is sufficient to support

a well-conditioned DZP system, it is reasonable to use the original Cartesian grid

from the original image and to avoid the resampling errors. Smoothing the image

prior to re-sampling dramatically reduces the errors by discarding fine details before

the resampling process. The next section computes the FZC and examines the

convergence as a function of various parameters.
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3.8 Fourier-Zernike Coefficients

The Fourier-Zernike coefficients (FZC) represent the contribution of each Zernike

polynomial (ZP) in the decomposition of a function over the DZP basis. After an

examination of the rotational invariance of the FZC, the goal of this section is to

examine the convergence of the FZC computed using the DZP as a function of the

grid type, number of pixels in the grid, the maximum polynomial order, and the

smoothing pre-filter.

From Tab. 3.3 on p. 59, the minimum number of pixels in a grid, np, as a function

of the maximum polynomial order, nmax, for the DZP system, Λ̂, to have full-rank

is given by the conservative formula, log10 np = 2.03 log10 nmax + 0.28. If nmax = 40

then np > 3, 406. Furthermore, for most of these systems to be well-conditioned,

log10 κ(Λ̂) < 2, the resolution should be even higher. According to Fig. 3.26 on

p. 62, the resolution should be np > 104. This requirement is observed for all FZC

computations in this section.

The FZC is the solution to the system given in Eq. 3.8 on p. 36, λ̃ = Λ̂−1f̂ .

To reiterate, the double-indexed ZP are transformed into a single-indexed system by

sorting the polynomials first by the repetition number, m, then by the order, n. This

essentially groups the FZC into subsets of identical repetition which are then sorted

by their order. Understanding the order of the polynomials is essential for viewing

how the FZC relate to a source image.
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Some basic observations can be made directly from a plot of the FZC. This is

illustrated in Fig. 3.32 for several images and their associated FZC representation

(computed with grid type = polar3, np = 105, nmax = 40). The first image in (a)

shows a detailed test image and its complex representation in (b). The FZC has a

very high low-order component, Λ0
0, which is typical for most images, but also has

significant high-order components elsewhere. This indicates that the source image

requires significant detail, as expected; probably more than 40th order. The next

image of a disk in (c) requires significantly fewer FZC components (d), specifically,

only the pure radial ZP grouped in the center, m = 0. The third image (e) shows

a centered, symmetric array of lines. The FZC components in (f) appear generally

only in the positive and even ZP due to the orientation of the array relative to the ZP

and the 2-fold symmetry of the array. If the array were rotated, the FZC would also

show components in the negative and even ZP. The FZC representation, however, is

still unique from the rotational ivariance property.

The FZC should not only remain stable for rotations but should also should con-

verge for refinements in the grid and added smoothness on the function. As the

number of pixels in the grid increases, the FZC solution should tend toward higher

accuracy. Additionally, as the number of polynomials increases, the previous, low-

order FZC should agree with the low-order FZC computed from the larger system.

These properties are particularly attractive features which allow progressive refine-

ment of a ZP analysis and agreement with computations from various sources. To

examine the convergence and stability, the measures of error described in Sec. 3.6

can also be employed here by utilizing the highest accuracy solution as the reference

data. The RMS and PSNR errors, however, only provide unbiased comparisons if

the RMS of the signal doesn’t change for varying sample sizes.

74



Chapter 3. Discrete Zernike Polynomials

(a)

200 400 600 800

0

0.2

0.4

0.6

0.8

Polynomial Index

P
ol

yn
om

ia
l M

ag
ni

tu
de

Fourier−Zernike Coefficients

(b)

(c)

200 400 600 800

−0.2

−0.1

0

0.1

0.2

Polynomial Index

P
ol

yn
om

ia
l M

ag
ni

tu
de

Fourier−Zernike Coefficients

(d)

(e)

200 400 600 800
−0.2

0

0.2

0.4

0.6

Polynomial Index

P
ol

yn
om

ia
l M

ag
ni

tu
de

Fourier−Zernike Coefficients

(f)

Figure 3.32: Some test images used to illustrate the associated FZC. A highly detailed
image in (a) has significant FZC components in (b), especially the Λ0

0 term. The disk
in (c) has only pure radial components (m = 0) in (d). The symmetric grid in (e)
only requires positive and even polynomials in the FZC of (f).
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The DZP are invariant to rotations about the origin which is readily observed

using the complex, ZP. These are related to the real, ZP as in the following,

Λµ
n = Λ+m

n + iΛ−mn ,

Λ0
n = Λ0

n,
(3.25)

where, µ ≥ 0 and |µ| = |m|. The magnitude and phase of each polynomial is then

computed as usual,

|Λµ
n| =

√
(Λ+m

n )2 + (Λ−mn )2,

∠Λµ
n = tan−1 Λ−mn

Λ+m
n

.
(3.26)

Using the magnitude of the complex, ZP, a comparison of the FZC can be made

as the grid rotates about the source image at random angles, 0 ≤ φ ≤ 2π radians.

This analysis examines all grid types, a constant grid resolution np = 105, a single

polynomial order nmax = 40, averaged over several images with no smoothing. The

errors were computed between the FZC of a reference grid, φ = 0, and the FZC

of the appropriate rotated grids. Fig. 3.33 shows the (a) mean error, (b) max

error, (c) RMS error, and (d) the PSNR. The general trend shows that the error is

not a function of the rotation angle. At a few special angles where the grids have

perfect symmetry, however, the errors vanish down to working precision. Overall, the

polar2 and triangular grids showed slightly less errors, indicating better rotational

invariance.
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Figure 3.33: The (a) mean, (b) max, (c) RMS, and (d) PSNR errors show no
dependence on the rotation angle, φ. The errors vanish on the polar grids for
φ = 0, π

2
, π, 3π

2
, 2π radians. The polar2 and triangular grids had slightly less errors

on average.
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The FZC, λ̃, of several images are computed at various grid resolutions, 1×104 ≤

np ≤ 2× 105, for each grid type. The polynomial order is fixed for all cases, np = 40,

providing 861 coefficients. The error is computed between the FZC at the highest

resolution as the reference data and the FZC at the other resolutions as the test data.

The errors derived from each image are then averaged to improve the consistency of

the error trends. Fig. 3.34 shows how the FZC converge for higher grid resolutions.

The trends in all of the mean error (a), max error (b), RMS error (c), and PSNR

error (d) show nearly identical behavior; the residual errors decrease, as expected.

High-resolution grids show modest improvements the total accuracy of the FZC.

These trends also show that while the advanced polar grid (polar3) does not improve

as quickly as the other grids, it does begin at the lower resolutions with less error

than any of the other grids. The FZC should not only converge with high-resolution

grids, but should also be stable as the maximum polynomial order increases.
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Figure 3.34: The trends in the mean error (a), max error (b), RMS error (c), and
PSNR error (d) all show similar results: the FZC solutions improve for high grid
resolutions and the polar3 grid has a slight advantage toward the lower resolutions.
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Higher polynomial orders in an orthogonal system should increase the fidelity

of the approximation progressively; adding fine details with high-order coefficients

while preserving course details with the low-order coefficients previously computed.

To examine this, the FZC, λ̃, were computed for several images at various maximum

polynomial orders, 2 ≤ nmax ≤ 40, for each grid type at a fixed resolution, np ≈

1× 105. The errors from each image are averaged together to improve the continuity

of the results. Since the number of coefficients changes as a function of nmax, the

errors are carefully computed between the coefficients at a lower order and only their

respective counterparts in the 861 coefficients at the maximum order, 40.

The errors are plotted in Fig. 3.35 for the mean error (a), max error (b), RMS

error (c), and PSNR in (d). The general trend in the mean and max errors show that

the FZC solutions are relatively stable or slightly increase for higher orders. Some

increase in the errors is expected since the condition number increases for increasing

orders at fixed grid resolutions, previously seen in Fig. 3.25(d) on p. 60. The polar3

grid shows the least amount of error followed by the Cartesian, random, triangular

and then polar1 and polar2. This order is consistent with the the order observed in

the condition numbers of the respective systems, again in 3.25(d). The RMS error

increases at higher orders while the PSNR signal decreases, both indicating a loss

of accuracy. The validity of these calculations is questionable, however, since both

utilize RMS calculations of the residuals. Specifically, the FZC at higher orders are

typically much smaller than those at low orders; effectively lowering the signal’s RMS

value which is subsequently used to normalize the error. This artificially increases

the RMS error and lowers the PSNR for increasing polynomial orders.
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Figure 3.35: The mean error in (a) and max error in (b) of the FZC for increasing
polynomial orders increases slightly, but is expected for the increasing condition num-
bers also as the polynomial order increase. The RMS error (c) and PSNR in (d) both
indicate a loss of accuracy but are questionable calculations since the normalization
factor decreases for higher orders, causing an apparent loss in accuracy.
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A common technique in sampling theory is the utilization of an anti-aliasing filter.

In this analysis, a Gaussian, low-pass filter smooths the image prior to sampling the

signal of interest [16]. This limits the spectral bandwidth and reduces the ringing

artifacts of the Gibbs-Wilbraham phenomenon. In this application, the original

image is filtered, prior to both resampling of the grid and computation of the FZC.

The convolution of the original image with the GLPF kernel smooths the image in

2 dimensions [10]. The single parameter which controls the amount of smoothing

is the standard deviation of the Gaussian, σ. The kernel size is normalized in this

application by the disk radius to provide a non-dimensional measure. The GLFP

reduces the high-frequency spectral components of a signal in a Fourier analysis, and,

similarly reduces the high-order FZC components in this Fourier-Zernike analysis.

Fig. 3.36 shows the magnitude of each FZC (in logarithmic scale) for various levels

of smoothing. The polynomials are sorted by order, n, then by repetition number,

m. The low-order polynomials are to the left. The red vertical lines indicate that

the FZC remain relatively constant for increasing kernel sizes. The high-order FZC

remain relatively constant prior to σ
ρ0
> 3× 10−2, but decrease after that.
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Figure 3.36: A spectrograph of an image shows the separated FZC for various
amounts of smoothing. For heavy smoothing, the high-order FZC tend toward zero
(blue, negative numbers in the logarithmic scale) while the low-order coefficients
remain relatively stable (red vertical lines).

Examining the numerical errors introduced by smoothing reveals changes in the

FZC at all levels of smoothing. The FZC are computed over a single grid type, polar3;

fixed resolution, np = 105; various levels of smoothing, 0 ≤ σ
ρ0
≤ 10−1; and averaged

over several of the test images. The errors are computed between the reference FZC

with no image smoothing and the FZC at various levels of smoothing. The results

are averaged from the various images. Fig. 3.37 shows that the smoothing process

introduces error at all levels of smoothing (the minimum smoothing is limited by the

pixel size in the original image, except for the case of no smoothing). The relationship

appears nearly linear, and is similar for other grid types not shown.
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Figure 3.37: All errors indicate that smoothing an image necessary alters the FZC,
as expected.
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The FZC are computed for various test images and the convergence and stability

are examined as a function of the grid rotation, grid type, grid resolution, polynomial

order, and image smoothing. The rotational invariance of the FZC is confirmed for

all grid types. The FZC converge by 1 to 2 orders of accuracy for increasing grid

resolutions, 104 ≤ np ≤ 105. This improvement is similar to the gains previously

observed in the condition numbers at higher resolutions (Fig. 3.26 on p. 62). At

fixed grid resolutions, the FZC are relatively stable for increasing polynomial orders;

losing some accuracy, less than 1 order. This is also identical to the behavior of the

condition number as previously seen in Fig. 3.25 on p. 60. Smoothing the image

changes the FZC of an image, observed here as errors, and suppresses high-order

FZC. An additional examination of the reconstruction errors, as in the following

section, is needed to determine how these changes in the FZC effect FZS. The next

section utilizes the FZC and the DZP to construct the FZS and reconstruct the

images.
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3.9 Fourier-Zernike Series

This section examines image reconstruction from the FZS and the associated errors

as a function of the analysis parameters. The formulation for the FZS is discussed

first followed by a few examples. The errors between the source image and the

approximated image are then examined for both the original image resolution and

the interpolated grid resolution. This provides a measure of the total error, which

includes interpolation errors, and the solution error, only from the FZS. The errors

are computed for all grid types and averaged over several images. The relationship

is observed between the errors as a function of the grid resolution, np, the maximum

polynomial order, nmax, the smoothing filter size, σ
ρ0

, and the rotation angle, φ.

From Eq. 3.8, the solution of the system for the FZC is λ̃ = Λ̂−1f̂ . These

coefficients are then used to reconstruct the original function (image), f̃ , in the least-

squares sense. The approximate function is given by,

Λ̂λ̃ = Λ̂
(
Λ̂−1f̂

)
= ˆ̃f . (3.27)

This relates the value at the jth pixel to the summation over all of the polynomials

multiplied by the appropriate coefficient,

ˆ̃fj =
K∑
k=1

Λ̂jkλ̃k,

f̃j =
ˆ̃fj√
ωj
.

(3.28)

The grid used to find the approximate FZC, however, does not have to be the same

grid used to evaluate the FZS. This analysis does not explore mixing grid types.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.38: Three test images (a), (d) and (g) were approximated by their FZS (b),
(e) and (h). The residuals (c), (f) and (i) show that the approximations discard fine
details and introduce ringing.

Fig. 3.38 shows the results from approximating several images with the DZP.

The images on the left are the source images while the images in the center are their

approximated counterparts. The approximations roughly resemble the originals but

show a loss of fidelity similar to blurring. The images on the right show the residuals

in pseudo-color where dark-blue represents very little difference and red indicates

substantial differences. Overall, the results appear reasonably accurate except for

regions of high detail or sharp transitions. The ripples are the manifestation of the

Gibbs-Wilbraham phenomenon.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.39: The progressive, linear combination of the FZC from two images is
preserved in the reconstruction of FZS.

An invaluable property from Eq. 3.28, is the linearity. A linear combination of

FZC is preserved in the FZS. Fig. 3.39 illustrates a progressive linear combination

of the FZC between two source images.

The following stages are performed to approximate an image: (1) circularly crop

the image and normalize the amplitude, (2) smooth the image if required, (2) gen-

erate the desired grid, (3) interpolate the values in the grid from the values in the

image, (4) calculate the DZP on the grid, (5) solve the system for the FZC, (6)

evaluate the FZC and DZP to find the FZS on the grid, (7) create the approximated

image by interpolating values from the grid. During these operations, there is two

opportunities to examine the errors: between the values in the grid, which measures

the errors in the solution, and between the values in the image, which measures the

total error including interpolation errors.

Figs. 3.40-3.44 examine the errors as a function of the number of grid points,

104 ≤ np ≤ 105. The error is calculated for each of the grid types, at the maximum

polynomial order, nmax = 40, with no smoothing, σ
ρ0

= 0, and no rotation angle, φ =

0. The results for several images are averaged together to improve the consistency.

88



Chapter 3. Discrete Zernike Polynomials

10
4

10
5

0.046

0.047

0.048

0.049

0.05

0.051

0.052

0.053

0.054

FZS Solution Error, ε
mean

 

Number of Grid Points, n
p

F
Z

S
 S

ol
ut

io
n 

E
rr

or
, ε

m
ea

n

 

 
Cartesian
Polar1
Polar2
Polar3
Triangular
Random

(a)

10
4

10
5

0.046

0.047

0.048

0.049

0.05

0.051

0.052

0.053

0.054

FZS Total Error, ε
mean

 

Number of Grid Points, n
p

F
Z

S
 T

ot
al

 E
rr

or
, ε

m
ea

n

 

 
Cartesian
Polar1
Polar2
Polar3
Triangular
Random

(b)

Figure 3.40: The mean error of the matrix solution (a) shows virtually no dependence
on the grid resolution, while the total, mean error shows very little improvement at
higher resolutions.
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Figure 3.41: The maximum error of the matrix solution (a) appears almost random,
whereas, the total max error decreases variability for increasing resolution.
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Figure 3.42: The RMS error over the solution (a) shows a slight increase while the
total error (b) shows a slight decrease.

10
4

10
5

22

22.2

22.4

22.6

22.8

23

23.2

23.4

23.6

23.8

24

FZS Solution Error, ε
psnr

 

Number of Grid Points, n
p

F
Z

S
 S

ol
ut

io
n 

E
rr

or
, ε

ps
nr

 

 

Cartesian
Polar1
Polar2
Polar3
Triangular
Random

(a)

10
4

10
5

22

22.2

22.4

22.6

22.8

23

23.2

23.4

23.6

23.8

24

FZS Total Error, ε
psnr

 

Number of Grid Points, n
p

F
Z

S
 T

ot
al

 E
rr

or
, ε

ps
nr

 

 
Cartesian
Polar1
Polar2
Polar3
Triangular
Random

(b)

Figure 3.43: The PSNR on the grid shows no dependence on the number of grid
points in the solution (a). The total PSNR between the images improves slightly at
higher resolutions, but is probably due only to the grid refinements.
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Figure 3.44: The closeness of fit of the solution (a) increases slightly. The maximum
solution attained, η, follows the condition number, which indicates a well-conditioned
system.

Fig. 3.40 shows the mean error does not vary significantly as a function of the

grid resolution. The total, mean error is slightly higher than the solution error,

as expected, but not for the polar1 grid, where it is inexplicably lower. Fig. 3.41

plots the maximum deviation between the solution (a) and the total image error (b).

There is significant variation which appears to decrease in the total error at higher

resolutions. Similar to the trends observed in the mean error, the RMS errors in

Fig. 3.42 shows only a slight decrease in the total error. Again, the solution error

for the polar1 grid seems abnormally high. The PSNR in Fig. 3.43 confirms that

both the error in the solution and the total error does not significantly improve for

the increasing grid resolutions. The closeness of fit, θ, in Fig. 3.44(a) does not show

an improvement, but may not be an accurate measure since the size of the systems

change.
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The solution approaches the maximum, η → 1, for increasing order, which is not

surprising since the condition number also approaches unity at higher resolutions.

Overall, the errors do not significantly depend on the number of grid points, for these

well-conditioned systems. The total errors decrease slightly, but this is probably due

to the refinement in the grid’s ability to resample and image with smaller pixel sizes.

Figs. 3.45-3.49 plot the error as a function of the maximum polynomial order,

2 ≤ nmax ≤ 40. The errors are calculated for each of the grid types, on a high-

resolution grid, np = 105, with no smoothing, σ
ρ0

= 0, and no rotation angle, φ = 0.

The results for several images are averaged together to improve the consistency.
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Figure 3.45: The mean error between the solution residuals in (a) and the image
residuals in (b) decreases for higher orders; dropping by approximately 50%.
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Figure 3.46: The maximum error in the solution residuals (a) and the total image
residuals (b) appears to decrease overall, but with high variability.
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Figure 3.47: The RMS error, is higher than the mean error as expected, but shows a
similar decrease in both the solution residuals (a) and the total image residuals (b).
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Figure 3.48: The PSNR increases in both (a) the solution residuals and (b) the total
residuals.
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Figure 3.49: The solution angle, θ, in (a) decreases for higher orders, indicating that
the least-squares solution is approaching the exact solution. The solution does not
attain the maximum, η > 1, but remains well-conditioned at all polynomial orders.
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Figs. 3.45-3.48 all show that the errors between the solution residuals and the to-

tal image residuals decrease for higher orders of the FZS approximations, as expected.

This provides an estimate of how much accuracy can be obtained for increasing poly-

nomial orders, hence increasing computational work. When nmax = 10, 20, 30, 40 the

number of FZC to solve for are 66, 231, 496, and 861, respectively. The corresponding

errors are εrms ≈ 0.21, 0.18, 0.16, 0.15. The accuracy of the approximation improves

for higher orders of polynomials at the cost of higher computation workloads. The

previous figures also show that there was neither a significant difference between the

total error and the solution errors nor between the various grid types. This indicates

that the polynomial order dominates the amount of accuracy which is attainable.

The appearance of the Gibbs-Wilbraham phenomenon appears when the desired

features in a signal or image require higher-order approximations than what is uti-

lized. Removing the high-frequency features and increasing the smoothness elimi-

nates the problem but at the expense of reduced accuracy, as the following analysis

shows. Fig. 3.50 illustrates the absolute value of the residuals between a source

image (a solid triangle) and the approximated image from the FZS for various levels

of smoothing (a)-(f), σ
ρ0

= 0.000, 0.016, 0.032, 0.048, 0.064, 0.080. In (a), the error

around the edges appears as a cyan blue and the corners appear red for higher errors.

The ringing appears as a light blue on the triangle interior and around the entire

exterior. As the smoothing increases (b)-(e), the amplitude of the ringing diminishes

while the errors around the triangular perimeter widens, and in (f) the ringing is not

visibly present. The presence and strength of the ringing depends on the applica-

tion; it may be preferable to have the higher accuracy and accept the ringing or to

have reduced ringing and accept the loss of some accuracy. The following analysis

quantifies some the errors associated with smoothing.

95



Chapter 3. Discrete Zernike Polynomials

(a) (b) (c)

(d) (e) (f)

Figure 3.50: Images (a)-(f) show the absolute value of the residuals of an image of a
triangle and the FZS approximations with higher levels of pre-filtering with a GLPF.
The amplitude of the ringing in (a) diminishes for increasing levels of smoothing (b)-
(e), and virtually disappears in (f) for σ

ρ0
= 0.08.

Figs. 3.51-3.55 plot the errors as a function of the smoothing prior solving for

the FZC for 0 ≤ σ
ρ0
≤ 0.12. The error was calculated for each of the grid types,

on high-resolution grids, np = 105, at maximum polynomial order, nmax = 0, and

no rotation angle, φ = 0. The results for several images are averaged together to

improve the consistency of the results.
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Figure 3.51: The mean error of the residuals over the grid (a) dramatically decrease
with smoothing. The total error of the residuals between the images (b) initially
reduces slightly, but then dramatically increases.
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Figure 3.52: The maximum error of the residuals on the grid (a) also dramatically
decrease and with a good degree of stability. The total maximum error (b) shows
appreciable improvement and stabilization, but then turns toward higher final errors.

97



Chapter 3. Discrete Zernike Polynomials

0 0.02 0.04 0.06 0.08 0.1

10
−4

10
−3

10
−2

10
−1

10
0

FZS Solution Error, ε
rms

 

Kernel Size, σ / ρ
0

F
Z

S
 S

ol
ut

io
n 

E
rr

or
, ε

rm
s

 

 

Cartesian
Polar1
Polar2
Polar3
Triangular
Random

(a)

0 0.02 0.04 0.06 0.08 0.1

0.15

0.16

0.17

0.18

0.19

0.2

FZS Total Error, ε
rms

 

Kernel Size, σ / ρ
0

F
Z

S
 T

ot
al

 E
rr

or
, ε

rm
s

 

 
Cartesian
Polar1
Polar2
Polar3
Triangular
Random

(b)

Figure 3.53: The RMS error of the residuals from the grid approximation in (a)
decrease rapidly for heavier smoothing. The total RMS error of the image residuals
increases, but only after σ

ρ0
> 2%.
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Figure 3.54: The PSNR increases dramatically for the grid residuals in (a), but
decreases overall for the total image residuals in (b).
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Figure 3.55: The closeness of fit, θ, in (a) confirms that the solution to the matrix
equations improves dramatically. The η for this system is unaffected by smoothing
since it does not alter the matrix equations.

The errors from the residuals over the grid, which reflect the quality of the ap-

proximation after smoothing, rapidly decrease for heavier smoothing. Figs. 3.51(a)-

3.54(a) all show improvements in the accuracy by several orders. It may be possible to

attain perfect reconstruction (i.e., errors ≈ 10−16) over the grid with higher amounts

of smoothing, but is not explored here. The total error of the residuals between

the original and final images, which includes the differences introduced by smooth-

ing, however, shows that slight smoothing does not affect the accuracy but heavy

smoothing reduces accuracy. Figs. 3.51(b), 3.53(b) and 3.51(b) all confirm that the

accuracy does not change appreciably for small smoothing kernel sizes, σ
ρ0
< 2%.

After that, the errors increase linearly with the kernel size. Fig. 3.52(b) shows that

smoothing stabilizes and decreases the maximum deviation of the residuals up to

σ
ρ0
< 6%.
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The errors in the solution and total residuals are not affected by a rotation angle.

The errors (figures omitted) do not correlate to the rotation angle and show almost

no variation. This confirms that the DZP are rotationally invariant, as expected.

This section utilizes the FZS to compute the approximation of an image recon-

structed from the DZP. The errors between the solution residuals and the image

residuals are examined as a function of the number of grid points, np, the maximum

polynomial order, nmax, and the amount of smoothing pre-filter, σ
ρ0

. These errors are

compared between the grid types and averaged over several test images.

The errors do not vary significantly as a function of the number of grid points, np,

provided that np > 104. They typically improve less than one order of magnitude, and

the polar3 grid has the least error at low resolutions. The errors significantly depend

on the maximum polynomial order, nmax; decreasing for higher-order approximations,

as expected. The amount of accuracy gained by increasing the polynomial order,

however, is significantly less than the computational requirements. Furthermore,

the gains diminish for higher orders. Using a GLPF to smooth the image prior to

computing the FZS improves the accuracy of the solution, but decreases the total

errors. The total effect was a marginal increase in accuracy for small smoothing,

but a substantial decrease in accuracy for heavier smoothing. We also observe that

smoothing virtually eliminates the ringing artifacts.
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Chapter 4

Conclusion

The DZP provide a rotationally invariant, orthonormal basis over a circular domain.

There are many ways to partition the domain to sample the continuous ZP and

produce the DZP. Assembling the DZP into a matrix problem provides tools, common

in linear algebra, to assess the accuracy of the FZC solutions. The Gram matrix

provides a visual inspection method to find which polynomials have non-zero overlap.

This inspired the design of a new grid, polar3, to improve the orthogonality of the

polynomials with identical repetition number. Computing the rank of the DZP

produces a minimum resolution criteria. The DZP system should not be utilized

if it does not have full-rank. The condition number provides the best metric for

estimating the solution’s accuracy. It was also observed that the sorting order of the

polynomials affects the condition number. Sorting by the repetition number, m, then

by the order, n, decreases the condition number. The errors were then analyzed as a

function of the grid type, grid resolution, polynomial order, smoothing, and rotation

angle.
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Chapter 4. Conclusion

The performance of six grid types was analyzed side-by-side for the entire analy-

sis. The polar3 grid delivers the best conditioning and the least amount of errors at

significantly lower grid resolutions. The performance of the remaining grids improves

at high grid resolutions, even for the random grid. In some cases, the resolution of

the original image may support a well-conditioned DZP system without interpola-

tion. This would eliminate the significant errors introduced by just the interpolation

process. When interpolation is necessary, the polar3 grid delivers the best perfor-

mance overall. This suggests that further improvements in the DZP are possible by

grid optimization alone.

The grid resolution does not significantly affect the convergence of the FZC and

the FZS, provided that the DZP system is well-conditioned. The FZC solution im-

proved slightly for all grid types as np increased from 104 to 105, for nmax = 40.

The polar3 grid had lower error overall and much lower error at the lower resolu-

tions. The FZS solution does not show significant improvements, with or without

resampling. From these observations, there is no justification to employ extreme

resolutions beyond what is necessary for the DZP to be well-conditioned.

Higher polynomial orders dramatically improve the accuracy of the FZS while

preserving the accuracy of low-order FZC. This is an important feature for progressive

refinement during an analysis. It also ensures that a comparison between a high-order

approximation and a low-order approximation is valid between the polynomials of

similar order (assuming proper normalization). While the accuracy increases at

higher orders, the computational work and grid requirements increase faster. The

accuracy improves less than first order (Fig. 3.47), yet the number of polynomials

increase as second order and the minimum resolution criteria also increases as second

order. This does not include the work associated with the computation of the ZP,

which may be moderated by recursive or factorial-free methods [23]. Approximations

above 40th order also require arbitrary precision arithmetic.
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Chapter 4. Conclusion

Introducing the GLPF smoothing filter rapidly improve the ability of DZP to

reconstruct an image over the grid. This suggests that there is a lower-limit on the

smoothness of a function that the DZP can accurately represent. The solution errors

of the FZS over the grid dramatically decrease for higher amounts of smoothing

(e.g. Fig. 3.53(a)) and might reach numerical accuracy ≈ 10−16. The total errors

(which include errors introduced by the smoothing), however, rapidly increased (e.g.,

Fig. 3.53(b)). This contradiction suggests that one should carefully consider the

smoothness of the function to approximate with the accuracy of the FZS. The DZP

cannot accurately approximate highly detailed images, as expected. The Gibbs-

Wilbraham phenomenon appears as ringing in the FZS if the function does not

have sufficient smoothness. Further analysis is necessary to analytically quantify the

smoothness requirement as a function of the polynomial order.

Finally, the rotational invariance of the DZP was observed in the FZC and the

FZS. This is readily computed from the magnitude of the complex, polynomials.

The phase information is also preserved but requires additional considerations not

undertaken here.
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