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Abstract

Searching and collecting multiple resources from large unmapped environments is

an important challenge. It is particularly difficult given limited time, a large search

area and incomplete data about the environment. This search task is an abstraction

of many real-world applications such as search and rescue, hazardous material clean-

up, and space exploration. The collective foraging behavior of robot swarms is an

effective approach for this task. In our work, individual robots have limited sensing

and communication range (like ants), but they are organized and work together

to complete foraging tasks collectively. An efficient foraging algorithm coordinates

robots to search and collect as many resources as possible in the least amount of
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time. In the foraging algorithms we study, robots act independently with little or no

central control.

As the swarm size and arena size increase (e.g., thousands of robots searching

over the surface of Mars or ocean), the foraging performance per robot decreases.

Generally, larger robot swarms produce more inter-robot collisions, and in swarm

robot foraging, larger search arenas result in larger travel distances causing the phe-

nomenon of diminishing returns. The foraging performance per robot (measured as

a number of collected resources per unit time) is sublinear with the arena size and

the swarm size.

Our goal is to design a scale-invariant foraging robot swarm. In other words, the

foraging performance per robot should be nearly constant as the arena size and the

swarm size increase. We address these problems with the Multiple-Place Foraging

Algorithm (MPFA), which uses multiple collection zones distributed throughout the

search area. Robots start from randomly assigned home collection zones but always

return to the closest collection zones with found resources. We simulate the foraging

behavior of robot swarms in the robot simulator ARGoS and employ a Genetic Al-

gorithm (GA) to discover different optimized foraging strategies as swarm sizes and

the number of resources is scaled up. In our experiments, the MPFA always pro-

duces higher foraging rates, fewer collisions, and lower travel and search time than

the Central-Place Foraging Algorithm (CPFA). To make the MPFA more adapt-

able, we introduce dynamic depots that move to the centroid of recently collected

resources, minimizing transport times when resources are clustered in heterogeneous

distributions.

Finally, we extend the MPFA with a bio-inspired hierarchical branching trans-

portation network. We demonstrate a scale-invariant swarm foraging algorithm that
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ensures that each robot finds and delivers resources to a central collection zone at

the same rate, regardless of the size of the swarm or the search area. Dispersed mo-

bile depots aggregate locally foraged resources and transport them to a central place

via a hierarchical branching transportation network. This approach is inspired by

ubiquitous fractal branching networks such as animal cardiovascular networks that

deliver resources to cells and determine the scale and pace of life. The transportation

of resources through the cardiovascular system from the heart to dispersed cells is

the inverse problem of transportation of dispersed resources to a central collection

zone through the hierarchical branching transportation network in robot swarms.

We demonstrate that biological scaling laws predict how quickly robots forage in

simulations of up to thousands of robots searching over thousands of square meters.

We then use biological scaling predictions to determine the capacity of depot robots

in order to overcome scaling constraints and produce scale-invariant robot swarms.

We verify the predictions using ARGoS simulations.

While simulations are useful for initial evaluations of the viability of algorithms,

our ultimate goal is predicting how algorithms will perform when physical robots

interact in the unpredictable conditions of environments they are placed in. The

CPFA and the Distributed Deterministic Spiral Algorithm (DDSA) are compared

in physical robots in a large outdoor arena. The physical experiments change our

conclusion about which algorithm has the best performance, emphasizing the im-

portance of systematically comparing the performance of swarm robotic algorithms

in the real world. We illustrate the feasibility of implementing the MPFA with trans-

portation networks in physical robot swarms. Full implementation of the MPFA in

an outdoor environment is the next step to demonstrate truly scalable and robust

foraging robot swarms.

viii



Contents

List of Figures xiii

List of Tables xxi

Glossary xxii

1 Introduction 1
1.1 The Scalability of Foraging Robot Swarms . . . . . . . . . . . . . . . 2
1.2 The Multiple-Place Foraging Algorithm . . . . . . . . . . . . . . . . . 3
1.3 From Simulation to Physical Robots . . . . . . . . . . . . . . . . . . 7
1.4 Organization and Contributions . . . . . . . . . . . . . . . . . . . . . 9

2 Background 12
2.1 Stochastic Central-Place Foraging . . . . . . . . . . . . . . . . . . . . 12
2.2 Distributed Deterministic Spiral Search . . . . . . . . . . . . . . . . . 15
2.3 Task Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Existing Simulators and Physical Robot Platforms . . . . . . . . . . . 17

3 The MPFA: A Multiple-Place Foraging Algorithm for Robot
Swarms 20
3.1 Publication Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Background: The CPFA . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 The Design of the MPFA . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 Experimental Configuration in ARGoS . . . . . . . . . . . . . 30

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.1 Foraging Performance . . . . . . . . . . . . . . . . . . . . . . 32

ix



3.6.2 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.3 Search and Travel Efficiency . . . . . . . . . . . . . . . . . . . 35
3.6.4 Observed Trends in Parameters . . . . . . . . . . . . . . . . . 36

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 The Scalability and Adaptation of MPFA 42
4.1 Publication Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 The Design of The MPFA . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 The GA Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Experimental Configuration in ARGoS . . . . . . . . . . . . . . . . . 52
4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8.1 Foraging Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 53
4.8.2 Collision Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8.3 Travel and Search Efficiency . . . . . . . . . . . . . . . . . . . 56

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Multiple-Place Swarm Foraging with Dynamic Depots 62
5.1 Publication Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Central-Place Foraging . . . . . . . . . . . . . . . . . . . . . . 67
5.4.2 Multiple-Place Foraging . . . . . . . . . . . . . . . . . . . . . 68
5.4.3 Foundations of the MPFA . . . . . . . . . . . . . . . . . . . . 70

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Implementation of Robot Controllers . . . . . . . . . . . . . . 78
5.5.2 Evolving Swarm Behavior . . . . . . . . . . . . . . . . . . . . 82

5.6 Experimental Configuration . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.1 ARGoS Implementation . . . . . . . . . . . . . . . . . . . . . 87

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.7.1 Foraging Performance . . . . . . . . . . . . . . . . . . . . . . 90
5.7.2 Search and Travel Time . . . . . . . . . . . . . . . . . . . . . 91
5.7.3 Collision Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7.5 Transport to A Central Depot . . . . . . . . . . . . . . . . . . 96

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x



5.8.1 Online Decision-Making in Response to Local Information . . 100
5.8.2 Broader Implications for Scalable Design . . . . . . . . . . . . 101
5.8.3 The Path to Implementation . . . . . . . . . . . . . . . . . . . 103

5.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 A Bio-Inspired Hierarchical Branching Transportation Network 107
6.1 Publication Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5 Similarities between cardiovascular systems and robot swarms . . . . 114
6.6 Scaling laws for foraging swarms . . . . . . . . . . . . . . . . . . . . . 115

6.6.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.6.2 The explosion network . . . . . . . . . . . . . . . . . . . . . . 117
6.6.3 The hierarchical branching transportation network . . . . . . 118
6.6.4 Scale-invariant transportation network . . . . . . . . . . . . . 119

6.7 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.8.1 Prediction I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.8.2 Prediction II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8.3 Prediction III . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Comparing Physical and Simulated CPFA and DDSA 136
7.1 Publication Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.5 Central Place Foraging Algorithm: CPFA . . . . . . . . . . . . . . . 141
7.6 Distributed Deterministic Search Algorithm: DDSA . . . . . . . . . . 143
7.7 Description of Simulated & Physical Robots . . . . . . . . . . . . . . 145
7.8 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 From Simulation to Physical MPFAT 157
8.1 Physical Depot Design . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 Gazebo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3 From Physical to Virtual and Back Again . . . . . . . . . . . . . . . 160
8.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xi



9 Conclusions 163
9.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.2 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xii



List of Figures

1.1 The MPFA running in ARGoS, front view. Resources are shown as
black dots arranged in a partially clustered distribution. Red circles
indicate uniform distributed collection zones. Colored rays indicate
pheromone waypoints with different strength (green indicates high
and red indicates low). . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Illustration of the inspiration from cardiovascular networks in bio-
logy to hierarchical branching network MPFAT in robot swarms (left
figure replicated from (Moses et al., 2016)). . . . . . . . . . . . . . . 6

1.3 A physical Swarmie robot with a cube on its gripper. . . . . . . . . 8

2.1 The CPFA running in ARGoS, overhead view. The circle in the cen-
ter indicates the collection zone. The partially clustered distribution
of resources are shown as black dots, robots blue larger dots, lines
indicate the paths taken by robots during the experiment. . . . . . . 13

2.2 The DDSA running in ARGoS. The robots search on pre-planned
spiral search paths beginning at a central collection zone. Resources
are shown as black dots arranged in a partially clustered distribution.
Robots are marked with blue larger dots. Colored lines are the paths
of robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xiii



3.1 Schematics showing individual robot foraging trips in (a) the CPFA
and (b) the MPFA. In (a), a robot begins its search at a central nest
(red circle) and travels to a search site (step 1). Upon reaching the
search site, the robot searches for resources by uninformed random
walk (step 2) until a resource (black square) is found and collected.
After sensing the local resource density, the robot returns to the nest
(step 3). In (b), 4 nests are placed. The foraging behavior is identical
to the CPFA, except that the robot returns to the nest closest to the
location where it finds a resource. The robot path in the upper left of
panel (b) shows the robot returning to the nest that it departed from.
The path in the lower right of panel (b) shows a robot that finds a
resource closer to a different nest, and so it deposits that resource at
the new closer nest. If the robot chose to lay a pheromone waypoint,
the waypoint would connect the new nest to the resource location. . 27

3.2 The placement of nests and resources in ARGoS. In all experiments
256 resources (black points) and 24 robots are placed in a 10× 10m
arena, and some number of nests (red circles) are distributed uni-
formly in the search space. The resources are partially clustered in
panel (a), unclustered and spread in a uniform random distribution
in (b) and clustered into 4 piles in panel (c). Panel (d) shows a
simulation running with 24 robots, the partially clustered resource
distribution and four nests. The colored rays indicate pheromone
waypoints with different strength. A small area is magnified in each
figure to show the resource placement. . . . . . . . . . . . . . . . . . 31

3.3 Foraging using the CPFA, as well as the 2-nest, 4-nest, and 8-nest
MPFA in random, partially clustered, and clustered resource distri-
butions. There is a significant positive trend in the number of re-
sources with the log2 of the number of nests in all three distributions
(p = 0.02, p = 0.017, and p = 0.023, respectively). . . . . . . . . . . 33

3.4 The number of collected resources per minute by the CPFA and
MPFA. There is a significant positive trend in the number of re-
sources with the log2 of the number of nests in the first 5 minutes of
all three distributions (p = 0.04). . . . . . . . . . . . . . . . . . . . . 34

3.5 Total time spent avoiding collisions for the CPFA and MPFA in three
distributions. The p-values of the log-linear regression between the
total collision time and the number of nests are p = 0.05, p = 0.85 and
p = 0.33 for random, partially clustered, and clustered, respectively. 35

xiv



3.6 The search and travel time per resource for the CPFA and MPFA.
Search time increases with the number of nests in the random dis-
tribution (p = 0.01), but has no trend with the number of nests
in the partially clustered and clustered distributions (p = 0.95 and
p = 0.85, respectively). Travel time decreases in all three distribu-
tions (p = 0.016, p = 0.013, and p = 0.045, respectively). . . . . . . . 36

3.7 The evolved probability of laying pheromone when two resources are
found in the resource neighborhood. Medians and quartiles for 12
replicates of evolution are shown for each model. A linear regres-
sion (log2 on the number of nests versus the probability of laying
pheromone) shows no trend (p = 0.204) in the random distribu-
tion, but a statistically significant trend for the partially clustered
(p = 0.006) and clustered (p = 0.05) distributions. . . . . . . . . . . 37

3.8 The evolved probability of switching to search. Medians and quar-
tiles for 12 replicates of evolution are shown for each model. A lin-
ear regression (log2 on the number of nests versus the probability
of switching to search) shows a statistical significant trend for the
random distribution (p = 0.02). . . . . . . . . . . . . . . . . . . . . . 38

4.1 The flow chart of an individual robot’s behavior in MPFA during an
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 The placement of nests and targets in ARGoS. 1024 targets (black
points) and 16 robots (larger blue points) are placed in a 15×15 m
arena, 4 nests (red circles) are distributed uniformly in the arena.
The targets are arranged in a partially clustered distribution. Col-
ored lines indicate pheromone trails with different strength. A small
area is magnified to show a robot, colored pheromone waypoints, a
large cluster of targets, and a single target. . . . . . . . . . . . . . . 49

4.3 The average efficiency (targets collected per robot, per minute) for
the CPFA (p = 0.08) and MPFA (p = 0.04) decrease as the swarm
size increases. The p value is from the average of collected targets
and the log2 of the swarm size. Results are for 100 replicates. The
percentage of improvement is labelled. . . . . . . . . . . . . . . . . . 54

4.4 The average efficiency (targets collected per robot, per minute) for
the CPFA (p = 0.04) and MPFA (p = 0.001) decrease as the number
of targets increases. The p value is from the average of collected
targets and the log2 of the number of targets. The efficiency is always
higher for the MPFA. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 The average efficiency (collision time per robot, per target) for the
CPFA (p = 0.06) and MPFA (p = 0.10) increase as the swarm size
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv



4.6 The average efficiency (collision time per robot, per target) for the
CPFA and MPFA as the number of targets increases (p = 0.03). . . 56

4.7 The average travel time (per robot, per target) for the CPFA and
MPFA decrease as the swarm size increases (p = 0.04). . . . . . . . . 57

4.8 The average travel time (per robot, per target) for the CPFA (p =
0.001) and MPFA (p = 0.03) as the number of targets increases. . . 57

4.9 The average search time (per robot, per target) for the CPFA and
MPFA as the swarm size increases (p = 0.03). . . . . . . . . . . . . . 58

4.10 The average search time (per robot, per target) for the CPFA and
MPFA as the number of targets increases (p = 0.05). . . . . . . . . . 59

5.1 The flow chart of an individual robot’s behavior following the MPFA
during an experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 A single cycle of uninformed search. Four states of a robot in the
cycle are shown. A robot departs from a depot (large red circle),
travels to a random location, and switches to searching using an
uninformed random walk (dark blue circle). If the robot finds a
target pile (largest black square), then it collects one target and
delivers it to the closest depot. The robot also has a probability of
giving up searching (bright green circle) and returning to the closest
depot without finding a target . . . . . . . . . . . . . . . . . . . . . 73

5.3 A single cycle of informed search. Five states of a robot are shown.
A robot departs from a depot (large gray circle) and travels to the
previous location (dark blue circle), and switches to searching using
an informed correlated walk. If it finds a target pile (largest black
square), then it collects one target and delivers it to the closest depot
(red circle in the lower right). The robot also has a probability of
giving up searching (light green circle) and returning to the closest
depot without finding a target (red circle) . . . . . . . . . . . . . . . 74

5.4 An example of a dynamically allocated depot using the k-means++
clustering algorithm. The resources (black squares) are classified into
four clusters (red ellipses). Depots (dark red solid circles) are placed
at the centroids of these clusters . . . . . . . . . . . . . . . . . . . . 77

xvi



5.5 Depot movement in MPFAdynamic. A depot (gray circle) is at the
centroid c1 of the sensed resources (dark blue squares) at positions
p1, p2, and p3, where w1, w2, and w3 are the number of resources
sensed by robots at each position, respectively. After some time,
if resources at position p1 are completely collected by robots, then
the pheromone waypoints at p1 will decay. If, at the same time, w4

resources are sensed at a new location p4, then the depot will move
to the centroid c2 of the sensed resources (red circle) at positions p2,
p3, and p4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 The placement of depots and resources in ARGoS. 384 resources
(small points) and 24 robots (middle-sized points) are placed in a
10×10 m arena, and 4 depots (large points) are distributed. The re-
sources are unclustered and spread in a uniform random distribution
in (a), partially clustered in (b), and clustered into 6 equally-sized
piles in (c). The colored rays indicate pheromone waypoints with
different strength that eventually evaporate and disappear. A small
area is magnified in (c) to show resources, robots, and a depot in the
center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Foraging times for CPFA and MPFA swarms of 24 robots in a 10×10
m arena. Results are for 100 trials with each swarm. Asterisks indi-
cate a statistically significant difference of the medians (p < 0.001)
from MPFAdynamic which is emphasized by red ellipses. The perfor-
mance of each algorithm is represented by a notched box plot in a
different shade, ordered left to right, lightest to darkest in the same
order indicated in the legend. The notches indicate the 95% confi-
dence interval of the median so that overlapping ranges of the notches
indicate statistically indistinguishable results at the p = 0.05 level . 90

5.8 Foraging times for CPFA and MPFA swarms of 24 robots with noise
e = 0.4 in a 10× 10 m arena . . . . . . . . . . . . . . . . . . . . . . 92

5.9 The search and travel time (per swarm) for the CPFA and MPFAs . 93
5.10 Total time spent (per swarm) avoiding collisions for the CPFA and

MPFAs. The boxplot of MPFAdynamic is emphasized by blue ellipses 94
5.11 The foraging time for each swarm for increasing arena sizes. Results

are for 100 trials and data for each swarm is shown by the box plot.
The lines show the best-fit linear regression . . . . . . . . . . . . . . 95

5.12 The foraging time for each swarm of 96 robots in 50 × 50 m arena.
Results are for 100 replicates for each algorithm. Asterisks indi-
cate a statistically significant difference (p < 0.001). The boxplot of
MPFAdynamic is emphasized by red ellipses . . . . . . . . . . . . . . . 97

xvii



5.13 Foraging times for CPFA swarm of 28 robots and MPFAdynamic

swarms of 24 robots in a 10 × 10 m arena. Depots deliver collected
resources to the central placed depot when they have 24 resources.
Results are for 100 trials with each swarm. Asterisks indicate a
statistically significant difference of the medians (p < 0.001) from
MPFAdynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.14 The physical robot on which components of the CPFA have been
implemented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.15 A mobile depot with blue cover and four foraging robots simulated
in Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.16 A swarm of 6 robots (3 shown) implementing central place foraging
in a 23 x 23 m arena . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Paths of depots in explosion (MPFA) and hierarchical (MPFAT)
transportation networks. Each small square is a service region that
contains 4 searching robots. . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Number of collected resources vs. arena size (panel a) and time spent
avoiding collisions per robot vs. arena size (panel b) in Set I. The
low foraging of the CPFA (panel a) is explained in part by the long
time spent avoiding collision. . . . . . . . . . . . . . . . . . . . . . . 123

6.3 The number of resources collected in 30 minutes vs arena size is in ex-
periment Sets I, II, and III. Both axes are on a log scale. Each dashed
line indicates the log2 linear regression of the mean of collected re-
sources with the log2 of arena area. The solid black line indicates
the predicated slope in each configuration. The * algorithms (hollow
symbols) that lack collisions among depots demonstrate that foraging
under ideal conditions is close to theoretical predictions. p < 0.001
in all experiments. In panel (a), r2 = 0.1 for the CPFA, r2 = 0.95 for
the MPFA, r2 = 0.85 for the MPFAT, and r2 = 0.99 for the MPFA∗

and MPFA∗T. In panel (b), r2 = 0.66 in the MPFAT and r2 > 0.98 in
other algorithms. In Set III, r2 = 0.96 for the MPFA and r2 > 0.99
for other algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 The collision time per robot, per minute for the CPFA and MPFA
with 4 collection zones. The data is from Fig. 4.3 in Section 4. The
arena size is 15× 15 m. Results are for 100 replicates. . . . . . . . . 127

xviii



6.5 The number of depot trips required to deliver resources in the MPFA
and the MPFAT. The colored squares indicate the locations of col-
lection zones. The numbers in collection zones indicate the average
depot trips required to deliver resources. Each experiment is repli-
cated 60 times. The data is from the third set of experiments in
Prediction I. There are 16 collection zones in the MPFA and 20 col-
lection zones in the MPFAT. The central collection zone is not shown
since no depot trip is required on it. . . . . . . . . . . . . . . . . . . 128

6.6 The scenarios of the MPFA in ARGoS simulation. The configuration
is the third one in Set I for Prediction I. 64 searching robots (with
green LEDs), 48 depots (with red LEDs), 256 uniformly distributed
resources (black dots), and 17 collection zones (green circles) are in
a 16× 16 m arena. Blue lines indicate paths for delivering resources.
Yellow dots indicate locations where robots collected resources in
their last trip. Robots remember those locations and they may return
to those locations using a process called site fidelity. . . . . . . . . . 129

6.7 The scenarios of the MPFAT in ARGoS simulation. The configura-
tion is the third one in Set I for Prediction I. 21 collection zones are
in a 16× 16 m arena. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.8 The collision time per robot, per minute for the MPFA and MPFAT

in Prediction III. The robot density is nearly constant (0.03) in all
arenas. The data is from Fig. 6.3(c). Results are for 100 replicates. . 132

6.9 The number of depot trips required to deliver resources in the MPFA
and the MPFAT. The configuration is the second one in Set III for
Prediction III. 17 collection zones are in the MPFA and 21 collection
zones are in the MPFAT. The arena size is 20× 20 m. . . . . . . . . 132

6.10 The scenarios of the MPFA in ARGoS simulation. The configuration
is the second one in Set III for Prediction III. 17 collection zones are
in a 20× 20 m arena. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.11 The scenarios of the MPFAT in ARGoS simulation. The configura-
tion is the second one in Set III for Prediction III. 21 collection zones
are in a 20× 20 m arena. . . . . . . . . . . . . . . . . . . . . . . . . 134

6.12 The number of depot trips required to deliver resources without col-
lisions in the MPFA∗ and the MPFA∗T. . . . . . . . . . . . . . . . . . 135

7.1 Robot states in the CPFA and DDSA. . . . . . . . . . . . . . . . . . 145
7.2 The architecture of the CPFA and DDSA in ROS. . . . . . . . . . . 148

xix



7.3 Simulated and Physical experiments with 4 robots, 128 cubes, 4 ob-
stacles and one central collection zone. Configuration 2 is shown,
Target cluster sizes are described in Table 1, obstacles are placed 3
to 5 m from the center, and the exact location of each obstacle, target
and target cluster is chosen at random. . . . . . . . . . . . . . . . . 150

7.4 Foraging performance of the DDSA and CPFA with and without
obstacles, for 30 trials in simulation, and 15 trials in physical exper-
iments using configurations 1 and 2 (shown in Fig. 7.3). . . . . . . . 152

7.5 Foraging performance with cubes lined to the edges and clustered in
corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.6 Overall foraging performance with all experiments. . . . . . . . . . . 153
7.7 Odometry traces of 4 robots in simulation (left column) and physical

experiments (right column). Each robot path is a different colored
line. Obstacles are not shown, but the empty areas in (c) and (d)
imply their location. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.1 A physical and simulated depot. (a) A physical depot with 8 cubes on
its carriage. The depot is a Swarmie robot equipped with a plexiglass
plate. A stainless steel wire connects the shaft of the plate and a
servo motor. The motor controls the plate to dump cubes. The
robot dimensions are 34 × 25 × 22 cm and the carriage dimensions
are 31 × 24 × 3 cm. (b) A simulated depot in Gazebo. Its size is
identical to the physical depot. . . . . . . . . . . . . . . . . . . . . . 159

8.2 A scenario of multiple depots in Gazebo. Four depots with blue
covers are distributed uniformly in a 14 × 14 meter arena. Four
searching robots are searching for cubes in the arena. The collection
zone is located in the center. . . . . . . . . . . . . . . . . . . . . . . 160

xx



List of Tables

3.1 Experimental configuration in ARGoS . . . . . . . . . . . . . . . . . 31

4.1 Experimental configuration in ARGoS . . . . . . . . . . . . . . . . . 52

5.1 Parameters for robot controllers . . . . . . . . . . . . . . . . . . . . 79
5.2 Experimental configuration . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Similarities between cardiovascular systems and robot swarms . . . . 115
6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1 Experimental Setup and Replicates . . . . . . . . . . . . . . . . . . 150

xxi



Glossary

April Tag These visual codes are used as target markers. April tags provide

information to the robot about target distance and orientation in

space.

ARGoS A swarm robot simulator. ARGoS is similar to Gazebo but runs

much faster at the expense of realism. In this work we use the 2D

physics engine dyn2d.

CDF Cumulative distribution function. The CDF for a value x is the sum

of the PDF for all values less than or equal to x. We fit models to

empirical CDFs rather than PDFs.

CPF Central place foraging. A common task performed by groups of

organisms is the discovery and transportation of food items to a

central location. Transportation of resources, or other materials, to

a depot is also of interest to developers of robot swarms.

CPFA Central place foraging algorithm. A desert harvester ant inspired

algorithm for the collection of resources. (Hecker and Moses, 2015)
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DDSA The deterministic spiral algorithm. A square spiral search strategy

for swarms of robots.

EKF Extended Kalman filter. A method of integrating sensor data that

uses a dynamic noise covariance matrix to weight inputs.

GA Genetic algorithm. An evolutionary optimization technique in which

a population of solutions navigate an optimality landscape using bio-

logically inspired mechanisms such as gene crossover and mutation.

Gazebo An environment closely tied to ROS that allows the simulation of

robots. In this work we used Gazebo 2.0 and the Open Dynamics

Physics Engine (ODE).

GPS Global positioning system.

IMU Inertial measurement unit.

MPFA Multiple-place foraging algorithm. An explosion transportation net-

work is built on it in later version.

MPFAstatic The MPFA with static nests. It is another name of the MPFA.

MPFAdynamic The MPFA with dynamic depots.

MPFAglobal static The MPFA with depots that have global information about target

locations using static depots.

MPFAglobal dynamic The MPFA with depots that have global information about tar-

get locations using dynamic depots.

MPFAT The MPFA with the hierarchical branching transportation network.
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MPFA∗ It is the MPFA in the idealized environment where it does not have

collisions in transportation.

MPFA∗T It is the MPFAT in the idealized environment where it does not have

collisions in transportation.

Reality gap A common problem in robotics is the development of robot al-

gorithms in simulation that do not translate well to real robots.

Simulations enable the evaluation of algorithms many times faster

than would be possible with real robots, but cannot completely re-

produce the complexity of real environments interacting with em-

bodied robots. A robot interacting with its environment is in itself

a complex system with potentially non-linear feedback between ac-

tuators, environment, and sensors. This makes modelling difficult,

especially in the case of swarms of robots which have the added

complication of robot-robot interactions.

ROS The Robot Operating System. This is the software platform pro-

duced by the Open Robotics Software Foundation that we use to

develop the software for the Swarmathon robots. In this work we

use the Indigo Igloo release of ROS.
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Chapter 1

Introduction

Searching is a universal process in nature and engineered systems. Ant colonies search

for food, immune cells search for pathogens, computer programs search for results,

and robots search for targets. In this research, we focused on the foraging behavior of

robot swarms. Foraging is the behavior of searching for resources and transporting

them to a specific collection zone (or nest). Effective collective foraging requires

coordination, navigation, and communication and is therefore a useful abstraction

of many complex, real-world applications such as humanitarian de-mining, search

and rescue, intrusion tracking, construction, transportation, agricultural harvesting,

collection of hazardous materials, and space exploration (Winfield, 2009b; Gro and

Dorigo, 2009; Yun and Rus, 2014; Bac et al., 2014; Fink et al., 2005; Gazi and Passino,

2004; Brambilla et al., 2013).

However, searching for multiple resources in a large arena is challenging, partic-

ularly the robots we consider here with limited sensing and communication range.

Without the global information about the environment, it is not feasible to explore

the entire area in a limited time. A more efficient foraging algorithm will allow ro-
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bots to search and collect resources in the same amount of time. In this research,

my goal is to design an efficient and scalable foraging algorithm that is equally ef-

fective in swarms ranging from tens to thousands of robots in large arenas. We get

the inspiration of the scaling theory in biology and then we design a scale-invariant

transportation model for robot swarms. We demonstrate the viability of the bio-

logical models and then focus on the design of the bio-inspired engineering model.

Our work shows that the bio-inspired transportation model brings an efficient and

scalable solution to our foraging robot swarms.

1.1 The Scalability of Foraging Robot Swarms

Scalability of robot swarms has gained recent interest (Bonabeau et al., 1999;

Kennedy and Eberhart, 2001; Şahin, 2005; Barca and Sekercioglu, 2013; Khaluf et al.,

2017). A scalable foraging system should be effective in swarms ranging from tens to

thousands of robots without reducing per robot foraging times. In central place for-

aging, robots gather dispersed resources from a foraging arena and consolidate them

in a single centrally-placed collection zone that robots depart from and return to in

order to deposit resources (Liu et al., 2007; Hecker and Moses, 2015; Castello et al.,

2016). However, two major problems limit scalability and produce diminishing re-

turns (Brue, 1993). First, large swarms with many robots produce more inter-robot

collisions both during the search process and during the return of resources to a rel-

atively small collection zone. Second, large foraging arenas require, on average, that

robots travel further distances (requiring more time) to find resources and transport

them to the central collection zone. When foraging in large areas, for example, col-

lecting resources on the surface of Mars, or an ocean search and rescue operation,
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the search area can extend many kilometers, necessitating that robots travel very

long distances.

1.2 The Multiple-Place Foraging Algorithm

We proposed the Multiple-Place Foraging Algorithm (MPFA) with multiple collec-

tion zones that robots depart from and return to. Robots always return to closest

collection zones for delivering resources. Therefore, robots have shorter travel dis-

tances and fewer collisions.

The MPFA is inspired by behaviour observed in biology. For example, spider

monkeys have been characterized as multiple central place foragers (Chapman et al.,

1989). The monkeys select a sleeping site close to current feeding areas, a strategy

that entails the lowest travel costs. A study by Tindo et al (Tindo et al., 2008) showed

that wasps living in multiple nests have greater survival and increased productivity.

The polydomous colonies of invasive Argentine ants are comprised of multiple nests

spanning hundreds of square meters (Flanagan et al., 2013; Suarez et al., 2001;

Carpintero et al., 2005). Multiple-place foraging also resembles global courier and

delivery services, which use many distributed stores to collect and deliver packages

efficiently.

In the MPFA, multiple collection zones are distributed in a search arena uni-

formly. Robots are evenly distributed around collection zones. Robots start from a

random collection zone, but return to the closest collection zone to their positions

after finding a resource (see Fig. 1.1). They search globally – they can travel in the

entire arena. Robots have priori knowledge of the locations of collection zones.
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An individual robot may remember the location of a previously found resource

and repeatedly return to the same location using a process called site fidelity (Beverly

et al., 2009). Robots can also communicate using pheromones (Sumpter and Beek-

man, 2003; Jackson et al., 2007) which are simulated as artificial waypoints (Campo

et al., 2010) to recruit robots to known clusters of resources. Each pheromone trail

starts at the collection zone and ends at a waypoint specifying a location in the

arena.

Figure 1.1: The MPFA running in ARGoS, front view. Resources are shown as black
dots arranged in a partially clustered distribution. Red circles indicate uniform dis-
tributed collection zones. Colored rays indicate pheromone waypoints with different
strength (green indicates high and red indicates low).

A set of real-valued parameters specifying the individual robot controllers is

evolved by a Genetic Algorithm (GA) to optimize the collective behavior of the

swarm in the multi-physics robot simulator Autonomous Robots Go Swarming (AR-

GoS) (Pinciroli et al., 2012). Every robot in the swarm uses the same controller.

We observe how the number of collection zones affects swarm foraging performance

(i.e., the number of resources collected). The MPFA produce higher foraging rates
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and lower average travel time compared to the Central-Place Foraging Algorithm

(CPFA).

However, the travel distance is still large if the arena size is large. In other work

(Lu et al., 2019b), we introduce the dynamic depots into the MPFA (MPFAdynamic)

instead of static collection zones. Dynamic depots move to the centroid of recently

collected resources, minimizing transport times and making the MPFAdynamic more

adaptable to patchy and heterogeneous distributions of resources (Ritchie, 2009).

The MPFAdynamic improves scalability from the original MPFA, but the time to

transport resources from dispersed collection zones to a single location still results

in diminishing returns.

We propose the MPFAT with a bio-inspired hierarchical transportation network

solves this problem. In this scale-invariant design, the per-robot foraging time is in-

variant with respect to arena size and swarm size. The transportation network draws

inspiration from biological scaling theory that describes the scaling consequences of

transporting resources from a central heart to dispersed cells via the animal cardi-

ovascular network (West et al., 1997; Banavar et al., 2010) (see Fig. 1.2). The cost

of large size is that resources take longer to transport through the system, which

ultimately slows the cells of larger animals. Thus, physiological rates (i.e. heart

rate, growth rate, and reproductive rate) are systematically slower, and lifespans

and gestation times are systematically longer, in large vs. small animals.

We show that transportation costs in foraging robots are constrained by the

same principles as the vascular system in plants and animals. We derive scaling

relationships for a 2D foraging area (rather than a 3D animal volume). We use this

scaling law to predict the transportation infrastructure required to maintain constant
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Figure 1.2: Illustration of the inspiration from cardiovascular networks in biology
to hierarchical branching network MPFAT in robot swarms (left figure replicated
from (Moses et al., 2016)).

per-robot foraging rate with increasing swarm and arena size. We demonstrated that

the foraging performance per robot decreases with robot density increase in the CPFA

and the MPFA. In the work of MPFAT, we demonstrate that even within a constant

robot density, collision rates still increase in the CPFA and the MPFA, but it does

not increase in the MPFAT. As fewer collisions in the MPFAT, robots have less

chance to interfere with other robots and they are more robust.

We then simulate foraging using a hierarchical transportation network (MPFAT)

composed of mobile depots with carrying capacities determined by the scaling theory.

Our simulations show that this design overcomes scaling constraints resulting in

nearly scale-invariant foraging. We scale the swarm size up to thousands of robots

in arenas that are thousands of square meters in area. We test all of our algorithms

in the ARGoS simulator using foot-bots as a model robot.
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1.3 From Simulation to Physical Robots

While simulations are useful for initial evaluations of the viability of algorithms, they

are insufficient for the ultimate goal of predicting how algorithms will perform when

physical robots interact in the unpredictable conditions of environments they are

placed in. It is critical to evaluate collective algorithms in physical robots (Ligot and

Birattari, 2018) because there is a “reality gap” between simulation and physical

robots. It is not feasible to simulate all aspects of a physical environment (Frigg and

Hartmann, 2018), and foraging performance can be altered by variable conditions and

by sensor and actuator noise that affect localization, object retrieval, and collision

avoidance. All of these components can alter the performance of algorithms real

robotic experiments compared to simulations (Jakobi et al., 1995; Mouret et al.,

2013).

We have our robot simulation in Gazebo (Koenig and Howard, 2004) which in-

cludes many realistic physical features such as localization, navigation, sensing, ob-

ject pickup and drop off, and collision avoidance. In the CPFA, robots randomly

search objects. Eventually, robots detect the distribution of objects in the arena.

They remember and share the locations of detected objects with other robots. Then,

the robots use the information to guide their search. Some locations are searched

many times, but some locations may not be searched at all. In the DDSA, the search

paths are pre-planned. Robots search for objects on their own paths. This determ-

inistic search strategy guarantees a complete search coverage of the arena. Each

location is searched once.

Currently, we implemented the CPFA and Distributed Deterministic Spiral Al-

gorithm (DDSA) in the Robot Operating System (ROS) which can run in Gazebo
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simulation and physical robots called “Swarmies” (see Fig. 1.3) directly. The Swarmie

robot is designed for the NASA Swarmathon competition (Secor, 2016; Ackerman

et al., 2018). Each Swarmie robot is equipped with a front web camera, three pairs of

ultrasound range sensors, and a gripper for target pickup and drop off. The Swarmies

physically pick up and drop off targets and operate outdoors under variable ground

and light conditions. Complete build instructions for the Swarmie robot are publicly

available1.

Figure 1.3: A physical Swarmie robot with a cube on its gripper.

Programs are directly loaded onto the Swarmie onboard Linux computer for phys-

ical robot experiments. In a physical experiment, we run the same program on a host

computer first. The host computer connects to robots through a wireless network.

Robots receive messages from the host computer. The GUI of the software acts as

a communicator between users and robots. The updates of robots are sent back to

the host computer.

1https://github.com/BCLab-UNM/Swarmathon-Robot
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In physical robots, pheromone waypoints are stored in the host computer. The

communication is in a centralized manner which is different to other work in artificial

pheromone (Garnier et al., 2007; Campo et al., 2010; Schmickl and Crailsheim, 2008).

In the future implementation of the MPFA, we will update the centralized model

to be decentralized. In the decentralized model, robots still connect to the host

computer initially. Then, the host computer still can monitor robots, but robots can

run without the host computer.

We designed a set of experiments that we replicated in a Gazebo simulation and

in physical robots with various placements of resources and obstacles. Our conclusion

from comparing the two algorithms that the deterministic DDSA is more efficient

than the CPFA in the simulation. However, the stochastic CPFA marginally out-

performs the DDSA in physical experiments. The performance of the DDSA is more

degraded by variable and unexpected conditions in the physical world, suggesting

that the CPFA is more tolerant of real-world conditions.

Finally, we demonstrate how we can use our existing Gazebo simulation and

Swarmie hardware to implement the MPFA with transportation networks into phys-

ical robots. The implementation of of the CPFA and DDSA in dozens of replicated

experiments with physical hardware (Lu et al., 2019a) suggests that the approach

we outline here is feasible in physical robots.

1.4 Organization and Contributions

Our main contributions are divided into six chapters and summarized below. They

are published in peer-reviewed conference proceedings and journals, with the excep-

tion of Chapter 6 which is in revision to the resubmitted.
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In Chapter 3, we propose the MPFA with multiple collection zones for robot

swarms. We use a GA to optimize collective foraging behaviors in ARGoS. We

simulate different numbers of collection zones: 1 (replicating the CPFA), 2, 4, and

8. We discovered more collection zones produce better foraging performance. In

Chapter 4, we deploy 4 nests (or collection zones) uniformly in the same size of

search arena. We compare the foraging performance of the MPFA to the CPFA

when increases the number of robots and the number of resources. In all cases the

MPFA increases foraging rates compared to the CPFA by reducing travel time, search

time, and collision time. These results indicate a new direction of improving foraging

performance with distributed multiple collection zones.

In Chapter 5, we propose the multiple-place foraging algorithm with dynamic

depots (MPFAdynamic). Depots are special robots which are able to carry multiple

resources. Depots move to new locations based on the mean positions of the remain-

ing resources sensed by the robots. We compare the performance of the MPFAdynamic

with MPFA and CPFA. The MPFAdynamic outperforms the MPFA and CPFA. It is

also more scalable than other algorithms in a very large arena (50 × 50 m) with 96

robots.

In Chapter 6, we propose a bio-inspired hierarchical transportation network to

improve the scalability of the MPFA. The transportation network draws inspiration

from the cardiovascular network in biology. In this design, the per-robot foraging

time is invariant with respect to arena size and swarm size. We derive scaling rela-

tionships for a 2D foraging area. We use this scaling law to predict the transportation

infrastructure required to maintain constant per-robot foraging rate with increasing

swarm and arena size. Our simulations show that this design overcomes scaling con-
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straints resulting in nearly scale-invariant foraging. We scale the swarm size up to

thousands of robots in arenas that are thousands of square meters in area.

In Chapter 7, we compare the deterministic DDSA and the stochastic CPFA in

simulations and in physical robots. The conclusion we draw from comparing the

two algorithms is: the DDSA outperforms the CPFA in the simulation. However,

the CPFA marginally outperforms the DDSA in physical experiments. It suggests

that the CPFA is more tolerant of real-world conditions. This work emphasizes the

importance of evaluating and comparing algorithms in physical experiments. The

results presented here also provide benchmarks for comparison for other foraging

algorithms (e.g. MPFA) in physical robots.

In Chapter 8, we present the design of physical depots (delivering robots). We

demonstrate the feasibility of shifting from simulation to physical robots. Our goal

is to have depots delivering multiple objects and dumping them into collection zones

autonomously. We will implement the MPFA with the hierarchical transportation

network in physical robots. In the future work, we will compare it with the DDSA

and CPFA in physical robots.
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Chapter 2

Background

2.1 Stochastic Central-Place Foraging

When robots depart from a centrally-placed collection zone to search for and trans-

port resources back to the collection zone, this process is called central-place foraging.

Central-place foraging is a canonical collective task commonly studied in swarm ro-

botics (Şahin, 2005; Brambilla et al., 2013).

Prior work (Hecker and Moses, 2015) introduced the CPFA, which was designed to

emulate seed-harvester ant behaviors governing memory, communication, and move-

ment (see Fig. 2.1). It mimics a repertoire of foraging behaviors used by desert seed-

harvester ants to search for resources that are distributed in a variety of ways (Hecker

et al., 2013; Gordon and Kulig, 1996). These ants are restricted to foraging in short

time windows during which not all available resources can be collected. Hecker and

Moses formalized and implemented the behaviors of the CPFA (Hecker and Moses,

2015; P. Hecker et al., 2012; Hecker and Moses, 2013; Hecker et al., 2015) based
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on Flanagan and Letendre’s ant field studies (Flanagan et al., 2012; Letendre and

Moses, 2013). The foraging strategies were evolved by a GA that were tolerant of

real-world sensing and navigation error, flexible for a variety of target distributions,

and scalable to large swarm sizes.

Figure 2.1: The CPFA running in ARGoS, overhead view. The circle in the center
indicates the collection zone. The partially clustered distribution of resources are
shown as black dots, robots blue larger dots, lines indicate the paths taken by robots
during the experiment.

In the CPFA, robots initially disperse from the central collection zone to ran-

dom locations, followed by a search behavior (Fewell, 1990) in which an uninformed

correlated random walk is used to locate resources (Crist and MacMahon, 1991).

Robots pick up one resource at a time and return to the collection zone when they

either find a resource or give up searching.

When a robot locates and finds a resource, it stores a count c of sensed resources in

neighborhood of the found resource. This count c represents the density of resources

in the local area. In ARGoS simulation, the count is from the 8-cell neighborhood
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of the found resource which is the center of 3 × 3 cells. In physical robots, it is

the number of cubes detected in the camera of a robot by spinning in a circle.

An individual robot may remember the location of a previously found resource and

repeatedly return to the same location using a process called site fidelity (Beverly

et al., 2009). Robots can also communicate using pheromone which are simulated

as artificial waypoints to recruit robots. Waypoints are maintained in lists in which

pheromone strength of each waypoint decreases exponentially over time. We simulate

the artificial evaporation process of waypoints which are removed once their values

drop below a threshold.

Our initial implementation requires that all robots know the location of the collec-

tion zone. Robots use the detected resources to decide whether to create a pheromone

waypoint which adds the location and the strength to a list, mimicking ant pher-

omone trails. Waypoints are communicated (and can be followed) only when robots

return to the collection zone.

In physical robots, pheromone waypoints are stored in the host computer. The

communication is in a centralized manner which is different to other work in artificial

pheromone (Garnier et al., 2007; Campo et al., 2010; Schmickl and Crailsheim, 2008).

In the future implementation of the MPFA, we will update the centralized model

to be decentralized. In the decentralized model, robots still connect to the host

computer initially. Then, the host computer still can monitor robots, but robots can

run without the host computer.

The robot uses the density count c to decide whether to use site fidelity in the next

round of foraging, lay a pheromone waypoint, or follow the pheromone waypoint. If a

robot returns to a previously found resource area, it searches using an informed cor-
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related random walk that searches more thoroughly than robots searching randomly

selected locations.

2.2 Distributed Deterministic Spiral Search

The Distributed Deterministic Spiral Algorithm (DDSA), a deterministic search for

central-place foraging is designed to collect resources in robot swarms (Fricke et al.,

2016)). It gets inspiration from many previous studies (Bentley et al., 1980; Baeza-

yates et al., 1993; Isbell, 1957). Generally, these studies take a geometric approach

which exploits the optimality of spiral search demonstrated for single agents gener-

alized to a swarm of robots by having robots move to a uniform random location

before beginning the spiral. Isbell (Isbell, 1957) described a target detection search

pattern for individual ships in which it performs a continuous space-filling spiral. A

hidden expanded spiral search pattern is discovered in foraging desert ants of the

genus Cataglyphis (Müller and Wehner, 1994). Burlington and Dudek (Burlington

and Dudek, 1999) extend the single searcher spiral search pattern to a complex en-

vironment. A square search pattern carried out by a single helicopter is described

in (Ryan and Hedrick, 2005).

In the DDSA, an interlocking square spiral paths are computed for robot swarms.

Robots start near the central collection zone and search for resources by following the

pre-planned paths. This deterministic search strategy is different from the stochastic

search CPFA. When operating without error, noise, or collisions, the DDSA guaran-

tees that robots will find the nearest resources first which minimizes transport cost.

This provides complete coverage of an area while minimizing repeated searches of

the same location (see Fig. 2.2).
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Figure 2.2: The DDSA running in ARGoS. The robots search on pre-planned spiral
search paths beginning at a central collection zone. Resources are shown as black
dots arranged in a partially clustered distribution. Robots are marked with blue
larger dots. Colored lines are the paths of robots.

In each subsequent foraging trip, the robot returns directly to the last location

where it found a target (effectively implementing site fidelity for every foraging trip)

where it resumes its spiral search. This relatively simple algorithm guarantees that

the closest resources are found first, and due to site fidelity a robot will repeatedly

return to a location so that it efficiently collects clusters of resources.

2.3 Task Partitioning

Task partitioning can be an approach to improve location accuracy, mitigate colli-

sions, and reduce travel distances to improve scalability implicitly. Pini et al. (Pini

et al., 2014) demonstrated that a static partitioning strategy can provide a scal-

able and robust foraging robot swarm. Buchanan et al. (Buchanan et al., 2016a)
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improved the scalability of the robot swarms using a dynamic partitioning strategy

which mitigates dead reckoning error. The work in (Ferrante et al., 2015) describes

a leafcutter ant inspired foraging algorithm. The robot swarm achieves maximum

foraging performance by dividing foraging and delivering tasks automatically using

a nature-inspired evolutionary method known as Grammatical Evolution (Ferrante

et al., 2013).

We get inspiration from the task partitioning to introduce mobile depots for the

transportation task, separate from searching robots that search for resources and

deliver them to a local depot. When robot swarms in a large arena, robots take

the advantage of task partitioning. We can allocated multiple collection zones in the

arena. Instead of traveling a long distance to deliver resources to the central collection

zone, searching robots can focus on searching and only deliver collected resources to

their home collection zones. Mobile depots are designed to travel from their home

collection zones to destination collection zones for delivering resources. Mobile depots

distributed in those destination collection zones deliver resources to their destination

collection zones in next level. Every mobile depot only travel on the path from its

home collection zone to its destination collection zone. Eventually, collected resources

are delivered to the central collection zone. It produces less collisions and increases

foraging performance. Therefore, the task partitioning improves the scalability of

foraging robot swarms.

2.4 Existing Simulators and Physical Robot Platforms

Though swarm robot foraging has been studied for decades, replicated experimental

analyses that compare different algorithms in simulation and in real robots are rare,
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particularly in outdoor environments (Winfield, 2009a; Brambilla et al., 2013). For

example, Many task partitioning and foraging algorithms have been simulated in the

Stage multi-robot simulator (Gerkey et al., 2003; Liu et al., 2007; Castello et al.,

2016), the ARGoS multi-robot simulator (Ferrante et al., 2015; Pini et al., 2014;

Buchanan et al., 2016b) and Microsoft(R) Robotics Developer Studio (MRDS) (Hoff

et al., 2010). Physical foraging experiments have been conducted with “foot-bots”

equipped with grippers, IR sensors, and cameras for foraging tasks in (Pini et al.,

2014; Buchanan et al., 2016b) and custom platforms like MinDART (Rybski et al.,

2008). However, they evaluate robots in laboratory environments.

In practice, many complex physical experiments with swarm robots require hu-

man support, e.g. (Rosenfeld et al., 2017). Many studies do not have simulation

of some aspect completely. For example, the Robotarium provides a testbed for

remotely accessible physical robots (Pickem et al., 2017), but localization is gov-

erned by an overhead camera. Other studies simulate simplified physical pickup

and drop-off of objects. For example, (Brutschy et al., 2015; Castello et al., 2016)

uses a group of e-puck robots and our prior work (Hecker and Moses, 2015) used

iAnt robots which detect targets but do not physically pick them up. Kilobots can

operate autonomously to push items, but they have relatively limited mobility and

only operate in controlled laboratory environments (Rubenstein et al., 2012; Jones

et al., 2018). Collaborative warehouse robots may require buried guide-wires or

visual markers to navigate (Enright and Wurman, 2011). The Swarmanoid project

demonstrates an innovative heterogeneous physical swarm robotics system whose ro-

bots collaborate to solve a complex object retrieval task (Dorigo et al., 2013), but it

was designed as a demonstration of swarm capabilities, not to test algorithms in a

physical environment.
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We conduct automated, replicated experiments to test autonomous collective

foraging in outdoor environment with variable ground and light conditions. These

factors are important sources of error and noise in our experiments. Our physical

robots can pick up and drop off resources with any additional support. The limita-

tions of our physical robots are that they use GPS, a global (but still noisy) signal,

to mitigate the localization problem. We also occasionally use human intervention

to prevent robots from leaving the foraging arena.
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3.2 Abstract

Finding and retrieving resources in unmapped environments is an important and

difficult challenge for robot swarms. Central-place foraging algorithms can be tuned

to produce efficient collective strategies for different resource distributions. However,

efficiency decreases as swarm size scales up: larger swarms produce more inter-robot

collisions and increase competition for resources. We propose a novel extension to

central-place foraging in which multiple nests are distributed in the environment. In

this multiple-place foraging algorithm, robots depart from a home nest but always

return to the nest closest to them. We simulate robot swarms that mimic foraging

ants using the multiple-place strategy, employing a genetic algorithm to optimize

their behavior in the robot simulator ARGoS. Experiments show that multiple nests

produce higher foraging rates and lower average travel time compared to central-

place foraging for three different resource distributions. Time spent avoiding robot-

robot collisions is not always reduced as was expected, primarily because the use of

pheromone-like waypoints leads to more collisions when robots forage for clustered

resources. These results demonstrate the importance of careful design in order to

create efficient multiple collection points to mitigate the central-place bottleneck for

foraging robot swarms.

3.3 Introduction

Swarm robotics draws inspiration from biology to coordinate large numbers of rel-

atively simple physically embodied agents. Biological studies have revealed self-

organized coordination mechanisms in social insects which can be effectively imple-
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mented in swarm robotics systems (Camazine et al., 2001; Şahin, 2005; Şahin et al.,

2008).

Multiple robots can be organized to collectively accomplish tasks that a single

robot cannot easily complete. Swarm robotics researchers aim to design robust,

scalable, and flexible collective behaviors for multiple autonomous robots (Şahin,

2005; Brambilla et al., 2013). Simple rules and local interactions among individual

robots result in desired collective swarm behavior without centralized control. Such

collective behaviors could be combined to tackle complex real-world applications,

e.g. collective foraging (Liu, 2008; Liu and Winfield, 2010) and construction (Werfel

et al., 2014).

Foraging robots must retrieve objects from an environment and bring them back

to a collection point, or nest. Effective collective foraging requires coordination, nav-

igation and communication and is therefore a useful abstraction of many complex,

real-world applications such as humanitarian demining, search and rescue, intru-

sion tracking, and collection of hazardous materials and natural resources (Bram-

billa et al., 2013; Winfield, 2009a). In particular, foraging is commonly used as a

testbed for collective exploration, collective transportation, and collective decision-

making (Brambilla et al., 2013; Gazi and Passino, 2004).

The central-place foraging algorithm (CPFA) (Hecker and Moses, 2015) uses a

centrally-placed nest which robots depart from and return to as they collect resources.

Due to crowding, collision avoidance increases with the number of robots. Therefore,

one central nest cannot serve a large number of robots efficiently. Additionally,

resources that are located far away from the central nest impose long travel times.

The multiple-place foraging algorithm is inspired by behaviour observed in bi-

ology. For example, the polydomous colonies of Argentine ants are comprised of
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multiple nests spanning hundreds of square meters (Flanagan et al., 2013). Spider

monkeys have been characterized as multiple central place foragers (Chapman et al.,

1989). The monkeys select a sleeping site close to current feeding areas, a strategy

that entails the lowest travel costs. A study by Tindo et al. (Tindo et al., 2008)

showed that wasps living in multiple nests have greater survival and increased pro-

ductivity. Multiple-place foraging also resembles global courier and delivery services,

which use many distributed stores to collect and deliver packages efficiently.

In this work, we propose a multiple-place foraging algorithm (MPFA) with multi-

ple nests that robots depart from and return to. We use a genetic algorithm (GA) to

evolve collective foraging behaviors in the multi-physics robot simulator Autonomous

Robots Go Swarming (ARGoS) (Pinciroli et al., 2012). A set of real-valued param-

eters specifying the individual robot controllers is evolved to optimize the collective

behavior of the swarm. Every robot in the swarm uses the same controller. We sim-

ulate different numbers of nests: 1 (replicating the CPFA), 2, 4, and 8. We test how

quickly resources are collected from random, partially clustered and fully clustered

resource distributions. We observe how the number of nests affects swarm foraging

performance (i.e., the number of resources collected), specifically:

• Collision time: The time required to detect and avoid collisions with other

robots.

• Search time: The time that a robot spends searching for resources.

• Travel time: The time that a robot spends traveling to and from a nest when

collecting resources.

We show that the genetic algorithm tunes the MPFA differently depending on the

resource distribution. In all cases the MPFA increases foraging rates compared to the
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CPFA by reducing travel time. However, for some resource distributions the MPFA

increases search time and in others it increases collisions. These results indicate

complex tradeoffs that must be balanced in order to maximize foraging rates given

multiple collection points.

The remainder of this chapter is organized as follows. The foundation of the

CPFA is introduced in Section 3.4. The design of the MPFA, and the configuration of

the MPFA in ARGoS, are provided in Section 3.5. Section 3.6 shows the experimental

results and explains them based on trends in MPFA parameters, and Section 3.7

discusses the results.

3.4 Background: The CPFA

The central-place foraging algorithm (CPFA) mimics a repertoire of foraging behav-

iors used by desert seed-harvester ants to search for resources that are distributed

in a variety of ways (Hecker et al., 2013; Gordon and Kulig, 1996). These ants are

restricted to foraging in short time windows during which not all available resources

can be collected; thus, the CPFA is designed to collect many resources quickly, but

not to optimally collect all resources. Hecker and Moses formalized and implemented

the behaviors of the CPFA (Hecker and Moses, 2015; P. Hecker et al., 2012; Hecker

and Moses, 2013; Hecker et al., 2015) based on Flanagan and Letendre’s ant field

studies (Flanagan et al., 2012; Letendre and Moses, 2013).

In the CPFA, robots initially disperse using travel behavior from the central

nest to random locations, followed by a search behavior (Fewell, 1990) in which an

uninformed correlated random walk (Crist and MacMahon, 1991) is used to locate
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resources (see Fig. 3.1a). Robots pick up one resource at a time and return to the

nest when they either find a resource or give up searching.

When a robot locates and finds a resource, it stores a count c of sensed resources

in the 8-cell neighborhood of the found resource which is the center of 3 × 3 cells.

This count c represents the density of resources in the local region. An individual

robot may remember the location of a previously found resource and repeatedly re-

turn to the same location using a process called site fidelity (Beverly et al., 2009).

Robots can also communicate using pheromones (Sumpter and Beekman, 2003; Jack-

son et al., 2007) which are simulated as artificial way points (Campo et al., 2010) to

recruit robots to known clusters of resources. Each pheromone trail is represented

by a starting waypoint and an ending waypoint. Waypoints are maintained in lists

in which pheromone strength of each waypoint decreases exponentially over time.

Waypoints are removed once their values drop below a threshold of 0.001. The robot

uses the density count c to decide whether to use site fidelity in the next round of

foraging, lay a pheromone waypoint, or follow the pheromone waypoint. If a robot

returns to a previously found resource area, it searches using an informed correlated

random walk that searches more thoroughly than robots searching randomly selected

locations. The MPFA uses these same behaviors (see Fig. 3.1b).

The CPFA is implemented in real physical iAnts using a central nest illuminated

by a beacon that robots can detect. Robots use a combination of ultrasonic distance,

magnetic compass headings, time-based odometry and an on-board forward-facing

camera to estimate locations of pheromone waypoints and locations to return to via

site fidelity (Hecker and Moses, 2013).
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3.5 Methods

We propose the multiple-place foraging algorithm (MPFA), an extension to central-

place foraging in which multiple nests are distributed in the environment. In the

MPFA, robots always return to the nest closest to them in the area. If a returning

robot chooses to communicate resource information using a pheromone-like waypoint,

this waypoint will only be shared with other robots that return to the same nest.

3.5.1 The Design of the MPFA

In the MPFA, robots are evenly distributed around nests. Robots start from a

random nest, but return to the closest nest to their positions after finding a resource.

Robots have priori knowledge of the locations of nests. The use of multiple collection

points is the fundamental difference between the CPFA and the MPFA; all other

components of the two foraging algorithms are kept deliberately identical in order

to test for the effect of multiple nests on swarm foraging efficiency. As in the CPFA,

robots use site fidelity or follow pheromone waypoints to exploit resource-rich areas.

Our simulations assume that all nests are illuminated by a beacon and that robots

can detect the closest beacon.

In the MPFA, the robots search globally as in the CPFA – they can travel in

the entire arena (see Fig. 3.1b). The key difference is that robots will always re-

turn to the nest closest to the location where they discovered resources. They share

pheromone waypoints locally at their current nest. This is in contrast to the CPFA,

where pheromone waypoints are associated with the centrally-placed nest and are

globally available to all robots. Since robots always return to the closest nest with

a found resource in the MPFA, the sensed information relevant to a given resource
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neighborhood is always associated with the nest closest to the position of the iden-

tified neighborhood. Thus, if a robot follows a pheromone waypoint from a nest,

then the distance from the nest to the destination of the pheromone is the shortest

distance to the resource neighborhood identified by the waypoint.

(a) CPFA model (b) MPFA model

Figure 3.1: Schematics showing individual robot foraging trips in (a) the CPFA and
(b) the MPFA. In (a), a robot begins its search at a central nest (red circle) and
travels to a search site (step 1). Upon reaching the search site, the robot searches
for resources by uninformed random walk (step 2) until a resource (black square) is
found and collected. After sensing the local resource density, the robot returns to
the nest (step 3). In (b), 4 nests are placed. The foraging behavior is identical to
the CPFA, except that the robot returns to the nest closest to the location where
it finds a resource. The robot path in the upper left of panel (b) shows the robot
returning to the nest that it departed from. The path in the lower right of panel (b)
shows a robot that finds a resource closer to a different nest, and so it deposits that
resource at the new closer nest. If the robot chose to lay a pheromone waypoint, the
waypoint would connect the new nest to the resource location.

The set of seven MPFA parameters is identical to the set of CPFA parameters

developed by Hecker and Moses (Hecker and Moses, 2015), and is defined below:
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• Probability of switching to search: When traveling from the nest in a

randomly selected direction (step 1 in Fig. 3.1a), at each step robots have a

probability of switching from travel to uninformed random search. This governs

the time and distance that robots travel in a straight line away from the nest

before beginning to search. The probability is initialized by a uniform random

distribution, U(0, 1).

• Probability of returning to nest: During search each robots have a prob-

ability of giving up search and returning to the nest. It is initialized by a

uniform random distribution, U(0, 1).

• Uninformed search variation: During search without prior information

(not using site fidelity or following pheromones), the turning angle of the cor-

related random walk θt is defined as θt = N (θt−1, σ), where θt−1 is the turning

angle in the current step, and σ is the uninformed search variation, which

determines the turning angle of the next step. σ is initialized by a uniform

random distribution, U(0, π).

• Rate of informed search decay: Robots searching with prior information

use a correlated informed random walk that covers area thoroughly using a

standard deviation ω of the successive turning angles that decays as a function

of time t: ω = σ+(2π−σ)e−λidt, where λid is the rate of informed search decay,

and σ is the uninformed search variation. The degree of turning is initially

large and makes the search more local and thorough in the current area. As

the search time increases the degree of turning decays to σ and approaches

uninformed search (see Fig. 3.1b).
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• Rate of laying pheromone: Robots are more likely to lay pheromone way-

points when a high density c of resources has been detected. The probability

is defined by a Poisson cumulative distribution function (CDF) POIS(k, λlp),

where λlp is the evolved parameter.

• Rate of site fidelity: Robots that detect a high density of resources are

more likely to return to a previously found resource area using site fidelity.

The probability is defined by a Poisson CDF POIS(k, λsf ), where λsf is the

evolved parameter.

• Rate of pheromone decay: Rate at which pheromone waypoints decay ex-

ponentially over time. It is defined by a decay function e−λpdt, where λpd is the

evolved parameter.

The GA selects 7 parameter values for each swarm with fitness defined as foraging

performance in experiments implemented in ARGoS. Performance is averaged over

experiments on 8 different random resource placements (of a given distribution) to

determine the fitness of a parameter set. The GA uses a population size of 50, a 50%

uniform crossover rate and a 5% Gaussian mutation rate with a standard deviation of

0.02. The new value vm of the mutated parameter is equal to vc+αD, where vc is the

current value of the parameter, α is the value generated by the Guassion distribution

N (0, 0.02), and D is the maximum value in the domain of this parameter. We use

elitism to keep the parameter set with the highest fitness.

We altered the termination criteria of the GA in order to hasten parameter con-

vergence. We ran the GA for a minimum of 20 generations and a maximum of 100

generations, stopping earlier if termination criteria were met. The GA terminates

based on three criteria. The criteria evaluate the number of generations, the conver-
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gence of fitness, and the diversity of populations, which is introduced in GAlib (Wall,

1996). The GA will stop if fitness has converged and the diversity of the population

is low. Otherwise, the GA will stop after 100 generations.

In our GA, 88% of the evolutionary runs terminate due to the convergence of

parameter values and fitness values. Across 12 independent evolutionary runs, all

evolved parameter sets were nearly equally fit: the standard deviation in fitness was

at most 5% of the mean fitness value (Finally, the fitness of the best parameter set

is evaluated on 100 additional resource placements).

3.5.2 Experimental Configuration in ARGoS

We implement the CPFA and MPFA in ARGoS. We evaluate both algorithms on a

foraging task for 256 resources scattered in random, partially clustered, and clustered

resource distributions (see Fig. 3.2).

The random distribution has 256 resources scattered uniformly. The clustered

distribution has 4 clusters of 64 resources distributed uniformly, each arranged in an

8×8 grid. The partially clustered distribution has a power law distribution of cluster

sizes: 1 cluster of 64 resources, 4 clusters of 16 resources, 16 clusters of 4 resources

and 64 resources scattered uniformly.

The configurations of the CPFA and MPFA (listed in Table 3.1) are identical

except for the number of nests. We distribute the nests in the arena uniformly as

described in Section 3.5.1. The sum of the area of the nests in each MPFA model is

equal to the area of the central nest in the CPFA. The nest size reflects the capacity

of the nest. We scale the nest radii as 0.5, 0.35, 0.25 and 0.18m in 1, 2, 4 and 8-nest

cases, respectively.
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(a) 2-nest MPFA and
partially clustered dis-
tribution

(b) 4-nest MPFA and
random distribution

(c) 8-nest MPFA and
clustered distribution

(d) A running scenario
of 4-nest MPFA model

Figure 3.2: The placement of nests and resources in ARGoS. In all experiments 256
resources (black points) and 24 robots are placed in a 10 × 10m arena, and some
number of nests (red circles) are distributed uniformly in the search space. The
resources are partially clustered in panel (a), unclustered and spread in a uniform
random distribution in (b) and clustered into 4 piles in panel (c). Panel (d) shows a
simulation running with 24 robots, the partially clustered resource distribution and
four nests. The colored rays indicate pheromone waypoints with different strength.
A small area is magnified in each figure to show the resource placement.

Table 3.1: Experimental configuration in ARGoS

Size of the arena (m) 10× 10
Number of nests 1, 2, 4, or 8

Radius of nests (m) 0.5, 0.35, 0.25, or 0.18
Number of resources 256

Number of robots 24
Foraging time (minutes) 12

The radius of each resource is 0.02 m. Every experiment uses 256 resources and

24 robots. The radius of each robot is 0.085 m. The speed of each robot is 0.16 m/s.

We previously observed an exponential increase in collection time after the ma-

jority of resources are collected, and the resource distribution becomes sparse (Hecker

et al., 2015). We mitigate this confounding factor by limiting swarm foraging time

31



to 12 minutes, ensuring that swarms do not collect more than 90% of the available

resources.

We identify whether performance varies systematically with the number of nests

and statistically analyze the trends of evolved parameters by calculating a log-linear

regression in which foraging performance is compared to the log2 of the number of

nests.

3.6 Results

We compare the performance of the CPFA and MPFA. The results show the MPFA

outperforms the CPFA in foraging performance, is more efficient in collision avoid-

ance, and requires less overall travel time. Source code is available on Github1.

We then evaluate how parameters changed given 1, 2, 4, or 8 nests. The param-

eters governing the turning angle of the random walk and the use of site fidelity

were qualitatively similar to those previously observed by Hecker and Moses (Hecker

and Moses, 2015), and they did not differ systematically with the number of nests.

However, two parameters showed interesting patterns. We observe trends in the

probability of laying pheromone and the probability of switching to search

which controls the amount of time traveling in a straight line away from the nest

before switching to search.

3.6.1 Foraging Performance

The foraging performance of the CPFA and MPFA are shown in Fig. 3.3. Multiple

nests produce better foraging performance than the CPFA in all three distributions.

1https://github.com/BCLab-UNM/iAnt-ARGoS/tree/lukey_development
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The number of collected resources increases as the number of nests increases. The

foraging of the 8-nest MPFA is 13% higher in the random distribution, 19% higher

in the partially clustered distribution, and 27% higher in the clustered distribution.

The CPFA has the lowest foraging performance in the clustered distribution.

Figure 3.3: Foraging using the CPFA, as well as the 2-nest, 4-nest, and 8-nest MPFA
in random, partially clustered, and clustered resource distributions. There is a sig-
nificant positive trend in the number of resources with the log2 of the number of
nests in all three distributions (p = 0.02, p = 0.017, and p = 0.023, respectively).

The foraging performance per minute for each experiment is shown in Fig. 3.4.

Foraging performance significantly increases with the number of nests in the first 5

minutes of the experiments for all three distributions (p = 0.04). The foraging perfor-

mance for the random distribution is initially the highest, while foraging performance

for the clustered distribution is initially lowest. Foraging performance decreases over

the first several minutes for the random distribution, and increases for the clustered

distribution. The partially clustered distribution shows an intermediate pattern.

The reasons for these patterns are explored in Section 3.6.4.
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Figure 3.4: The number of collected resources per minute by the CPFA and MPFA.
There is a significant positive trend in the number of resources with the log2 of the
number of nests in the first 5 minutes of all three distributions (p = 0.04).

3.6.2 Collision Avoidance

In our simulation, if the distance between two robots is less than 0.25 m, each robot

will detect a collision. Each robot senses the location of the other and turns left

or right in order to avoid the collision, moving approximately 8 cm before resuming

traveling.

The total time spent avoiding collisions in each swarm is shown in Fig. 3.5. In

the random distribution, the total collision time in collision with multiple nests is

less than the total time for the CPFA. In the partially clustered and the clustered

distributions, we observe no clear trend.
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Figure 3.5: Total time spent avoiding collisions for the CPFA and MPFA in three
distributions. The p-values of the log-linear regression between the total collision
time and the number of nests are p = 0.05, p = 0.85 and p = 0.33 for random,
partially clustered, and clustered, respectively.

3.6.3 Search and Travel Efficiency

Foraging time is the composition of two distinct activities. When a robot departs

from its nest, it travels to a location. Once at the location, the robot engages in a

localized search. Once a resource is discovered, the robot takes approximately the

same travel time back to the nest. All other robots take approximately the same

travel time back to the location of the discovered resource, but their search time is

reduced by the information communicated through pheromone waypoints.

The average search and travel time per resource in each swarm is shown in Fig. 3.6.

Round trip foraging time, i.e., the sum of search and travel time per resource, de-

creases as the number of nests increases in each distribution. The search time in-

creases as the number of nests increases in the random distribution, while there is
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no significant trend for the partially clustered and clustered distributions. However,

the travel time decreases as the number of nests increases in each distribution. The

travel time is lowest in the random distribution and highest in the clustered distribu-

tion. The travel time with multiple nests is less than with the CPFA: swarms using

the CPFA require up to 50% more travel time in the random distribution, up to 33%

more travel time in the partially clustered distribution, and up to 30% more travel

time in the clustered distribution.

Figure 3.6: The search and travel time per resource for the CPFA and MPFA. Search
time increases with the number of nests in the random distribution (p = 0.01),
but has no trend with the number of nests in the partially clustered and clustered
distributions (p = 0.95 and p = 0.85, respectively). Travel time decreases in all three
distributions (p = 0.016, p = 0.013, and p = 0.045, respectively).

3.6.4 Observed Trends in Parameters

Fig. 3.7 illustrates how the probability of laying pheromones changes with the num-

ber of nests. The figure shows the probability of laying pheromones (calculated from
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a Poisson distribution with the evolved parameter λp) given that k = 2 resources

were detected in the local neighborhood of the most recently found resource. Results

are shown for the evolved parameter set with the highest fitness for each distribution.

The probability of laying pheromones is very low for the random distribution, regard-

less of how many nests are placed. The probability is higher for partially clustered,

and even higher for clustered resources, and in both of those cases the probability

increases with the number of nests.

Figure 3.7: The evolved probability of laying pheromone when two resources are
found in the resource neighborhood. Medians and quartiles for 12 replicates of
evolution are shown for each model. A linear regression (log2 on the number of
nests versus the probability of laying pheromone) shows no trend (p = 0.204) in the
random distribution, but a statistically significant trend for the partially clustered
(p = 0.006) and clustered (p = 0.05) distributions.

The evolved probability of switching to search is shown in Fig. 3.8. This parame-

ter indicates how long the robot travels in a straight line directly away from the nest

before it begins to search for resources. Higher probabilities indicate that robots stay
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closer to the nest. The probability increases as the number of nests increases in the

random distribution, indicating that robots stay closer to their nest when more nests

are placed in the arena. There are no significant trends in the partially clustered and

clustered distributions.

Figure 3.8: The evolved probability of switching to search. Medians and quartiles
for 12 replicates of evolution are shown for each model. A linear regression (log2 on
the number of nests versus the probability of switching to search) shows a statistical
significant trend for the random distribution (p = 0.02).

3.7 Discussion

This chapter explores how the use of multiple nests affects foraging performance. We

show that robot swarms using the MPFA exhibit higher foraging performance and

spend less time spent on collision avoidance. We examine the time spent actively

searching for resources and the time spent traveling from the resource to the nest

and back. Not surprisingly, increasing the number of nests (to 2, 4, or 8) increases
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the foraging rate (see Fig. 3.3), and decreases travel time (see Fig. 3.6). However, the

relationship between search time, collision time, and the number of nests depends on

how resources are distributed. Given a random resource distribution (see Fig. 5.6b),

search time generally increases when robots have access to more nests. Given a clus-

tered distribution (see Fig. 5.6c), more time is spent in collision avoidance, regardless

of the number of nests.

Fig. 3.4 shows how foraging rates change with time in each distribution. In the

random distribution, the resources are scattered in the entire space, so the robots

can discover and collect more resources at the beginning of the experiment, but

fewer in the end as resources become more sparse. In the clustered distribution,

the resources are initially harder to discover, so foraging rates are low. Once piles

are found, robots are recruited, which increases the foraging rate, until the foraging

rate declines as the remaining resources become sparse and harder to find (Hecker

et al., 2015). The evolved pheromone laying rate (see Fig. 3.7) is the highest for the

clustered distribution, and the lowest for the random distribution. In the partially

clustered distribution, both processes (discovering random resources and recruiting

to large piles) occur, and so there is no clear trend in foraging rates over time. The

same trends are seen for the MPFA simulations and the CPFA simulation, indicating

that the MPFA does not fundamentally alter the process of finding resources.

Fig. 3.5 shows that the total collision time in the MPFA is slightly reduced

compared to the CPFA for the random distribution. However, collision time in the

MPFA is higher than the CPFA in the clustered distribution even though the robots

are dispersed to more nests. We hypothesize that more collisions occur with more

nests because the MPFA evolves greater pheromone use (see Fig. 3.7), and these

pheromones concentrate the robots on short routes between the locations where
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resources are clustered and the nearest nest. This increases the total foraging rate

while simultaneously increasing the time spent avoiding collision.

Pheromones have an additional effect on foraging rates, as demonstrated in

Fig. 3.6. In the partially clustered and clustered distributions, where pheromones

can be used effectively, search times are shorter than in the random distribution. In-

terestingly, search times increase as more nests are added in the random distribution.

One cause of this is shown in Fig. 3.8. The more nests there are, the more likely

robots will minimize time traveling away from those nests — they will begin search

behaviors immediately upon leaving the nest. This means that the smaller search

areas around each nest are depleted more quickly, making subsequent resources more

difficult to find. This trend is seen in the top panel of Fig. 4 where the 8 nest MPFA

is by far the fastest in the initial minutes, but the slowest at the last minute.

These patterns reveal that the MPFA improves foraging rates, not just because

of the simple intuitive reduction in travel distance. There are tradeoffs between the

distance travelled from the nest, the time spent searching and the collision avoidance

of robots. The GA tunes parameters to balance these tradeoffs and optimizes the

performance of each swarm, resulting in systematic changes in parameters governing

pheromone laying and distance travelled from the nest as more nests are added.

In future work, we will examine how these tradeoffs can be balanced dynamically,

for example, by dynamically allocating and de-allocating nests as resources are found

and depleted.
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4.2 Abstract

A swarm of simple robots works together is an effective approach to explore large

unmapped areas. The central-place foraging algorithm (CPFA) is effective for coor-

dinating robot swarm search and collection tasks. Robots start at a centrally placed

location (nest), explore potential targets in the area without global localization or

central control, and return the targets to the nest. The scalability of the CPFA

is limited because large numbers of robots produce more inter-robot collisions and

large search areas result in substantial travel costs. We address these problems with

the multiple-place foraging algorithm (MPFA), which uses multiple nests distributed

throughout the search area. Robots start from a randomly assigned home nest but

return to the closest nest with found targets. We simulate the foraging behavior

of robot swarms in the robot simulator ARGoS and employ a genetic algorithm to

discover different optimized foraging strategies as swarm sizes and the number of

targets is scaled up. In our experiments, the MPFA always produces higher foraging

rates, fewer collisions, and lower travel and search time compared to the CPFA for

the distribution of the partially clustered target. The main contribution of this pa-

per is that we systematically quantify the advantages of the MPFA (reduced travel

time and collisions), the potential disadvantages (less communication among robots),

and the ability of a genetic algorithm to tune MPFA parameters to mitigate search

inefficiency due to less communication.
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4.3 Introduction

A large number of simple individual robots working together has the potential to

be useful for tasks which a traditional single expensive, specialized and complicated

robot is not able to handle, such as searching in large unmapped areas (Stormont,

2005), distributed contaminant cleanup, and rescue (Kantor et al., 2006). Robot

swarms can also be involved in sophisticated problem solving, including cooperative

transportation, de-mining, and space exploration (Brooks and Flynn, 1989; Landis,

2004; Fink et al., 2005; Stolleis et al., 2015).

We focus on developing a scalable, decentralized search-and-collection algorithm

based on ant-like foraging (Gordon and Kulig, 1996; Winfield, 2009b; Liu and Win-

field, 2010). The swarm can adapt to changes in swarm size and the number of

targets through real-time response to conditions without external or off-line inter-

vention. Each robot in the swarm makes real-time in-situ decisions on whether to

communicate using pheromones, forego communication but individually return to

search a location, or return to the collection zone to gather additional information

from other robots. The robot behaviors are modeled after those of a particular genus

of desert seed harvester ants that (Flanagan et al., 2011, 2012) are restricted to forag-

ing in short-time windows during which not all available targets can be collected; So

they are designed to collect as many targets as possible, but not for optimal complete

collection (Hecker et al., 2015).

Here, we present the multiple-place foraging algorithm (MPFA) with multiple

nests that robots depart from and return to. The robots make on-line decisions to

switch to new collection zones based on proximity to their last-found target. The

MPFA was presented in our recent work (Lu et al., 2016a) and it showed that dis-
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tributing 2, 4, or 8 nests in the MPFA produce higher foraging rates and lower

average travel time compared to the central-place foraging algorithm (CPFA) devel-

oped by Hecker and Moses (P. Hecker et al., 2012; Hecker and Moses, 2013). Here we

compare the scalability and adaptation of the MPFA to the CPFA when the number

of robots and the number of targets increase. In the MPFA we deploy 4 nests uni-

formly in the same size of search arena. A set of real-valued parameters specifying

the individual robot controllers is evolved by a Genetic Algorithm (GA) to optimize

the foraging strategy in the multi-physics robot simulator Autonomous Robots Go

Swarming (ARGoS) (Pinciroli et al., 2012). Every robot in the swarm uses the same

controller.

We evolve foraging strategies for different swarm sizes (4, 8, 16, 32 and 64) and

number of targets (128, 256, 512, 1024 and 2048). We observe the average foraging

rate, collision time, travel and search time change as swarm size and the number of

targets increase.

The remainder of this chapter is organized as follows. Section 4.4 introduces

related work. The design of the MPFA and the description of evolution are provided

in Section 4.5 and Section 4.6. The configuration of the MPFA in ARGoS and the

experimental results are in Section 4.7 and Section 4.8. Section 4.9 discusses the

conclusions.

4.4 Related Work

Central-place foraging is commonly studied in swarm robotics (Şahin et al., 2008;

Brambilla et al., 2013). Hecker and Moses utilized and formalized the behaviors from

Flanagan and Letendre’s ant field studies (Flanagan et al., 2011, 2012; Letendre and
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Moses, 2013) to create the CPFA. The algorithm is well designed and applied to real

physical robots, which are designed on the iAnt robots platform (Moses et al., 2014).

The error-tolerance, flexibility, and scalability were evaluated on both simulated and

real robot swarms (Hecker and Moses, 2015). However, the simulated robots were

not physics-based and collisions between robots were not considered.

The studies on task allocation by Hsieh et al (Hsieh et al., 2008; Halász et al.,

2007; Berman et al., 2008) showed that a bio-inspired approach to the deployment of

a homogeneous swarm of robots to multiple sites. The robots autonomously redis-

tribute themselves among the candidate sites to ensure task completion by optimized

stochastic control policies. The studies model the swarm as a hybrid system where

agents switch between maximum transfer rates and constant transition rates. In our

method, the robots are distributed and initialized to multiple nests evenly. Then,

robots transit to other nests autonomously based on the distribution of remainder

targets and the evolved search strategy. The search strategy is evolved by GA auto-

matically and all the robots use the same strategy.

There are a few studies on multiple-place foraging in biological systems. The poly-

domous colonies of Argentine ants are comprised of multiple nests spanning hundreds

of square meters (Flanagan et al., 2013; Schmolke, 2009). A study by Chapman et

al (Chapman et al., 1989) showed that a community of spider monkeys can be con-

sidered as multiple central place foragers (MCPF). The monkeys select a sleeping site

close to current feeding areas, and the MCPF strategy entails the lowest travel costs.

A study by Tindo et al (Tindo et al., 2008) showed that wasps living in multiple

nests have greater survival rate and increased productivity. However, multiple-place

foraging has not been systematically compared to central placed foraging in robotic

swarms which we do here.
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4.5 The Design of The MPFA

In the MPFA, robots are evenly distributed around nests. They start from a nest

but return to the closest nest to their position after finding a target or giving up the

search. The use of multiple collection points is the fundamental difference between

the CPFA and the MPFA; all other components of the two foraging algorithms are

kept deliberately identical in order to test for the effect of multiple nests on swarm

foraging efficiency.

The behavior of an individual robot in an MPFA foraging round is shown in

Fig. 4.1. Each robot transitions through a series of states as it forages for targets.

This differs from the CPFA (Hecker and Moses, 2015) in how the robots return to

nests which are in steps 4 and 5. In the MPFA, robots initially disperse from the nests

closest to them, followed by random selected travel paths (step 1). An uninformed

correlated random walk is used to search targets when robots stop to follow the

paths (step 2) (Fewell, 1990). Robots navigate home to nests closest to them when

they retrieve targets or give up search (step 4 and 5) (Crist and MacMahon, 1991).

Robots that find targets will detect the local target density before return to nests

(step 3) (Hölldobler, 1976). Robots that are more likely to return to previously found

sites using site fidelity or pheromone recruitment (step 6), then they search the sites

thoroughly with informed walk (step 7).

In our design, the robots search globally just as in the CPFA – they can travel

in the entire arena. As in the CPFA, pheromone trails are simulated using a list of

pheromone-like waypoints to identify target-rich areas. When a robot returns to a

nest, it will probabilistically select a waypoint from the nest’s list and travel to that

location. The robot shares information (pheromone waypoints) locally at its current
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Figure 4.1: The flow chart of an individual robot’s behavior in MPFA during an
experiment.

nest (see Fig. 4.2). In contrast to the CPFA, pheromone waypoints are globally

available to all robots.

Since robots always return to the closest nest with a found target, the sensed

information relevant to a given target neighborhood is always associated with the

nest closest to the position of the identified neighborhood. Thus, if a robot follows a

pheromone waypoint from a nest, then the distance from the nest to the destination

of the pheromone must be the shortest distance to the target neighborhood identified

by the pheromone.
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Figure 4.2: The placement of nests and targets in ARGoS. 1024 targets (black points)
and 16 robots (larger blue points) are placed in a 15×15 m arena, 4 nests (red circles)
are distributed uniformly in the arena. The targets are arranged in a partially clus-
tered distribution. Colored lines indicate pheromone trails with different strength.
A small area is magnified to show a robot, colored pheromone waypoints, a large
cluster of targets, and a single target.

4.6 The GA Evolution

We implement the CPFA and MPFA on a foraging task for different experiments in

ARGoS. Furthermore, we use a GA to identify MPFA parameters that maximize for-

aging strategy. We implement our GA using GAlib (Wall, 1996) following parameters

described by Hecker and Moses (Hecker and Moses, 2015). The set of seven MPFA

parameters is identical to the set of CPFA parameters. The movement, sensing, and

communication of each single robot are evolved and evaluated. The parameters are

described in the following,
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• Probability of switching to search: The robot has the probability of switch-

ing from travel to uninformed random search. The probability is initialized

from a uniform random distribution, U(0, 1).

• Probability of returning to nest: The robot has the probability of giv-

ing up search and returning to nest. It is initialized from a uniform random

distribution, U(0, 1).

• Uninformed search variation: If the robot searches using a correlated un-

informed random walk, the successive turning angles θt is defined by θt =

N (θt−1, σ), where θt−1 is the turning angle in the current step, and σ is the

standard deviation or uninformed search variation, which determines the turn-

ing angle of the next step. σ is initialized from a uniform random distribution,

U(0, π).

• Rate of informed search decay: If the robot searches using an informed

correlated random walk, the standard deviation of the successive turning angles

σ decays as a function of time t, σ = ω + (2π − ω)e−λidt, where λid is the rate

of informed search decay. λid is initialized from an exponential decay function

exp(5).

• Rate of laying pheromone and rate of site fidelity: The information

decisions are governed by parameterization of a Poisson cumulative distribution

function as defined by POIS(k, λ), where k is the likelihood of detecting at

least k additional resources, and λ is the rate of laying pheromone or the rate

of site fidelity. It is initialized from a uniformed random distribution, U(0, 20).

The robot returns to a previous location if POIS(k, λ) > U(0, 1). If k is large,
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the robot is likely to return to the same location using information on its next

foraging trip.

• Rate of pheromone decay: The pheromone decays exponentially over time

t as defined by e−λpdt, where λpd is the rate of pheromone decay. It is initialized

from an exponential decay function exp(10).

We repeat the evolutionary process 10 times for the CPFA as well as for the MPFA, in

order to generate 10 independently evolved foraging strategies for each experimental

configuration.

In summary, using a swarm size of 40 robots, we evaluate each swarm 8 times

on different random placements of targets in the partially clustered distribution to

determine their fitness. We use a 50% uniform crossover rate and a 5% Gaussian

mutation rate with a standard deviation of 0.02. We use elitism to keep the individual

with the highest fitness.

We altered the termination criteria of the GA in order to hasten parameter con-

vergence and ran the GA for a maximum of 100 generations. The GA terminates

based on three criteria: the number of generations, the convergence of fitness, and the

diversity of swarm sizes, which are introduced in GAlib (Wall, 1996). The GA will

stop if the fitness is convergent and the diversity of the population is low. Otherwise,

it will stop after 100 generations. Our code is available on GitHub1.

In our GA, 89% of the evolution terminates on the convergence of fitness and

the diversity of swarm sizes. Across 10 independent evolutionary runs, all evolved

parameter sets were nearly equally fit: The standard deviation in fitness was at most

1https://github.com/BCLab-UNM/iAnt-ARGoS/tree/lukey_development
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5% of the mean fitness value. The fitness of the best parameter set, evaluated on

100 target placements, is shown in Fig. 4.3 and Fig. 4.4.

4.7 Experimental Configuration in ARGoS

Table 4.1 shows the experimental configuration in ARGoS. To test scalability, the

number of targets is always 1024, and the number of robots is scaled to be 4, 8, 16,

32 or 64. We set different foraging time windows for each swarm, depending on the

swarm size. The selected times allow the evolved swarms to collect approximately

half of the targets. The foraging time of robots are the same across all experiments:

by multiplying the number of robots by the foraging time, we have 480 robot-minutes

(or 8 robot-hours) in our experiments (see Table 4.1).

To test adaptation, the number of robots is always 32. The number of targets

is 128, 256, 512, 1024 or 2048. The foraging time is set independently for each

experiment so that approximately 40% of the targets are collected by the best evolved

strategy. All experiments are replicated 100 times. The locations of targets and

robots are initialized randomly in the 100 replicates.

Table 4.1: Experimental configuration in ARGoS

Robots 4, 8, 16, 32 or 64
Scalability Targets 1024

Time (minutes) 120, 60, 30, 15 and 7.5
Robots 32

Adaptation Targets 128, 256, 512, 1024 or 2048
Time (minutes) 5, 8, 10, 12 and 30
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The targets are placed in a partially clustered distribution. This distribution has

various sizes of square clusters. The targets are placed either in a large cluster, a

medium cluster or individual targets in a uniform random distribution (see Fig. 4.2).

Both algorithms are tested in a simulated arena size of 15 × 15m2. The CPFA has

one center nest and the MPFA has 4 uniformly and evenly distributed nests.

4.8 Results

We compare the efficiency of the CPFA and the 4 nest MPFA on foraging rate,

collision time, and travel and search time when the swarm sizes and the number of

targets are scaled up. We identify statistical differences using a t-test, and we identify

whether performance varies systematically by calculating a log-linear regression in

which the performance are compared to the log2 of the swarm sizes or the number

of targets.

4.8.1 Foraging Efficiency

The total foraging rate of each swarm is the sum of the total collected targets in

the swarm. We measure the average foraging rate, which is the number of targets

per robot collected in every minute. Fig. 4.3 shows the average foraging rate as the

swarm size increases. The average foraging efficiency of the MPFA exceeds that of

the CPFA in all cases, by up to 66% in the case of 64 robots.

Fig. 4.4 shows the average foraging rate as the number of targets increases. The

average foraging efficiency of the MPFA exceeds that of the CPFA in all cases, by

up to 50% in the case of 2048 targets.
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Figure 4.3: The average efficiency (targets collected per robot, per minute) for the
CPFA (p = 0.08) and MPFA (p = 0.04) decrease as the swarm size increases. The p
value is from the average of collected targets and the log2 of the swarm size. Results
are for 100 replicates. The percentage of improvement is labelled.

Figure 4.4: The average efficiency (targets collected per robot, per minute) for the
CPFA (p = 0.04) and MPFA (p = 0.001) decrease as the number of targets increases.
The p value is from the average of collected targets and the log2 of the number of
targets. The efficiency is always higher for the MPFA.

4.8.2 Collision Efficiency

In our simulation, if the distance between two robots is less than 0.25 m, each robot

will detect a collision. Each robot senses the location of the other and turns left
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or right in order to avoid a collision, moving approximately 8 cm before resuming

traveling.

The collision time is the time required to avoid a collision. The total collision time

of each swarm is the sum of the total collision time for all robots in the swarm. We

measure the average collision time, which is the collision time per robot in collecting

a target. The “per robot, per target” collision makes the comparison fairly. For

“per robot”, it is obvious that a larger swarm results in more collisions, but the

rate of increase is not obvious. It is easier to analyze the trend of collision rates on

each robot rather than on the swarm when the swarm sizes are different. However,

collisions are higher if more targets are collected. We should consider the collision

rate based on the foraging rate (in our results, the MPFA always has higher foraging

rate). The average collision time as swarm size increases is shown in Fig. 4.5.

Figure 4.5: The average efficiency (collision time per robot, per target) for the CPFA
(p = 0.06) and MPFA (p = 0.10) increase as the swarm size increases.
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The collision time for the MPFA is less than the collision time for the CPFA. We

also see that the collision time for the MPFA is reduced as the number of targets

increases (see Fig. 4.6).

Figure 4.6: The average efficiency (collision time per robot, per target) for the CPFA
and MPFA as the number of targets increases (p = 0.03).

4.8.3 Travel and Search Efficiency

Foraging time is composed of two distinct activities. When a robot departs from

its nest, it travels to a location where it starts to search for targets. Once at the

destination, the robot engages in a localized search. Once a target is discovered, the

robot takes approximately the same travel time back to the nest. Some robots take

approximately the same travel time back to the location of the discovered target if

they are recruited by pheromones, but their search time is reduced.

We measure the average travel time and search time spent to collect one target

by a robot. The average travel time for the MPFA (see Fig. 4.7) is less than the

CPFA for all swarm sizes.
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Figure 4.7: The average travel time (per robot, per target) for the CPFA and MPFA
decrease as the swarm size increases (p = 0.04).

The travel time for the MPFA (see Fig. 4.8) is also less than the CPFA as the

number of targets increases.

Figure 4.8: The average travel time (per robot, per target) for the CPFA (p = 0.001)
and MPFA (p = 0.03) as the number of targets increases.

Fig. 4.9 shows that the average search time decreases as the number of robots

increases. The search time for the MPFA is less than the CPFA. The search time for
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the CPFA decreases faster than the MPFA. The improvement is up to 34% in the

first case for 4 robots and it is down to 19% in the last case for 64 robots.

Figure 4.9: The average search time (per robot, per target) for the CPFA and MPFA
as the swarm size increases (p = 0.03).

The search time decreases as the number of targets increases (see Fig. 4.10). The

search time for the MPFA decreases faster than the CPFA. The improvement goes

up to 31% in the last case.
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Figure 4.10: The average search time (per robot, per target) for the CPFA and
MPFA as the number of targets increases (p = 0.05).

4.9 Discussion

This chapter explores how swarm size and the number of targets affect foraging rates,

collision time, travel and search time. Not surprisingly, increasing the swarm sizes or

the number of targets decreases the average foraging rate (see Fig. 4.3 and Fig. 4.4),

but decreases slower for the MPFA. This implies that the MPFA is more efficient in

larger swarms or in an environment with more targets.

The average collision time for the MPFA is much lower than the CPFA as the

swarm size or the number of targets increases (see Fig. 4.5 and Fig. 4.6). The collision

time for the CPFA increases faster as the number of targets increases (see Fig. 4.6).

We hypothesize that the more targets there are, the harder robots will spread out in

the CPFA. The result demonstrates that the MPFA has the advantage of avoiding

collisions in large swarm size or in an environment with a large number of targets.

The increase of swarm sizes makes the average travel time for the MPFA decrease

faster than the CPFA (see Fig. 4.7). This shows that the MPFA has the advantage
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of reducing travel time as the swarm size increases. We hypothesize that the evolved

probability of returning to the nest increases faster as the swarm size increases. The

more robots there are, the more likely robots will minimize time traveling in the

MPFA. On the other hand, search time has smaller difference than travel time (see

Fig. 4.9).

The addition of more nests shortens the travel time for the MPFA. However,

the information (pheromone waypoints) is distributed to multiple nests. In contrast

to the CPFA, pheromone waypoints are globally available to all robots. So, there

are tradeoffs among communication (and therefore search time) and travel time and

congestion. In addition, the MPFA may get the benefit from all resources are not

eventually be moved to one nest. However, we can consider a ”high-speed” delivery

(multiple targets can be moved in one round) in the future.

The search time for the MPFA decreases faster than the CPFA with increasing

numbers of targets (see Fig. 4.10). This shows that the MPFA has the advantage of

reducing search time in an environment with large number of targets. We hypothesize

that the evolved probability of laying pheromone increases and it is higher for the

MPFA, or the rate of pheromone decay decreases and it is lower for the MPFA as the

number of targets increases. The more targets there are, the more likely pheromone

will be laid, or slower pheromone decay.

These discoveries reveal that the MPFA improves foraging rates when the swarm

size or the number of targets are scaled up. This is not only because of the simple

intuitive reduction in travel time, but also because of the significant improvement in

avoiding collisions. Overall, the MPFA has better performance as the swarm size or

the number of targets increases.
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In the future work, we will discover the trends on the evolved seven parameters

and confirm the above hypothesis for the random, partially clustered and clustered

resource distributions. In addition, we will consider the cost of deploying multiple

nests and evolve the optimized number of nests for different resource distributions.
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5.2 Abstract

Teams of robots can be organized to collectively complete complex real-world appli-

cations, for example collective foraging in which robots search for, pick up, and drop

off resources in a collection zone. In the previously proposed central-place foraging

algorithm (CPFA), foraging performance decreases as swarm size and search areas

scale up: more robots produce more inter-robot collisions and larger search areas

produce longer travel distances. We propose the multiple-place foraging algorithm

with dynamic depots (MPFAdynamic) to address these problems. Depots are special

robots which are initially distributed in the search area and can carry multiple re-

sources. Depots move to the centroids of the positions of local resources recently

detected by robots. The spatially distributed design reduces robot transport time

and reduces collisions among robots. We simulate robot swarms that mimic forag-

ing ants using the MPFAdynamic strategy, employing a genetic algorithm to optimize

their behavior in the robot simulator ARGoS. Robots using the MPFAdynamic find

and collect resources faster than both the CPFA and the static MPFA. MPFAdynamic

outperforms the static MPFA even when the static depots are optimally placed us-

ing global information, and it outperforms the CPFA even when the dynamic depots

deliver resources to a central location. Further, the MPFAdynamic scales up more effi-

ciently, so that the improvement over the CPFA and the static MPFA is even greater

in large (50 × 50 m) areas. Including simulated error reduces foraging performance

across all algorithms, but the MPFA still outperforms the other approaches. Our

work demonstrates that dispersed agents that dynamically adapt to local informa-

tion in their environment provide more flexible and scalable swarms. In addition, we
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illustrate a path to implement the MPFAdynamic in the physical robot swarm of the

NASA Swarmathon competition.

5.3 Introduction

One major goal of swarm robotics research is to design robust, scalable, and flex-

ible collective behaviors for multiple autonomous robots (Şahin, 2005; Moses and

Banerjee, 2011; Brambilla et al., 2013). Simple rules and local interactions among

individual robots result in desired collective swarm behavior by self-organized coor-

dination mechanisms. Biological studies have revealed self-organized coordination

mechanisms in social insects which can be effectively implemented in swarm robotics

systems (Camazine et al., 2001; Şahin, 2005).

In this research, we focus on the foraging behavior of robot swarms. The challenge

is to develop an effective, decentralized search-and-collection foraging algorithm for

ant-like robot swarms (Gordon and Kulig, 1996; Winfield, 2009a; Liu and Winfield,

2010). Robots must retrieve objects from an environment and bring them back to a

depot (or nest). Effective collective foraging requires coordination, navigation, and

communication and is therefore a useful abstraction of many complex, real-world

applications such as humanitarian de-mining, search and rescue, intrusion tracking,

collection of hazardous materials, and space exploration (Winfield, 2009b; Brambilla

et al., 2013). In particular, foraging is commonly used as a testbed for collective

exploration, collective transport, and collective decision-making (Gazi and Passino,

2004; Brambilla et al., 2013).

We propose the multiple-place foraging algorithm with dynamic depots

(MPFAdynamic). Depots are special robots which are able to carry multiple resources.
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Targets are objects such as mineral resources, hazardous waste, or any item that

needs to be retrieved from the environment and collected at a location. Foraging

robots depart from a depot to forage for resources and then return to the closest

depot to deliver these resources (the closest depot may be different from the one the

robot departed from). Depots move to new locations based on the mean positions of

the remaining resources sensed by the robots. The positions of the sensed resources

are stored at each depot when each foraging robot returns to that depot. The stored

positions are relative to the depot’s current location so that no central controller is

needed to facilitate information sharing across the swarm.

The final delivery of resources that are collected by the depots depends on the

application. Resources may be processed at the dispersed locations where they are

collected; they may be collected by another larger robotic agent that empties depots

and delivers their contents to a central location; or, as the depots become full, they

may drive the resources to the desired location. We explore the latter scenario in a

subset of our experiments.

We compare the performance of the MPFAdynamic with our previous MPFA with

static nests (MPFAstatic) proposed by (Lu et al., 2016a) with uniformly-distributed

static depots, and to the central-place foraging algorithm developed by (Hecker and

Moses, 2015).

In order to assess the effectiveness of our approach, we also compare our results to

algorithms with access to global information. We compare the MPFAdynamic which

uses only local information, to versions of the MPFA with global information de-

scribing the initial locations of all resources. These algorithms use the k-means++

clustering algorithm to determine the initial positions of the depots to minimize

transport distance. We evaluate the MPFA with depots that have global informa-
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tion about target locations using both static depots (MPFAglobal static) and dynamic

depots (MPFAglobal dynamic).

We test how quickly resources are collected using the five algorithms (CPFA,

MPFAstatic, MPFAglobal static, MPFAdynamic, MPFAglobal dynamic) across different dis-

tributions of resources. We observe how much the mobile depots improve swarm

foraging performance, specifically: i) the time required to collect a fixed fraction

of the resources (foraging time), ii) the time required to detect and avoid collisions

with other robots (collision time), iii) the time that a robot spends searching for

resources (search time), and iv) the time that a robot spends traveling to and from

a depot when collecting resources (travel time). We show that our proposed algo-

rithm, MPFAdynamic, outperforms both the CPFA and the MPFAstatic on all perfor-

mance criteria. We also show that MPFAdynamic performs approximately as well as

MPFAglobal static and MPFAglobal dynamic without depending on global communication.

This is a significant advantage of MPFAdynamic because global information is costly

to obtain, and reliance on centralized communication is a single point of failure and

efficiency bottleneck.

We also compare the scalability of the five algorithms by increasing the number

of robots in the swarm and the size of the experimental arena. Our results show

that MPFAdynamic has better scalability than the other four algorithms: increasing

the arena size has a smaller negative effect on the foraging time of swarms using

MPFAdynamic, and increasing swarm size in a large arena has a larger positive effect

on the foraging time of those swarms. In addition, we implement the MPFAdynamic

with depots that transport their contents to a central depot, thus completing the

central place foraging task. We compare this implementation to the CPFA.
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Finally, we demonstrate how we can use our existing ROS/Gazebo simulation and

Swarmie hardware for the NASA Swarmathon competition (Secor, 2016; Ackerman

et al., 2018) to implement the dynamic MPFA in a physical robot swarm.

5.4 Related Work

5.4.1 Central-Place Foraging

Central-place foraging is a canonical collective task commonly studied in swarm

robotics (Şahin, 2005; Brambilla et al., 2013). Robots depart from a centrally-placed

depot to search for resources and return to this central place to deliver resources.

The central-place foraging task can be instantiated into a number of real-world target

collection applications, including crop harvesting (Bac et al., 2014; Sebbane, 2012)

and extra-planetary resource collection (Brooks and Flynn, 1989; Landis, 2004; Fink

et al., 2005).

In prior work, Hecker and Moses (2015) presented the central-place foraging algo-

rithm (CPFA), which was designed to emulate seed-harvester ant behaviors governing

memory, communication, and movement. The error-tolerance, flexibility, and scala-

bility of the CPFA were evaluated on both simulated and real robot swarms. Hecker

and Moses used a genetic algorithm (GA) to evolve foraging strategies that were

tolerant of real-world sensing and navigation error, flexible for a variety of target

distributions, and scalable to large swarm sizes.

The behaviors of the CPFA emulate harvester ant foraging that maximizes the

number of resources collected in short foraging time periods (Flanagan et al., 2012;

Gordon and Kulig, 1996), but is not designed for complete target collection. The
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foraging efficiency of the CPFA was recently compared to the distributed determin-

istic spiral algorithm (DDSA), a deterministic benchmark for central-place foraging

(Fricke et al., 2016) that is designed to collect the nearest resources first. Results

showed that robot swarms using the DDSA were faster at complete collection tasks

than swarms using the CPFA.

However, the CPFA outperformed the DDSA by collecting more resources in fixed

time windows for large swarms with more than 20 robots. The deterministic DDSA

suffered from more robot collisions in more crowded environments. Since our goal for

the MPFA is to increase foraging rates in large swarms, we build upon and compare

to the CPFA in this work. We also focus on collecting resources quickly rather than

complete target collection.

Although the CPFA is more scalable than the DDSA, CPFA swarms also exhib-

ited diminishing returns as swarm size increased (i.e. sublinear scaling of foraging

rate per robot given larger numbers of robots in the swarm). Diminishing returns are

expected for central place foraging because robots in larger swarms on average travel

farther to collect more resources, and there are more collisions given more robots. As

shown in (Lu et al., 2016a), the MPFAstatic mitigates those effects. We show in this

work that adding dynamic depots to the MPFA further mitigates scaling limitations.

5.4.2 Multiple-Place Foraging

Previous work has demonstrated that a single, central depot cannot serve a large

number of robots efficiently due to long travel times (Hecker and Moses, 2015) and

heavy crowding (Fricke et al., 2016). To mitigate this issue, we proposed the multiple-

place foraging algorithm (MPFA) with multiple static depots, where robots are pro-
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grammed to always return to the depot closest to the position of the target that the

robot has found (Lu et al., 2016a,b).

The MPFA was primarily inspired by behaviors observed in groups of insects

and primates, as well as the immune system. For example, polydomous colonies

of Argentine ants are comprised of multiple nests spanning hundreds of square me-

ters (Flanagan et al., 2013; Schmolke, 2009); additionally, a study (Tindo et al., 2008)

showed that wasps living in multiple nests have greater survival rates and increased

productivity. (Chapman et al., 1989) showed that communities of spider monkeys

can be also considered as multiple central place foragers (MCPF), where monkeys

select a sleeping site close to current feeding areas, and the MCPF strategy entails

the lowest travel costs. In another biological system, (Banerjee and Moses, 2010b)

showed that the decentralized, sub-modular nature of the immune system increases

the foraging efficiency of immune cells that aggregate in lymph nodes distributed

throughout the body. These dispersed aggregation points (analogous to multiple

nests) speed up immune response rates, particularly in large animals that may have

trillions of immune cells. Recently dynamic lymph nodes that appear near sites of

infection have been discovered (Moyron-Quiroz et al., 2004), motivating the use of

depots as dynamic aggregation points for robotic foraging.

The use of dynamic docks is introduced in the related work (Couture-Beil and

Vaughan, 2009). That work demonstrates that mobile docks mitigate the spatial

interference and improve overall task performance when mobile robots execute a

transportation task and periodically recharge from a docking station.

Multiple-place foraging also resembles the task allocation of global courier and

delivery services, which use many distributed stores to collect and deliver packages

efficiently. Several studies on task allocation in robot swarms have used biologically-
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inspired approaches in the deployment of homogeneous swarms of robots to multiple

sites (Halász et al., 2007; Berman et al., 2008; Hsieh et al., 2008). These robots

autonomously redistribute themselves among the candidate sites to ensure task com-

pletion by optimized stochastic control policies. In general, each swarm is modeled as

a hybrid system where agents switch between maximum transfer rates and constant

transition rates.

5.4.3 Foundations of the MPFA

In our original implementation of the MPFA (Lu et al., 2016a,b), robots were initially

assigned in equal numbers to static collection points called nests. Nests were evenly

placed in the environment, i.e. given 4 nests, each was placed at the center of one

quadrant of a foraging arena with 1/4 of the robots assigned to each nest. The robots

could autonomously switch to other nests as they foraged. If the location of a found

target was closer to another nest, the robot (which had traveled a long distance from

its initial depot and discovered this target) delivered this target to the closer depot.

The transition from one depot to another one is shown in Fig. 5.3.

The use of multiple collection depots is the fundamental difference between Hecker

and Moses’ CPFA and the MPFA; all other components of the two foraging algo-

rithms are kept deliberately identical in order to test for the effect of multiple depots

on swarm foraging efficiency.

The CPFA

There are several essential features of the CPFA that make it possible to implement

the MPFAdynamic. The CPFA implements site fidelity in which a robot remembers
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and returns to the location where it last found resources. The CPFA implements

pheromone waypoints as a list of target-rich locations that have been found by robots.

Depots report the list of waypoints to robots when they drop off resources.

When a robot finds a target, it senses the local density of resources and then uses

that information to determine whether to use site fidelity to return to the location and

whether to communicate that information to other robots by reporting a pheromone

waypoint to its depot.

How site fidelity, pheromone waypoints and other details of the CPFA are im-

plemented is described below in Section 5.5 and Algorithm 1 (where in line 7, the

closest depot is always the single central depot in the case of the CPFA).

A final important feature of the CPFA in its implementation in real robots is the

ability to reliably return to a depot. The CPFA and MPFA rely on the use of beacons

that are detectable by any nearby robots. Our experiments with physical iAnt robots

running the CPFA demonstrate that a light is an effective beacon that allows robots

to reliably return to their nest (Hecker and Moses, 2015). There are alternative

beacons that can ensure that robots can reliably locate depots and other important

locations. For example, colored LEDs on robots (Nouyan et al., 2009), speaker-

induced sound gradients (Nurzaman et al., 2009), and images such as fiducials or

roundels (Bezzo et al., 2015) can be used to mark important locations in space to

which physical robots can reliably return.

The MPFAstatic

The behavior of an individual robot in an MPFA foraging round is shown in Fig. 5.1.

Each robot transitions through a series of states as it forages for resources. The
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states and transitions emulate foraging behaviors of ants. The MPFA differs from

the CPFA in that the robots return to the closest depot in steps 4 and 5.
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Figure 5.1: The flow chart of an individual robot’s behavior following the MPFA
during an experiment

Robots initially disperse from depots and follow randomly selected travel paths

(step 1). Upon reaching the end of the travel path, robots switch to searching for

resources using an uninformed correlated random walk (in which the robot has no

knowledge of target locations) observed in ants (step 2) (Fewell, 1990). Robots

navigate home to the depot closest to them after they collect a target (step 4) or

give up searching (step 5) (as described in ants in (Crist and MacMahon, 1991)).

The search cycle for an individual robot foraging using uninformed search is shown

in Fig. 5.2.

Robots that discover a target will sense the local target density before returning

to their local depot (step 3 and step 4) (Hölldobler, 1976). The density is the number

of resources sensed in the local region by robots. The size of the region a robot can

detect is described in Subsection 5.6.1. An individual robot may remember the

location of a previously found target and repeatedly return to the same location, a

process called site fidelity in ants (Beverly et al., 2009). Robots can also communicate
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Travel to a 
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Uninformed search

Return to the

closest depot

Switch to search

Give up

Figure 5.2: A single cycle of uninformed search. Four states of a robot in the cycle
are shown. A robot departs from a depot (large red circle), travels to a random
location, and switches to searching using an uninformed random walk (dark blue
circle). If the robot finds a target pile (largest black square), then it collects one
target and delivers it to the closest depot. The robot also has a probability of giving
up searching (bright green circle) and returning to the closest depot without finding
a target

using pheromones (Sumpter and Beekman, 2003; Jackson et al., 2007) which are

simulated as artificial waypoints (Campo et al., 2010) to recruit robots to known

clusters of resources. This is also discussed in Subsection 5.5.1. Robots that return

to a previously found target site using site fidelity or pheromone recruitment (step

6) will search the target site thoroughly using an informed correlated random walk

(step 7). The search behaviors for an individual robot foraging using informed search

is shown in Fig. 5.3.

The search strategy is evolved by a genetic algorithm (GA); all robots use the

same strategy, but make decisions probabilistically based on the interaction with the

environment. Although robots are able to depart from and return to the nearest

depot, robots still search globally, meaning that they are able to travel across in the

entire arena.

As in the CPFA, pheromone trails are simulated using pheromone waypoints.

Different from the CPFA, pheromone waypoints are only reported to the closest
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Figure 5.3: A single cycle of informed search. Five states of a robot are shown. A
robot departs from a depot (large gray circle) and travels to the previous location
(dark blue circle), and switches to searching using an informed correlated walk. If it
finds a target pile (largest black square), then it collects one target and delivers it
to the closest depot (red circle in the lower right). The robot also has a probability
of giving up searching (light green circle) and returning to the closest depot without
finding a target (red circle)

depot to the robot when it arrives at the depot. Robots can only send and receive

pheromone waypoints when they are returning to a depot.

We use an exponential decay function with a decay rate selected by the GA to sim-

ulate the pheromone decay process. After a certain amount of time, the pheromone

waypoint will have decayed below a threshold and will be removed from the depot’s

list. When a robot arrives at the depot, it will probabilistically select a waypoint

from that depot’s list and travel to the location of the waypoint. The robot may

also probabilistically choose to locally share information by sending pheromone way-

points to its current depot. Unlike the CPFA, the pheromone waypoints associated

with a given depot are only locally available to robots returning to that depot.

Since robots always return to the closest depot with a found target, the sensed

information relevant to a given target neighborhood is always associated with the

depot closest to the position of the identified neighborhood. Thus, the robots only

travel from the closest depot to any given pheromone waypoint.
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In our recent work (Lu et al., 2016a), we conducted simulated experiments with

the MPFA using multiple static depots (2, 4, 8, and 16). We ran the experiments

with 256 resources and 24 robots in a 10 × 10 m (i.e. 10 meters wide by 10 meters

long) arena. The results showed that the MPFA produces higher foraging rates and

lower average travel time compared to the CPFA. Increasing the number of depots

increases the foraging rate of the swarm and decreases the required travel time per

target collected, while the search time per target collected is independent of the

number of depots. In most experiments, 4 depots led to significantly faster foraging

than the CPFA or 2 depots, but they were indistinguishable from 8 depots, and so

we focus on experiments with 4 depots in this paper. We note that determining the

optimal number of depots for a given number of robots, resources and arena sizes is

itself an interesting question that we leave to future work.

Because pheromone waypoints are distributed across multiple depots, MPFA

swarms require less communication among robots, and individual robot spends less

time traveling back to the closest depot to make use of the information. In con-

trast, CPFA swarms use pheromone waypoints that are globally available to the

entire swarm; these robots, therefore, have access to more information, but individ-

ual robots take longer to travel back to the central depot and use the information.

The GA balances these trade-offs automatically by tuning the search strategies and

optimizing the performance of each swarm, resulting in systematic changes in pa-

rameters governing pheromone laying and distance traveled from the depot as more

depots are added.

In other recent work (Lu et al., 2016b), we compared the ability of the MPFA

and the CPFA to maintain foraging efficiency as swarm size and target number

increase. We increased the size of the swarm (4, 8, 16, 32, and 64 robots given 1024
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resources) to test scalability and the number of resources (128, 256, 512, 1024, and

2048 resources given 32 robots) to test adaptability to different target densities.

The MPFA had higher foraging efficiency than the CPFA under increased swarm

size and target number. Furthermore, robots using the MPFA spent less time avoid-

ing collisions and required less travel time to collect each target.

5.5 Methods

Previous MPFA experiments (Lu et al., 2016a,b) were conducted using uniformly-

spaced static depots, which outperformed central-place foraging swarms, but were

not capable of dynamically adapting to different target distributions. In this work,

we aim to further improve swarm foraging performance with depots that move to

the centroid of known nearby resources in order to minimize the time and distance

for foraging robots to transport those resources.

If all of the positions of the resources are known, then we can use this positional

information to calculate the optimal location of depots to minimize travel distance

to all resources. This problem is analogous to clustering resources based on their

distances to the closest depot, where the sum of distances between resources to the

center of the cluster is minimum.

Given the locations of all resources in the arena, the k-means++ clustering al-

gorithm (Arthur and Vassilvitskii, 2007) will calculate the locations of depots to

minimize the travel distance required to collect all resources. Fig. 5.4 shows an ex-

ample of a dynamically allocated depot, in which six piles of resources are classified

into four clusters and four depots are placed at the centroids of these clusters. This

implementation would require global knowledge of all target locations, which violates
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one of the key features of swarm robotics systems: all sensing and communication

must be local (Brambilla et al., 2013).

Depot

Target Cluster

Figure 5.4: An example of a dynamically allocated depot using the k-means++
clustering algorithm. The resources (black squares) are classified into four clusters
(red ellipses). Depots (dark red solid circles) are placed at the centroids of these
clusters

We use globally informed MPFA algorithms to provide points of comparison for

our proposed multiple-place foraging algorithm with dynamic depots (MPFAdynamic),

an extension to our recent work in which depots move to new locations based on the

locations of the resources sensed by robots. Depots always move to the centroid of

recently sensed resources, which are maintained in a list and updated whenever site

fidelity or pheromone waypoints are used. If site fidelity is not used, or if pheromone

waypoints decay, then those sensed resources are removed from the list and no longer

contribute to the dynamic calculation of the depot’s centroid.

The use of mobile depots is the fundamental difference between MPFAstatic and

MPFAdynamic; all other components of the two foraging algorithms are kept deliber-

ately identical in order to test for the effect of mobile depots on foraging efficiency.
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As in MPFAstatic, depots are initially distributed uniformly in MPFAdynamic, and

robots are evenly distributed to each depot. Depots move to new locations based on

the positional information of observed resources sensed by foraging robots. Fig. 5.5

shows how a depot moves based on the sensed positional information of resources

reported by foraging robots.

We assume robots can sense resources within camera range, but cannot precisely

measure the positions of these resources. Therefore, a robot only reports its current

position and the number of resources detected; the robot’s current position approx-

imates the centroid of the resources that it has detected. Each depot is allocated to

the centroid ct of the sensed resources at time t, where ct is defined by Eq. (5.1):

ct =
1

N

N∑
i=1

wipi (5.1)

where wi is the number of sensed resources at location pi, and N is the total number

of different locations where robots have sensed resources.

5.5.1 Implementation of Robot Controllers

Our robots mimic seed-harvester ant behaviors that have evolved over millions of

years. We encode these behaviors into a robot controller (see Algorithm 1) using

the same set of seven real-valued parameters that define the CPFA (see Table 5.1)

specifying movement, sensing, and communication:
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Figure 5.5: Depot movement in MPFAdynamic. A depot (gray circle) is at the centroid
c1 of the sensed resources (dark blue squares) at positions p1, p2, and p3, where w1, w2,
and w3 are the number of resources sensed by robots at each position, respectively.
After some time, if resources at position p1 are completely collected by robots, then
the pheromone waypoints at p1 will decay. If, at the same time, w4 resources are
sensed at a new location p4, then the depot will move to the centroid c2 of the sensed
resources (red circle) at positions p2, p3, and p4

Table 5.1: Parameters for robot controllers

Parameter Description Initialization

σ Uniformed search variation U(0, π)
ps Prob. of switching to search U(0, 1)
pr Prob. of giving up search U(0, 1)
λid Rate of informed search decay Exp(0.2)
λsf Rate of following site fidelity U(0, 20)
λlp Rate of laying pheromone U(0, 20)
λpd Rate of pheromone decay Exp(0.1)

Uninformed search variation: Uninformed robots forage using a correlated ran-

dom walk with fixed step length and direction θt = N (θt−1, σ), where θt−1 is the

turning angle from the previous step, and σ is the uninformed search variation (or

standard deviation), which determines the turning angle of the next step.
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Algorithm 1 Multiple-Place Foraging Algorithm

1: Disperse from depot to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if target found then
5: Collect it
6: Sense resources c near current location lf
7: Return to the closest depot to deliver target
8: if Pois(c, λlp) > U(0, 1) then
9: Lay pheromone to lf
10: end if
11: if Pois(c, λsf ) > U(0, 1) then
12: Return to lf
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location lp
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

Probability of switching to search: Robots start at a depot and select a di-

rection θ from a uniform random distribution U(0, 1), then travel in this direction

away from the depot (see Fig. 5.2). Robots have a probability ps of switching to an

uninformed correlated random walk, where higher values of ps indicate shorter travel

distances from the depot.

Probability of giving up search: At each step of the correlated random walk,

robots that have not discovered a target may give up searching and return to the

closest depot with probability pr.
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Rate of informed search decay: If robots return to a previous location via site

fidelity or pheromone waypoint, they search using an informed correlated random

walk (see Fig. 5.3), with standard deviation σ̂ defined by Eq. (5.2):

σ̂ = σ + (2π − σ)e−λidt (5.2)

As time t increases, σ̂ decays to σ, producing an initially undirected and localized

search that becomes more correlated over time. This time decay allows robots to

search locally where they expect to find a target, but to straighten their path and

move to another location if no target is found.

Rate of following site fidelity: The probability of a robot returning to a previous

target location via site fidelity is governed by the Poisson cumulative distribution

function (CDF) defined by Eq. (5.3):

POIS(k, λsf ) = e−λsf
bkc∑
i=0

λisf
i!

(5.3)

where k is the number of additional resources detected in a previous location and the

parameter λsf is the average number of detected resources. The Poisson CDF mod-

els the probability of following site fidelity given the number of detected resources

k appropriately. The probability is highest when k = λsf . Robots return to previ-

ous locations via site fidelity if the parameterized Poisson CDF exceeds a uniform

random value, POIS(k, λsf ) > U(0, 1), simulating a random sampling process that

is weighted by the probability of following site fidelity for a given k. Otherwise,
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robots follow pheromone waypoints to previous target locations if pheromones are

available. If no pheromone exists, robots return to traveling and searching using the

uninformed correlated random walk.

Rate of laying pheromone: The probability of creating a pheromone waypoint is

also governed by the Poisson CDF in Eq. (5.3). Robots create waypoints for previous

target locations if POIS(k, λlp) > U(0, 1), where k is also the number of resources

detected in a previous location.

Rate of pheromone decay: Pheromone waypoint strength γ decays exponentially

over time t as defined by Eq. (5.4):

γ = e−λpdt (5.4)

5.5.2 Evolving Swarm Behavior

The parameters of robot controllers are optimized using a genetic algorithm (GA) to

optimize the collective behavior of the entire robot swarm, where every robot in the

swarm uses the same controller. The controller is evolved in one set of simulations

and evaluated in another set of simulations which are replicated 100 times. We run

each foraging algorithm until the robot swarm collects the expected percentage of

resources. Fitness is simply defined as the number of resources collected in a specified

foraging time. In (Hecker and Moses, 2015) the foraging time was set to 1 hour.

There are an uncountable number of foraging strategies that can be defined by

the real-valued parameters of the CPFA and MPFA. Given 100 real values of each
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parameter, there would be 1007 possible strategies. Additionally, the online decision

making of each robot depends on interactions with environmental conditions. For

example, following site fidelity is determined by the condition of POIS(k, λlp) >

U(0, 1) as described in Subsection 5.5.1. The sampled value from U(0, 1) is random

at each time, and the decision to use site fidelity depends on the value of k and the

sampled random value. The GA provides a way to sample both parameter space

and the effectiveness of the foraging algorithm evaluated in different environmental

conditions.

The parameters in Table 5.1 are independently evolved 16 times in order to

generate 16 independent foraging strategies for each of the five foraging algorithms

in each target distribution. Thus we have a total of 240 separate evolutionary runs (3

distributions× 5 algorithms× 16 replicates). Each of these evolutionary experiments

follows the process described in Experiment 1 in Section 5.6.

In (Hecker and Moses, 2015) we demonstrated that the evolved CPFA controllers

could be effectively transferred into physical robots, a process also described in re-

lated work (Nelson et al., 2004; Singh and Parhi, 2011). Such controllers could

be effectively tuned by the GA to mitigate the real-world error inherent in physi-

cal robots (Hecker et al., 2013). We describe steps toward similarly implementing

MPFAdynamic in real robots in Subsection 5.8.3.

We implement our GA using GAlib (Wall, 1996). For each generation of the GA,

we evaluate each candidate set of 7 parameters on 10 different random placements

of resources (see Fig. 5.6) to determine fitness. We use a 50% uniform crossover rate

and a 5% Gaussian mutation rate with a standard deviation of 0.02, and elitism to

keep the fittest parameter set.
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We set termination criteria of the GA in order to hasten parameter convergence,

running for a maximum of 100 generations. The GA terminates based on three

criteria: the convergence of fitness values, the diversity of parameter sets, and the

number of generations. The GA will stop if the fitness has converged and the diversity

is low; otherwise, it will terminate after 100 generations.

In our GA, 89% of the evolutionary runs terminate based on the convergence

of fitness and low diversity. Across 16 independent evolutionary runs, all evolved

parameter sets were nearly equally fit: the standard deviation in fitness was at most

5% of the mean fitness value of these 16 independently evolved parameter sets. We

chose the fittest parameter set to evaluate foraging performance.

5.6 Experimental Configuration

We conducted four sets of experiments using the swarm robot simulator Autonomous

Robots Go Swarming (ARGoS) (Pinciroli et al., 2012) to evolve parameters and then

test foraging performance. In the first set of experiments, we compared the foraging

times of MPFAdynamic to the CPFA and MPFAstatic, as well as to the two idealized

versions of the MPFA that rely upon global knowledge of target locations to de-

termine depot locations, MPFAglobal static and MPFAglobal dynamic. These experiments

were conducted with 24 robots in a 10× 10 m arena.

In the second set of experiments, we tested the scalability of these algorithms to

larger arena sizes. We examined the rate of increase in foraging times with increasing

arena size (24 robots in arenas that increase from 10 × 10 m to 16 × 16 m). In the

third set of experiments, we tested the performance of each algorithm in a very large

arena (50× 50 m) with 96 robots.
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In the fourth set of experiments, we account for transportation by the mobile

depots to a single central collection point. In these experiments, each of the four

mobile depots is a modified robot that carries resources to a central collection point;

thus, we also add 4 robots to the CPFA experiments, so foraging performance is

evaluated with each having 28 robots that ultimately deliver resources to a central

place.

For the first set of experiments, the parameters for the CPFA and MPFAs were

each evolved separately as described in Section 5.5. We select the set of evolved pa-

rameters which has the shortest foraging time from the 16 sets of evolved parameters

for the experiment. These sets of evolved parameters are subsequently used for the

corresponding CPFA and MPFAs in the second, third and fourth experiments.

The configuration of the four sets of experiments is summarized in Table 5.2.

Each experiment has one central depot in the CPFA, and four depots for each of the

four MPFAs. In the fourth experiment, we include a central depot and four dynamic

depots in the MPFAdynamic simulations.

Table 5.2: Experimental configuration

Experiments Arena width (m) Number of robots
1 10 24
2 10, 12, 14, 16 24
3 50 96
4 10 28

Foraging time is measured as the time for the entire swarm to collect 88% of the

384 placed resources. This percentage was chosen because it is the inflection point in

CPFA foraging performance (Hecker et al., 2015) after which there is an exponential
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increase in collection time and very high variance in performance due to the sparsity

of remaining resources.

In the first set of experiments, we additionally measure the times for different

components of the foraging time: travel time, search time, and collision time, each

of which is described in Section 5.7.

Each of the five algorithms is tested on three different classes of target distri-

bution: resources placed in a uniform random distribution, resources placed in a

partially clustered distribution, and resources placed in a highly clustered distribu-

tion. Examples of resources placed in each distribution are shown in Figure 5.6.

(a) MPFAstatic with 24 robots,
4 uniformly distributed static
depots and 384 randomly dis-
tributed resources

Robot

Depot Target

Pheromone

(b) MPFAdynamic with 24
robots, 4 mobile depots and 384
partially clustered resources

(c) MPFAglobal static with 24
robots, 4 globally distributed
static depots by k-means++
clustering and 384 clustered re-
sources

Figure 5.6: The placement of depots and resources in ARGoS. 384 resources (small
points) and 24 robots (middle-sized points) are placed in a 10 × 10 m arena, and
4 depots (large points) are distributed. The resources are unclustered and spread
in a uniform random distribution in (a), partially clustered in (b), and clustered
into 6 equally-sized piles in (c). The colored rays indicate pheromone waypoints
with different strength that eventually evaporate and disappear. A small area is
magnified in (c) to show resources, robots, and a depot in the center
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The partially clustered distribution uses a power law distribution of cluster sizes:

128 clusters that contain a single target, 32 clusters with 4 resources each, and

8 clusters with 16 resources each, for a total of 384 resources. This power law

distribution of cluster sizes emulates that of many natural resource distributions

in real-world environments (Ritchie, 2009). The fully clustered distribution has 6

clusters of 64 resources each.

Each experiment is replicated 100 times. For each replicate, the individual re-

sources, or centers of target clusters, are chosen at random so that each replicate

has a different target placement consistent with the distribution for that experiment.

Thus, there are 1500 experimental runs (3 distributions × 5 algorithms × 100 repli-

cates) for the first set of experiments, 6000 experimental runs (one for each of 4

arena sizes) for the second set of experiments, 1500 runs for the third set of exper-

iments, and 600 runs for the fourth set of experiments, for a total of 9600 separate

experimental runs.

5.6.1 ARGoS Implementation

Our implementation includes a C++-based robot controller library, and an XML con-

figuration file. The C++ controller specifies the robot’s functionality and interaction

with the ARGoS environment, while the XML file contains all of the information

to set up the size of arena, the type of robots, the physics engines, the parameters

of robot controllers, the simulation accuracy, and the distributions of resources, de-

pots, and robots. Source code is available on GitHub1, and demonstration videos are

available on our YouTube playlist2.

1https://github.com/BCLab-UNM/MPFA
2https://tinyurl.com/y3kb3e6w
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We use the ARGoS 8.5 cm radius foot-bots to represent our robots with a move-

ment speed of 16 cm/s, while the movement speed of a depot is set to be the same.

The step size of the simulation is 32 ticks per second, which was chosen to balance

simulation accuracy and speed. Depots have a 15 cm radius and resources are cylin-

ders with a 5 cm radius. The distance robots can sense resources is 2
√

2 times the

target radius.

Each pheromone trail is represented by a starting waypoint and an ending way-

point at a depot. Waypoints provide positional information maintained in lists in

which pheromone strength of each waypoint decreases exponentially over time, as

described by Eq. (5.4) above. Waypoints are removed once their values drop below

a threshold of 0.001.

In the simulation, robots are able to identify and remember the exact locations of

depots and the locations of sites visited in last foraging round, but this is not realistic

for physical robot hardware. To test potential pitfalls of transferring the behavior of

simulated robots to physical robots, we simulate sensor errors that reflect those of

iAnt robots.

Following the method used by (Fricke et al., 2016), we simulate sensor error by

applying Gaussian noise when robots attempt to return to a previous location via

pheromones or site fidelity, mimicking that of the iAnt robots as described in (Hecker

et al., 2013). The standard deviation around the intended location increases with

the distance the robot travels to its intended destination position, p. This reflects

the greater accumulation of odometry errors over longer distances. The distance p

is multiplied by a noise coefficient, e, in order to change noise severity. Noise is

generated by: noise ∼ N (0, σ2), where σ = e× p. For example, given the maximum

travel distance of CPFA swarms to the corner of an arena, p = 7.0 m, and a noise
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coefficient of e = 0.4, returning robots will arrive within approximately 3 m of their

goal destination 68% of the time. MPFA swarms, which have shorter average travel

distances (as shown below), and therefore lower modeled error, will return to previous

locations with higher accuracy.

5.7 Results

We compare MPFAdynamic to the CPFA, MPFAstatic, MPFAglobal static, and

MPFAglobal dynamic. We replicate each experiment in 100 trials and report the median

time for the swarm to collect resources in each experiment. We also examine several

components of foraging time: travel time, search time, and collision time. We test

the scalability of the algorithms by increasing the arena size and swarm size and

examining the trends in foraging time. We demonstrate that MPFAdynamic is faster

than the CPFA and MPFAstatic, and similar in performance to MPFAglobal static and

MPFAglobal dynamic. We present our results in notched box plots to show which results

are statistically different. We used the Mann-Whitney U test to compare the results

of the MPFAdynamic to each of the four other algorithms. The statistical significance

is explicitly indicated by asterisks in figures (p < 0.001). Additionally, the notch on

each plot indicates the 95% confidence interval of the medians. If the notches of two

boxes do not overlap, this indicates a statistically significant difference between the

medians.
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5.7.1 Foraging Performance

Foraging Time

In our simulation, the foraging time of each swarm is the time required to collect

88% (as described above in Section 5.6) of the resources. The configuration of each

experiment is shown in Table 5.2. Fig. 5.7 shows the time for each algorithm to

collect 88% of the resources for three different classes of distributions of resources.

Figure 5.7: Foraging times for CPFA and MPFA swarms of 24 robots in a 10 × 10
m arena. Results are for 100 trials with each swarm. Asterisks indicate a statisti-
cally significant difference of the medians (p < 0.001) from MPFAdynamic which is
emphasized by red ellipses. The performance of each algorithm is represented by
a notched box plot in a different shade, ordered left to right, lightest to darkest in
the same order indicated in the legend. The notches indicate the 95% confidence
interval of the median so that overlapping ranges of the notches indicate statistically
indistinguishable results at the p = 0.05 level

Our experiments show that MPFAdynamic outperforms the CPFA and the

MPFAstatic in all three distributions. The MPFAdynamic is 47% faster than the CPFA
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in the partially clustered distribution and 18% faster than the MPFAstatic in the

clustered distribution. Surprisingly, the MPFAdynamic is either faster than or sta-

tistically indistinguishable from both globally informed algorithms in the partially

clustered and clustered distributions. It is slightly slower than MPFAglobal dynamic in

the random distribution.

Robustness to Error

We examine the effect of localization error on foraging performance. Fig. 5.8) shows

foraging time for swarms given simulated error with a noise coefficient 0.4. This error

results in robots returning to pheromone or site fidelity waypoints at the far corner

of a 10 × 10 m arena being normally distributed around the intended destination,

with 68% of the robots within 3 m of the intended destination, a substantial amount

of error when searching for resources that are 5 cm in radius. Our experiments show

that the foraging times of all algorithms increase moderately (on average by 16%)

with this level of error. However, MPFAdynamic still outperforms the CPFA and

MPFAstatic in all three distributions with statistical significance levels similar to the

error-free evaluations.

5.7.2 Search and Travel Time

Foraging time is composed of two distinct activities. When a robot departs from a

depot, it travels to a location where it starts a localized search for resources. Once a

target is discovered, the robot takes approximately the same travel time back to the

depot as it took to travel to the search location.
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Figure 5.8: Foraging times for CPFA and MPFA swarms of 24 robots with noise
e = 0.4 in a 10× 10 m arena

We measure the total travel time and search time spent by all robots in the

swarm. The summed travel and search time of all robots in each swarm are shown

in Fig. 5.9. In the MPFAdynamic, travel time is reduced in all cases. Compared to the

CPFA, the MPFAdynamic is up to 62% faster (in the clustered distribution); compared

to the MPFAstatic it is up to 30% faster (in the clustered distribution). Robots using

the MPFAdynamic also search faster in all cases. Compared to the CPFA it is up to

51% faster (in the partially clustered distribution), and compared to the MPFAstatic

(up to 13.6% faster in the partially clustered distribution). It is also faster than the

globally informed MPFAs in the partially clustered distribution. It is slightly slower

than MPFAglobal dynamic in the clustered distribution.
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Figure 5.9: The search and travel time (per swarm) for the CPFA and MPFAs

5.7.3 Collision Time

In our simulation, if the distance between two robots is less than 25 cm, each robot

will implement collision avoidance. Each robot senses the location of the other and

turns left or right in order to avoid a collision, moving approximately 8 cm before

resuming traveling. The collision avoidance takes time and will increase foraging

times, particularly when the swarm size is large.
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Collision time is the time spent to avoid a collision. The total collision time of

each swarm is the sum of the total collision avoidance times for all robots in the

swarm (shown in Fig. 5.10). The collision time for MPFAdynamic is less than the

collision time for the CPFA in all cases, but it is not significantly different from

the other variants of the MPFA. Not surprisingly, collision time is lowest in the

random distribution where resources and robots are most dispersed, and highest in

the clustered distribution where robots crowd around clustered target locations.
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Figure 5.10: Total time spent (per swarm) avoiding collisions for the CPFA and
MPFAs. The boxplot of MPFAdynamic is emphasized by blue ellipses

5.7.4 Scalability

We tested the foraging performance of MPFAdynamic with increased arena sizes and

swarm sizes. Fig. 5.11 shows the foraging performance in different arena sizes. Not
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surprisingly, foraging time increases as the arena size increases. MPFAdynamic out-

performs the CPFA and MPFAstatic in all arena sizes and all three distributions. Its

performance is similar to MPFAglobal static and MPFAglobal dynamic.

Figure 5.11: The foraging time for each swarm for increasing arena sizes. Results
are for 100 trials and data for each swarm is shown by the box plot. The lines show
the best-fit linear regression
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The increase in foraging time appears to be linear with the length of the foraging

arena. However, in the clustered target environment, MPFAdynamic (slope = 2.55),

MPFAglobal static (slope = 2.56), and MPFAglobal dynamic (slope = 2.21) have improved

scalability compared to the CPFA (slope = 5.04) and MPFAstatic (slope = 4.61) as

evidenced by the more shallow increase in per-robot foraging time with arena size.

The slope of the regression for MPFAdynamic is not significantly different from that

of MPFAglobal static and MPFAglobal dynamic.

To further test scalability, we create an arena 25 times larger (50 × 50 m) than

the basic (10× 10 m) arena and we measure foraging times for swarms of 96 robots.

Fig. 5.12 shows foraging performance in this larger arena. MPFAdynamic still

outperforms the CPFA (up to 30% in the clustered distribution) and MPFAstatic

(up to 13% in the clustered distribution) in most cases. The MPFAdynamic is

either better than or statistically indistinguishable from the MPFAglobal static and

MPFAglobal dynamic in all cases. These results suggest that the MPFAdynamic is par-

ticularly effective for very large swarms and foraging areas.

5.7.5 Transport to A Central Depot

Two caveats should be considered in interpreting the above comparisons of the MPFA

algorithms to the CPFA. First, because we consider the mobile depots to be robotic

agents, this means that the MPFA swarms have four more robots than the CPFA

swarms. Second, in cases where the MPFA is used, but resources must ultimately be

collected at a central location, the mobile depots would need to transport resources

to a single central depot (as is done in the CPFA).
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Figure 5.12: The foraging time for each swarm of 96 robots in 50 × 50 m arena.
Results are for 100 replicates for each algorithm. Asterisks indicate a statistically
significant difference (p < 0.001). The boxplot of MPFAdynamic is emphasized by red
ellipses

To make a more fair experimental comparison, we added four robots to the CPFA

swarm, and we modified MPFAdynamic so that when mobile depots are full (in this

case containing 24 resources), they deliver those resources to a single central depot.

Foraging robots carrying resources to that depot pause their motion while the depot

is traveling to and from the central depot. A demonstration video is available on

YouTube3.

Fig. 5.13 compares the MPFAdynamic with central delivery to the CPFA. Cen-

tral delivery increases the foraging time of the MPFAdynamic by 5.5% and adding 4

additional robots to the CPFA decreased foraging time by 11%.

3https://tinyurl.com/yyzpkmy2
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However, the MPFAdynamic with central delivery is still significantly faster than

the CPFA: 22% faster in the random distribution, 36% faster in the partially clus-

tered, and 32% faster in the clustered distribution. Thus, even with central delivery,

the MPFA is on average 30% faster than the CPFA.
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Figure 5.13: Foraging times for CPFA swarm of 28 robots and MPFAdynamic swarms
of 24 robots in a 10× 10 m arena. Depots deliver collected resources to the central
placed depot when they have 24 resources. Results are for 100 trials with each swarm.
Asterisks indicate a statistically significant difference of the medians (p < 0.001) from
MPFAdynamic

5.8 Discussion

This paper examines the foraging performance of swarms using the multiple-place

foraging algorithm with dynamic depots (MPFAdynamic). We test 4 variants of the

multiple-place foraging algorithm and a central place foraging algorithm (the CPFA).

Because these ant-inspired algorithms are designed for collecting resources quickly
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rather than for the complete collection of all resources, we report the time required

to collect 88% of the available resources in each experiment.

In the first set of experiments with 24 robots in a 10 × 10 m arena (Fig. 5.7),

the average foraging time of MPFAdynamic across the three target distributions is

41% faster than the centralized CPFA, and 13% faster than MPFAstatic. Its foraging

times are similar to MPFAglobal static and MPFAglobal dynamic, illustrating that dynamic

depots that respond only to local information are as effective as global methods that

require more information to be collected and communicated.

Foraging times are reduced in all versions of the MPFA compared to the CPFA,

primarily because travel times are dramatically reduced by an average of 49% over all

three distributions. Travel times are reduced the most in partially clustered and clus-

tered distributions, and in those distributions MPFAdynamic also has reduced travel

times relative to MPFAstatic (see Fig. 5.9). The same comparisons are true for search

time, but the differences are smaller: MPFAdynamic is 33% faster than the CPFA

and 9% faster than MPFAstatic on average. Collision avoidance times are on average

47% lower for all versions of the MPFA compared to the CPFA (see Fig. 5.10). Since

larger swarms produce more inter-robot collisions and reduce foraging performance, a

more efficient collision avoidance strategy for reducing collision time will be included

in future work, informed by the adaptive bucket-brigade foraging method introduced

in (Lein and Vaughan, 2009).

In addition to having faster foraging times for all arena sizes and all target distri-

butions, MPFAdynamic is also more scalable than the CPFA and MPFAstatic. Fig. 5.11

shows that the increase in foraging times with arena size is smaller on the clustered

distribution for MPFAdynamic (slope = 2.55) compared to the CPFA (slope = 5.04)

and MPFAstatic (slope = 4.61). MPFAdynamic foraging times are particularly faster
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for large arenas and clustered resources (e.g., 21% faster than MPFAstatic in a 16×16

m arena, and 30% faster in the 50× 50 m arena in Fig. 5.12).

We also demonstrated how the MPFAdynamic can be used to complete the central

place foraging task faster than the CPFA. For these experiments, the mobile depots

deliver their contents to a central depot when they are full, and the CPFA is given 4

additional robots for a more fair comparison. The transport time of a small number

of trips to the central depot is minimal and has little effect on the total foraging

time. Fig. 5.13 shows that the MPFAdynamic is still 30% faster than the CPFA.

Thus, by using mobile depots that adapt to local conditions, MPFAdynamic is

an efficient and scalable solution that minimizes the central-place bottleneck of the

CPFA and improves foraging times compared to MPFAstatic without requiring any

global information.

5.8.1 Online Decision-Making in Response to Local
Information

Real-time adaptive response is a key component of MPFAdynamic. Foraging robots

adaptively respond to the resources they detect in the environment by making a real-

time decision to communicate pheromones or to return to a previous search location

using site fidelity. Depots make real-time adjustments each time a foraging robot

drops off a target in order to move toward the centroid of the known target locations.

The CPFA and MPFAstatic are both effective algorithms (Hecker and Moses, 2015;

Lu et al., 2016a); however, the additional real-time decision-making of mobile depots

decreases foraging times in all of our experiments, and the decrease is greatest in the

largest arenas and for clustered target distributions (Fig. 5.12).
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MPFAdynamic is particularly effective compared to MPFAstatic for highly clustered

resources. Foraging robots adaptively respond to clusters by using pheromones and

site fidelity; in turn, depots respond to the observations of the foraging robots by

moving closer to clusters of resources. Thus, both foragers and depots respond to the

environment to reduce the time to collect resources. The adaptive communication

of foragers reduces search time, and the adaptive movement of depots reduces travel

time. Real-time adaptation to communicated information about target locations is

particularly valuable when resources are highly clustered because each target found

in a cluster confers more information about the location of other resources in that

cluster (Flanagan et al., 2011).

The benefits of dynamic depot movement are likely to be even greater when

resources are ephemeral, i.e. appearing and disappearing over time, and when the

resources themselves are mobile because depots can move to new locations where

resources appear so that they can be collected quickly (Levin, 2016).

In addition to real-time decision-making, robots also respond adaptively to their

environments over evolutionary time. Our previous work showed that robots adjust

dispersal parameters and the rate of communication to avoid overcrowding between

depots and nearby piles when they are tested in environments with clustered re-

sources (Lu et al., 2016a). This results in scalable algorithms, and scalability is

improved further with MPFAdynamic.

5.8.2 Broader Implications for Scalable Design

A fundamental problem in computer science is the design of scalable solutions that

perform well as the problem size increases. As computational systems interact more
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with the environment in which they are situated, particularly if they navigate physical

space using stochastic movement, they become increasingly analogous to biological

systems (Kleinberg, 2007). In biology, scaling theory investigates how efficiently re-

sources can be moved through spatial networks (West et al., 1997; Banavar et al.,

2010; Savage et al., 2008). Scaling theory makes predictions beyond individual or-

ganisms, to explain the efficiency of ant colonies (Hou et al., 2010), societies (Moses

and Brown, 2003; Brown et al., 2011), and even computer chip design (Moses et al.,

2016).

MPFAdynamic offers a new perspective on the scaling problem. The use of multiple

depots in the MPFA improves scaling compared to the CPFA, and having adaptive

and dynamic mobile depots increases scalability even further. This advantage is par-

ticularly apparent when the resources to be transported are grouped into clusters,

rather than randomly scattered, and when transport distances are very large (i.e.,

MPFAdynamic is nearly twice as fast as the CPFA and MPFAstatic for clustered re-

sources in the largest 50 × 50 m arena as shown in Fig. 5.12). This suggests that

adaptive mobile agents in robotic swarms can mitigate the inherent scaling inefficien-

cies of central-place transport. The experiments in Fig. 5.13 show that this holds

even when the dispersed depots transport resources to a central nest.

The success of MPFAdynamic also provides insight into biological mechanisms that

improve scalability. While most biological scaling theory focuses on fixed, centralized

transport networks, there are biological systems that have features similar to the

depots of the MPFA. For example, the immune system, with multiple lymph nodes

distributed throughout the search space of an organism, results in a highly scalable

immune response with trillions of cells (Banerjee and Moses, 2010a). Our prior

works suggest that the partially distributed architecture of the immune system (one
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in which lymph nodes act as depots) is critical for overcoming the inherent scaling

limitations of transporting resources (Moses and Banerjee, 2011).

There is also evidence of mobile depots in the largest colonies of ants: invasive

Argentine ant colonies are composed of a network of mobile nests connected by trails,

and the dynamic patterns of recruitment and allocation of foragers to nests increases

foraging efficiency (Flanagan et al., 2013; Lanan, 2014). These examples suggest

that in biological systems, as well as in robotic swarms, adaptive, decentralized and

mobile aggregation points increase search efficiency. Thus, biological systems have

evolved architectures with the same advantages of MPFAdynamic: faster search and

foraging, fewer collisions, and reduced travel time.

5.8.3 The Path to Implementation

Our simulations suggest that the MPFAdynamic is robust to the errors that we previ-

ously identified as important in our iAnt physical robots, namely error in returning

to locations indicated by site fidelity or pheromone waypoints. When we included

substantial error in our simulations (leading to robots being up to 3m away from

intended destinations), it reduced foraging performance by an average of 16% (see

Fig. 5.8) across all of the MPFA and CPFA experiments, but the MPFA continued

to be faster than the CPFA.

However, we do not expect that foraging performance in real robots will be as fast

as it is in the simulation. In order to implement multiple-place foraging with dynamic

depots in a physical robot swarm, we will use our existing robot platform, designed

by our lab for the NASA Swarmathon competition (Secor, 2016; Ackerman et al.,
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2018). The release code for the competition is available on GitHub4. Swarmathon

robots are outfitted with a grasping apparatus that facilitates the pick up and drop

off of target cubes (see Fig. 5.14). Structural modifications will be required to convert

four Swarmathon robots into mobile depots capable of holding collected resources

inside of a container.

Figure 5.14: The physical robot on which components of the CPFA have been im-
plemented

Swarmathon robots are considerably larger and more powerful than the foot-bots

modeled in ARGoS. Swarmathon robots run the Robot Operating System (ROS),

a distributed message-passing framework with an extensive, user-supported package

that helps streamline algorithm implementation (Quigley et al., 2009). Other swarm

algorithms, including the DDSA and components of the CPFA, have been imple-

mented in ROS and subsequently tested in the multi-robot simulator Gazebo (Koenig

and Howard, 2004). Based on our experience with these existing foraging algorithms,

we implemented a dynamic depot with Swarmathon robots in Gazebo (Fig. 5.15).

A demonstration video showing central place foraging in Gazebo and physical Swar-

mathon robots, as well as a mobile depot simulated in Gazebo is available5. The

next step is making a straightforward extension to the simulation to include multiple

4https://github.com/BCLab-UNM/SwarmBaseCode-ROS
5https://tinyurl.com/y47j3hrc
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depots implementing pheromone waypoints associated with each depot and centroid

estimation by each depot in order to fully implement MPFAdynamic.

Figure 5.15: A mobile depot with blue cover and four foraging robots simulated in
Gazebo

The biggest benefit of implementing the MPFA on the ROS and Gazebo system

developed for the NASA Swarmathon is that code is very easily transferred from

Gazebo onto the onboard Linux computer on the Swarmathon robots. The ease of

this transfer is evidenced by the 19 college teams that successfully transferred their

Gazebo code to up to 6 Swarmathon robots that operated in outdoor arenas up to

23 x 23 m for the Swarmathon competition (see Fig. 5.16). These teams showed

that Swarmathon robots can reliably return to collection points, and implement

site fidelity and recruitment to waypoints. Full implementation of the MPFA in 24

physical robots in an outdoor environment is the next step to demonstrate truly

scalable foraging swarms of robots.
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Figure 5.16: A swarm of 6 robots (3 shown) implementing central place foraging in
a 23 x 23 m arena
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A Bio-Inspired Hierarchical
Branching Transportation Network
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6.2 Abstract

Scalability is a significant challenge for robot swarms. Generally, larger groups of

cooperating robots produce more inter-robot collisions, and in swarm robot forag-

ing, larger search arenas result in larger travel costs. This paper demonstrates a
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scale-invariant swarm foraging algorithm that ensures that each robot finds and de-

livers resources to a central collection zone at the same rate, regardless of the size

of the swarm or the search area. Dispersed mobile depots aggregate locally for-

aged resources and transport them to a central place via a hierarchical branching

transportation network. This approach is inspired by ubiquitous fractal branching

networks such as tree branches and mammal cardiovascular networks that deliver

resources to cells and determine the scale and pace of life. We demonstrate that

biological scaling laws predict how quickly robots forage in simulations of up to

thousands of robots searching over thousands of square meters. We then use bi-

ological scaling predictions to determine the capacity of depot robots in order to

overcome scaling constraints and produce scale-invariant robot swarms. We verify

the predictions using ARGoS simulations.

6.3 Introduction

Natural swarms such as colonies of social insects and flocks of birds and fish have long

served as inspiration for swarm robotics. Natural swarms have suggested strategies

for generating collective behavior from individual actions. Foraging is the behavior

of searching for resources (sometimes called food or targets) and transporting them

to a specific collection zone. Foraging is a canonical swarm robotics task that is

used in search and rescue, construction, transportation, agricultural harvesting, and

planetary exploration (Winfield, 2009b; Gro and Dorigo, 2009; Yun and Rus, 2014;

Bac et al., 2014; Fink et al., 2005). Biological systems also illustrate how collective

systems can be adaptable, robust to individual failures, and scalable, particularly

in swarm foraging where multiple robots are advantageous for collecting spatially
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dispersed resources. (Brambilla et al., 2013; Bonabeau et al., 1999; Kennedy and

Eberhart, 2001; Şahin, 2005; Hecker and Moses, 2015).

Scalability of robot swarms has gained recent interest (Bonabeau et al., 1999;

Kennedy and Eberhart, 2001; Şahin, 2005; Barca and Sekercioglu, 2013; Khaluf et al.,

2017). A scalable foraging system should be effective in swarms ranging from tens

to thousands of robots without reducing per robot foraging times. In this paper, we

use scaling theory from biology to understand scaling constraints and then design a

robot foraging system that overcomes these constraints.

In central place foraging, robots gather dispersed resources from a foraging arena

and consolidate them in a single centrally-placed collection zone that robots depart

from and return to in order to deposit resources (Liu et al., 2007; Hecker and Moses,

2015; Castello et al., 2016). We focus on central place foraging here, but our results

generalize to other foraging tasks.

Two major problems limit scalability. First, large swarms with many robots

produce more inter-robot collisions both during the search process and during the

return of resources to a relatively small collection zone. The collisions lead to the

phenomenon of diminishing returns as proposed by economists (Brue, 1993). Sec-

ond, large foraging arenas require, on average, that robots travel further distances

(requiring more time) to find resources and transport them to the central collection

zone. When foraging in large areas, for example, collecting resources on the surface

of Mars, or an ocean search and rescue operation, the search area can extend many

kilometers, necessitating that robots travel very long distances.

Our goal is to design a scale-invariant foraging system in which this per-robot

foraging rate is the same for all swarm sizes and arena sizes. We proposed the

Multiple-Place Foraging Algorithm (MPFA) to address the problems of increased
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collisions and transport times as the foraging problem scales to larger sizes. The

MPFA uses multiple collection zones dispersed in a foraging arena rather than one

central collection zone. In the simplest implementation, collection zones are dis-

tributed uniformly across the arena and each robot returns to the closest collection

zone to the place where it finds a resource. (Lu et al., 2019b) introduces dynamic

depots that move to the centroid of recently collected resources, minimizing trans-

port times and making the MPFA more adaptable to patchy and heterogeneous

distributions of resources (Ritchie, 2009).

The MPFA improves scaling, but the time to transport resources from dispersed

collection zones to a single location still results in diminishing returns. The bio-

inspired hierarchical transportation network we propose here solves this problem. In

this scale-invariant design, the per-robot foraging time is invariant with respect to

arena size and swarm size. The transportation network draws inspiration from biolog-

ical scaling theory that describes the scaling consequences of transporting resources

from a central heart to dispersed cells via the mammal cardiovascular network (West

et al., 1997; Banavar et al., 2010). The cost of large size is that resources take longer

to transport through the system, which ultimately slows the cells of larger mammals.

Thus, physiological rates (i.e., heart rate, growth rate, and reproductive rate) are

systematically slower, and lifespan and gestation times are systematically longer, in

large vs. small mammals.

We show that foraging robots are constrained by the same principles as plants

and mammals. We derive scaling relationships for a 2D foraging area (rather than

a 3D mammal volume). We use this scaling law to predict the transportation in-

frastructure required to maintain constant per-robot foraging rate with increasing

swarm and arena size. We then simulate foraging using a hierarchical transportation
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network (MPFAT) composed of mobile depots with carrying capacities determined

by the scaling theory. Our simulations show that this design overcomes scaling con-

straints resulting in nearly scale-invariant foraging. We scale the swarm size up to

thousands of robots in arenas that are thousands of square meters in area. We test

all of our algorithms in the Autonomous Robots Go Swarming (ARGoS) simulator

using foot bots as a model robot. In prior work, we have implemented similar AR-

GoS experiments of the CPFA and MPFA in dozens of replicated experiments with

physical hardware (Lu et al., 2019a), suggesting that the approach we outline here

is feasible in physical robots.

The remainder of this chapter is organized as follows. The related work is in-

troduced in Section 6.4. The similarities between cardiovascular systems and robot

swarms in shown in Section 6.5. The scaling laws for foraging swarms are derived in

Section 6.6. The experimental setup is described in Section 6.7. Section 6.8 shows

the experimental results and Section 6.9 discusses the results.

6.4 Related Work

Though swarm robot foraging has been studied for decades (Winfield, 2009b; Barca

and Sekercioglu, 2013; Brambilla et al., 2013), analysis of the scalability of large

swarms is limited. Where scalability has been analyzed, most studies find that large

swarms are less efficient. For example, (Font Llenas et al., 2018) shows dramatic

reductions in per robot foraging rates for even modest increases in swarm size. Our

prior work (Hecker and Moses, 2015) evaluates the scalability of the Central-Place

Foraging Algorithm (CPFA) (Hecker and Moses, 2015) with up to 768 simulated

iAnt robots. We found that foraging performance per robot decreased by 70% going
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from 1 to 768 robots. We also evaluated scalability of the Distributed Deterministic

Spiral Algorithm (DDSA) (Fricke et al., 2016) with up to 30 robots and the MPFA

with 96 robots in ARGoS (Lu et al., 2019b). For swarms with between 20 and 30

robots, the DDSA performance drops below that of the CPFA due to crowding. The

use of adaptive and dynamic mobile depots increases the scalability of MPFA up to

30% with 96 robots in a 50× 50 m arena.

Task partitioning allows the physical separation of individuals working on dif-

ferent subtasks, and therefore it can be beneficial in the reduction of physical in-

terference. In addition, it can reduce travel distances to improve location accuracy.

Therefore, it can improve the performance to increase scalability. Pini et al. (Pini

et al., 2014) demonstrated that a partitioning strategy can improve the performance

of transferring objects with real robot swarms directly. Buchanan et al. (Buchanan

et al., 2016a) improved the scalability of the robot swarms further on Pini’s work

using a dynamic partitioning strategy which optimizes the number of subtasks and

swarm sizes. In (Ferrante et al., 2015), the leafcutter ant inspired foraging robot

swarm achieves maximum foraging performance by dividing foraging and delivering

tasks automatically using a nature-inspired evolutionary method known as Gram-

matical Evolution (Ferrante et al., 2013). We build on these earlier work by intro-

ducing mobile depots for the transportation task, separate from searching robots

that search for resources. In this scenario, there is much less interference between

searching and delivering. Therefore, the scalability of our foraging swarms will be

improved further.

The recent work in (Schroeder et al., 2019) analyzed the basis for swarm perfor-

mance with robot size, robot density, and delays incurred due to collisions between

robots. It demonstrated that swarm size and individual robot size affect the swarm
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performance. When the individual robot size is constant, the result shows dimin-

ishing returns when adding additional robots. When the total swarm capacity is

constant, there is no significant difference in performance between a few large robots

and many small robots. The result allows a swarm designer to weigh the design

trade-offs of varying the number of robots, varying swarm capacity, or setting differ-

ent target swarm costs. In our work, we analyzed the delivery rate and the foraging

rate in the hierarchical branching transportation networks. When the delivery rate

matches the foraging rate, we can predict the optimized swarm size and robot ca-

pacity of each delivery robot.

Biological scaling theory provides a quantitative framework for understanding

how transportation of resources affects overall system performance (Savage et al.,

2004). Scaling theory predicts that the resources delivery rate is proportional to

mammal volume (or mass) to the 3/4 power (and more generally to the powerD/(D+

1) where D is the dimension of the system). The constraint arises from needing to

transport resources over larger distances in larger mammals and limitations on the

space available for transportation. In essence, in large mammals, a greater fraction

of resources are in transport rather than in active use by cells. The empirically

supported prediction is that scaling causes per cell rates and times to slow by a

−1/4 power of body volume. For example, biological rates are thirty times slower in

an elephant which is a million times larger than a mouse. Below we show how scaling

produces these diminishing returns with a derivation of scaling predictions for the

case of foraging on a 2D surface. We have previously used biological scaling theory

to predict how power and performance change with chip size, and how decentralized

information flow can alter scaling relationships (Moses et al., 2016). Here, we extend

this approach from computer architecture to scalable robotics.
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6.5 Similarities between cardiovascular systems and robot
swarms

The transportation of resources through the cardiovascular system from the heart

to dispersed cells (filling the 3D space of an mammal body) is the inverse problem

of (2D) transportation of dispersed resources to a central collection zone in robot

foraging. Scaling laws in biology explain how the 3/4 power scaling of delivery rates,

and −1/4 power scaling of per-cell biological rates with body size result from a

hierarchical transportation network which minimizes energy dissipation (West et al.,

1997) and resource delivery time (Banavar et al., 2010). Banavar’s derivation is based

on ‘matching supply and demand’ so that there is no waiting or delay in pickup or

delivery of resources.

To translate the biological scaling theory into a model of scalable robot foraging,

we first identify similarities between the delivery of blood (which carries resources to

cells) through cardiovascular networks and the robot foraging task (which carries re-

sources to collection zones). In biology, scaling theory considers delivery of resources

in 3-dimensional bodies divided into ‘service volumes’ which are the volume of tissue

supplied by one capillary that delivers blood. Our ground-based robot foraging take

places in a 2D area divided into search regions surrounding each depot that serves as

a local collection zone. Both require transportation between a central site (heart or

collection zone) and a service region. The analogies between these systems are listed

in Table 6.1.
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Table 6.1: Similarities between cardiovascular systems and robot swarms

Organisms Robot swarms

3D bodies 2D arenas
Blood cells Robots

Heart Central collection zone
Service volumes Search regions

Resources Resources
Metabolic rate Foraging rate

Resource delivery Resource collection

6.6 Scaling laws for foraging swarms

We derive scaling predictions for foraging robot swarms using the following definitions

and simplifying assumptions, translated from (Banavar et al., 2010). For simplicity,

we omit the constants of proportionality.

6.6.1 Assumptions

1. Each search region (R) is a specified area Ar (which may vary with total arena

size) with a collection zone in its center. Each robot is assigned to a search

region in which to forage and a collection zone to which to deliver resources.

The number of search regions is Nr so that total arena area A = NrAr.

2. Resource density (Dt) is the number of resources (Nt) in arena A; Dt = Nt/A.

Simulation experiments have Nt resources distributed uniformly in A. To main-

tain constant resource density, resources are replenished as they are collected.

When a resource is collected, another resource is placed in a location drawn

from a uniform random distribution.

115



3. Foraging rate (F ) is the number of resources collected in the central collection

zone per unit time. The foraging rate in a region i is (F i
r), the number of

resources collected and transported to the regional collection zone per unit

time. Thus F =
∑Nr

i=1 F
i
r .

4. Geometric similarity states that geometric shapes can be characterized by

length, surface area, and volume. Since the arena A is a square with edge

length l, then A ∝ l2 by the Euclidean geometrical scaling law.

5. Robot foraging velocity (vf ) is constant across all experiments. The delivery

velocity of depots (vd) can vary for each foraging model and experimental setup.

6. The capacity of searching robots is always one resource. The capacity of depots

(C) can vary for each foraging model and experimental setup.

7. The number of resources in transit is in steady state and proportional to arena

area: Nt ∝ A. This assumption is analogous to the biological scaling theory

assertion that the fraction of blood (that transports resources) is constant

across mammal sizes. Here, this assumption means that the density of resources

in transit is the same across arena sizes.

8. Delivery rate matches the foraging rate. This means that the system minimizes

the time that collected resources are stored in regional collection zones waiting

for a depot to pick them up; and no depot arrives at a collection zone and has

to wait for a searching robot to drop off resources (i.e., if a depot has capacity

4, then there should be exactly 4 resources ready for pickup when it arrives at

its collection zone). This design minimizes the delay in delivery. Ideally, this

means that resources do not unnecessarily wait to be picked up, and depots do
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not unnecessarily wait for resources to appear in collection zones to be picked

up. Thus, for each collection zone (j) the rate of dropoff equals the rate of

pickup Dj = Fj and therefore the delivery rate to the central collection zone

(D) equals the total foraging rate (F ): D = F .

6.6.2 The explosion network

We begin by relating foraging rate (F ) to arena area (A) in robot version of the

“explosion network” (Fig. 6.1a) as described in (Banavar et al., 2010). The explosion

network is a simple model of both the CPFA and the MPFA. In the CPFA each

robot leaves a central collection zone and searches for resources in a small region of

the foraging arena. Once a resource is found, it is returned directly to the central

collection zone. In the MPFA each searching robot delivers resources to a collection

zone at the center of its search region. Depots carry a set of resources from the

collection zones directly to the central collection zone.

In this model, Nt ∝ nNrt, where Nrt is the number of routes from collection zones

to the central collection and n is the average number of resources in transit per route.

So, Nrt ∝ Nr ∝ F and n = l̄rt/vd, where l̄rt is the average length of a route and

l̄rt ∝ A1/2 by Assumption 4. So, we have Nt ∝ l̄rtF/vd. If vd is kept constant, we

have Nt ∝ FA1/2. Since from Assumption 7, Nt ∝ A, then we have Prediction I:

F ∝ A1/2. Thus, region length l ∝ (A/Nr)
1/2. Since Nr ∝ F , then l ∝ A1/4.

To improve scaling, following (Banavar et al., 2010), we allow vd to increase with

arena size by setting vd to the maximum value that allows consistently matching

collection rate to delivery rate at all collection zones within an arena. As (Ba-

navar et al., 2010) show, this maximum velocity is proportional to the length of
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(a) MPFA (b) MPFAT

Figure 6.1: Paths of depots in explosion (MPFA) and hierarchical (MPFAT) trans-
portation networks. Each small square is a service region that contains 4 searching
robots.

the shortest route (or region length) l so that vd ∝ l ∝ (A/F )1/2. This results in

Nt ∝ FA1/2/(A/F )1/2 ∝ F 3/2. Thus, by maximizing velocity, we have Prediction

II: F ∝ A2/3, and consequently, l ∝ A1/6.

6.6.3 The hierarchical branching transportation network

The hierarchical network aggregates the transportation of resources onto paths of

increasing length and capacity. Fig. 6.1b shows a network composed of b = 4 branches

at each level from the central collection zone (level 0, red) to 4 regional hubs (level 1,

blue), to 16 sub-regional hubs (level 2, yellow) and finally to 64 search regions with

collection zones (green dots) at their center.

The required number of levels L to connect all regions is logNr
b . The minimum

number of depots Nd is calculated such that the delivery rate to the center collection

zone equals the rate that resources are collected in the search regions (such that
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D = F , by Assumption 8 in Subsection 6.6.1). The time of a depot at level i

to make a round trip from its source collection zone to its destination collection

zone is T id = 2di/vd, where di is the distance from a collection zone on level i to

its destination collection zone on level i − 1. The number of depots N i
d is equal

to the number of collected resources in T id on level i divided by the capacity C:

N i
d = 2bi+1Frb

L−i−1di/(vdC), where Frb
L−i−1 is the rate resources are collected in

zones at level i and bi+1 is the number of branches at level i.

Summing over all levels gives:

Nd =
L−1∑
i=0

2Frb
Ldi

vdC

=
2FrA

1/4(N
3/2
r −Nr)

vdC

This leads to the following prediction for the required number of depots:

Nd =


2Fr

vdC
(A− A3/4) if vd is constant

2Fr

C
(A− A2/3) if vd ∝ A

1
6

(6.1)

6.6.4 Scale-invariant transportation network

Whether biological systems use an explosion network or a fractal branching network,

they are limited to sublinear scaling (F ∝ A1/2 when vd is constant and F ∝ A2/3

when vd scales at its maximum value). However, we can use biological scaling to

design a scale-invariant foraging swarm in which the total foraging rate is linear with

arena size and swarm size (and per capita foraging rates are constant.) In a collective
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transport task (Rubenstein et al., 2013), the transport capability of an individual

robot would be expected to increase with its size. If we increase the capacity C on

each level by ab from level L − 1 to 0, then Eqn. Eq. (6.1) will have a constant N i
d

in each level i collection zone. Furthermore, we can increase F by having a constant

region size. Then we have Prediction III: F ∝ Nr ∝ A.

The number of connections to the center is b in the MPFAT. We have 4 searching

robots in each region and 4 depots in each collection zone. So, the total number

of searching robots is 4Nr and the total number of depots is 4Nc, where Nc is the

number of collection zones excluding the central collection zone. Thus:

Nc =
L−1∑
i=0

Nr

bi
=

4

3
(Nr − 1) (6.2)

So, the total number of robots is 28
3
Nr− 16

3
, therefore linear with Nr and A. Note

that this means a constant density of searching robots in the regions and a constant

density of transport robots with arena size.

6.7 Experimental Setup

We conducted experiments to test Predictions I, II, and III for scalability of the

CPFA, MPFA, and MPFAT, as summarized in Table. 6.2. Each of the three exper-

imental configurations tests one of the three predictions. In Set I, we test the 1/2

scaling in Prediction I. The depot velocity and capacity are constant (vd = 0.16m/s

and C = 4), but the region length l ∝ A1/4 as derived in Section 6.6. In Set II, we

test the 2/3 scaling Prediction II. C = 4, but vd ∝ A1/6 and l ∝ A1/6. The number of
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Table 6.2: Experimental Setup

Shared configuration MPFA MPFAT

Set
Delivery
velocity

(vd)

Capacity
(C)

Region
length

(l)

Region
(Nr)

Arena
size
(A)

resource
(T )

Searching
(Ns)

Depot
(Nd)

Total
robots

Collection
zone
(Nc)

Collection
zone

Level
(L)

I 0.16 4

1 1 1× 1 1 4 0 4 1 1 0
2 4 4× 4 16 16 4 20 5 5 1
4 16 16× 16 256 64 48 112 17 21 2
8 64 64× 64 4096 256 896 1152 65 85 3

II ∝ A1/6 4
1 1 1× 1 1 4 0 4 1 1 0
2 16 8× 8 64 64 48 112 17 21 2
4 256 64× 64 4096 1024 3840 4864 257 341 4

III 0.16 vary 5

4 10× 10 100 16 16 32 5 5 1
16 20× 20 400 64 80 144 17 21 2
64 40× 40 1600 256 336 592 65 85 3
256 80× 80 6400 1024 1360 2384 257 341 4

depots (Nd) in Set I and II is set to meet the constraint that the foraging rate matches

the delivery rate (D = F ) as explained in Assumption 8 and predicted in Eq. (6.1).

In set III, we test the linear scaling Prediction III. l = 5m, vd is constant, and the

depot capacity C is scaled by ab on each level as described in Subsection 6.6.4. The

number of depots (Nd) is 4Nc as predicted in Eq. (6.2).

In order to provide a fair comparison among algorithms, we use the same number

of total robots in each set. In addition, we use the same number of depots (Nd) for

the MPFA and the MPFAT. In the MPFA, we distributed depots on each delivery

route proportional to the length of that route. Thus, the number of depots for

collection zone j is Nj = (dj/D)Nd, where dj is the distance from the collection zone

j to the central collection zone and D is the total distance of all collection zone to

the central collection zone. The number of searching robots (Ns) is 4 robots per

region (Ns = 4Nr). In the CPFA, the depots are converted to searching robots that

directly deliver resources to the central collection zone. The CPFA is only included

in Set I where it is demonstrated not to be scalable (consistent with results from

prior studies) due to dramatically increasing collisions with swarm size.
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Each experiment runs for 30 simulated minutes, and each configuration is

replicated 60 times. The density of resources is constant across all experiments

(Dt = 1/m2). Resources are distributed at uniform random and collected resources

are replenished in a new random location in order to keep Dt constant. The source

code of all three models is available on Github1.

We include two additional foraging experiments which allow depots to pass

through one another without colliding (MPFA∗ and MPFA∗T) in MPFA and MPFAT.

These allow us to test whether predictions would hold under the idealized condition

that collisions among depots were ignored.

6.8 Results

Generally, scaling relationships are analyzed as Y = aXb where a is a conversion

factor, and b is an exponent which indicates the scaling relationship between X and

Y . We display and analyze log-transformed data so that log2 Y = b log2X + log2 a.

The slope of the regression between the log2 Y and the log2X gives an estimate of

the scaling exponent b.

6.8.1 Prediction I

The foraging performance in Set I (see Table 6.2) of the CPFA, MPFA, and MPFAT

is shown in Fig. 6.2a. Foraging performance of the MPFA and MPFAT increase with

arena and swarm size. However, the CPFA sometimes collects fewer total resources

even with hundreds of times more robots. This is in large part due to collisions as

shown in panel b. Fig. 6.3a shows the scaling of the MPFA and MPFAT are better

1https://github.com/BCLab-UNM/MPFA-ARGoS
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than the CPFA, but neither reaches the predicted 0.5 scaling exponent. All three

algorithms suffer from collisions. The slope of the MPFA∗ and that of the MPFA∗T

(which have no collisions) approach the predicted slope of 0.5, with slopes of (0.46

and 0.45).

(a) (b)

Figure 6.2: Number of collected resources vs. arena size (panel a) and time spent
avoiding collisions per robot vs. arena size (panel b) in Set I. The low foraging of
the CPFA (panel a) is explained in part by the long time spent avoiding collision.

In the ARGoS simulation experiments, if the distance between two robots is less

than 0.25, each robot will detect a potential collision. Each robot senses the location

of the other and turns left or right and moves in order to avoid the collision and

resume their previous behavior. This simple collision avoidance consumes time. The

total collision time for each experiment is the sum of the total time spent avoiding

collision for all robots. The collision time per robot is shown in Fig. 6.2b. The

collision avoidance time is much higher for the CPFA than for the other algorithms.

Collisions are lowest in the MPFAT at large swarm size. Collision time explains

much (but not all) of the difference between experiments (shown in Fig. 6.2a and the

theoretical prediction).
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Figure 6.3: The number of resources collected in 30 minutes vs arena size is in
experiment Sets I, II, and III. Both axes are on a log scale. Each dashed line indicates
the log2 linear regression of the mean of collected resources with the log2 of arena
area. The solid black line indicates the predicated slope in each configuration. The
* algorithms (hollow symbols) that lack collisions among depots demonstrate that
foraging under ideal conditions is close to theoretical predictions. p < 0.001 in all
experiments. In panel (a), r2 = 0.1 for the CPFA, r2 = 0.95 for the MPFA, r2 = 0.85
for the MPFAT, and r2 = 0.99 for the MPFA∗ and MPFA∗T. In panel (b), r2 = 0.66
in the MPFAT and r2 > 0.98 in other algorithms. In Set III, r2 = 0.96 for the MPFA
and r2 > 0.99 for other algorithms.
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6.8.2 Prediction II

Fig. 6.3b shows the log-log plot of foraging performance vs. arena size using constant

capacity but variable region size and velocity described in Set II. The slope of the

MPFAT is the lowest (0.25), and the slope of the MPFA is (0.41), both well below

the predicted 2/3 slope. However, the slopes of the MPFA∗ and the MPFA∗T (0.64)

are close to the predicated 2/3 exponent.

6.8.3 Prediction III

Fig. 6.3c shows foraging performance vs. arena size using constant region size and

velocity, but variable depot capacity in Set III. The slope of the MPFAT (0.86) is

higher than the MPFA (0.56) and is the highest slope of all algorithms that consider

collisions. The slopes of the collision-free MPFA∗ and MPFA∗T are both (0.95) which

is very close to the predicted exponent 1.0.

6.9 Discussion

Many real-world applications require that robots find and collect as many objects

as possible in the least amount of time. We have proposed an efficient approach for

swarms ranging from a few robots to thousands of robots foraging in arenas that are

many square kilometers in area. Scalability is achieved with a hierarchical branching

transportation network inspired by mammal cardiovascular networks.

First, in Set I if we ignore collisions in the transportation network and each depot

has a constant delivery velocity and capacity, then the foraging follows the predicted

1/2 power scaling (Fig. 6.3a). The algorithms with the * illustrate the maximum
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scaling exponent if there were no collisions in transportation. However, when we

include collisions, the CPFA barely increases the foraging rate as the arena and

swarm size increase. The scaling exponents of the MPFA and MPFAT are closer to

but still lower than the expected 1/2 scaling.

Visual inspection of simulations shows extreme congestion at the collection zone

for larger swarms. The collision is the major difference between biological systems

and robot systems. The unpredictable collisions cause a delay in transportation.

The robot density (the area occupied by all robots divided by the arena size. The

robot radius is 0.085 m) affects the collision rate and the distribution of collisions

also affects the collision rate. Congestion on critical transportation paths produces

significant amount of collisions.

Fig. 6.4 shows the average collision time per robot, per minute for the CPFA

and MPFA with 4 collection zones. The data is the same as the data in Fig. 4.3

in Section 4, but the x-axis indicates the robot density. The result shows that

collisions increase in the CPFA with the increase of robot density. As the robot

density increases, the robots spend more time on avoiding collisions rather than

performing foraging tasks. In contrast, collisions in the MPFA increase slowly since

robots are distributed to multiple collection zones.

The robot density decreases from 0.09 to 0.006 in Set I. So, the collision rate de-

creases in the MPFA and MPFAT when robot density decreases as shown in Fig. 6.2b.

The collision rate in the CPFA increases since all robots travel to the center which

results in high congestion around the center. However, the foraging performance in

the MPFA is higher than the performance in the MPFAT as shown in Fig. 6.3.
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Figure 6.4: The collision time per robot, per minute for the CPFA and MPFA with
4 collection zones. The data is from Fig. 4.3 in Section 4. The arena size is 15× 15
m. Results are for 100 replicates.

Fig. 6.5 shows the average number of depot trips required to deliver deposited

resources from collection zones in the MPFA and MPFAT. As resources are delivered

to the central collection zone from regions directly, collisions are produced around

collection zones in the MPFA (see Fig. 6.6). As resources are delivered to collection

zones in the next levels and delivered to the central collection zones gradually, col-

lisions are produced more and more around collection zones at higher levels in the

MPFAT. Even the total collision rate is lower in the MPFAT than in the MPFA,

the congestion on critical transportation paths produces more delay on the deliv-

ery (see Fig. 6.7). Ideally, there is no delay in transportation without collisions in

the proposed transportation networks. Collected resources should be transported

immediately.

Similarly, in Set II, which allows depot delivery velocity to vary according to

biological scaling predictions, the scaling exponents with collisions are lower than
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Figure 6.5: The number of depot trips required to deliver resources in the MPFA
and the MPFAT. The colored squares indicate the locations of collection zones.
The numbers in collection zones indicate the average depot trips required to deliver
resources. Each experiment is replicated 60 times. The data is from the third set
of experiments in Prediction I. There are 16 collection zones in the MPFA and 20
collection zones in the MPFAT. The central collection zone is not shown since no
depot trip is required on it.

predicted, but the collision-free transportation scaling exponents are close to the

2/3 prediction (see Fig. 6.3b). These results again validate that biological scaling

theory predicts simulated robot foraging rates, at least when we ignore collisions in

transportation.

However, in Set III, where we set a fixed foraging region size, fixed velocity, but

set the carrying capacity of robots to match supply and demand (as stipulated in

Assumption 8), then the hierarchical transportation network implemented in the

MPFAT results in a much higher scaling exponent 0.95 without collisions and 0.86

with collisions (see Fig. 6.3c).
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(a) The beginning scenario of the MPFA in ARGoS

(b) The scenario of the MPFA at 10 minutes in ARGoS

Figure 6.6: The scenarios of the MPFA in ARGoS simulation. The configuration is
the third one in Set I for Prediction I. 64 searching robots (with green LEDs), 48
depots (with red LEDs), 256 uniformly distributed resources (black dots), and 17
collection zones (green circles) are in a 16×16 m arena. Blue lines indicate paths for
delivering resources. Yellow dots indicate locations where robots collected resources
in their last trip. Robots remember those locations and they may return to those
locations using a process called site fidelity.
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(a) The beginning scenario of the MPFAT

(b) The scenario of the MPFAT at 10 minutes

Figure 6.7: The scenarios of the MPFAT in ARGoS simulation. The configuration is
the third one in Set I for Prediction I. 21 collection zones are in a 16× 16 m arena.
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Fig. 6.8 shows the collision rate increases slowly in the MPFA and it does not

increase in the MPFAT. The collision rates are also shown implicitly by the delivery

delay shown in Fig. 6.9. The number of depot trips required is higher in collection

zones closer to the center in the MPFA. More robots traveling to the center cause

more collisions around the center (see Fig. 6.10). In the MPFAT, robot depots carry

large numbers of resources, reducing the number of robots required to transport

resources over long distances. There is less crowding in the MPFAT (compared

to the MPFA) because the collision rate within a constant robot density (0.0008)

and the number of robots to each collection zone, including the largest at the center,

equals the branching factor b regardless of swarm and arena size (see Fig. 6.11). This

reduces collisions in the MPFAT, making it more robust. Therefore, the performance

per robot in the MPFAT is nearly constant (0.86). If there are no collisions in

transportation, the delivery delay in the MPFA∗ is slightly high in the collection

zones closer to the center and there is almost no delivery delay in the MPFA∗T) (see

Fig. 6.12). Their performance per robot is nearly constant (0.95) as shown in Fig. 6.3.

This approach essentially aggregates collected resources in larger depots (where

depot capacity is set according to scaling theory), similar to the way in which blood

is aggregated in larger vessels like the aorta in cardiovascular networks. However,

biological networks face a constraint on the size of blood vessels (their total volume

must be equal to a constant fraction of the mammal volume (West et al., 1997). In

contrast, the robot foraging transportation network can increase capacity (up to the

largest possible depot) to accommodate the increase in transport required in larger
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Figure 6.8: The collision time per robot, per minute for the MPFA and MPFAT in
Prediction III. The robot density is nearly constant (0.03) in all arenas. The data is
from Fig. 6.3(c). Results are for 100 replicates.

Figure 6.9: The number of depot trips required to deliver resources in the MPFA
and the MPFAT. The configuration is the second one in Set III for Prediction III.
17 collection zones are in the MPFA and 21 collection zones are in the MPFAT. The
arena size is 20× 20 m.
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(a) The beginning scenario of the MPFA.

(b) The scenario of the MPFA at 10 minutes

Figure 6.10: The scenarios of the MPFA in ARGoS simulation. The configuration is
the second one in Set III for Prediction III. 17 collection zones are in a 20 × 20 m
arena.
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(a) The beginning scenario of the MPFAT

(b) The scenario of the MPFAT at 10 minutes

Figure 6.11: The scenarios of the MPFAT in ARGoS simulation. The configuration
is the second one in Set III for Prediction III. 21 collection zones are in a 20× 20 m
arena.
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Figure 6.12: The number of depot trips required to deliver resources without colli-
sions in the MPFA∗ and the MPFA∗T.

arenas and mitigate the increase of collisions to ensure that delivery capacity keeps

up with a constant per-forager collection rate.

This work demonstrates the viability of an artificial bio-inspired transportation

network in robot swarms. We predict the required number of robots, and the number

and size of depots for a given size arena to achieve scale invariant foraging. We are

building a prototype depot so that we can test MPFAT in real robots, following the

experimental protocol we developed to go from the ARGoS simulation to a ROS

implementation (Lu et al., 2019a).
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mance of a Deterministic and a Bio-inspired Stochastic Foraging Strategy, IEEE/RSJ

International Conference on Robotics and Automation (ICRA), May, 2019.

7.2 Abstract

Designing resource-collection algorithms for relatively simple robots that are effective

given the noise and uncertainty of the real world is a challenge in swarm robotics.

This paper describes the performance of two algorithms for collective robot for-

aging: the stochastic central-place foraging algorithm (CPFA) and the distributed

deterministic spiral algorithm (DDSA). With the CPFA, robots mimic the foraging

behaviors of ants; they stochastically search for targets and share information to re-

cruit other robots to locations where they detect multiple targets. With the DDSA,

robots travel along pre-planned spiral paths; robots detect the nearest targets first

and, in theory, guarantee eventual complete coverage of the arena with minimal over-

lap. We implemented both algorithms and compared their performance in a Gazebo

simulation and in physical robots in a large outdoor arena. In the Gazebo simu-

lation, the DDSA outperforms the CPFA. However, in real-world experiments with

obstacles, collisions, and errors, the movement patterns of robots implementing the

DDSA become visually indistinguishable from the CPFA. The CPFA is less affected

by noise and error, and it performs as well as, or better than, the DDSA. Physical

experiments change our conclusion about which algorithm has the best performance,

emphasizing the importance of systematically comparing the performance of swarm

robotic algorithms in the real world.
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7.3 Introduction

Robot swarms are particularly useful in spatially distributed tasks such as central

place foraging, in which robots search for targets and transport them to a collection

zone (Winfield, 2009b; Brambilla et al., 2013). Swarm foraging algorithms often

mimic the stochastic behaviors of social animals, particularly social insects such as

ant colonies (Şahin, 2005; Hecker and Moses, 2015; Ferrante et al., 2015).

In this work, we conduct physical and simulated experiments to compare two

collective robot foraging algorithms: the Central-Place Foraging Algorithm (CPFA)

and the Distributed Deterministic Spiral Algorithm (DDSA). In previous work, these

algorithms were compared using the Autonomous Robots Go Swarming (ARGoS)

simulator, and it was found that simple robot swarms operating in obstacle-free en-

vironments collected resources faster using the DDSA compared to the CPFA (Fricke

et al., 2016), at least for swarm sizes of up to 20 robots.

The foraging performance of robots can be measured by the number of targets

retrieved in a fixed time. It is important to evaluate collective algorithms in physical

robots (Brambilla et al., 2013) because it is not feasible to simulate all aspects of a

physical environment (Frigg and Hartmann, 2018), and foraging performance can be

altered by variable conditions and by sensor and actuator noise that affect localiza-

tion, object retrieval, and collision avoidance. All of these components of the “reality

gap” can alter the performance of algorithms real robotic experiments compared to

simulations (Jakobi et al., 1995; Mouret et al., 2013; Ligot and Birattari, 2018).

Predicting the performance of swarm algorithms in real robots is especially chal-

lenging because interactions among robots are inherently difficult to predict. Deter-

ministic algorithms may become effectively random when operating in environments
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with unexpected interactions. Thus, while simulations are useful for initial evalu-

ations of the viability of algorithms, they are insufficient for the ultimate goal of

predicting how algorithms will perform when physical robots interact in the unpre-

dictable conditions of environments they are placed in.

This work implements two swarm foraging algorithms in Robot Operating System

(ROS). We systematically compare the foraging performance of the DDSA and the

CPFA by measuring how quickly targets are collected in fixed time. We designed a

set of experiments that we replicated in a Gazebo simulation (Koenig and Howard,

2004) and in physical robots called “Swarmies” that search for, pick up, and collect

physical objects (which we call targets) in outdoor arenas with various placements

of targets and obstacles.

In previous work we compared the DDSA and the CPFA in intentionally simple

simulations implemented in the foot-bot robot in ARGoS (Fricke et al., 2016). In

contrast, in this paper, we describe simulations implemented in Gazebo that include

more realistic physical processes that represent the localization, navigation, sensing,

object pickup and drop off, and collision avoidance of the Swarmie robots that we

implement in physical experiments. Still, our physical experiments include variability

inherent to outdoor environments and sensor and actuator noise that is not fully

simulated in our Gazebo simulations.

The major contribution of this work is to compare a deterministic and a stochas-

tic swarm foraging algorithm in simulations and in physical robots. Our goal is to

test whether the most efficient algorithm in the simulation is also the most efficient

in physical experiments. We implement both algorithms in physical hardware and

show that the performance of each algorithm is impacted in different ways by the

noise and error of the physical world. The conclusion we draw from comparing the
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two algorithms is: the deterministic DDSA is more efficient than the CPFA in the

simulation. However, the stochastic CPFA marginally outperforms the DDSA in

physical experiments. The performance of the DDSA is more degraded by condi-

tions in the physical world, suggesting that the CPFA is more tolerant of real-world

conditions.

This chapter is organized as follows. The related work is presented in Section 7.4.

Sections 7.5 and 7.6 summarize the CPFA and DDSA algorithms. Section 7.7 de-

scribes the physical robots and physical and simulated environments. Section 7.8

describes the experiments, with results reported in Section 7.9. Section 7.10 dis-

cusses the strengths and limitations of stochastic and deterministic search strategies.

7.4 Related work

Though swarm robot foraging has been studied for decades, replicated experimental

analyses that compare different algorithms in simulation and in real robots are rare,

particularly in outdoor environments (Winfield, 2009a; Brambilla et al., 2013). Many

task partitioning and foraging algorithms have been simulated in the STAGE (Gerkey

et al., 2003; Liu et al., 2007; Castello et al., 2016), the ARGoS (Ferrante et al.,

2015; Pini et al., 2014; Buchanan et al., 2016b) and Microsoft(R) Robotics Devel-

oper Studio (MRDS) (Hoff et al., 2010). Physical foraging experiments have been

conducted with foot-bots equipped with grippers, IR sensors, and cameras for for-

aging tasks in (Pini et al., 2014; Buchanan et al., 2016b) and custom platforms like

MinDART (Rybski et al., 2008).

In practice, many complex physical experiments with swarm robots require hu-

man support (Rosenfeld et al., 2017) or simulation of some aspect of the forag-
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ing task. For example, the Robotarium provides a testbed for remotely accessible

physical robots (Pickem et al., 2017), but localization is governed by an overhead

camera. Other studies simulate physical pickup and drop-off of objects. For exam-

ple, (Brutschy et al., 2015; Castello et al., 2016) uses a group of e-puck robots and

our prior work (Hecker and Moses, 2015) used iAnt robots which detect targets but

do not physically pick them up. Kilobots can operate autonomously to push items,

but they have relatively limited mobility and only operate in controlled laboratory

environments (Rubenstein et al., 2012; Jones et al., 2018). Collaborative warehouse

robots may require buried guide-wires or visual markers to navigate (Enright and

Wurman, 2011). Swarmanoid demonstrates an innovative heterogeneous physical

swarm robotics system whose robots collaborate to solve a complex object retrieval

task (Dorigo et al., 2013).

Swarmie robots allow us to conduct automated, replicated experiments to test

autonomous collective foraging. The Swarmies physically pick up and drop off targets

and operate outdoors under variable ground and light conditions. These factors

are important sources of error and noise in our experiments. However, Swarmies

have some limitations as a swarm robotics platform. They use GPS, a global (but

still noisy) signal, to mitigate the localization problem. We also occasionally use

human intervention to prevent robots from leaving the foraging arena. Finally, while

Swarmies can operate in larger swarms, the experiments here are with 4 robots.

7.5 Central Place Foraging Algorithm: CPFA

With the CPFA, robots mimic the foraging behaviors of Pogonomyrmex desert seed-

harvester ants, social insects which have evolved to cooperate without centralized
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control (Gordon and Kulig, 1996; Flanagan et al., 2012). Fig. 7.1a shows how indi-

vidual robots transition between states in the CPFA based on various conditions (fur-

ther detailed in (Hecker and Moses, 2015)). Robots start from the central collection

zone and travel towards a randomly selected location (State A) until they switch to

searching using an uninformed correlated random walk (Fewell, 1990) (State B). If a

robot detects targets (Condition 3), it collects the closest one (State D) and measures

the number of additional targets within its camera view by rotating 360° (State E).

The robot uses the measured targets to decide whether to create a ”pheromone way-

point” which adds the location and the strength to a list, mimicking ant pheromone

trails (Sumpter and Beekman, 2003; Jackson et al., 2007; Lu et al., 2016a). The

strength of waypoints decreases over time and waypoints can be added to the list by

other robots. Robots communicate pheromone waypoints and may select waypoints

probabilistically ranked by strength at the nest.

The robot carries its collected target to the collection zone and drops it off (State

F). If a robot does not find a target, it can, give up its search (Condition 6) and

return to the collection zone (State F). A robot at the collection zone can share

pheromone waypoints with other robots at the nest. Then, the robot takes its next

foraging trip. It either selects a random location (Condition 1) or selects a previously

visited location (Condition 7, State G) accomplished by either following a pheromone

waypoint or by returning to the last location it found a target, a process called site

fidelity. The probabilities of creating a pheromone waypoint and of using site fidelity

are drawn from a Poisson distribution dependent on the number of targets observed at

that location. When robots return to locations via either site fidelity or pheromone-

following (Condition 8), they search the area thoroughly with an informed walk (state
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C) which is characterized by moving more randomly, and therefore searching more

thoroughly, than in an uninformed walk.

CPFA robots make real-time decisions based on a set of 7 real-valued parameters

specifying the probabilities that govern the transitions in Fig. 1a. The CPFA param-

eters were selected by a genetic algorithm (GA) to maximize the number of collected

targets in (Hecker and Moses, 2015). This is not feasible given the slow run-time of

the Gazebo simulations or physical robots. Instead, we hand-tuned the parameters

(included in our Github repository) based on the previously evolved results. With

the perfect evolved parameters, the performance of the CPFA should be a slightly

better than the CPFA with hand-tuned parameters. However, this does not affect

the conclusion in this work.

7.6 Distributed Deterministic Search Algorithm: DDSA

In contrast to the CPFA, the DDSA takes a geometric approach which exploits the

optimality of spiral search demonstrated for single agents (Bentley et al., 1980; Baeza-

yates et al., 1993) generalized to a swarm of robots. Robots using the DDSA start

near the central collection zone and search for targets by following a pre-planned pat-

tern of interlocking square spirals. When operating without error, noise, or collisions,

the DDSA guarantees that robots will find the nearest targets first which minimizes

transport cost. This provides complete coverage of an area while minimizing repeated

searches of the same location.

Each robot’s path is calculated based on the number of robots r, the cth circuit

(where a circuit is one revolution of the spiral), and the distance g between the inter-

locking spirals. The distance g depends on the target detection range of the robot.
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For the Swarmie robots in these experiments, g = 0.41 m. Eq. (7.1) and Eq. (7.2)

calculate the number of steps (F ) of each spiral path to the north (N) and south (S)

directions by each of i robots on circuit c. c increases by one if robots complete their

current circuit. Distances travelled east (E) and west (W) are similarly calculated.

By solving the recurrence relation given in (Fricke et al., 2016) we can simplify the

DDSA formulation to the following two equations:

FN
c,i = FE

c,i =


i if c = 1

(2c− 3)r + 2i if c > 1

(7.1)

F S
c,i = FW

c,i =


2i if c = 1

FN
c,i + r if c > 1

(7.2)

Fig. 7.1(b) shows how each individual robot transitions through a series of states

as it forages for targets. The robots are initially distributed around the collection

zone. Each robot calculates waypoints along its arm of the distributed spiral path

(Condition 1). Once it is complete, each robot travels along its planned path and

searches for targets (State A). Once a robot finds a target (Condition 2), it picks it

up (State B). The robot carries the target directly back to the collection zone (State

C).

In each subsequent foraging trip, the robot returns directly to the last location

where it found a target (effectively implementing site fidelity for every foraging trip)

where it resumes its spiral search. This relatively simple algorithm guarantees that
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the closest targets are found first, and due to site fidelity a robot will repeatedly

return to a location so that it efficiently collects clusters of targets.

(a) States in the CPFA (b) States in the DDSA

Figure 7.1: Robot states in the CPFA and DDSA.

7.7 Description of Simulated & Physical Robots

Our experiments run in a Gazebo (Koenig and Howard, 2004) simulation and in

outdoor arenas using the Swarmie robot platform, all of which were custom designed

and built for the NASA Swarmathon swarm foraging competition (Ackerman et al.,

2018).

Gazebo simulates physical interactions among robots, targets, obstacles, and the

arena. In Gazebo, we carefully construct models of real robots, obstacles, and tar-

gets in an arena size scaled to match the 14 m× 14 m arenas used for our physical

experiments.

Each Swarmie robot is equipped with a front web camera, three pairs of ultra-

sound range sensors, and a gripper for target pickup and drop off (see Fig. 7.3a).

The camera has a field of view with a 1 rad arc and range of 1 m. Objects detected
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within 0.6 m by ultrasounds trigger a simple obstacle avoidance routine. The sensors

detect collisions every millisecond. The robot senses the location of the object and

turns left or right in order to avoid the collision. A diagnostic package monitors

hardware components and gives alerts to users. Complete build instructions for the

Swarmie robot are publicly available1, and source code of the CPFA2 and DDSA3

are available on Github.

The targets collected by the robots are soft cubes with an AprilTag (2D barcode

fiducials developed for robotics applications) (Olson, 2011) on each face. For the

first two sets of experiments, targets were distributed in the arena in clusters of

various sizes with locations determined at random. The collection zone in the center

of the arena was a square area with AprilTags on its boundary. The camera detected

the AprilTags which were translated into a location in space relative to the robot’s

position. This allows the robot to pick up targets in the arena and drop them

off in the collection zone. Physical robots used a gripper with an actuated wrist

for grabbing and dropping targets, which was also simulated in Gazebo. Target

collection is an error-prone complex task. The average number of attempts to pick

up a target is 1.85± 1.2 in simulation and is 1.96± 1.2 in physical experiments. In

physical experiments, although robots attempted to visually confirm that a target

was successfully picked up, robots sometimes drop targets or detect that a target was

collected when it was not. On rare occasions targets were dropped after a collision

or robots would steal targets from each other. More commonly, once targets were

deposited in the collection zone, robots could accidentally push them out again. We

manually counted and then removed collected targets from the collection zone to

1https://github.com/BCLab-UNM/Swarmathon-Robot
2https://github.com/BCLab-UNM/CPFA-ROS
3https://github.com/BCLab-UNM/DDSA-ROS

146

https://github.com/BCLab-UNM/Swarmathon-Robot
https://github.com/BCLab-UNM/CPFA-ROS
https://github.com/BCLab-UNM/DDSA-ROS


avoid these accidents. Recognition of targets and the collection zone was impacted

by light conditions, particularly the apparent contrast between shadows and lighted

areas. While the Gazebo simulation was quite faithful to the rigid body dynamics

of the robot and targets, it could not capture subtle effects of lighting and the full

range of physical interactions between robots, targets, and the environment.

Localization is a challenge in swarm robotics, particularly with low-cost robots

using error-prone sensors and actuators. The robots in these experiments use an

extended Kalman filter (EKF) to fuse Global Positioning System (GPS) information

and odometry from an Inertial Measurement Unit (IMU) and wheel encoders to de-

termine position, orientation, and the locations of the collection zone and pheromone

waypoints. We estimated the average accuracy of GPS localization to be 0.5 m, and

we estimated how the IMU and encoders accumulate drift over time by collecting

the from our experiments.

Robots use their front web cameras to detect targets, and when close to the

collection zone, their cameras detect the AprilTags on the boundary of the collection

zone. When robots arrive at the collection zone, they update their locations. To

approximate the physical experiments, the magnitudes of the noise are generated

by Gaussian distributions N (0.4, 0.5) on GPS receivers, N (0, 0.005) on ultrasound

sensors, N (0, 0.007) on cameras, and (N (0.35, 0.35) on accelerators, N (0.5, 0.5) on

angular rate, and N (0, 0.01) on heading) of IMUs.

The architecture of the CPFA and DDSA implementation in ROS is shown in

Fig. 7.2. Our Rover GUI either ran on a computer hosting Gazebo for a simulated

swarm or connected to the physical robots in the swarm through a wireless net-

work. The GUI acted as a communicator between users and robots. The results of
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the interaction between robots and objects in the simulation were sent to the ROS

adapter.

Figure 7.2: The architecture of the CPFA and DDSA in ROS.

We deconstructed the robot control system into a series of functional controllers.

Each controller was assigned a specific behavior. To fairly compare the CPFA and

DDSA, we used the same implementation of the pickup, dropoff, and obstacle avoid-

ance controllers. The deterministic spiral search and the ant-like stochastic search

were implemented in the search controllers of the CPFA and DDSA, respectively.

Site fidelity and pheromone controllers were only defined in the CPFA. Site fidelity

in the DDSA was incorporated into the search controller as a feature. Different

priorities were assigned to controllers in different states. Higher priority controllers

subsumed the roles of lower ones by suppressing their outputs. Robots switched

controllers when they change their states. The logic controller handled transitions

among all the controllers.

The ROS implementations of the CPFA and DDSA were directly loaded onto the

Swarmie onboard Linux computer for physical robot experiments (see Fig. 7.3b). A
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demonstration video showing the CPFA and DDSA in the simulation and physical

experiments are available on our YouTube playlist4.

7.8 Experimental Setup

We evaluated four experimental configurations to measure the performance of the

foraging algorithms. In the first two configurations, 128 targets were placed uniformly

in a power-law distribution of cluster sizes which emulated the distribution of many

resources in natural environments (Ritchie, 2009). The targets were placed in 1

cluster of 4 × 8 cubes, 2 clusters of 4 × 4 cubes, 8 clusters of 2 × 2 cubes, and 32

single cubes with each cluster location chosen at random. The first configuration

had no obstacles, while the second configuration had the same distribution of targets

and 4 obstacles (1 m× 0.5 m× 0.5 m synthetic rocks). In the third configuration,

128 targets were placed in lines along the edges of the four arena walls (2 m). In the

fourth configuration, four 4× 8 clusters of targets were placed in the four corners far

(7.43 m) from the collection zone. The third and fourth configurations were designed

to be more challenging with targets far from the center with no obstacles. In every

experiment we placed 4 robots and a collection zone in the center of a 14 m× 14 m

arena. Robots foraged for 20 min in each experiment.

Table 7.1 summarizes the configurations and replicates of the experiments.

Fig. 7.3a illustrates an example setup with obstacles in simulation while Fig. 7.3b

shows the same setup in a physical experiment. We replicated all experiments 30

times in simulation. Physical experiments were repeated 15 times for the first two

configurations (in which the locations of targets were chosen at random) and 5 times

4https://tinyurl.com/yceu6p9b
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for the third and fourth configurations (in which targets were placed in fixed loca-

tions).

Table 7.1: Experimental Setup and Replicates

Target Simulation Physical
Config. Distribution Obst. replicates replicates

1 Power law No 30 15
2 Power law Yes 30 15
3 Edges No 30 5
4 Corners No 30 5

(a) Simulated Experiment (b) Physical Experiment

Figure 7.3: Simulated and Physical experiments with 4 robots, 128 cubes, 4 obstacles
and one central collection zone. Configuration 2 is shown, Target cluster sizes are
described in Table 1, obstacles are placed 3 to 5 m from the center, and the exact
location of each obstacle, target and target cluster is chosen at random.

7.9 Results

We used interquartile-range notched box plots to visualize the statistical relationships

between experiments (Mcgill et al., 1978). Non-overlapping notches indicate the
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measurements were drawn from different distributions at the 95% confidence level.

Results were compared using the Mann-Whitney U test for simulated experiments

and the student’s t-test for physical experimental results (see (De Winter, 2013), the

t-test for small sample sizes). The statistical significance is indicated by asterisks in

figures (*** indicates p < 0.001, ** indicates p < 0.01m, * indicates p < 0.05, and

’NS’ indicates no statistical difference). The notches in the boxes indicate the 95%

confidence interval of the medians.

The foraging performance of the DDSA and CPFA in simulated and physical

experiments, with and without obstacles, is shown in Fig. 7.4. In simulations, the

median number collected by the DDSA was 18% higher than the CPFA without

obstacles (the U test two-tailed p-value was p = 0.0002), and it was 26% higher than

the CPFA with obstacles (p = 0.01). In physical experiments, the CPFA was 25%

higher than the DDSA (p = 0.04) without obstacles and there was no significant

difference with obstacles.

In the simulation, when resources were placed in the corners (configuration 4) the

DDSA collected 26% more than the CPFA, with no difference between the two algo-

rithms with resources placed along the edges of the arena. There was no significant

difference between algorithms in either configuration 3 or 4 in physical experiments

(shown in Fig. 7.5).

Fig. 7.6 summarizes the foraging performance across all experiments (240 simu-

lations and 80 physical experiments). The DDSA collects 20% more targets than the

CPFA in simulation, but there is no significant difference in physical environments.

DDSA performance decreases more dramatically in physical experiments: the DDSA
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Figure 7.4: Foraging performance of the DDSA and CPFA with and without obsta-
cles, for 30 trials in simulation, and 15 trials in physical experiments using configu-
rations 1 and 2 (shown in Fig. 7.3).

Figure 7.5: Foraging performance with cubes lined to the edges and clustered in
corners.
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is 163% better in simulated vs. physical experiments, while the CPFA is only 95%

better in simulated vs. physical experiments.

Figure 7.6: Overall foraging performance with all experiments.

Fig. 7.7 shows traces of robots executing the CPFA and DDSA in different con-

figurations. Panels (a) to (f) demonstrate baselines where each algorithm ran for

5 min without targets and obstacles. The traces in panels (a) and (b) illustrate the

stochastic search pattern of the CPFA and the interlocking spiral pattern of the

DDSA in simulation. The search patterns are still clear even with some drift in

physical experiments without targets or obstacles (see (e) and (f)). Panels (c) to (h)

demonstrate traces given targets and obstacles. In the simulations (see (c) and (d)),

the characteristic search patterns of the CPFA and DDSA are still evident, even

though they are disrupted by direct paths to and from targets and empty regions

outlining where targets are placed. However, in panel (h), the deterministic spiral is

no longer visible because it is disrupted by robots interacting with each other, tar-
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gets, and obstacles. In real environments with obstacles, the traces from the DDSA

appear as random as those from the CPFA.

(a) No targets or obsta-
cles, CPFA sim.

(b) No targets or obsta-
cles, DDSA sim.

(c) Targets and obsta-
cles, CPFA sim.

(d) Targets and obsta-
cles, DDSA sim.

(e) No targets or obsta-
cles, CPFA phy.

(f) No targets or obsta-
cles, DDSA phy.

(g) Targets and obsta-
cles, CPFA phy.

(h) Targets and obsta-
cles, DDSA phy.

Figure 7.7: Odometry traces of 4 robots in simulation (left column) and physical
experiments (right column). Each robot path is a different colored line. Obstacles
are not shown, but the empty areas in (c) and (d) imply their location.

7.10 Discussion

In a perfect environment without error or noise the DDSA outperforms the CPFA by

collecting more targets in a fixed time period. In the CPFA, the movement is random

and some locations are visited multiple times while others are never visited at all.

The DDSA guarantees complete coverage of the entire arena given sufficient time,

and each location is visited only once. Our experiments in simulation confirm this
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expectation: the DDSA outperforms the CPFA (Fig. 7.4), even when the simulation

includes physical interactions, collision avoidance, and some sensing and localization

error. Even with resource placements far from the arena center, specifically designed

to be difficult for the DDSA, it performs as well as or better than the CPFA in

simulations (Fig. 5)

Not surprisingly, foraging performance was higher in both algorithms in simu-

lations compared to physical experiments (Fig. 7.4 and Fig. 7.5). In prior ARGoS

simulations (Fricke et al., 2016), the DDSA collected targets 34% faster than the

CPFA. Here our simulations include more realistic object pickup and dropoff and

the complex physics of the Swarmie platform. In these simulations, the DDSA per-

formed only 20% better than the CPFA (Fig. 6). The DDSA was no better than the

CPFA in physical experiments, and in fact, the CPFA outperformed the DDSA in

physical experiments without obstacles (Fig. 7.4). As more realism is included, the

CPFA becomes as good as, or better than, the DDSA.

To understand why stochasticity affects performance, we recorded odometry

traces of robots in simulation and physical robots. Without targets or obstacles

in the arena, the essence of the stochastic CPFA and the DDSA spirals were evident

in the odometry traces of physical robots (Fig. 7.7(e) and (f)). However, in contrast

to the simulated traces, once targets and obstacles were placed in physical arenas,

the DDSA spirals were disrupted so much that they were no longer distinguishable

in robot paths (Fig. 7.7(g) and (h)).

There are multiple factors that can cause the deterministic movement of the

DDSA to appear as stochastic as that of the CPFA: noisy sensors, actuator drift,

positional noise from odometry and GPS. The search pattern of the CPFA is also

altered by these factors, but it is less relevant since the CPFA search pattern is
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random by design. The advantage of the CPFA is that it is designed for effective

foraging under the assumption that robot movement is random. Thus, it is less

impacted by real-world factors that degrade the DDSA, to the point of making it

appear effectively random.

Interestingly, the noise in physical experiments generated stochastic robot move-

ment even when the underlying algorithm was deterministic. This suggests that when

robotic algorithms are inspired by biological observations, care should be taken to

understand whether the biological behaviors are inherently stochastic or if they only

appear so because they are observed in noisy natural environments.
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Chapter 8

From Simulation to Physical
MPFAT

Our ARGoS simulations demonstrate that the MPFA with the hierarchical branching

transportation network can reach a scale-invariant foraging performance per robot.

Our ultimate goal is to evaluate the foraging performance of MPFAT in real robots.

Instead of evaluating a large swarm with thousands of physical robots, we will demon-

strate the viability of evaluating a few robots foraging resources in a region and a

depot delivering resources to the central collection zone. If this proof of concept

works in a region, our predictions of scale invariance give us confidence that a large

swarm with multiple depots will scale up linearly in a large real world environment.

In order to implement the MPFAT, searching robots need to be updated to be able

to find depots and drop cubes on depots successfully. In addition, searching robots

need to detect whether depots are fully loaded or not. If so, they communicate with

depots and depots start to deliver resources. Based on our experience, all these can

be simulated and implemented with physical robots.
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8.1 Physical Depot Design

We designed a depot which initially sketched in Simulink, then tested in a cardboard

prototype, and finally built from metal and plexiglases as shown in Fig. 8.1a. This

work was done in collaboration with Tatsuhiro and Takaya from MIE university,

Japan.

We use our existing robot platform, designed by our lab for the NASA Swar-

mathon competition (Secor 2016; Ackerman et al. 2018). The complete build in-

structions for the Swarmie robot are available on GitHub1. Swarmie robots have a

gripper that facilitates the pick up and drop off of cubes. Minor structural modifi-

cations were required in order to convert Swarmie robots into mobile depots capable

of holding multiple (up to 8) collected resources. We have designed depot hardware

and built a prototype which we control with a joystick, but eventually will dump

resources in the collection zone autonomously.

1https://github.com/BCLab-UNM/Swarmathon-Robot
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(a) A physical depot (b) A simulated depot in Gazebo

Figure 8.1: A physical and simulated depot. (a) A physical depot with 8 cubes on its
carriage. The depot is a Swarmie robot equipped with a plexiglass plate. A stainless
steel wire connects the shaft of the plate and a servo motor. The motor controls the
plate to dump cubes. The robot dimensions are 34 × 25 × 22 cm and the carriage
dimensions are 31×24×3 cm. (b) A simulated depot in Gazebo. Its size is identical
to the physical depot.

8.2 Gazebo Simulation

Other swarm algorithms, including the DDSA and the CPFA, have been implemented

in ROS and subsequently tested in Gazebo. Based on our experience with these

existing foraging algorithms, we simulated a MPFA depot with Swarmie robots in

Gazebo (see Fig. 8.1b). We import 3D models of real depots in Simulink to Gazebo.

Gazebo simulates physical interactions among robots, targets, obstacles, and the

arena.

The biggest benefit of implementing the MPFA on Gazebo is that testing is faster

in simulation and code is very easily transferred onto the onboard Linux computer

on the Swarmie robots. The ease of this transfer is evidenced by the successfully

transferred CPFA and DDSA code to Swarmie robots that operated in outdoor

arenas up to 14 x 14 m as described in Chapter 7. The physical experiments of

the CPFA and DDSA showed that Swarmie robots can detect, pick up and drop off

159



cubes, avoid collision, navigate, and return to collection zones reliably in a real world

environment with sensors and actuator errors.

Currently, we imported the 3D model of the physical depot into Gazebo success-

fully. The carriage can load multiple cubes and it can dump cubes into the collection

zone. A scenario of the simulation with multiple depots is shown in Fig. 8.2.

Figure 8.2: A scenario of multiple depots in Gazebo. Four depots with blue covers are
distributed uniformly in a 14× 14 meter arena. Four searching robots are searching
for cubes in the arena. The collection zone is located in the center.

8.3 From Physical to Virtual and Back Again

To demonstrate truly scalable foraging swarms, full implementation of the au-

tonomous dump behaviors of physical robots and depots in an outdoor environment

is the next step. In the initial stage, physical design provides prototypes and models

for simulation. Then, simulating the depot behaviors in Gazebo makes the devel-

opment process faster since programming and testing on hardware directly is time

consuming. The software can transfer to physical depots after the testing in simula-
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tion. Then, the feedback of testing physical depots will refine the simulation again.

A well designed autonomous physical depot will be produced from the development

from the physical robots to simulation back and forth. The physical and simulated

implementation of emergent coordination observed in natural systems and robotic

swarms is also described in Hecker’s work (P. Hecker et al., 2012).

Comparing the performance in physical robots (see Chapter 7) demonstrates the

reality gap between the simulation and physical robots. We expect the results in a

simulation should match those in physical robots. Otherwise, the simulation does

not provide sufficient models. George E. P. Box quotes that all models are wrong,

but some models are useful.

Swarm simulations tend to be minimalistic, so that they include only few relevant

features of robots. Other features are modeled as abstract. When a robotic hardware

is complicated, simulations need to consider more components, including sensors, ac-

tuators, grippers, and etc. These make simulations to tradeoff between the accuracy

and speed. Even with accurate simulations, the reality gap can not be completely

filled (Jakobi et al., 1995). Once physical environments or robot hardware have mi-

nor changes, the accuracy will be affected. However, we have to consider to reduce

the reality gap as much as possible. The solution is ranking features by relevance

and then simulating higher relevant features with more accuracy.

The simulation accuracy can be improved by using collected errors sampled from

real robots as described in the modeling of ARGoS (Pini et al., 2013; Pinciroli et al.,

2018). The MPFAT also demonstrates the possibility of designing a hierarchical

branching transportation network for robot swarms in the 3D world. Instead of

using ground robots, UAVs are used to complete foraging tasks in this scenario. The

number of branches, the path length, and the region size are updated correspondingly.
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However, we design transportation networks in a regular and convex arena. In the

real world, the arena is always irregular. In the future, designing transportation

networks in irregular and non-convex arenas will be challenging.

8.4 Future work

The planned experiments of simulated and physical robots and depots includes the

following steps:

• Searching robots find depots by detecting AprilTags on the boundary of depots.

• Searching robots drop cubes on depot successfully.

• Depots know they are fully loaded (e.g. 8 cubes) by communicating with

searching robots which drop cubes on them.

• Depots drive to the central collection zone and dump cubes into it.

• Depots drive back to their original locations.

The physical experiments will be completed in September and the work will be

submitted to ICRA 2020 conference.
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Chapter 9

Conclusions

9.1 Concluding Remarks

A foraging algorithm should be efficient not only in a small group of robots, but

also in a large swarm. However, the foraging performance decreases when the swarm

increases. More collisions are produced with a larger swarm, and longer travel dis-

tances are required in a larger arena. The foraging performance per robot decreases

when swarm and arena size increases. This phenomenon is called diminishing returns

which is universal in robot swarms. This research presents a scale-invariant foraging

robot swarm in which the foraging performance per robot is linear with swarm and

arena size.

We presented the MPFA to mitigate the diminishing returns. In the MPFA,

multiple collection zones are distributed uniformly in a foraging arena rather than one

central collection zone in the CPFA. Robots always return to their closest collection

zones for delivering resources. Collisions are distributed to multiple collection zones
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rather than aggregated around a central collection zone in the CPFA. Our results

demonstrate that the MPFA improves foraging performance, mitigates congestion,

and reduces travel distances. However, the foraging performance per robot of the

MPFA decreases when the swarm size is very large. Ideally, the foraging performance

per robot is linear with the swarm size. Inter-robot collisions and long travel distances

are a major challenge in scaling robot swarms.

Our solution is introducing the MPFAT with a bio-inspired hierarchical trans-

portation network upon the MPFA. Its scalability is achieved with the transporta-

tion network inspired by mammal cardiovascular networks. In the MPFAT, depots

travel between two collection zones to deliver resources. A constant number of de-

pots travel to the central collection zone which reduces the local robot density in

the center. The hierarchical transportation network minimizes travel distances of

depots and mitigates collisions. Therefore, it improves the foraging performance and

scalability.

We predict the scaling exponents in robot swarms with a simplified model (a

constant delivery velocity) and a biological inspired model (the velocity increases

with the arena size). However, biological systems are limited to sublinear scaling.

We can build upon biological scaling principles to design a scale-invariant foraging

swarm. Biological transportation networks have constraints on the velocity of blood

cells and the size of blood vessels. Their total volume must be equal to a constant

fraction of the mammal volume (West et al., 1997). In contrast, the capacity of

delivering robots can increase to ensure that delivery capacity matches foraging rate

in the robot foraging transportation network. This approach essentially aggregates

collected resources in larger depots where capacity is set according to the structure of
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the hierarchical branching transportation network, much the way blood is aggregated

in larger vessels like the aorta in cardiovascular networks.

This work demonstrates the viability of an artificial bio-inspired transportation

network in robot swarms. The transportation network is optimized when the delivery

rate is equal to the foraging rate. Therefore, we can predict the required number of

robots, depots, collection zones, and the delivery capacity for a given size arena to

achieve scale invariant foraging.

The depots with larger capacities is the analogy to the larger vessels in organisms.

However, there are fewer large depots than small depots. Consequently, there will

be fewer single depot failures in the new model. Though the failure of a single large

depot will cause a major problem, we can have more monitoring on larger depots.

It is more efficient to monitor on a small number of large depots than on a large

number of small depots.

9.2 Broader Impact

In biology, scaling theory investigates how efficiently targets can be moved through

spatial networks (West et al., 1997; Banavar et al., 2010; Savage et al., 2008). Scaling

theory makes predictions beyond individual organisms, to explain the efficiency of ant

colonies (Hou et al., 2010), societies (Moses and Brown, 2003; Brown et al., 2011), and

even computer chip design (Moses et al., 2016). On one hand, our MPFAT validates

the generalized formula of scaling exponent D/(D + 1) in 2D robotic systems. This

advantage is particularly apparent when swarm size and arena size are very large. On

the other hand, our work impacts other research. Here we list some work impacted

by our scalable robot swarms.
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Autonomous robot taxis: Autonomous self-driving cars attract more and more

attention in recent years. They are supposed to eliminate some of the risks of hu-

man error, particularly because their sensors are always paying attention to their

surroundings. Uber, Lyft, and Waymo are prime ride-hailing competitors in the U.S.

In 2018, Waymo received permits to begin offering robot taxi service in and around

Phoenix, Arizona. Our MPFAdynamic brings a solution to the allocation of robot

taxis efficiently. We expect robot taxis travel shorter distances to serve passengers.

Robot taxis are allocated to areas which are computed by the number and locations

of taxi service requests in those areas. They are allocated dynamically to match the

service requests.

Autonomous supply chain systems: The success of this work also provides a

distributed approach rather than a centralized approach to the supply chain of the fu-

ture (Akanle and Zhang, 2008). It is likely to see the continued growth of autonomous

robots in these areas. Autonomous robots have a strong presence already in man-

ufacturing, final assembly, and warehousing. With the hierarchical transportation

network, the locations of warehouses are determined. The transportation perform-

ance and the number of warehouses and delivering robots will be predicted. The

supply chain will have the following features.

• Scalability: Every robot does its jobs just as fast no matter how big the problem

is.

• Minimize idle time: No robot is ever waiting for another robots.

• Minimize storage space and delivery delay: No extended cargo stay in ware-

house and is not delayed in transportation from factories to destinations.
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Charging in robots: An automatic recharging mechanism is a crucial compon-

ent in robotics (Pickem et al., 2017). Our decentralized model is an efficient solution

to the charging problem in robot swarms. In the centralized model, all robots have

to travel long distances back to the central station for charging. Robots fail on the

way if there is a large amount of congestion around the central station. Failed ro-

bots block the way to the central charging station and cause more failures. In the

decentralized model, multiple charging stations are distributed into collection zones.

Robots travel a short distance back to the closest charging station. If there is a fail-

ure, it does not affect the entire swarm. Robots still can find other charging stations.

Even if a charging station fails, it only causes cascading failures on that branch. The

charging is more efficient in the decentralized model and it is more robust relative

to robot failures.

Communication manners in robots: As the swarm size grows, it is inefficient

if every robot connects with the central server. Based on the distributed hierarch-

ical transportation network, the communication manner of robot swarms will transit

from the centralized manner to the distributed manner. In the centralized com-

munication, robots connect with the central server. The central server has a high

communication workload and it has a high risk of failure. In the distributed manner,

robots communicate with distributed servers in their communication range locally.

Distributed servers communicate with servers in next hierarchical levels. The com-

munication workload is distributed to multiple servers. If a server experiences failure

from a cyber attack, mobile robots have a chance to communicate with other servers

close to them. The communication network is more scalable and robust with respect

to communication workload.
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Taken as a whole, this dissertation presents a comprehensive scalable foraging

swarm robotics system. Although it demonstrates the viability of scalable swarm

robotics in an academic research laboratory, this work provides a foundation for

designing and implementing scalable robot swarms that can work in some real world

applications. As humans explore more dangerous and distant new worlds, there will

be several projects underway that are sending robots where humans dare not tread.

Thousands of robots are deployed into the ocean depths and extra-planetary surfaces.

Successful exploration requires large robot swarms that work efficiently in the real

world.
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