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Abstract

Communication is an important factor in the foraging performance of social insects,

such as ants. During foraging, ants keep track of food sources by using memory

(site fidelity) or by communicating through pheromones. Previous field experiments

showed that the rate of seed collection depends on the distribution of food in the

environment. If food is spatially clustered, then it is beneficial for ants recruit nest

mates to collect seeds from large clusters. However, we do not know when the

recruitment occurs in natural ant population. To explore this question, we used a

power law distribution to arrange seeds in piles of different sizes. We observe that

simulated ants use pheromone more when the food sources are clumped, and they re-

discover the pile more frequently if the food source is large. Simulated ants don’t use

the pheromone to recruit from the food source that is scattered in the environment.

We use simulations to determine how to correlate change points with recruitment

events, and then use that relationship to infer recruitment event in in field data. We

also observed that ants may repeatedly lose track of found piles and then re-find
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them. Using change point analysis on seed intake time series, we were able to trace

the discovery of piles by detecting changes in the foraging rate.
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Chapter 1

Introduction

Social insects are species that live in colonies and manifest three characteristics [1];

a. group integration[2], b. division of labor[3] and c. overlapping generations[22].

These creatures have survived many mass level extinction events. Millions of years

of genetic evolution helped them to adapt to the environment and to master the

strategies of survival.

Their strategies to avoid congestion and to optimize their movements to forage

in most efficient ways without any central authority have attracted researchers and

scientists[16]. In modern computer science, machine learning[6], complex interactive

networks[10], parallel computing[4] and many other topics have been inspired by the

studying and modeling of ants.

Harvester ants forage during the morning or in the evening sessions during the

summer[12, 21]. In this study, we will mostly talk about Progonomyrmex species,

which are group foragers[20]. Foraging activities of harvester ants depend on many

factors such as temperature, light, and availability of seeds[21].

Social insects such as ants sometimes use pheromone to communicate with each
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Chapter 1. Introduction

other to forage[13]. The previous study has shown that they follow three strategies

to forage[7, 8, 15]. Ants use memory to remember the location of the food source.

They communicate with other ants using pheromone, and they perform random walk

in search of food.

Foraging depends mostly on how food is distributed in the environment[19, 15].

To analyze the foraging strategies of ants, field experiments have been conducted on

three species of Pogonomyrmex desert harvester ants. Foods were distributed around

the nest in different distributions to observe the effect of food density on foraging.

It was demonstrated that ants take some time to discover the large pile of seeds, but

they start recruiting from the food source once they discover it[7].

Based on this behavior, an agent-based model called the Central Place Foraging

Algorithm(CPFA)[11] was developed by Hecker and Moses. The purpose of CPFA is

to collect resources from the spatial environment by using the strategies mentioned

above: memory, communication and random walk[5, 7, 15].However, it is not clear

which strategies are used under which conditions in real ants[18]. It is possible that

when ants discover a pile they lay pheromone trail for other ants to follow. When

other ants start following the pheromone trail, their foraging rate goes up for that

pile. We use a change point detection algorithm to detect that change in foraging

rate. Our goal is to detect when ants use pheromones rather than site fidelity.

Because field data are noisy and we have no ground truth, we use simulations to test

how reliably change point detection is at identifying pheromone use. We then use

the method to identify change points and infer pheromone use on the field data.

We used the CPFA to simulate the field experiments. The environment of the

CPFA has been designed to mimic the field experiments for three different species

P. rugosus, P. maricopa and P. desertorum. We have implemented different change

point detection algorithms on the simulated data[9, 17, 14]. The change point de-

tection algorithms were tuned to detect change points when the pheromone is laid.

2



Chapter 1. Introduction

From the simulation, we know exactly when the pheromone was laid and site fidelity

was used, thus we verified our change point detection algorithms by using the sim-

ulation data. Based on the results of the simulation we have selected best change

point detection method and applied the best algorithm with tuned parameters on

the field data.

We observe that in simulation ants use pheromone more when the food sources

are clumped, And they discover the pile more frequently if the food source is large.

They don’t use the pheromone to recruit from the food that is scattered in the

environment.

3



Chapter 1. Introduction

1.1 Contribution and Organization

Chapter 2 describes species of the ants that we have used in our experiments, the

ant inspired model CPFA and the Genetic Algorithm for tuning the parameters.

Chapter 3 describes the procedure that we have followed to investigate the problem.

It includes the simulation environment, parameter settings for genetic algorithm,

methods and efficiencies of different approaches of change point algorithms.

Chapter 4 includes the results of different change point detection methods and the

result of applying best change point detection algorithm on the field data.

Chapter 5 includes conclusion and future works.

Appendices are included at the end.
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Chapter 2

Background

Ants are social insects that have evolved millions of years. Their strategies to find

resources for their survival are fascinating. prior works describes several experiments

on desert harvester ants at the field to observe how they forage[7]. Three different

species of harvester ants are P. rugosus, P. desertorum and P. maricopa.

Our goal was to figure out how these ants find resources from an environment

and what is the effect of the distribution of seeds on which foraging behavior is used.

Seeds in the fields are distributed in a ring showning figure 2.1. The area of the

food distribution is scaled with the colony size of ants. For example, Desertorum

was the smallest in colony size (77±296), so the ring radius of food was 1.5 to 3

meters. Rugosus has a colony size of 1712±174. So the radius of food distribution

for Rugosus was in 5-10 meters. The seeds are organized in a power law distribution

around the nest.
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Chapter 2. Background

2.1 Power Law

In power law distribution of food, seeds are distributed into multiple piles of different

pile size. For example, 1024 seeds can be divided into four pile size categories with

256 seeds in each. One large pile of 256 seeds are placed all together in a random

location in the ring. Next 256 seeds are divided into 4 equal sizes of 64 seeds and

placed in the ring. Next 256 seeds are equally divided into 16 piles of 16 seeds and

placed inside the ring. The remaining seeds are distributed uniformly around the

nest.

Figure 2.1: Distribution of Seeds in the field experiment for power law distribution
with 1024 seeds. Red pile indicates one large pile of 256 seeds. 4 purple piles represent
4 large piles of 64 seeds, green color represents 16 piles of 16 seeds and blue seeds
are 256 random seeds

6
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2.2 CPFA

Central Place Foraging Algorithm(CPFA) is an agent-based model where agents are

programmed to follow an ant inspired strategy to collect seeds. In CPFA, ants follow

three methods to collect seeds[11].

• Random Walk: Ants starts walking randomly from the nest. If they find any

food they bring it back to nest

• Use of Internal Memory: They remember the last position where the food

was found and can return to that place for further search of food. This is

method is called site fidelity.

• Use of Pheromone or Communication: They lay pheromone trails from

the food source to the nest so that other ants can follow that trail to collect

food from that source.

Initially, a search location is selected for each of the ants. Then ants start traveling

to the search site. After reaching the search site, they perform either uninformed

random walk to a random location or informed random walk to a known location

based on site fidelity or pheromone. If no resource is found, then they return to the

nest.

If they find any resource they sense the local resource density. Based on the local

resource density they decide whether to use site fidelity in future or to lay pheromone.

After sensing the resource density, the return to the nest with the seed.

Whether the agents will use any of three strategies is governed by seven pa-

rameters. Table 2.1 represents the seven parameters, that govern CPFA and their

initialization values[11].

7



Chapter 2. Background

Parameters Initialization Functions
Probability of Switching to Searching U(0,1)
Probability of Returning to Nest U(0,1)
Uniform Search Variation (0, 4 PI)
Rate of Informed Searched Decay E(20,0)
Rate of Site Fidelity E(20,0)
Rate of Laying Pheromone E(20,0)
Rate of Pheromone Decay E(20,0)

Table 2.1: Seven parameters and their initialization, that characterizes Central Place
Foraging Algorithm

For parameters in a uniform distribution, higher the value of the parameter the

higher the probability of that event. For example, “probability of switching to search-

ing” follows a uniform distribution. Higher values of this parameter, create a higher

probability that the ant will switch to search from initial departure.

For the exponential distribution, the higher the value of the parameter, the lower

the chance of using that feature. For example, if Rate of Laying Pheromone is zero,

then it means that there is a higher chance of laying the pheromone. On the other

hand, a value close to 20 means that chance of using the pheromone is very low.

Ants determine the position of a search location by either using site fidelity,

or pheromone or randomly. When they travel to a particular location, they look

for resources. The probability of switching to searching determines the chance of

ants to switch to search for resources. When ants were not primed by site fidelity

or pheromone information, they select a random direction to travel and search for

resources in that direction. The higher the value of switching to the search, the faster

they begin the search process.

The probability of returning to nest defines the chances of returning to nest for

unsuccessful foraging trip. This parameter actually decides how long the ant will

keep searching new places before returning to the nest. Higher the value of the

8
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parameter, mean that ants search shorter before returning to the nest..

The rate of site fidelity comes into play when the ants use site fidelity to go to an

informed location where that ant remembers that the food already exists. The lower

the value of this parameter, the higher the chances of following the site fidelity.

The rate of laying pheromone is the probability of laying pheromone while return-

ing to nest from a food location. This depends on sensing of local resource density.

When the ants collect seeds from a location, they sense the density of resources in

nearby areas. Lower the value of probability of laying pheromone, higher the chances

of laying pheromone.

The probability of pheromone decay determines how fast the pheromone will evap-

orate. When the value of the parameter is high pheromone stays in the ground for a

longer time. The pheromone evaporates faster for the lower value of the parameter.

2.3 Genetic Algorithm

Genetic Algorithms are metaheuristic search algorithm inspired from natural selec-

tion and evolutionary genetics. As such they represent intelligent exploitation of a

random search used to solve optimization problems. The basic techniques of GAs

are designed to simulate processes in natural systems necessary for evolution.

The evolution usually starts from a population of randomly generated individual

strings that are analogous to the chromosome that we see in our DNA, and is an

iterative process, with the population in each iteration called a generation. GAs

simulate the survival of the fittest among individuals over the consecutive generation

for solving a problem. Each individual represents a point in a search space and a

possible solution. The individuals in the population are then made to go through a

process of evolution. GA proceeds through the solution domain by evaluating the

9
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fitness function. The whole process of evolution is divided into three major section-

selection, crossover & mutation.

In our genetic algorithm, the strings that undergo mutation represents the seven

parameters of CPFA. Mutation rate is fixed to one percent.

The process is followed until a common termination condition is reached. This

termination condition can be either a solution which fulfills minimum criteria. GA

can also be terminated once it reaches a desired number of generation, or if it reaches

the maximum fitness. Evaluation of fitness functions also takes lots of time. So some-

times the GA is bound to a strict time limit, in this case 50 generations. The GA

can also be terminated by any combination of the termination methods mentioned

above. GA Algorithm can be defined as algorithm 2.1

Algorithm 2.1 Genetic Algorithm at a glance.

1: Initialize the population randomly

2: Determine the fitness of the first generation

3: while Desired solution is obtaind do

4: Select elite population with the best fitness

5: Create a new population by crossover and mutation among the elite popula-

tion

6: Evaluate fitness of the population

7: end while

10
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Method

Figure 3.1: Steps of Change Point Analysis

3.1 Setting Simulation Environment

We setup the simulation environment to mimic the field experiments. So we dis-

tributed the resources as shown in figure 3.2 . We had three different setups for

three different species of ants. The number of agents were 12, 48 and 96. The total

duration of each experiment was 90 minutes (We collected data from field experi-
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ments for 90 minutes only). The total arena size was 20 × 20 meter. We kept the

arena into this size and bounded the agents to search in this arena. The setup is

varied for Maricopa and Desertorum. Table 3.1 represents the environmental setup

of simulations for P. rugosus, P. maricopa and P. desertorum.

Species Number of Seeds Radius of Seed Distri-
bution

P. rugosus 1024 5-10 meter
P. maricopa 128 1-3 meter
P. desertorum 128 1-3 meter

Table 3.1: Environmental Setup of simulation for three species

3.2 Tuning Parameters using Genetic Algorithm

To analyze the data, we have tuned the parameters of CPFA. As stated above in

the background study, enormous amount of parameters for CPFA can be used to

evaluate the fitness. We have used the genetic algorithm to achieve the optimum set

of parameters. We have divided the simulations into three categories to tune the GA

for three different environments.

1. Pheromone Only Parameters: For this type we have eliminated the use of

site fidelity. Which means that the probability of using site fidelity is 20, and

remaining parameters are evolved using the GA.

2. Site fidelity Only Parameters: In this type of experiment we eliminated

the use of pheromone. For this case ants can only use site fidelity and random

walk to collect resources

3. Using Both site fidelity and pheromone: This environment represents

12
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Figure 3.2: Example setup of a simulation environment for P. rugosus with 1024
seeds three different types of piles. One large pile of 256 seeds, four piles of 64 seeds
and sixteen piles of 16 seeds. 256 random seeds, are distributed uniformly inside the
ring.

the actual field experiment condition in which agents use both site fidelity and

pheromone along with the random walk.
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For each type of environment, we have tuned the parameters to obtain maximum

fitness using genetic algorithm where fitness is defined as maximizing the number of

seeds collected in 90 minutes. Initially, we have created a population of one hundred

colonies in the simulated environment. Each swarm's foraging strategy is randomly

initialized using the parameter setting mentioned in table 2.1. The best genome is

selected for crossover and mutation for next generation. We continued this process

until we obtain the best fitness genome or parameter set. The GA is terminated

either when the parameters are converged, or it reaches to generation 50.

For each swarm in a population, fitness is tested for four different random seeds.

The value of random seed controls the variables of a simulation. After evaluation

of each random seed for one parameter set, we have calculated the average seed

collection to define the fitness of that particular swarm. These random seeds are

basically numbers which are fixed for each generation. For each generation, we have

selected four different numbers for the random seeds and then evaluated all the

parameters for those values.

To calculate the fitness for each parameter set it takes evaluating the fitness

function for four times due to four different random seeds, which means for each

generation it needs evaluating the objective function for 400 times. So over 50

generations, it will need 2000 evaluations of the objective function. This can take a

lot of time if we perform the evaluation sequentially.

To remove this bottleneck, we have used multi-threading of genetic algorithm by

evaluating multiple objective functions simultaneously. We have used GA Lib genetic

algorithm package. The software for this work used the GAlib genetic algorithm

package, written by Matthew Wall at the Massachusetts Institute of Technology. The

MPI version was written by Andrew Rasmussen https://github.com/andyras/

GAlib-mpi/blob/master/LICENSE who modified the code from https://github.

com/B0RJA/GAlib-mpi. The evolver.cpp file is used to initialize the GA parameters
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and pipe the parameters to the GA Lib. Detail of initial parameter settings of genetic

algorithm for three different setup is given in table 3.2.

CPFA Parame-
ters

Pheromone
Only

Sitefidelity
Only

All Parameters

Probability of
Switching to
Searching

U(0,1) U(0,1) U(0,1)

Probability of Re-
turning to Nest

U(0,1) U(0,1) U(0,1)

Uniform Search
Variation

(0, 4 PI) (0, 4 PI) (0, 4 PI)

Rate of Informed
Searched Decay

E(20,0) E(20,0) E(20,0)

Rate of Site Fi-
delity

E(20,20) E(20,0) E(20,0)

Rate of Laying
Pheromone

E(20,0) E(20,20) E(20,0)

Rate of
Pheromone Decay

E(20,0) E(20,20) E(20,0)

Table 3.2: Initialization of seven parameters of CPFA for three different environments

3.3 Generating Data Set for Analysis

Once the parameters are tuned for three different environments, we have generated

the data for our analysis using these parameter sets. For each of the experiment,

we have extracted drop off time for each seed, location of each seed in the arena.

Drop time is when it is dropped off at the nest. We have tagged each ant with

distinct ID. For each seed, we also have extracted which ant has collected that seed.

Also, we have tracked when the pheromone is laid, and followed, and when the site

fidelity is followed. We have assigned distinct ID number to each pile so that when

a pheromone trail is laid we can track which pile the trail is coming from.
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For each type of environment, we have simulated 500 experiments and generated

data mentioned above. We varied the value of random seed for each experiment

while keeping the CPFA parameters constant for a particular environment. We also

varied the position of seeds for each experiment. Each experiment was performed for

90 minutes.

While generating the data for “pheromone only parameters”, we did not extract

any site fidelity data, because we tuned all the parameters not to use site fidelity data.

Similarly, for “site fidelity only” experiments we did not extract any pheromone data

as there was no pheromone. We have collected both site fidelity data and pheromone

data when we have used both methods together for collecting resources.

3.4 Analyzing The Foraging Data

After generating all the data from the simulation, we have tried to observe how

the ants collect seeds from different food distributions. We have observed that it

takes some time for them to discover the larger piles. Once they discover it, they

start to collect seeds from those piles. They use site fidelity and pheromone for

this recruitment. Once they start collecting this seeds we see an increase in their

foraging rate. So, we tried to detect those changes in their foraging rate by applying

the change point detection algorithm.

3.4.1 Creating Timeline for each type of distribution

We have studied each experiment separately to analyze the change in their foraging

rate. For each experiment, we studied foraging rate for each type of pile individually.

To study foraging rate for each pile we have created a time-line for each type of

distribution. We have calculated foraging rate in overlapping windows, where each
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window has a fixed size and slided by a fixed time (such as 10 seconds) to create

overlapping windows. Figure 3.3 shows the overlapping window for time-line.

Figure 3.3: An example of overlapping windows of foraging rate.

Figure 3.4: An example of a timeline for a distribution where numbers at the top
represent the sliding window number. Values in the boxes are the rate of collection
of seeds per window.

The length of the window is fixed to average time required for two round trips

unless stated otherwise. For the simulated experiments it is 266 seconds. Sliding

amount is fixed to 10 seconds. So if the experiment is for 90 minutes (5400 seconds),

we kept the length of the sliding windows for 266 seconds and slided it by 10 seconds,

we get total 540 sets of data where we calculated their foraging rate for a particular

pile.
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Once we have created the time-line for each experiment for a particular distribu-

tion of seeds we used change point detection algorithm to detect the change in the

rate of collection of seeds. Another method we have created the timeline is by taking

into consideration the change in the rate of foraging. In this method for creating the

timeline instead of foraging rate, we take into consideration the change in foraging

rate.

Figure 3.5: An example of timeline and change in foraging rate. The change in
foraging rate is calculated by measuring the difference between the timeline windows

3.5 Change Point Detection Algorithm

The change point detection algorithm is divided into two parts. First part is the

adding rate of collecting seeds to calculate the cumulative sum and detrend for

smoothing. And the second part is applying the change point detection algorithm.

We have used binary segmented cumulative sum method to determine the change

18
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points.

3.5.1 Calculating the Cumulative Sum

The calculation of cumulative sum is basically adding the foraging rate in each win-

dow. Figure 3.6 and algorithm 3.1 demonstrates how the cumulative sum is calcu-

lated.

Figure 3.6: This figure demonstrates how the cumulative sum is calculated from the
timeline of foraging rate.

Algorithm 3.1 Pseudo code for calculating cumulative sum.
1: Sum=0

2: for i=1:Number of Sliding Window do

3: Sum= Sum + window(i)

4: CumulativeSum(i)=Sum

5: end for
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3.5.2 Detrending

A time series trend is defined as a long-term change in the mean. The removal of a

trend in a statistical or mathematical operation of time series is called detrending.

It is often applied to remove features which are obsolete or unimportant. In time

series analysis, detrending is also used in preprocessing step to prepare data set for

further analysis.

There are several methods of detrending. Linear trends in mean can be truncated

by subtracting a least-square-fit straight line. Different procedures are used for more

complicated trend. For example, the cubic smoothing spline is commonly used in

dendrochronology to fit and remove ring-width trend that might not be linear, or not

even monotonically increasing or decreasing over time. It is important to understand

the effect of detrending on spectral properties of time series before trying to remove

the trend from the time series.

Before applying the change point detection algorithm, we have applied detrending

algorithm to remove the trend from the time series. We used linear detrending and

constant detrending to observe the effect of detrending in our time series data. Linear

detrending removes the linear trend from the data where constant detrending removes

the mean from the data. Figure 3.7 demonstrates how linear and constant detrending

affect the time series.
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(a) Linear Detrending

(b) Constant Detrending

Figure 3.7: An example of applying linear and constant detrending on the cumulative
sum of a timeline from one simulated CPFA experiment.
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3.5.3 Binary-Segmented Cumulative Sum

Binary Segmentation is one of the most established search method used for detecting

the change point. This method extends any single change point method to multi-

ple change points by iteratively repeating the method on different subsets of the

sequence.

To perform binary segmentation, we first apply the chosen single change point

detection method to the entire data set, if no change point is found then we are done.

If a change point is detected, call this τ , then the data is split into two segments,

timeline[1 : τ ] and timeline[τ +1 : n]. We then apply the single change point method

to the two segments and repeat iteratively. We stop when no more change points are

detected.

Binary segmentation is a very fast algorithm with complexity O(n log n) to detect

the changes. But the major disadvantage of its computational speed is that it gives us

only an approximation of changes. It is not guaranteed that the binary segmentation

method will find us the optimum solution. Also due to iterative nature of this

algorithm, it may not detect changes small changes. Thus, to verify the how well

this method is performing, we have verified the results with the simulated data. The

pseudo code for the binary segmentation algorithm is given in Algorithm 3.2.
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Algorithm 3.2 Pseudocode for Binary Segmented Mean Cumulative Sum

1: Input:A set of data of the form (value1,value2,value3...)

2: A test statistic τ(.)

3: An estimator of the changepoint position τ(.)

4: A rejection threshold β

5: Initialize: Let C = φ, and S = [1 : n]

6: while S 6= φ do

7: Choose an element of S

8: Denote this element as [s, t]

9: if τ(ys : t) < β then

10: remove[s, t]fromS

11: end if

12: if τ(ys : t) ≥ β then

13: remove[s, t]fromS

14: calculate r = τ(ys : t) + s− 1,

15: add r to C

16: if r 6= s then

17: add [s, r] to S

18: end if

19: if r = t− 1 then

20: [r + 1, t] to S

21: end if

22: end if

23: end while
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3.6 Verification of Change Points

As we have simulated data, and we know when the pheromones and site fidelities are

used in simulations, we can certainly verify how efficient our change points detection

algorithms are. So to check how efficient is our algorithms to detect change points,

we divided the detection of change points into 4 categories.

• Catagory A or ≤ 10: Change point detection within 10 seconds of pheromone

laying events,

• Catagory B or 11 − 300: Change point detections within 11-300 seconds of

pheromone laying events,

• Catagory C or > 300: Change point detections after more than 300 seconds

of pheromone laying events and

• Catagory D or None: Change point detected but no pheromone laying

events has happened.
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3.7 Applying the best method on Field Data

We applied change point detection on 6 different types of the data set. This led

us to evaluate the performance of change point detection algorithm for six different

methods. After validating six different methods that we have applied to simulation

Figure 3.8: Change point analysis on an alternate dataset

data. We select the best method for them based on the performance on six categories

stated above, and we apply the best method in our field data.
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Results

4.1 Results from Simulation

We configured the simulation settings as close as we can with the experimental setup

of P. rugosus, P. maricopa and P. desertorum. Then we have compared the result

of change point analysis on foraging rate, change in foraging rate, constant detrended

foraging rate , constant detrended change in foraging rate, linear detrended foraging

rate and linear detrended change in foraging rate.

Figure 4.1 compares the results of four different methods on a pheromone only

simulated environment for P. rugosus. We can see that, constant detrending detects

change points which is closer to the pheromone laying event. The result of constant

detrending with change in foraging rate is closer to the constant detrending, but

linear detrending and linear detrending with change in rate doesn’t perform well in

this environmental settings.

The average difference of pheromone laying event followed by a change point

detection for constant detrending method is 47.5, 60 and 81.5 for one pile, four
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Figure 4.1: Comparison of change point detection method for pheromone only pa-
rameters. Outliers are skipped to provide a better indication of differences. The time
in seconds represents the difference between a pheromone laying event followed by a
detection of change point in the foraging rate.

large piles and sixteen piles. It is also observed that, the range of time difference

between a pheromone laying event followed by a change point detection event is also

significantly reduced.

We observe similar phenomenon for P. maricopa and P. desertorum. The box

plots of comparison for these two species are provided in the appendices. The outliers

are removed from the figure to make the figure more informative. The detailed figure

with the outliers are provided in the appendices.

We compare the result with the change point detection in raw foraging rate.

We observe that, the average time difference between change point detection and
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Figure 4.2: Enlarged view of efficiency of change point detection algorithm on raw
foraging rate. The time in seconds represents the difference between a pheromone
laying event followed by a detection of change point in the foraging rate.

pheromone laying event is similar to constant detrending.

We have also evaluated four different methods based on the four categories men-

tioned in section 3.7. As we can see from figure 4.3 in constant detrending , 15% of

the time change points are detected within 10 seconds of laying pheromone, whereas,

in linear detrending , it is only 9%. Constant detrending also has significant improve-

ment over linear detrending in Catagory 11− 300. 74% of the time, changes points

are detected with eleven to three hundred seconds of laying pheromone while using

constant detrending , on the other hand, using linear detrending it is only 50%. In

catagory > 300 the error is 6% for constant detrending , whereas, it is 21% for linear

detrending.
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Figure 4.3: Efficiency chart for change point detection methods on a large pile of
256 seeds. This result is generated from the simulated data of pheromone only
parameters, configured for P. rugosus

Figure 4.4: Efficiency chart for change point detection methods on four medium
piles of 64 seeds. This result is generated from the simulated data of pheromone
only parameters, configured for P. rugosus
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Performance of constant detrending method and constant detrending method with

difference in rate is similar, if we consider categories ≤ 10 and catagory 11−300. But

constant detrending does significantly better than constant detrending with change

of foraging rate in detecting change points for four piles and sixteen piles in the

simulated environment.

Figure 4.5: Efficiency chart for change point detection methods on sixteen small
piles of 16 seeds. This result is generated from the simulated data of pheromone
only parameters, configured for P. rugosus

From figure 4.4 and figure 4.5 we can observe that, the performance of constant

detrending combined in category ≤ 10 and catagory 11 − 300 is better than perfor-

mance of constant detrending with change in foraging rate combined in these two

categories. Also from figure 4.4 and 4.5 we can see that constant detrending does

better in category > 300 than constant detrending with change in foraging rate.

If we look at the performance of the four methods over these categories in pher-

mone only simulated environments, for P. maricopa and P. desertorum we observe
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Figure 4.6: Efficiency chart for change point detection methods on foraging rate
and change in foraging rate. This result is generated from the simulated data of
pheromone only parameters, configured for P. rugosus

similar pattern of performances. The results for P. maricopa and P. desertorum are

provided in the appendices.

Figure 4.6 shows efficiency of change point detection algorithm on raw foraging

rate and change in foraging rate in pheromone only experiments. We observe that,

the performance is better for change in foraging rate.

Figure 4.7 shows the comparison of four different methods on a simulated envi-

ronment with both memory and communication for P. rugosus. From this figure it

is clearly visible that constant detrending does better in detecting the change points

than any other methods. As a matter of fact, constant detrending does better in

memory plus communication environment than the communication only environ-

ment.
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Figure 4.7: Comparison of change point detection methods without outliers for
pheromone plus sitefidelity parameters . The time in seconds represents the dif-
ference between a pheromone laying event followed by a detection of change point in
the foraging rate.

We have analyzed the efficiencies of all four methods for communication plus

memory environmental settings. We observe that constant detrending and constant

detrending with change in foraging rate does significantly better than the other two

methods. But in category > 300 and catagory None, constant detrending does better

than constant detrending with change in rate. We observe that the error is 0% for

constant detrending, whereas it is 1% for constant detrending with change in foraging

rate. Constant detrending also surpasses constant detrending with change in foraging
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Figure 4.8: Enlarged view of efficiency of change point detection algorithm on raw
foraging rate on simulation data of 12 ants. The time in seconds represents the
difference between a pheromone laying event followed by a detection of change point
in the foraging rate. Compared to figure 4.7 change point detection on raw data
detects changes fastest.

rate in the combined result of category ≤ 10 and category 11− 300. We observe, the

similar pattern of performances for four piles and sixteen piles.

Figure 4.8 shows the efficiency of change point detection algorithm on foraging

rate. We observe, time to detect the change points is better than constant detrending.

Figure 4.9(a) is the efficiency chart for foraging rate with no detrending for one

large pile on pheromone plus site fidelity environment. The result of other piles for

P. rugosus have similar pattern. We have mentioned those in appendices. In figure

4.9(b) we demonstrate our model's efficiency in detecting the change points when

only site fidelity is used for P. rugosus on one large pile of 256 seeds.

In memory only environment when no pheromone is used, agents use memory
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Figure 4.9: Figure on the left is the efficiency chart of the change point detection
algorithm on raw foraging rate with no detrending for one large pile of 256 seeds.
The data is generated from the simulation of pheromone plus site fidelity parameters
of P. rugosus. Figure on the right is the efficiency chart of change point detection
algorithm on raw foraging rate with no detrending for one large pile of 256 seeds. The
figure is generated by analyzing the simulated data of sitefidelity only parameters
for P. rugosus.

extensively. For this reason, when they start collecting seeds, their foraging rate

goes up because of the extensive use of internal memory. Which is why constant

detrending also method detects change points in site fidelity only environment. So

we have also measured the efficiency of all methods by measuring the difference

between a use of site fidelity and followed by a change point. From figure 4.9(b), we

have observed that 58% of the time a change point is detected after the first use of

site-fidelity.

The performance rating is similar for P. maricopa and P. desertorum. Results

for these two species are provided in the appendices.
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Figure 4.10: Efficiency of change point detection algorithm for detecting pheromone
using raw foraging rate and change in raw foraging rate, in memory and communi-
cation parameters.

To validate which method is better in detecting only pheromone but no site-

fidelity event, we have also calculated the time difference between site fidelity and

followed by a change point detection event for memory plus communication environ-

ment. From figure 4.10 we observe that, only for few experiments it detects change

points for the use of memory. This data is generated by applying the change point

detection algorithm on foraging rate and change in foraging rate. We observe similar

pattern for constant detrending method. Although we miss some of the change points

when we use the foraging rate with no detrending or change in foraging rate with no

detrending, it is better because we do not detect much of the site fidelity events in

this method.

We have varied the number of ants to observe the change in the foraging rate in

the simulation. We have performed the simulation with 96 ants and 48 ants. We
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Figure 4.11: Efficiency of change point detection algorithm on raw data for detecting
site fidelity in memory and communication parameters.

have observed that in the simulation with 96 ants, they collect more random seeds

than the seeds that are clumped. A reason for this is when the number of ants is too

large, the rate of collision increases between them while they try to forage from a

clumped food source. The performance is little better when we ran the experiment

with 48 ants. They tend to collect seeds from the clumped food distribution.

We have applied the change point detection algorithm on the foraging rate of

these two types of simulations, keeping the parameters for change point detection

algorithm same. We observe that the average time difference between a pheromone

laying event followed by a change point detection algorithm increases for 48 ants.

And it is increased more for 96 ants.

We ran the simulation for 96 and 48 ants with site fidelity only parameters, we

observe that they don’t use the site fidelity often to recruit. Even though they use, it

does not effect in their foraging rate. Although we have detected a few change points
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Figure 4.12: A plot of seed collection from simulation of 12 simulated ants. The
stars in the foraging data represent the pheromone laying event and circles represent
detection of change points using the binary segmented cumulative sum method on
raw data.

in their foraging rate, the accuracy of the algorithm is very low in the simulation for

size fidelity only parameters. The results are included in the appendices.

The change point detection algorithm on raw foraging data detects the pheromone

laying event fastest in pheromone only experiments. It also detects pheromone in

memory and communication only environment. However, It rarely detects change

points for sitefidelity in memory and sitefidelity experiments. It also detects change

points in memory only experiments because sitefideity is used so often in these ex-

periments.

Because it is the best at detecting changepoints, we use the binary segmented

cumsum change point detection algorithm on raw data to detect recruitment in the

field data.
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4.2 Results from Field Data

We applied the change point detection algorithm on the change of foraging rate

in field data. The parameters are kept same as simulations for the change point

detection method. We are able to detect change points in 10 experiments out of 11

for P. desertorum. For P. maricopa, we detected change points in 10 experiments

out of 11 and for P. rugosus we are able to detect change points in 11 experiments

out of 13. Table 4.2 shows the detail of the results for field data.
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P. desertorum

Experiment One Four Sixteen

DP15 070709 4 2 2

DP10 0606 3 3 2

DP14 0606 2 2 2

DP15 0604 2 0 2

DP15 0617 1 2 2

DPC 070109 2 1 2

DP15 070809 3 2 2

DP16 0610 2 2 2

DPB 070809 2 2 2

DP9 0603 0 3 2

P. maricopa

Experiment One Four Sixteen

MP8 0609 3 3 4

MP9 0528 2 2 1

MP9 0602 1 2 2

MP9 0611 2 2 1

MP9 0620 2 2 2

MPE 24Jul09 2 2 2

MP4 0527 2 2 2

MP7 0620 1 2 2

MP8 0527 1 1 1

MPX 0624 2 2 3

P. rugosus

Experiment One Four Sixteen

RP6 0609 2 2 2

RP7 0610 3 2 1

RP10 0527 2 2 2

RP10 0528 1 2 2

RP10 0604 2 0 1

RP12 0602 2 2 2

RP14 0610 2 1 2

RP16 0612 2 2 2

RP19 0618 3 2 2

RS23 0821 2 2 2

RP17 0617 1 3 2

Table 4.1: This table represents the number of change points detected in each of the
field experiment of P. desertorum, P. maricopa and P. rugosus. For P. desertorum,
we are able to detect change points in 10 experiments out of 11. For P. maricopa it
is 10 out of 11. For P. rugosus it is 11 out of 13. The numbers conclude how many
times change points are detected for a pile type in each experiment.

We ran 500 simulated experiment to generate the data for each species. And we

are able to detect change points in all of the experiments. In the field experiments

we were also able to detect change points for most of the experiments. This suggests

all three species are either using pheromones for all pile sizes or they exclusively use
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Figure 4.13: A plot of seed collection from one of the field experiment of P. deserto-
rum with change points indicate with circles.

sitefidelity, but use it in large amounts that generate change points.
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Conclusion

An enormous amount of research has been performed to analyze the foraging strate-

gies of ants. Scientists performed many biological experiments to discover what

strategies ants follow to forage from the environment.

Although we have talked about the combination of three strategies for foraging, it

was unclear which of the strategies ants follow for recruiting from large food sources.

Several indoor experiments on harvester ants which used high definition cameras

and chemical detectors have shown that they lay pheromone trails for other ants to

follow.

As the amount of pheromone laid by the ants are very small, it was difficult to

identify the existence of chemicals in the outdoor field experiments. So, we used this

mathematical approach to detect the pheromone laying events of ants in the outdoor

field experiments.

In simulations, we could detect change points in every single experiment. Since

we can detect change points in the majority of the field experiments, we infer that

all three species of ants either use pheromone to recruit from large clumped food
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sources or exclusively uses sitefidelity which generates change points.

In memory only simulation environment ants used sitefidelity extensively, which

resulted in the drastic change in their foraging rate. As a result, we can see picks

and hikes in their foraging rate which was detected by our change point detection

algorithm. But when we have tuned the simulations to use both memory and com-

munication, we observe ants did not use memory much, even if they use, it didnt

affect their foraging rate, so it is only detected for pheromone.

We have only used binary segmented cumulative sum methods on raw data for

detecting the change points. In future, we can try to observe and find the pattern

of changes in the foraging rate when the pheromone is laid, and use the statistical

data from the simulation to infer the pheromone laying events in the field experiment

data.
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Appendicies

Figure 6.1: Efficiency chart for P. rugosus, one pile, communication only setting.
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Figure 6.2: Efficiency chart for P. rugosus, four pile, communication only setting.

Figure 6.3: Efficiency chart for P. rugosus, sixteen pile, communication only setting.
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Figure 6.4: Efficiency chart for P. rugosus, one pile, memory and communication
combined setting.

Figure 6.5: Efficiency chart for P. rugosus, four pile, memory and communication
combined setting.

45



Chapter 6. Appendicies

Figure 6.6: Efficiency chart for P. rugosus, sixteen pile, memory and communication
combined setting.

Figure 6.7: Efficiency chart for P. rugosus, one pile, memory only setting.

Figure 6.8: Efficiency chart for P. rugosus, four pile, memory only setting.
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Figure 6.9: Efficiency chart for P. rugosus, sixteen pile, memory only setting.

Figure 6.10: Efficiency chart for P. desertorum, one pile, communication only setting.
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Figure 6.11: Efficiency chart for P. desertorum, four pile, communication only set-
ting.

Figure 6.12: Efficiency chart for P. desertorum, sixteen pile, communication only
setting.
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Figure 6.13: Efficiency chart for P. desertorum, one pile, memory and communication
combined setting.

Figure 6.14: Efficiency chart for P. desertorum, four pile, memory and communica-
tion combined setting.
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Figure 6.15: Efficiency chart for P. desertorum, sixteen pile, memory and communi-
cation combined setting.

Figure 6.16: Efficiency chart for P. desertorum, one pile, memory only setting.

Figure 6.17: Efficiency chart for P. desertorum, four pile, memory only setting.
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Figure 6.18: Efficiency chart for P. maricopa, one pile, communication only setting.

Figure 6.19: Efficiency chart for P. maricopa, four pile, communication only setting.
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Figure 6.20: Efficiency chart for P. maricopa, sixteen pile, communication only set-
ting.

Figure 6.21: Efficiency chart for P. maricopa, one pile, memory and communication
combined setting.
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Figure 6.22: Efficiency chart for P. maricopa, four pile, memory and communication
combined setting.

Figure 6.23: Efficiency chart for P. maricopa, sixteen pile, memory and communica-
tion combined setting.
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Figure 6.24: Efficiency chart for P. maricopa, one pile, memory only setting.

Figure 6.25: Efficiency chart for P. maricopa, four pile, memory only setting.

Figure 6.26: Efficiency chart for P. maricopa, sixteen pile, memory only setting.
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Figure 6.27: Comparison of change point detection methods for pheromone only
parameters for P. rugosus. The time in seconds represents the difference between a
pheromone laying event followed by a detection of change point in the foraging rate.

Figure 6.28: Comparison of change point detection method without outliers for
pheromone only parameters P. rugosus.The time in seconds represents the differ-
ence between a pheromone laying event followed by a detection of change point in
the foraging rate.
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Figure 6.29: Efficiency of Linear Detrending method on data of P. rugosus for
pheromone only settings

Figure 6.30: Efficiency of Constant Detrending method on data of P. rugosus for
pheromone only Settings.
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Figure 6.31: Efficiency of Linear Detrending with rate of change method on data of
P. rugosus for pheromone only settings.

Figure 6.32: Efficiency of Linear Detrending with rate of change method on data of
P. rugosus for pheromone only settings
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Figure 6.33: Comparison of all methods on data of P. rugosus for both combination
of communication and memory

Figure 6.34: Comparison of all methods without outliers on data of P. rugosus for
both combination of communication and memory
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Figure 6.35: Efficiency of linear detrending on data of P. rugosus for combination of
communication and sitefidelity

Figure 6.36: Efficiency of constant detrending methods on data of P. rugosus for
both combination of communication and memory
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Figure 6.37: Efficiency of linear detrending method with rate of change in foraging
rate on data of P. rugosus for both combination of communication and memory

Figure 6.38: Efficiency of constant detrending method with rate of change in foraging
rate on data of P. rugosus for both combination of communication and memory
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Figure 6.39: Efficiency of change point detection algorithm on foraging rate for 96
ants for combination of communication and memory

Figure 6.40: Efficiency of change point detection algorithm on change in foraging
rate for 96 ants for combination of communication and memory
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Figure 6.41: Comparison of all methods on data of P. rugosus for memory only
parameters

Figure 6.42: Comparison of all methods without outliers on data of P. rugosus for
memory only parameters
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Figure 6.43: Efficiency of all methods with 96 ants for both combination of commu-
nication and memory

Figure 6.44: Efficiency of all methods with 48 ants for both combination of commu-
nication and memory
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Figure 6.45: Efficiency chart for 96 ants, one pile, memory and communication set-
ting.

Figure 6.46: Efficiency chart for 96 ants, four pile, memory and communication
setting.
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Figure 6.47: Efficiency chart for 96 ants, sixteen pile, memory and communication
setting.

Figure 6.48: Efficiency chart for 48 ants, one pile, memory and communication set-
ting.
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Figure 6.49: Efficiency chart for 48 ants, four pile, memory and communication
setting.

Figure 6.50: Efficiency of all methods with 96 ants for memory only parameters
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Figure 6.51: Efficiency of all methods with 48 ants for memory only parameters

Figure 6.52: Efficiency chart for simulation with 96 ants, one pile, memory only
setting.
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Figure 6.53: Efficiency chart for simulation with 96 ants, four pile, memory only
setting.

Figure 6.54: Efficiency chart for simulation with 96 ants, sixteen pile, memory only
setting.

Figure 6.55: Efficiency chart for simulation with 48 ants, one pile, memory only
setting.
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Figure 6.56: Efficiency chart for simulation with 48 ants, four pile, memory only
setting.

Figure 6.57: Efficiency chart for simulation with 48 ants, sixteen pile, memory only
setting.

Figure 6.58: Efficiency chart for P. desertorum, sixteen pile, memory only setting.
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Figure 6.59: Efficiency of change point detection algorithm on foraging rate and
change in foraging rate for memory plus communication parameters.

Figure 6.60: Efficiency of change point detection algorithm on foraging rate and
change in foraging rate for memory only parameters.
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Figure 6.61: A plot of seed collection from simulation of 96 ants.

Figure 6.62: A plot of seed collection from one of the field experiment of P. deserto-
rum with change points on the collection rate.
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