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Abstract

Though computational models typically assume all program steps execute flaw-

lessly, that does not imply all steps are equally important if a failure should occur.

In the “Constrained Reliability Allocation” problem, sufficient resources are guaran-

teed for operations that prompt eventual program termination on failure, but those

operations that only cause output errors are given a limited budget of some vital

resource, insufficient to ensure correct operation for each of them.

In this dissertation, I present a novel representation of failures based on a combi-

nation of their timing and location combined with criticality assessments—a method

used to predict the behavior of systems operating outside their design criteria. I ob-

serve that strictly correct error measures hide interesting failure relationships, failure

importance is often determined by failure timing, and recursion plays an important

role in structuring output error. I employ these observations to improve the out-

put error of two matrix multiplication methods through an economization procedure
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that moves failures from worse to better locations, thus providing a possible solu-

tion to the constrained reliability allocation problem. I show a 38% to 63% decrease

in absolute value error on matrix multiplication algorithms, despite nearly identical

failure counts between control and experimental studies. Finally, I show that efficient

sorting algorithms are less robust at large scale than less efficient sorting algorithms.
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approximate algorithms and computing A computing technique in which programs

may return inaccurate results in return for the ability to complete a

computation under circumstances where a correct result is difficult

or impossible to obtain.

best-effort computing A paradigm in which computational units try to improve the

current program state without working towards a complete and pre-

cisely correct solution.

Cf Notation for a computation C running with failure pattern f .

correct mode An operation’s expected computational behavior when there is no

failure.

criticality A method for measuring the importance of a component in the con-

text of a whole system.
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error economization The purposeful redirection of resources from one part of a

computation to another with the goal of decreasing output errors

measured via an error measure.

error measure Any function that accepts both a correct and an incorrect program

output and returns a scalar difference between them.

execution index A count of the number of times an operation or method has been

called during a single program run.

experiment object A Java object that has an experiment method that runs a pro-
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failure dynamics The interlocking set of relationships between correct and failed

operations and the output of a program.

failure interface See method level failure interface.

failure method A method that implements a failure mode and must have the same

signature as the original correct method except that it accepts an

additional input for a random number generator and has a signifier,

such as ‘Rand’, appended to its method name.

failure mode A description of an operation’s behavior during a failure, used to
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failure pattern A record of when and where each failure in a program occurs.

failure pattern distribution A probability distribution over the set of all possible

failure patterns.

failure point A tuple of (execution index, operation) that uniquely defines a

single failure during a single program run.
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be used to test program behavior under faulty conditions.

fault tolerance The silent correction of hardware or software faults at run time such

that the high level algorithm or user never observes the fault.

fault-intolerance/fault-tolerance A paradigm that combines fault tolerance tech-

niques that silently correct failures with fault intolerance that kills

a program or process whenever a failure is not corrected.

field of failure points A set of failure points over one or more operations and

execution indexes—large enough to contain most possible runs of

an algorithm at some input scale. Each point in the field has an

associated criticality.

f ∼ F Notation for a failure pattern f drawn from a failure pattern

distribution F .

f ∧K∗ Notation for a failure pattern f , modified so that operation K is

operating in its failure mode.

input generator A generator that produces random input objects.

input object An object with a randomize method that acts as an input generator.
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leverage The average criticality of all failure points with a criticality above

the median criticality divided by the average criticality of those

beneath the median.
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method level failure interface A Java method annotated with an ‘@Randomize’ tag

and with an accompanying failure method. At runtime faults are

injected into the program by calling the failure method instead of

the original correct mode method.

program context Paired with a specific program, a context is a list of operations

that can fail in the program and their failure modes, an input

generator for the program, and an error measure on the program.

presortedness A method for measuring how close a list is to sorted, a kind of error

measure.

quantified correctness Any measure of error on a program, in some context, such

that the number of possible output error values grows with a func-

tion that is in ω(C) in program input size.

scalable robustness The property of a program, in some context, such that the

error of the program approaches zero as the number of failures in

the program approaches zero while the input size of the program

approaches infinity.

theories of robustness Computational theories that relate deviations in program in-

puts and operations, compared to some expected baseline for either,

to a measure of error on the program output.
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Chapter 1

Introduction

In this thesis I present a method for measuring operation importance on failure-

prone hardware, providing a novel perspective on the computational process and

paving the way for robustness resource economizations that improve the behavior of

programs in fallible environments. This work grows out of a concern for problems

introduced by silent data corruptions (SDC) which are observed both in large scale

and embedded computing environments [4, 5]. These problems call into question

paradigms that rely on the removal of failures for computational success and lead to

a lack of understanding concerning the impact of failures when they are inevitable.

1.1 Background

At the beginning of the computer revolution computational devices were unreliable.

Based on vacuum tubes and electromechanical switches, they could break down and

corrupt a computation after a very short period of time [6]. It has become a cliche in

computer science that the word ‘bug’ entered the lexicon when an insect landed on

Harvard University’s Mark II calculator and caused the computer to glitch. While

the word ‘bug’ can be found applied to tiny technical errors in a system or engine
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as early as the 19th century [7], it is nevertheless true that one moth’s unfortunate

encounter with an Mark II electronic panel is one of its first uses in the field of

computer science [8]. Failures like this were common for early computer scientists,

who placed a lot of effort into building machines of sufficient accuracy to provide

useful results.

In response, the pioneers of our field developed a paradigm of ruthless correctness

to combat hardware failures. In 1948 John von Neumann gave a series of lectures in

which he explained how this paradigm grew out of engineers’ lack of understanding

about errors and opposed it to the behavior of computations in natural systems:

Natural organisms are sufficiently well conceived to be able to operate

even when malfunctions have set in. They can operate in spite of malfunc-

tions, and their subsequent tendency is to remove these malfunctions...

[In an artificial automaton any malfunction] represents a considerable

risk that some generally degenerating process has already set in within

the machine. It is, therefore, necessary to intervene immediately, because

a machine which has begun to malfunction has only rarely a tendency

to restore itself, and will more probably go from bad to worse... With

our artificial automata we are moving much more in the dark than na-

ture appears to be with its organisms... [We are] much more “scared” by

the occurrence of an isolated error and by the malfunction which must

be behind it. Our behavior is clearly that of over-caution, generated by

ignorance [6].

Von Neumann’s solution was to combine the natural and artificial paradigms at

different computational levels. Computer engineers would assemble modules com-

posed of multiple copies of fallible components. If the results of a supermajority of

the components were the same then the answer they provided would be accepted.

This allowed for masking some failures as in the ‘natural automata’ paradigm. If
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there was no supermajority agreement, however, then the result was considered in-

valid, a fault was detected, and the whole computation was thrown out or rewound

to the last correct state, and a human was informed of the error in keeping with the

methods for correcting ‘artificial automata’. Assuming independent and identically

distributed (i.i.d.) failures amongst the components, this method could drive the

module’s undetected failure rate to an arbitrarily low value by growing the number

of redundant modules, given that per component failure rates were below a very

conservative 16% [9].

1.1.1 From Fault Tolerance to Approximate Computing

While the two-level failure correction method introduced by von Neumann did not

have a name in his day, today we call it the Fault-intolerant/fault-tolerant paradigm

(fault-tolerance) [10,11]. Computations are designed first to avoid failures whenever

possible and terminate on any hardware failure that may introduce a software fault,

hence the fault-intolerance, while striving to preserve and protect a fragile core of

correct computation by re-performing and correcting failures that may occur at run

time using fault tolerance techniques. These methods may be based in hardware,

such as [12–15] where, for example, special chip designs allow for multi-threaded

result checking, or they may be in software such as [16–19] where extra instructions

are added to the normal software flow to ensure correct execution. This paradigm

has allowed for the construction of the architectures, built around ‘guaranteed’ de-

terministic hardware, that have ‘guaranteed’ deterministic execution.

However, fault tolerance/intolerance tends to create a bifurcation in the way

computer and software engineers think about computational processes. Programs

are often written with large nonlinearities where the manipulation of a few bits of

data can greatly impact final outcomes. Software engineers can remain ignorant

of how these nonlinearities are impacted by failures that occur at a lower level as
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those failures are expected to disappear under a contract of hardware-software stack

determinism that relies on ensuring that data looks correct. However, this subjects

the system to arbitrary impact due to SDCs since these failures, by definition, ‘look

correct’ [20].

While these techniques work for the worst problems at today’s computing scales,

solutions are often achieved through a slow evolutionary procedure in which failures

must first become a problem to be solved before they can be solved. Many times,

this game of catch-up works fine. Occasionally, it does not [21]. Sometimes, the

cure is almost worse than the sickness, demanding immense growth in resources

to suppress only occasional failures as in process replication or checkpoint-restart

in high performance computing (HPC) environments. When implemented naively,

these techniques can lead to massive increases in energy usage making it more difficult

to meet important environmental and energy cost goals [22–24]. However, as long as

we do not understand failure such methods are necessary.

Power wastage is also a pressing problem for embedded computations. To tackle

this problem, researchers working with these devices are considering hardware tech-

niques, such as voltage over-scaling, that trade accuracy for lower hardware energy

use [25]. Conceivably, in the future, chips will present a reliability-efficiency interface

that may be used by economizing software to regulate chip resource on a per pro-

gram counter tick basis or redirect less important computational steps to a “green”

computational core that uses less energy [26]. However, these developments that

drop computational determinism must eventually lead to a reconsideration of what

it means for a program to be “correct”.

1.1.2 Best-Effort Computing

One approach to dealing with computational correctness and computing beyond de-

terminism is best-effort computing [27, 28], in which hardware promises only that
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its operations will typically be correct, while guaranteeing neither full correctness

nor any specific distribution of failures. One encouraging step in this direction

are the fields of approximate algorithms and computing—computing techniques in

which programs may return possibly inaccurate results rather than generate a guar-

anteed accurate result, in return for the ability to complete a computation under

circumstances where a correct result is difficult or impossible to obtain [5, 29–31].

It has already shown promise in applications such as approximate video processing

(e.g. [32,33]), where even large failures may produce only minor output errors, such

as periodic blips on the screen.

Approximate computing, however, sometimes requires that technology choices be

evaluated only in a whole-systems context, risking chicken-and-egg problems if actual

end-use data is expected to inform the system’s design. For example, past energy

conservation approximation techniques have relied on detailed hardware knowledge

to limit their search space when finding the best economization for a given system

application [33]. The application of approximate computing to general computations

requires techniques that can provide economizations outside of a particular hardware

context.

A priori theoretical analysis of algorithms could lead to some useful conclusions

about algorithmic behavior in the face of undetected failures. This is true of efficiency

analysis, which can sometimes be re-purposed for analyzing algorithm robustness. In

some cases, these analyses are not that difficult. For example, we can prove that the

first N comparisons of quicksort are the most important because of how the first

pivot moves numbers across half the list length on average, while pivots later in

the algorithm tend not to move numbers as far. However, many theoreticians are

not focused on questions of failure dynamics—the interlocking set of relationships

between correct and failed operations and the output of an algorithm, but rather

seek to ensure absolutely correct outputs within some error bounds, in keeping with

the fault tolerance paradigm.
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The pursuit of correctness certainly seems respectable, but it implies that all er-

rors are equally bad, no matter how harmless or catastrophic. A better way is to

switch from a paradigm of strict correctness to one of quantified correctness which

allows for measuring continuous or nearly continuous degrees of output error. Stan-

dardized error measures can be developed for common object classes, in the same

way that other methods are integrated into objects today. For example, when sorting

lists a presortedness measure (e.g. [34, 35]) can be re-appropriated to measure the

degree of successful sorting in the final outcome. These measures can then be used

on many list-like objects. Similarly, absolute difference measures can be employed

to judge the error on algorithms that produce integer, floating point, and matrix

outputs.

Strict correctness presents us with a weak feedback signal for computational error.

Abandoning strict correctness may seem like a high price to pay; indeed, the fault-

tolerance paradigm will eventually lead to the evolutionary embedding of knowledge

concerning failure within the code itself. However, we cannot say how efficient that

process will be, or if it will ever completely illuminate the darkness surrounding

computational error that von Neumann spoke of so long ago.

1.2 Problem Statement

Since traditional software engineering assumes deterministic execution, there is a gap

in knowledge concerning:

• which operations in a program are most critical to obtain high-quality results,

• what can be done to ensure successful program operation in resource con-

strained environments, and

• how the properties of a program, such as its efficiency or the ordering of its
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operations, interact with its robustness in the face of failures.

To answer these questions I present the “constrained reliability allocation” prob-

lem. In this problem sufficient resources are guaranteed for operations that may

prompt eventual program termination or infinite loops on failure while operations

that only cause output errors are given a limited budget of some vital resource. It is

then the job of some economization procedure to distribute these resources so that

program output is minimally damaged.

Therefore, the contributions of this dissertation are threefold:

1. it quantifies the importance of operation failures in a traditionally deterministic

group of algorithms on steps that appear to lie somewhere between ‘negligible

impact’ and ‘program critical’,

2. it provides a framework and method for improving the performance of deter-

ministic algorithms in environments where there are not sufficient resources for

guaranteed deterministic operation, and

3. it develops a deeper understanding of the relationship between algorithmic ef-

ficiency and robustness using a newly developed scalable robustness paradigm.

Now we turn to the notions of computational robustness and error measurement

that form this dissertation’s foundation.

1.3 Conceptual Framework

This study grows out of ideas related to criticality, fault tolerance, fault injection,

quantified correctness, approximate computing, error economization, and theories

of efficiency and robustness. I seek to use criticality, measured through quantified-

correctness evaluations of error on fault-injected programs, to show how approximate
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computations on faulty hardware can be be economized. Using the insights thus

gained, I then propose a theory of computational robustness that stands in contrast

to those posed by the fault tolerance paradigm.

I will touch, briefly, on each of these concepts here, but a more in-depth explo-

ration of each subconcept can be found in Section 2.

Criticality is a method for measuring the importance or value of a component

in the context of a system [36–39]. A simple example of criticality might be the

minimum throughput on some node in a flow graph experiencing a max flow event or

the change in device state caused by receiving or not receiving, a particular message.

It can be viewed as a statistical derivative, measuring the expected change in the

output of a system given a change in some internal component.

Fault Tolerance/Intolerance, as explained, is the bimodal paradigm whereby fail-

ures are either suppressed through some statistical method, or alternatively, if they

are detected but uncorrected they cause a system crash or restart.

Fault Injection is a technique whereby computational operations are modified

at run time to behave differently than expected. Faults can be injected either at

the hardware level, by manually adding components capable of changing electrical

states, or at the software level through various techniques with virtual machine fault

injection being a popular technique [40].

Quantified Correctness means evaluating program or system performance in a

manner that goes beyond the ‘is correct/is not correct’ level. It also includes stepping

beyond measuring the simple probability of correct program responses. Rather,

under quantified correctness a single program run is capable of having error responses

that range over a large number of different values with a cardinality that is ω(C) in

functions of program input size.

Approximate Algorithms and Computing, as previously explained, are computing
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frameworks where program outputs are not expected to be correct, but are rather

allowed to vary from the correct value within some error range. At first approximate

algorithms were applied to solving problems with no known feasible solution, such

as NP-complete computations [41], but recently approximate computing has been

applied to situations where hardware level errors are allowed to percolate through

the computational stack all the way to program output [42].

Error Economization is the purposeful redirection of resources from one part of

a computation to another with the goal of decreasing output errors measured via an

error measure.

Theories of Efficiency account for the amount of resources required to successfully

implement a computing strategy for solving some problem. They are very common

in the computing world. The big-O, big-Θ, and big-Ω notations and their attendant

concepts come to mind. There are also Theories of Robustness that account for the

output error of a program given some error on program inputs or distribution of

failures on program operations. However, these are less generalized and famous than

those concerning computational efficiency. An example of such a theory is program

continuity found in [43] where the authors propose that a program in continuous if

a small change in the input leads to a small change in the output. Alternatively,

in [44] the authors present a model of robustness which focuses on δ, the number of

allowed failures per unit time.

Using this framework it becomes possible for us to ask some serious questions

and hypothesize about the failure dynamics of programs subject to the constrained

reliability allocation problem.
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1.4 Research Questions and Hypotheses

A full and complete consideration of failure dynamics is outside the scope of this

study. When programs begin to fail there are many strange phenomena that can

occur, including some failures that improve program performance or combinations

of failures that do far greater or less damage than can otherwise be accounted for by

their individual impact [45]. However, there are some general questions about these

dynamics and their relationship to computational robustness and efficiency that I do

ask:

1.4.1 How do Measures of Correctness Hide or Uncover In-

teresting Failure Dynamics Inside Algorithms?

Any study about failure dynamics should be concerned with the method of mea-

suring error on the output of an algorithm. While I have indicated that quantified

correctness is a possible path forward for understanding how computations fail, it

does not seem to be obvious to the field that quantified correctness measures should

be employed when judging program performance. This opposition, traditional all-

or-nothing correctness against quantified correctness suggests two subquestions.

How do all-or-nothing error measures impact the observed failure dy-

namics of an algorithm?

To answer this question, this dissertation evaluates algorithmic failure dynam-

ics with error measures that use a strictly correct evaluation procedure to judge

performance as a baseline on sorting algorithms.

How do error measures that allow for partial credit on continuous or

multi-step scales, such as quantified correctness measures, impact our

understanding of algorithmic failure dynamics?
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After measuring a subset of failure dynamics with all-or-nothing error measures

this dissertation empirically examines both sorting algorithms and multiplication

algorithms with quantified correctness measures.

My primary hypothesis is that strict correctness measures often hide an algo-

rithm’s failure dynamics while quantified correctness measures expose interesting

failure dynamics. This is due to the tendency of strict error measures to treat all

failures equally and mask the failure’s impact on algorithmic output. This hypothe-

sis will be falsified if strictly correct error measures produce similar failure dynamics

results as quantified correctness measures or if the failure dynamics exposed by quan-

tified correctness measures are otherwise uninteresting.

1.4.2 How Are an Algorithm’s Failure Dynamics Related to

the Algorithm’s Known Behavior?

I hypothesize that the failure dynamics observed when using continuous error mea-

sures may be related to the known behaviors and properties of those algorithms.

These behaviors include algorithmic recursion, previous understandings about algo-

rithmic reliance on specific operations, the location of algorithmic loops, and un-

derstandings about algorithmic space and time complexity. This hypothesis can be

falsified if no discernible pattern relating to known algorithmic behaviors is found in

algorithm failure dynamics data.

1.4.3 Can Failure Dynamics Analysis Improve Algorithmic

Performance in Resource Constrained Environments?

Much of the analysis of efficiency in algorithms and computational systems assumes

that enough resources will be available to provide a ‘correct’ result given algorithmic
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correctness and then seeks algorithms that decrease the number of resources neces-

sary to obtain that result. However, there are some situations where even the most

efficient algorithms consume too many resources to allow for strictly-correct program

solutions. This dissertation focuses on circumstances where there are not sufficient

resources to perform every algorithmic operation correctly but where it may, instead,

be possible to move resources to those computational steps with the greatest impact.

I hypothesize that a revealing analysis of failure dynamics within a particular al-

gorithm should make it possible to leverage an economy of error to increase algorithm

performance in a resource constrained environment. This hypothesis is falsified for

some economy of error if we find conditions where a detailed failure dynamic analysis

cannot be paired with an economy of error to improve algorithmic performance.

1.4.4 Which Operations Respond Well to This Method?

There are some operations and computational components that are vital for a pro-

gram or system to produce partially correct outputs. Further, it seems that in the

future advanced scheduling systems will be able to pull some operations out of the

program stream and send them to less reliable hardware while ensuring that critical

operations receive greater attention.

This dissertation hypothesizes that algorithms respond well to this method when

it is applied to those operations that make up the bulk of the algorithm’s run time,

but where each are responsible for a small part of the program output. Examples

include additions in multiplication, searches in fractal image compression, graph

steps in graph search algorithms, ray traces in a ray tracer, backpropagation steps

used for stochastic gradient descent, and comparisons in sorting algorithms.

Between these operations, I hypothesize that there must also be some leverage—

operation failures must have a differential impact on the output based on when
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and where they occur. A further hypothesis is that this leverage can be found when

algorithm uses a mathematical or programmatic trick to increase its efficiency against

some brute-force solution that is less efficient.

This hypothesis is falsified if algorithms without leverage, or that make use of

brute force solutions, are impacted in some strong manner by the error economization

procedure.

1.5 Procedures

In this work I focus on three traditional computer science problems: sorting, scalar

multiplication, and matrix multiplication. For each problem I pick out a common

computational step that is shared by all the algorithms in that problem set and

inject faults into that step. I then measure the deviation between fault-injected and

non-fault injected program runs to evaluate program failure criticality.

I then run an experiment where all computational operations subject to fault

injection from step 1 are failed using an i.i.d. error model. Using the average output

error from this i.i.d. experiment as a baseline result for failures on each algorithm

and problem, I also run an experiment where I fail the least critical operations at

double the failure rate while armoring the most important operations against any

failures. I apply this experiment only to the multiplication algorithms. This is my

error economization result.

Finally, using insights gained from the evaluation of program failure criticality

on the sorting algorithms, I present a theory of robustness at scale that suggests a

connection between algorithmic efficiency and algorithmic robustness.
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1.6 Thesis Outline

In the next chapter I present background material concerning the techniques and

ideas explored throughout this work, especially those exemplified by each of the

concepts in Section 1.3. Chapter 3, building on work available in [1], presents a

detailed description of the specific model and methods used throughout this work

to answer the questions found in Section 1.4. Next, Chapters 4 and 5, based on

work first explored in [1,2], present the results of empirical studies on criticality and

error economization in both sorting and multiplication algorithms. Chapter 6, based

on work first published in [3], is a general theoretical view of error and robustness

through the specific lens of sorting algorithms that builds upon empirical observa-

tions made in Chapter 4. Finally, in Chapter 7 I consider how the concrete choices

made in the development of this work limit its scope and present recommendations,

speculations, and conclusions.
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Chapter 2

Related Work

As discussed in Section 1.3 there are a number of concepts that touch on or underpin

the work I present in this thesis. These include criticality, fault tolerance, fault

injection, quantified correctness, approximate computing, error economization, and

theories of robustness. Here I summarize work in each of these areas.

2.1 Criticality

Criticality analysis has a long history as a method for understanding failures in

industries working with finite engineered machines. While this analysis is taken to be

generalizable, its application is often limited to industries where safety is important,

such as medicine, cyber-physical systems, and travel [36–39].

In these analyses a bottom-up approach that is similar to those found in this dis-

sertation is often used in which known failure modes are assigned to engineered com-

ponents and simulations of whole-system errors are produced by searching through

a space of failures on each low-level component [36]. Such analyses have also been

used to evaluate system susceptibility to malicious attacks, such as the transportation
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network analysis found in [37] where the authors propose a criticality ratio measure

that may be useful as an error measure for criticality evaluation in graph-based algo-

rithms. Authors have also examined resource economies that use system criticality

to balance real time operations [38,39].

In each of these works criticality analysis is performed on projects that affect day-

to-day living conditions. Even when these analysis are aimed at electronic compute

systems, however, they are most likely to be developed for those systems that will

have major ‘real world’ impact, such as the schedule balancing work for Boeing found

in [46].

Many authors, however, move beyond criticality analysis to analyze operation,

code, and system importance more generally. A related line of research in pure

computing lies in sensitivity evaluations that often focus on the affects of system

perturbations on whole system performance. In [47] the authors introduce time-based

system perturbations which produce system performance degradation and then they

evaluate mean time to recovery for the system as a sensitivity metric. Alternatively,

in [48] the authors show how changes in system parameters such as micro-service

failure and repair rates affect whole system performance metrics. However, sensitivity

evaluations differ from criticality evaluation by looking at how failure events impact

the non-functional behavior of a system.

Analysis of code importance and tendency to fail has also been used to aid design-

ers in tracking vulnerabilities when introducing code edits [49–51]. These evaluations

can be used to direct developer attention to the most important code changes, how-

ever, they do not focus on the effects or propagation of hardware failures all the way

through the computation.

While criticality-focused work exists in the purely compute-oriented literature

(e.g. [52]), it has been the tradition of compute-oriented engineering to focus on fault-

tolerant compute paradigms. These paradigms aim to create perfect answers and
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throw out any results that do not conform [10]. This has been possible because of the

relatively low failure probabilities encountered when modern engineered systems are

kept at a small scales and run within strict parameters of both resource consumption

and guaranteed physical safety that may not be available in the future.

2.2 Fault Tolerance

Fault-tolerance techniques—the mainstay fallback of the computing world—rely on

the idea that if a fault occurs it should be corrected, and if that is not possible the

computation should be terminated. This paradigm, dedicated to the production of

strictly correct results, can be found operating at both the hardware and software

levels.

Examples of hardware oriented fault-tolerance techniques include [12–15]. In

[12,13], for example, a process known as simultaneous and redundantly threaded pro-

cessing is used to check for transient hardware failures at the CPU level by running

at least two identical threads and checking thread reads and writes to parity pro-

tected memory against each other. The authors of [14] improve on this process by

scheduling threads such that certain latency concerns are minimized and execution

can be guaranteed across different CPU cores for each thread. The authors of [15],

alternatively, make use of out-of-order execution operations in super-scalar CPUs to

check for correct execution against transient hardware failures.

Software-oriented fault-tolerance techniques, however, can be found in [16–19].

[16] discusses SWIFT, a tool that compiles code to add redundant instructions that

take advantage of unused parallel compute resources to ensure successful control

flow in programs on failure-prone hardware. In [17] the authors present a number

of methods, implemented in software, to protect against data corruption in the face

of single event upsets—electronic disturbances caused by hardware encounters with
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radiation in space. A control flow analysis is used to create execution invariants that

can be easily checked against real world software operation in [19].

All together these works focus on the use of n-modular redundancy through

instruction replication and checking to guarantee deterministic execution. While

some of the works overlap this dissertation through the use of i.i.d. failure models

(e.g. [53, 54]), most works explore the effects of finite-bound failures, often one-off

failures.

A further extension to the software fault tolerance framework occurs in [55–57].

These works focus on improving fault tolerance by allowing software authors to

mark some code as more or less critical. Their methods are somewhat different from

previous software fault tolerance techniques, and more similar to the work of this

dissertation, since they focus on leveraging software developer’s knowledge of code

robustness and code criticality to redistribute compute resources towards protecting

the more vulnerable code regions. However, this dissertation extends these research

efforts by providing services that discover critical code operations through space and

time.

This dissertation further differs from these works in that criticality explores what

happens to computations when failures are not caught and corrected by fault-tolerant

techniques. This is important for multiple reasons. Today, large scale systems often

operate under the threat of silent data corruptions (SDC) [4]. The projected cost of

maintaining determinism in exascale-class HPC machines is becoming increasingly

prohibitive [20,58–62]. Further, authors are also pointing to a world where low energy

chips may allow for a tradeoff between energy use and computational reliability

[5, 25,31,63]

An important extension to the field of fault tolerance focuses on fault injec-

tion—the simulation of hardware and software failures that can then be used to test

program behavior under faulty conditions. This empirical field is interesting because
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it has produced techniques that can be used to study problems that lie both within,

and outside, the fault tolerance paradigm.

2.3 Fault Injection

Fault injection is an important technique in the study of computational robustness,

allowing experimenters to observe the behavior of systems subject to various kinds

of hardware failures and software faults. A significant problem for this subfield lies

in the difficulty of injecting hardware level failures into software systems. There has

been a tradition of prototype fault-injection studies performed at the hardware level

on built-for-purpose systems where both the software and hardware were created by

the same manufacturer [64]. Today, however, systems are often built on off-the-shelf

commodity hardware purchased from multiple producers. Under these circumstances

injecting faults at the hardware level for study throughout the whole stack is difficult.

One solution is virtual fault injection, which simulates the entire hardware stack with

an emulator as proposed by [65,66].

Fault injection, as a field, also focuses on how individual system-component bugs

create faults in a broader computational system [67,68]. An example of this is [69] a

study of software-injected software faults which shows that some fault injectors are

not as representative as they could be since regression tests are likely to catch the

kinds of failures they propose as possible bugs. Representativeness studies, however,

are not limited to software-level fault injectors on software-level faults. The authors

of [70] for example, examine the representativeness of virtually-injected hardware

faults using software-based simulators. Representativeness is an important subfield

of fault-tolerance research that is not directly addressed by this dissertation, but

which is addressed in future work.

Software-level bug-induced faults are also considered by [71]. The authors present
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a framework that measures the impact of bugs in one software service on an entire

system of software services. This is a common infrastructural paradigm for large-

scale public-facing Internet organizations where potential conflicts may be caused

when different versions of the same code base are running at the same time.

Altogether, these fault-injection techniques are used to extend fault-tolerance

to Internet platforms through the creation of fault-prediction mechanisms—systems

that use machine learning to predict the occurrence of faults before they happen.

However, these systems require a great deal of fault data that is often not available.

The authors of [72] propose a fault-injection technique that puts a simulated sys-

tem in a faulty state which can then provide positive examples for fault prediction

systems.

My dissertation both complements and critiques these fault-injection studies.

For example, an interesting development in the fault-injection field has looked at the

plausibility of an attacker physically attacking a system to upset its most vulnerable

computational steps, with some degree of reliability such as [73–77]. My theoretical

work complements this empirical fault-injection work by showing the existence of

a sorting algorithm that is robust even in the face of worst-case malicious attacks

under a rate-limited error model of failure at all scales.

Effectively, my criticality analysis is a kind of fault-injection framework for study-

ing program robustness to failures. However, it is focused on fault-injection at the

software level. Additionally, unlike most software-level injectors it is not focused on

software bugs or the simulation of realistic hardware failures. Instead it focuses on

analyzing the ways that an algorithm may naturally amplify or attenuate the impact

of failures that occur at the level of program-visible operations, no matter what their

actual path into program space. Further, since I do not perfectly simulate hardware

failures, I can instead implement failure modes that explore how coordinated errors,

below the object-function level, impact program performance in keeping with results

that show that low-level failure coordination can produce greater error rates than
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uncoordinated failures [78].

A final significant difference between my work and much of the fault-injection

field lies in the way that I measure system performance. Many authors measure

two kinds of values to evaluate fault-injected systems. The first include a series

of non-functional measures that are designed to capture the overhead of the fault-

injection framework and any fault-tolerant code that is tested using the framework.

These overheads often come in the form of compute times, memory increases, and

changes in network usage. The second set of measures used by most authors is that

of expected system correctness, or the percentage of times that a fault is caught

before it can have any functional impact on the computation’s outputs.

My dissertation follows a different tradition that instead seeks to use quantified

correctness measures. These are able to capture the degree to which a fault-impacted

computation conforms to the correct output even when it deviates somewhat. That

is, I seek to quantify correctness.

2.4 Quantified Correctness

While the fault-tolerance framework abhors any uncaught failure, there are still works

within the framework that allow a failure to propagate all the way to program out-

put with the goal of measuring the probability of strict correctness on computation

output. For example, in [79] the authors measure full-system sensitivity to simu-

lated single-event upsets—random bit flips caused by high-energy particle collisions

within a computer. Alternatively, in [66] the authors find the probability that faults

injected into a high performance computing application will cause either no change

in the final output, an SDC, or cause a fatal crash. This tripartite evaluation lays the

beginnings of quantified correctness. However, other authors have moved further.

Performability is a technique for evaluating whole computational systems with
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many subcomponents which goes beyond even the tripartite no change/SDC/crash

notion of systemic correctness. Each component of the system is given a functional

strict correctness measure and/or a few non-functional measures to determine a score

for that component. The whole-system performance is then evaluated by combining

the scores of each of the subcomponents. Thus a system may degrade more or

less gracefully from perfect performance to completely non-functional. Examples of

performability metrics include job completion counts, link failures, output deviations,

or increases and decreases in throughput [80,81]. However, performability still relies

on strict correctness measures to evaluate each subtask’s functional performance. It

could be extended so that subtasks have quantified error measures, however I have

yet to find such efforts in the literature.

There is some research that envisions failures altering the output of a function.

For example, the authors of [43] allow for program inputs that deviate from the

correct input, while disallowing failures in program operations at runtime. Their

method, called program continuity relies on showing that small changes in program

input produce small changes in program output using some error measure. Using

this method, they were able to show that bubble sort is continuous.

Alternatively, the selective reliability approach, discussed by [82], develops error

bounds on computations that are divided into higher and lower reliability sections.

Lower reliability sections are subjected to random hardware bit-flip faults that can

modify the output of the whole computation. The present work in some ways com-

plements that approach, seeking to identify computational steps most in need of

high reliability. However, as previously stated, I focus on program-level failures, in

comparison operations while sorting, or in the addition and bit-checking operations

involved in multiplication, as opposed to hardware-level failures.

A paradigm of correctness sensitivity also complements works, such as [83] that

seek to use oracles to search for failures in traditional software-engineering settings

by further softening oracle requirements. Many evolutionary and machine-learning-
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oriented engineering paradigms, such as search-based software engineering [84], may

find that quantified correctness helps practitioners avoid search spaces with flag-

variable problems—a situation where a software search space presents no signal of a

problematic operation outside of a few unconnected points in the space that causes

the triggering of a flag variable. With a quantified correctness measure, the spaces

around such events may be easier to spot.

Overall, quantified correctness opens up new unexplored territory for computer

scientists. If the goal isn’t perfect computation every time, but is instead to reach

for close results that degrade in some predictable manner as environmental con-

ditions deteriorate, it becomes possible to find nice instances where computational

slack [85]–the resources wasted on ensuring correct computation—can be turned into

useful compute resources. It is also possible to create computations that can survive

harsh compute environments that do not provide enough resources for traditional

computing.

2.5 Approximate Algorithms and Computing

Approximate algorithms and computing are two closely related subfields that fo-

cus on obtaining useful results when it is not possible or feasible to obtain correct

outputs [30]. The two techniques however, provide approximation at different lev-

els. In approximate algorithms, individual operations provide results according to

their definition, however the algorithm or individual operations are defined so that

they provide only close-to-correct outputs. Alternatively, approximate computing

employs algorithms and operations guaranteed to produce correct results if each

individual operation performs according to its definition, however they are run on

fallible hardware such that individual operations occasionally perform incorrectly.

Early approximate algorithms, such as in [41] focused on tasks that are still con-
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sidered unfeasible, such as the maximum independent set problem. Approximation

algorithms in this tradition focused on obtaining results that are near optimal, given

some limitations on the query set. However, while many of these algorithms made

use of randomized operations as in [86], the primary goal of authors lay in decreas-

ing the use of compute resources in deterministic fault-tolerant environments. While

randomized operations could be used to provide the search field necessary for success-

ful approximation, the randomized operations were often either pure mathematical

objects or the result of some psuedo-random deterministic process, with the ran-

domness taken as part of the new approximate definition of the algorithm and its

operations. That is, authors did not focus on how approximation algorithms could

be improved through the use of actually-existing low-energy randomized switches at

the hardware level.

An advance in this direction is the sub-field of resilient algorithms. A subclass of

approximation algorithms that also lies within the field of approximate computing,

resilient algorithms focus on providing approximately correct results on failure-prone

hardware. For example, the authors of [87] transform deterministic algorithms, such

as sorting, min-cut/max-flow, shortest distance into a gradient descent problem on

a matrix with a different fitness function for each problem. Since gradient descent

works even when the gradient is approximate, it is possible for the gradient descent

problem to succeed even when running on a stochastically correct processor—a pro-

cessor that is only guaranteed to return correct results some of the time.

While these methods rely on the mathematical stability of gradient descent al-

gorithms in the face of occasional noise, they may not be suitable for all conceivable

computations. Further, they don’t provide an explanation for how computations

interact with failures induced by hardware. Instead, they lift the fault tolerance

framework to a new level, placing the whole computation in a space where failures

are unlikely to affect the outcome while hiding failure dynamics. Nor is it certain that

the gradient descent method will perform as efficiently as traditional algorithms, cre-
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ating a problem where increased per-operation efficiency on reliability-constrained

hardware is swamped by slow convergence time. For example, while the authors

of [87] show decreased power usage for least squares problems, they don’t show it for

sorting.

An approximate computing approach that is much closer to the criticality tech-

niques presented in this dissertation is called Application Resilience Characteriza-

tion (ARC) [5], based on dynamic binary instrumentation [88], ARC supports ap-

proximate computing by helping programmers understand how their applications

may function in failure-prone environments. This code analysis technique deter-

mines which code is sensitive or resilient and is complemented by hardware/software

schemes such as Flikker [32] that allow programmers to use partitioned code (called

critical or non-critical in the Flikker scheme) on hardware with varying energy us-

age and reliability characteristics. Overall, the authors of ARC show that many

algorithms can stand either a low rate of arbitrarily bad failures, or a high rate

of low impact failures. However, both Flikker and ARC have focused on algorithms

that are inherently robust, such as machine learning algorithms and video processing

computations. Perfect correctness is rarely expected in such environments.

These complement my work—which focuses on traditionally deterministic sorting

and multiplication algorithms—by providing a quick method for determining which

operations qualify for the constrained reliability allocation problem. However, these

methods analyze code-level operation failures, assigning each line to one of the tri-

partite no change/SDC/crash categorizations. In my work, I focus on time-bucketed

quantitative evaluation of the impact of failures on program output which provides

a richer understanding of how failures interact with computational outputs. This

understanding is useful because it can be leveraged to improve the performance of

computations running in reliability-constrained environments through the usage of

economies of error.
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2.6 Error Economization

Error economization is the process of establishing a common relationship between all

possible failures such that one failure can be avoided by increasing the resources spent

on that failure and decreasing the resources spent on some other failure. When some

knowledge of the final impact of a failure on computational error is also understood, it

becomes possible to leverage this economization in a manner that redirects resources

from trivial failures to more important ones.

Some of the works that I have already discussed implicitly contain a kind of

economization of failure. For example, in [38] the authors present a scheduling

algorithm for cyber-physical systems that allows high criticality operations to trump

low criticality operations when a system encounters a spike in work load. This can be

viewed through a quantified correctness lens as an increase in low criticality operation

failures and a decrease in high criticality operation failures. The authors of [39]

present a similar balancing of resources between critical and non-critical network

communications in a medical network and, in some sense, the entire field of network

quality of service (QoS) can be seen as a kind of economy of error where low criticality

communiques are stalled or dropped for the benefit of higher criticality ones.

Some of the work closest to mine on the error economization front can be found

in [33]. There, the authors present a concrete hardware platform for a camera in

which they provide quality-energy curves that show how energy usage in various

hardware components relates to total system output quality along a Pareto front

of best quality for the energy buck. However, the process of providing this curve

requires detailed hardware knowledge specific to the particular platform they were

working with. An advantage of this dissertation is the lack of such a requirement.



Chapter 2. Related Work 27

2.7 Theories of Robustness

Looking beyond the empirical techniques and frameworks that have been used to an-

alyze computational robustness, this dissertation also seeks to explore the theoretical

underpinnings of computational robustness research. Concretely, a large amount of

my work has focused on sorting algorithms. While I have presented some works that

focus on solving the sorting problem in the face of failures (e.g. [42,53]), there is con-

siderable work under the fault-tolerance paradigm that explores the theory of robust

sorting networks and techniques when dealing with faulty comparators. In [89] the

authors present a sorting network such that there are only n comparator pairs which

produce a faulty output when both comparators fail. Interestingly, [87] develops ro-

bust floating point numerical problem solvers for several exact algorithms, including

sorting. They demonstrate correct sorting on small lists with even as many as half

the floating point operations failing.

Moving beyond theories of robustness in the fault-tolerance paradigm, I have

focused on two different scenarios for the distribution and modeling of failure—

correlated worst-case models that can be used to simulate malicious attacks and

uncorrelated i.i.d. failure models. In both scenarios I have used rate-limited models

where only some percentage of all computational operations may be corrupted.

The rate-limited worst-case model I use is very similar to the model found in

[44]. In this model an attacker is allowed to modify up to δ memory locations and

during their analysis they often transform this value into a number of corruptions per

unit time σ. To deal with these modifications, the authors provide resilient sorting

algorithms that can provide outputs that are provably ‘k-resilient’—that have at

most k items out of place. While this error model is very similar to that found in

Chapter 5 for worst-case algorithmic robustness, one weakness of their proof is that

the allowed proportion of total fallible memory locations shrinks as the size of the

algorithm grows. Specifically, their FAST sorting algorithm only allows δ = O((n
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log n)1/3) modified operations even though the run time is O(n log n+ δ3).

There is a long tradition of using i.i.d. models of computational failure. In [53] the

authors present a sorting network that can sort an input list with high probability as

long as each comparator has an i.i.d. failure probability less than 1/2. The authors

of [54] use an i.i.d. failure model on connections between nodes in a grid computing

environment. Further, works I have already discussed (e.g. [5]), also tend to default

towards i.i.d. models when no strong argument for some other model presents itself.

This is reasonable, considering that i.i.d. models exist to handle situations where

there is a lack of information concerning the correlations of various events as is often

the case with many physical processes.

However, there is a subtle difference between my model and most previous i.i.d.

failure models. When these models are rigorously applied at the level of hardware,

many failures are caught by statistical fault-tolerance techniques before they can

ever impact actual program outputs. Therefore, failures such as these tend to im-

pact programs only if they are correlated. My work, however, injects failures into

applications by directly modifying program operations, skipping detailed hardware

simulations. This is effectively the same as asking what will happen given that fail-

ures are sufficiently correlated to impact program operations. In this way, my i.i.d.

failure model at the level of program operations is also a model of correlated failure

at the level of hardware.

Finally, my theoretical work on the lg(n) growth of operations in i.i.d. resistant

scalably robust algorithms complements empirical results from Fiala [90] showing

that scalable determinism requires ever more reliable hardware components. Avoid-

ing this outcome requires a more sophisticated model of failure and error.
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3.3 Introduction

There are many potential relationships between failed operations, correct operations,

and the output of an algorithm. A failed operation at one point in an algorithm on

one particular input may have a very different relationship to the output of the

algorithm than an operation even a small distance away. A complete description of

failure dynamics may be too complex to model.

https://github.com/ThomasBJones2/Robustness_Dissertation_Data
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Rather, this dissertation seeks a rough understanding of failure dynamics on a

limited set of relationships between operation failures and algorithm output. The

perspective used by this dissertation is that of a criticality assessment—a method

for measuring the amount of additional error in algorithm output created by a failure

on a single operation at a specific location in the algorithm, all other things being

equal.

Once this assessment is performed, in some studies I also pair the results with

an economy of error and a simulated method of resource redistribution to show that

criticality results can be used to improve algorithmic performance. These economies

of error restrict the algorithm to an insufficient amount of resources necessary for

correct execution. I show the usefulness of the criticality assessment method by eval-

uating the performance of the algorithms with, and without, economic rebalancing.

In this chapter I discuss criticality assessments in greater detail in Section 3.4. In

Section 3.5 I explore how quantified correctness is used in the form of error measures

to evaluate program performance throughout this dissertation. Next, in Section 3.6

I explore the use of space and time in the criticality assessment method and in Sec-

tion 3.7 I present a formal, mathematical definition for criticality as used throughout

this work. Some of the studies in this dissertation were produced through the use of

a general-purpose tool, Criticality Explorer, that I wrote and which is explained in

Section 3.8. Finally, in Section 3.9, I explore the technical specifics of using criticality

assessment results to solve the constrained reliability allocation problem.

3.4 Criticality Assessments

In this dissertation I present a method of assessing operation failure criticality that is

based on measuring the outcome of Monte Carlo simulations of algorithms run with

faulty operations. These simulations require an input generator, an error measure,
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and some notion of an operation’s failure mode, or behavior when a failure occurs

during its execution.

An input generator produces random inputs to the algorithm following some

statistical rule or distribution. The input generator has two requirements:

1. It must provide well formed inputs for the program—namely, it must provide

lists for sorting, numbers for addition, graphs for max-flow/min-cut, etc.

2. Inputs produced by the input generator must be random.

Outside of these, there is no further requirement placed on the input generator in

principle by this dissertation.

Specific, concrete error measures used in this dissertation will be covered in more

detail in Chapters 4 and 5. For now it suffices to say than an error measure accepts

two outputs from some algorithm under examination and then provides an evalu-

ation of the distance between these two outputs. In order to perform a criticality

assessment, one of the outputs is produced by a run of the algorithm in which some

failure has been simulated while the other output, generally called the “correct” out-

put or “more correct” output, will be produced by a run of the algorithm without

that particular failure. The difference, as calculated by the error measure, is the

operational instance criticality.

An operation’s failure mode describes how the operation behaves during a failure.

This allows us to ask what would happen if a failure were to occur, unchecked, at

some given location or moment within the algorithm. Failure modes are meant

to abstract correlated errors which may occur in the hardware and software stacks

beneath an algorithm so that it becomes possible to ask how the algorithm itself

behaves when it encounters a particular computational failure without aid from the

hardware.
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An example failure mode could be written for numerical comparisons in which

the outcome of some comparison between two numbers returns the opposite of the

correct result of the comparison. Given an operation x < y which returns true if x

is less than y or false otherwise, an acceptable failure mode for the operation might

return x >= y. When executed on x = 3 and y = 4 in its failure mode this operation

3 < 4 would return false even though in its correct mode it would return true.

Another failure mode may return rand(True, False), a coin-flip result instead of

the correct result. In this failure mode the operation 3 < 4 would return True half

the time and False half the time. Either of these would be an acceptable failure

mode. All that is required is that the failure mode accept the same inputs as the

operation in question, plus a random number generator, and return an output of the

same type as the original operation without throwing an exception or warning the

algorithm in some other way.

So far, I’ve discussed the components used in a criticality analysis. In keeping

with the approximate design paradigm, faults in program operations are allowed

to percolate into program output. Once in the output they produce errors which

can then be measured to produce a failure criticality—by performing one run of the

algorithm with that particular failure and another run without a failure and then

taking the difference in the output error between the two runs.

This difference is evaluated through error measures. However, a major hypothesis

of this work is that error measures that evaluate whether a computation has been

performed correctly are insufficient to produce interesting failure dynamic results.

Instead we need quantified error measures that score algorithm outputs on a ‘curve’

and that give ‘partial credit’.
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3.5 Error Measures

For the sake of capturing each failure’s criticality, an error measure is necessary to

evaluate the output quality of the computation with and without the failure. The

error measure E(Oe, Oc), takes outputs from an errorful run of the computation, Oe

and compares it to a correct or ‘less errorful’ run of the computation Oc. In this

work, I present both normalized and unnormalized error measures with normalized

error measures set to return values in [0..1] and unnormalized error measures set to

return unbounded positive error. A normalized error measure need not be completely

continuous in [0..1], however a good measure should attempt to hit as many values

in that range as possible.

For example, the L2 error from linear algebra would make a good a quantified

correctness measure. This measure is the sum of the squared distances between all

elements in a vector and some reference vector of the same size. However, it would

also be unnormalized. To normalize the error measure, one might pick a large L2

error cutoff, and send all L2 errors above that value to 1 while dividing all other

output errors by the cutoff value.

In Chapters 4 and 5 I will present specific error measures for sorting, scalar

multiplication, and matrix multiplication.

Using these error measures, for small computations it may be possible to calculate

every specific failure’s criticality exactly, with each failure being identified as a single

flaw in the total state of the program throughout its entire run. But many algorithms

have a state space that is combinatoric and so algorithms of even moderate size

cannot be assessed in a reasonable time frame.

Instead, this study uses Monte Carlo sampling to estimate the error measure

values with and without the failure. Rather than consider each failure from each

different input separately, failures are bucketed together by their characteristics and
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an average increase in error is calculated for each bucket. A novel advance of this

dissertation is the use of the failure’s location in the algorithm to calculate these

averages.

3.6 Mathematical Abstractions of

Space and Time

Locating a failure within a computational system is a trickier prospect than it might

first appear. It is important to remember that computations, for all their virtuality,

are first physical processes than involve the movements of energy and matter through

real objects, no matter how small those movements may be. Further, programs

impose a certain logic on the geometry of the hardware they sit upon. This event

cannot occur before that event, this data must be close to that data and they must

combine with each other within a certain number of seconds.

However, a too-strong insistence on examining computations at the level of elec-

trons and transistors can also leave us without a full understanding of the virtual

spaces that exist within a computation at higher levels. Further, for some analyses,

however incomplete they may be, it becomes unimportant whether the computation

is occurring on a head moving up and down a piece of tape, or in a central processor,

or across a series of cores distributed throughout a large system. And, therefore,

many algorithmic analyses use very abstract notions of space and time. In these

analyses all points in space touch each other and time is a single universal clock.

This work proposes an analysis of space and time that lies between the physical

and the abstract. For the purposes of this work, each operation failure occurs at

some failure point, K = (Op, i). This failure point is is defined by an operation, Op,

and an execution index, i, that counts the number of times the operation has so far

been executed in the computation. The operation Op, is any function in the code
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that accepts program state, mutates it, and returns a new program state. Operations

can be simple, like addition, or complicated, like a call to a sorting function. An

example operation failure may be located at K = (43 : (int) + (int), 3). Here, K is

equal to the third time the operation 43 : (int) + (int) - a sum of two ints on line 43

- is executed in the program. Notice, that in a serial deterministic algorithm with a

single failure mode, failure points are unique to each failure.

For a failure point, the operation is an abstraction of space while the execution

index is an abstraction of time. A particular operation in the code often occurs in

the same physical location in a computational system. Further, program states that

have very similar impacts on program output often move together, through a given

operation, within a very small window of possible execution indices.

Operations must also be packaged with a failure mode, as described, that perform

an incorrect mutation of program state, from the perspective of the program. Op-

erations in this work are allowed to have only a single failure mode, however future

analyses may employ more. This binary modality does allow for a simple failure

mode notation, however. In this work, K∗ notes that the operation at K employed

its failure mode while K means it ran its correct mode.

An additional requirement of this work is that failure modes not mutate large

segments of program state. Instead, they only affect the return value of an operation

or the program state that the operation mutates in the last few moments of its

execution. This helps strengthen the notion of an operation as an abstraction of

space as the operation’s failure is unable to affect all program state unless it first

affects the behavior of other operations.

Using this spatio-temporal paradigm we can then develop more completely the

idea of a failure’s criticality when it is bucketed by location. Rather than consider

the additional error due to all failures, or due to each failure individually, we can

begin to ask questions about the additional error due to a failure at a particular
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failure point.

3.7 Criticality Defined

A rough definition of criticality, as the extra error due to a single failure, has al-

ready been given. However determining the extra error due to every failure under

each distinct circumstance is infeasible for large programs and does not produce a

parsimonious description of failure criticality. Instead, I have presented a spatio-

temporal representation that ties each failure to a particular unique location in a

computational process. It is now possible, using this representation, to provide a

more precise definition of criticality as it is used in this work while also accounting

for the interaction between a failure and background failures that might additionally

occur during the execution of a program.

However, failures can have strange behavior. Sometimes, a failure may only

impact the output of a program given that other failures have also occurred [45]. It

is possible that a certain amount of background noise is necessary before a failure

impacts the output, as occurs under n-modular redundancy. In my definition of

failure criticality I use the representation outlined in the previous section to design

reproducible experiments measuring the additional error due to a single failure under

many different conditions—both those with, and without, background failures.

Reproducible criticality experiments are performed through the use of a failure

pattern—a record of when and where in the computation each failure occurs. Given

a program description of length M and an expected max run time of T , each of the

MT failure points is marked with the star-notation used above to produce a failure

pattern. So, for example, a program with three occurrences of a single operation K

might have a failure pattern: (K, 0), (K∗, 1), (K, 2) that shows a failure on only the

second instance of operation K.
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We also use the star notation to mark the difference between a failure pattern with

a particular failure and a failure pattern without a particular failure. If f is a failure

pattern, I use the notation f ∧K∗ to mean the failure pattern with failure point K

in its failure mode and f ∧K to mean failure pattern f with K in its correct mode.

Finally, to ensure the reproducibility of this operation, if the computation overruns

its expected run time T it is marked as returning some maximum or unbound error,

or the result is thrown out and recorded as a program time overrun, depending on

the error score.

Since each failure point’s criticality is meant to account for many possible failures

occurring in the presence of many possible distributions of background failures, it

is not enough to speak of a single failure pattern at a time. Instead, I use F to

represent a failure pattern distribution or probability distribution over the set of all

possible failure patterns of size MT .

There are many different potential ways to select the failure pattern distribution

F . In general, I will consider two failure pattern distributions. The first is F 0—a

distribution where all failure points operate in the correct mode. The second is F ε—

a distribution in which failure pattern probabilities are equal to their probability in

an i.i.d. failure model with a failure rate of ε. Since failure patterns are drawn from

these distributions I use f ∼ F to note that a failure pattern f has been drawn from

the distribution F and that it is weighted by its probability of occurrence in F .

Since I am dealing with computations run under many different failure patterns,

I adopt the convention Cf to mean computation C running with failure pattern f .

Thus Cf is a simulation of computation C when specific operational instances, as

defined by f , have been forced to fail. Cf (i) is the result produced when computation

C is run on input i over fault pattern f .

Using this failure pattern and the locality notation it is now possible to write a

reproducible and parsimonious notion of failure criticality as the additional error due
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to a single failure, as presented in Equation 3.1.

CritC,F,I,E(K) = avg∀i∈I,f∼FE(Cf∧K∗(i), Cf∧K(i)) (3.1)

This definition integrates all of the components so far discussed into a single

notion of criticality that is oriented towards an understanding of failures as being in

relation to

1. the programs in which they occur, captured by C,

2. input distributions captured by I,

3. failure pattern distributions captured by F , and

4. error measurements captured by E.

This understanding emphasizes the spatial and temporal nature of failures by

placing criticality measurements in a field of failure points that are abstracted from

physical space and time. However, that same abstraction also allows the concept to

focus on the failure properties of specific high level algorithms when failures impact

those algorithm’s performance by escaping into the algorithm’s compute space—as

can occur when failures are coordinated or computation economies are too tight for

strictly correct execution.

In the next section I present Criticality Explorer—a Java- and AspectJ-based

[91, 92] tool I developed to perform criticality assessments on tooled algorithms.

It can be found at https://github.com/ThomasBJones2/CriticalityExplorer.

Criticality Explorer also performs an economic assessment of algorithm performance

when criticality assessments are used to direct robustification resources towards the

most important computational steps. I will also note some distinctions that lie

between the theory of criticality outlined above and its practical implementation as

embodied in Criticality Explorer.

https://github.com/ThomasBJones2/CriticalityExplorer
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3.8 Criticality Explorer

To measure failure point criticalities, Criticality Explorer requires an input generator,

an error measure, and a set of failure interfaces for each algorithm assessed. Inputs

are drawn from the input generator and outputs are assessed with the error measure

while the failure interfaces take on the role of the failure modes from the previous

section. See Figure 3.1 (page 46) for a visual overview of the experimental process

used by Criticality Explorer.

In Criticality Explorer the input generator is handled by an input object which

conforms to an input object Java interface. Input objects must have a randomize

method that acts as the input generator to an experiment object. These experiment

objects run the experiment program and provide a score method that evaluates the

error measure difference between an errorful and a less errorful—sometimes called

‘correct’—experiment object.

In Criticality Explorer, failure interfaces operate at the level of Java methods

chosen by the user. In addition to the correct method code, the user provides an

alternate failure method. This method has the same signature as the original Java

method, except that it accepts an added parameter, a random number generator,

to be used to simulate underlying failures in the stack beneath the method. Failure

interfaces in the experiment object are annotated with ‘@Randomize’ and require

two implementations—the correct implementation, and a failure implementation—

to function.

The failure interfaces identify a spatiotemporal set of failure points bucketed

at some space-time granularity. These buckets are locations uniquely defined by

their associated failure interface and an invocation count on that failure interface.

Criticality Explorer assess the criticality of a failure point by estimating the expected

degree of damage that failure point would cause, assuming all else is equal. Given a

set of failure interfaces, I call the criticality distribution produced by the assessment
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process a failure shape.

Failure interfaces could be defined at higher, lower, or just other levels of abstrac-

tion but I see five principal advantages to method-level failure interfaces:

1. In a direct hardware realization, the data paths of multiple instances of an ob-

ject method often pass through similar or even the exact same circuits. Method-

level failures may thus provide increased abstraction while still approximating

important spatial failures of real hardware.

2. Method-level failure interfaces are flexible. Beyond the SDCs and energy econo-

mization failures that inspire this dissertation, they can also represent software

bugs or failures in distributed computations. Criticality Explorer can be used

to analyze a wide range of hardware and software failures.

3. Many robustness engineering methods are designed to compensate for indepen-

dent, identically distributed failures. I too consider i.i.d. failures, but method-

level interfaces can also model higher-order coordinated failures arising from

deep within the computational stack. Specifically, failure interfaces written on

major, central methods, can simulate SDC errors that have percolated through

the stack to become visible to the user.

4. Since most modern languages treat methods as (nearly) first class objects, it is

easy for software engineers to understand and implement failure interfaces at

the method level.

5. Method-level interfaces conform to the intuition that SDCs occur when objects

uphold their interfaces but violate their contracts.

Criticality Explorer records the number of invocations on each method-level fail-

ure interface to generate the failure point field. A small number of exploratory runs

at tested input sizes and ε failure rate are performed in order to find each failure
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interfaces maximum invocation count. Using this information Criticality Explorer

then evaluates each failure point criticality through Monte Carlo simulation. A ran-

dom input is drawn using randomize and an experiment, failed only at the given

failure point, is compared with a failure-free run of the algorithm on the same input.

The error in their outputs is evaluated using the score method.

Criticality Explorer can take advantage of AWS lambda to perform many crit-

icality assessments at once. This makes it possible to quickly assess failure point

criticalities at multiple input scales.

Because failed operations can cause unexpected behavior, Criticality Explorer

automatically catches and records any exceptions produced by experiment code at

run time. It also automatically terminates experiments after a hard-coded two-

minute time limit and records the termination as a runtime error. This is similar

to, but not exactly the same as, the maximum operation count from the previous

section.

Another difference lies in the way that failure patterns are implemented in Criti-

cality Explorer. Rather than using failure patterns, as described in Section 3.7, Crit-

icality Explorer instead uses a random number generator with a fixed random seed

to choose which operations’ failure methods are triggered and the random numbers

used to generate simulated failures inside a failure method at runtime. Given that

algorithms are otherwise deterministic, this guarantees the same program behavior

given the same input, and error measure.

When measuring failure point criticality, the algorithm must be run with the

operation forced to fail and forced to succeed as discussed in the previous section.

When the failed operation is forced to fail, however, it is possible that random

numbers from the generator will be consumed, which means that the failures after

the forced operation are not guaranteed to be the same in Criticality Explorer. This

is the single major difference between Criticality Explorer and the original criticality
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model [2], however there is a justification for this difference. Every failure tends to

change the meaning of the operations that occur after it. It is important that the

operations before a failure have the same behavior when measuring criticality, but

there is no significant reason to believe that the computational paths after the failed

operation need to be exactly the same for a successful measurement.

After criticality assessment, Criticality Explorer then performs three additional

experiments, discussed in the next section. The first measures experiment code

output error with an i.i.d. failure model with failure rate, ε, in [0, 0.1]. The experiment

code is then failure shaped—reliability resources are redistributed from trivial to

critical operations—according to the criticality assessment results. Finally, a proxy

economization experiment that uses some failure points’ criticalities as stand-ins

for others is also available within Criticality Explorer. As I will show, this proxy

method has the benefit of shrinking the criticality search space, providing improved

performance at a lower cost.

3.9 Failure Shaping

Failure shaping is designed to deal with reliability budgets that are insufficient for

strictly correct execution. This technique employs an economy of failure for each

fallible method in a computation. It also makes use of a failure rate ε ∈ [0, 1] such

that roughly ε of the failure points generated at runtime will fail. This is novel from

a fault-tolerant/intolerant perspective since a budget sufficient to provide correct

results is often presumed.

As a baseline Criticality Explorer ’s economy of failure presumes a non-zero i.i.d.

failure model at each failure point. Then, Criticality Explorer shapes the failures: the

least critical failure points—those with a criticality below the median criticality—

are adjusted to 2ε. Alternatively, the most important coordinates are given a failure
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rate of 0. This keeps the total failure rate over the whole computation at ε. This

failure redistribution scheme fits into a concept like triage where operations can either

be lost (less than median criticality) or salvageable (greater than median criticality).

The operations assumed to be failure-free form the ‘no treatment necessary’ category

traditionally found in triage processes.

This stylized and simplified economy of failure is oblivious to whatever actual

underlying mechanisms are used to shape failures within the system. I explore the

effects of failure shaping without proposing a complete, concrete, failure shaping

technology. However, relationships between power or energy and failure rate pre-

sented in [63, 85], for example, give me hope that economizations like this may be

realizable in a few years.

However, the current method of assessing operation criticality, even with average-

case location bucketing and optimizations using AWS lambda, is still very slow and

does not scale well. One method to get around these problems is the use of proxy

criticalities to shape operation failures. Under a normal economization each failure

point receives resources determined by its criticality performance. If it has high

criticality it receives a great deal of resources, otherwise it receives far fewer resources.

When making use of a proxy criticality, however, each failure point’s resource budget

is not determined by its criticality. Instead, the criticality of some proxy operation

is instead used to determine which operations should receive robustness resources.

An example of this proxy criticality method might crop up in a program that is

subject to bitwise failures during an addition operation. A single addition operation

on two numbers of size N could have, depending on the summation implementation,

3N such operations. While we may measure the criticality for every single bitwise

failure point in an algorithm, the proxy criticality path instead calls for the creation

of a failure interface for the addition operation as a whole. Then we might assign

resources to the bitwise operations internal to the summation operation, based off

the criticality performance of the total summation failure point they are a part of.
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Using these methods—criticality assessments, average case error rates, failure

shaping, and proxy criticalities—it is possible to uncover a new understanding of

the failure dynamics of deterministic algorithms. In the next chapter I describe how

these methods can be used to explore the failure dynamics of sorting algorithms in

particular.
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Chapter 4

Sorting Algorithm Criticality
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4.3 Introduction

The first study I present concerns the criticality of comparison operations in

comparison-based sorting algorithms. In this study:

• I observe the criticality behavior of three comparison-based sorting algorithms:

quicksort [93], merge sort [34], and bubble sort. A note: While many traditional

bubble sort algorithms encounter half the list on the average pass (e.g. [94]), my

algorithm encounters the full list on every pass and so I call it full bubble sort.

https://github.com/ThomasBJones2/Robustness_Dissertation_Data
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Because this sorting algorithm performs more comparisons, it has a robustness

advantage compared to the usual bubble sort algorithm.

• The program input is a random permutation of the numbers 0..51, modeling a

shuffled deck of cards.

• I use normalized presortedness measures as my error measures. The normal-

ization ensures that each measure maps any permutation of the input data into

a scalar value from 0.0 meaning “perfectly sorted” to 1.0 meaning “maximally

unsorted.”

• I consider only failures in the pair-wise sorting comparisons. Such failures fit

naturally into my adopted presortedness measures, but they are only one of

many possibilities. In particular, I presume the data items are never corrupted.

Discussion of the presortedness-based error measures used in this study can be

found in Section 4.3.1.

• The failure mode of the comparisons is equal to the opposite of the result they

would normally return: 3 < 4 returns True so a failed 3 < 4 will return False.

Alternatively, a randomized result could also work, however, its impact would

likely lead to a measurement of criticalities with half the value as those seen

in this study.

• As with all other studies in this thesis, whenever I draw from a failure pattern

distribution other than F 0—the distribution will be drawn from an i.i.d. error

model at a rate of ε.

The results in this chapter predate the development of Criticality Explorer, and

each algorithm under consideration was manually tooled to accept both an input list

and a precomputed failure pattern. The program then checked the failure pattern to

set comparison operation modes. However, the basic underlying method of criticality
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measurement used in this study is very similar to the more developed method used

by Criticality Explorer.

4.3.1 Measuring Sortedness

To investigate sorting as an example, we must confront the question of what “‘sort

of’ sorted” might mean. Fortunately, sorting is an extremely well-studied topic, and

researchers have defined a variety of presortedness measures— [34] is one survey—

that quantify the notion of ‘partially correct sorting’. As their name would suggest,

these measures have traditionally been used to measure a list’s ‘presortedness’—its

degree of disorder before sorting—but they are also useful as output quality measures

on a fallible sorting algorithm.

Existing presortedness measures include inversions error—the number of items

immediately preceding a smaller item, and max displacement—the maximum dis-

tance any item must be moved to reach its correct position. In this paper, we explore

those measures, as well as all-or-none strict correctness, and a measure called Spear-

man’s footrule error which I have also called positional error. Strict correctness,

is 0 if the output is sorted and 1 otherwise. Definitions for the other three er-

ror measures—normalized inversions error [34], normalized max displacement [34],

and normalized Spearman’s footrule error [95]—appear below in Equations 4.1, 4.2,

and 4.3, respectively.

In those equations L(i) is the position of item i in the output list L, while L[i]

is the inverse operation: The value of the ith item in list L. Lc is the output of a

correctly sorted list. Since we sort lists of distinct numbers from 0 to N − 1 the ith

item in a sorted list is equal to Lc(i). Note that each error measure is normalized to

[0, 1] by dividing by the maximum possible value of that error measure.
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Inv(L,Lc) =

∑N−2
i=0

L[i]−L[i+1]
|L[i]−L[i+1]| + 1

2N − 2
(4.1)

MaxDis(L,Lc) =
maxN−1

i=0 |Lc(i)− L(i)|
N − 1

(4.2)

SFE(L) =

∑N−1
i=0 |Lc(i)− L(i)|

SFE(N)
(4.3)

The normalization factor SFE(N)—the maximum Spearman’s footrule error for

an input list of size N—is equal to the Spearman’s footrule error when a list is reverse

sorted:

SFE(N) =
N−1∑
i=0

|N − (2Lc(i))− 1|

= 2
⌊(N

2

)2⌋
(4.4)

4.4 Results

The criticality for a failure at each comparison index was obtained by taking a sample

of 1000 failure pattern-input pairs for each comparison in the algorithm. Inputs were

randomly generated so that each list item had a uniform probability of occurring in

any location in the list. Failure-patterns were sampled from a binomial distribution

set to produce true bits at rates of 0%, 10%, and 20% so that comparisons not under

consideration would fail at a consistent i.i.d. background failure rate1.

To test the first half of Hypothesis 1.4.1 on sorting algorithms, I first measured

each of the algorithms using strict correctness error. The results from this test can be

1Note that as we use it here a background failure rate of 0% means there are no failures
other than the one failure being induced in the comparison under consideration.
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found in Figure 4.1 (page 54). In this figure, the criticality of comparison operations

at a 0% background failure rate is 1 nearly everywhere for the two algorithms that run

in O(n lg n) time. A failure on any operation leads to a judgment of complete failure

for the program. Alternatively, at higher background failure rates no operation seems

to have any criticality—all the damage has already been done. O(n2) bubble sort,

however, is anomalous. Most operations have no immediate impact on output and

instead only the last n operations seem to have an impact at 0% background failure

rate. Otherwise, at higher failure rates the pattern that shows no criticality holds.

There is an additional anomalous pattern towards the end of each algorithm where

the final few operations did present with a criticality between 0 and 1. However this

measurement reflects the probability of the algorithm reaching these final operations

at all rather than some diminished impact they might individually have on output

given that they have been reached.

In Figure 4.2 (page 55) I present the criticality results on merge sort for both

Spearman’s footrule error and max displacement error. The top graph shows the

Spearman’s footrule error (also known as positional error) with and without a failure

on the given operation at a 10% background failure rate. The middle graph shows

the difference between these two lines at the 10% background failure rate, as well as

the criticalities obtained at a 0% and 20% background failure rates. The final graph

shows max displacement error.

In the two bottom graphs we see a structure that cannot be found for strict

correctness error and which involves, roughly, four spikes in criticality at 0, 40,

100, and 140 comparisons. We also see, towards the end of the program, a tail of

about 50 operations (from about 180 to about 230) that all have low, but still non-

zero, criticalities. We also see that max displacement error behaves very similarly

to Spearman’s footrule error at a 0% background failure rate, but is very muted

when the background failure rate goes above 0%. These structures are discussed in

Section 7.2.2.
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In Figure 4.3 (page 56) I present the results for max inversions and Spearman’s

footrule error measures on quicksort. Max inversions at a 0% error rate presents a

constant criticality across all comparison of ≈ 0.02. This is equivalent to a single

item being a single spot out of place. Whenever there are background failures this

criticality measure falls to a much lower level, however later operations have higher

criticalities than earlier operations. Note that Spearman’s footrule error obtains a

large spike before the first n comparisons, followed by an otherwise high value for

the first n comparisons and what appears to be a secondary spike before the next

n comparisons followed by criticalities that trail off towards zero at the end of the

algorithm.

Finally, in Figure 4.4 (page 57) I present the criticality results for full bubble sort

on Spearman’s footrule error. In this algorithm, no criticality is measured on any

comparison except the last n comparisons, at 0% background failure rate. However,

as the background failure rate is turned up, we see a periodic pattern of increased

criticalities on the middle operations of every pass through the algorithm.

In this chapter, I only conveyed my immediate impressions concerning the ex-

perimental results on sorting. In Chapter 7 I will explore the consequences of these

data in greater detail and speculate on their meaning.
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Figure 4.1: Strict Correctness Criticality on Sorting Algorithms Extremal

values dominate in a plot of strict correctness criticality (y axis) vs. the comparisons

executed during a sort (‘Comparison Index’; x axis): Most faults are either critical

or not critical. See Section 4.4 for details. Figure reprinted from [2] with permission.
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Figure 4.2: Quantified Correctness on Merge Sort The average conditional

positional error curves (top graph), corresponding to the estimated error with and

without the fault at the given comparison index, and the positional error criticality

(middle graph), both based on a 10% background error rate. Note that the purple

and blue boxes are error bars. See text for details. Figure reprinted from [2] with

permission.



Chapter 4. Sorting Algorithm Criticality 56

Po
si

ti
o
n
a
l 
E
rr

o
r 

C
ri

ti
ca

lit
y

In
v
e
rs

io
n
s 

C
ri

ti
ca

lit
y

Comparison Index

Positional Error Criticality and Inversions Criticality 
       Vs. Comparison Index For Quick Sort

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200 250

Background Failure Rate = 0%
Background Failure Rate = 10%
Background Failure Rate = 20%

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Background Failure Rate = 0%

Background Failure Rate = 10%
Background Failure Rate = 20%

Figure 4.3: Quantified Correctness Results on Quicksort In quicksort we see

that the choice of error measure can effect which comparisons are seen as most

critical. With a positional error measure the firstN comparisons are the most critical.

However, under the inversions error measure the first N comparisons are the least

critical comparisons. See text for details. Figure reprinted from [2] with permission.
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5.3 Introduction

The second study I present concerns the criticality of add, boolean check, and scalar

multiply operations in multiplication algorithms. In this study:

https://github.com/ThomasBJones2/Robustness_Dissertation_Data
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• I examine the criticality behavior of two scalar multiplication algorithms and

two matrix multiplication algorithms.

• The program input for the scalar multiplication algorithms are integers repre-

sented as bit strings generated by flipping bits using a binomial distribution.

For the matrix multiplication algorithms the inputs are are square matrices of

integers of 10 bits with dimensions of size 2l for some l.

• For the scalar multiplication algorithms I use absolute difference, log absolute

difference, and absolute percentage difference error measures.

• I consider only failures on add, check, and scalar multiplication operations

executed by each program.

• The failure mode of the add and scalar multiply operations randomly flip one

bit in their outputs. The failure mode of a boolean check returns the opposite

result as the ‘correct’ result of the boolean check operation.

5.4 Failure Shaping on Scalar Multiplication

I used Criticality Explorer to measure failure point criticalities in the O(N2) naive

scalar multiplication and O(N lg23) Karatsuba multiplication algorithms [96]. I note

that while Karatsuba, outlined in Algorithm 1 has a faster asymptotic runtime than

naive multiplication, its runtime is actually longer on the input sizes I tested.

I employed the same input generator for both algorithms, producing random N

bit vectors interpreted as two’s-complement integers. I applied three different error

measures to each algorithm: absolute value, absolute logarithmic value, and absolute

percent value. Given the correct answer C and an incorrect output I, absolute value

returned |C − I|, absolute logarithm value returned ln(|C − I| + 1), and absolute

percent value returned |C−I|
|C|+1

.
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Algorithm 1: Karatsuba Multiplication

1: procedure Karatsuba(x, y)

2: if bl(x) ≤ 8 then . bl(x) is bit length of x

3: return Naive(x,y)

4: end if

5: if x ≡ 0 or y ≡ 0 then

6: return 0

7: end if

8: x12m + x0 = x . m ≤ min(bl(x),bl(y))
2

9: y12m + y0 = y

10: z1 = Karatsuba(x1, y1)

11: z2 = Karatsuba(x0, y0)

12: z3 = Karatsuba(x1 + x0, y1 + y0)

13: k = z3 − z2 − z1

14: return 22mz1 + 2mk + z3

15: end procedure

I defined failure interfaces for check and add methods used by both algorithms.

The Boolean check method returns true if the given bit of a number is 1 and false if

the number is 0. Its failure method returns the opposite result when a failure occurs.

The add method returns the sum of two numbers and its failure method randomly

flips one bit on the output when called. Since Karatsuba called naive multiply at

small input sizes, both algorithms would call a common addition operation while

Karatsuba called a special Karatsuba add, located only in the Karatsuba recursion

function, separately.
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5.4.1 Criticality Assessment Results on Scalar Multiplica-

tion

Figure 5.1 (page 68) presents example criticality distributions and sample sizes for

both naive multiplication and Karatsuba multiplication algorithms. I obtained simi-

lar results with 100, 200, and 500 bit numbers; here I focus on N = 100 and N = 500.

Naive multiplication’s check interface follows a log-linear growth pattern at all in-

put sizes. Karatsuba’s check and add interfaces display repeating three maxima

criticality patterns at both scales, in keeping with its triple recursive call.

Both distributions maintain tight bounds on the log-linear scale for all but the

final few failure points. As sample size decreases, standard error increases. I chose

not to display absolute value and absolute percent value because both graphs appear

flat on all but one or two failure points. For scalar multiplication, error is grows expo-

nentially. Figure 5.1 (page 68) also illustrates the median criticality for each failure

interface. For the add interfaces, naive multiply’s medians lie below Karatsuba’s.

With check the inverse is true.

5.4.2 Failure Shaping Results on Scalar Multiplication

In Figures 5.8 (page 75), 5.9 (page 76), and 5.10 (page 77) I show failure shaped

error results against i.i.d. failure model outcomes for each failure interface and error

measure at input size 100. My sample size was 1000 on both algorithms and all three

error measures. Tested error rates, ε, were evenly distributed in [0, 0.1].

Failure shaping, as I have outlined it, can distort the underlying failure rate, ε.

I believe this is caused by inaccuracies in the measured median failure rate, or by

changes in the run time caused when ε increases from zero. Therefore, I report results

at the actual observed rate of failure, ε′, in my graphs. Nonetheless, ε′ is generally

within 5% of ε.
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Failure shaping cuts the average absolute logarithmic failure by about 30. It cuts

the absolute value and absolute percent value by between 10% and 90%. Further,

the Karatsuba algorithm benefits more from failure shaping than naive multiply.

5.5 Failure Shaping Matrix Multiplication

To show how leverage works on multiple algorithmic scales—across hierarchies of op-

erations within algorithms—I used Criticality Explorer to perform an economization

procedure on two matrix multiplication algorithms. The first is the O(N3) naive

matrix multiplication algorithm. The second algorithm is Strassen’s algorithm [97].

This algorithm runs in O(N2.8) and is the first divide and conquer matrix multipli-

cation algorithm found to run faster than O(N3). It is outlined in Algorithm 2 (page

78) .

The input generators used for both algorithms were randomly generated matrices

of size N ×N with 10 bit integers for each element.

I employed three error measures: the Frobenius norm (FN, also known as the

matrix euclidean distance), the infinity norm (IN), and the logarithmic Frobenius

norm (LFN) given in Equations 5.1, 5.2, and 5.3 respectively. In these equations,

Mc and Mi are the correct and incorrect matrices and ei and ec are the correct and

incorrect matrix elements at the same position in either matrix.

FN(Mi,Mc) =
√

Σ∀ec,ei∈Mc,Mi
(ec − ei)2 (5.1)

IN(Mi,Mc) = argmax∀ec,ei∈Mc,Mi
|ec − ei| (5.2)
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LFN(Mi,Mc) = log(FN(Mi,Mc) + 1) (5.3)

I reused the scalar multiplication failure interfaces check and add. Both naive and

Strassen’s matrix multiply used the naive scalar multiplication sub-algorithm

to perform element-wise multiplication.

5.5.1 Criticality Assessment Results on Matrix Multiplica-

tion

Figure 5.11 (page 79) presents example criticalities for both algorithms on selected

operations and scales. I note here that the first major structure I observe in the failure

shapes of the two matrix multiplication algorithms lies in the differences between

them. Naive matrix multiplication has, in general, a lower criticality. Its criticalities

are also flatter than those found in the highly structured Strassen’s algorithm. At

every test scale we see spikes in both add and check operations about 2/7, 3/7

and 5/7 through the algorithm run on both the infinity and Frobenius norm error

measures for Strassen’s algorithm.

This structure can also be seen on the log Frobenius norm error measure. How-

ever, it becomes harder to disentangle at larger scales as the data is squeezed. To

see criticality structures on this error measure at large scales, we focus on a smaller

set of failure points. Figure 5.21 (page 89) shows a view of the log Frobenius norm

criticalities from failure point 13000 to 18000 on input size 16. The structure we see

is analogous to those seen from failure points 275 to 350 at input scale 4, and from

2000 to 2500 at input scale 8.

As with scalar multiplication, criticality standard error increases with decreasing

sample size at the end of both algorithm’s failure shape.
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In naive multiply, criticalities lie close to both the average and the median crit-

icality. By contrast, in Strassen’s algorithm important operations are outliers with

criticalities often an order of magnitude greater than the median.

5.5.2 Failure Shaping Results on Matrix Multiplication

Figures 5.25 (page 93), 5.26 (page 94), and 5.27 (page 95) show the direct failure

shaping results on naive and Strassen’s matrix multiply algorithms plotted against

an i.i.d. failure model. 1000 samples were taken at each percentile in [0, 0.1]. We can

see that direct failure shaping produces roughly 40% error reductions compared to a

baseline i.i.d. error model.

Monte Carlo sampling is a powerful statistics-gathering method, but its simu-

lation costs here grow with the number of failure points in the system under test.

Criticality Explorer can be connected to the AWS Lambda on-demand compute

service [98], allowing investigators to trade money for time by performing parallel

assessments in the cloud. As an example, the data presented in this paper was pro-

duced for under $320 in cloud costs—with the majority of that consumed by the

scale 16 criticality assessments.

Even assuming such a large-scale infrastructure, though, brute force Monte Carlo

costs will become prohibitive as the software stack under test grows deeper, placing

more computational levels between the hardware and the end-user error measures.

In the next section I introduce ‘proxy criticalities’—an approach to evaluate such

multilevel software that not only slashed assessment costs, but also, I found, even

improved performance.
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5.6 Proxy Failure Shaping

I took advantage of method level failure interface flexibility to speed up the failure

shaping procedure by using proxy criticalities. Rather than measuring each failure

point’s criticality, I instead measured the criticality of a proxy method—a method

that stands in for those methods originally intended to fail.

In this section experiments continued to make use of fallible check and add

operations. However, each add and check failure interface was only called as part

of a scalar multiplication method. I wrote a failure interface that randomly

flipped one bit in a scalar multiplication invocation’s output. Thus, criticality

assessment costs on matrices with element size e require ∼1/e resources using scalar

multiplication as a proxy for check and add. For example, the size 32 proxy

algorithm assessment cost less than $14 on AWS lambda.

Using this failure interface I measured each multiplication failure point’s criti-

cality. Figures 5.22 (page 90), 5.23 (page 91), and 5.24 (page 92) show criticality

assessment results on scalar multiply operations employed by both matrix multipli-

cation algorithms. These criticalities and their median value were then employed to

make decisions about the reliability budgeting of every check and add failure point

that occurred during each multiplication operation’s execution.

5.6.1 Criticality and Failure Shaping Results on Scalar Mul-

tiplication Proxy Method

Figures 5.22 (page 90), 5.23 (page 91), and 5.24 (page 92) present example proxy

operation criticality distributions for both naive and Strassen’s matrix multiply at

input sizes 4, 8, and 16 respectively. Assessing criticality on scalar multiplication

cut run times by an order of magnitude. Figure 5.28 (page 96) shows proxy failure

shaping results on size 32 matrices.
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As with criticality measurements on the check and add operations, multiply

operations are flat for naive matrix multiply and structured for Strassen’s multiply.

Scalar multiply failure shapes in Strassen’s matrix multiplication algorithm also

have similar distributions to check and add operations. I can still find criticality

spikes roughly 2/7, 3/7 and 5/7 of the way through the algorithm.

Figures 5.25 (page 93), 5.26 (page 94), and 5.27 (page 95) show proxy failure shap-

ing results on check and add failure interfaces using the scalar multiply failure

interface as a proxy. These results are compared to the baseline i.i.d. model results,

and the results from the simple failure shaping procedure applied in Section 5.5.2.

As can be seen, proxy failure shaping can work as well as direct failure shaping.

In this chapter, I only conveyed my immediate impressions concerning the exper-

imental results on matrix and scalar multiplication. In Section 7.2.2 I will explore

the consequences of these data in greater detail and speculate on their meaning.
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Figure 5.1: Scalar Multiplication Criticality Assessment Results. Absolute

log criticality assessment results for both the naive and Karatsuba multiplication

algorithms. The left graphs show results on the common add failure interface, the

middle graphs show results for the check failure interface, and the right graphs show

results for the Karatsuba add interface, which only the Karatsuba algorithm called.

The top graphs are for input size N = 100 while the bottom graphs are for size input

N = 500. The naive multiplication algorithm shows a log-linear growth pattern in

criticality on the check operation and a log-linear growth pattern on half of the add

operation while the Karatsuba algorithm shows a group of three maxima on every

interface. Note that graphs have different x and y axes. See text for details and

Figures 5.2 (page 69), 5.3 (page 70), 5.4 (page 71), 5.5 (page 72), 5.6 (page

73), and 5.7 (page 74) for expanded views of each graph. Reprinted from [1] with

permission.
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Figure 5.2: Expanded Scalar Multiplication Criticality Assessment Results

on NaiveMultiply.add (N=100). See Figure 5.1 (page 68) for details.
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Figure 5.3: Expanded Scalar Multiplication Criticality Assessment Results

on NaiveMultiply.check (N=100). See Figure 5.1 (page 68) for details.
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Figure 5.4: Expanded Scalar Multiplication Criticality Assessment Results

on KaratsubaMultiply.add (N=100). See Figure 5.1 (page 68) for details.
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Figure 5.5: Expanded Scalar Multiplication Criticality Assessment Results

on NaiveMultiply.add (N=500). See Figure 5.1 (page 68) for details.
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Figure 5.6: Expanded Scalar Multiplication Criticality Assessment Results

on NaiveMultiply.check (N=500). See Figure 5.1 (page 68) for details.



Chapter 5. Criticality and Armoring in Matrix Multiplication 74

Figure 5.7: Expanded Scalar Multiplication Criticality Assessment Results

on KaratsubaMultiply.add (N=500). See Figure 5.1 (page 68) for details.
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Figure 5.8: Scalar Multiplication Failure Shaping Results on Absolute

Value. Average error rates for both the naive and Karatsuba multiplication al-

gorithms assessed using average absolute value error measure on input size 100. As-

sessments were performed on both algorithms using a baseline i.i.d. failure model and

the median value failure shaping technique. See text for details. Reprinted from [1]

with permission.
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Figure 5.9: Scalar Multiplication Failure Shaping Results on Log Absolute

Value. Average error rates for both the naive and Karatsuba multiplication algo-

rithms assessed using average log absolute value error measure on input size 100.

Assessments were performed on both algorithms using a baseline i.i.d. failure model

and the median value failure shaping technique. See text for details. Reprinted

from [1] with permission.
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Figure 5.10: Scalar Multiplication Failure Shaping Results on Absolute

Percent Value. Average error rates for both the naive and Karatsuba multiplication

algorithms assessed using average absolute percentage value error measure on input

size 100. Assessments were performed on both algorithms using a baseline i.i.d. failure

model and the median value failure shaping technique. Percent value is represented

as a number in [0, 1] and is sensitive to minor changes in its denominator. See text

for details. Reprinted from [1] with permission.
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Algorithm 2: Strassen’s Matrix Multiplication.

1: procedure Strassen(x, y) . x and y are size N ×N

2: if N == 1 then

3: return [[x[0][0]y[0][0]]]

4: end if

5: a = x[0 : N/2][0 : N/2]

6: b = x[0 : N/2][N/2 + 1 : N ]

7: c = x[N/2 + 1 : N ][0 : N/2]

8: d = x[N/2 + 1 : N ][N/2 + 1 : N ]

9: e = y[0 : N/2][0 : N/2]

10: f = y[0 : N/2][N/2 + 1 : N ]

11: g = y[N/2 + 1 : N ][0 : N/2]

12: h = y[N/2 + 1 : N ][N/2 + 1 : N ]

13: p1 = Strassen(a, f − h)

14: p2 = Strassen(a+ b, h)

15: p3 = Strassen(c+ d, e)

16: p4 = Strassen(d, g − e)

17: p5 = Strassen(a+ d, e+ h)

18: p6 = Strassen(b− d, g + h)

19: p7 = Strassen(a− c, e+ f)

20: z[0 : N/2][0 : N/2] = p5 + p4 − p2 + p6

21: z[0 : N/2][N/2 + 1 : N ] = p1 + p2

22: z[N/2 + 1 : N ][0 : N/2] = p3 + p4

23: z[N/2 + 1 : N ][N/2 + 1 : N ] = p1 + p5 − p3 − p7

24: return z

25: end procedure



Chapter 5. Criticality and Armoring in Matrix Multiplication 79

Figure 5.11: Matrix Multiplication Criticality Assessment Results. Criti-

cality results for both naive and Strassen’s matrix multiplication. The left graphs

show log Frobenius norm, the middle graphs show Frobenius norm, and the right

graphs show infinity norm results. The graphs on the top are for matrix input size

4, the middle set are at size 8 and the bottom set are at size 16. Naive results are

omitted in the four graphs towards the bottom right to emphasize similar structures

in Strassen’s algorithm at multiple scales. Note that x and y axes do not match

for every graph. Each error measure is valued in its own units. See text for details

and Figures 5.12 (page 80), 5.13 (page 81), 5.14 (page 82), 5.15 (page 83), 5.16

(page 84), 5.17 (page 85), 5.18 (page 86), 5.19 (page 87), and 5.20 (page 88) for

expanded views of each graph. Reprinted from [1] with permission.
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Figure 5.12: Expanded Log Frobenius Norm Matrix Multiplication Criti-

cality Assessment Results on NaiveMultiply.check (N=4). See Figure 5.11

(page 79) for details.
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Figure 5.13: Expanded Frobenius Norm Matrix Multiplication Criticality

Assessment Results on NaiveMultiply.add (N=4). See Figure 5.11 (page 79)

for details.
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Figure 5.14: Expanded Infinity Norm Matrix Multiplication Criticality As-

sessment Results on NaiveMultiply.check (N=4). See Figure 5.11 (page 79)

for details.
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Figure 5.15: Expanded Log Frobenius Norm Matrix Multiplication Criti-

cality Assessment Results on NaiveMultiply.check (N=8). See Figure 5.11

(page 79) for details.



Chapter 5. Criticality and Armoring in Matrix Multiplication 84

Figure 5.16: Expanded Frobenius Norm Strassen’s Criticality Assessment

Results on NaiveMultiply.add (N=8). See Figure 5.11 (page 79) for details.
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Figure 5.17: Expanded Infinity Norm Strassen’s Criticality Assessment Re-

sults on NaiveMultiply.check (N=8). See Figure 5.11 (page 79) for details.
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Figure 5.18: Expanded Log Frobenius Norm Matrix Multiplication Criti-

cality Assessment Results on NaiveMultiply.check (N=16). See Figure 5.11

(page 79) for details.
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Figure 5.19: Expanded Frobenius Norm Strassen’s Criticality Assessment

Results on NaiveMultiply.add (N=16). See Figure 5.11 (page 79) for details.
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Figure 5.20: Expanded Infinity Norm Strassen’s Criticality Assessment Re-

sults on NaiveMultiply.check (N=16). See Figure 5.11 (page 79) for details.
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Figure 5.21: Focused Log Frobenius Norm Criticality Results. Log Frobe-

nius norm structures continue to persist at larger input scales. See text for details.

Reprinted from [1] with permission.
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Figure 5.22: Matrix Multiplication Proxy Method Criticality Assessment

Results on Input Size N=4. Criticality results for both naive and Strassen’s

algorithms on the scalar multiplication failure interface using Frobenius norm error

measure at matrix input size N=4. See text for details. Reprinted from [1] with

permission.
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Figure 5.23: Matrix Multiplication Proxy Method Criticality Assessment

Results on Input Size N=8. Criticality results for both naive and Strassen’s

algorithms on the scalar multiplication failure interface using Frobenius norm

error measure at matrix input size N=8. See text for details. Reprinted from [1]

with permission.



Chapter 5. Criticality and Armoring in Matrix Multiplication 92

0

5e+06

1e+07

1.5e+07

2e+07

Fr
o

b
e

n
iu

s 
N

o
rm

Criticality of NaiveMultiply.multiply on Frobenius Norm (N=16)

0

5e+06

1e+07

1.5e+07

2e+07

Fr
o

b
e

n
iu

s 
N

o
rm

Criticality of NaiveMultiply.multiply on Frobenius Norm (N=16)

Naive
median: 19257.89

Strassen
median: 129502.36

1

10

1e+02

1e+03
0 5

e
+

0
2

1
e

+
0

3

1
.5

e
+

0
3

2
e

+
0

3

2
.5

e
+

0
3

3
e

+
0

3

3
.5

e
+

0
3

4
e

+
0

3

4
.5

e
+

0
3

S
a

m
p

le
s

Selected operation sequence failure point

Figure 5.24: Matrix Multiplication Proxy Method Criticality Assessment

Results on Input Size N=16. Criticality results for both naive and Strassen’s

algorithms on the scalar multiplication failure interface using Frobenius norm

error measure at matrix input size N=16. See text for details. Reprinted from [1]

with permission.



Chapter 5. Criticality and Armoring in Matrix Multiplication 93

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

2e+08

0 0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

Fr
o

b
e

n
iu

s 
N

o
rm

Failure rate (ε')

Matrix Multiply Error Results Using Frobenius Norm (N=16)

Naive, i.i.d.

Naive, direct failure shaping

Naive, proxy failure shaping

Strassen’s, i.i.d.

Strassen’s, direct failure shaping

Strassen’s, proxy failure shaping

Figure 5.25: Matrix Multiplication Proxy Failure Shaping Results on Frobe-

nius Norm. Average error rates for both the naive and Strassen’s algorithms as-

sessed using Frobenius norm error measure at input size 16. Assessments were per-

formed on both algorithms using a baseline i.i.d. failure model, the direct failure

shaping technique, and the proxy method failure shaping technique. We see error

reductions between 38% and 63%. See text for details. Reprinted from [1] with

permission.
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Figure 5.26: Matrix Multiplication Proxy Failure Shaping Results on In-

finity Norm. Average error rates for both the naive and Strassen’s algorithms

assessed using infinity norm error measure at input size 16. Assessments were per-

formed on both algorithms using a baseline i.i.d. failure model, the direct failure

shaping technique, and the proxy method failure shaping technique. See text for

details. Reprinted from [1] with permission.
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Figure 5.27: Matrix Multiplication Proxy Failure Shaping Results on Log

Frobenius Norm. Average error rates for both the naive and Strassen’s algorithms

assessed using frobenius norm error measure at input size 16. Assessments were

performed on both algorithms using a baseline i.i.d. failure model, the direct failure

shaping technique, and the proxy method failure shaping technique. See text for

details. Reprinted from [1] with permission.
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Chapter 6

Scalable Robustness
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6.3 Introduction

Using insights gained from Chapter 4, in this chapter I present a formal theory of

scalable robustness oriented around the idea that scalably robust programs should

have an output error that approaches zero as the internal i.i.d. failure rate of com-

ponents running the program approaches zero and program input size approaches

infinity.

https://github.com/ThomasBJones2/Robustness_Dissertation_Data
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6.4 Scalable Robustness Defined

We ask if an algorithm is scalably robust in a particular context, which is a combi-

nation of an input generator, a failure model, and an error measure as in Chapters 4

and 5. Scalable robustness is a property of a (program, context)1 pair, which I call

an assessment. In a scalably robust assessment the final output error goes to zero

as the component failure rate vanishes, even as the input size grows without bound.

As a result, in a scalably robust assessment we can bound output error rates over

all large scales by bounding per component failure rates to a constant.

6.4.1 Average-Case Scalable Robustness

Though they fail to capture more complex failures such as device aging or attack,

i.i.d. (independent, identically distributed) errors are a simple and physically plau-

sible model of background noise and hence I treat them as the average-case failure

model.

Definition 1. (A, err) is average-case scalably robust, written ACSRiid(A, err), if:

lim
(N,ε)→(+∞,0+)

(
E
i∈IN

[err(Aε(i), A(i))]

)
= 0

where N is an input size, A is an algorithm, err(Oε, Oc) is a context-dependent error

measure defined over incorrect and correct algorithm outputs, ε is the i.i.d. failure

rate of A’s fallible operations, Aε(i) is A’s output given input i and ε while A(i) is A

run without failures, and IN is the set of all possible inputs of size N .

We assume the context of A is chosen so that Ei∈IN [err(Aε(i), A(i))] ∈ [0, 1] is

uniquely defined at every (N, ε) in N ≥ 0 and 0 ≤ ε ≤ 1.

1Since in this chapter I hold the input generator and fault model constant, I instead
refer to each context only by the error measure it employs.
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We can determine which assessments are ACSRiid by examining the behavior of

the expectation from Definition 1 for all ε near 0. To do this we produce an upper

bound on the maximum growth rate of output error, Bδ, for all ε ≤ δ, or, similarly,

a lower bound on the minimum growth rate B′δ.

Notice that if the upper bound on an assessment’s expectation for ε ≤ C is:

BC ∈ O(f(ε)) (6.1)

where C is a constant and limε→0+ f(ε) = 0, then the assessment is ACSRiid.

Additionally, if

B′δ ∈ Ω(f(ε)g(N)) (6.2)

where limN→∞ g(N) =∞ and ε > 0→ f(ε) > 0 then the assessment is not ACSRiid

since a path of f(ε) = 1/g(N) violates Definition 1.

An immediate consequence of this idea is the following theorem concerning strict

correctness error (SCE):

Theorem 1. (A, SCE) is ACSRi.i.d. for all programs A if the run time of the pro-

gram is O(f(N)) ∈ ω(c) and each operation is armored with Ω(lg(f(N)))-modular

redundancy.

Proof. We start by bounding the probability of failure on a single redundant opera-

tion. We do this by noticing that each operation will perform correctly if more than

half of the redundant components that calculate the operation also perform correctly.

For the number of redundant operations we choose g(n) = 24lg(f(N))
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Using a multiplicative Chernoff bound, we know that if X is a Bernoulli variable

with mean µ and δ ≥ 1:

P [X ≥ (1 + δ)µ] ≤ e−δµ/3

Next we let δ = 1/(2ε) − 1 and we remember that µ = εg(N). Using these we

obtain:

P [X ≥ 1/(2ε)εg(N)] ≤ e−(1/(2ε)−1)εg(N)/3

P [X ≥ (1/2)g(N)] ≤ e−(1/2−ε)g(N)/3

However if we hold ε ≤ 1/4 (and notice that ε is positive in the exponent of e)

we then obtain that:

P [X ≥ (1/2)g(N)] ≤ e−(1/2−1/4)g(N)/3 = e−2(g(N)/24) = e−2lg(f(n)) = 1/(f(N)2)

However, there are f(N) operations in A and we limited the probability of the

redundant operations failing to 1/(f(N)2). Therefore, the expected number of fail-

ures is f(N)/(f(N)2) or 1/f(N) which goes to zero as N goes to infinity. Since the

maximum SCE is bound to be smaller than the expected number of failures when

1/f(N) is less than 1 this proves Theorem 1.

This theorem complements other results that show that O(lgf(N)) redundancy

is a lower bound on the number of redundant operations needed to produce deter-

ministically secure execution for some functions [99,100].
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Theorem 1 relies on the idea that failures will occur under an i.i.d. model, but that

the per-operation failure rate will decrease with the increasing size of the computa-

tion by increasing the number of components performing each operation. However,

to make the redundant computation viable, it is likely that redundant operations

be closely collocated, leading to a higher probability of coordinated failures. Such

coordinated failures, which would impact the final outcome of the program, can be

viewed as producing an i.i.d. failure behavior ‘above’ the modularly redundant and

thus ‘deterministically secure’ Ω(lg(n))-modularly redundant components.

It is this tendency for coordinated failures to occur when operations are collocated

in space that motivates the assumption that some component of programmatic error

rates remain at a very small constant above zero as programs approach large scales.

In the worst case, attackers may use coordinated failures to drive up program error

rates.

6.4.2 Worst-Case Scalable Robustness

I.i.d. faults are a natural simplifying assumption, but we expect higher-order corre-

lated failures to occur as well. In the most general case, no defense is possible against

an unlimited supply of adversarially-chosen faults; here we define worst-case scalable

robustness in terms of adversarial faults restricted only so that their total number is

some given proportion of the program size f(N):

Definition 2. (A, err) is worst-case scalably robust, written WCSR(A, err), if:

lim
(N,ε)→(+∞,0+)

ArgMaxi∈IN ,f∈Ff(N),ε
err(Aε(i), A(i)) = 0

with N, A, and err(Oε,Oc) as in Definition 1. f, called a fault pattern [2], is a Boolean

vector indicating which of the fallible computational steps do fail in any given case,
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and Ff(N),ε is the set of all fault patterns that each contain no more that εf(N) true

values. Finally, Af (i) is the algorithm A run with operations faulting as called for

in fault pattern f on input i while A(i) is the same program run without failure on

input i.

We use ArgMax in Definition 2 to represent an omniscient attacker causing max-

imum damage under the given f(N) and ε.

As implied by their names, we can show that any algorithm-error measure pair

that is WCSR is also ACSRiid:

Theorem 2. If WCSR(A, err) then ACSRiid(A, err) for all algorithms with growth

rate g(n) ∈ ω(c). 2

Proof. Our error measures send outputs to a numeric values in [0, 1]. Therefore, if

(A, err) are not ACSRiid there is some path p of ε and N going to 0+ and +∞ such

that the average error from Definition 1 is at or above some constant C1 > 0 past

infinitely many points along p : ε = g(f(N)) where f(n) ∈ ω(c) is the number of

fallible operations in the program and g(f(n))→ 0 as N → +∞.

However, notice that according to Chebyshev’s inequality [101] if X is a random

variable with expected value µ, variance σ, and k > 0 then:

P (|X − µ| ≥ k) ≤ σ2/k2

P (X ≥ µ+ k) ≤ σ2/k2

However, for the sum of f(N) i.i.d. failure variables with failure rate ε, we know

that µ = εf(N) and that σ2 = ε(1− ε)f(n), Thus:

2 [3] contained a flawed version of this proof; it is corrected here.
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P (X ≥ εf(n) + k) ≤ ε(1− ε)f(n)/k2 ≤ εf(n)/k2

Now, suppose that I let k = f(n)1/2 which is greater than 0 since f(n) is the

number of operations in A. If we do this we obtain:

P (X ≥ εf(n) +
√
f(n)) ≤ ε

P (X ≥ f(n)(ε+ 1/
√
f(n))) ≤ ε

However, ε is going to zero. This means that the probability that any item in

A will be drawn from above the path p : ε + 1/
√
f(n) = g(f(n)) + 1/

√
f(n) is a

value that approaches zero as (N, ε)→ (+∞, 0). Thus, because an average cannot lie

above all values in its data set, there must be some specific combination of failures

and input with less than g(f(n)) + 1/
√
f(n) total failures along infinitely many

points on p where err(Af (i)) > C2 > C1 − ε > 0 when ε drops permanently below

C1.

Thus, if ¬ACSRiid(A, err) then ¬WCSR(A, err), proving Theorem 2.

6.5 Scalable Robustness on Pairwise-Comparison

Sorting

In applying the theory of scalable robustness to sorting I adopt many of the conven-

tions of Chapter 4. As in that chapter, I presume an input generator that produces

permutations of N distinct data values, and a fault model that allows only data item

comparisons to fail. Though extending the input generator is likely unproblematic—

to add duplicate values, for example—generalizing the fault model significantly would
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require a more detailed machine model in which to express the algorithm implemen-

tations, a step I leave for future research. I employ four sorting algorithms—bubble

sort, quicksort, merge sort, and ‘round robin sort’—in this case study of ACSRiid

and WCSR.

6.5.1 Algorithms Old and New

As in Chapter 4 the bubble sort, quicksort, and merge sort algorithms we explore

are largely standard. Although bubble sort implementations (e.g., [94]) commonly

perform N − 1 − P comparisons on pass P through the list, our implementation—

which we call full bubble sort (FBS)—makes allN−1 neighbor-neighbor comparisons

on every pass. My merge sort implementation (MS) is traditional (see, e.g., [34]),

and my quicksort (QS) [93] uses the first item in the list as a pivot—a poor choice

in general but harmless given my adopted input generator.

I call my final algorithm round robin sort (RRS). It is inspired by the round

robin tournament [102], and, while the idea of using round robin comparisons in

sorting is fairly common [103], I haven’t found this exact algorithm in the literature.

RRS steps through each list item comparing that item to all other items. It counts

the number of times that item is greater than other items, and places it in a bin

based on that count. The items are then returned in the order of the bins. Any bin

that has more than one item returns items to the output list in the same order they

appear in the input list.
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ACSRiid Error Growth Rates

Merge Quick Bubble
Round

Robin

Strict Correctness Ω(εNlgN) Ω(εNlgN) Ω(εN) Ω(εN)

Max Displacement Ω(εN) Ω(εN) ? ?

Spearman’s Footrule ? O(ε) ? O(ε)

Table 6.1: Summary of ACSRiid Results. Where known, each (sorting algorithm,

error measure) assessment is marked with a bound on its expected error measure

growth rate—O() upper bounds for assessments proven ACSRiid, and Ω() lower

bounds for those proven not ACSRiid. Those marked ? are currently unproven,

though empirical data (e.g. Fig. 6.1) suggests they are all ACSRiid. Reprinted from [3]

with permission.

6.6 Average-Case Scalable Robustness on Sorting

Algorithms

ACSRiid illuminates the tension between algorithmic efficiency and robustness. Ta-

ble 6.1 provides lower bounds on the average error growth rate near 0 (marked with

Ω) for each assessment that is provably not ACSRiid and, similarly, upper bounds

(marked with O) for each assessment that is provably ACSRiid. Assessments that are

currently unevaluated are marked with a ‘?’, though I believe them to be ACSRiid

due to my empirical results. I present proofs for Table 6.1 below.

Theorem 3. (MS,SCE) is not ACSRiid.

Proof. Notice that if any comparison in the merge sort algorithm fails then some

smaller item will be trapped above a larger item leading to an incorrect sort. Further

merge sort executes Θ(NlgN) comparisons. Therefore B′1/NlgN ∈ Ω(εNlgN) since

ε = 0 has no error while there be a failure 1/2 time if ε ∈ Ω(1/NlgN).
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Similar proofs can be constructed for quicksort and bubble sort. In the Bubble

Sort proof only the final pass is considered since any incorrect comparison there will

produce an incorrectly sorted output list.

Theorem 4. (RRS, SCE) is not ACSRiid.

Proof. Sometimes, RRS can produce correct output even if one or more items end

up in the wrong bin(s), but the chance of an incorrectly sorted output is at least

1/2 in all such cases. Additionally, items in the top quartile of the list should be

declared ‘greater than’ other items at least three times as often as they are declared

‘less than’ another item. Therefore, if ε ≥ 4/N each item in the top quartile will

experience at least 4 failed comparisons 1/2 the time. Each of these items with

4 failed comparisons will be in the wrong bin with probability at least 1/4 due to

the asymmetry in the number of ‘less than’ and ‘greater than’ comparisons they

experience. This means that ε ≥ 4/N leads to an expected output error of at least

1/16 or that B′4/N ∈ Ω(εN).

Next I show that both linearithmic algorithms are not ACSRiid when assessed by

max displacement error.

Theorem 5. (MS, MDE) is not ACSRiid.

Proof. Let the larger item in a failed comparison of merge sort be ` and the smaller

item be s. When a comparison fails, s will always be trapped above ` in any future

lists, including the final list. Further, notice that the disp(s) ≥ dist(s, `)−failed(`),

where disp(s) is the displacement of s, dist(s, `) is the distance between s and ` in

a correctly sorted list, and failed(`) is the number of times ` experiences a failed

comparison with an item that is smaller than ` but not s.
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In the lowest-depth merges of merge sort, ` and s are random list items. This

means that the expected distance between them isN/2. Additionally, failed(`) ≤ εN

in expectation because each item is compared with at most N other items. Therefore,

disp(s) ≥ N/2 − εN in expectation if ` and s are in the first, lowest, merge. Thus,

the expected error when one of the lowest-depth merges has a failed comparison is at

least (1/2 − ε)N . Lastly, the probability that one of the lowest merge comparisons

will fail is at least 1/2 when ε = 1/N .

By holding 1/N ≤ ε ≤ 1/4 (which is possible for all N > 4) an output error

of approximately 1/8 can always be obtained in expectation implying that B′1/N ∈

Ω(εN).

Theorem 6. (QS, MDE) is not ACSRiid.

Proof. Notice that if any comparison in the quicksort algorithm fails on an item x

and pivot p then disp(x) ≥ dist(x, p) + 1 − disp(p) since x will always be placed

above p in the output list. If the failed comparison occurs during the first pass of

the algorithm then

E[disp(x)] ≥ E[dist(x, p)− failed(p)]

since x and p are chosen by random processes E[dist(x, p)] = N/2 while

E[failed(p)] ≤ εN since p is compared to at most N items. From here we can see

that B′1/N ∈ Ω(εN) using arguments similar to those in Theorem 5.

Next I prove that quicksort is ACSRiid.

Theorem 7. (QS, SFE) is ACSRiid.
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Proof. To prove that Definition 1 holds for (QS,SFE) we notice that it is sufficient

to show that:

E[SFE(QSε(IN), IN)] ≤ ε
O(N2)

Θ(N2)
∈ O(ε) (6.3)

We will show this by bounding the marginal expected error—termed M(x)—for

each list item as it flows through the quicksort algorithm. Throughout this proof will

call the pivot at depth d, pd, and the sublist sorted on that pivot Spd . Now, we will

bound the expected marginal error introduced by failed comparisons on list item x

when x is a non-pivot. If we call the final depth of x before it becomes a pivot f then

as x flows through the algorithm, it will be a member of a number of sublists—Sp0 ,

Sp1 ,...,Spf , Sx. In each of these sublists, the marginal unnormalized SFE introduced

by a failed comparison is bounded by 2|Sp|—|Sp| from x being misplaced above or

below p and |Sp| for each other item in the sublist being shifted up or down one space

due to x’s misplacement.

Since each comparison fails with a probability of ε and each list item is compared

with each pivot exactly once before it becomes a pivot we can treat the failure of each

of the comparisons between x and its pivot p as a Bernoulli variable with probability

ε. Using 2|Sp| as a bound on the marginal error on each comparison with p we see

that

M(x) ≤ 2ε

f∑
d=0

E[|Spd |] (6.4)

We say that x participates in a successful split if x is sent to a sublist of length no

greater than 1/2 of the previous list. Since the pivot and x are both random items

in the sublist, the probability that x participates in a successful split at each level of

the quicksort recursion is at least 1/2.
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At a recursive depth of d, this means that we can bound the expected length of

the sublist in which x appears. We know that the probability that x participates in

q successful pivots at recursive depth d is at least
(
d
q

)
(1/2)d. We also know that if x

participated in q successful pivots then |Spd | is at most length N(1/2)q. Therefore,

the length of sublist at recursive depth d is at most
∑d

i=0

(
d
i

)
(1/2)dN(1/2)i. Using

the binomial theorem this shows that E[|Spd |] ≤ (3/4)d.

Using Equation 6.4 and summing over infinitely many possible depths we can

show that M(X) ≤ ε8N . Therefore, the total expected unnormalized Spearman’s

footrule error is bound by εO(N2) since there are N items in the list. Finally, the

normalization factor for Spearman’s footrule error is Θ(N2) and as such we obtain

Inequality 6.3 and show BC ∈ O(ε).

I also present Theorem 8 which relates ACSRiid under SFE to ACSRiid under

MDE.

Theorem 8. ACSRiid(A,MDE)→ ACSRiid(A, SFE).

Proof. Consider that

E[SFE(Aε(IN), IN)]O(N2) ≤

O(N)E[MDE(Aε(IN), IN)] (6.5)

Since unnormalized SFE is simply the sum of the displacement of every item in the list

and the normalization factor of MDE is O(N). However, we know that Inequality 6.5

implies that ACSRiid(A,MDE)→ ACSRiid(A, SFE).
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This theorem was paired with the purported, but mistaken, theorem that (RRS,

MDE) is ACSRiid in [3] to obtain that (RRS, SFE) is also ACSRiid. We do know that

ACSRiid(RRS, SFE) is correct anyway, however, because of Theorem 2 combined

with Theorem 14 from the next chapter, concerning (RRS, SFE) behavior in the

worst case.

Figure 6.1 presents data suggesting that the scalably robust assessments’ average-

case output error grows at a consistent rate, even as input sizes increase. Alterna-

tively, assessments that are not scalably robust present ever-sharper ‘knees’ as input

size grows. Each panel of Figure 6.1 shows the i.i.d. average-case error behavior of

the sorting algorithms under SCE (left), MDE (middle), and SFE (right) for lists

of size 100, 1000, 10000, and 100000. Each data point in the panels represents the

error measure at a given list size and ε, averaged over the number of runs shown.

Notice how all four algorithms experience a knee as ε goes from 0% to 0.1% under

SCE, while only quicksort and merge sort experience such a knee under MDE.

Finally, no algorithm experiences a knee under SFE. Assessments that are not scal-

ably robust jump quickly from mostly correct to mostly incorrect when input sizes

are large enough.

6.7 Worst-Case Scalable Robustness on the Sort-

ing Algorithms

A synopsis of my theoretical exploration of WCSR on the sorting algorithms can be

found in Table 6.2 (page 119).

Theorem 2 shows that none of the four algorithms is WCSR when assessed by

SCE because none are ACSRiid under SCE. The same method proves that merge

sort and quicksort are not WCSR under MDE. In Theorems 9 and 10 we show that

neither of the quadratic algorithms is WCSR in an assessment with MDE.
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Figure 6.1: Summary of Empirical Results. Measured average error rates for

merge sort (MS), quicksort (QS), full bubble sort (FBS), and round robin sort

(RRS), assessed according to strict correctness error (SCE, left), max displacement

error (MDE, middle), and Spearman’s footrule error (SFE, right, note changed y

scale), plotted vs the failure rate and at input sizes from 100 to 100,000 (1e2..1e5).

See text for details. Reprinted from [3] with permission.

Theorem 9. (FBS, MDE) is not WCSR.

Proof. Consider the case where the input list is reverse sorted. Suppose an attacker

flips the (N/2)th comparison on each of the N passes. Then, no item that starts in

the bottom half of the list will ever move to the top half including the largest item

which will have a displacement of at least 1/2. Since we only fault N of the N2

comparisons carried out by bubble sort, ε approaches 0 as N approaches ∞.
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Figure 6.2: Merge Sort WCSR Strategy: The attacker faults comparisons with

the largest item until the list is shaped with all the largest items excluding the largest

item (Z) in the first half, and all the smallest items preceded by Z in the second half.

The final merge compares items across the red-dashed line. Reprinted from [3] with

permission.

Theorem 10. (RRS, MDE) is not WCSR.

Proof. Notice that if an attacker faults every comparison of the largest item in the

list and no others then the max displacement error will be at least 1 − 1/N while

epsilon follows the path of ε = O(1/N).

In Theorems 11 through 13 we show that merge sort, quicksort and full bubble

sort are not WCSR when paired with Spearman’s footrule error.

Theorem 11. (MS, SFE) is not WCSR.

Proof. We start with list that is reverse sorted except that the largest item is in the

second half of the list. The attacker then faults every comparison that the largest

item participates in. At the final merge the list is split into two groups: the first

group having the largest N/2 directly beneath the largest item sorted in order, and

the second group having the smallest N/2 − 1 items in the list, preceded by the

largest item which is either the first item in the second half of the list, or directly in

the middle of the list. See Figure 6.2.

In the final merge, however, no item will switch places if no comparisons are

faulted.
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Thus the total Spearman’s footrule error on the output list is at least N(N−2)/2
Θ(N2)

because each item is a distance of at least (N − 2)/2 away from its correct position.

As N approaches infinity this value is strictly greater than 0. This occurs with only

Θ(lg(N)) faulted comparisons (the failed comparisons of the largest item on each of

O(lgN) merges before the final merge). Thus a path of ε ∈ Θ(1/lgN) exists such

that Definition 2 is violated.

6.7.1 Quicksort—Spearman’s Footrule Error

Theorem 12. (QS, SFE) is not WCSR.

Proof. Consider that if the middle item of the sorted list in quicksort is the first

pivot and every one of the N comparisons that pivot participates in are faulted then

all of the largest items will be in the first half of the output list and all the smallest

items will be in the second half of the output list. As result the Spearman’s footrule

error will be above roughly 1/2 while epsilon follows a path of ε ∈ Θ(1/lgN).

6.7.2 Bubble Sort—Spearman’s Footrule Error

Theorem 13. (FBS, SFE) is not WCSR.

Proof. Using the same attacks as in Theorem 9 shows that (FBS,SFE) is not WCSR.

Finally, we show that round robin sort is WCSR when assessed in a context with

Spearman’s Footrule Error.
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6.7.3 Round Robin Sort—Spearman’s Footrule Error

Theorem 14. (RRS, SFE) is WCSR.

Proof. To prove that RRS is WCSR, we will use an inductive amortization analysis

[104] to show that the amount of unnormalized Spearman’s footrule error, referred

to as USFE throughout this proof, is bounded by a function that is proportional to

the number of failed comparisons. Since the normalization factor of USFE is Θ(N2)

and the number of comparisons in RRS is also Θ(N2), this will suffice to show that

(RRS, SFE) is worst-case scalably robust. Note that this proof relies on the fact

that all items in the input list are distinct.

We begin with some definitions necessary for our proof:

Definition 3. Bin(k) = k is the bin of the kth list item when the list is correctly

sorted and Bini,f (k) is the bin of the kth list item when input i is sorted under some

fault pattern f .

Next we define the drift of items during a faulty run of the RRS algorithm in

Definition 4.

Definition 4. Di,f (X) = |Bini,f (X)−Bin(X)| is an item’s drift under fault pattern

f and input i. To simplify our notation we say that ∆i,f =
∑
∀X∈iDi,f (X).

An item’s drift is equal to the number of bins it has shifted away from its ‘correct’

bin during the RRS algorithm. Using drift we can obtain Lemma 1.

Lemma 1. ∆i,f ≤ ε|i|(|i| − 1) = εN(N − 1) when |i| = N .

Proof. For an item to have a drift of Di,f (X), it must have experienced at least

Di,f (X) failed comparisons during its pass of the RRS algorithm. Further, the

number of failed comparisons of the RRS algorithm must be less than or equal to
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ε|i|(|i| − 1) since this is a worst-case analysis. Therefore, ∆i,f ≤ εN(N − 1) when

|i| = N .

Next we examine the broken orderings—the number of pairs of items that are

misordered with respect to each other—in the output.

Definition 5. Let Posi,f (X) be the position of item X in the output of RRS run on

input i and fault pattern f . Then:

Bi,f (X, Y ) =

1 X < Y ∧ Posi,f (X) > Posi,f (Y )

0 otherwise

is a broken ordering function of RRS. To simplify our notation we say that:

βi,f =
∑
X∈i

∑
Y ∈i,Y >X

Bi,f (X, Y )

The USFE is bound by a function that is proportional to the number of broken

orderings, which we show in Lemma 2.

Lemma 2. USFE(RRSf (i)) ≤ 2βi,f

Proof. When an item is displaced by L in either direction in the output it must

participate in at least L distinct broken orderings. Additionally, at most 2 items

can participate in each distinct broken ordering. Finally, USFE is the sum of the

displacement of every item in the output. Therefore, by the pigeonhole principle

USFE(RRSf (i)) ≤ 2βi,f .
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The number of broken orderings, however, is directly related to the total drift of

all items during a faulty run of the RRS algorithm. We show this in Lemma 3.

Lemma 3. βi,f ≤ 2∆i,f .

Proof. Assign to each item X a purse containing CX = 2Di,f (X) credits. X goes

bankrupt if it ever has a negative number of credits. We proceed by showing an

inductive procedure by which all items can pay for all broken orderings without any

item going bankrupt.

Base Case: Let X1, X2, ..., Xv all have drift DM , the largest drift of all items.

Then each of these items can participate in at most 2DM broken orderings since no

item has a drift greater than DM (and thus cannot be further than DM bins from

its correct bin).

Therefore, each of the X ′s can pay for all of the broken orderings they participate

in with their own credits and none of them will go bankrupt.

Inductive Hypothesis: We will assume the following for this inductive proof:

(1) Items with drifts greater than D have paid for all the broken orderings they

have participated in.

(2) None of the items with drift greater than D have gone bankrupt.

Notice that this true of the base case.

Inductive Step: Now, given the inductive hypothesis we will show that:

(1) Items with drifts greater than or equal to D have paid for all the broken

orderings they have participated in.

(2) None of the items with drift greater than or equal to D have gone bankrupt.

Notice that if X1, X2, ..., Xv have drifts of exactly D, then they do not have to

pay for any broken orderings they may participate in with an item that has more



Chapter 6. Scalable Robustness 118

than D drift. Therefore, they are only responsible for broken orderings with items

that have D or less drift. However, each of the X ′s can only participate in at most

2D such broken orderings since there are only 2D items within D correct bins of

each of these items.

Thus both (1) and (2) hold from the inductive hypothesis to the inductive step.

Conclusion:

Therefore, since (1) all broken orderings can be paid for by some item, (2) each

item X has only 2Di,f (X) credits to pay with, and (3) no item goes bankrupt, then

βi,f ≤ 2∆i,f .

By our three lemmas we can see that

∀i ∈ IN , f ∈ FN,εUSFE(RRSf (i), i) ≤ 4εN(N − 1) (6.6)

However, the normalization factor for USFE is Θ(N2) and therefore:

∀i ∈ IN , f ∈ FN,εSFE(RRSf (i), i) ≤ εΘ(C) (6.7)

and since εΘ(C) goes to 0 as ε goes to 0, (RRS, SFE) is WCSR.

In Chapter 7 I will explore the consequences of these theorems in greater detail

and speculate on their meaning.
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Worst-Case Scalable Robustness Results

Merge Quick Bubble
Round

Robin

Strict Correctness X X X X

Max Displacement X X X X

Spearman’s Footrule X X X !

Table 6.2: Summary of WCSR Results. Each (algorithm, context) pair marked

with an X is provably not WCSR. The Θ(N2) round robin sort algorithm, when

paired with the Spearman’s footrule error context, stands out as the only algorithm

that is WCSR. Reprinted from [3] with permission.
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Chapter 7

Discussion

7.1 Summary of Work

In this dissertation I explored empirical and theoretical behaviors of deterministic al-

gorithms subject to failures that they cannot avoid. I explored the behavior of sorting

algorithms subject to faulty comparisons, while my study on matrix multiplication

algorithms made use of faulty bit checks, add statements, and scalar multiplication

steps. I also built a general tool named Criticality Explorer, and I used it to evaluate

the matrix multiplication algorithms. Finally, using my criticality observations on

sorting algorithms as a guide, I developed a theoretical framework called scalable

robustness to identify algorithms and error measures that degrade gracefully.

I also created a notion of “failure point” focused on measuring computational

failures in both time and space. To support this concept I created method-level failure

interfaces—generalizable descriptions of failure behavior for methods that allow for

the study of algorithmic robustness to failures, separate from, and without detailed

knowledge of, any specific hardware platform. I also bucketed method failures by

time, allowing me to observe algorithmic responses to failures that occur at otherwise
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seemingly equivalent operations throughout the algorithmic life cycle.

My measures of algorithmic robustness appropriated old domain-specific mea-

sures as output error measures. For sorting I employed presortedness, a traditional

measure of problem difficulty used to evaluate list sort error. In matrix multiplica-

tion I used Infinity, Frobenius and log Frobenius error between matrices, measures

that are used to evaluate matrix modeling error [105]. These error measures made

it possible to observe complex algorithmic failure responses, by removing the barrier

imposed by the strict correctness standard. Using the results of these analyses I

was able to economize algorithmic resources in a way that decreased overall output

error in a resource-constrained environment that didn’t allow for the correction of

all failures.

All together, from this work I draw the following conclusions concerning compu-

tational robustness.

7.2 Questions Answered

The major research questions of this dissertation were:

• How do measures of correctness hide or uncover interesting failure dynamics

inside algorithms?

• How are an algorithm’s failure dynamics related to the algorithm’s known be-

havior?

• Is it possible to use an analysis of failure dynamics to improve algorithmic

performance in resource-constrained environments?

• Which operations respond well to this method?
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In the rest of this section I walk through my conclusions on each of these questions.

I also present speculations on two additional questions that arose during the course

of the study:

• How does numerical stability relate to matrix multiplication results?

• When Will Criticality Structures Scale Effectively?

7.2.1 Strict Correctness Hides Criticality Structure While

Quantified Correctness Reveals It

Figure 4.1 (page 54) shows estimated criticalities under the strict correctness error

measure. We can use this figure to understand some of the liabilities of all-or-none-

correctness. While the figure does make clear that quick and merge sorts perform

many fewer comparisons than bubble sort, little other structure is revealed. Despite

averaging over random input permutations, the strict correctness criticality of each

comparison is usually either 1 or 0: Any given comparison is either maximally crit-

ical or not at all critical. Given 0% background failures (red curve), for example,

there will only be a single failure. For bubble sort, a failure is critical if that failure

is in any of the last N comparisons (seen at about comparison 2600), but otherwise

it’s harmless. By contrast, with merge and quicksorts almost every comparison is

critical. The last comparisons for quick and merge sorts show intermediate criticali-

ties because, depending on the specific input permutation tested, the algorithm will

sometimes finish before that comparison is reached, so a failure at that comparison

index is sometimes harmless.

Given strict correctness, if the background failure rate is appreciably non-zero

(e.g., 20%, blue curve) all comparisons became non-critical in all three algorithms:

Since the output will never be strictly correct, the occurrence or absence of any one

failure makes no difference.The one major exception to this strict correct rule is full
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bubble sort which does not have every operation presenting full criticality at a 0%

background failure rate, but only the last n operations. This is an interesting partial

exception to Hypothesis 1.4.1 that suggests that for some inefficient algorithms the

most interesting criticality behavior may be apparent under SCE.

However, if we look at Figures 4.2 (page 55), 4.3 (page 56), 4.4 (page 57), 5.1

(page 68), or 5.11 (page 79) we see many instances where error structures seem to be

revealed by quantified correctness measures. The major exception is the brute force

naive matrix multiplication which seems to present a very flat criticality measure for

each operation even when measured by quantified correctness measures.

7.2.2 Criticality Structure Seems Related to Known Algo-

rithmic Behaviors

In most of the algorithms I have presented, the observed criticality structures seem

to be related to the known behaviors of the algorithms under consideration. We can

see this in the each of the sorting algorithms: merge sort, quick sort, and bubble

sort; as well as in the multiplication algorithms.

Merge Sort

In Figure 4.2 (page 55) we see average conditional Spearman’s footrule error (posi-

tional error) and criticality for the merge sort algorithm. The criticality of a failure

at a given comparison index—illustrated in the middle graph—is equal to the differ-

ence between the top and bottom lines in the first graph of Figure 4.2—the estimated

error when the failures does occur less that when it doesn’t.

We should note two striking aspects in the middle graph in Figure 4.2. First,

the positional error measure seems to reveal a fractal criticality structure for the

merge sort algorithm. In retrospect, at least, this makes sense given the depth-
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first recursion used in my merge sort implementation. Comparisons at the deepest

recursive levels—when two items are merged into a length 2 sublist—are also the

most critical comparisons; the deeper “criticality valleys” reflect the larger merges.

Second, that recursive criticality structure is persistent across background failure

rates. Even at a background failure rate of 20% we can still see four distinct ‘bumps’

in merge sort’s criticality results. This implies that criticality structure is robust

when the right algorithm and error measure are used. Note that the criticality falls

off at larger background failure rates since criticality measures additional error due

to a fault and at higher background failure rates so much damage has already been

done to the output that it becomes difficult for failures to do even more damage.

Next, when comparing the middle graph of Figure 4.2 (page 55) to the bottom

graph we see that max displacement error reveals a structure that is similar to

that revealed by positional error. However, the structure of max displacement error

collapses as the number of background errors increases. This seems to present max

displacement error as an interesting intermediary between strict correctness error

and Spearman’s footrule error, a conclusion which is also supported by Theorem 8

(page 110) in Chapter 6.

Quicksort

If we move beyond merge sort to look at quicksort paired with quantified correctness

measures, as in Figure 4.3 (page 56), we see similar structured results as in merge

sort: With Spearman’s footrule error criticality, the first N = 52 comparisons have

much greater criticalities than all other comparisons in the sort. This occurs because

the first N comparisons of quicksort are responsible for sorting the list into a ‘top’

half and ‘bottom’ half with all items less than the pivot in the bottom half and all

items greater than the pivot in the top half. A failed comparison in the first N

comparisons leads to the miscompared item being placed, on average, about N/2
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away from its correct position.

On the other hand, for inversions error criticality, the first N comparisons have

lower criticalities than all other comparisons. I suspect this is because items mis-

placed in either the top or bottom half of the list will tend to move toward the center

where the halves meet, so even many failures in the first N comparisons will tend to

add only a single inversion to the error measure.

Though Spearman’s footrule error and inversions error, like all the list error

measures explored in this dissertation, agree on the meaning of ‘correctly sorted’,

they measure different list properties, and their criticality structures are sometimes

quite different. While we may hope to find general principles, it is important to

understand that a wise choice of error measure requires not only sensitivity to failures,

but also to the needs of a computation’s end-user.

In Figure 4.3 (page 56) the spikes at the beginning of the first two passes through

the list seem anomalous and at this time I do not have an explanation for their

existence.

Bubble Sort

Next, consider the bubble sort results in Figure 4.4 (page 57). Bubble sort’s O(N2)

comparisons give it a great deal of redundancy, so the criticalities in Figure 4.4

are much smaller than in, say, Figure 4.3 (page 56). In addition, the details of its

criticality structures emerge at high background failure rates. It is unsurprising that

bubble sort’s last N comparisons are its most critical as any failed comparison in

the last N operations cannot be corrected, but I hadn’t anticipated the small but

distinct length N periodic structure throughout bubble sort’s execution, indicating

increased criticality in the last half of each pass through the list.

All three sorting algorithms displayed structures related to the input size of N =
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52: First N criticality in quicksort, last N criticality in merge sort, and a period N

variation in bubble sort.

Scalar Multiplication

In Figure 5.1 we see how operations in scalar multiplication algorithms relate to

algorithm output. For naive multiplication, criticalities appear to grow logarithmi-

cally as the algorithm proceeds through one of the multiplicands, summing the other

multiplicand depending on the results of each check operation. Alternatively, for

Karatsuba multiply we can observe a constellation of three maxima in the graph

of operation criticality at 0, 100 and 250 check or add operations at multiplication

scale N = 500. Similarly, between the maxima we seem to observe similar, fractal

maxima at smaller scales. This makes sense for an algorithm that works by recur-

sively splitting each multiplication operation into three sub-operations. There is a

replication of patterns at size 100 and size 500; this suggests that more investigation

is warranted.

In Figures 5.8 (page 75), 5.9 (page 76), and 5.10 (page 77) I show failure shaped

error results against i.i.d. failure model outcomes for each failure interface and error

measure at input size 100. Failure shaping cuts the average absolute logarithmic

failure by about 30. It cuts the absolute value and absolute percent value by between

10% and 90%. Further, the Karatsuba algorithm benefits more from failure shaping

than naive multiply. A possible reason for the discrepancy between the absolute value

and its logarithmic version is due to the high standard error of the sampling procedure

using this time based criticality technique. Most multiplication runs for both naive

and Karatsuba multiply had failure-shaped error outputs that were many orders of

magnitude lower than non-failure-shaped error outputs. However, a small number

did not have such great improvements and it is these instances that dominate the

absolute value measurement while having very little impact on the log absolute value
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error measure. In some sense, these instances are not successfully failure shaped.

Matrix Multiplication

Figure 5.11 (page 79) presents results for our two matrix multiplication algorithms.

For naive matrix multiply we don’t see much criticality structure—criticality appears

flat. However, for Strassen’s algorithm we do see spikes that appear about 2/7, 3/7

and 5/7 of the way through the algorithm. This makes sense if we consider that the

algorithm works by splitting the input matrices into 8 parts and recursing 7 times to

obtain its speed up, though the reason for the spikes on these specific ranges of 1/7

of program run time is unclear. We also observe that this structure holds not only

for scalar multiplication proxy operations, but it also holds across multiple input

sizes, suggesting that criticality at small scales may be useful in evaluating criticality

at larger scales, at least for Strassen’s algorithm. In naive matrix multiply, each

scalar multiplication has an equal impact on the output, and its criticality structure

is correspondingly flat.

7.2.3 Algorithmic Performance in Resource-Constrained En-

vironments Is Improved Through Failure Dynamic

Analysis

Reviewing Figures 5.8 (page 75), 5.9 (page 76), 5.10 (page 77), 5.25 (page 93), 5.26

(page 94), and 5.27 (page 95) we can see that it is indeed possible to decrease total

output error in resource-constrained environments by using criticality assessment

results. However, two conditions must be met for this to work. First, the failure

shapes of the algorithms must contain high leverage—a measure of the difference

between critical and non-critical operations in a program. Second, the representation

of failures needs to be compact—short compared to the run time of the algorithm—



Chapter 7. Discussion 128

and present us with low variance.

The Importance of Leverage

I call the ratio of the average criticalities of a program’s important and unimportant

operations its leverage. I use the median failure point criticality as the dividing line

between important and unimportant operations, however other policies may perform

better for other algorithms and economizations. Leverage is thus a rough-and-ready

hint of the improvements possible via my implementation of failure shaping.

In Figure 7.1 the leverage of both naive and Strassen’s matrix multiply using the

Frobenius norm are presented. Strassen’s matrix multiply shows a higher leverage

than naive matrix multiplication, which also outperforms Strassen’s matrix multi-

plication on baseline i.i.d. failure tests. However, because Strassen’s algorithm has

higher leverage, it also responds better to the failure shaping procedure.

The evidence is more murky with the scalar multiplication algorithms. This may

be due to the the large constant term in Karatsuba’s growth rate. In the limit,

Karatsuba is more efficient than naive scalar multiply, but at my experiment scales

it was less efficient. Larger experiments are necessary to resolve the question of

leverage in scalar multiplication algorithms. However, Karatsuba’s leverage does

seem to pick up as we move from 200 to 500 bits, indicating that at larger scales

Karatsuba’s leverage may be higher than naive multiplication’s.

Overall, economic failure shaping seems best suited to computations that

1. perform multiple fallible steps,

2. each of which has a definable cost,

3. at definable failure rates, with

4. high leverage, and
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Figure 7.1: Selected Leverage Results. Log absolute value leverages on both naive

and Karatsuba scalar multiplication algorithms are presented on the left. Frobenius

norm leverage results on the matrix multiply algorithms are presented on the right.

Note that Karatsuba leverage on check and add operations seems to dip before

picking up and growing above naive scalar multiply’s check leverage at scale 500.

Strassen’s algorithm leverage on all operations grows faster than naive matrix mul-

tiply’s leverage on any operation. Note that graphs have different x and y axes. See

text for details. Reprinted from [1].

5. limited overall resources.

Although satisfying most of these conditions is a matter of framing the question,

condition 4 depends on the underlying algorithms. However, I do find that high

efficiency algorithms often have high leverage. This is true in sorting: The more

efficient algorithms have much higher max criticalities than the O(N2) full bubble

sort algorithm. Intuitively, this makes sense, as efficiency often depends on making

high-impact decisions about the output based on examining as little data as possible

at the decision point.

To satisfy the other four conditions, we seek out the operations that are most

heavily impacted when increasing algorithmic efficiency. So, for example, compar-
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isons in sorting, and scalar multiplications in matrix multiplication are both econ-

omized as algorithms become more efficient. In addition, looking beyond the algo-

rithms explored in this work, graph algorithms often economize on the number of

vertex or edge traversals necessary to produce a correct output.

Assessment Compactness and Variance

Failure points with high variance occur when many different kinds of execution paths

overlap, some important and some unimportant while compact descriptions grow no

more quickly than the algorithm they are describing. There is a necessary tension

between these two concepts.

For my study, failure points were bucketed by method name and invocation count.

An alternative bucketing might be to evaluate every possible execution path on every

possible input for its error outcome. Such a bucketing would, undoubtedly, have low

variance, however, it would not be compact. By contrast, a bucketing that lumps all

errors together would be very compact, but would have high variance.

My failure interfaces produce compact space-time descriptions. However, vari-

ances on the scalar multiplication algorithms were high enough to make failure shap-

ing difficult. Too many high variance and high impact add operations fail for the

full expected usefulness of failure shaping to appear anywhere on the scalar multi-

plication algorithms except on the log absolute value score. That score calculates

logarithms before performing averages. Thus unusual experiment runs with scores

orders of magnitude greater or lower than the average experiment, have a lower

impact there than on the absolute value error measure.
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7.2.4 Bulk Program Operations Make Good Choice for Fail-

ure Shaping

The operations I used in this work are often used to determine lower bounds on

algorithmic efficiency—comparisons in sorting and check and add operations in mul-

tiplication. These operations often make up the bulk of an algorithm’s run time

and are also often somewhat parallelizable. So far operations from this category ap-

pear to be useful for failure shaping, excluding naive algorithms like bubble sort and

naive matrix multiplication. This hypothesis, however, could use a greater degree of

support beyond these three problem domains.

I speculate that naive algorithms in a given problem domain contain the best

operations for failure shaping. Scalably robust algorithms only experience a small

amount of output error for every given internal failure. When a naive algorithm

is paired with an input generator, operation failure mode, and error measure that

is provably scalably robust, then we are likely to observe criticality behavior that

can be successfully failure shaped on more efficient algorithms in the same problem

domain. However, the replication of operations limits this hypothesis, as articulated

by Theorem 1 where arbitrary lgf(N) operation replication implies that even strict

correctness is always scalably robust. Another limit on this hypothesis is the lack of

a formal definition for ‘naive’ algorithms in a problem domain.

7.2.5 Numerical Stability

Beyond leverage, the criticality results for matrix multiplication may also have an

interesting connection to questions of numerical stability. Strassen’s algorithm, also

called “fast matrix multiply”, is less numerically stable than naive matrix multi-

ply [106]. As a result, it is less likely to be chosen for many computing tasks. I

hypothesize that efficient matrix multiplication algorithms are unstable because their
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internal leverage scales up the effects of small rounding errors in return for faster run

times. In the case of Strassen’s algorithm, this appears to occur during the 2nd, 3rd,

and 5th recursive steps.

7.2.6 When Will Criticality Structures Scale Effectively?

In both matrix and scalar multiplication we see the similar criticality structures at

multiple scales. In Karatsuba multiplication the criticality graphs present a three

maxima pattern at multiple scales while in Strassen’s matrix multiplication there are

criticality spikes at failures points 2/7, 3/7, and 5/7 of the way through the algo-

rithm at multiple input scales. These similarities suggest that small scale criticality

experimental results may be useful in evaluating larger scale programs.

7.3 Limitations of the Study

The important limitations of this study include:

• The focus on a limited number of fallible operations for each problem

domain.

The choice to limit the scale of this dissertation to the constrained reliabil-

ity allocation problem—which focuses on operations that only produce output

errors, not program crashes or infinite loops—led to the focus on a limited

number of operations per algorithm. However, even though the type of oper-

ations that were studied were limited, I focused on operations that do a great

percentage of the work of a program—those operations that tend to be used

to analyze program efficiency. Further, as discussed in Chapters 1 and 2, there

is reason to believe that in the future it will be possible to constrain resources
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at specific failure points and ‘green/white’ computing imagines a world where

only some program operations are allowed to fail [26].

• The focus on i.i.d. failure distributions at the cost of exploring more

complex models that make use of coordinated failures.

As stated in Section 2.7, one of the ideas of this dissertation is that coordi-

nation at one level of computation leads to randomization at another level.

Rather than focusing on coordinated failures at the hardware level, I have in-

stead focused on i.i.d. failures at the program level that can only be created by

coordinated failures beneath the program level. However, this move deals with

coordinated hardware failures by assuming they will have a particular effect

rather than by showing they have that effect. Future studies should examine

the actual impact of coordinated hardware failures on programs at run time. I

present ideas for future work in this direction in the next section.

• The choice of a simple error economization.

The error economization I’ve used in this thesis is very simple, each percentage

point decrease in epsilon for one operation has the exact same costs as a percent

point decrease in epsilon anywhere else. Operations can freely substitute their

resources for another operation’s resources. This approximation will only be

good for some real world situations. More complicated error economizations

that take into account the downstream costs of failed chip timings or that more

closely track the interaction between operation error and energy are necessary.

• The choice of a simple failure redistribution policy.

In this dissertation I have chosen to redistribute failure resources from opera-

tions with criticalities beneath the median to those above the median. This is a

very simple redistribution scheme, however, and may not be the most efficient

policy for failure redistribution. Specifically, I ignore statistical and continuous
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methods of failure redistribution that may produce better outcomes. I address

this weakness in the next section in future work.

• The use of simple failure modes that are not necessarily representa-

tive of the behavior of real world SDCs.

In this thesis I made use of handcrafted ‘failure modes’ that will not always

track the behavior of real world SDCs. This included flipping the output of

a comparison operation and a check operation, and randomly flipping a single

bit in the output of an add or multiplication operation. In future work I will

propose a path of study to address this limitation of the work.

• Limited set of problems explored.

This study is limited to the sorting, scalar multiplication, and matrix multipli-

cation problem domains. Any empirical study will be limited to some problem

areas, but empirical evidence from others would still be welcome. In future

work I will present other potential problem domains.

• A lack of proofs concerning some (sorting algorithm, error measure)

tuples in Chapter 6 and about programs outside of the sorting prob-

lem domain.

The proofs in Chapter 6 are interesting since they show that looser definitions of

‘correct’ lead to a greater tendency to achieve average case scalable robustness.

However, the relationship between scalable robustness and program efficiency

within the program-error tuples that seem closest to the transition boundary

between scalably robust and not scalably robust is still poorly understood.

Further, outside of a few general statements about the relationship between

worst and average case scalable robustness, and the use of modular redundancy

in scalable robustness, this work is limited to sorting. I address both of these

weaknesses in future work.

• The limited scale of the empirical study.
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Due to the run time of the criticality assessment procedure, as presented in

this thesis, it was not possible to collect criticality data concerning very large

program instances. However, in future work I will present some possible paths

forward on this question.

7.4 Future Work

I find seven major possible research paths moving forward: Expanded empirical

studies that seek criticality assessments and error economizations on unaddressed

domains, scaling of the criticality assessment technique through search-based tech-

niques, scaling of the criticality assessment technique through machine learning at-

tribution models, studies of hardware behavior that can be used to inform operation

failure modes, spatial graphs for coordinated failure models, the development of

stochastic and continuous failure redistribution policies, and theoretical work that

moves beyond the sorting domain.

7.4.1 Expanded Empirical Studies

The empirical studies presented in this dissertation include the sorting, scalar mul-

tiplication, and matrix multiplication problem domains. While the techniques pre-

sented here have found interesting results in these domains, this is still a limited data

set. Empirical studies of criticality should be expanded into new domains such as

compression, graph problems such as max flow or min cut, and database operations.

7.4.2 Scaling Through Search

Failure shaping currently requires significant human labor. Making it more effi-

cient will involve leveraging multiple strategies. One strategy includes a library of
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standardized input types, error measures, and failure interfaces that can be used to

produce annotated programs in the future.

Such a strategy, though, will tend to increase the computational resources re-

quired by the method. The programs I have presented are sufficiently limited that

they can be characterized relatively cheaply, but larger programs will be more dif-

ficult to explore. My observation of apparently similar failure shapes at multiple

scales (see Figure 5.11—page 79) suggests one strategy could be to scale the criti-

cality assessment by run time in some programs. However, we will also need more

sophisticated search methods—ones capable of performing significant generalization

across failure points, rather than gathering fully-independent statistics as I have here.

Genetic algorithms, genetic programming, and other adaptive search procedures

are often employed to search combinatoric spaces, as in [107–109]. A common prob-

lem in this space is the flag variable problem [110]. In [111], the authors note that

GAs work best in search spaces that avoid these “needle-in-the-haystack” spikes. My

use of continuous error measures compared to typical all-or-none test failures may

help produce such ‘softened’ search space gradients, as medium-criticality operations

tend to cluster around spikes both here and in other algorithms we have explored [2].

This is a new area, but a relatively sparse set of data-points plus a suitable

heuristic search procedure may allow us to build imperfect but high-quality criticality

estimators for the failures of much larger pieces of software than are reachable via

Monte Carlo search alone.

7.4.3 Machine Learning and Attribution

Another possible path forward for failure shaping involves the use of deep learning

attribution models [112] paired with a shallow error study at a some low ε. Deep

learning is a machine learning technique that learns layers of mappings from inputs,
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represented as vectors of floating point numbers, to outputs represented the same

way. These mappings are represented as a series of non-linear functions from vectors

to vectors, where each dimension in an output vector is a linear combination of

dimensions on the input, followed by non-linear activation functions such as tanh,

relu, or a logistic function.

The original inspiration for deep learning are neural networks found in biological

systems, where a combined linear step and non-linear activation function is often

conceived as being similar to a single neuron. A good mapping over the entire network

is found through a process of gradient descent, where inputs are mapped through

the network, a potentially erroneous output is calculated, the distance between the

erroneous output and the correct results is then evaluated, and then the internal

weights of each neuron are modified by a derivative that is roughly equivalent to

each neuron’s contribution to the final erroneous output value.

One of the difficulties with a deep learning model, however, involves attributing

the model’s reasoning about output values to specific input dimensions. However,

a method called integrated gradients has recently been proven to have a number of

useful properties for attribution assignment and has been used to find attributions

that seem reasonable in a number of deep learning models [113].

It may be possible to use a method like integrated gradients to perform criticality

evaluations at large scale. If we treat a failure pattern as the input and the final

error as the output we may then be able to train a deep learning model on a constant

number of program instances with some reasonably small i.i.d. background failure

rate. This represents a speed up of the method as it will no longer be necessary to

perform a large number of simulations for each individual computational step. After

the model is trained, we can then attribute the final output error results to each

of the operations, evaluating which operations are most important in determining

output error.
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7.4.4 Hardware Failure Studies

A comparative study that looks at the effect of hardware failures introduced by

lower energy usage could be useful to fill the gaps in our knowledge concerning the

failure modes of deterministic operations used by algorithms. These studies could

be enhanced by looking at major virtualization techniques, such at the JVM, that

may introduce even further changes in the distribution of likely failure modes for a

give operation. Reasonable failure modes may be composed by combining the likely

behavior of a given hardware system with the likely behavior of the software stack

sitting above hardware.

7.4.5 Spatial Graphs for Coordinated Failures

In the current study only i.i.d. and worst case failure models are presented. In the

future it would be useful to see models that increase or decrease individual operation

failure rates based on the failure of nearby operations as in [78]. In that work,

comparison failures were coordinated if they were close to each other in time. Similar

models that make use of operation neighbor graphs to coordinate failures may be

used to surpass the i.i.d. paradigm. Such coordination graphs may place operations

close to each other if they have similar semantics, operate on the same CPU, or are

close to each other in time.

7.4.6 Stochastic and Continuous Failure Redistribution Poli-

cies

In this work I used a simplified failure redistribution policy that redirected resources

from operations with criticalities beneath the median to those with criticalities above

the median. This policy improved algorithmic robustness, however there is no a pri-
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ori reason to think this is the most efficient policy for failure shaping. Alternative

policies might include redirecting resources stochastically using continuous probabil-

ity distributions based on operation criticality and other information as opposed to

the deterministic decision process used in this work.

7.4.7 Scalable Robustness Beyond Sorting

In this dissertation I have presented a generalized concept of scalable robustness,

paired with proofs that expose the behavior of a number of sorting algorithms con-

sidered in the light of the scalable robustness paradigm. These proofs suggest an

interesting relationship between error measure, algorithm efficiency, and robustness.

However, further research paths may be opened by theoretical work on the scalable

robustness of programs outside the sorting domain.

7.5 Significance

Here I summarize the contributions of this work:

1. This work helps uncover failure dynamics in complex pieces of code by outlining

a method for their consistent discovery. It does this by pointing out the need

for error measures that evaluate output quality instead of hard correctness

measures. Further, it begins the process of building a body of failure modes

for the purposes of examining the dynamics of failures inside of computations.

2. This work aids in the armoring of computations against internal failures by

providing a measure of each operational instance’s criticality. Given this infor-

mation, it is a small step to see that computational architects can choose to

armor only those operational instances with a great deal of criticality, thus re-

ducing the cost of building robust computations. This allows computational ar-
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chitects to make choices between heavily armored, robust computations which

require a great deal of resources and less armored highly efficient computations

that pass a greater number of failures through to their outputs. This extends

the green/white approach to energy saving through approximate computing,

allowing for subtle gradations of failure-approximation that depend on specific

algorithmic behavior.

3. This work provides researchers with a new view on the internal workings of

algorithms. This view may provide computer scientists with new methods for

classifying and identifying and teaching algorithms.

4. In modern computer systems, built on large deterministic hardware, functional

modules are often designed, deployed, and composed with virtually no knowl-

edge of the overall system behavior. This dissertation’s fourth contribution is

the notion of method level failure interfaces that allow the study of approximate

computations separate from their underlying hardware stack, either freeing us

from the need for specialized hardware knowledge, or at least allowing us to

compile that knowledge in a separate process.

5. Unlike traditional approaches that use fault tolerance to reduce or eliminate

failures, I have a ‘hardware reliability budget’ that treats failure rates as an

independent variable: guaranteeing that failures cannot be avoided. This dis-

sertation moves beyond fault-tolerance/intolerance by dealing with reliability

resource allocation when those resources are not sufficient for strictly correct

algorithmic results.

6. The theoretical views provided in this work are the first treatment, to my

knowledge, that considers the robustness of an algorithm as input sizes grow

infinitely while error rates approach zero. One major advance introduced by

this perspective is Theorem 1 (page 1) which shows a bound on the maximum

redundancy needed to ensure the correct operation of a program given an i.i.d.
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failure model. The proofs relating sorting algorithm efficiency, error measure,

and scalable robustness are also suggestive of a previously unobserved theory

of failure dynamics.

7.6 Conclusion

The work presented in this dissertation is both incomplete and exciting. The rela-

tionships I have observed—between program operation failures and program output

error—are related to both known, and newly discovered, algorithmic behaviors and

properties. This is especially true for program efficiency, which impacts whether

particular algorithms can be considered robust at all. This work also shows that

these relationships can be leveraged to improve algorithmic behavior in the face of

failure-prone hardware or even in the face of other sources of error, such as rounding.

The possibilities seem boundless when we peer behind the barrier imposed by strict

correctness.
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