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Abstract

Neuroimaging is a growing domain of research, with advances in machine learning having

tremendous potential to expand understanding in neuroscience and improve public health.

Deep neural networks have recently and rapidly achieved historic success in numerous

domains, and as a consequence have completely redefined the landscape of automated

learners, giving promise of significant advances in numerous domains of research. De-

spite recent advances and advantages over traditional machine learning methods, deep

neural networks have yet to have permeated significantly into neuroscience studies, partic-

ularly as a tool for discovery. This dissertation presents well-established and novel tools

for unsupervised learning which aid in feature discovery, with relevant applications to neu-

roimaging. Through our works within, this dissertation presents strong evidence that deep

learning is a viable and important tool for neuroimaging studies.
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Chapter 1

Introduction

Machine learning has become an integral part of biological and biomedical research, with

automated learners being necessary to address many of the challenges associated with

large and complex data. While offering tremendous power for overcoming data complex-

ity, applications require reducing some of the complexity through domain knowledge, as

most automated learners are unable to process raw, unadulterated data.

While domain knowledge and expertise guides applications, in many domains machine

learning is a tool for exposing unknown structure in or fundamentals of the data. This is es-

pecially true in neuroscience research, as domain knowledge is still relatively incomplete

and only peripherally understood from a long-running and combined effort from physio-

logical, psychological, and epidemiological studies. For example, intrinsic networks (INs,

Biswal, Zerrin Yetkin, Haughton, and Hyde, 1995) are hypothetical functionally and spa-

tially coherent regions of the brain which can be verified from temporally coherent blood

oxygenation level-dependent (BOLD) signals obtained from function magnetic resonance

imaging (fMRI). INs can be realized as the solution of a “blind source separation” prob-

lem, where the observed BOLD signal is hypothesized to be a linear mixture of sources.

The most widely-used and successful approach for separating BOLD signal is independent
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Chapter 1. Introduction

component analysis (ICA, Bell and Sejnowski, 1995), and the resulting INs as sources

have been shown to be diagnostic (Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini,

Watkins, Toro, Laird, et al., 2009; Swanson, Eichele, Pearlson, Kiehl, Yu, and Calhoun,

2011; Calhoun, Adali, Pearlson, and Pekar, 2001). However, observations from BOLD

signal are not the only evidence for functionally-coherent, localized regions of the brain;

in fact these regions are an active hypothesis from a variety of biological, biomedical,

and psychological domains, including Voxel-Based Morphometry (VBM) or electroen-

cephalogram (EEG).

Traditionally, the most successful machine learning methods (e.g., ICA) represent only

linear, simple nonlinear (e.g., well-defined non-linear kernels), or other carefully designed

structures. These design choices are usually not primarily in response to any fundamental

structure in the data, but are frequently conveniences that makes optimizations possible.

However, such constraints place a fundamental limit on structural capacity and applica-

bility of these models. Moreover, traditional learning algorithms are strongly reliant on

preprocessing steps, which necessarily remove possibly important information from raw

data. Finally, extending to accommodate limitations in capacity and applicability often

requires creative, hand-tuned, or case-driven approaches, and care must be taken so that

such extensions do not violate constraints that make learning tractable.

Recent advances in deep neural networks, or more broadly in deep learning, have

begun to surpass successful constrained machine learning methods, in many cases com-

pletely replacing them in many important domains. These models can act as universal

function approximators (Hornik, Stinchcombe, and White, 1989) and can generalize over

very large sets of data, making them both more flexible and powerful with large and com-

plex datasets. As a research tool, the added flexibility can reduce the overall dependence

on domain knowledge, allowing for an overall more data-driven approach. Despite these

advantages, applications of deep learning to biomedical data and neuroscience is relatively

new, particularly in the context of feature discovery and studies that reveal ground truth.

2



Chapter 1. Introduction

Figure 1.1: A simple neural network with sigmoid nonlinearities. Edges represent affine
transformations, x 7!Wx + b, where x is a vector in the space of inputs, W is a linear
transformation on the space of inputs, and b is a vector in the space of outputs. The nodes
represent a nonlinear mapping, x 7! �(x), where �(.) is a nonlinear map on the input
space (output space of the affine transformation).

This gives us strong motivation to explore the potential of deep learning in neuroimaging

settings.

1.1 Deep Learning

Deep learning is a subdomain of machine learning where the solution space is made up

of “deep” nonlinear maps. Each map is performed by alternating an affine transformation

with a nonlinear (often exponential) function:

1. Affine transformation: x 7!Wx + b, where x is a vector in the space of inputs,

W is a linear transformation on the space of inputs, and b is a vector in the space of

3



Chapter 1. Introduction

outputs.

2. Nonlinearity: x 7! �(x), where x is a vector in the input space, and �(x) is a

nonlinear map on the output space of the affine transformation to the input space of

the next affine map (if applicable).

A canonical example is the widely used feed-forward network (FFN), a.k.a the multi-

layer perceptron (MLP) model. The objective of a typical FFN is to predict outputs given

inputs for every input-output pair, (i(n),o(n)
) in the data. In FFN models, the relationship

between inputs and outputs is a deterministic mapping, o(n)
= f(i(n);✓), with parameters,

✓. The output of a FFN is computed by L iterative applications of an affine transformation

with parameters ✓l = {Wl,bl} ✓ ✓ and a nonlinear function, �l(.) (Figure 1.1):

o

(n)
l = �l(Wlo

(n)
l�1

+ bl), (1.1)

where o

(n)
0

:= i

(n), Wl is a matrix of “weights” for the l-th layer, and bl is a bias vector.

The non-linearity, �(x), is commonly in the exponential family, such as sigmoid (�(x) =
1

1+exp(�x)
) or hyperbolic tangent (tanh(x)), but other families of functions are also used,

such as softplus (log(1 + exp(x))) or the rectified linear approximation, ReLU (Nair and

Hinton, 2010).

In order to satisfy its objective, a learning algorithm is employed to ensure that the out-

put of the FNN given an input, i(n), “fits” the target, o(n). This is typically realized through

a squared-error or logistic regression loss function. The FFN parameters, ✓, are found by

iteratively applying stochastic gradient descent (SGD) along with back-propagation, which

is simply an application of the chain rule iteratively applied through layers from the error

signal to the input.

Neither neural networks nor back-propogation algorithms are new, however (Schmid-

huber, 2015). Historically, neural networks were not able to deliver on promised power,

as overfitting and local minima made learning difficult, and neural networks were quickly

4



Chapter 1. Introduction

replaced by simpler and more successful models such as support vector machines (SVMs).

It wasn’t until quite recently that the potential of FNN became sufficiently realized, thanks

to hardware advancements with graphic processor units (GPUs) and additional tricks to re-

duce overfitting, such as dropout (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhut-

dinov, 2014).

Now, basic FFNs, convolutional neural networks (CNN, LeCun and Bengio, 1995),

and recurrent neural networks (RNNs) have become dominant in prediction tasks in many

important domains with complex large-scale datasets (LeCun, Bengio, and Hinton, 2015).

CNNs also encode translational symmetries in the data, relaxing the need for registration

or other preprocessing in many practical cases, and have completely supplanted SVMs in

many complex computer-vision tasks (Krizhevsky, Sutskever, and Hinton, 2012). RNNs

allow for modeling of sequential data, and gated extensions such as long short-term mem-

ory (LSTM, Hochreiter and Schmidhuber, 1997) units and gated recurrent units (GRUs,

Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio, 2014) have

been very successful in natural language processing, speech synthesize and recognition,

and translation (Sutskever, Vinyals, and Le, 2014; Cho et al., 2014; Bahdanau, Cho, and

Bengio, 2014; Graves, Mohamed, and Hinton, 2013; Ze, Senior, and Schuster, 2013; Oord,

Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, and Kavukcuoglu,

2016; Graves, 2013). The clear advantage in design flexibility and scalability continues to

show that deep learning approaches are effective and powerful for big data analysis.

1.2 Overview of Dissertation Research

Conceptually, machine learning is split into two related, yet distinct subdomains: super-

vised and unsupervised learning.1 Supervised learning amounts to specialized function

approximation, mapping from a set of inputs to a corresponding set of targets, and training

1Ignoring semi-supervised learning

5



Chapter 1. Introduction

FFNs for classification or regression are an examples of this.

The goal of unsupervised learning is far broader, and I attempt to summarize it as: to

reduce the complexity of the data, oftentimes for the purposes of extrapolating characteris-

tics, learning hidden or latent structure, or gaining understanding. Clustering and density

estimation are examples of unsupervised learning. Unsupervised learning often involves

inference, where, given the data, the task is to find or infer the more likely hidden or latent

structure that describes the data. This is relatively difficult in most practical cases, and

most unsupervised learning methods require some combination of approximations, clever

algorithms, and model constraints.

While recent advances in deep learning have completely changed the landscape of

supervised learning, advancements in unsupervised learning have been slow and infer-

ence still requires strong constraints and tricks. Many of the recent advances in unsuper-

vised learning (Salakhutdinov and Hinton, 2009; Kingma and Welling, 2013; Goodfellow,

Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio, 2014) have yet

to become a part of a general framework in scientific discovery, and this is no less true

in brain research. Our recent work (Hjelm, Calhoun, Salakhutdinov, Allen, Adali, and

Plis, 2014; Hjelm, Plis, and Calhoun, 2016c; Plis, Hjelm, Salakhutdinov, and Calhoun,

2013; Castro, Hjelm, Plis, Dihn, Turner, and Calhoun, 2016) and subsequent work by oth-

ers (Suk, Lee, Shen, Initiative, et al., 2014; Kim, Calhoun, Shim, and Lee, 2016) have

pushed into this relatively unexplored domain of research, but to our knowledge no un-

supervised deep learning approach has yet to achieve widespread acceptance in any one

medical imaging field.

As most of the interesting problems involve inferring latent structure for the sake of dis-

covery within a domain, further advances in unsupervised learning are crucial to biomed-

ical and neuroscience research. Successes of deep learning in supervised settings and

advances in unsupervised settings strongly suggest that advances in structure discovery in

neuroimaging research will involve adaptation of and improvement on established deep

6



Chapter 1. Introduction

learning methods.

Supporting this hypothesis, this dissertation will first introduce unsupervised graph-

ical models that incorporate deep learning approaches in training and inference. Next,

it will cover applications of undirected graphical models to neuroimaging (Hjelm et al.,

2014) as well as some approaches for using recurrent neural networks (RNNs) as gener-

ative samplers. In the fifth chapter, this dissertation will cover directed graphical models,

some applications to magnetic resonance imaging (MRI) data (Hjelm et al., 2016c), and

a novel method for combining RNNs with ICA with an application to modeling dynam-

ics in intrinsic networks (INs) (Hjelm, Plis, and Calhoun, 2016b). In the last section,

our recent work on training directed graphical models using iterative refinement will be

covered (Hjelm, Cho, Chung, Salakhutdinov, Calhoun, and Jojic, 2016a), as well as an ex-

tension to generative adversarial networks (GANs, expanding on work from Goodfellow

et al., 2014).

7



Chapter 2

Generative Models

A generative model is a model that represents the density of data, typically through hidden

parameters that relate the observations to stochastic latent variables. These models are

designed to generate random examples of the data with representative statistics determined

from interactions between latent and observed random variables. The generative objective

is descriptive rather than discriminative, and as a consequence these models are argued to

generalize better than discriminative ones.

A well-known example of a generative model is the Gaussian mixture (GMM), the

objective of which is to fit the data onto a mixture of Gaussian distributions. GMMs are

multimodal, and given enough modes, a GMM can be a universal density approximator

of data. Real-world data can be highly multimodal, so good generative models need to be

able to faithfully model as many modes as is necessary. For instance, the distribution of

handwritten digits from the MNIST dataset (LeCun, Cortes, and Burges, 1998), a relatively

simple dataset, has at least 10 modes, one for each digit, but possibly many more.

While learning a multimodal distribution is often a task in unsupervised learning, the

importance of multimodality is also apparent in supervised tasks as well. The success of

classification depends on prior knowledge of a set of well-defined known modes of the data

8



Chapter 2. Generative Models

Table 2.1: A multimodal match-
ing problem. Table 2.2: A modality represented through

a series of latent variables.

corresponding to the labels, in this case each of the 10 digits. The deterministic mapping

from input observations to output probabilities can be interpreted as inference to a mixture

model of digits.

Multimodality is also necessary to perform supervised structured output prediction

(SOP, Bakir, 2007) tasks, where the data isn’t already broken into distinct classes. Con-

sider the conditional distribution of possible MNIST digits, given half of a digit (Figure

2.1). Given only partial information of a digit, the space of plausible completions should

be multimodal, as many very different digits could plausibly fit the observed half. A de-

terministic FFN can be used to map from the space of the first half to the second half

of the digits, but this output distribution is unimodal, unless explicitly a mixture (Bishop,

1994). However, the number of modes in typical mixture models must be set a-priori (with

exceptions, such as Dirichlet mixtures (Ferguson, 1973)), which can be problematic when

the underlying structure of the data is not well understood. Finally, while more modes can

offer a higher modeling capacity, too many a-priori modes in a mixture model can cause

overfitting as well as make analysis of modal structure difficult.

In many real-world applications, the number of modes may be difficult to prescribe.

Consider the diagnosis of disease, where clinical diagnoses are based on manifestations of

9



Chapter 2. Generative Models

complex and inter-related symptoms, some of which may or may not be detectable for a

given disease, and many of which individually can indicate completely different diseases.

Diagnosis is an active, often life-critical hypothesis, not absolute ground truth, and differ-

ent symptoms may or may not be related to a specific diagnosis or set of diagnoses, de-

pending on the subject. One could design a classifier to predict the diagnosis (mode) given

the symptoms, including as many hand-picked modes chosen from the domain that helps

with our task. However, one must account for every modality that may relate symptoms to

diagnosis and other symptoms, and a researcher can only at best validate their hand-picked

model design rather than discover realizations of novel or unexpected structure.

A probabilistic model that incorporates stochastic latent variables can be used to learn

latent structure and can universally approximate density, even if the latent conditional

densities or priors are unimodal (Sutskever and Hinton, 2008). For instance, introducing

a set of conditionally independent binomial units between the given and the predicted

half of the digit, a model more generally known as a stochastic feed-forward network

(SFFN, Neal, 1990), can model multiple modalities (Tang and Salakhutdinov, 2013) and

are successful in structured output prediction tasks. The number of modes available to

the model is exponential in the number of layers, as each modality is represented as a

combination of dependent latent variables (Figure 2.2). This encourages generality, as

each of the modalities must share common latent structure.

The probabilistic latent variables are what give a generative model the capacity to

model complex distributions, and the multimodality of the data as represented by the

model is distributed across these variables. In general, the density of the data as rep-

resented in generative models with latent variables is a joint distribution with the latent

variables marginalized out: p(x) =

P
h

p(x,h). Training such models depends on the

actual structure of the joint density p(x,h), which usually must be chosen a-priori. Two

types of generative model structures, undirected and directed graphical models (Jordan,

1998), offer some of the highest flexibility in design and the greatest potential for density

10



Chapter 2. Generative Models

estimation.

2.1 Undirected graphical models

An undirected graphical model represents observations with a probabilistic density func-

tion, p(x), where each variable, xi, of N observations, x(n)
= {x(n)

i } ⇠ p(x), are nodes on

an undirected graph. Specifically, the type of undirected graphical model of interest here

is a conditional independence graph, which forms a Markov random field. In a conditional

independence graph, the joint density, p(x) = p(x
0

, x
1

, . . . , xM)

1, can be written as the

normalized product of J “clique potentials”, �j(Cj):

p(x) =

QJ
j �j(Cj(x))

Z , (2.1)

where Cj(x) ✓ x, 8j, and Z =

P
x

QJ
j �j(Cj(x)) is the partition function, which is a

sum of the unnormalized density over all configurations of x. Variables are independent,

conditioned on all other variables in their respective cliques. The modalities of the data

are represented by the clique factors, �j(Cj(x)).

Perhaps the most historically important undirected graphical model is the “Ising”

model (Figure 2.1 shows one possible Ising model with 2D grid structure), where cliques,

Cj(x), are only over a local “neighborhood”, so that a node is conditionally independent

on non-neighbor nodes given all of its neighbors. This type of undirected model has roots

in statistical mechanics and found early success in computer vision (Geman and Graffigne,

1986). This clique structure represents dependence as locality, which is similar in spirit to

local filters in convolutional neural networks (CNNs, LeCun & Bengio, 1995), which is a

de-facto standard in computer vision today.

1For simplicity in notation, I omit the sample index, n.

11



Chapter 2. Generative Models

Figure 2.1: Undirected graphical model
with 2D grid Ising structure. Each node
represents a degree of freedom.

Figure 2.2: A deep Boltzmann machine
with two hidden layers.

More recently, there has been some success in undirected graphical models with non-

local, parametric exponential-family clique potentials along with latent variables, h:

p(x) =
X

h

p(x,h); p(x,h) =
e�

PJ
j E(Cj(x,h));�)

Z , (2.2)

where the function, E(.), is commonly referred to as the “energy function”. Models that

employ this sort of structure are known as energy-based models, and together with a hi-

erarchal clique structure, ones arrives at undirected models with layer-wise conditionally

independence (Figure 2.2), such as restricted Boltzmann machines (RBM, Hinton, 2002)

and deep Boltzmann machines (DBM, Salakhutdinov & Hinton, 2009). These only have

cliques between subsequent layers, omitting inter-layer connections, and these will cov-

ered in more detail in the context of neuroimaging data later.

2.2 Directed graphical models

Probabilistic directed graphical models, also known as “Bayesian belief networks”, can be

represented by an acyclic directed graph (Jordan, 1998) (Figure 2.3), where each of the

12
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Figure 2.3: An undirected graphical model with observations at the end of the directed
graph. Note that observations need not be arranged in this way.

edges represent a conditional probability. The joint probability of the nodes is the product

of conditionals:

p(x,h) =
NY

i

p(si|{P(si)}), (2.3)

where {P(si)} is the set of all parents of si.

Directed models are the most popular type of graphical model, and they are almost

synonymous with Bayesian inference. Some of their appeal comes from that they pro-

vide a summary of the data density with as a set of simple, often unimodal and factorized

factors. They are also easier to sample from than undirected models, which can be done

by simple ancestral sampling. Deep latent models, such as deep latent Gaussian mod-

els (DLGM, Frey and Hinton, 1999; Rezende, Mohamed, and Wierstra, 2014), sigmoid

belief networks (SBN, Neal, 1992), and variational autoencoders (VAE, Dayan, Hinton,

Neal, and Zemel, 1995; Kingma & Welling, 2013), and hybrid models such as deep belief

networks (DBN, Hinton, Osindero, and Teh, 2006), are highly flexible versions of directed

graphical models. These allow for a high capacity, yet interpretable representation of data

and have only recently emerged as being tractable and trainable. These will be covered in

13
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more depth with neuroimaging data with some novel training approaches and extensions.

2.3 Training graphical models

Most parametric graphical models are trained by maximum likelihood estimation (MLE)

or maximum a-priori (MAP) objectives. Given a directed or undirected model parame-

terized by �, MLE seeks to maximize the log-probability of the data by finding a corre-

sponding, maximally likely, �?:

�?
= argmax

�
(log p(x;�)) (2.4)

The process of finding or choosing �? involves inference which, in turn, is depen-

dent on the specified latent structure. While methods such as Markov-chain Monte Carlo

(Neal, 1992) and mean-field inference have shown success in some limited settings, there

is no known efficient algorithm for solving MLE with a general graph, either directed or

undirected.

In the following chapters, I will demonstrate training undirected and directed models as

unsupervised learners. Applications will focus on neuroimaging data, training techniques,

analysis, and some novel methods for unsupervised learning. I will also demonstrate novel

learning algorithms for unsupervised learning, and demonstrate how existing methods can

be extended upon.
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Chapter 3

Undirected Graphical Models:

Applications to Neuroimaging and

Methods

In Section 2.1, I introduced energy-based models, which are undirected graphical models

whose clique potential are an exponential of an “energy function”. The fundamental dif-

ficulty in training energy-based models, as with all undirected graphical models, lies in

the intractable partition function, Z . Exact computation requires marginalization of latent

variables over an exponential number of configurations, so learning algorithms must rely

on estimates of the likelihood function and/or gradients.

For Boltzmann machines, it is convenient to introduce the free energy:

F(x) = � log

X

h

e�
PJ

j E(Cj(x,h); ), (3.1)

so that:

p(x) =
e�F (x)

Z ; Z =

X

x

e�F (x), (3.2)
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and the maximum likelihood gradient can formulated in terms of this free energy:

�@ log p(x)

@ 
=

@F(x)

@ 
�
X

x

0

p(x0
)

@F(x

0
)

@ 
. (3.3)

The first term in the gradient, known as the “positive phase” or the data-driven term,

can require approximate inference to compute, except in special cases. A restricted Boltz-

mann machines (RBMs) is a relatively simple Boltzmann machines with simple clique

structure. With binomial random variables, the RBM energy is:

E(x,h) = �h>
Wx� x · b� h · c, (3.4)

where the model parameters, � = (W,b, c), are the interactive weights, visible biases,

and hidden biases, respectively. With this energy function, inference of the latent variables

is exact, as

F(x) = � log

X

h

e(h
>
Wx+x·b+h·c)

= � log

X

h

Y

i

ehi(W
i
x+ci)ex·b

= �x · b�
X

i

log(1 + e(W
i
x+ci)

) (3.5)

p(hi = 1|x) =
P

hj 6=i
p(x, hj, hi = 1)

p(x)
=

e�E(x,hi=1)

P
j 6=i e

�E(x,hj)

e�F(x)

=

e(W
i
x+ci)

Q
j 6=i(1 + e(W

j
x+cj)

)

Q
i0(1 + e(W

i0
x+c0i)

)

=

1

1 + e�(W i
x+ci)

. (3.6)

Inference is exact with many energy functions without interaction terms between hid-

den units, such as Gaussian-Bernoulli or centered Bernoulli RBMs. For other Boltzmann

machines with hierarchal hidden-hidden interactions such as deep Boltzmann machines

(DBM), approximate mean-field inference can be sufficient to estimate the data-driven

term in many cases.

The second term, or “negative phase” or “model expectation” is more problematic, as it

requires calculating an expectation over the intractable marginal density. The true density,

p(x), is a stationary distribution of alternating block Gibbs sampling, so an estimate of the
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negative phase term can be made by starting the Boltzmann machine at some initial state

and performing sufficient Gibbs sampling to draw samples, x(m):

X

x

0

p(x0
)

@F(x

0
)

@ 
⇡ 1

M

X

m

@F(x

(m)

)

@ 
. (3.7)

However, drawing samples from a sufficient number of Markov chain Monte Carlo

(MCMC) steps can be extremely expensive. Contrastive divergence (CD, Hinton, 2002)

is an approximation that works by starting MCMC with data, then sampling for a small

number of steps:

�@ log p(x)

@ 
⇡ @F(x)

@ 
� 1

M

X

m

@F(x

(m)

k )

@ 
, (3.8)

where x

(m)

k are the samples at the k-th step of the Gibbs chain. This approximation is

sufficient for train RBMs, and typically k = 1 is sufficient in many practical applica-

tions (Hinton, 2010).

3.1 Restricted Boltzmann Machines

for Identifying Intrinsic Networks

To demonstrate the potential of undirected models with high-dimensional neuroimaging

data, my collaborators and I have applied an RBM as a method to separate intrinsic net-

works (INs, Biswal et al., 1995) from functional magnetic resonance imaging (fMRI) data

(Hjelm et al., 2014). We compare RBMs to independent component analysis (ICA, Bell

& Sejnowski, 1995), which is the dominant approach for inferring latent structure in brain

imaging data. ICA represents fMRI as a linear mixture of maximally-independent sources

(Smith et al., 2009; Swanson et al., 2011; Calhoun et al., 2001) and has been widely suc-

cessful in separating INs and analyzing connectivity (Zuo, Kelly, Adelstein, Klein, Castel-

lanos, and Milham, 2010; Kim, Burge, Lane, Pearlson, Kiehl, and Calhoun, 2008; Allen,
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Erhardt, Wei, Eichele, and Calhoun, 2012; Damoiseaux, Rombouts, Barkhof, Scheltens,

Stam, Smith, and Beckmann, 2006; Calhoun, Kiehl, and Pearlson, 2008; Smith et al.,

2009).

3.1.1 RBM and ICA for IN Analysis

While RBMs and ICA are very different models, they have similarities: both resemble a bi-

partite graph between observations and latent variables with a weight matrix representing

relationships between observation-latent pairs. For ICA, the data is generated from a linear

mixture of the sources:

s = Wx, (3.9)

where W is a square un-mixing matrix, 1 and s are stochastic latent variables drawn from

a non-Gaussian distribution. In an fMRI context, the sources are called intrinsic networks

(INs), their values over a time-series of fMRI data,

(s

1

, s
2

. . . , sT ) = (Wx

1

,Wx

2

. . . ,WxT ), (3.10)

are called “time courses” (TCs), and the columns of the un-mixing matrix, W i are “spa-

tial maps” (SMs). Most popular ICA algorithms require the un-mixing matrix, W, be

square, and this oftentimes necessitates preprocessing of the data to reduce dimensionality

to match the desired number of sources. This is usually done with principle component

analysis (PCA), and in fMRI analyses that involves multiple subjects this is done in a two

stage manner, first on each subject, then across all subjects. The most successful such

approach, group independent component analysis (GICA, Calhoun et al., 2001), applies

this reduction along the time-axis and performs ICA un-mixing in time. Also known as

spatial ICA, the roles of the spatial maps and time courses are flipped, with the sources

representing independent components in space.

1Some ICA algorithms parameterize the model with an invertible mixing matrix, M = W

�1,
instead
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In the optimal case, all important variance in the data is represented in ICA as origi-

nating from the factorized source distributions. Because the relationship between data and

latent variables is represented through a discrete transformation (i.e., noiseless ICA), there

is exactly one valid observable configuration for every hidden configuration. Even prob-

abilistic ICA (PICA, Beckmann and Smith, 2004) is relatively limited as the observable

configurations must be in a local neighborhood defined by independent noise.

RBMs, on the other hand, represents the data through a nonlinear energy function

over joint configurations of observables and latent variables, so that the data optimally

lies on minima of an energy manifold. This gives RBMs far more representational power

than ICA; a single configuration of the latent variables in RBM can have many distinct

low-energy (or valid) configurations over the observable variables. RBMs also do not

require the weight matrices to be square, and thus do not require dimensionality-reducing

preprocessing.

Linear mixture models such as ICA have been very successful in neuroimaging appli-

cations, and their success is in part due to a simple, tractable, and interpretable decomposi-

tion of the data. RBM offers a rich, nonlinear representation of data, and while this allows

RBM a higher capacity to represent data, the cost is that said representation is not readily

decomposable, as it is with ICA. While RBM has stochastic hidden units that resemble the

ICA sources, these are not drawn from a factorized prior distribution, and thus cannot be

said to be independent. For IN analysis, a researcher would benefit from RBMs powerful

representational capacity, as well as not requiring dimensionality reduction preprocessing.

However, RBMs need some modifications make the hidden units interpretable.

For modeling real-valued data, such as fMRI, it is first necessary to alter the energy

function so that the conditional distribution, p(x|h), is Gaussian. In general, the variance

of p(x|h) can be learned as well, but in practice it is often set to 1 for simplicity. In

addition, RBMs with centered Bernoulli units tend work better, so we treat our hidden
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variables as discrete binomial variables with values {�1, 1}. The final energy is, 2

E(x,h) = �h>
Wx� (x� b)

2

2

� h · c. (3.11)

For comparison to ICA, our analysis relies on interpreting each of the columns of the

RBM weight matrix, W i, or filters, as the spatial maps in an ICA framework. However,

this may not entirely be appropriate, as the hidden units in RBM do not follow a factor-

ized prior distribution. Our early experiments confirmed this: despite evidence of strong

learning, features were highly non-local and overlapping in the space of voxels, making

interpretation and comparison difficult. In order to encourage independence, we added

strong L
1

regularization to the weights. Unfortunately, we cannot present strong moti-

vating theory here, but it suffices for the work that high L
1

regularization encouraged the

columns of the weight matrix to become orthogonal in our experiments. This causes the

Gibbs chain to converge almost immediately. This indicates that the low-energy hidden

configurations, which correspond to modes of the data distribution, are close to the condi-

tional distributions, p(h|x) and thus independent.

3.1.2 Spatial map and timecourse analysis

The RBM analysis pipeline in the context of fMRI is illustrated in Figure 3.1. First,

masked fMRI data is presented batch-wise to the RBM as i.i.d data, and the log-likelihood

is maximized via contrastive divergence. We then use the learned parameters in a linear

de-mixing model and forward-propagate the whole masked dataset for each subject to ob-

tain subject-specific time course (TC) estimates. Dual regression is then used to acquire

t-statistics for each component to task and novel stimulus. Finally, due to the relevance

in current fMRI research (e.g., Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek,

2Note that the energy does not change for centered binomial variables, but the form of the
conditional, p(h|x), changes only by a scaling factor in the argument.
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Figure 3.1: Pipeline for RBM training and analysis. An RBM is first used to obtain in-
trinsic networks (INs), each with a corresponding SM estimate. The model parameters are
then used to forward propagate data onto the INs; this is done by matrix-multiplying the
data (space⇥time) with the SM estimates (features⇥space), producing time course esti-
mates specific to each IN. For task-related data (as with real fMRI data, multiple regression
with time courses derived from the experimental protocol is used to identify task-related
INs.

Rachakonda, Fries, Kalyanam, et al. (2011)), functional network connectivity (FNC) was

computed as cross-correlations using subject-specific TCs.

3.1.3 Synthetic data

In order to objectively evaluate RBM performance compared to ICA, we first considered

synthetic data. The SimTB toolbox (Erhardt, Allen, Wei, and Eichele, 2012) was used to

generate synthetic 3D (x, y, and t) fMRI-like data from linear combinations of 27 distinct

spatial sources with 2D Gaussian spatial profiles. RBMs were constructed with 16936

Gaussian visible units (one for each voxel), and a variable number of hidden units. The

L
1

decay rate was set to 0.1 based on performance over multiple experiments. The RBMs

were then trained with a batch size of 5 for approximately 75 epochs to allow for full

convergence of the parameters. We constructed multiple RBMs with the number of hidden

units ranging from 10 to 80 in steps of 10 in order to study the dependence of performance

on model order.

We then compared performance of RBM to linear models by training ICA, PCA, sparse

PCA (sPCA, Zou, Hastie, and Tibshirani, 2006), and sparse non-negative matrix factor-
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BFigure 3.2: Correlation of SM (left) and TC (right) estimates to the ground truth for all
models as a function of model order. Lines indicate average correlation across all datasets
(and “subjects” for TCs) with a spatial overlap at 0.52, and the color-fill indicates ± two
standard errors around the mean.

ization (sNMF, Hoyer, 2002). For group ICA, the data was preprocessed using a two-step

PCA by reducing each subject data to 120 principal components, then reducing the con-

catenated subject principal components again to the final component number. For sPCA,

we chose the sparsity by counting the number of voxels in each ground truth source that

were above one standard deviation, then taking a rough average of those counts: 1000. For

sNMF, a sparsity of 0.7 was used based on performance over multiple experiments.

Figure 3.2 shows the SM and TC estimation accuracy for RBM, ICA, sNMF, sPCA,

and PCA. Considering both SM and TC estimation, all models other than PCA perform

rather well, though show different sensitivities to model order. For RBM, both SM and TC

22



Chapter 3. Undirected Graphical Models: Applications to Neuroimaging and Methods

Ground Truth RBM ICA sNMF sPCA PCA

Tr
ue

 M
od

el
 O

rd
er

Contours

Spatial
Map
Examples

Spatial Map Accuracy Time Course Accuracy

M
od

el
 O

rd
er

 =
 6

4

A

B

Figure 3.3: Contours of all SMs (top row) given a thresholded of 0.4 and examples of
individual SMs for all models (bottom rows) at a model order of 64 and dataset overlap
of 0.52. Typical SM quality between models was very similar and notable examples are
shown. C) SM and TC accuracy as a function spatial overlap, at a model order of 64.

estimation accuracy increase with model order. For ICA, SM and TC accuracy appears to

peak around a model order of 40, and decreases slightly at higher model orders. SNMF,

in contrast, shows increased SM but decreased TC accuracy with increasing model order.

SPCA is relatively insensitive to increases in model order beyond the true dimensionality.

Figure 3.3 demonstrates that types of estimation errors observed. For lower model orders,

we observed that RBM, sNMF, and sPCA tended to estimate SMs which appeared to be

linear combinations of ground truth spatial maps. ICA failed to estimate a SM as a unique

component, and instead merged it into the negative background of another SM.
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Our simulations show that RBM performs competitively against all single matrix fac-

torization (SMF) methods tested. Detailed comparisons with synthetic data show relatively

comparable performance between RBM and ICA, with RBM providing slightly improved

TC estimation and slightly worse SM accuracy over some ranges of model orders. We

observe that the loss in spatial accuracy comes not from an inability to identify features,

but from a tendency of RBMs to capture strong temporal correlations within the spatial

domain. Thus, in the worst case, RBM SM estimates were still highly interpretable as

combinations of temporally correlated ground truth sources.

3.1.4 fMRI data

Data used in our work comprised task-related scans from 28 healthy participants (five fe-

males), all of whom gave written, informed, IRB-approved consent at Hartford Hospital

and were compensated for participation. All participants were scanned during an auditory

oddball task (AOD) involving the detection of an infrequent target sound within a series of

standard and novel sounds. More detailed information regarding participant demograph-

ics and task details are provided by (Swanson et al., 2011) and more details regarding

preprocessing can be found in Hjelm et al. (2014). The RBM was constructed using 70969

Gaussian visible units and 64 hidden units, and ICA was trained using GIFT, preprocessed

in the same way as with the SimTB data above and 64 components.
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Figure 3.4: Groups of spatial maps of intrinsic networks estimated by RBM from fMRI
data. INs were divided into groups based on their anatomical and functional proper-
ties. For visualization, each SM was thresholded at greater or less than 2 standard de-
viations. Estimated intrinsic networks are 1) thalamus; 2) inferior frontal gyrus (IFG);
3) middle temporal gyrus (MTG); 4) inferior temporal gryus (ITG); 5) middle cingulate
cortex (MCC, overlapping with insula+MCC IN); 6) insula; 7) superior temporal gyrus
(STG); 8) supramaginal gyrus (SMG); 9) superior parietal lobule (SPL); 10) precentral
gyrus (PreCG); 11) postcentral gyrus (PoCG); 12) paracentral lobule (ParaCL); 13) sup-
plementary motor area (SMA); 14) inferior parietal lobule (IPL); 15) middle frontal gyrus
(MiFG); 16) medial frontal gyrus (MFG); 17) inferior frontal gyrus (IFG); 18) superior
frontal gyrus (SFG); 19) lingual gyrus (LingualG); 20) inferior occipital gyrus (IOG); 21)
cuneus; 22) calcarine gyrus (CalcarineG); 23) middle occipital gyrus (MOG); 24) pre-
cuneus; 25) anterior cingulate cortex (ACC); 26) posterior cingulate cortex (PCC); 27)
angular gyrus (AG); 28) cerebellum (CB). The FNC (temporal correlation matrix) aver-
aged across subjects is shown on the left.

After removing artifacts and white matter, we identified 46 INs with peaks in grey mat-

ter from RBM. The grouped INs as well as the FNC are shown in Figure 3.4. We labelled

groups based on their spatial properties as: 1, subcortical; 2, temporal + frontal cortices;
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Table 3.1: Counts of grey matter (GM) features, white matter (WM) features, ventricles,
and other artifacts in RBM and ICA results. Component classification was performed
manually.

GM WM Ventricles Other
RBM 46 5 5 8
ICA 38 15 6 5

R
B
M

IC
A

R
B
M

IC
A

Figure 3.5: Sample pairs of RBM (top) and ICA (bottom) SMs thresholded at 2 standard
deviations. Pairing was done with the aid of spatial correlations, temporal properties, and
visual inspection. Values indicate the spatial correlation between RBM and ICA SMs.

3, temporal cortex; 4, somatomotor cortex; 5, frontoparietal cortex; 6, visual cortex; 7,

default mode network (DMN); and 8, cerebellar networks. Applied to real fMRI data col-

lected during an AOD task, the INs separated by RBM consistent with networks found in a

variety of task and resting-state experiments (Allen et al., 2011; Beckmann, DeLuca, De-

vlin, and Smith, 2005; Calhoun et al., 2008; Damoiseaux et al., 2006; Kiviniemi, Starck,

Remes, Long, Nikkinen, Haapea, Veijola, Moilanen, Isohanni, Zang, et al., 2009; Smith

et al., 2009; Zuo et al., 2010).

Overall, RBM found a larger proportion of identifiable grey-matter features, while

ICA distinguished more distinct white matter regions (Table 3.1). RBM and ICA agreed

on most features with some variation (Figures 3.5), though disagreed on some default

mode network (DMN) features. The TCs of corresponding RBM/ICA pairs showed no

difference in their degree of task-relatedness (Figure 3.6), suggesting that RBM and ICA
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Targets Novels

Figure 3.6: Target (left) and novel (right) t-statistics for RBM and ICA feature pairs with
spatial correlations above 0.4. The red line indicates unity.

found different decompositions of the data to model the task equally well. Analysis and

visual inspection of feature pairs generally shows RBM features are more sparse than those

of ICA. In addition, RBM features are predominantly of a single sign, as opposed to ICA

features which contain regions of both signs exceeding 2 standard deviations.

The most prominent difference between the models appeared in the FNC (Figure 3.7),

where RBM yielded correlations of greater magnitude and significantly more modular

connectivity structure, and hence greater ease in grouping components. Aided by similar

results in simulations, we understand that this “enhanced” structure is due to the tendency

of RBMs to capture strong temporal relations in the spatial domain, combined with the

feed-forward mechanism used to produce the TCs. FNC biases are also likely to arise from

the TCs estimated by ICA, however these will be dependent on the constraint of spatial

independence, making biases difficult to predict when the true spatial dependencies are

unknown (Allen et al., 2012).
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RBM ICA

Figure 3.7: FNC determined from RBM (left) and ICA (right), averaged over subjects.
Note that the color scales for RBM and ICA are different (RBM shows a larger range in
correlations). The FNC matrix for ICA on the same scale as RBM is also provided as
an inset (upper right). Feature groupings for RBM and ICA were manually determined
separately, using the FNC matrices and known anatomical and functional properties.

While the results from RBM and ICA are surprisingly similar, though there is a the-

oretical basis for drawing strong parallels between the two approaches (Hinton, Welling,

Teh, and Osindero, 2001). We note some key differences between the proposed RBM

model and the typical application of spatial ICA to functional imaging data:

1. RBM does not make the same assumptions of linear factorization of the data as sin-

gle matrix factorization (SMF) models like ICA, as RBM is an energy-based prob-

ability density model, thus freeing it from some linearity assumptions. However, in

RBM, can be interpreted as a matrix factorization after training, making the types of

analysis performed by SMF models available for research.

2. Although it operates on thousands of voxels directly, RBM does not require di-

mensionality reduction. Spatial ICA is largely impractical without dimensionality
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reduction (typically via PCA), even when applied to only hundreds of time points.

The PCA step in ICA introduces a variance bias, which can diminish our ability to

identify certain sources; the avoidance of dimensionality reduction preprocessing

represents an advantage of RBMs.

3. RBMs may provide an alternative to ICA as a method of blind source separation,

though with enhanced residual cross correlation of sources.

3.2 Recurrent Neural Networks as Generative Samplers

of Non-Sequential Data

RBMs typically use contrastive divergence (CD, Hinton, 2002) as an optimization method

to approximately maximize the log-likelihood. While the single-step version of CD works

in many applications, more steps are always better, as this effectively explores the space

of the marginal density more accurately. While efficient with RBMs, CD has seen little

success with Boltzmann machines with hidden to hidden interactions, such as with deep

Boltzmann machines (DBMs, Salakhutdinov and Larochelle, 2010). CD fails in part be-

cause it can take a prohibitively long time for inference procedures to arrive at samples

representative of the conditional distribution given the data. Alternatively, an efficient

stochastic approximation procedure (SAP, Neal, 1992) known as persistent contrastive di-

vergence (PCD, Tieleman, 2008) makes use of persistent chains to estimate the model

expectation in Equation 3.3. PCD uses the same Gibbs chain for the MC estimate of the

model expectation by alternating between advancing the chain and updating the parame-

ters. In particular, the CD gradient in Equations 3.8 can be rewritten as a gradient for an

incremental step in the persistent chain:

�r log p(x)t ⇡ 1

N

X

n

rF(x

(n)
)� 1

M

X

m

rF(x

(m)

t ), (3.12)
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where x

(m)

t is the t-th sample in the Gibbs chain. This can greatly improve learning in

RBMs and makes learning possible the DBMs.

Still, Gibbs sampling in many cases suffers from poor mixing, which in turn hurts den-

sity estimations and makes sampling difficult. Advanced techniques such as annealed im-

portance sampling (AIS, Neal, 2001) or reverse AIS (RAISE, Burda, Grosse, and Salakhut-

dinov, 2014) provide alternatives in density estimation, but these methods can be expensive

and are not efficient enough for learning. Improved MCMC techniques, such as Hamil-

tonian MCMC (Neal et al., 2011) and parallel tempering (Desjardins, Courville, Bengio,

Vincent, and Delalleau, 2010; Cho, Raiko, and Ilin) can improve mixing and provide im-

proved learning in a variety of settings (Salimans, Kingma, Welling, et al., 2015b). As an

alternative, we show that a recurrent neural network (RNN) can be used as a generative

sampler. The advantages include a parameterization of the sampling transition operator

trainable with back-propagation, which can be tuned to fit the target sampling sequence

directly.

3.2.1 Recurrent Neural Networks for Sequence Modeling

A recurrent neural network (RNN, Figure 3.8) is a type of neural network with recurrent

or cyclic connections. In addition to having some of the same structure as simple feed for-

ward networks, RNNs have an additional set of maps between their hidden recurrent units,

ht. The maps can be “unfolded” across their recurrent connections (Figure 3.9a), which

realizes RNNs as a deep FNN, making them easily trainable using back-propagation.

RNNs are well-suited for sequential or time-series data, and have been very success-

ful in the field of natural language processing (NLP), including neural machine trans-

lation (NMT, Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2014), speech

recognition (Graves et al., 2013) and synthesis (Ze et al., 2013; Oord et al., 2016), writ-

ten language recognition (Graves, 2013), etc. RNNs have many forms, but this work will
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Figure 3.8: A graphical representation of
a recurrent neural network. Hidden unit
activations are a function of the input xt

and the previous hidden state, ht�1

. Out-
puts, yt, are determined by the current
hidden state, ht.

Figure 3.9: a) A recurrent neural net-
work unfolded in time. Conceptually,
this is what allows RNNs to be trained
with the back-propagation algorithm. b)
An RNN for sequence modeling. The
RNN generates input at the next step.

focus on those that are probabilistic models of sequences (Figure 3.9b):

p(X) = p(x
1:T ) = p(x

1

)

TY

t=2

p(xt|x1:t�1

). (3.13)

The conditional density typically is drawn from a family of transformations,

p(xt|x1:t�1

) = f(ht; O); ht = g(ht�1

,xt�1

; R), (3.14)

where ht are the set of deterministic recurrent units. g(.; R) are recurrent connections

that take the current observation and hidden state as input and output the next recurrent

state. The output connections, f(.; O), take the recurrent states as input at each step

and output the parameters for a conditional distribution. Note that the model parameters,

 = { O, R}, are recurrent: the same parameters are used at every time step and do not

change across the sequence index, t.

The most canonical RNN for sequence modeling has a simple parameterization:

g(ht; R) = tanh(URht�1

+UIxt�1

+ b), (3.15)
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where UR is a square matrix of recurrent weights, UI are the input weights, and b is a

bias term. The mappings between the various variables in the model need not be shallow:

deep neural networks can be used to model more complex recurrent transitions. Parame-

terizations that use gating and other types of memory functions, such as long short-term

memory (LSTM, Hochreiter & Schmidhuber, 1997) and gated recurrent units (GRUs, Cho

et al., 2014), are also widely used to better model longer sequences.

Training an RNN for simple sequence modeling is done with the back-propagation

algorithm, using the negative log-likelihood objective over the output conditional distribu-

tions:

L( ;D) ⇡ � 1

N

X

n

 
TX

t=2

log p(x
(n)
t |x(n)

1:t�1

; ) + log p(x
(n)
1

; )

!
, (3.16)

over all sequences, X(n)
= (x

(n)
1

,x
(n)
2

. . .x
(n)
T ). Typically the loss is computed batch-

wise instead of over the entire dataset for efficiency. The marginal density, p(x
1

), can

be trained by fitting to the average marginal across time, either to parameters of a target

distribution directly or training a neural network to predict the hidden state that generates

x

1

(Bahdanau et al., 2014).

3.2.2 RNN-based Sampler of I.I.D Data

The Gibbs chain of an RBM is defined by a transition operator, T (bx,x), whose stationary

distribution, ⇡(x), is the marginal density of the RBM. The RBM objective effectively

seeks to fit the stationary distribution to the empirical distribution of the data. In compar-

ison, denoising autoencoders (dAE, Vincent, Larochelle, Lajoie, Bengio, and Manzagol,

2010) and deep generative stochastic networks (GSNs, Thibodeau-Laufer, Alain, and

Yosinski, 2014) parameterize T directly, assuming that the transition is composed of alter-

nating noising and reconstruction operations. As an alternative, I explore parameterizing

the transition operator directly using an RNN. The goal will be to maximize the likelihood
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Figure 3.10: Procedure for approximately drawing from the distribution of ordered data as
defined by an RNN. First, a samples is randomly drawn from the dataset. The next hidden
state is computed via the RNN recurrent parameters. From the data samples not used, the
“best” sample is selected as the next sample in the chain. The procedure is repeated until
a stopping criteria is reached, either until the dataset is exhausted or the remaining unused
samples are all about a threshold of probability.

of the transition operator over the empirical distribution of independent and identically

distributed (i.i.d.) data.

Let us hypothesize that there exists a “true” distribution of orderings given an un-

ordered set of data, p(z|Di), where Di is any unordered set of the complete data (Di ✓ D)

of size Ni. z is a random variable indicating an ordering of Di, which induces an ordered

set of Ni random variables, X = (x

1

,x
2

. . .xNi). For now, let us assume that X has only

unique elements, but in general this condition can be relaxed to allow repetitions. Given

the hypothetical true distribution of orderings, p(z|Di), one could maximize the likelihood

of transitions through that ordering from an RNN with parameters,  , by maximizing the

MC estimate of the log-likelihood over all ordereings:

L( ;Di) = � 1

K

KX

k=1

 
NX

n=2

log p(x(k)
n |x(k)

1:n�1

; ) + log p(x
(k)
1

; )

!
, (3.17)

where x

(k)
n are the ordered data samples with ordering, z(k), drawn from p(z|Di).

Unfortunately, the “true” distribution of orderings is not available, and one cannot be
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sure one such distribution even exists. However, working forward on this hypothesis, our

assumption is that, given the RNN is optimized to the above objective, the conditional

density of ordered datapoints should match the hypothetical true ordering density. In other

words, given an optimal set of parameters,  ?:

p(x
(k)
1

; ?
)

NY

n=2

p(x(k)
n |x(k)

1:n�1

; ?
) / p(z(k)|Di), (3.18)

where the proportionality constant is the marginal over all configurations of the data on

the RNN.

The naive approach to drawing samples from the above distribution over all possible

configurations of the data is to simply evaluate the product above on the N ! total orderings,

then sample as a multinomial distribution. However, evaluating the factorial number of

configurations is clearly intractable, even for modest datasets. Instead, I use a fast greedy

procedure that constructs chains in a sequential manner.

An illustration of the procedure is available in Figure 3.10. First, an initial datapoint,

x

(k)
1

⇠ Di, is drawn with either a uniform or prior probability. A sequence or “chain” of

data, X(k), is then iteratively constructed by selecting the next unused datapoint in Di that

maximizes the conditional density as defined by the RNN:

x

(k)
n = argmax

x

(k)

p(x(k)|x
1...n�1

; ). (3.19)

The procedure then iterates until a stopping criteria has been reached, usually when every

data point from Di has been selected or the selecting criteria or all remaining unused

samples is above a threshold.

One reasonable objection to this approach is that the RNN might learn to model exactly

one configuration, as the same RNN is being used to deterministically construct sequences

over the same set of ordered data. This would drive the transition operator to model a single

mode; an undesirable property if our model is to be general. In fact, this procedure no

longer optimizes Equation 3.17, as samples from the “true” distribution of orderings have
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been replaced by samples drawn from an approximate or proposal distribution defined

by the procedure, q(z|Di; ), which leads to a biased estimator the true log-likelihood.

Introducing the proposal distribution, q, introduces the lower bound to the log-likelihood:

L( ;Di) = � log

X

z

q(z|Di)

 
p(z|Di)

q(z|Di)
p(x

(k)
1

)

NY

n=2

p(x(k)
n |x(k)

1:n�1

)

!

� �
X

z

q(z|Di) log

 
p(z|Di)

q(z|Di)
p(x

(k)
1

)

NY

n=2

p(x(k)
n |x(k)

1:n�1

)

!

⇡ � 1

K

KX

k=1

 
NX

n=2

log p(x(k)
n |x(k)

1:n�1

) + log p(x
(k)
1

)

!

+DKL(q(z|Di)||p(z|Di)). (3.20)

The intractable second term is the KL-divergence of q and p, which is a sum of two

terms. The first term maximizes the log-likelihood, which ensures that q is close to the

true ordering. This cannot be evaluated, so we need to rely on the soundness of our or-

dering procedure to account for this. The second term maximizes the entropy of q, H(q),

which should regulate q from falling into a single mode, but this is intractable. Instead, an

increase in entropy can be incorporated into the procedure the following ways:

• Construct chains using only subsets of the data. Given a complete dataset of size

N , D, draw Di by first shuffling D and selecting the first Ni samples. Ni should be

sufficiently small compared to the total size, N .

• Evaluate only a subset of data when constructing a chain. Given a subset of data,

Di, use a random subset, Dc ⇢ Di, when evaluating candidate samples in chain

construction.

• Sample from a multinomial over conditional densities. Rather than performing the

argmax to construct Xk, draw each x

(k)
n from the multinomial distribution defined

by p(x|x(k)
1:n�1

) normalized over all remaining samples in Di.
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Algorithm 1 Chains model
Require: An i.i.d. dataset with N samples.

Require: A chain length, Ni and a sampling size Nc, such that Nc < Ni < N .

while training do

while size(D) > 0 do

Draw and remove random Di from D of size min(size(D), Ni).

Initialize X = (x

1

) with x

1

drawn and removed from Di with uniform probability.

for n = 2 : Ni do

Select random Dc from Di of size min(size(Di), Nc).

Evaluate ↵(m)

n = p(x(m)|X)/
P

m0 p(x(m0
)|X) 8x(m) 2 Dc.

Draw and remove x

(m) from Dc using the multinomial distribution defined by ↵(m)

n .

Set X (x

1

, . . .xn�1

,x(m)

).

end for

�� /PN
n=2

log p(xn|x1:n�1

; ) + log p(x
1

; )

end while

end while

The procedure used in this work is summarized in Algorithm 1. While RNNs are not

typically used to model i.i.d. data, the possible benefits of this approach may include:

1. When trained with the “correct” orderings, the RNN will represent a compact repre-

sentation between data points and the distribution of samples from the RNN should

match the true distribution with unbound sampling steps.

2. The RNN could provide a faster mixing mechanism than undirected graphical mod-

els as it models dynamics and represents whole sequences.

3. The RNN provides a natural similarity metric defined by the conditional probabili-

ties. This could be used for unsupervised tasks, such as clustering or inpainting, and

supervised tasks such as classification.
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Figure 3.11: Fast moving samples from the chains model trained on the MNIST dataset
with a chain length of 5000. Samples show very fast mixing without natural-looking tran-
sitions. This indicates that the RNN is probably only learning a mixture of the training
set.

Figure 3.12: Slow sampling version of the chains model trained on the MNIST dataset
with a chain length of 1000. Samples show natural-looking transitions, with some jumps.
It is likely that the RNN has learned how to generalize and is not simply sampling from a
mixture over the training set.

3.2.3 RNN Chains Results

To evaluate the chains procedure, I trained RNNs with gated recurrent units (GRUs, Cho

et al., 2014) and 1000 hidden units on the MNIST data. For the input and output param-

eterizations, I used a feed forward network with one hidden layer with 500 hidden units.

For training, I used the RMSProp algorithm Hinton (2012) for 500 epochs. Each chain

constructed used 5000 or 1000 samples of the data, querying at most 1000 random sam-

ples at each step of building the chain. Each sample was selected by drawing from the

multinomial distribution defined by the probability of the next samples given the current

chain.
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The results show an RNN sampler that is able to generate realistic and diverse MNIST

digits with either very fast (Figure 3.11) or slower (Figure 3.12) mixing, depending on

the size of the chains. Each of these achieved very good Parzen-window log-likelihood

estimates (269.4 and 215) respectively, while longer chains outperformed other samplers

in the literature (Goodfellow et al., 2014). However, the Parzen-window log-likelihood

estimator can be quite inaccurate: a Gaussian blurring on the MNIST training set can

produce estimates nearly identical to ours. It is therefore likely that the fast-sampling RNN

is learning a mixture of the training data, and this particularly evident in that concurrent

samples are qualitatively dissimilar. However, the slower-mixing RNN trained on smaller

chains shows many smooth with few fast transitions while still exhibiting good mixing

properties. Therefore, the RNN, together with the greedy procedure, seems to be able to

learn a reasonable transition operator through the data similar to sequential samplers, as

long as the model is sufficiently constrained. Continued research needs to rely on better

evaluation of the model however, and further applications need to be explored to verify the

value of this approach, and this is left for future research.

3.2.4 An RNN to Explore the Manifold of Energy-Based Models

Similar to our approach with i.i.d. data above, one can use an RNN to sample from the

RBM marginal density, p(x). In some sense, this problem is easier than the i.i.d. case:

RBMs already provide sequences from which to train the RNN. However, the slow-mixing

in RBMs is exactly the problem to avoid, so one must rely on some other methods to train

a faster sampler.

In particular, we wish to train a generative RNN that models the conditional distribu-

tion (Figure 3.9):

q(X) = q(x
1

)

TY

t=2

q(xt|x0:t�1

), (3.21)
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Figure 3.13: A generative RNN with Gaussian latent variables, zt. The latent variables are
inferred through an approximate posterior, q(zt|x0:t).

where X = (x

1

,x
2

. . .xT ) is a sequence of persistent Gibbs samples on the RBM. This

objective would require that one stores the persistent chain up to some length, T . However,

the algorithm can be simplified by storing the last recurrent state, ht�1

, from the RNN and

performing single-step learning without back-propagating through time.

This approach is similar in intention to Hamiltonian Markov chain Monte Carlo

(Hamiltonian MCMC, Neal et al., 2011), in that additional techniques are being used to

more efficiently explore the manifold defined by some potential, in this case the RBM

energy. However, where Hamiltonian MCMC relies on an explicit momentum variable

to aid in mixing, the “momentum” here is embedded in the recurrent hidden states of the

RNN. That said, the RNN needs to be trained to have certain momentum: if it is trained

on slow mixing, it’s effective sampling momentum will be small.

In order to encourage faster mixing on the RNN, RNN chains are allowed to “jump”

between chains. A modified objective,

1

M2

X

k

X

m

r log q(x
(k)
t |x(m)

t�1

,ht�1

), (3.22)

for k = 1 . . .M , may encourage faster mixing, but may cause the chains to learn the

average of all the chains. In order to learn multiple modalities, it is necessary to introduce
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Figure 3.14: Left: RNN samples from an RNN trained on persistent Gibbs chains with
random jumps between chains. Right: A persistent RBM Gibbs chain with random jumps
between chains.

stochastic recurrent latent variables.

Drawing from recent advances in extending variational inference in directed graphical

models to RNNs (Kingma & Welling, 2013; Chung, Kastner, Dinh, Goel, Courville, and

Bengio, 2015) (See also Chapter 2.2 below), the transition is modeled with the addition of a

Gaussian noise latent variable to the RNN chain (Figure 3.13). While inference of this sort

is generally difficult, a simple approximate posterior, q(z|x) along with continuous latent

variables can be easily trained and incorporated into the RNN. Many parameterization for

the prior, p(z), the conditional, p(x|z), and the approximate posterior, q(z|x), exist, but a

simple parameterization provided in Figure 3.13 should suffice.

Our initial experiments showed that sampling from the uniform mixing in Equation

3.22 is too fast to effectively train an RNN. Further experiments showed that a modestly

sized RNN with equal number of hidden units and latent variables as an RBM with 200

hidden units trained on RBM could learn from 10 RBM persistent Gibbs chain when each

chain skipped to another chain with a probability of 0.1 at each step. An example of

samples drawn from an RNN trained to quickly traverse the RBM energy manifold are
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provided in Figure 3.14. For the persistent chains, the “jumps” correspond to when the

chains were shuffled for RNN training, and are not representative of the actual PCD chains.

While the RNN tended to fall into spurious modes (in this case of samples resembling 1s),

the mixing is faster than with RBMs, yet still smooth and somewhat interpretable. These

preliminary results indicate that RNNs may be able to efficiently explore the space defined

by the RBM energy, providing a parametric alternative to methods for improving MCMC

sampling.
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Chapter 4

Directed Graphical Models,

Applications, and Extensions

While our work on separating intrinsic networks (INs) with restricted Boltzmann machines

was successful, further extensions and applications are limited due to challenges in train-

ing deeper undirected models. Our initial experiments with deep Boltzmann machines

(DBMs) to learn hierarchical representations of INs had limited success, perhaps due to

some of the issues covered above. Furthermore, in contrast to RBMs, which have exact

inference, interpreting the latent structure in DBMs requires expensive Gibbs sampling

procedures, heightening what was already a difficult challenge in analysis. IN analysis

may be realizable with better sampling and estimation techniques, and this is left for fu-

ture research.

I direct the reader’s attention instead to directed graphical models, which are in many

cases easier to train and evaluate, particularly with high-dimensional data. This chapter

will focus on a type of directed model called a directed belief network, which is a genera-

tive directed graphical model consisting of a conditional density p(x|h) and a prior p(h),

such that the joint density can be expressed as a their product, p(x,h) = p(x|h)p(h). In
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particular, the point density factorizes into a hierarchy of conditional densities: p(x,h) =

p(x,h
1

, . . .hL) = p(hL)p(x|h1

)

QL�1

l=1

p(hl|hl+1

), where p(hl|hl+1

) is the conditional

density at the l-th layer and p(hL) is a prior distribution of the top layer. Sampling from

the model can be done simply via ancestral-sampling, first sampling from the prior, then

subsequently sampling from each layer until reaching the observation, x. This latent vari-

able structure can improve model capacity, but inference can still be intractable, as is the

case in sigmoid belief networks (SBN, Neal, 1992), deep belief networks (DBN, Hinton

et al., 2006), deep autoregressive networks (DARN, Gregor, Danihelka, Mnih, Blundell,

and Wierstra, 2013), and other models in which each of the conditional distributions in-

volves complex nonlinear functions.

4.1 Variational Lowerbound of a Directed Belief Network

The objective considered here is the likelihood function, p(x;�), where � represents pa-

rameters of the generative model (e.g. a directed belief network). Estimating the likeli-

hood function given the joint distribution, p(x,h;�), above is not generally possible as it

requires intractable marginalization over h. Instead, it is useful to introduce an approxi-

mate posterior, q(h|x), as a proposal distribution. In this case, the log-likelihood can be

bounded from below:1

log p(x) = log

X

h

p(x,h) �
X

h

q(h|x) log p(x,h)

q(h|x)

= Eq(h|x)


log

p(x,h)

q(h|x)
�
:= L

1

, (4.1)

where I introduce the subscript in the lower bound to make the connection to importance

sampling in the following chapter. The bound is tight (e.g., L
1

= log p(x)) when the KL

divergence between the approximate and true posterior is zero

1For clarity of presentation, I will often omit dependence on parameters � of the generative
model, so that p(x,h) = p(x,h;�)
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(e.g., DKL(q(h|x)||p(h|x)) = 0). The gradients of the lower bound w.r.t. the generative

model can be approximated using the Monte Carlo approximation of the expectation:

r�L1

⇡ 1

K

KX

k=1

r� log p(x,h(k)
;�), h

(k) ⇠ q(h|x). (4.2)

4.2 Helmholtz machines

The success of variational inference relies on the choice of approximate posterior, as poor

choice can result in a looser variational bound. A deep feed-forward recognition net-

work parameterized by  has become a popular choice, so that q(h|x) = q(h|x; ), as

it offers fast and flexible inference (see, e.g., Salakhutdinov & Larochelle, 2010; Kingma

& Welling, 2013; Mnih and Gregor, 2014; Rezende et al., 2014). Generally known as

a “Helmholtz machine” (Dayan et al., 1995), these approaches often require additional

tricks to train, as the naive Monte Carlo gradient of the lower bound w.r.t. the variational

parameters has high variance.

For Helmhotz machines with continuous latent variables, however, training via back-

propagation is possible with the help of a re-parameterization, an approach known as varia-

tional autoencoders (VAE, Kingma & Welling, 2013). In particular, a normally distributed

random variable with mean µ and diagonal covariance vector, �, h ⇠ N (µ,�) can be

re-parameterized as:

h = µ+ ✏� �; ✏ ⇠ N (0,1). (4.3)

This type of re-parameterization is available for a number of continuous distributions, such

as Gaussian, Laplace, logistic, Poisson, and Gumbel, and can be used to effectively train

directed belief networks with continuous latent variables (Rezende et al., 2014).
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4.3 Variational Autoencoders for Feature Detection

of Magnetic Resonance Imaging Data

4.3.1 Re-parameterization of logistic distribution

We demonstrate variational autoencoders for separating regions of interest as features

from magnetic resonance imaging (MRI) data (Hjelm et al., 2016c). Let us assume that

the conditional distribution is a Gaussian distribution with mean and diagonal covariance

(µx,�x), and the approximate posterior has a Logistic distribution with mean, µh, and

scale, sh. The conditional parameters, (µx,�x), and the variational parameters, (µh, sh)

are outputs of FFNs, f and g, with parameters ✓ and  respectively:

(µx(h;✓),�x(h;✓)) = g(h;✓),

(µh(x; ), sh(x; )) = f(x; ), (4.4)

Finally, assume p(h), the prior distribution of the latent variables, is a spherical multivari-

ate Logistic distribution. The lower bound in Equation 4.1 becomes:

L(x) ⇡
MX

m=1


log p(x|h(m)

;✓)

+

NX

i=1

✓
h
(m)

i � 2 log

�
1 + exp(h

(m)

i )

�� h
(m)

i � µh(x; )i
sh(x; )i

+ log sh(x; )i + 2 log

✓
1 + exp

✓
h
(m)

i � µh(x; )i
sh(x; )i

◆◆◆�
. (4.5)

In order to make the gradient of the first term above w.r.t the variational parameters,  ,

possible, the following re-parameterization allows for training with back-propagation:

h = µh + log

✓
✏

1� ✏
◆
� sh, ✏ ⇠ U(0,1),

where U(0,1) is a uniform distribution with range [0, 1].
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4.3.2 Visualizing latent variables

Visualizing a latent variable, hi, of a directed belief network involves calculating the

marginal over all other latent variables: p(x|hi) =

P
hj 6=i

p(x,hj 6=i|hi). This is compu-

tationally intractable with most configurations. Alternatively, we can draw M samples

from the approximate posterior, h(m)

j 6=i ⇠ q(hj 6=i|x) to approximate the marginal:

p(x|hi) ⇡
MX

m=1

p(x,hj 6=i|hi)

q(hj 6=i|x) . (4.6)

However, this approximation typically requires a large number of samples to be accurate

(e.g. O(100, 000) with the MNIST dataset). In addition, this only provides a single point

in the marginal, which is a continuous function of hi. In reality, we are interested in

how changes in hi effect generation of the image. Therefore, we use the following fast

approximation to determine the “projection” of the ith latent variable:

�p(x|hi)/�hi ⇡ p(x|hi = µi + si,hj 6=i = µj 6=i)� p(x|h = µ), (4.7)

where µi and si is reserved for parameters of the prior distribution that encode first and

second order statistics respectively. For instance, for a Logistic distribution, µi would be

the center of unit i and si would be the scale factor. This approximation does not capture

the full generative effect of the latent variables, but it is sufficient for this demonstration.

4.3.3 Experimental setup

For our medical imaging study, we used the MRI dataset from the combined schizophrenia

studies in Plis et al. (2013). Whole brain MRIs were obtained on a 1.5T Signa GE scanner

using identical parameters and software, and the resulting dataset was segmented into

grey matter regions with 60465 voxels in each sample. For quality control, the correlation

coefficient of each MRI volume was calculated and any volumes with mean coefficient of
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2 standard deviations below the mean across all volumes were categorized as noisy and

removed. The resulting dataset had 163 subjects and 156 healthy controls.

For our generative model, we used a logistic prior, p(h;�), with 64 units and a 2-

layer “generation” feed-forward network (FFN) with a deterministic intermediate layer of

500 softplus (log(1 + exp(x))) units to parameterize a Gaussian conditional distribution,

p(x|h;�). Our approximate posterior, q(h|x; ), was a multivariate factorized logistic

which was parameterized by a 2-layer “recognition” FFN with 500 hyperbolic tangent

(tanh) deterministic units. We learn  and � by maximizing the variational lower bound,

and trained our model with a batch size of 10 using the RMSprop algorithm (Hinton, 2012)

for 1000 epochs.

4.3.4 Results

As the latent variable projections were both positive and negative and the prior distribution

is symmetric with respect to our choice of positive scale factors, we reversed the sign of

our projections if the mean of voxels above 2 standard deviations was negative. For each

latent variable or “component”, we calculate the approximate posterior for each subject,

q(hi|xn), and then used logistic regression to schizophrenia using the approximate poste-

rior means, µh(xn). Each component was tested for significance by using the resulting �

values from the logistic regression in a one-sample t-test.

Visual inspection of the latent variables revealed a diverse set of features that were

mostly identifiable as regions of interest, with very little noisy features. There was signifi-

cantly more overlap between features than is typical with ICA with PCA preprocessing or

RBM with MRI data (Hjelm et al., 2014), which may or may not be beneficial depending

on the research setting. Latent variables that showed high significance to schizophrenia

(p < 0.001) are shown in Figure 4.1.
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Figure 4.1: Projections of logistic latent variables for a variational autoencoder with an
additional deterministic nonlinearity for the generative and recognition networks. Each
projection was thresholded at 2 standard deviations, and the latent variables showed here
are those that showed high significance (p < 0.001) from a one-sampled t-test of the �
values from logistic regression to schizophrenia.

The means of the approximate posterior, µh(xn), were used as input to a classification

task, using simple logistic regression and 100-fold class-balanced cross validation. The

resulting classification rate, 0.67, is significantly above chance. The conclusion is that,

despite lacking information about the labels in the MLE objective and much lower dimen-

sionality, the latent variables have a similar amount of information necessary to perform

diagnosis. This is also apparent in the correlation matrix in Figure 4.2 using the com-

ponents that showed high significance to schizophrenia. Finally, the components were

grouped by calculating the correlation of approximate posterior centers across subjects.

Figure 4.3 shows several groupings, as well as some inter-group relationships.
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Figure 4.2: The correlation matrix of the
logistic centers of the approximate poste-
rior for each subject, µq(xn) for compo-
nents with high significance (p < 0.001)
to schizophrenia. Columns and rows have
been ordered to show healthy controls first,
followed by patients, with higher inter-
group correlation.

Figure 4.3: Correlation matrix between all
components across subjects. Rows and
columns were ordered according to group-
ing determined by a community multi-level
analysis Blondel et al. (2008) and shows
inter- and intra-group structure between
components.

4.4 Recurrent Neural Networks for Spatiotemporal Dy-

namics of Intrinsic Networks from fMRI Data

Our work on directed graphical models with magnetic imaging data (MRI) uses only a

single layer of independent latent variables inferred from and to generate a single mode

(e.g. MRI) of data. VAEs with multiple layers of latent variables are realized as deep latent

Gaussian models (DLGM, Rezende et al., 2014), which may reveal hierarchical structure

in MRI. Furthermore, multimodal extensions of VAE should allow for in-depth analysis of

the relationship between modes, such as structural and genetics data.

A notable limitation of basic VAEs is the inability to infer latent structure from sequen-

tial or time-series data, such as functional magnetic imaging (fMRI) data. It is difficult

to model temporal dependencies with simple VAEs, so dynamics in time-series data are
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usually extrapolated with additional analysis. Recurrent neural networks (RNNs) that in-

corporate stochastic latent variables along with VAE-type learning exist and are successful

in language studies (Chung et al., 2015). However, models that rely on the approximate

inference can exhibit high variance and may need a large number of samples to train, de-

pending on the specific problem. This may be a challenge for applying variational methods

to fMRI data, which tends to be very high-dimensional with relatively few samples. Luck-

ily, it is not necessary to use approximate methods of inference to train or use RNNs to

model temporal dynamics from latent structure.

Independent component analysis (ICA, Bell & Sejnowski, 1995), which was intro-

duced in Section 3.1, is a shallow directed graphical model 2 with exact inference and

does not require estimates of the log-likelihood function to train. ICA is trainable through

one of many optimization routines that maximize non-Gaussianity or minimize mutual

information (Hyvärinen and Oja, 2000). ICA is commonly used for separating intrin-

sic networks (INs, Biswal et al., 1995) as latent structure, which are important outcomes

of fMRI studies and are central for understanding brain function and making diagnoses

(Calhoun et al., 2001; Allen et al., 2012; Hjelm et al., 2014). We show here that the ICA

objective is compatible with a generative RNN, so that we can learn a latent variable model

of sequences that works with small high-dimensional datasets, such as fMRI.

4.4.1 Independent Component Analysis

ICA hypothesizes that the observed data is generated from a linear mixture of independent

sources: xn =

P
i sn,iM

i, where sn = {sn,i} are K sources or components and M i are the

columns of a mixing matrix, M. ICA constrains the sources to be independent, usually by

specifying each component is drawn independently from separate distributions with high

kurtosis. This framework presupposes any specific definition of component independence,

2ICA is effectively the noiseless case of a shallow directed graphical model.
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and algorithms typically fall under two primary families (Hyvärinen & Oja, 2000).

In the INFOMAX algorithm (Bell & Sejnowski, 1995), the model is parameterized

by an unmixing matrix W = M

�1, and independence is reached by minimizing the mu-

tual information of the sources. Minimizing the mutual information of the sources is

accomplished by enforcing their joint prior density factorizes, or ps(sn) =
QK

i=1

psi(sn,i).

With this objective, independence is not guaranteed under a linear mixing model unless

the sources follow a non-Gaussian distribution. Minimizing mutual information is the

same as maximizing the log-likelihood of the marginal density, px(xn), transformed by

f(xn) = Wxn:

log px(xn) = log ps(Wxn) + log | detW|, (4.8)

where | detW| = | detJf (xn)| is the Jacobian. As the transformation has a tractable in-

verse and Jacobian, the MLE objective does not suffer additional variance typical in meth-

ods that rely on approximate inference. This relieves some of the challenges associates

with small high-dimensional datasets.

INFOMAX as applied to fMRI data assumes that the joint density of the time-series,

Xn = (x

1

,x
2

, . . . ,xT ), factorizes into a product of marginals, or px(Xn) =
Q

t px(xt,n) =

QT
t=1

ps(Wxt,n)| detW|. Generating a sequence can be done from an ordered set of

sources using the inverse of the unmixing matrix. However, ICA, as with other popu-

lar linear methods for separating INs, is order-agnostic in time: each multivariate signal

at each time step is treated as i.i.d.. While model degeneracy in time is convenient for

learning, as an assumption about the data, the explicit lack of temporal dependence limits

generation to unordered samples from a marginal density. In addition, ICA uses the same

parameterization across subjects with fMRI data, which allows for either temporal or spa-

tial variability, but not both. The consequence of this is that ICA cannot represent variation

of shape in INs while also representing variation in the time courses. This may encourage

ICA to exaggerate time course statistics, as any significant variability in shape or size must

be accounted for by modulation of the sources in order to satisfy the algorithm’s objective
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function.

Despite these drawbacks, the benefits of using ICA for analyzing fMRI data is strongly

evident in numerous studies, to the extent that has become the dominant approach for sepa-

rating intrinsic networks and connectivity studies (Zuo et al., 2010; Kim et al., 2008; Allen

et al., 2012; Damoiseaux et al., 2006; Calhoun et al., 2008; Smith et al., 2009). In order to

overcome shortcomings in temporal dynamics and subject/temporal variability but without

abandoning the fundamental strengths of ICA, we extend ICA to model sequences using

RNNs. The resulting model naturally represents temporal dynamics through a sequential

ICA objective, has subject and temporally-specific spatial maps, and is easily trainable

using gradient descent and back-propagation.

4.4.2 RNN ICA

The RNN framework for sequence modeling we introduced in Section 3.2.1 can easily be

extended to incorporate the INFOMAX objective. Define, as with ICA, a linear transfor-

mation for each observation to source configuration: st,n = Wxt,n, and define a high-

kurtosis and factorized source distribution, pst,n(st,n) (such as logistic or Laplace) for each

time step, t, and each fMRI sequence, n. Let us apply the transformation to an fMRI time

series: s
1:T,n = f(x

1:T,n) = (Wx

1,n,Wx

2,n, . . .WxT,n). The log-likelihood function can

be re-parameterized as:

log p(x
1:T,n) = log p(x

1,n) +

TX

t=2

log p(xt,n|x1:t�1,n)

= log ps1(Wx

1

) +

TX

t=2

log pst,n(Wxt,n|x1:t�1,n) + T log | detJf (x1:T,n)|

= T log | detW|+ log ps1,n(Wx

1,n) +

TX

t=2

log pst,n(Wxt,n|x1:t�1,n), (4.9)

where Jf is the Jacobian and the source distribution, pst,n , has parameters determined

by the recurrent units ht,n (see Equations 3.14 and 3.15). A high-kurtosis distribution is
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desirable to ensure independence of the sources (or minimizing the conditional mutual

information, e.g., the INFOMAX objective (Bell & Sejnowski, 1995)), so a reasonable

choice for the outputs of the RNN at each time step are the mean, µ, and scale, �, for a

logistic distribution:

µt,n = Wµht,n; �t,n = W�ht,n. (4.10)

Our treatment assumes the ICA weight matrix, W, is square, which is necessary to

ensure a tractable determinant Jacobian and inverse. fMRI data is very high dimensional,

so to reduce the dimensionality of the necessarily square matrix we must resort to some

sort of dimensionality reduction as preprocessing. Widely used in ICA studies of fMRI is

principle component analysis (PCA), which can be used to reduce the dimensionality of

the data, selecting number of components to match the dimension of the sources, st,n.

4.4.3 Time-dependent Spatial Maps

The treatment of RNN ICA above uses the same ICA weight matrix across subjects and

time. The Jacobian from the likelihood function reduces to the ICA weight matrix: the

cross-time terms of the determinant are all zero as the complete Jacobian is block upper

triangular in time. This makes defining the objective and training straightforward, with

computing the determinant of the Jacobian having similar complexity as ICA.

While the model is already novel, we can further leverage this directed dependence in

the transformation to represent variable spatial maps across time and subjects. Consider a

transformation, st,n = Wt,nxt,n, such that Wt,n is a subject-specific weight matrix at time

t with form:

Wt,n = W +

c
Wt,n = W + ct,np

>
t,n, (4.11)

where cWt,n = cp

> is a rank-1 weight matrix composed of two equal-length vectors and

W is a weight matrix that is the same across time and subjects. To assure that the weights
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Figure 4.4: RNN ICA for a single subject. The RNN is fed observations, xt, and
the outputs are the parameters for the sources, st. The RNN is trained to maximize
the likelihood of the model parameters under the data transformed by a square matrix:
st = (W + ctp

>
t )xt, where W + ctp

>
t is square and ct and pt are outputs from feed

forward networks with input ht. This allows for variable unmixing matrix with simple
inverse and Jacobian computation for generation and MLE optimization.

are subject-specific and are trainable using back-propagation, the factors of the rank-1

matrix, c and p, are modeled as outputs of two separate neural networks with input ht.

The choice of rank-1 form of the square variable weight term makes learning feasible

in two important ways. First, the dimensionality of the two component vectors combined

is far smaller than a full rank alternative. This avoids the problem of the variable weight

matrix being underdetermined, a problem likely with fMRI data as the number of samples

is relatively small. Second, both the determinant of the Jacobian and inverse of a rank-1

matrix added to a full rank square matrix are easy to compute (Sherman and Morrison,
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1950):

det(Wt,n) = (1 + p

>
t,nW

�1

ct,n) det(W),

W

�1

t,n = W

�1 �W

�1

ct,np
>
t,nW

�1

1 + p

>
t,nW

�1

ct,n

. (4.12)

The components of the rank-1 permutation, ct,n and pt,n depend on all previous input,

x

1:t�1,n, through a deterministic continuous function of the hidden states, h
1:t,n. In general,

dependence on the sequence across time would make computing the Jacobian difficult due

to cross terms in time. It is easy to illustrate, however, the property that the determinant of

the Jacobian reduces to one composed only of static terms. Consider the data and sources

to be one-dimensional and our sequence to be of length three. The Jacobian then has the

form,
2
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which is upper-triangular, so that the determinant is the product of diagonal terms. For the

general case, the Jacobian is block-triangular, so the determinant reduces to the product of

determinants for each block on the diagonal (static terms).

4.4.4 Experiments

To demonstrate the properties and strengths of our model, we apply our method to task

fMRI data as in our RBM studies in Section 3.1.
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We used a simple RNN with 100 recurrent hidden units and a recurrent parameteriza-

tion as in Equation 3.15, as we do not anticipate needing to model long range dependencies

that necessitate gated models (Hochreiter & Schmidhuber, 1997). The initial hidden state

of the RNN was a 2-layer feed forward network with 100 softplus (log(1 + exp(x))) units

using 20% dropout. Two separate 2-layer feed-forward networks with 60 softplus units

were used to compute ct,n and pt,n from ht,n, with an additional L
2

decay cost with decay

coefficient of 0.002 used in training. The model was trained using the RMSProp algorithm

(Hinton, 2012) with a learning rate of 0.0001 for 1000 epochs. Training typically took on

the order of an hour on an NVIDIA 980 Ti GPU, an Intel i7-4700k, and 32 GB of RAM.
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Figure 4.5: Complete set of features found by RNN ICA with variable spatial maps, aver-
aged across time and subject. Labels are the largest region of interest. p-values are from a
one sample t-test of beta values from linear regression to the target stimulus.
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Figure 4.6: Five representative representative features with high sensitivity to the target
stimulus. Labels are the largest region of interest. Above are the average spatial maps
across time and subjects, back-reconstructed. p-values are from a one sample t-test of beta
values from linear regression to the target stimulus. Below are four time steps in sequence
of each feature for a single patient.

Our results indicate the model is able to separate interpretable and unique INs, with

approximately 50 grey matter regions after filtering out white matter, ventricles, and well-
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Table 4.1: Task-related features from RNN ICA with spatial variability with p values lower
than 10

�7.

ID Label Targets Novels
1 L Sup Frontal Gy 5.4e-13 2.2e-09
4 L Sup Frontal Gy 4.7e-08
5 L Med Temporal Pole 4.6e-10 2.4e-13
6 L Sup Med Gy 2.6e-09
8 R Postcentral Gy 5.3e-10 1.0e-09
9 R Precuneus 6.7e-07

11 R Mid Temporal Gy 6.6e-12
15 L Insula 1.2e-07
16 R Cingulate Gy 1.0e-08
22 L Mid Frontal Gy 1.2e-14
27 R Postcentral Gy 6.4e-19
29 R Mid Temporal Gy 1.4e-10 8.8e-18
33 R Ant Cingulate 3.5e-08
36 R Precuneus 9.5e-12
39 R Lentiform Nucleus 7.5e-12
41 L Cuneus 1.5e-10
45 L Inf Parietal Lobule 1.7e-09
48 R Precuneus 1.0e-06
51 L Angular Gy 2.1e-07
53 L Inf Parietal Lobule 5.1e-11
54 L Cerebellum 7.0e-11
56 R Caudate 9.9e-09
58 L Caudate Nucleus 9.1e-09

known motion artifacts (Figure 4.5, complete set is provided). Using the � values from

ordinary least squares regression (OLS) for each subject to the target stimulus, we found

that 20 of these features were highly sensitive to target according to a one-sample t-test

(p  10

�7, Table 4.1). Among these were motor gyrus and temporal gyrus features (Fig-

ure 4.6), which are widely found in the literature to be sensitive to task (Allen et al., 2012).

In addition, each of these features show spatial variability across time through their

variable spatial maps which cannot be explained by scalar modulation of feature intensity.

In order to show this, we performed linear regression on each column, Ct,n,m = ct,n,mp
>
t,n
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to the first principle component from PCA performed on Ct,n,m for each independent com-

ponent, m. We then used both the Bayes information criterion (BIC) and the Akaike in-

formation criterion (AIC) to evaluate fit for each component across time and subjects. The

standard deviation for each component across subjects and across time was greater than

100 for both criteria, indicating poor fit. Furthermore, the spatial maps that show the worst

fit (highest variance of BIC or AIC) are often those that showed sensitivity to task.

The time courses of the spatial maps, ct,np>
t,n, also show sensitivity to task, including

significant group differences in the � values from linear regression to the target stimuli

(Figure 4.7). Most surprisingly, the spatial maps show significant group differentiation

(p  0.05, FDR corrected), while none of the source time courses show significant group

differences. This contrasts with findings from ICA fMRI task studies (Du, Calhoun, Li,

Ma, Eichele, Kiehl, Pearlson, and Adali, 2012). This may indicate that ICA exaggerates

source variation that is perhaps better accounted by IN shape, which is further supported

by our finding that the spatial map variability cannot be explained by scalar modulation.

However, further study is necessary to make any conclusions about spatial map variability

and group differentiation.
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Figure 4.7: Four features whose spatial maps showed significant differences between
healthy controls and groups. Differences were found from the betas from linear regres-
sion to the target stimulus. a) Average spatial maps back-reconstructed, b) The uniform
spatial map, W, back-reconstructed, c) Mann-Whitney u values from significance test be-
tween healthy controls and patients, d) time courses and convolved target stimulus for e)
four time steps of spatial maps for a single patient.
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Chapter 5

Iterative Refinement Inference

Techniques

In the previous chapter, we were able to show that variational autoencoders (VAE, Kingma

& Welling, 2013) can be used to separate structural components from magnetic resonance

imaging (MRI) data. VAEs, while extremely successful, relies on a re-parameterization

of the latent variables to pass the learning signal to the recognition network. This type of

parameterization, however, is not available with discrete units, and the naive Monte Carlo

estimate of the gradient has too high variance to be practical (Dayan et al., 1995; Kingma

& Welling, 2013).

However, good estimators are available through importance sampling (Bornschein and

Bengio, 2014), input-dependent baselines (Mnih & Gregor, 2014), a combination base-

lines and importance sampling (Mnih and Rezende, 2016), and parametric Taylor expan-

sions (Gu, Levine, Sutskever, and Mnih, 2015b). Each of these methods strive to be a

lower-variance and unbiased gradient estimator. However, the reliance on the recognition

network means that the quality of learning is bounded by the capacity of the recognition

network, which in turn raises the variance. My colleagues and I demonstrate reducing the
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variance of Monte Carlo based estimators by iteratively refining the approximate posterior

provided by the recognition network (Hjelm et al., 2016a).

5.1 Discrete latent variables

and improving the approximate posterior

We build on variational inference introduced in Section 4.1. The variational lower-bound

in Eq. 4.1 is constrained by the assumptions implicit in the choice of approximate posterior,

as the approximate posterior must be within the capacity of the recognition network and

factorial. These assumptions can be relaxed by using an unbiased K-sampled importance-

weighted estimate of the likelihood function

(see (Burda, Grosse, and Salakhutdinov, 2015) for details):

L
1

 LK =

1

K

X

k=1

p(x,h(k)
)

q(h(k)|x) =

1

K

X

k=1

w(k)  p(x), (5.1)

where h(k) ⇠ q(h|x) and w(k) are the importance weights. This lower bound is tighter than

the single-sample version provided in Eq. 4.1 and is an asymptotically unbiased estimate

of the likelihood as K !1.

The gradient of the lower bound w.r.t. the model parameters � is simple and can be

estimated as:

r�LK =

KX

k=1

w̃(k)r� log p(x,h(k)
;�), where w̃(k)

=

w(k)

PK
k0=1

w(k0)
. (5.2)

The estimator of the likelihood in Eq. 5.1 can reduce the variance of the gradients,

r LK , but in general additional variance reduction is needed (Mnih & Rezende, 2016).

Alternatively, importance sampling yields an estimate of the inclusive KL divergence,

DKL(p(h|x)||q(h|x)), which can be used for training parameters of the recognition net-

work (Bornschein & Bengio, 2014). However, it is well known that importance sampling
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can yield heavily-skewed distributions over the importance weights (Doucet, De Freitas,

and Gordon, 2001), so that only a small number of the samples will effectively have non-

zero weight. This is consequential not only in training, but also for evaluating models

when using stochastic approximation of Eq. 5.1 to estimate test log-probabilities, which

requires drawing a very large number of samples (N � 100, 000 in the literature for mod-

els trained on MNIST (Gregor et al., 2013)).

The effective samples size, ne, of importance-weighted estimates increases and is op-

timal when the approximate posterior matches the true posterior:

ne =

⇣PK
k=1

w(k)
⌘
2

PK
k=1

(w(k)
)

2


⇣PK

k=1

p(x,h(k)
)/p(h(k)|x)

⌘
2

PK
k=1

(p(x,h(k)
)/p(h(k)|x))2 

(Kp(x))2

Kp(x)2
= K. (5.3)

Conversely, importance sampling from a poorer approximate posterior will have lower

effective sampling size, resulting in higher variance of the gradient estimates. In order to

improve the effectiveness of importance sampling, we need a method for improving the

approximate posterior from those provided by the recognition network.

Learning difficulties aside, using a recognition network for the posterior distribution

couples estimates for different data points through global variational parameters, which

helps the model generalize better and avoid local-minima problems common with tradi-

tional variational inference. Depending on the structure of the recognition network, this

can place a global constraint on each posterior distribution, leading to poorer fit which can

loosen the variational lower-bound. The posterior estimates may be inaccurate, so that the

data can appear to fit the model worse than it really does. In the case of VAEs, using a

non-factorized posterior can greatly improve learning and the quality of the approximate

posterior (Rezende and Mohamed, 2015; Salimans, Kingma, and Welling, 2015a). There-

fore, during learning we need a sufficiently complex recognition network, the limits of

which are not well understood.
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Figure 5.1: Iterative refinement for variational inference. An initial estimate of the variational
parameters is made through a recognition network. The variational parameters are then updated
iteratively, maximizing the lower bound. The final approximate posterior is used to train the gener-
ative model by sampling. The recognition network parameters are updated using the KL divergence
between the refined posterior qk and the output of the recognition network q

0

.

5.2 Iterative refinement of the approximate posterior

To address the above issues, iterative refinement for variational inference (IRVI) uses the

recognition network as a preliminary guess of the posterior, then refines the posterior

through iterative updates of the variational parameters. For the refinement step, IRVI uses

a stochastic transition operator, g(.), that maximizes the variational lower-bound.

An overview of IRVI is available in Figure 5.1. For the expectation (E)-step, we feed

the observation x through the recognition network to get the initial parameters, µ
0

, of the

approximate posterior, q
0

(h|x; ). We then refine µ
0

by applying T updates to the varia-

tional parameters, µt+1

= g(µt,x), iterating through T parameterizations µ
1

, . . . ,µT of

the approximate posterior qt(h|x).

With the final set of parameters, µT , the gradient estimate of the recognition parame-
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ters  in the maximization (M)-step is taken w.r.t the negative exclusive KL divergence:

�r DKL(qT (h|x)||q0(h|x; )) ⇡ 1

K

KX

k=1

r log q
0

(h

(k)|x; ), (5.4)

where h

(k) ⇠ qT (h|x). Similarly, the gradients w.r.t. the parameters of the generative

model � follow Eqs. 4.2 or 5.2 using samples from the refined posterior qT (h|x). As an

alternative to Eq. 5.4, we can maximize the negative inclusive KL divergence using the

refined approximate posterior:

�r DKL(p(h|x)||q0(h|x; )) ⇡
KX

k=1

w̃(k)r log q
0

(h

(k)|x; ). (5.5)

The form of the IRVI transition operator, g(µt,x), depends on the problem. In the

case of continuous variables, we can make use of the VAE re-parameterization with the

gradient of the lower bound in Eq. 4.1 for our refinement step (see supplementary mate-

rial). However, as this is not available with discrete units, we take a different approach that

relies on adaptive importance sampling.

5.2.1 Adaptive Importance Refinement (AIR)

Adaptive importance sampling (AIS, Oh and Berger, 1992) provides a general approach

for iteratively refining the variational parameters. For Bernoulli distributions, we observe

that the mean parameter of the true posterior, ˆµ, can be written as the expected value of

the latent variables:

ˆµ = Ep(h|x) [h] =
X

h

h p(h|x) = 1

p(x)

X

h

q(h|x) h p(x,h)

q(h|x) ⇡
KX

k=1

w̃(k)
h

(k).

(5.6)

As the initial estimator typically has high variance, AIS iteratively moves µt toward ˆµ

by applying Eq. 5.6 until a stopping criteria is met. While using the update, g(µt,x, �) =
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PK
k=1

w̃(k)
h

(k) in principle works, a convex combination of importance sample estimate

of the current step and the parameters from the previous step tends to work more stably:

h

(m) ⇠ Bernoulli(µk); µt+1

= g(µt,x, �) = (1� �)µt + �
KX

k=1

w̃(k)
h

(k). (5.7)

Here, � is the inference rate and (1� �) can be thought of as the adaptive “damping” rate.

This approach, which we call adaptive importance refinement (AIR), should work with

any discrete parametric distribution. Although AIR is applicable with continuous Gaussian

variables, which model second-order statistics, we leave adapting AIR to continuous latent

variables for future work.

5.2.2 Algorithm and Complexity

The general AIR algorithm follows Algorithm 2 with gradient variations following Eqs.

4.2, 5.2, 5.4, and 5.5. While iterative refinement may reduce the variance of stochastic

gradient estimates and speed up learning, it comes at a computational cost, as each update

is T times more expensive than fixed approximations. However, in addition to potential

learning benefits, AIR can also improve the approximate posterior of an already trained

directed belief networks at test, independent on how the model was trained.

5.3 Related Work

Adaptive importance refinement (AIR) trades computation for expressiveness and is sim-

ilar in this regard to the refinement procedure of hybrid MCMC for variational inference

(HVI, Salimans et al., 2015a) and normalizing flows for VAE (NF, Rezende & Mohamed,

2015). HVI has a similar complexity as AIR, as it requires re-estimating the lower-bound

at every step. While NF can be less expensive than AIR, both HVI and NF rely on the
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Algorithm 2 AIR
Require: A generative model p(x,h;�) = p(x|h;�)p(h;�) and a recognition network µ

0

=

f(x; )

Require: A transition operator g(µ,x, �) and inference rate �.

Compute µ
0

= f(x; ) for q
0

(h|x; )
for t=1:T do

Draw K samples h(k) ⇠ qt(h|x) and compute normalized importance weights w̃(k)

µt = (1� �)µt�1

+ �
PK

k=1

w̃(k)
h

(k)

end for

if reweight then

�� /PK
k=1

w̃(k)r� log p(x,h(k)
;�)

else

�� / 1

K

PK
k=1

r� log p(x,h(k)
;�)

end if

if inclusive KL Divergence then

� /PK
k=1

w̃(k)r log q
0

(h

(k)|x; )
else

� / 1

K

PK
k=1

r log q
0

(h

(k)|x; )
end if

VAE re-parameterization to work, and thus cannot be applied to discrete variables. Se-

quential importance sampling (Doucet et al., 2001) can offer a better refinement step than

AIS but typically requires resampling to control variance. While parametric versions ex-

ist that could be applicable to training directed graphical models with discrete units (Gu,

Ghahramani, and Turner, 2015a; Paige and Wood, 2016), their applicability as a general

refinement procedure is limited as the refinement parameters need to be learned.

Importance sampling is central to reweighted wake-sleep (RWS, Bornschein & Ben-

gio, 2014), importance-weighted autoencoders (IWAE, Burda et al., 2015), variational in-

ference for Monte Carlo objectives (VIMCO, Mnih & Rezende, 2016), and recent work on
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stochastic feed-forward networks (SFFN, Tang & Salakhutdinov, 2013; Raiko, Berglund,

Alain, and Dinh, 2014). While each of these methods are competitive, they rely on impor-

tance samples from the recognition network and do not offer the low-variance estimates

available from AIR. Neural variational inference and learning (NVIL, Mnih & Gregor,

2014) is a single-sample and biased version of VIMCO, which is greatly outperformed by

techniques that use importance sampling. Both NVIL and VIMCO reduce the variance of

the Monte Carlo gradients with an input-dependent baseline, but this approach does not

necessarily provide a better posterior and cannot be used to give better estimates of the

likelihood function or expectations.

5.4 Experiments and Results

5.4.1 Settings

We evaluate iterative refinement for variational inference (IRVI) using adaptive impor-

tance refinement (AIR) for both training and evaluating directed belief networks. We train

and test on the following benchmarks: the binarized MNIST handwritten digit dataset

Salakhutdinov and Murray (2008) and the Caltech-101 Silhouettes dataset. We centered

the MNIST and Caltech datasets by subtracting the mean-image over the training set when

used as input to the recognition network. We also train additional models using the re-

weighted wake-sleep algorithm (RWS, Bornschein & Bengio, 2014), the state of the art for

many configurations of directed belief networks with discrete variables on these datasets

for comparison and to demonstrate improving the approximate posteriors with refinement.

With our experiments, we show that 1) iterative refinement can train a variety of directed

models as well or better than existing methods, 2) the gains from refinement improves the

approximate posterior, and can be applied to models trained by other algorithms, and 3)

iterative refinement can be used to improve a model with a relatively simple approximate
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posterior.

Models were trained using the RMSprop algorithm (Hinton, 2012) with a batch size of

100 and early stopping by recorded best variational lower bound on the validation dataset.

For AIR, 20 “inference steps” (K = 20), 20 adaptive samples (M = 20), and an adap-

tive damping rate, �, of 0.9 were used during inference, chosen from validation in initial

experiments. 20 posterior samples (N = 20) were used for model parameter updates for

both AIR and RWS. All models were trained for 500 epochs and were fine-tuned for an

additional 500 epochs with a decaying learning rate and the SGD learning algorithm.

We use a generative model composed of a) a factorized Bernoulli prior as with sigmoid

belief networks (SBNs) or b) an autoregressive prior, as in published MNIST results with

deep autoregressive networks (DARN, Gregor et al., 2013):

a) p(h) =
Y

i

p(hi);P (hi = 1) = �(bi),

b) P (hi = 1) = �(
i�1X

j=0

(W i,j<i
r hj<i) + bi), (5.8)

where � is the sigmoid (�(x) = 1/(1 + exp(�x))) function, Wr is a lower-triangular

square matrix, and b is the bias vector.

For our experiments, we use conditional and approximate posterior densities that fol-

low Bernoulli distributions:

P (hi,l = 1|hl+1

) = �(W i,:
l · hl+1

+ bi,l), (5.9)

where Wl is a weight matrix between the l and l + 1 layers. As in Gregor et al. (2013)

when training on MNIST, we do not use autoregression on the observations, x, and use a

fully factorized approximate posterior.
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5.4.2 Variance Reduction and Choosing the AIR Objective

Figure 5.2: The log-likelihood (left) and normalized effective sample size (right) with epochs
(top) and wall-clock times (bottom) in log-scale on the training set for AIR with 5 and 20 refine-
ment steps (vanilla AIR), reweighted AIR with 5 and 20 refinement steps, reweighted AIR with
inclusive KL objective and 5 or 20 refinement steps, and reweighted wake-sleep (RWS). All mod-
els were evaluated with 100 posterior samples, their respective number of refinement steps for the
effective sample size (ESS), and with 20 refinement steps of AIR for the log-likelihood. Out of
all the models, vanilla AIR had the highest ESS when trained with 20 refinement steps, and the
ESS improves with the number of refinement steps. The large effective sample size for the AIR ap-
proximate posterior indirectly implies that the approximate posterior is close to the true posterior.
Despite longer wall-clock time per epoch, AIR converges to lower log-likelihoods and effective
sample size (ESS) than RWS. While reweighting can result in improved log-likelihood estimates,
reweighting can reduce the ESS with models trained with AIR.

The effective sample size (ESS) in Eq. 5.3 is a good indicator of the variance of gradient

estimate. In Fig. 5.2 (right), we observe that the ESS improves as we take more AIR

steps when training a deep belief network (AIR(5) vs AIR(20)). When the approximate

posterior is not refined (RWS), the ESS stays low throughout training, eventually resulting

in a worse model. This improved ESS reveals itself as faster convergence in terms of the
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exact log-likelihood in the right panel of Fig. 5.2 (see the progress of each curve until 100

epochs.)

This faster convergence does not guarantee a good final log-likelihood, as the latter

depends on the tightness of the lower bound rather than the variance of its estimate. This

is most apparent when comparing AIR(5), AIR+RW(5) and AIR+RW+IKL(5). AIR(5)

has a low variance (high ESS) but computes the gradient of a looser lower bound from

Eq. 4.2, while the other two compute the gradient of a tighter lower bound from Eq. 5.2.

This results in AIR(5) converging faster than the other two, while the final log-likelihood

estimates are better for the other two.

We however observe that the final log-likelihood estimates are comparable across all

three variants (AIR, AIR+RW and AIR+RW+IKL) when a sufficient number of AIR

steps are taken so that L
1

is sufficiently tight. When 20 steps were taken, we observe

that the AIR(20) converges faster as well as achieves a better log-likelihood compared to

AIR+RW(20) and AIR+RW+IKL(20). Based on these observations, we use vanilla AIR

(subsequently just “AIR”) in our following experiments.

5.4.3 Training and Density Estimation

We evaluate AIR for training SBNs with one, two, and three layers of 200 hidden units and

DARN with 200 and 500 hidden units, comparing against our implementation of RWS.

All models were tested using 100, 000 posterior samples to estimate the lower bounds

and average test log-probabilities to be consistent with the literature (Gregor et al., 2013;

Bornschein & Bengio, 2014).

When training SBNs with AIR and RWS, we used a completely deterministic network

for the approximate posterior. For example, for a 2-layer SBN, the approximate posterior

factors into the approximate posteriors for the top and the bottom hidden layers, and the

initial parameters for the top layer, µ(2)

0

are a function of the initial parameters for the first
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Table 5.1: Results for adaptive importance sampling iterative refinement (AIR), reweighted wake-
sleep (RWS), and RWS with refinement with AIR at test (RWS+) for a variety of model configu-
rations. Additional sigmoid belief networks (SBNs) trained with neural variational inference and
learning (NVIL) from †Mnih & Gregor (2014) and variational inference for Monte Carlo objec-
tives (VIMCO) from §Mnih & Rezende (2016). AIR is trained with 20 inference steps and adaptive
samples (K = 20,M = 20) in training (*3 layer SBN was trained with 50 steps with a inference
rate of 0.05). NVIL DARN results are from fDARN and VIMCO was trained using 50 posterior
samples (as opposed to 20 with AIR and RWS).

Model MNIST Caltech-101 Silhouettes
RWS RWS+ AIR NVIL† VIMCO§ RWS RWS+ AIR

SBN 200 102.51 102.00 100.92 113.1 – 121.38 118.63 116.61
SBN 200⇥2 93.82 92.83 92.90 99.8 – 112.86 107.20 106.94
SBN 200⇥3 92.00 91.02 92.56⇤ 96.7 90.9§ 110.57 104.54 104.36
DARN 200 86.91 86.21 85.89 92.5† – 113.69 109.73 109.76
DARN 500 85.40 84.71 85.46 90.7† – – – –

layer, µ(1)

0

1:

q
0

(h

1

,h
2

|x;µ(1)

0

,µ(2)

0

) = q
0

(h

1

|x;µ(1)

0

)q(h
2

|x;µ(2)

0

);

µ(1)

0

= f
1

(x; 
1

); µ(2)

0

= f
2

(µ(1)

0

; 
2

). (5.10)

For DARN, we trained two different configurations on MNIST: one with 500 stochastic

units and an additional hyperbolic tangent deterministic layer with 500 units in both the

generative and recognition networks, and another with 200 stochastic units with a 500

hyperbolic tangent deterministic layer in the generative network only. We only used the

smaller 200 stochastic unit version of DARN when training on the Caltech-101 silhouettes

dataset.

The results of our experiments with the MNIST and Caltech-101 silhouettes datasets

trained with AIR, RWS, and RWS refined at test with AIR (RWS+) are in Table 5.1. Re-

finement at test (RWS+) always improves the results for RWS. As our unrefined results are

comparable to those found in Bornschein & Bengio (2014), the improved results indicate

1To make the dependence on the initial variational parameters, µ
0

, more explicit, we alter our
usual parameterization of q

0

(h|x; ) here.
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many evaluations of Helmholtz machines in the literature could benefit from refinement

with AIR to improve evaluation accuracy.

For most model configurations, AIR and RWS perform comparably, though RWS ap-

pears to do better in the average test log-probability estimates for some configurations of

MNIST. RWS+ performs comparably with variational inference for Monte Carlo objec-

tives (VIMCO, Mnih & Rezende, 2016), despite the reported VIMCO results relying on

more posterior samples in training. Finally, our AIR results approach SOTA with Caltech-

101 silhouettes with 3-layer SBNs against neural autoregressive distribution estimator

(NADE, Bornschein & Bengio, 2014).

We also tested our log-probability estimates against the exact log-probability (by

marginalizing over the joint) of smaller single-layer SBNs with 20 stochastic units. The

exact log-probability was �127.474 and our estimate with the unrefined approximate was

�127.51 and �127.48 with 100 refinement steps. Overall, this result is consistent with

those of Table 5.1, that iterative refinement improves the accuracy of log-probability esti-

mates.

5.4.4 Posterior Improvement

In order to visualize the improvements due to refinement and to demonstrate AIR as a gen-

eral means of improvement for directed models at test, we generate N samples from the

approximate posterior without (h ⇠ q
0

(h|x; )) and with refinement (h ⇠ qT (h|x)), from

a single-layer SBN with 20 stochastic units originally trained with RWS. We then use the

samples from the approximate posterior to compute the expected conditional probability

or average reconstruction: 1

N

PN
n=1

p(x|h(n)
). We used a restricted model with a lower

number of stochastic units to demonstrate that refinement also works well with simple

models, where the recognition network is more likely to “average” over latent configura-

tions, giving a misleading evaluation of the model’s generative capability.
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Figure 5.3: Top: Average reconstructions, 1/N
PN

n=1

p(x|h(n)
), for h(n) sampled from the output

of the recognition network, q
0

(h|x) (middle row) against those sampled from the refined posterior,
qT (h|x) (bottom row) for T = 20 with a model trained on MNIST. Top row is ground truth. Among
the digits whose reconstruction changes the most, many changes correctly reveal the identity of the
digit. Bottom: Average reconstructions for a single-layer model with 200 trained on Caltech-
101 silhouettes. Instead of using the posterior from the recognition network, we derived a simpler
version, setting 80% of the variational parameters from the recognition network to 0.5, then applied
iterative refinement. Despite starting at a relatively poor of the posterior, refinement is able to
retrieve much structure of the ground truth.

We also refine the approximate posterior of a simplified version of the recognition

network of a single-layer SBN with 200 units trained with RWS. We simplified the ap-

proximate posterior by first computing µ
0

= f(x; ), then randomly setting 80% of the

variational parameters to 0.5.

Fig. 5.3 shows improvement from refinement for 25 digits from the MNIST test dataset,

where the samples chosen were those of which the expected reconstruction error of the

original test sample was the most improved. The digits generated from the refined posterior

are of higher quality, and in many cases the correct digit class is revealed. This shows that,

in many cases where the recognition network indicates that the generative model cannot

model a test sample correctly, refinement can more accurately reveal the model’s capacity.

With the simplified approximate posterior, refinement is able to retrieve most of the shape

of images from the Caltech-101 silhouettes, despite only starting with 20% of the original

parameters from the recognition network. This indicates that the work of inference need

not all be done via a complex recognition network: iterative refinement can be used to aid

in inference with a relatively simple approximate posterior.
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5.4.5 Continuous Latent Variables

With variational autoencoders (VAE), the back-propagated gradient of the lower bound

with respect to the approximate posterior is composed of individual gradients for each fac-

tor, µi that can be applied simultaneously. Applying the gradient directly to the variational

parameters, µ, without back-propagating to the recognition network parameters,  , yields

a simple iterative refinement operator:

µt+1

= g(µt,x, �) = µt + �rµL1

(µ,x, ✏), (5.11)

where � is the inference rate hyperparameter and ✏ is auxiliary noise used in the re-

parameterization.

Table 5.2: Lower bounds and NLL for various continuous latent variable models and train-
ing algorithms along with the corresponding VAE estimates. We use 200 latent Gaussian
variables. †From Salimans et al. (2015a). §From Rezende & Mohamed (2015). ‡From
Burda et al. (2015).

Model  -log
p(x)

⇡ -log
p(x)

VAE 94.48 89.31
VAE (w/ refinement) 90.57 88.53
GDIR

50,20 90.60 88.54
VAE† 94.18 88.95
HVI

1

† 91.70 88.08
HVI

8

† 88.30 85.51
VAE § 89.9
DLGM+NF

80

§ 85.1
VAE‡ 86.35
IWAE (K = 50)‡ 84.78

This gradient-descent iterative refinement (GDIR) is very straightforward with contin-

uous latent variables as with VAE. However, GDIR with discrete units suffers the same

shortcomings as when passing the gradients directly, so a better transition operator is

needed (AIR). In the limit of T = 0, we do not arrive at VAE, as the gradients are never
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passed through the approximate posterior during learning. However, as the complete com-

putational graph involves a series of differentiable variables, µt, in addition to auxiliary

noise, it is possible to pass gradients through GDIR to the recognition network parameters,

 , during learning, though we do not here.

For continuous latent variables, we used the same network structure as in (Kingma &

Welling, 2013; Salimans et al., 2015a). Results for GDIR are presented in Table 5.2 for

the MNIST dataset, and included for comparison are methods for learning non-factorial

latent distributions for Gaussian variables and the corresponding result for VAE, the base-

line. Though GDIR can improve the posterior in VAE, our results show that VAE is at an

upper-bound for learning with a factorized posterior on the MNIST dataset. Further im-

provements on this dataset must be made by using a non-factorized posterior (re-weighting

or sequential Monte Carlo with importance weighting). GDIR may still also provide im-

provement for training models with other datasets, and we leave this for future work.

5.4.6 Refinement of the Lowerbound and Effective Sample Size

Figure 5.4: The variational lowerbound (left) and normalized effective sample size (ESS, right)
the test set as the posterior is refined from the initial posterior provided by the recognition network.
Models were trained with AIR with 20 refinement steps and one (AIR 200), two (AIR 200x2),
and three (AIR 200x3) hidden layers. Refinement shows clear improves of both the variational
lowerbound and effective sample size.
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Iterative refinement via adaptive inference refinement (AIR) improves the variational lower

bound and effective sample size (ESS) of the approximate posterior. To show this, we

trained models with one, two, and three hidden layers with 200 binary units trained using

AIR with 20 inference steps on the MNIST dataset for 500 epochs. Taking the initial ap-

proximate posterior from each model, we refined the posterior up to 50 steps (Figure 5.4),

evaluating the lowerbound and ESS using 100 posterior samples. Refinement improves the

posterior from models trained on AIR well beyond the number of steps used in training.

5.4.7 Updates and Wall-Clock Times

Figure 5.5: Negative lowerbound and effective samples size (ESS) across updates (epochs) and
wall-clock time (seconds) for two and three layer sigmoid belief networks trained with adaptive
iterative refinement (AIR) and reweighted wake-sleep (RWS). AIR was trained with 20 refinement
steps with a damping rate of � = 0.9. Each model was trained for 500 epochs and evaluated on the
training dataset using 100 posterior samples. AIR takes less updates to reach equivalent variational
lowerbound and ESS than RWS. While RWS can reach a higher lowerbound at earlier wall-clock
times, AIR and RWS appear to converge to the same value, and AIR reaches much higher ESS.
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Adaptive iterative refinement (AIR) and reweighted wake-sleep (RWS, Bornschein & Ben-

gio, 2014) have competing convergence wall-clock times, while AIR outperforms on up-

dates (Figures 5.2 and 5.5). AIR converges to a higher lowerbound and with far fewer

updates than RWS, though RWS converges sooner to a similar value as AIR does later in

training time. AIR outperforms RWS in ESS in both wall-clock time and updates. For

a more accurate comparison, RWS may need to be trained at wall-clock times equal to

that afforded to AIR. However, these results support the conclusion that AIR converges to

similar values as RWS in less updates but similar wall-clock times.

5.4.8 Bidirectional Helmholtz Machines and AIR

As an alternative to the variational lowerbound, a lowerbound can be formulated from the

geometric mean of the joint generative and approximate posterior models:

p?(x,h) =
1

Z

p
p(x,h)q(x,h). (5.12)

In this procedure, known as a bidirectional Helmholtz machine (Bornschein, Shabanian,

Fischer, and Bengio, 2015), the lowerbound, which minimizes the Bhattacharyya distance

(DB(p, q) = � log

P
y

p
p(y)q(y)), yields estimates of the likelihood, p?(x), with impor-

tance weights,

w(k)
=

s
p(x,h(k)

)

q(h(k)|x) . (5.13)

Similar to with the variational lowerbound, we can refine the approximate posterior to

maximize this lowerbound by simply replacing the weights in Equation 5.13.

We performed similar experiments to those in the experiments on wall-clock times

above, using only a three layer SBN trained for 500 epochs with the equivalent AIR and

BiHM procedures using the bidirectional lowerbound importance weights. We evaluated
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these models using 10000 posterior samples on the test dataset and evaluated BiHM with

(BiHM+) and without refinement.

Our results show similar negative log likelihoods for AIR (92.40 nats), BiHM (93.30

nats), and BiHM+ (92.90 nats), though AIR slightly outperforms BiHM+, and BiHM+

slightly outperforms BiHM. Further optimization is necessary for a better comparison to

our experiments with the variational lowerbound. However these observations are consis-

tent with those from our original experiments: AIR can be used to improve the posterior

both in training and when evaluating models, regardless of how they were trained. Further-

more, AIR is compatible with optimizations based on alternative lowerbounds, broadening

the scope in which AIR is applicable.

5.5 Iterative Refinement for Generative Adversarial Net-

works

The generative models used in this work so far performed inference that finds/learns the

best latent configuration for given datapoint. The fitness of latent configurations is the like-

lihood they generate real data, and a likelihood function needs to be defined to train model

parameters. Defining a likelihood function can pose a challenge in some settings as well

as add constraints that may limit model capacity. Alternatively, adversarial frameworks

provide a means of training generative models without directly maximizing the likelihood

function or inferring latent structure. Rather, an second “adversary” model, usually trained

to simply discriminate between real data and samples from the model, can be used to effi-

ciently train the generative model.
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5.5.1 Generative Adversarial Networks

Generative adversarial networks (GANs, Goodfellow et al., 2014) are a unique learning

framework that use two separate models with opposing, competing, or adversarial objec-

tives. Namely, a generator is pitted against a discriminatory adversary, whose objective is

to discriminate between data and samples from the generator by maximizing:

1

M

�
logD(x

(m)

) + log(1�D(G(z

(m)

)))

�
, (5.14)

where D(.) is a discriminator function with output in [0, 1], z(m) is a sample drawn from

isotropic noise,2 and G(.) is a function that maps from the space of z to the space of data,

x. The two models play a minimax game with value function:

min

G
max

D
V (G,D) = E[logD(x)]

x⇠p(x) + E[log(1�D(G(z)))]

z⇠p(z). (5.15)

The generator, rather than being trained to minimize the above value function, can be

trained to maximize log(D(G(z))), which can alleviate some learning issues related to

the discriminator loss saturating early in learning. With basic GANs, both generator and

discriminator are feed forward networks, D(.;�) and G(.; ). Unlike directed graphical

models such as those I covered in earlier sections, samples from the generator are not

drawn from a distribution with parameters determined by the generator network, but the

are the raw output from G(.; ), so that the generative objective involves one continuous

function with parameters from both models: D(G(.; );�). This allows for training a

generative model with a relatively simple fitness function and backpropagation, rather

than a complex likelihood function.

In order for a generating function, G(.; ), with real-valued parameters,  , to gener-

ate discrete-valued outputs, x, G(.; ) cannot be fully continuous. A natural choice for

the generator would be a continuous function, y = f(z) (e.g., a feed forward network),

2We have overloaded the sample index, m, here across the generator and the data.
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followed by a step function at 0.5 so that:

xi = �(yi) =

8
><

>:

1, if yi � 0.5

0, otherwise,
(5.16)

where x = {xi} and y = {yi}. However, as the gradients that would otherwise be used to

train the generator do not naturally back-propagate through discontinuous functions, it is

not possible to train the generator from the discriminator error signal.

5.5.2 Adaptive Refinement Adversarial Networks

In order to address GANs with binary variables, first consider the optimum discriminator

function, D(x)

?, for the minimax game given a generator G(.):

D?
G(x) =

p(x)

p(x) + q(x)
, (5.17)

where p(x) is the true distribution of the data, and q(x) is the distribution as generated by

p(z) and G(z). Given this optimal discriminator, the true density of the data can then be

written as:

p(x) = q(x)
D?

G(x)

1�D?
G(x)

. (5.18)

One can then posit the following estimator for the true distribution, given an imperfect

discriminator, D(x):

p̃(x) =
1

Z
q(x)

D(x)

1�D(x)

, (5.19)

where the marginal term, Z =

P
x

q(x) D(x)

1�D(x)

, guarantees that p̃(x) is a proper probability

distribution. Note that the global optimum occurs at D(x) = D?
(x) = 1/2, so that Z = 1

and p̃(x) = q(x) = p(x). p̃(x) is a potentially biased estimator for the true density.

However, the bias is implicit only in the quality of D(x): the closer D(x) is to D?
(x), the

more guarantee that p̃(x) is an unbiased estimator.
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Inspired by the success of IRVI, we wish to train the generator to be closer to p̃(x)

via iteratively refinement. In order to accomplish this, we treat q(x) as a the marginal-

ization of a joint density, q(x) =
P

z

g(x|z)p(z), rephrasing the generator function, G(z)

as a conditional distribution with Bernoulli centers as output. The reasoning here is that

AIR relies on moving a proposal distribution toward the nearest mode, using an estimate

of the mean in the neighborhood of said proposal distribution. In the case of Helmholtz

machines in the previous section, the proposal distribution was the approximate posterior,

while the target of refinement was the estimated mean of the latent variables over the true

posterior. As the true posterior is multimodal, the effect of refinement should, on aver-

age across trials, be able locate each mode. In the case of GANs, refinement on the full

distribution, q(x), would require inference on the latent variables, which potentially rein-

troduces challenges in training similar to those with directed graphical models. However,

if the generator outputs given the latent noise variables, z, are the parameters for a uni-

modal distribution, g(x|z), then refinement can be used to simply move the parameters of

said distribution toward the nearest mode of the data.

The procedure proposed here is to move the the conditional, g(x|z), toward the nearest

mode as defined by the unimodal distribution:

p̃
z

(x) =

1

Z
z

g(x|z) D(x)

1�D(x)

, (5.20)

where p̃
z

is an estimate of the data in the neighborhood of the mode defined by z, and

Z
z

=

P
x

g(x|z) D(x)

1�D(x)

is the marginal that ensures p̃
z

is a proper probability distribution.

Similar to with AIR in the previous section, I first calculate the mean over the proposal

distribution defined by the conditional, g(x|z):

µ
z

= E[x]p̃z(x) =
X

x

x p̃
z

(x) =

1

Z
z

X

x

x g(x|zk) D(x)

1�D(x)

. (5.21)

The mean can then be estimated using samples from the conditional:

µ
z

⇡ 1

PM
m0

=1

D(x

(m0)
)

1�D(x

(m0)
)

MX

m=1

x

(m)

D(x

(m)

)

1�D(x

(m)

)

=

MX

m=1

x

(m) w̃(m), (5.22)
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where the MC estimate is performed by sampling over the conditional, g(x|z), and w̃(m)

are the normalized weights, as with AIR. As with Helmholtz machines, µ
z

is reached

iteratively via the procedure from Equation 5.7, which should reduce the variance of the

estimate of µ
z

and gradients for training the generator.

Figure 5.6: A visualization of the effect on the decision boundary defined by D(x) with
AIRGAN. First, data samples are drawn from the empirical distribution (+) and the gen-
erator, G(x|z), (�). These lie of different sides of the decision boundary. The refinement
procedure then moves its samples over the boundary by iteratively refining the underlying
mean of G(x|z). The discriminator then moves the decision boundary to effectively place
the generated samples back across the decision boundary. Samples that cannot be placed
back across the decision boundary are indistinguishable from real data.

An illustration of the iterative minimax procedure for adaptive iterative refinement for

generative adversarial networks (AIRGAN) is provided in Figure 5.6. AIRGAN effec-

tively uses the discriminator as a metric of the true density in the local neighborhood of

samples from g(x|z). The global optima for the value function in Equation 5.15 occurs

when D?
(x) = 1/2, or in other words with both real data and samples lie on the decision

boundary. The refinement procedure moves the means of the generator in the neighbor-

hood of a mode across the boundary until they are on the “positive side”, corresponding

to areas the discriminator reserves for real data. This increases the discriminator loss from

Equation 5.14, so the discriminator tries to move the decision boundary so that the samples
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from the refinement procedure are on the negative side, but with the limitation that data

samples are still on the positive side. The “surviving” samples from the generator should,

as defined by the capacity of the discriminator, be indistinguishable from real data.

This procedure is similar to the positive / negative phases in contrastive divergence

(CD, Hinton, 2002). The data samples provide positive pressure at the decision boundary,

shaping it so that all data lies on the same side. The generator samples provide nega-

tive pressure to the decision boundary, removing space on the positive side that does not

correspond to data. As the generator distribution becomes arbitrarily close to the true

distribution, the positive and negative samples begin to occupy the same space, which at

equilibrium is at the decision boundary according to the global optimum.

Figure 5.7: Samples from the generative function, q(x) =

P
z

g(x|z)p(z) trained with
AIRGAN. Most samples are highly variable and data-like, with some rare noisy excep-
tions.
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5.5.3 Results

I applied this approach on the MNIST dataset with a 2-layer discriminator with 200 and

100 softplus hidden units with a dropout rate of 0.1 and a generator with 200 and 500

softplus hidden units with isotropic Gaussian noise as input. For the inference procedure,

I used an damping rate of � = 0.9 with 20 inference steps, as this worked in our exper-

iments with Helmholtz machines. Optimization was performed for 100 epochs using the

RMSProp algorithm with a learning rate of 0.001.

Samples from the resulting model trained on AIRGAN are highly variable and data-

like, with some rare exceptions that resemble in most cases to be noisy versions of digits

(Figure 5.7). The true-positive rate taken over the test dataset for the discriminator was

0.55, with an average false-positive rate taken over equivalent number of samples from the

generator was 0.44, indicating a good, but not optimal generative function.

Unfortunately, evaluating the likelihood of the model over the test dataset is difficult,

as calculating the likelihood function requires a summation over all latent variables or

a posterior. The former is intractable, though to latter may be possible via variational

learning, GDIR, or adversarially-learned inference (Dumoulin, Belghazi, Poole, Lamb,

Arjovsky, Mastropietro, and Courville, 2016) This, as well as further extensions (such as

to continuously-valued data) and analysis we leave for future work.
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Conclusions

6.1 Summary of Work

I have presented our work on applying functional magnetic imaging (fMRI) data to re-

stricted Boltzmann machines (RBMs), demonstrating comparable performance to the

state-of-the art independent component analysis (ICA) in separating intrinsic networks,

along with some key advantages in connectivity analysis and training. ICA is a purely

linear model that requires dimension reduction to work, but benefits from a very simple

learning algorithm that does not require approximations to train and has a straightforward

interpretation. RBMs are defined by an energy function, potentially have higher capac-

ity than ICA, and do not require dimensionality reduction. Despite requiring estimates

for learning, RBMs appear to exhibit some advantages when applied to fMRI, indicating

that fMRI analysis benefits from the more flexible representation. The lack of factorized

decomposition makes the latent variables in RBMs difficult to interpret relative to ICA,

though our work shows that the conditional distribution can be used to represent intrinsic

networks that are competitive to or better than ICA.

I also presented an alternative to sampling from i.i.d. data or from the energy defined

87



Chapter 6. Conclusions

by restricted Boltzmann machines (RBMs) using an auxiliary recurrent network (RNN).

Despite being used primarily to model sequences, the results presented indicate that an

RNN can be used to learn a transition operator such that the stationary distribution cor-

responds to independent and identically distributed data or is the marginal density of an

RBM. This implies that RNNs can potentially be used in a variety of situations where

sampling from or exploration of a distribution is necessary.

Next, I presented our work demonstrating that variational autoencoders (VAE) can be

used to infer non-linear latent structure from magnetic resonance imaging (MRI) data us-

ing directed belief networks. Directed nets provide a means of inference and dimension

reduction through an approximate posterior, though variance in variational inference per-

haps makes learning difficult with MRI data (which contrasts with RBMs), as our results

are somewhat unsatisfying. Like ICA and unlike RBMs, interpretation of latent struc-

ture is relatively straightforward, as the sources factorize, but unlike ICA, the relationship

between sources and data can be highly nonlinear and can be composed of a very deep

hierarchy of sources. This potentially provides a more powerful model than both ICA or

RBMs, though more work is necessary to improve results.

In order to address dynamics, I presented a novel approach to learning temporal dy-

namics in intrinsic networks. This model successfully separating independent, task related,

and group differentiating components from fMRI data with time- and subject-varying spa-

tial maps. To our knowledge, this is a novel contribution to the study of intrinsic networks.

In the end, for static models of MRI data or fMRI data (without explicit represen-

tations of temporal dynamics), RBMs may be the best choice, as they provide equal or

better features as ICA, do not require preprocessing, and provide better results that di-

rected graphical models. Deep directed graphical models may not be appropriate, as the

necessary variance from variational inference may pose challenges with high-dimensional,

low sample size data, like MRI. However, if modeling dynamics are part of a research goal,

RNN ICA appears to be a very promising approach for learning time course dynamics and
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variable spatial maps.

Finally, we introduced a novel method for inferring latent structure, iterative refine-

ment of the approximate posterior (IRVI), that works with directed belief networks with

discrete or continuous latent variables. This was extended to generative adversarial net-

works (GANs), and was shown as a method for training these with discrete data.
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